1
|
Huang W, Ruyechan MC, Ralston KS. Work with me here: variations in genome content and emerging genetic tools in Entamoeba histolytica. Trends Parasitol 2025; 41:401-415. [PMID: 40251060 DOI: 10.1016/j.pt.2025.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 04/20/2025]
Abstract
Entamoeba histolytica is the causative agent of amoebiasis, a significant source of morbidity and mortality in developing nations. Despite this, E. histolytica is understudied, leading to few treatment options and a poor understanding of pathogenesis. Genetic tools have historically been limited. By applying modern approaches, it was recently revealed that the genome is aneuploid. Interestingly, gene expression levels do not correlate with ploidy, potentially highlighting the importance of RNAi in gene regulation. Characterization of the RNAi pathway has led to potent tools for targeted gene knockdown, and the advent of RNAi-based forward genetics. CRISPR/Cas tools for editing the endogenous genome are an exciting possibility on the horizon. We celebrate the gains that have made E. histolytica tractable and anticipate continued advances.
Collapse
Affiliation(s)
- Wesley Huang
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, USA
| | - Maura C Ruyechan
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, USA
| | - Katherine S Ralston
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, USA.
| |
Collapse
|
2
|
Ramírez-Montiel FB, Andrade-Guillen SY, Medina-Nieto AL, Rangel-Serrano Á, Martínez-Álvarez JA, de la Mora J, Vargas-Maya NI, Mendoza-Macías CL, Padilla-Vaca F, Franco B. Theoretical Study of Sphingomyelinases from Entamoeba histolytica and Trichomonas vaginalis Sheds Light on the Evolution of Enzymes Needed for Survival and Colonization. Pathogens 2025; 14:32. [PMID: 39860993 PMCID: PMC11768322 DOI: 10.3390/pathogens14010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/27/2025] Open
Abstract
The path to survival for pathogenic organisms is not straightforward. Pathogens require a set of enzymes for tissue damage generation and to obtain nourishment, as well as a toolbox full of alternatives to bypass host defense mechanisms. Our group has shown that the parasitic protist Entamoeba histolytica encodes for 14 sphingomyelinases (SMases); one of them (acid sphingomyelinase 6, aSMase6) is involved in repairing membrane damage and exhibits hemolytic activity. The enzymatic characterization of aSMase6 has been shown to be activated by magnesium ions but not by zinc, as shown for the human aSMase, and is strongly inhibited by cobalt. However, no structural data are available for the aSMase6 enzyme. In this work, bioinformatic analyses showed that the protist aSMases are diverse enzymes, are evolutionarily related to hemolysins derived from bacteria, and showed a similar overall structure as parasitic, free-living protists and mammalian enzymes. AlphaFold3 models predicted the occupancy of cobalt ions in the active site of the aSMase6 enzyme. Cavity blind docking showed that the substrate is pushed outward of the active site when cobalt is bound instead of magnesium ions. Additionally, the structural models of the aSMase6 of E. histolytica showed a loop that is absent from the rest of the aSMases, suggesting that it may be involved in hemolytic activity, as demonstrated experimentally using the recombinant proteins of aSMase4 and aSMase6. Trichomonas vaginalis enzymes show a putative transmembrane domain and seem functionally different from E. histolytica. This work provides insight into the future biochemical analyses that can show mechanistic features of parasitic protists sphingomyelinases, ultimately rendering these enzymes potential therapeutic targets.
Collapse
Affiliation(s)
- Fátima Berenice Ramírez-Montiel
- Departamento de Farmacia, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta s/n, Guanajuato 36050, Mexico;
| | - Sairy Yarely Andrade-Guillen
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta s/n, Guanajuato 36050, Mexico; (S.Y.A.-G.); (J.A.M.-Á.); (C.L.M.-M.)
| | - Ana Laura Medina-Nieto
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta s/n, Guanajuato 36050, Mexico; (S.Y.A.-G.); (J.A.M.-Á.); (C.L.M.-M.)
| | - Ángeles Rangel-Serrano
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta s/n, Guanajuato 36050, Mexico; (S.Y.A.-G.); (J.A.M.-Á.); (C.L.M.-M.)
| | - José A. Martínez-Álvarez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta s/n, Guanajuato 36050, Mexico; (S.Y.A.-G.); (J.A.M.-Á.); (C.L.M.-M.)
| | - Javier de la Mora
- Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Naurú Idalia Vargas-Maya
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta s/n, Guanajuato 36050, Mexico; (S.Y.A.-G.); (J.A.M.-Á.); (C.L.M.-M.)
| | - Claudia Leticia Mendoza-Macías
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta s/n, Guanajuato 36050, Mexico; (S.Y.A.-G.); (J.A.M.-Á.); (C.L.M.-M.)
| | - Felipe Padilla-Vaca
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta s/n, Guanajuato 36050, Mexico; (S.Y.A.-G.); (J.A.M.-Á.); (C.L.M.-M.)
| | - Bernardo Franco
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta s/n, Guanajuato 36050, Mexico; (S.Y.A.-G.); (J.A.M.-Á.); (C.L.M.-M.)
| |
Collapse
|
3
|
Guerlais V, Allouch N, Moseman EA, Wojciechowska AW, Wojciechowski JW, Marcelino I. Transcriptomic profiling of "brain-eating amoeba" Naegleria fowleri infection in mice: the host and the protozoa perspectives. Front Cell Infect Microbiol 2024; 14:1490280. [PMID: 39735262 PMCID: PMC11682717 DOI: 10.3389/fcimb.2024.1490280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/21/2024] [Indexed: 12/31/2024] Open
Abstract
The free-living amoeba Naegleria fowleri (NF) causes a rare but lethal parasitic meningoencephalitis (PAM) in humans. Currently, this disease lacks effective treatments and the specific molecular mechanisms that govern NF pathogenesis and host brain response remain unknown. To address some of these issues, we sought to explore naturally existing virulence diversity within environmental NF isolates. Herein, we purified two new NF environmental isolates (NF45 and NF1) and tested their in vivo virulence using experimental infection in mice. We found that NF45 was highly virulent (NF45_HV) compared with NF1 (low virulence, NF1_LV), based on in vivo amoeba growth kinetics and mouse survival. To identify underlying differences, we conducted RNA-seq and bioinformatics analyses from the infected mouse brains. Our results showed that NF1_LV and NF45_HV modulated the expression of their genes during mouse brain infection. Differentially expressed genes (DEGs) in NF1_LV were mostly involved in Translational protein, Protein-binding activity modulator, Protein modifying enzyme, while DEGs in NF45_HV were related to DNA metabolism, Cytoskeletal protein, Protein-binding activity modulator. Proteases (namely the virulence factor Cathepsin B) were upregulated in NF1_LV, while downregulated in NF45_HV. When analyzing the host response against infection by these two NF strains, enrichment analyses uncovered genes and mechanisms related to the host immune responses and nervous systems. We detected more DEGs in NF1_LV infected mice compared to NF45_HV, related to blood brain barrier leakage, immune cell recruitment, cytokine production (including IL-6, IFN-Ɣ and TNFα), inflammation of astrocytes and microglia, and oligodendrocyte and neurons degeneration. Increased expression of neuromotor-related genes such as Adam22, Cacnb4 and Zic1 (activated by NF1_LV infection) and ChAt (activated by NF45_LV infection) could explain PAM symptoms such as muscle weakness and seizures. Globally, our results showed that NF isolated from the environment can have different levels of virulence and differentially modulate their gene expression during brain infection. We also provided, for the first time, a comprehensive information for the molecular mechanisms of neuro-immune and host-pathogen interactions during PAM disease. As the host and the protozoa are strongly implicated in PAM lethality, new therapies targeting both the parasite, and the host should be considered to treat PAM infection.
Collapse
Affiliation(s)
- Vincent Guerlais
- Institut Pasteur de la Guadeloupe, Les Abymes, Guadeloupe, France
| | - Nina Allouch
- Institut Pasteur de la Guadeloupe, Les Abymes, Guadeloupe, France
| | - E. Ashley Moseman
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, United States
| | - Alicja W. Wojciechowska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wrocław, Poland
| | | | - Isabel Marcelino
- Institut Pasteur de la Guadeloupe, Les Abymes, Guadeloupe, France
| |
Collapse
|
4
|
Zanditenas E, Ankri S. Unraveling the interplay between unicellular parasites and bacterial biofilms: Implications for disease persistence and antibiotic resistance. Virulence 2024; 15:2289775. [PMID: 38058008 PMCID: PMC10761080 DOI: 10.1080/21505594.2023.2289775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023] Open
Abstract
Bacterial biofilms have attracted significant attention due to their involvement in persistent infections, food and water contamination, and infrastructure corrosion. This review delves into the intricate interactions between bacterial biofilms and unicellular parasites, shedding light on their impact on biofilm formation, structure, and function. Unicellular parasites, including protozoa, influence bacterial biofilms through grazing activities, leading to adaptive changes in bacterial communities. Moreover, parasites like Leishmania and Giardia can shape biofilm composition in a grazing independent manner, potentially influencing disease outcomes. Biofilms, acting as reservoirs, enable the survival of protozoan parasites against environmental stressors and antimicrobial agents. Furthermore, these biofilms may influence parasite virulence and stress responses, posing challenges in disease treatment. Interactions between unicellular parasites and fungal-containing biofilms is also discussed, hinting at complex microbial relationships in various ecosystems. Understanding these interactions offers insights into disease mechanisms and antibiotic resistance dissemination, paving the way for innovative therapeutic strategies and ecosystem-level implications.
Collapse
Affiliation(s)
- Eva Zanditenas
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Serge Ankri
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
5
|
Uribe-Querol E, Rosales C. Neutrophils versus Protozoan Parasites: Plasmodium, Trichomonas, Leishmania, Trypanosoma, and Entameoba. Microorganisms 2024; 12:827. [PMID: 38674770 PMCID: PMC11051968 DOI: 10.3390/microorganisms12040827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/04/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Neutrophils are the most abundant polymorphonuclear granular leukocytes in human blood and are an essential part of the innate immune system. Neutrophils are efficient cells that eliminate pathogenic bacteria and fungi, but their role in dealing with protozoan parasitic infections remains controversial. At sites of protozoan parasite infections, a large number of infiltrating neutrophils is observed, suggesting that neutrophils are important cells for controlling the infection. Yet, in most cases, there is also a strong inflammatory response that can provoke tissue damage. Diseases like malaria, trichomoniasis, leishmaniasis, Chagas disease, and amoebiasis affect millions of people globally. In this review, we summarize these protozoan diseases and describe the novel view on how neutrophils are involved in protection from these parasites. Also, we present recent evidence that neutrophils play a double role in these infections participating both in control of the parasite and in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Eileen Uribe-Querol
- Laboratorio de Biología del Desarrollo, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
6
|
Abdullah SJ, Ali SA. Molecular Detection of a Pathogenic Entamoeba among Symptomatic Children in Eastern Kurdistan of Iraq. Pol J Microbiol 2024; 73:99-105. [PMID: 38437467 PMCID: PMC10911696 DOI: 10.33073/pjm-2024-010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/27/2024] [Indexed: 03/06/2024] Open
Abstract
Entamoeba histolytica infects the large intestine of humans, causing a spectrum of clinical appearances ranging from asymptomatic colonization to severe intestinal and extra-intestinal disease. The parasite is identical microscopically to commensal nonpathogenic amoeba. To detect the pathogenic Entamoeba and estimate the precise prevalence of the parasite among the symptomatic pediatric population using molecular techniques. 323 fecal samples were collected from symptomatic children admitted to Sulaimani Pediatric Teaching Hospital, Sulaimaniyah Province, Iraq, from June to October 2021. A structured, validated questionnaire was prepared and used to report participants' gender, residency, and drinking water source. Then, stool samples were microscopically examined, and the positive samples were submitted to molecular analysis by amplifying the 18s rRNA gene using nested PCR to differentiate E. histolytica from other nonpathogenic Entamoeba. Finally, gene sequences were done to confirm the species. Microscopically, 58 positive samples represented Entamoeba species infection rate of 18% among symptomatic patients. However, only 18 samples were positive for E. histolytica based on molecular methods, which accounts for 31% of the positive by microscopy and 5.6% among the 323 symptomatic populations. NCBI, available in their database, gives the gene sequence and accession number. Patients' sociodemographic data and water sources were directly related to the infection rate. Classical microscopic examination provides a misleading profile about the prevalence of E. histolytica in an endemic region that might lead to unnecessary treatments and a lack of appropriate management for patients.
Collapse
Affiliation(s)
- Sham Jamil Abdullah
- Department of Basic Medical Sciences, College of Medicine, University of Sulaimani, Sulaimaniyah, Iraq
| | - Shahnaz Abdulkader Ali
- Department of Basic Medical Sciences, College of Medicine, University of Sulaimani, Sulaimaniyah, Iraq
| |
Collapse
|
7
|
Guillén N. Pathogenicity and virulence of Entamoeba histolytica, the agent of amoebiasis. Virulence 2023; 14:2158656. [PMID: 36519347 DOI: 10.1080/21505594.2022.2158656] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
The amoeba parasite Entamoeba histolytica is the causative agent of human amebiasis, an enteropathic disease affecting millions of people worldwide. This ancient protozoan is an elementary example of how parasites evolve with humans, e.g. taking advantage of multiple mechanisms to evade immune responses, interacting with microbiota for nutritional and protective needs, utilizing host resources for growth, division, and encystation. These skills of E. histolytica perpetuate the species and incidence of infection. However, in 10% of infected cases, the parasite turns into a pathogen; the host-parasite equilibrium is then disorganized, and the simple lifecycle based on two cell forms, trophozoites and cysts, becomes unbalanced. Trophozoites acquire a virulent phenotype which, when non-controlled, leads to intestinal invasion with the onset of amoebiasis symptoms. Virulent E. histolytica must cross mucus, epithelium, connective tissue and possibly blood. This highly mobile parasite faces various stresses and a powerful host immune response, with oxidative stress being a challenge for its survival. New emerging research avenues and omics technologies target gene regulation to determine human or parasitic factors activated upon infection, their role in virulence activation, and in pathogenesis; this research bears in mind that E. histolytica is a resident of the complex intestinal ecosystem. The goal is to eradicate amoebiasis from the planet, but the parasitic life of E. histolytica is ancient and complex and will likely continue to evolve with humans. Advances in these topics are summarized here.
Collapse
Affiliation(s)
- Nancy Guillén
- Cell Biology and Infection Department, Institut Pasteur and Centre National de la Recherche Scientifique CNRS-ERM9195, Paris, France
| |
Collapse
|
8
|
Nagode A, Vanbeselaere J, Dutkiewicz Z, Kaltenbrunner S, Wilson IBH, Duchêne M. Molecular characterisation of Entamoeba histolytica UDP-glucose 4-epimerase, an enzyme able to provide building blocks for cyst wall formation. PLoS Negl Trop Dis 2023; 17:e0011574. [PMID: 37616327 PMCID: PMC10482301 DOI: 10.1371/journal.pntd.0011574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 09/06/2023] [Accepted: 08/06/2023] [Indexed: 08/26/2023] Open
Abstract
In the human host, the protozoan parasite Entamoeba histolytica is adapted to a non-invasive lifestyle in the colon as well as to an invasive lifestyle in the mesenterial blood vessels and the liver. This means to cope with bacteria and human cells as well as various metabolic challenges. Galactose and N-acetylgalactosamine (GalNAc) are sugars of great importance for the amoebae, they attach to the host mucus and enterocytes via their well-studied Gal/GalNAc specific lectin, they carry galactose residues in their surface glycans, and they cleave GalNAc from host mucins. The enzyme UDP-glucose 4-epimerase (GalE) works as a bridge between the galactose and glucose worlds, it can help to generate glucose for glycolysis from phagocytosis products containing galactose as well as providing UDP-galactose necessary for the biosynthesis of galactose-containing surface components. E. histolytica contains a single galE gene. We recombinantly expressed the enzyme in Escherichia coli and used a spectrophotometric assay to determine its temperature and pH dependency (37°C, pH 8.5), its kinetics for UDP-glucose (Km = 31.82 μM, Vmax = 4.31 U/mg) and substrate spectrum. As observed via RP-HPLC, the enzyme acts on UDP-Glc/Gal as well as UDP-GlcNAc/GalNAc. Previously, Trypanosoma brucei GalE and the bloodstream form of the parasite were shown to be susceptible to the three compounds ebselen, a selenoorganic drug with antioxidant properties, diethylstilbestrol, a mimic of oestrogen with anti-inflammatory properties, and ethacrynic acid, a loop diuretic used to treat oedema. In this study, the three compounds had cytotoxic activity against E. histolytica, but only ebselen inhibited the recombinant GalE with an IC50 of 1.79 μM (UDP-Gal) and 1.2 μM (UDP-GalNAc), suggesting that the two other compounds are active against other targets in the parasite. The importance of the ability of GalE to interconvert UDP-GalNAc and UDP-GlcNAc may be that the trophozoites can generate precursors for their own cyst wall from the sugar subunits cleaved from host mucins. This finding advances our understanding of the biochemical interactions of E. histolytica in its colonic environment.
Collapse
Affiliation(s)
- Anna Nagode
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | | | - Samantha Kaltenbrunner
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Iain B. H. Wilson
- Department of Chemistry, Universität für Bodenkultur, Vienna, Austria
| | - Michael Duchêne
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
Yanagawa Y, Singh U. Diversity and Plasticity of Virulent Characteristics of Entamoeba histolytica. Trop Med Infect Dis 2023; 8:tropicalmed8050255. [PMID: 37235303 DOI: 10.3390/tropicalmed8050255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
The complexity of clinical syndromes of amebiasis, caused by the parasite Entamoeba histolytica, stems from the intricate interplay between the host immune system, the virulence of the invading parasite, and the surrounding environment. Although there is still a relative paucity of information about the precise relationship between virulence factors and the pathogenesis of Entamoeba histolytica, by accumulating data from clinical and basic research, researchers have identified essential pathogenic factors that play a critical role in the pathogenesis of amebiasis, providing important insights into disease development through animal models. Moreover, the parasite's genetic variability has been associated with differences in virulence and disease outcomes, making it important to fully understand the epidemiology and pathogenesis of amebiasis. Deciphering the true mechanism of disease progression in humans caused by this parasite is made more difficult through its ability to demonstrate both genomic and pathological plasticity. The objective of this article is to underscore the heterogeneous nature of disease states and the malleable virulence characteristics in experimental models, while also identifying persistent scientific issues that need to be addressed.
Collapse
Affiliation(s)
- Yasuaki Yanagawa
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Upinder Singh
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Division of Infectious Diseases, Department of Internal Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
10
|
Ramires MDJ, Hummel K, Hatfaludi T, Riedl P, Hess M, Bilic I. Comparative Surfaceome Analysis of Clonal Histomonas meleagridis Strains with Different Pathogenicity Reveals Strain-Dependent Profiles. Microorganisms 2022; 10:microorganisms10101884. [PMID: 36296163 PMCID: PMC9610433 DOI: 10.3390/microorganisms10101884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Histomonas meleagridis, a poultry-specific intestinal protozoan parasite, is histomonosis’s etiological agent. Since treatment or prophylaxis options are no longer available in various countries, histomonosis can lead to significant production losses in chickens and mortality in turkeys. The surfaceome of microbial pathogens is a crucial component of host–pathogen interactions. Recent proteome and exoproteome studies on H. meleagridis produced molecular data associated with virulence and in vitro attenuation, yet the information on proteins exposed on the cell surface is currently unknown. Thus, in the present study, we identified 1485 proteins and quantified 22 and 45 upregulated proteins in the virulent and attenuated strains, respectively, by applying cell surface biotinylation in association with high-throughput proteomic analysis. The virulent strain displayed upregulated proteins that could be linked to putative virulence factors involved in the colonization and establishment of infection, with the upregulation of two candidates being confirmed by expression analysis. In the attenuated strain, structural, transport and energy production proteins were upregulated, supporting the protozoan’s adaptation to the in vitro environment. These results provide a better understanding of the surface molecules involved in the pathogenesis of histomonosis, while highlighting the pathogen’s in vitro adaptation processes.
Collapse
Affiliation(s)
- Marcelo de Jesus Ramires
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria
| | - Karin Hummel
- VetCore Facility for Research, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria
| | - Tamas Hatfaludi
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria
| | - Petra Riedl
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria
| | - Michael Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria
- Christian Doppler Laboratory for Innovative Poultry Vaccines (IPOV), University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria
| | - Ivana Bilic
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria
- Correspondence: ; Tel.: +43-12-5077-5158; Fax: +43-12-5077-5192
| |
Collapse
|
11
|
Singh A, Banerjee T. Host-parasite interactions in infections due to Entamoeba histolytica: A tale of known and unknown. Trop Parasitol 2022; 12:69-77. [PMID: 36643990 PMCID: PMC9832491 DOI: 10.4103/tp.tp_81_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/17/2021] [Accepted: 12/07/2021] [Indexed: 11/25/2022] Open
Abstract
Entamoeba histolytica (E. histolytica) is an enteric microaerophilic protozoan parasite responsible for millions of cases worldwide. Majority of the infections due to E. histolytica remain asymptomatic; however, it can cause an array of symptoms ranging from devastating dysentery, colitis, and abscesses in different vital organs. The interactions between the E. histolytica and its host are a multifaceted chain of events rather than merely destruction and invasion. There are manifold decisive steps for the establishment of infections by E. histolytica which includes degradation of mucosal layer, adherence to the host epithelium, invasion into the host tissues, and dissemination to vital organs. It is widely hypothesized that, for establishment of infections, the interactions at the intestinal mucosa decides the fate of the disease. The delicate communications between the parasite, the host factors, and the associated bacterial microflora play a significant role in the pathogenesis of E. histolytica. In this review, we summarize the interactions between the E. histolytica and it's host at the genetic and immunological interphases emphasizing the crucial role of microbiota in these interactions.
Collapse
Affiliation(s)
- Aradhana Singh
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Tuhina Banerjee
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
12
|
The Role of Acetate Kinase in the Human Parasite Entamoeba histolytica. PARASITOLOGIA (BASEL, SWITZERLAND) 2022; 2:147-159. [PMID: 36872919 PMCID: PMC9983610 DOI: 10.3390/parasitologia2020014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The human parasite Entamoeba histolytica, which causes approximately 100 million cases of amoebic dysentery each year, relies on glycolysis as the major source of ATP production from glucose as it lacks a citric acid cycle and oxidative phosphorylation. Ethanol and acetate, the two major glycolytic end products for E. histolytica, are produced at a ratio of 2:1 under anaerobic conditions, creating an imbalance between NADH production and utilization. In this study we investigated the role of acetate kinase (ACK) in acetate production during glycolysis in E. histolytica metabolism. Analysis of intracellular and extracellular metabolites demonstrated that acetate levels were unaffected in an ACK RNAi cell line, but acetyl-CoA levels and the NAD+/NADH ratio were significantly elevated. Moreover, we demonstrated that glyceraldehyde 3-phosphate dehydrogenase catalyzes the ACK-dependent conversion of acetaldehyde to acetyl phosphate in E. histolytica. We propose that ACK is not a major contributor to acetate production, but instead provides a mechanism for maintaining the NAD+/NADH balance during ethanol production in the extended glycolytic pathway.
Collapse
|
13
|
Uribe-Querol E, Rosales C. Immune Response to the Enteric Parasite Entamoeba histolytica. Physiology (Bethesda) 2021; 35:244-260. [PMID: 32490746 DOI: 10.1152/physiol.00038.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Entamoeba histolytica is a protozoan parasite responsible for amoebiasis, a disease with a high prevalence in developing countries. Establishing an amoebic infection involves interplay between pathogenic factors for invasion and tissue damage, and immune responses for protecting the host. Here, we review the pathogenicity of E. histolytica and summarize the latest knowledge on immune response and immune evasion mechanisms during amoebiasis.
Collapse
Affiliation(s)
- Eileen Uribe-Querol
- División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
14
|
Rosales C. Neutrophils vs. amoebas: Immunity against the protozoan parasite Entamoeba histolytica. J Leukoc Biol 2021; 110:1241-1252. [PMID: 34085314 DOI: 10.1002/jlb.4mr0521-849rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 12/29/2022] Open
Abstract
Entamoeba histolytica is a protozoan parasite with high prevalence in developing countries, and causes amoebiasis. This disease affects the intestine and the liver, and is the third leading cause of human deaths among parasite infections. E. histolytica infection of the intestine or liver is associated with a strong inflammation characterized by a large number of infiltrating neutrophils. Consequently, several reports suggest that neutrophils play a protective role in amoebiasis. However, other reports indicate that amoebas making direct contact with neutrophils provoke lysis of these leukocytes, resulting in the release of their lytic enzymes, which in turn provoke tissue damage. Therefore, the role of neutrophils in this parasitic infection remains controversial. Neutrophils migrate from the circulation to sites of infection, where they display several antimicrobial functions, including phagocytosis, degranulation, and formation of neutrophil extracellular traps (NET). Recently, it was found that E. histolytica trophozoites are capable of inducing NET formation. Neutrophils in touch with amoebas launched NET in an explosive manner around the amoebas and completely covered them in nebulous DNA and cell aggregates where parasites got immobilized and killed. In addition, the phenotype of neutrophils can be modified by the microbiome resulting in protection against amoebas. This review describes the mechanisms of E. histolytica infection and discusses the novel view of how neutrophils are involved in innate immunity defense against amoebiasis. Also, the mechanisms on how the microbiome modulates neutrophil function are described.
Collapse
Affiliation(s)
- Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
15
|
König C, Honecker B, Wilson IW, Weedall GD, Hall N, Roeder T, Metwally NG, Bruchhaus I. Taxon-Specific Proteins of the Pathogenic Entamoeba Species E. histolytica and E. nuttalli. Front Cell Infect Microbiol 2021; 11:641472. [PMID: 33816346 PMCID: PMC8017271 DOI: 10.3389/fcimb.2021.641472] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/03/2021] [Indexed: 01/30/2023] Open
Abstract
The human protozoan parasite Entamoeba histolytica can live in the human intestine for months or years without generating any symptoms in the host. For unknown reasons, amoebae can suddenly destroy the intestinal mucosa and become invasive. This can lead to amoebic colitis or extraintestinal amoebiasis whereby the amoebae spread to other organs via the blood vessels, most commonly the liver where abscesses develop. Entamoeba nuttalli is the closest genetic relative of E. histolytica and is found in wild macaques. Another close relative is E. dispar, which asyptomatically infects the human intestine. Although all three species are closely related, only E. histolytica and E. nuttalli are able to penetrate their host’s intestinal epithelium. Lineage-specific genes and gene families may hold the key to understanding differences in virulence among species. Here we discuss those genes found in E. histolytica that have relatives in only one or neither of its sister species, with particular focus on the peptidase, AIG, Ariel, and BspA families.
Collapse
Affiliation(s)
- Constantin König
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Barbara Honecker
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Ian W Wilson
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Gareth D Weedall
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Neil Hall
- Earlham Institute, Norwich, United Kingdom.,School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Thomas Roeder
- Zoology, Department of Molecular Physiology, Kiel University, Kiel, Germany.,Airway Research Center North (ARCN), German Center for Lung Research (DZL), Kiel, Germany
| | | | - Iris Bruchhaus
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,Department of Biology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
16
|
Shrivastav MT, Malik Z, Somlata. Revisiting Drug Development Against the Neglected Tropical Disease, Amebiasis. Front Cell Infect Microbiol 2021; 10:628257. [PMID: 33718258 PMCID: PMC7943716 DOI: 10.3389/fcimb.2020.628257] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/30/2020] [Indexed: 11/15/2022] Open
Abstract
Amebiasis is a neglected tropical disease which is caused by the protozoan parasite Entamoeba histolytica. This disease is one of the leading causes of diarrhea globally, affecting largely impoverished residents in developing countries. Amebiasis also remains one of the top causes of gastrointestinal diseases in returning international travellers. Despite having many side effects, metronidazole remains the drug of choice as an amebicidal tissue-active agent. However, emergence of metronidazole resistance in pathogens having similar anaerobic metabolism and also in laboratory strains of E. histolytica has necessitated the identification and development of new drug targets and therapeutic strategies against the parasite. Recent research in the field of amebiasis has led to a better understanding of the parasite’s metabolic and cellular pathways and hence has been useful in identifying new drug targets. On the other hand, new molecules effective against amebiasis have been mined by modifying available compounds, thereby increasing their potency and efficacy and also by repurposing existing approved drugs. This review aims at compiling and examining up to date information on promising drug targets and drug molecules for the treatment of amebiasis.
Collapse
Affiliation(s)
- Manish T Shrivastav
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Zainab Malik
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Somlata
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
17
|
Cárdenas-Hernández H, Titaux-Delgado GA, Castañeda-Ortiz EJ, Torres-Larios A, Brieba LG, Del Río-Portilla F, Azuara-Liceaga E. Genome-wide and structural analysis of the Myb-SHAQKYF family in Entamoeba histolytica. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140601. [PMID: 33422669 DOI: 10.1016/j.bbapap.2021.140601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/19/2020] [Accepted: 01/04/2021] [Indexed: 10/22/2022]
Abstract
Amoebiasis is the third leading cause of death among protozoon parasitic diseases in the lower-middle income countries. Understanding the molecular events that control gene expression such as transcription factors, their DNA binding mode and target sequences can help to develop new antiamoebic drugs against Entamoeba histolytica. In this paper we performed a genome and structural analysis of a specific transcription factor. The genome of E. histolytica codifies for 9 EhMybSHAQKYF proteins, which are a family within a large group of 34 Myb-DNA-binding domain (Myb-DBD) containing proteins. Here we compared Entamoeba Myb-SHAQKYF proteins with Myb-like proteins from the Reveille (RVE) family, important regulators of plant circadian networks. This comparison could lead to stablish their role in E. histolytica life cycle. We show that the ehmybshaqkyf genes are differentially expressed in trophozoites under basal cell culture conditions. An in-silico analysis predicts that members of this group harbor a highly conserved and structured Myb-DBD and a large portion of intrinsically disordered residues. As the Myb-DBD of these proteins harbors a distinctive Q[VI]R[ST]HAQK[YF]F sequence in its putative third α-helix, we consider relevant to determine the three-dimensional (3D) structure of one of them. An NMR structure of the Myb-DBD of EhMybS3 shows that this protein is composed of three α-helices stabilized by a hydrophobic core, similar to Myb proteins of different kingdoms. It is remarkable that despite not sharing similarities in their amino acid sequences, the structure of the Myb-DBD of the EhMybS3 is well conserved in this early branching eukaryote.
Collapse
Affiliation(s)
- Helios Cárdenas-Hernández
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Ciudad de México, México
| | | | | | - Alfredo Torres-Larios
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Luis G Brieba
- Grupo de Bioquímica Estructural, Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México
| | | | - Elisa Azuara-Liceaga
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Ciudad de México, México.
| |
Collapse
|
18
|
Single-Cell RNA Sequencing Reveals that the Switching of the Transcriptional Profiles of Cysteine-Related Genes Alters the Virulence of Entamoeba histolytica. mSystems 2020; 5:5/6/e01095-20. [PMID: 33361325 PMCID: PMC7762796 DOI: 10.1128/msystems.01095-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Studies on the trophozoite of Entamoeba histolytica suggested this organism could accumulate polyploid cells in its proliferative phase and differentiate its cell cycle from that of other eukaryotes. Therefore, a single-cell sequencing technique was used to study the switching of the RNA transcription profiles of single amoebic trophozoites. Entamoeba histolytica is an intestinal protozoan that causes human amoebic colitis and extraintestinal abscesses. Virulence variation is observed in the pathogenicity of E. histolytica trophozoites, but the detailed mechanism remains unclear. Here, a single trophozoite was cultured alone, and the progeny of the trophozoites of each generation were subjected to single-cell RNA sequencing (scRNA-seq) to study the transcriptional profiles of trophozoites. The scRNA-seq analysis indicated the importance of sulfur metabolism and the proteasome pathway in pathogenicity, whereas the isobaric tags for relative and absolute quantitation (iTRAQ) proteomic analysis did not identify the bulk trophozoites. The trophozoite improved the synthesis of cysteine under cysteine-deficient conditions but downregulated the expression of the intermediate subunit of the lectin of E. histolytica trophozoites and retained the expression of the heavy subunit of lectin, resulting in decreased amoebic phagocytosis and cytotoxicity. The variation in the transmembrane kinase gene family might be critical in regulating the proteasome pathway. Thus, the scRNA-seq technique provided an improved understanding of the biological characteristics and the mechanism of virulence variation of amoebic trophozoites. IMPORTANCE Studies on the trophozoite of Entamoeba histolytica suggested this organism could accumulate polyploid cells in its proliferative phase and differentiate its cell cycle from that of other eukaryotes. Therefore, a single-cell sequencing technique was used to study the switching of the RNA transcription profiles of single amoebic trophozoites. We separated individual trophozoites from axenic cultured trophozoites, CHO cell-incubated trophozoites, and in vivo trophozoites. We found important changes in the sulfur and cysteine metabolism in pathogenicity. The trophozoites strategically regulated the expression of the cysteine-rich protein-encoding genes under cysteine-deficient conditions, thereby decreasing amoebic phagocytosis and cytotoxicity. The single-cell sequencing technique shows evident advantages in comparison with the isobaric tags for relative and absolute quantitation (iTRAQ) proteomic technology (bulk trophozoite level) and reveals the regulation strategy of trophozoites in the absence of exogenous cysteine. This regulation strategy may be the mechanism of virulence variation of amoebic trophozoites.
Collapse
|
19
|
Guillen N. Signals and signal transduction pathways in Entamoeba histolytica during the life cycle and when interacting with bacteria or human cells. Mol Microbiol 2020; 115:901-915. [PMID: 33249684 DOI: 10.1111/mmi.14657] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 01/17/2023]
Abstract
Entamoeba histolytica is the etiological agent of amebiasis in humans. This ameba parasite resides as a commensal in the intestine where it shares intestinal resources with the bacterial microbiome. In the intestinal ecosystem, the ameba encysts and eventually develops disease by invading the tissues. E. histolytica possesses cell surface receptors for the proper sensing of signals involved in encystation or sustaining parasite interaction with bacteria and human cells. Among those receptors are the Gal/GalNAc lectin, G protein-coupled receptors, and transmembrane kinases. In addition there are recently discovered, promising proteins, including orthologs of Toll-type receptors and β trefoil lectins. These proteins trigger a wide variety of signal transduction pathways; however, most of the players involved in the signaling pathways evoked in this parasite are unknown. This review provides an overview of amoebic receptors and their role in encystation, adherence to bacteria or human cells, as well as the reported intracellular signal transduction processes that they can trigger. This knowledge is essential for understanding the lifestyle of E. histolytica and its cytopathic effect on bacteria and human cells that are responsible for infection.
Collapse
Affiliation(s)
- Nancy Guillen
- Institut Pasteur, Centre National de la Recherche Scientifique, CNRS-ERL9195, Paris, France
| |
Collapse
|
20
|
Differential Pathogenic Gene Expression of E. histolytica in Patients with Different Clinical Forms of Amoebiasis. Microorganisms 2020; 8:microorganisms8101556. [PMID: 33050280 PMCID: PMC7650713 DOI: 10.3390/microorganisms8101556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 11/17/2022] Open
Abstract
The etiological agent of human amoebiasis is the protozoan parasite E. histolytica; the disease is still an endemic infection in some countries and the outcome of infection in the host infection can range from asymptomatic intestinal infection to intestinal or liver invasive forms of the disease. The invasive character of this parasite is multifactorial and mainly due to the differential expression of multiple pathogenic genes. The aim of the present work was to measure the differential expression of some genes in different specimens of patients with amoebic liver abscess (ALA) and specimens of genital amoebiasis (AG) by RT-qPCR. Results show that the expression of genes is different in both types of samples. Almost all studied genes were over expressed in both sets of patients; however, superoxide dismutase (Ehsod), serine threonine isoleucine rich protein (Ehstirp), peroxiredoxin (Ehprd) and heat shock protein 70 and 90 (Ehhsp-70, EHhsp-90) were higher in AG biopsies tissue. Furthermore, cysteine proteinases 5 and 2 (Ehcp5, Ehcp2), lectin (Ehgal/galnaclectin) and calreticulin (Ehcrt) genes directly associate with pathogenic mechanisms of E. histolytica had similar over expression in both AG and ALA samples. In summary the results obtained show that trophozoites can regulate the expression of their genes depending on stimuli or environmental conditions, in order to regulate their pathogenicity and ensure their survival in the host.
Collapse
|
21
|
Aguilar-Rojas A, Olivo-Marin JC, Guillen N. Human intestinal models to study interactions between intestine and microbes. Open Biol 2020; 10:200199. [PMID: 33081633 PMCID: PMC7653360 DOI: 10.1098/rsob.200199] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022] Open
Abstract
Implementations of suitable in vitro cell culture systems of the human intestine have been essential tools in the study of the interaction among organs, commensal microbiota, pathogens and parasites. Due to the great complexity exhibited by the intestinal tissue, researchers have been developing in vitro/ex vivo systems to diminish the gap between conventional cell culture models and the human intestine. These models are able to reproduce different structures and functional aspects of the tissue. In the present review, information is recapitulated on the most used models, such as cell culture, intestinal organoids, scaffold-based three-dimensional models, and organ-on-a-chip and their use in studying the interaction between human intestine and microbes, and their advantages and limitations are also discussed.
Collapse
Affiliation(s)
- Arturo Aguilar-Rojas
- Instituto Mexicano del Seguro Social, Unidad de Investigación Médica en Medicina Reproductiva, Unidad Médica de Alta Especialidad en Ginecología y Obstetricia No. 4 ‘Dr. Luis Castelazo Ayala’, Av. Río Magdalena No. 289, Col. Tizapán San Ángel, C.P. 01090 Ciudad de México, México
- Institut Pasteur, Unité d'Analyse d'Images Biologiques, 25 Rue du Dr Roux, 75015 Paris, France
| | - Jean-Christophe Olivo-Marin
- Institut Pasteur, Unité d'Analyse d'Images Biologiques, 25 Rue du Dr Roux, 75015 Paris, France
- Centre National de la Recherche Scientifique, UMR3691, 25 Rue du Dr Roux, 75015 Paris, France
| | - Nancy Guillen
- Institut Pasteur, Unité d'Analyse d'Images Biologiques, 25 Rue du Dr Roux, 75015 Paris, France
- Centre National de la Recherche Scientifique, ERL9195, 25 Rue du Dr Roux, 75015 Paris, France
| |
Collapse
|
22
|
Martínez-Ocaña J, Maravilla P, Olivo-Díaz A. Interaction between human mucins and parasite glycoproteins: the role of lectins and glycosidases in colonization by intestinal protozoa. Rev Inst Med Trop Sao Paulo 2020; 62:e64. [PMID: 32901761 PMCID: PMC7477959 DOI: 10.1590/s1678-9946202062064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/17/2020] [Indexed: 08/30/2023] Open
Abstract
Intestinal mucins are the first line of defense against microorganisms. Although knowledge about the mechanisms involved in the establishment of intestinal protozoa is limited, there is evidence that these parasites produce lectin-like molecules and glycosidases, that exert both, constitutive and secretory functions, promoting the establishment of these microorganisms. In the present review, we analyse the main interactions between mucins of the host intestine and the four main protozoan parasites in humans and their implications in intestinal colonization. There are lectin-like molecules that contain complex oligosaccharide structures and N-acetylglucosamine (GlcNAc), mannose and sialic acid as main components, which are excreted/secreted by Giardia intestinalis, and recognized by the host using mannose-binding lectins (MBL). Entamoeba histolytica and Cryptosporidium spp. express the lectin galactose/N-acetyl-D-galactosamine, which facilitates their adhesion to cells. In Cryptosporidium, the glycoproteins gp30, gp40/15 and gp900 and the glycoprotein lectin CpClec are involved in protozoan adhesion to intestinal cells, forming an adhesion-attack complex. G. intestinalis and E. histolytica can also produce glycosidases such as β-N-acetyl-D-glucosaminidase, α-d-glucosidase, β-d-galactosidase, β-l-fucosidase, α-N-acetyl-d-galactosaminidase and β-mannosidase. In Blastocystis, α-D-mannose, α-D-glucose, GlcNAc, α-D-fucose, chitin and sialic acid that have been identified on their surface. Fucosidases, hexosaminidases and polygalacturonases, which may be involved in the mucin degradation process, have also been described in the Blastocystis secretoma. Similarly, symbiotic coexistence with the intestinal microbiota promotes the survival of parasites facilitating cell invasion and nutrients obtention. Furthermore, it is necessary to identify and characterize more glycosidases, which have been only partially described by in silico analyses of the parasite genome.
Collapse
Affiliation(s)
- Joel Martínez-Ocaña
- Hospital General "Dr. Manuel Gea González", Departamento de Ecología de Agentes Patógenos, Ciudad de México, Mexico
| | - Pablo Maravilla
- Hospital General "Dr. Manuel Gea González", Subdirección de Investigación, Ciudad de México, Mexico
| | - Angélica Olivo-Díaz
- Hospital General "Dr. Manuel Gea González", Departamento de Biología Molecular e Histocompatibilidad, Hospital General "Dr. Manuel Gea González", Ciudad de México, Mexico
| |
Collapse
|
23
|
Grondin JA, Kwon YH, Far PM, Haq S, Khan WI. Mucins in Intestinal Mucosal Defense and Inflammation: Learning From Clinical and Experimental Studies. Front Immunol 2020; 11:2054. [PMID: 33013869 PMCID: PMC7500085 DOI: 10.3389/fimmu.2020.02054] [Citation(s) in RCA: 252] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/28/2020] [Indexed: 12/24/2022] Open
Abstract
Throughout the gastrointestinal (GI) tract, a distinct mucus layer composed of highly glycosylated proteins called mucins plays an essential role in providing lubrication for the passage of food, participating in cell signaling pathways and protecting the host epithelium from commensal microorganisms and invading pathogens, as well as toxins and other environmental irritants. These mucins can be broadly classified into either secreted gel-forming mucins, those that provide the structural backbone for the mucus barrier, or transmembrane mucins, those that form the glycocalyx layer covering the underlying epithelial cells. Goblet cells dispersed among the intestinal epithelial cells are chiefly responsible for the synthesis and secretion of mucins within the gut and are heavily influenced by interactions with the immune system. Evidence from both clinical and animal studies have indicated that several GI conditions, including inflammatory bowel disease (IBD), colorectal cancer, and numerous enteric infections are accompanied by considerable changes in mucin quality and quantity. These changes include, but are not limited to, impaired goblet cell function, synthesis dysregulation, and altered post-translational modifications. The current review aims to highlight the structural and functional features as well as the production and immunological regulation of mucins and the impact these key elements have within the context of barrier function and host defense in intestinal inflammation.
Collapse
Affiliation(s)
- Jensine A Grondin
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Yun Han Kwon
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Parsa Mehraban Far
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Sabah Haq
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Waliul I Khan
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
24
|
Nakada-Tsukui K, Marumo K, Nozaki T. A lysosomal hydrolase receptor, CPBF2, is associated with motility and invasion of the enteric protozoan parasite Entamoeba histolytica. Mol Biochem Parasitol 2020; 239:111299. [PMID: 32707151 DOI: 10.1016/j.molbiopara.2020.111299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/25/2020] [Accepted: 07/13/2020] [Indexed: 11/18/2022]
Abstract
Proper targeting and secretion of lysosomal hydrolases are regulated by transporting receptors. Entamoeba histolytica, the enteric protozoan parasite responsible for human amebiasis, has a unique family of lysosomal hydrolase receptors, cysteine protease binding protein family, CPBF. CPBFs, consisting of 11 members with conserved domain organization, bind to a wide range of cargos including cysteine proteases and glycosidases, which are also known to be involved in pathogenesis of this parasite. In this study, we characterized one of CPBFs, CPBF2, which is involved in cell motility and extracellular matrix invasion. Unexpectedly, these roles of CPBF were not related to its cargo, α-amylase. This is the first demonstration that a putative hydrolase receptor is involved in cell motility and invasion in parasitic protozoa.
Collapse
Affiliation(s)
- Kumiko Nakada-Tsukui
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan.
| | - Konomi Marumo
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-572, Japan; Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan.
| |
Collapse
|
25
|
Aguilar-Rojas A, Castellanos-Castro S, Matondo M, Gianetto QG, Varet H, Sismeiro O, Legendre R, Fernandes J, Hardy D, Coppée JY, Olivo-Marin JC, Guillen N. Insights into amebiasis using a human 3D-intestinal model. Cell Microbiol 2020; 22:e13203. [PMID: 32175652 DOI: 10.1111/cmi.13203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/27/2020] [Accepted: 03/04/2020] [Indexed: 12/15/2022]
Abstract
Entamoeba histolytica is the causative agent of amebiasis, an infectious disease targeting the intestine and the liver in humans. Two types of intestinal infection are caused by this parasite: silent infection, which occurs in the majority of cases, and invasive disease, which affects 10% of infected persons. To understand the intestinal pathogenic process, several in vitro models, such as cell cultures, human tissue explants or human intestine xenografts in mice, have been employed. Nevertheless, our knowledge on the early steps of amebic intestinal infection and the molecules involved during human-parasite interaction is scarce, in part due to limitations in the experimental settings. In the present work, we took advantage of tissue engineering approaches to build a three-dimensional (3D)-intestinal model that is able to replicate the general characteristics of the human colon. This system consists of an epithelial layer that develops tight and adherens junctions, a mucus layer and a lamina propria-like compartment made up of collagen containing macrophages and fibroblast. By means of microscopy imaging, omics assays and the evaluation of immune responses, we show a very dynamic interaction between E. histolytica and the 3D-intestinal model. Our data highlight the importance of several virulence markers occurring in patients or in experimental models, but they also demonstrate the involvement of under described molecules and regulatory factors in the amoebic invasive process.
Collapse
Affiliation(s)
- Arturo Aguilar-Rojas
- Institut Pasteur, Bioimage Analysis Unit, Paris, France.,Instituto Mexicano del Seguro Social, Unidad de Investigación Médica en Medicina Reproductiva, Ciudad de México, Mexico
| | - Silvia Castellanos-Castro
- Institut Pasteur, Bioimage Analysis Unit, Paris, France.,Universidad Autónoma de la Ciudad de México, Colegio de Ciencias y Humanidades, Ciudad de México, Mexico
| | - Mariette Matondo
- Institut Pasteur, Plateforme Protéomique, Unité de Spectrométrie de Masse pour la Biologie (MSBio), Centrede Ressources et Recherches Technologiques (C2RT), Paris, France
| | - Quentin Giai Gianetto
- Institut Pasteur, Plateforme Protéomique, Unité de Spectrométrie de Masse pour la Biologie (MSBio), Centrede Ressources et Recherches Technologiques (C2RT), Paris, France.,Institut Pasteur, Plate-forme Transcriptome et EpiGenome, Biomics, Centre de Ressources et Recherches Technologiques (C2RT), Paris, France
| | - Hugo Varet
- Institut Pasteur, Plate-forme Transcriptome et EpiGenome, Biomics, Centre de Ressources et Recherches Technologiques (C2RT), Paris, France.,Institut Pasteur, Hub Bioinformatique et Biostatistique, Département de Biologie Computationnelle (USR3756 IP CNRS), Paris, France
| | - Odile Sismeiro
- Institut Pasteur, Plate-forme Transcriptome et EpiGenome, Biomics, Centre de Ressources et Recherches Technologiques (C2RT), Paris, France
| | - Rachel Legendre
- Institut Pasteur, Plate-forme Transcriptome et EpiGenome, Biomics, Centre de Ressources et Recherches Technologiques (C2RT), Paris, France.,Institut Pasteur, Hub Bioinformatique et Biostatistique, Département de Biologie Computationnelle (USR3756 IP CNRS), Paris, France
| | - Julien Fernandes
- Institut Pasteur, UTechSPBI, Centre de Ressources et Recherches Technologiques (C2RT), Paris, France
| | - David Hardy
- Institut Pasteur, Experimental Neuropathology Unit, Paris, France
| | - Jean-Yves Coppée
- Institut Pasteur, Plate-forme Transcriptome et EpiGenome, Biomics, Centre de Ressources et Recherches Technologiques (C2RT), Paris, France
| | | | - Nancy Guillen
- Institut Pasteur, Paris, France.,Centre National de la Recherche Scientifique, Paris, France
| |
Collapse
|
26
|
Castellanos-Castro S, Bolaños J, Orozco E. Lipids in Entamoeba histolytica: Host-Dependence and Virulence Factors. Front Cell Infect Microbiol 2020; 10:75. [PMID: 32211340 PMCID: PMC7075943 DOI: 10.3389/fcimb.2020.00075] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 02/14/2020] [Indexed: 11/19/2022] Open
Abstract
Lipids are essential players in parasites pathogenesis. In particular, the highly phagocytic trophozoites of Entamoeba histolytica, the causative agent of amoebiasis, exhibit a dynamic membrane fusion and fission, in which lipids strongly participate; particularly during the overstated motility of the parasite to reach and attack the epithelia and ingest target cells. Synthesis and metabolism of lipids in this protozoan present remarkable difference with those performed by other eukaryotes. Here, we reviewed the current knowledge on lipids in E. histolytica. Trophozoites synthesize phosphatidylcholine and phosphatidylethanolamine by the Kennedy pathway; and sphingolipids, phosphatidylserine, and phosphatidylinositol, by processes similar to those used by other eukaryotes. However, trophozoites lack enzymes for cholesterol and fatty acids synthesis, which are scavenged from the host or culture medium by specific mechanisms. Cholesterol, a fundamental molecule for the expression of virulence, is transported from the medium into the trophozoites by EhNPC1 and EhNPC2 proteins. Inside cells, lipids are distributed by different pathways, including by the participation of the endosomal sorting complex required for transport (ESCRT), involved in vesicle fusion and fission. Cholesterol interacts with the phospholipid lysobisphosphatidic acid (LBPA) and EhADH, an ALIX family protein, also involved in phagocytosis. In this review, we summarize the known information on phospholipids synthesis and cholesterol transport as well as their metabolic pathways in E. histolytica; highlighting the mechanisms used by trophozoites to dispose lipids involved in the virulence processes.
Collapse
Affiliation(s)
- Silvia Castellanos-Castro
- College of Sciences and Humanities, Autonomous University of Mexico City, Mexico City, Mexico.,BioImage Analysis Unit, Pasteur Institute, Paris, France
| | - Jeni Bolaños
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico.,Centro Multidisciplinario de Estudios en Biotecnología, FMVZ, Universidad Michoacana de San Nnicolás Hidalgo, Morelia, Mexico
| | - Esther Orozco
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| |
Collapse
|
27
|
Shaulov Y, Nagaraja S, Sarid L, Trebicz-Geffen M, Ankri S. Formation of oxidised (OX) proteins in Entamoeba histolytica exposed to auranofin and consequences on the parasite virulence. Cell Microbiol 2020; 22:e13174. [PMID: 32017328 DOI: 10.1111/cmi.13174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 12/28/2022]
Abstract
Metronidazole (MNZ), the first line drug for amoebiasis and auranofin (AF), an emerging antiprotozoan drug, are both inhibiting Entamoeba histolytica thioredoxin reductase. The nature of oxidised proteins (OXs) formed in AF- or MNZ-treated E. histolytica trophozoites is unknown. In order to fill this knowledge gap, we performed a large-scale identification and quantification of the OXs formed in AF- or MNZ-treated E. histolytica trophozoites using resin-assisted capture coupled to mass spectrometry (MS). We detected 661 OXs in MNZ-treated trophozoites and 583 OXs in AF-treated trophozoites. More than 50% of these OXs were shared, and their functions include hydrolases, enzyme modulators, transferases, nucleic acid binding proteins, oxidoreductases, cytoskeletal proteins, chaperones, and ligases. Here, we report that the formation of actin filaments (F-actin) is impaired in AF-treated trophozoites. Consequently, their erythrophagocytosis, cytopathic activity, and their motility are impaired. We also observed that less than 15% of OXs present in H2 O2 -treated trophozoites are also present in AF- or MNZ-treated trophozoites. These results strongly suggest that the formation of OXs in AF- or MNZ-treated trophozoites and in H2 O2 -treated trophozoites occurred by two different mechanisms.
Collapse
Affiliation(s)
- Yana Shaulov
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Shruti Nagaraja
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Lotem Sarid
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Meirav Trebicz-Geffen
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Serge Ankri
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
28
|
Entamoeba histolytica Interaction with Enteropathogenic Escherichia coli Increases Parasite Virulence and Inflammation in Amebiasis. Infect Immun 2019; 87:IAI.00279-19. [PMID: 31527129 DOI: 10.1128/iai.00279-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/26/2019] [Indexed: 01/01/2023] Open
Abstract
Epidemiological studies suggest frequent association of enteropathogenic bacteria with Entamoeba histolytica during symptomatic infection. In this study, we sought to determine if the interaction with enteropathogenic (EPEC) or nonpathogenic Escherichia coli (strain DH5α) could modify the virulence of E. histolytica to cause disease in animal models of amebiasis. In vitro studies showed a 2-fold increase in CaCo2 monolayer destruction when E. histolytica interacted with EPEC but not with E. coli DH5α for 2.5 h. This was associated with increased E. histolytica proteolytic activity as revealed by zymogram analysis and degradation of the E. histolytica CP-A1/5 (EhCP-A1/5) peptide substrate Z-Arg-Arg-pNC and EhCP4 substrate Z-Val-Val-Arg-AMC. Additionally, E. histolytica-EPEC interaction increased EhCP-A1, -A2, -A4, and -A5, Hgl, Apa, and Cox-1 mRNA expression. Despite the marked upregulation of E. histolytica virulence factors, nonsignificant macroscopic differences in amebic liver abscess development were observed at early stages in hamsters inoculated with either E. histolytica-EPEC or E. histolytica-E. coli DH5α. Histopathology of livers of E. histolytica-EPEC-inoculated animals revealed foci of acute inflammation 3 h postinoculation that progressively increased, producing large inflammatory reactions, ischemia, and necrosis with high expression of il-1β, ifn-γ, and tnf-α proinflammatory cytokine genes compared with that in livers of E. histolytica-E. coli DH5α-inoculated animals. In closed colonic loops from mice, intense inflammation was observed with E. histolytica-EPEC manifested by downregulation of Math1 mRNA with a corresponding increase in the expression of Muc2 mucin and proinflammatory cytokine genes il-6, il-12, and mcp-1 These results demonstrate that E. histolytica/EPEC interaction enhanced the expression and production of key molecules associated with E. histolytica virulence, critical in pathogenesis and progression of disease.
Collapse
|
29
|
Carrero JC, Reyes-López M, Serrano-Luna J, Shibayama M, Unzueta J, León-Sicairos N, de la Garza M. Intestinal amoebiasis: 160 years of its first detection and still remains as a health problem in developing countries. Int J Med Microbiol 2019; 310:151358. [PMID: 31587966 DOI: 10.1016/j.ijmm.2019.151358] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/29/2019] [Accepted: 09/15/2019] [Indexed: 12/22/2022] Open
Abstract
Amoebiasis is a parasitic disease caused by Entamoeba histolytica (E. histolytica), an extracellular enteric protozoan. This infection mainly affects people from developing countries with limited hygiene conditions, where it is endemic. Infective cysts are transmitted by the fecal-oral route, excysting in the terminal ileum and producing invasive trophozoites (amoebae). E. histolytica mainly lives in the large intestine without causing symptoms; however, possibly as a result of so far unknown signals, the amoebae invade the mucosa and epithelium causing intestinal amoebiasis. E. histolytica possesses different mechanisms of pathogenicity for the adherence to the intestinal epithelium and for degrading extracellular matrix proteins, producing tissue lesions that progress to abscesses and a host acute inflammatory response. Much information has been obtained regarding the virulence factors, metabolism, mechanisms of pathogenicity, and the host immune response against this parasite; in addition, alternative treatments to metronidazole are continually emerging. An accesible and low-cost diagnostic method that can distinguish E. histolytica from the most nonpathogenic amoebae and an effective vaccine are necessary for protecting against amoebiasis. However, research about the disease and its prevention has been a challenge due to the relationship between E. histolytica and the host during the distinct stages of the disease is multifaceted. In this review, we analyze the interaction between the parasite, the human host, and the colon microbiota or pathogenic microorganisms, which together give rise to intestinal amoebiasis.
Collapse
Affiliation(s)
- Julio C Carrero
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CdMx, Mexico
| | - Magda Reyes-López
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, CdMx, Mexico
| | - Jesús Serrano-Luna
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, CdMx, Mexico
| | - Mineko Shibayama
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, CdMx, Mexico
| | - Juan Unzueta
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, CdMx, Mexico
| | - Nidia León-Sicairos
- Departamento de Investigación, Hospital Pediátrico de Sinaloa México, Unidad de Investigación, CIASaP, Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, Mexico
| | - Mireya de la Garza
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, CdMx, Mexico.
| |
Collapse
|
30
|
Shilton CM, Šlapeta J, Shine R, Brown GP. Pathology Associated With an Outbreak of Entamoebiasis in Wild Cane Toads ( Rhinella marina) in Tropical Australia. Vet Pathol 2019; 56:921-931. [PMID: 31526112 DOI: 10.1177/0300985819868729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Infection due to Entamoeba spp. is known to cause serious disease in primates (Entamoeba histolytica) and snakes (Entamoeba invadens), but there are no detailed descriptions of the pathology associated with Entamoeba spp. infection in amphibians. In 2014, an outbreak of entamoebiasis associated with a novel species of Entamoeba induced clinical illness and poor body condition in free-ranging cane toads in Australia's Northern Territory. Here, we describe the gross pathology, histology, and clinical pathology linked to the outbreak. The study compared 25 toads with invasive entamoebiasis, defined as histologically visible amoebas within tissue, and 12 toads without invasive entamoebiasis. Grossly, affected toads had mild to marked congestion of colonic serosal vasculature, with variable thickening of the intestinal wall and serosanguineous to hemorrhagic colonic content. Histologically, invasive entamoebiasis manifested primarily as moderate to severe, variably hyperplastic to ulcerative colitis. The small intestine was affected in 10 of 25 toads, and 5 of 25 toads also had gastric lesions. Amoebas consistent in morphology with Entamoeba sp. were commonly intermingled with mucosal epithelium, frequently along the basement membrane, with deeper invasion into the superficial lamina propria in only 5 toads. Toads with invasive entamoebiasis had neutrophilia, monocytosis, and lymphopenia, and thus elevated neutrophil to lymphocyte ratios, suggestive of an inflammatory and/or stress leukogram.
Collapse
Affiliation(s)
- Catherine M Shilton
- Berrimah Veterinary Laboratory, Northern Territory Department of Primary Industry and Resources, Darwin, Northern Territory, Australia
| | - Jan Šlapeta
- University of Sydney, Sydney, NSW, Australia
| | - Richard Shine
- University of Sydney, Sydney, NSW, Australia.,Macquarie University, Sydney, NSW, Australia
| | - Gregory P Brown
- University of Sydney, Sydney, NSW, Australia.,Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
31
|
Naiyer S, Bhattacharya A, Bhattacharya S. Advances in Entamoeba histolytica Biology Through Transcriptomic Analysis. Front Microbiol 2019; 10:1921. [PMID: 31481949 PMCID: PMC6710346 DOI: 10.3389/fmicb.2019.01921] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/05/2019] [Indexed: 12/13/2022] Open
Abstract
A large number of transcriptome-level studies in Entamoeba histolytica, the protozoan parasite that causes amoebiasis, have investigated gene expression patterns to help understand the pathology and biology of the organism. They have compared virulent and avirulent strains in lab culture and after tissue invasion, cells grown under different stress conditions, response to anti-amoebic drug treatments, and gene expression changes during the process of encystation. These studies have revealed interesting molecules/pathways that will help increase our mechanistic understanding of differentially expressed genes during growth perturbations and tissue invasion. Some of the important insights obtained from transcriptome studies include the observations that regulation of carbohydrate metabolism may be an important determinant for tissue invasion, while the novel up-regulated genes during encystation include phospholipase D, and meiotic genes, suggesting the possibility of meiosis during the process. Classification of genes according to expression levels showed that amongst the highly transcribed genes in cultured E. histolytica trophozoites were some virulence factors, raising the question of the role of these factors in normal parasite growth. Promoter motifs associated with differential gene expression and regulation were identified. Some of these motifs associated with high gene expression were located downstream of start codon, and were required for efficient transcription. The listing of E. histolytica genes according to transcript expression levels will help us determine the scale of post-transcriptional regulation, and the possible roles of predicted promoter motifs. The small RNA transcriptome is a valuable resource for detailed structural and functional analysis of these molecules and their regulatory roles. These studies provide new drug targets and enhance our understanding of gene regulation in E. histolytica.
Collapse
Affiliation(s)
- Sarah Naiyer
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Alok Bhattacharya
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sudha Bhattacharya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
32
|
Betanzos A, Bañuelos C, Orozco E. Host Invasion by Pathogenic Amoebae: Epithelial Disruption by Parasite Proteins. Genes (Basel) 2019; 10:E618. [PMID: 31416298 PMCID: PMC6723116 DOI: 10.3390/genes10080618] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 02/07/2023] Open
Abstract
The epithelium represents the first and most extensive line of defence against pathogens, toxins and pollutant agents in humans. In general, pathogens have developed strategies to overcome this barrier and use it as an entrance to the organism. Entamoeba histolytica, Naegleriafowleri and Acanthamoeba spp. are amoebae mainly responsible for intestinal dysentery, meningoencephalitis and keratitis, respectively. These amoebae cause significant morbidity and mortality rates. Thus, the identification, characterization and validation of molecules participating in host-parasite interactions can provide attractive targets to timely intervene disease progress. In this work, we present a compendium of the parasite adhesins, lectins, proteases, hydrolases, kinases, and others, that participate in key pathogenic events. Special focus is made for the analysis of assorted molecules and mechanisms involved in the interaction of the parasites with epithelial surface receptors, changes in epithelial junctional markers, implications on the barrier function, among others. This review allows the assessment of initial host-pathogen interaction, to correlate it to the potential of parasite invasion.
Collapse
Affiliation(s)
- Abigail Betanzos
- Consejo Nacional de Ciencia y Tecnología (CONACYT), Mexico City 03940, Mexico
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico
| | - Cecilia Bañuelos
- Coordinación General de Programas de Posgrado Multidisciplinarios, Programa de Doctorado Transdisciplinario en Desarrollo Científico y Tecnológico para la Sociedad, CINVESTAV-IPN, Mexico City 07360, Mexico
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN, Mexico City 07360, Mexico.
| |
Collapse
|
33
|
Development of a Novel Ex-vivo 3D Model to Screen Amoebicidal Activity on Infected Tissue. Sci Rep 2019; 9:8396. [PMID: 31182753 PMCID: PMC6557822 DOI: 10.1038/s41598-019-44899-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 05/28/2019] [Indexed: 01/12/2023] Open
Abstract
Amoebiasis is a parasitic disease that causes thousands of deaths every year, its adverse effects and resistance to conventional treatments have led to the search of new treatment options, as well as the development of novel screening methods. In this work, we implemented a 3D model of intestine and liver slices from hamsters that were infected ex vivo with virulent E. histolytica trophozoites. Results show preserved histology in both uninfected tissues as well as ulcerations, destruction of the epithelial cells, and inflammatory reaction in intestine slices and formation of micro abscesses, and the presence of amoebae in the sinusoidal spaces and in the interior of central veins in liver slices. The three chemically synthetized compounds T-001, T-011, and T-016, which act as amoebicides in vitro, were active in both infected tissues, as they decreased the number of trophozoites, and provoked death by disintegration of the amoeba, similar to metronidazole. However, compound T-011 induced signs of cytotoxicity to liver slices. Our results suggest that ex vivo cultures of precision-cut intestinal and liver slices represent a reliable 3D approach to evaluate novel amoebicidal compounds, and to simultaneously detect their toxicity, while reducing the number of experimental animals commonly required by other model systems.
Collapse
|
34
|
Abstract
Entamoeba histolytica (Eh) is a protozoan parasite of humans that colonizes the outer colonic mucus layer. Under conditions not fully understood, Eh breaches innate host defenses and invades the intestinal mucosa-causing amebic colitis and liver abscess. In asymptomatic infection, Eh interacts with and feeds on resident microbiota that forms biofilms on the outer colonic mucus layer. Despite the close association between Eh and commensal microbiota, we still lack basic knowledge on whether microbiota and/or their metabolites influence Eh virulence traits critical in disease pathogenesis. In the pathogenesis of intestinal amebiasis, Eh overcomes the protective mucus layer using a combination of mucinase/glycosidase and potent mucus secretagogue activity. In this addendum, we discuss the interconnected role of a healthy mucus barrier and the role commensal microbiota play in shaping innate host defense against Eh-induced pro-inflammatory and secretory responses critical in disease pathogenesis.
Collapse
Affiliation(s)
- Aralia Leon-Coria
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Manish Kumar
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Kris Chadee
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada,CONTACT Kris Chadee Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
35
|
Nagaraja S, Ankri S. Target identification and intervention strategies against amebiasis. Drug Resist Updat 2019; 44:1-14. [PMID: 31112766 DOI: 10.1016/j.drup.2019.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 04/27/2019] [Accepted: 04/30/2019] [Indexed: 12/22/2022]
Abstract
Entamoeba histolytica is the etiological agent of amebiasis, which is an endemic parasitic disease in developing countries and is the cause of approximately 70,000 deaths annually. E. histolytica trophozoites usually reside in the colon as a non-pathogenic commensal in most infected individuals (90% of infected individuals are asymptomatic). For unknown reasons, these trophozoites can become virulent and invasive, cause amebic dysentery, and migrate to the liver where they cause hepatocellular damage. Amebiasis is usually treated either by amebicides which are classified as (a) luminal and are active against the luminal forms of the parasite, (b) tissue and are effective against those parasites that have invaded tissues, and (c) mixed and are effective against the luminal forms of the parasite and those forms which invaded the host's tissues. Of the amebicides, the luminal amebicide, metronidazole (MTZ), is the most widely used drug to treat amebiasis. Although well tolerated, concerns about its adverse effects and the possible emergence of MTZ-resistant strains of E. histolytica have led to the development of new therapeutic strategies against amebiasis. These strategies include improving the potency of existing amebicides, discovering new uses for approved drugs (repurposing of existing drugs), drug rediscovery, vaccination, drug targeting of essential E. histolytica components, and the use of probiotics and bioactive natural products. This review examines each of these strategies in the light of the current knowledge on the gut microbiota of patients with amebiasis.
Collapse
Affiliation(s)
- Shruti Nagaraja
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Serge Ankri
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
36
|
Talarmin JP, Yera H, Chrétien F, Jouvion G, Plantin P, Siohan P, Hutin P. Answer to May 2019 Photo Quiz. J Clin Microbiol 2019; 57:e00089-18. [PMID: 31028228 PMCID: PMC6498032 DOI: 10.1128/jcm.00089-18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- J-P Talarmin
- Internal Medicine and Infectious Diseases Department, Centre Hospitalier de Cornouaille, Quimper, France
| | - H Yera
- Parasitology Mycology, Paris Centre Hospital Center, APHP, Faculty of Medicine Paris-Descartes, Paris, France
| | - F Chrétien
- Human Histopathology and Animal Models Unit, Institut Pasteur, Paris, France
| | - G Jouvion
- Human Histopathology and Animal Models Unit, Institut Pasteur, Paris, France
| | - P Plantin
- Dermatology Department, Centre Hospitalier de Cornouaille, Quimper, France
| | - P Siohan
- Nephrology Department, Centre Hospitalier de Cornouaille, Quimper, France
| | - P Hutin
- Internal Medicine and Infectious Diseases Department, Centre Hospitalier de Cornouaille, Quimper, France
| |
Collapse
|
37
|
Abstract
We detected a disease syndrome in free-ranging Australian cane toads involving atypical behavior and emaciation that is associated with a previously undescribed Entamoeba sp. that infiltrates the colonic lining, causing it to slough. The organism may become seasonally pathogenic when toads are under hydric and nutritional stress.
Collapse
|
38
|
Naiyer S, Kaur D, Ahamad J, Singh SS, Singh YP, Thakur V, Bhattacharya A, Bhattacharya S. Transcriptomic analysis reveals novel downstream regulatory motifs and highly transcribed virulence factor genes of Entamoeba histolytica. BMC Genomics 2019; 20:206. [PMID: 30866809 PMCID: PMC6416950 DOI: 10.1186/s12864-019-5570-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/27/2019] [Indexed: 11/16/2022] Open
Abstract
Background Promoter motifs in Entamoeba histolytica were earlier analysed using microarray data with lower dynamic range of gene expression. Additionally, previous transcriptomic studies did not provide information on the nature of highly transcribed genes, and downstream promoter motifs important for gene expression. To address these issues we generated RNA-Seq data and identified the high and low expressing genes, especially with respect to virulence potential. We analysed sequences both upstream and downstream of start site for important motifs. Results We used RNA-Seq data to classify genes according to expression levels, which ranged six orders of magnitude. Data were validated by reporter gene expression. Virulence-related genes (except AIG1) were amongst the highly expressed, while some kinases and BspA family genes were poorly expressed. We looked for conserved motifs in sequences upstream and downstream of the initiation codon. Following enrichment by AME we found seven motifs significantly enriched in high expression- and three in low expression-classes. Two of these motifs (M4 and M6) were located downstream of AUG, were exclusively enriched in high expression class, and were mostly found in ribosomal protein, and translation-related genes. Motif deletion resulted in drastic down regulation of reporter gene expression, showing functional relevance. Distribution of core promoter motifs (TATA, GAAC, and Inr) in all genes revealed that genes with downstream motifs were not preferentially associated with TATA-less promoters. We looked at gene expression changes in cells subjected to growth stress by serum starvation, and experimentally validated the data. Genes showing maximum up regulation belonged to the low or medium expression class, and included genes in signalling pathways, lipid metabolism, DNA repair, Myb transcription factors, BspA, and heat shock. Genes showing maximum down regulation belonged to the high or medium expression class. They included genes for signalling factors, actin, Ariel family, and ribosome biogenesis factors. Conclusion Our analysis has added important new information about the E. histolytica transcriptome. We report for the first time two downstream motifs required for gene expression, which could be used for over expression of E. histolytica genes. Most of the virulence-related genes in this parasite are highly expressed in culture. Electronic supplementary material The online version of this article (10.1186/s12864-019-5570-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sarah Naiyer
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Devinder Kaur
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Jamaluddin Ahamad
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | | - Vivek Thakur
- Centre for Systems Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Alok Bhattacharya
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sudha Bhattacharya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
39
|
Entamoeba Histolytica: Updates in Clinical Manifestation, Pathogenesis, and Vaccine Development. Can J Gastroenterol Hepatol 2018; 2018:4601420. [PMID: 30631758 PMCID: PMC6304615 DOI: 10.1155/2018/4601420] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 11/14/2018] [Accepted: 11/19/2018] [Indexed: 12/24/2022] Open
Abstract
Entamoeba histolytica is the responsible parasite of amoebiasis and remains one of the top three parasitic causes of mortality worldwide. With increased travel and emigration to developed countries, infection is becoming more common in nonendemic areas. Although the majority of individuals infected with E. histolytica remain asymptomatic, some present with amoebic colitis and disseminated disease. As more is learned about its pathogenesis and the host's immune response, the potential for developing a vaccine holds promise. This narrative review outlines the current knowledge regarding E. histolytica and E. dispar and insight in the development of a vaccine.
Collapse
|
40
|
Shaulov Y, Shimokawa C, Trebicz-Geffen M, Nagaraja S, Methling K, Lalk M, Weiss-Cerem L, Lamm AT, Hisaeda H, Ankri S. Escherichia coli mediated resistance of Entamoeba histolytica to oxidative stress is triggered by oxaloacetate. PLoS Pathog 2018; 14:e1007295. [PMID: 30308066 PMCID: PMC6181410 DOI: 10.1371/journal.ppat.1007295] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/25/2018] [Indexed: 12/20/2022] Open
Abstract
Amebiasis, a global intestinal parasitic disease, is due to Entamoeba histolytica. This parasite, which feeds on bacteria in the large intestine of its human host, can trigger a strong inflammatory response upon invasion of the colonic mucosa. Whereas information about the mechanisms which are used by the parasite to cope with oxidative and nitrosative stresses during infection is available, knowledge about the contribution of bacteria to these mechanisms is lacking. In a recent study, we demonstrated that enteropathogenic Escherichia coli O55 protects E. histolytica against oxidative stress. Resin-assisted capture (RAC) of oxidized (OX) proteins coupled to mass spectrometry (OX-RAC) was used to investigate the oxidation status of cysteine residues in proteins present in E. histolytica trophozoites incubated with live or heat-killed E. coli O55 and then exposed to H2O2-mediated oxidative stress. We found that the redox proteome of E. histolytica exposed to heat-killed E. coli O55 is enriched with proteins involved in redox homeostasis, lipid metabolism, small molecule metabolism, carbohydrate derivative metabolism, and organonitrogen compound biosynthesis. In contrast, we found that proteins associated with redox homeostasis were the only OX-proteins that were enriched in E. histolytica trophozoites which were incubated with live E. coli O55. These data indicate that E. coli has a profound impact on the redox proteome of E. histolytica. Unexpectedly, some E. coli proteins were also co-identified with E. histolytica proteins by OX-RAC. We demonstrated that one of these proteins, E. coli malate dehydrogenase (EcMDH) and its product, oxaloacetate, are key elements of E. coli-mediated resistance of E. histolytica to oxidative stress and that oxaloacetate helps the parasite survive in the large intestine. We also provide evidence that the protective effect of oxaloacetate against oxidative stress extends to Caenorhabditis elegans.
Collapse
Affiliation(s)
- Yana Shaulov
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa Israel
| | - Chikako Shimokawa
- Department of Parasitology, Graduate School of Medicine, Gunma University, Showa-machi, Maebashi, Gunma, Japan
| | - Meirav Trebicz-Geffen
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa Israel
| | - Shruti Nagaraja
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa Israel
| | - Karen Methling
- University of Greifswald, Institute of Biochemistry, Greifswald, Germany
| | - Michael Lalk
- University of Greifswald, Institute of Biochemistry, Greifswald, Germany
| | - Lea Weiss-Cerem
- Faculty of Biology, Technion- Israel Institute of Technology, Technion City, Haifa, Israel
| | - Ayelet T. Lamm
- Faculty of Biology, Technion- Israel Institute of Technology, Technion City, Haifa, Israel
| | - Hajime Hisaeda
- Department of Parasitology, Graduate School of Medicine, Gunma University, Showa-machi, Maebashi, Gunma, Japan
- Department of Parasitology, National Institute of Infectious Diseases, Toyama, Shinjuku, Tokyo, Japan
| | - Serge Ankri
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa Israel
- * E-mail:
| |
Collapse
|
41
|
Ng YL, Olivos-García A, Lim TK, Noordin R, Lin Q, Othman N. Entamoeba histolytica: Quantitative Proteomics Analysis Reveals Putative Virulence-Associated Differentially Abundant Membrane Proteins. Am J Trop Med Hyg 2018; 99:1518-1529. [PMID: 30298805 DOI: 10.4269/ajtmh.18-0415] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Entamoeba histolytica is a protozoan parasite that causes amebiasis and poses a significant health risk for populations in endemic areas. The molecular mechanisms involved in the pathogenesis and regulation of the parasite are not well characterized. We aimed to identify and quantify the differentially abundant membrane proteins by comparing the membrane proteins of virulent and avirulent variants of E. histolytica HM-1:IMSS, and to investigate the potential associations among the differentially abundant membrane proteins. We performed quantitative proteomics analysis using isobaric tags for relative and absolute quantitation labeling, in combination with two mass spectrometry instruments, that is, nano-liquid chromatography (nanoLC)-matrix-assisted laser desorption/ionization-mass spectrometry/mass spectrometry and nanoLC-electrospray ionization tandem mass spectrometry. Overall, 37 membrane proteins were found to be differentially abundant, whereby 19 and 18 membrane proteins of the virulent variant of E. histolytica increased and decreased in abundance, respectively. Proteins that were differentially abundant include Rho family GTPase, calreticulin, a 70-kDa heat shock protein, and hypothetical proteins. Analysis by Protein ANalysis THrough Evolutionary Relationships database revealed that the differentially abundant membrane proteins were mainly involved in catalytic activities (29.7%) and metabolic processes (32.4%). Differentially abundant membrane proteins that were found to be involved mainly in the catalytic activities and the metabolic processes were highlighted together with their putative roles in relation to the virulence. Further investigations should be performed to elucidate the roles of these proteins in E. histolytica pathogenesis.
Collapse
Affiliation(s)
- Yee Ling Ng
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia
| | - Alfonso Olivos-García
- Departamento de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, México D.F., Mexico
| | - Teck Kwang Lim
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Rahmah Noordin
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia
| | - Qingsong Lin
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Nurulhasanah Othman
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
42
|
Costa JDO, Resende JA, Gil FF, Santos JFG, Gomes MA. Prevalence of Entamoeba histolytica and other enteral parasitic diseases in the metropolitan region of Belo Horizonte, Brazil. A cross-sectional study. SAO PAULO MED J 2018; 136:319-323. [PMID: 30110074 PMCID: PMC9881705 DOI: 10.1590/1516-3180.2018.0036170418] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Enteral parasitic diseases are a public health problem in nations with low economic development and in settings with poor sanitation. Amebiasis is the second most frequent form of parasitosis, with a high burden of disease. Knowledge of the prevalence of enteroparasitoses in a given region is useful for planning clinical decision-making. Thus, the aim of this study was to estimate the prevalence of enteral parasitic diseases, especially amebiasis, through analysis on stool samples from public and private laboratories in a metropolitan area in southeastern Brazil. DESIGN AND SETTING Cross-sectional study conducted in the metropolitan region of Belo Horizonte, Brazil. METHODS We evaluated 6,289 fecal samples from one private and one public laboratory. The samples were concentrated by means of spontaneous sedimentation, and those that were positive for Entamoeba histolytica or Entamoeba dispar in optical microscopy analyses were processed to obtain deoxyribonucleic acid, with subsequent identification through the polymerase chain reaction. RESULTS Among the stool samples, 942 (15.0%) had parasitic infections; 73 (1.2%) of these were helminthic infections and 847 (13.5%) were protozoan infections, caused mainly by Escherichia coli (6.0%), Endolimax nana (5.2%) and Giardia lamblia (1.2%). Infections due to Entamoeba histolytica or Entamoeba dispar occurred in 36 samples (0.6%) and the polymerase chain reaction revealed five (13.9%) as Entamoeba histolytica. CONCLUSION The prevalence of enteral parasitic diseases is high in the metropolitan region of Belo Horizonte, although amebiasis may not be a problem.
Collapse
Affiliation(s)
- Juliana de Oliveira Costa
- MPH, PharmD. Pharmacist, Department of Social and Preventive Medicine, Postgraduate Program in Public Health, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte (MG), Brazil.
| | - José Adão Resende
- Clinical analysis technician, Hermes Pardini Laboratory, Belo Horizonte (MG), Brazil.
| | - Frederico Ferreira Gil
- PhD. Nurse, Department of Parasitology, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte (MG), Brazil.
| | | | - Maria Aparecida Gomes
- PharmD, PhD. Full Professor, Department of Parasitology, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte (MG), Brazil.
| |
Collapse
|
43
|
Cornick S, Chadee K. Entamoeba histolytica: Host parasite interactions at the colonic epithelium. Tissue Barriers 2018; 5:e1283386. [PMID: 28452682 DOI: 10.1080/21688370.2017.1283386] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Entamoeba histolytica (Eh) is the protozoan parasite responsible for intestinal amebiasis and interacts dynamically with the host intestinal epithelium during disease pathogenesis. A multifaceted pathogenesis profile accounts for why 90% of individuals infected with Eh are largely asymptomatic. For 100 millions individuals that are infected each year, key interactions within the intestinal mucosa dictate disease susceptibility. The ability for Eh to induce amebic colitis and disseminate into extraintestinal organs depends on the parasite competing with indigenous bacteria and overcoming the mucus barrier, binding to host cells inducing their cell death, invasion through the mucosa and outsmarting the immune system. In this review we summarize how Eh interacts with the intestinal epithelium and subverts host defense mechanisms in disease pathogenesis.
Collapse
Affiliation(s)
- Steve Cornick
- a Department of Microbiology, Immunology and Infectious Diseases , Snyder Institute for Chronic Diseases, University of Calgary , Calgary , Alberta , Canada
| | - Kris Chadee
- a Department of Microbiology, Immunology and Infectious Diseases , Snyder Institute for Chronic Diseases, University of Calgary , Calgary , Alberta , Canada
| |
Collapse
|
44
|
Ahn CS, Kim JG, Shin MH, Lee YA, Kong Y. Comparison of Secretome Profile of Pathogenic and Non-Pathogenic Entamoeba histolytica. Proteomics 2018; 18:e1700341. [PMID: 29409117 DOI: 10.1002/pmic.201700341] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 01/08/2018] [Indexed: 02/05/2023]
Abstract
The obligatory intracellular protozoan parasite Entamoeba histolytica causes amebic dysentery and liver abscess. E. histolytica adheres to the host tissues in a contact-dependent manner. E. histolytica excretory-secretory products (ESP) might play critical roles during invasion. We comparatively analyzed the secretome profile of E. histolytica pathogenic HM-1:IMSS and non-pathogenic Rahman strains. The two ESP revealed similar but distinct spotting patterns. In both ESP, alcohol dehydrogenase, enolase 1, and transketolase, which control classical carbohydrate metabolism and other moonlighting effects, constituted the most abundant fractions. We recognized differently secreted molecules. Secretion of cytoskeletal organization proteins (actin, actin binding protein, and EHI_068510), protein remodeling amino peptidase, and multifunctional elongation factor 1-α were increased in Rahman. Conversely, carbohydrate metabolizing enolase 1, alcohol dehydrogenase, transketolase, calponin, phosphoglucose mutase, malic enzyme and EHI_156420, xenobiotic scavenging superoxide dismutase and EHI_140740, and pyruvate:ferredoxin oxidoreductase and coronin (carbohydrate metabolism/detoxification) showed reduced secretion. Transcription levels of some genes involved in these processes also decreased. Changes of secretory behavior, especially decreased secretion of multifunctional carbohydrate metabolizing enzymes and detoxifying proteins that importantly participated in amoeba pathogenesis might reflect avirulent nature of Rahman strain in the host.
Collapse
Affiliation(s)
- Chun-Seob Ahn
- Department of Molecular Parasitology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Jeong-Geun Kim
- Department of Molecular Parasitology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Myeong Heon Shin
- Department of Environmental Medical Biology, Yonsei University College of Medicine, Seoul, Korea
| | - Young Ah Lee
- Department of Environmental Medical Biology, Yonsei University College of Medicine, Seoul, Korea
| | - Yoon Kong
- Department of Molecular Parasitology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Korea
| |
Collapse
|
45
|
Nakada-Tsukui K, Sekizuka T, Sato-Ebine E, Escueta-de Cadiz A, Ji DD, Tomii K, Kuroda M, Nozaki T. AIG1 affects in vitro and in vivo virulence in clinical isolates of Entamoeba histolytica. PLoS Pathog 2018; 14:e1006882. [PMID: 29554130 PMCID: PMC5884625 DOI: 10.1371/journal.ppat.1006882] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 04/04/2018] [Accepted: 01/17/2018] [Indexed: 11/17/2022] Open
Abstract
The disease state of amebiasis, caused by Entamoeba histolytica, varies from asymptomatic to severe manifestations that include dysentery and extraintestinal abscesses. The virulence factors of the pathogen, and host defense mechanisms, contribute to the outcomes of infection; however, the underlying genetic factors, which affect clinical outcomes, remain to be fully elucidated. To identify these genetic factors in E. histolytica, we used Illumina next-generation sequencing to conduct a comparative genomic analysis of two clinical isolates obtained from diarrheal and asymptomatic patients (strains KU50 and KU27, respectively). By mapping KU50 and KU27 reads to the genome of a reference HM-1:IMSS strain, we identified two genes (EHI_089440 and EHI_176590) that were absent in strain KU27. In KU27, a single AIG1 (avrRpt2-induced gene 1) family gene (EHI_176590) was found to be deleted, from a tandem array of three AIG1 genes, by homologous recombination between the two flanking genes. Overexpression of the EHI_176590 gene, in strain HM-1:IMSS cl6, resulted in increased formation of cell-surface protrusions and enhanced adhesion to human erythrocytes. The EHI_176590 gene was detected by PCR in 56% of stool samples from symptomatic patients infected with E. histolytica, but only in 15% of stool samples from asymptomatic individuals. This suggests that the presence of the EHI_176590 gene is correlated with the outcomes of infection. Taken together, these data strongly indicate that the AIG1 family protein plays a pivotal role in E. histolytica virulence via regulation of host cell adhesion. Our in-vivo experiments, using a hamster liver abscess model, showed that overexpression or gene silencing of EHI_176590 reduced and increased liver abscess formation, respectively. This suggests that the AIG1 genes may have contrasting roles in virulence depending on the genetic background of the parasite and host environment.
Collapse
Affiliation(s)
- Kumiko Nakada-Tsukui
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tsuyoshi Sekizuka
- Laboratory of Bacterial Genomics, Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Emi Sato-Ebine
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Dar-der Ji
- Center for Research and Diagnostics, Centers for Disease Control, Taipei, Taiwan
| | - Kentaro Tomii
- Artificial Intelligence Research Center (AIRC) and Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Makoto Kuroda
- Laboratory of Bacterial Genomics, Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tomoyoshi Nozaki
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
46
|
Shabardina V, Kischka T, Kmita H, Suzuki Y, Makałowski W. Environmental adaptation of Acanthamoeba castellanii and Entamoeba histolytica at genome level as seen by comparative genomic analysis. Int J Biol Sci 2018; 14:306-320. [PMID: 29559848 PMCID: PMC5859476 DOI: 10.7150/ijbs.23869] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/30/2017] [Indexed: 11/17/2022] Open
Abstract
Amoebozoans are in many aspects interesting research objects, as they combine features of single-cell organisms with complex signaling and defense systems, comparable to multicellular organisms. Acanthamoeba castellanii is a cosmopolitan species and developed diverged feeding abilities and strong anti-bacterial resistance; Entamoeba histolytica is a parasitic amoeba, who underwent massive gene loss and its genome is almost twice smaller than that of A. castellanii. Nevertheless, both species prosper, demonstrating fitness to their specific environments. Here we compare transcriptomes of A. castellanii and E. histolytica with application of orthologs' search and gene ontology to learn how different life strategies influence genome evolution and restructuring of physiology. A. castellanii demonstrates great metabolic activity and plasticity, while E. histolytica reveals several interesting features in its translational machinery, cytoskeleton, antioxidant protection, and nutritional behavior. In addition, we suggest new features in E. histolytica physiology that may explain its successful colonization of human colon and may facilitate medical research.
Collapse
Affiliation(s)
- Victoria Shabardina
- Institute of Bioinformatics, University Münster, Niels-Stensen Strasse 14, Münster 48149, Germany
| | - Tabea Kischka
- Institute of Bioinformatics, University Münster, Niels-Stensen Strasse 14, Münster 48149, Germany
| | - Hanna Kmita
- Laboratory of Bioenergetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Wojciech Makałowski
- Institute of Bioinformatics, University Münster, Niels-Stensen Strasse 14, Münster 48149, Germany
| |
Collapse
|
47
|
Nagaraja S, Ankri S. Utilization of Different Omic Approaches to Unravel Stress Response Mechanisms in the Parasite Entamoeba histolytica. Front Cell Infect Microbiol 2018; 8:19. [PMID: 29473019 PMCID: PMC5809450 DOI: 10.3389/fcimb.2018.00019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/16/2018] [Indexed: 12/18/2022] Open
Abstract
During its life cycle, the unicellular parasite Entamoeba histolytica is challenged by a wide variety of environmental stresses, such as fluctuation in glucose concentration, changes in gut microbiota composition, and the release of oxidative and nitrosative species from neutrophils and macrophages. The best mode of survival for this parasite is to continuously adapt itself to the dynamic environment of the host. Our ability to study the stress-induced responses and adaptive mechanisms of this parasite has been transformed through the development of genomics, proteomics or metabolomics (omics sciences). These studies provide insights into different facets of the parasite's behavior in the host. However, there is a dire need for multi-omics data integration to better understand its pathogenic nature, ultimately paving the way to identify new chemotherapeutic targets against amebiasis. This review provides an integration of the most relevant omics information on the mechanisms that are used by E. histolytica to resist environmental stresses.
Collapse
Affiliation(s)
- Shruti Nagaraja
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Serge Ankri
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
48
|
Štáfková J, Rada P, Meloni D, Žárský V, Smutná T, Zimmann N, Harant K, Pompach P, Hrdý I, Tachezy J. Dynamic secretome of Trichomonas vaginalis: Case study of β-amylases. Mol Cell Proteomics 2018; 17:304-320. [PMID: 29233912 PMCID: PMC5795393 DOI: 10.1074/mcp.ra117.000434] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Indexed: 11/06/2022] Open
Abstract
The secretion of virulence factors by parasitic protists into the host environment plays a fundamental role in multifactorial host-parasite interactions. Several effector proteins are known to be secreted by Trichomonas vaginalis, a human parasite of the urogenital tract. However, a comprehensive profiling of the T. vaginalis secretome remains elusive, as do the mechanisms of protein secretion. In this study, we used high-resolution label-free quantitative MS to analyze the T. vaginalis secretome, considering that secretion is a time- and temperature-dependent process, to define the cutoff for secreted proteins. In total, we identified 2 072 extracellular proteins, 89 of which displayed significant quantitative increases over time at 37 °C. These 89 bona fide secreted proteins were sorted into 13 functional categories. Approximately half of the secreted proteins were predicted to possess transmembrane helixes. These proteins mainly include putative adhesins and leishmaniolysin-like metallopeptidases. The other half of the soluble proteins include several novel potential virulence factors, such as DNaseII, pore-forming proteins, and β-amylases. Interestingly, current bioinformatic tools predicted the secretory signal in only 18% of the identified T. vaginalis-secreted proteins. Therefore, we used β-amylases as a model to investigate the T. vaginalis secretory pathway. We demonstrated that two β-amylases (BA1 and BA2) are transported via the classical endoplasmic reticulum-to-Golgi pathways, and in the case of BA1, we showed that the protein is glycosylated with multiple N-linked glycans of Hex5HexNAc2 structure. The secretion was inhibited by brefeldin A but not by FLI-06. Another two β-amylases (BA3 and BA4), which are encoded in the T. vaginalis genome but absent from the secretome, were targeted to the lysosomal compartment. Collectively, under defined in vitro conditions, our analysis provides a comprehensive set of constitutively secreted proteins that can serve as a reference for future comparative studies, and it provides the first information about the classical secretory pathway in this parasite.
Collapse
Affiliation(s)
| | - Petr Rada
- From the ‡Department of Parasitology
| | | | | | | | | | | | - Petr Pompach
- §Institute of Biotechnology CAS, v. v. i., BIOCEV, Vestec, Czech Republic
- ¶Department of Biochemistry, Charles University, Faculty of Science, BIOCEV, Vestec, Czech Republic
| | - Ivan Hrdý
- From the ‡Department of Parasitology
| | | |
Collapse
|
49
|
Abstract
The protozoan parasite Entamoeba histolytica is the microbial agent of amoebiasis - an infection that is endemic worldwide and is associated with high morbidity and mortality rates. As the disease develops, virulent E. histolytica deplete the mucus layer, interact with the intestinal epithelium, and then degrade the colonic mucosa and disrupt the extracellular matrix (ECM). Our research demonstrated that virulent parasites with an invasive phenotype display rapid, highly specific changes in their transcriptome (notably for essential factors involved in carbohydrate metabolism and the processing of glycosylated residues). Moreover, combined activation of parasite and host lytic enzymes leads to the destruction of the intestinal parenchyma. Together, these enzymes degrade the mucus layer and the ECM, and trigger the inflammatory response essential to the development of amoebiasis.
Collapse
|
50
|
Pineda E, Perdomo D. Entamoeba histolytica under Oxidative Stress: What Countermeasure Mechanisms Are in Place? Cells 2017; 6:cells6040044. [PMID: 29160807 PMCID: PMC5755502 DOI: 10.3390/cells6040044] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/17/2017] [Accepted: 11/17/2017] [Indexed: 02/06/2023] Open
Abstract
Entamoeba histolytica is the causative agent of human amoebiasis; it affects 50 million people worldwide and causes approximately 100,000 deaths per year. Entamoeba histolytica is an anaerobic parasite that is primarily found in the colon; however, for unknown reasons, it can become invasive, breaching the gut barrier and migrating toward the liver causing amoebic liver abscesses. During the invasive process, it must maintain intracellular hypoxia within the oxygenated human tissues and cellular homeostasis during the host immune defense attack when it is confronted with nitric oxide and reactive oxygen species. But how? This review will address the described and potential mechanisms available to counter the oxidative stress generated during invasion and the possible role that E. histolytica’s continuous endoplasmic reticulum (Eh-ER) plays during these events.
Collapse
Affiliation(s)
- Erika Pineda
- Laboratory of Fundamental Microbiology and Pathogenicity (MFP), University of Bordeaux, CNRS UMR-5234, 33000 Bordeaux, France.
| | - Doranda Perdomo
- Laboratory of Fundamental Microbiology and Pathogenicity (MFP), University of Bordeaux, CNRS UMR-5234, 33000 Bordeaux, France.
| |
Collapse
|