1
|
Gao Y, Cai C, Adamo S, Biteus E, Kamal H, Dager L, Miners KL, Llewellyn-Lacey S, Ladell K, Amratia PS, Bentley K, Kollnberger S, Wu J, Akhirunnesa M, Jones SA, Julin P, Lidman C, Stanton RJ, Goepfert PA, Peluso MJ, Deeks SG, Davies HE, Aleman S, Buggert M, Price DA. Identification of soluble biomarkers that associate with distinct manifestations of long COVID. Nat Immunol 2025; 26:692-705. [PMID: 40307449 PMCID: PMC12043503 DOI: 10.1038/s41590-025-02135-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 03/14/2025] [Indexed: 05/02/2025]
Abstract
Long coronavirus disease (COVID) is a heterogeneous clinical condition of uncertain etiology triggered by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here we used ultrasensitive approaches to profile the immune system and the plasma proteome in healthy convalescent individuals and individuals with long COVID, spanning geographically independent cohorts from Sweden and the United Kingdom. Symptomatic disease was not consistently associated with quantitative differences in immune cell lineage composition or antiviral T cell immunity. Healthy convalescent individuals nonetheless exhibited higher titers of neutralizing antibodies against SARS-CoV-2 than individuals with long COVID, and extensive phenotypic analyses revealed a subtle increase in the expression of some co-inhibitory receptors, most notably PD-1 and TIM-3, among SARS-CoV-2 nonspike-specific CD8+ T cells in individuals with long COVID. We further identified a shared plasma biomarker signature of disease linking breathlessness with apoptotic inflammatory networks centered on various proteins, including CCL3, CD40, IKBKG, IL-18 and IRAK1, and dysregulated pathways associated with cell cycle progression, lung injury and platelet activation, which could potentially inform the diagnosis and treatment of long COVID.
Collapse
Affiliation(s)
- Yu Gao
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Curtis Cai
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Sarah Adamo
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Laboratory of Translational Immuno-Oncology, Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
| | - Elsa Biteus
- Division of Infectious Diseases and Dermatology, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Center for Clinical Research Sörmland, Uppsala University, Uppsala, Sweden
| | - Habiba Kamal
- Division of Infectious Diseases and Dermatology, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Lena Dager
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Kelly L Miners
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
| | - Sian Llewellyn-Lacey
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
| | - Pragati S Amratia
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
| | - Kirsten Bentley
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
| | - Simon Kollnberger
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
| | - Jinghua Wu
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Mily Akhirunnesa
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Samantha A Jones
- Department of Respiratory Medicine, University Hospital Llandough, Penarth, UK
| | - Per Julin
- Post-COVID Policlinic, Karolinska University Hospital, Stockholm, Sweden
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Christer Lidman
- Division of Infectious Diseases and Dermatology, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Richard J Stanton
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
| | - Paul A Goepfert
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Michael J Peluso
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Steven G Deeks
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Helen E Davies
- Department of Respiratory Medicine, University Hospital Llandough, Penarth, UK
| | - Soo Aleman
- Division of Infectious Diseases and Dermatology, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Marcus Buggert
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden.
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK.
- Systems Immunity Research Institute, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK.
| |
Collapse
|
2
|
Chu T, Wu M, Hoellbacher B, de Almeida GP, Wurmser C, Berner J, Donhauser LV, Gerullis AK, Lin S, Cepeda-Mayorga JD, Kilb II, Bongers L, Toppeta F, Strobl P, Youngblood B, Schulz AM, Zippelius A, Knolle PA, Heinig M, Hackstein CP, Zehn D. Precursors of exhausted T cells are pre-emptively formed in acute infection. Nature 2025; 640:782-792. [PMID: 39778709 PMCID: PMC12003159 DOI: 10.1038/s41586-024-08451-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025]
Abstract
T cell exhaustion limits effector T cell function in chronic infection and tumours1,2. The development of these hypofunctional T cells and of their precursors was considered to require stimulatory conditions that are met only after persistent exposure to antigen and inflammation. Here we show, however, that similar T cell populations exist in the early phase of acute infections1,2. At that stage, the early developing TCF1+ precursor population exhibits an unexpected diversity; it includes precursors of normal memory T cells, but also cells with phenotypic, gene-expression and epigenetic profiles that resemble those of precursors of exhausted T cells found in chronic infections. We show that high ligand affinity promotes and PD-1 signalling restricts the development of these precursors. Although the exhausted precursors are at first found frequently, they decline without being completely lost in infections that the immune system resolves. We therefore conclude that precursor T cells with at least two distinct phenotypes are pre-emptively generated irrespective of the outcome of an infection.
Collapse
Affiliation(s)
- Talyn Chu
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
- Cancer Immunology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Ming Wu
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany.
| | - Barbara Hoellbacher
- Institute of Computational Biology, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany
- Department of Informatics, Technical University of Munich, Garching, Germany
| | - Gustavo P de Almeida
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
- Center for Infection Prevention (ZIP), School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Christine Wurmser
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
- Center for Infection Prevention (ZIP), School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Jacqueline Berner
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
- Center for Infection Prevention (ZIP), School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Lara V Donhauser
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
- Center for Infection Prevention (ZIP), School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Ann-Katrin Gerullis
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
- Center for Infection Prevention (ZIP), School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Siran Lin
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
- Center for Infection Prevention (ZIP), School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - J Diego Cepeda-Mayorga
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
- Center for Infection Prevention (ZIP), School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Iman I Kilb
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
- Center for Infection Prevention (ZIP), School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
- Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Lukas Bongers
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Fabio Toppeta
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Philipp Strobl
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Ben Youngblood
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Anna M Schulz
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
- Center for Infection Prevention (ZIP), School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Alfred Zippelius
- Cancer Immunology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Percy A Knolle
- Center for Infection Prevention (ZIP), School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
- Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Matthias Heinig
- Institute of Computational Biology, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany.
- Department of Computer Science, TUM School of Computation, Information and Technology, Technical University of Munich, Garching, Germany.
| | - Carl-Philipp Hackstein
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany.
- Center for Infection Prevention (ZIP), School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany.
- Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich, Munich, Germany.
| | - Dietmar Zehn
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany.
- Center for Infection Prevention (ZIP), School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany.
| |
Collapse
|
3
|
Cai S, Xue B, Li S, Wang X, Zeng X, Zhu Z, Fan X, Zou Y, Yu H, Qiao S, Zeng X. Methionine regulates maternal-fetal immune tolerance and endometrial receptivity by enhancing embryonic IL-5 secretion. Cell Rep 2025; 44:115291. [PMID: 39937648 DOI: 10.1016/j.celrep.2025.115291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/25/2024] [Accepted: 01/17/2025] [Indexed: 02/14/2025] Open
Abstract
Endometrial receptivity and maternal-fetal immune tolerance are two crucial processes for a successful pregnancy. However, the molecular mechanisms of nutrition involved are largely unexplored. Here, we showed that maternal methionine supply significantly improved pregnancy outcomes, which was closely related to interleukin-5 (IL-5) concentration. Mechanistically, methionine induced embryonic IL-5 secretion, which enhanced the conversion of CD4+ T cells to IL-5+ Th2 cells in the uterus, thereby improving maternal-fetal immune tolerance. Meanwhile, methionine-mediated IL-5 secretion activated the nuclear factor κB (NF-κB) pathway and enhanced integrin αvβ3 expression in endometrial cells, which improved endometrial receptivity. Further, methionine strongly influenced the DNA methylation and transcription levels of the transcription factor eomesodermin (Eomes), which bound directly to the IL-5 promoter region and inhibited IL-5 transcription. Methionine modulated IL-5 transcription, maternal-fetal immune tolerance, and endometrial receptivity via its effects on Eomes. This study reveals the crucial functions of methionine and IL-5 and offers a potential nutritional strategy for successful pregnancy.
Collapse
Affiliation(s)
- Shuang Cai
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Center, China Agricultural University, Beijing, China; Frontier Technology Research Institute of China Agricultural University in Shenzhen, Shenzhen, China
| | - Bangxin Xue
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Center, China Agricultural University, Beijing, China; Frontier Technology Research Institute of China Agricultural University in Shenzhen, Shenzhen, China
| | - Siyu Li
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Center, China Agricultural University, Beijing, China; Frontier Technology Research Institute of China Agricultural University in Shenzhen, Shenzhen, China
| | - Xinyu Wang
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Center, China Agricultural University, Beijing, China; Frontier Technology Research Institute of China Agricultural University in Shenzhen, Shenzhen, China
| | - Xiangzhou Zeng
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Center, China Agricultural University, Beijing, China; Frontier Technology Research Institute of China Agricultural University in Shenzhen, Shenzhen, China
| | - Zhekun Zhu
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Center, China Agricultural University, Beijing, China; Frontier Technology Research Institute of China Agricultural University in Shenzhen, Shenzhen, China
| | - Xinyin Fan
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Center, China Agricultural University, Beijing, China; Frontier Technology Research Institute of China Agricultural University in Shenzhen, Shenzhen, China
| | - Yijin Zou
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Center, China Agricultural University, Beijing, China; Frontier Technology Research Institute of China Agricultural University in Shenzhen, Shenzhen, China
| | - Haitao Yu
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Center, China Agricultural University, Beijing, China; Frontier Technology Research Institute of China Agricultural University in Shenzhen, Shenzhen, China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Center, China Agricultural University, Beijing, China; Frontier Technology Research Institute of China Agricultural University in Shenzhen, Shenzhen, China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Center, China Agricultural University, Beijing, China; Frontier Technology Research Institute of China Agricultural University in Shenzhen, Shenzhen, China.
| |
Collapse
|
4
|
Mu W, Tomer S, Harding J, Kedia N, Rezek V, Cook E, Patankar V, Carrillo MA, Martin H, Ng H, Wang L, Marsden MD, Kitchen SG, Zhen A. Rapamycin enhances CAR-T control of HIV replication and reservoir elimination in vivo. J Clin Invest 2025; 135:e185489. [PMID: 39932788 PMCID: PMC11957703 DOI: 10.1172/jci185489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 01/31/2025] [Indexed: 02/13/2025] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy shows promise for various diseases. Our studies in humanized mice and nonhuman primates demonstrate that hematopoietic stem cells (HSCs) modified with anti-HIV CAR achieve lifelong engraftment, providing functional antiviral CAR-T cells that reduce viral rebound after antiretroviral therapy (ART) withdrawal. However, T cell exhaustion due to chronic immune activation remains a key obstacle to sustained CAR-T efficacy, necessitating additional measures to achieve functional cure. We recently showed that low-dose rapamycin treatment reduced inflammation and improved anti-HIV T cell function in HIV-infected humanized mice. Here, we report that rapamycin improved CAR-T cell function both in vitro and in vivo. In vitro treatment with rapamycin enhanced CAR-T cell mitochondrial respiration and cytotoxicity. In vivo treatment with low-dose rapamycin in HIV-infected, CAR-HSC mice decreased chronic inflammation, prevented exhaustion of CAR-T cells, and improved CAR-T control of viral replication. RNA-sequencing analysis of CAR-T cells from humanized mice showed that rapamycin downregulated multiple checkpoint inhibitors and upregulated key survival genes. Mice treated with CAR-HSCs and rapamycin had delayed viral rebound after ART and reduced HIV reservoir compared with those treated with CAR-HSCs alone. These findings suggest that HSC-based anti-HIV CAR-T cells combined with rapamycin treatment are a promising approach for treating persistent inflammation and improving immune control of HIV replication.
Collapse
Affiliation(s)
- Wenli Mu
- Division of Hematology/Oncology, Department of Medicine, and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Shallu Tomer
- Division of Hematology/Oncology, Department of Medicine, and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Jeffrey Harding
- Division of Hematology/Oncology, Department of Medicine, and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Nandita Kedia
- Division of Hematology/Oncology, Department of Medicine, and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Valerie Rezek
- Division of Hematology/Oncology, Department of Medicine, and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Ethan Cook
- Division of Hematology/Oncology, Department of Medicine, and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Vaibahavi Patankar
- Division of Hematology/Oncology, Department of Medicine, and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Mayra A. Carrillo
- Division of Hematology/Oncology, Department of Medicine, and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Heather Martin
- Division of Hematology/Oncology, Department of Medicine, and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Hwee Ng
- Division of Hematology/Oncology, Department of Medicine, and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Li Wang
- Division of Hematology/Oncology, Department of Medicine, and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Matthew D. Marsden
- Department of Microbiology & Molecular Genetics and
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of California, Irvine, Irvine, California, USA
| | - Scott G. Kitchen
- Division of Hematology/Oncology, Department of Medicine, and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Anjie Zhen
- Division of Hematology/Oncology, Department of Medicine, and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
5
|
Chhabra L, Pandey RK, Kumar R, Sundar S, Mehrotra S. Navigating the Roadblocks: Progress and Challenges in Cell-Based Therapies for Human Immunodeficiency Virus. J Cell Biochem 2025; 126:e30669. [PMID: 39485037 DOI: 10.1002/jcb.30669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/26/2024] [Accepted: 10/11/2024] [Indexed: 11/03/2024]
Abstract
Cell-based therapies represent a major advancement in the treatment and management of HIV/AIDS, with a goal to overcome the limitations of traditional antiretroviral therapy (ART). These innovative approaches not only promise a functional cure by reconstructing the immune landscape but also address the persistent viral reservoirs. For example, stem cell therapies have emerged from the foundational success of allogeneic hematopoietic stem cell transplantation in curing HIV infection in a limited number of cases. B cell therapies make use of genetically modified B cells constitutively expressing broadly neutralizing antibodies (bNAbs) against target viral particles and infected cells. Adoptive cell transfer (ACT), including TCR-T therapy, CAR-T cells, NK-CAR cells, and DC-based therapy, is adapted from cancer immunotherapy and repurposed for HIV eradication. In this review, we summarize the mechanisms through which these engineered cells recognize and destroy HIV-infected cells, the modification strategies, and their role in sustaining remission in the absence of ART. The review also addresses the challenges to cell-based therapies against HIV and discusses the recent advancements aimed at overcoming them.
Collapse
Affiliation(s)
- Lakshay Chhabra
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | | | - Rajiv Kumar
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Sanjana Mehrotra
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
6
|
Kared H, Tan C, Narang V, Tan SW, Xian CH, Wei ATS, Lum J, Ruiz-Mateos E, Rajasuriar R, Kamarulzaman A, Ng TP, Larbi A. SLAMF7 defines subsets of human effector CD8 T cells. Sci Rep 2024; 14:30779. [PMID: 39730488 DOI: 10.1038/s41598-024-80971-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/22/2024] [Indexed: 12/29/2024] Open
Abstract
Long-term control of viral replication relies on the efficient differentiation of memory T cells into effector T cells during secondary immune responses. Recent findings have identified T cell precursors for both memory and exhausted T cells, suggesting the existence of progenitor-like effector T cells. These cells can persist without antigenic challenge but expand and acquire effector functions upon recall immune responses. In this study, we demonstrate that the combination of SLAMF7 with either CD27 or TCF-1 effectively identifies progenitor-like effector CD8 T cells, while SLAMF7 with GPR56 or TOX defines effector CD8 T cells. These markers allow for the clear segregation of these distinct cell subsets. SLAMF7+ CD8T cells are dynamically modulated during viral infections, including HIV, HCV, CMV, and SARS-CoV-2, as well as during aging. We further characterize the SLAMF7 signature at both phenotypic and transcriptional levels. Notably, during aging, the SLAMF7 pathway becomes dysregulated, resulting in persistent phosphorylation of STAT1. Additionally, SLAMF7 ligation in the presence of IL-15 induces TCF-1 expression, which promotes the homeostatic proliferation of progenitor-like effector CD8 T cells.
Collapse
Affiliation(s)
- Hassen Kared
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, 8A Biomedical Grove, Biopolis, Republic of Singapore.
- Department of Immunology, Oslo University Hospital, Oslo, Norway.
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway.
| | - Crystal Tan
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, 8A Biomedical Grove, Biopolis, Republic of Singapore
| | - Vipin Narang
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, 8A Biomedical Grove, Biopolis, Republic of Singapore
| | - Shu Wen Tan
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, 8A Biomedical Grove, Biopolis, Republic of Singapore
| | - Chin Hui Xian
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, 8A Biomedical Grove, Biopolis, Republic of Singapore
| | - Alicia Tay Seok Wei
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, 8A Biomedical Grove, Biopolis, Republic of Singapore
| | - Josephine Lum
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, 8A Biomedical Grove, Biopolis, Republic of Singapore
| | - Ezequiel Ruiz-Mateos
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, CSIC, University of Seville, Seville, Spain
| | - Reena Rajasuriar
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya, Kuala Lumpur, Malaysia
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
- Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Adeeba Kamarulzaman
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya, Kuala Lumpur, Malaysia
- Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Tze Pin Ng
- Gerontology Research Programme and Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, 8A Biomedical Grove, Biopolis, Republic of Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| |
Collapse
|
7
|
Yu F, Zhu Y, Li S, Hao L, Li N, Ye F, Jiang Z, Hu X. Dysfunction and regulatory interplay of T and B cells in chronic hepatitis B: immunotherapy and emerging antiviral strategies. Front Cell Infect Microbiol 2024; 14:1488527. [PMID: 39717542 PMCID: PMC11663751 DOI: 10.3389/fcimb.2024.1488527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/20/2024] [Indexed: 12/25/2024] Open
Abstract
In the context of chronic hepatitis B virus (HBV) infection, the continuous replication of HBV within host hepatocytes is a characteristic feature. Rather than directly causing hepatocyte destruction, this replication leads to immune dysfunction and establishes a state of T-B immune tolerance. Successful clearance of the HBV virus is dependent on the close collaboration between humoral and cellular immunity. Humoral immunity, mediated by B-cell subpopulations, and cellular immunity, dominated by T-cell subpopulations show varying degrees of dysfunction during chronic hepatitis B (CHB). Notably, not all T- and B-cells produce positive immune responses. This review examine the most recent developments in the mutual regulation of T-B cells during chronic HBV infection. Our focus is on the prevailing immunotherapeutic strategies, such as T cell engineering, HBV-related vaccines, PD-1 inhibitors, and Toll-like receptor agonists. While nucleos(t)ide analogues (NUCs) and interferons have notable limitations, including inadequate viral suppression, drug resistance, and adverse reactions, several HBV entry inhibitors have shown promising clinical efficacy. To overcome the challenges posed by NUCs or monotherapy, the combination of immunotherapy and novel antiviral agents presents a promising avenue for future CHB treatment and potential cure.
Collapse
Affiliation(s)
- Fei Yu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yue Zhu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shenghao Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Liyuan Hao
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Na Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Fanghang Ye
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhi Jiang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Wu B, Koehler AN, Westcott PMK. New opportunities to overcome T cell dysfunction: the role of transcription factors and how to target them. Trends Biochem Sci 2024; 49:1014-1029. [PMID: 39277450 PMCID: PMC11991696 DOI: 10.1016/j.tibs.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/17/2024]
Abstract
Immune checkpoint blockade (ICB) therapies, which block inhibitory receptors on T cells, can be efficacious in reinvigorating dysfunctional T cell responses. However, most cancers do not respond to these therapies and even in those that respond, tumors can acquire resistance. New strategies are needed to rescue and recruit T cell responses across patient populations and disease states. In this review, we define mechanisms of T cell dysfunction, focusing on key transcription factor (TF) networks. We discuss the complex and sometimes contradictory roles of core TFs in both T cell function and dysfunction. Finally, we review strategies to target TFs using small molecule modulators, which represent a challenging but highly promising opportunity to tune the T cell response toward sustained immunity.
Collapse
Affiliation(s)
- Bocheng Wu
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Angela N Koehler
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | | |
Collapse
|
9
|
Franzén Boger M, Hasselrot T, Kaldhusdal V, Miranda GHB, Czarnewski P, Edfeldt G, Bradley F, Rexaj G, Lajoie J, Omollo K, Kimani J, Fowke KR, Broliden K, Tjernlund A. Sustained immune activation and impaired epithelial barrier integrity in the ectocervix of women with chronic HIV infection. PLoS Pathog 2024; 20:e1012709. [PMID: 39561211 PMCID: PMC11614238 DOI: 10.1371/journal.ppat.1012709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 12/03/2024] [Accepted: 10/31/2024] [Indexed: 11/21/2024] Open
Abstract
Chronic systemic immune activation significantly influences human immunodeficiency virus (HIV) disease progression. Despite evidence of a pro-inflammatory environment in the genital tract of HIV-infected women, comprehensive investigations into cervical tissue from this region remain limited. Similarly, the consequences of chronic HIV infection on the integrity of the female genital epithelium are poorly understood, despite its importance in HIV transmission and replication. Ectocervical biopsies were obtained from HIV-seropositive (n = 14) and HIV-seronegative (n = 47) female Kenyan sex workers. RNA sequencing and bioimage analysis of epithelial junction proteins (E-cadherin, desmoglein-1, claudin-1, and zonula occludens-1) were conducted, along with CD4 staining. RNA sequencing revealed upregulation of immunoregulatory genes in HIV-seropositive women, primarily associated with heightened T cell activity and interferon signaling, which further correlated with plasma viral load. Transcription factor analysis confirmed the upregulation of pro-inflammatory transcription factors, such as RELA, NFKB1, and IKZF3, which facilitates HIV persistence in T cells. Conversely, genes and pathways associated with epithelial barrier function and structure were downregulated in the context of HIV. Digital bioimage analysis corroborated these findings, revealing significant disruption of various epithelial junction proteins in ectocervical tissues of the HIV-seropositive women. Thus, chronic HIV infection associated with ectocervical inflammation, characterized by induced T cell responses and interferon signaling, coupled with epithelial disruption. These alterations may influence HIV transmission and heighten susceptibility to other sexually transmitted infections. These findings prompt exploration of therapeutic interventions to address HIV-related complications and mitigate the risk of sexually transmitted infection transmission.
Collapse
Affiliation(s)
- Mathias Franzén Boger
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Tyra Hasselrot
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Vilde Kaldhusdal
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Gisele H. B. Miranda
- Division of Computational Science and Technology, KTH Royal Institute of Technology, Stockholm, Sweden
- BioImage Informatics Facility, Science for Life Laboratory, Solna, Sweden
| | - Paulo Czarnewski
- Science for Life Laboratory, Department of Biochemistry and Biophysics and National Bioinformatics Infrastructure Sweden, Stockholm University, Stockholm, Sweden
| | - Gabriella Edfeldt
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Frideborg Bradley
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Genta Rexaj
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Julie Lajoie
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Kenneth Omollo
- Department of Medical Microbiology and Immunology, University of Nairobi, Nairobi, Kenya
| | - Joshua Kimani
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
- Department of Medical Microbiology and Immunology, University of Nairobi, Nairobi, Kenya
- Partners for Health and Development in Africa, Nairobi, Kenya
| | - Keith R. Fowke
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
- Department of Medical Microbiology and Immunology, University of Nairobi, Nairobi, Kenya
- Partners for Health and Development in Africa, Nairobi, Kenya
- Department of Community Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Kristina Broliden
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Annelie Tjernlund
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| |
Collapse
|
10
|
Noor L, Upadhyay A, Joshi V. Role of T Lymphocytes in Glioma Immune Microenvironment: Two Sides of a Coin. BIOLOGY 2024; 13:846. [PMID: 39452154 PMCID: PMC11505600 DOI: 10.3390/biology13100846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024]
Abstract
Glioma is known for its immunosuppressive microenvironment, which makes it challenging to target through immunotherapies. Immune cells like macrophages, microglia, myeloid-derived suppressor cells, and T lymphocytes are known to infiltrate the glioma tumor microenvironment and regulate immune response distinctively. Among the variety of immune cells, T lymphocytes have highly complex and multifaceted roles in the glioma immune landscape. T lymphocytes, which include CD4+ helper and CD8+ cytotoxic T cells, are known for their pivotal roles in anti-tumor responses. However, these cells may behave differently in the highly dynamic glioma microenvironment, for example, via an immune invasion mechanism enforced by tumor cells. Therefore, T lymphocytes play dual roles in glioma immunity, firstly by their anti-tumor responses, and secondly by exploiting gliomas to promote immune invasion. As an immunosuppression strategy, glioma induces T-cell exhaustion and suppression of effector T cells by regulatory T cells (Tregs) or by altering their signaling pathways. Further, the expression of immune checkpoint inhibitors on the glioma cell surface leads to T cell anergy and dysfunction. Overall, this dynamic interplay between T lymphocytes and glioma is crucial for designing more effective immunotherapies. The current review provides detailed knowledge on the roles of T lymphocytes in the glioma immune microenvironment and helps to explore novel therapeutic approaches to reinvigorate T lymphocytes.
Collapse
Affiliation(s)
- Laiba Noor
- Department of Biotechnology, Bennett University, Greater Noida 201310, Uttar Pradesh, India
| | - Arun Upadhyay
- Department of Bioscience and Biomedical Engineering, Indian Institute of Technology Bhilai, Durg 491002, Chhattisgarh, India
| | - Vibhuti Joshi
- Department of Biotechnology, Bennett University, Greater Noida 201310, Uttar Pradesh, India
| |
Collapse
|
11
|
Kumar B, Singh A, Basar R, Uprety N, Li Y, Fan H, Cortes AKN, Kaplan M, Acharya S, Shaim H, Xu AC, Wu M, Fang D, Banerjee PP, Garcia LM, Tiberti S, Lin P, Rafei H, Ensley E, Munir MN, Moore M, Shanley M, Mendt M, Kerbauy LN, Liu B, Biederstädt A, Gokdemir E, Ghosh S, Kundu K, Reyes-Silva F, Jiang XR, Wan X, Gilbert AL, Dede M, Mohanty V, Dou J, Zhang P, Liu E, Muniz-Feliciano L, Deyter GM, Jain AK, Rodriguez-Sevilla JJ, Colla S, Garcia-Manero G, Shpall EJ, Chen K, Abbas HA, Rai K, Rezvani K, Daher M. BATF is a major driver of NK cell epigenetic reprogramming and dysfunction in AML. Sci Transl Med 2024; 16:eadp0004. [PMID: 39259809 PMCID: PMC11967735 DOI: 10.1126/scitranslmed.adp0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/10/2024] [Accepted: 08/08/2024] [Indexed: 09/13/2024]
Abstract
Myelodysplastic syndrome and acute myeloid leukemia (AML) belong to a continuous disease spectrum of myeloid malignancies with poor prognosis in the relapsed/refractory setting necessitating novel therapies. Natural killer (NK) cells from patients with myeloid malignancies display global dysfunction with impaired killing capacity, altered metabolism, and an exhausted phenotype at the single-cell transcriptomic and proteomic levels. In this study, we identified that this dysfunction was mediated through a cross-talk between NK cells and myeloid blasts necessitating cell-cell contact. NK cell dysfunction could be prevented by targeting the αvβ-integrin/TGF-β/SMAD pathway but, once established, was persistent because of profound epigenetic reprogramming. We identified BATF as a core transcription factor and the main mediator of this NK cell dysfunction in AML. Mechanistically, we found that BATF was directly regulated and induced by SMAD2/3 and, in turn, bound to key genes related to NK cell exhaustion, such as HAVCR2, LAG3, TIGIT, and CTLA4. BATF deletion enhanced NK cell function against AML in vitro and in vivo. Collectively, our findings reveal a previously unidentified mechanism of NK immune evasion in AML manifested by epigenetic rewiring and inactivation of NK cells by myeloid blasts. This work highlights the importance of using healthy allogeneic NK cells as an adoptive cell therapy to treat patients with myeloid malignancies combined with strategies aimed at preventing the dysfunction by targeting the TGF-β pathway or BATF.
Collapse
Affiliation(s)
- Bijender Kumar
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Anand Singh
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Rafet Basar
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Nadima Uprety
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Ye Li
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Huihui Fan
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA 77030
| | - Ana Karen Nunez Cortes
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Mecit Kaplan
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Sunil Acharya
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Hila Shaim
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Anna C Xu
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Manrong Wu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Dexing Fang
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Pinaki P. Banerjee
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Luciana Melo Garcia
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Silvia Tiberti
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Paul Lin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Hind Rafei
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Emily Ensley
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Maliha Nuzhat Munir
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Madison Moore
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Mayra Shanley
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Mayela Mendt
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Lucila N. Kerbauy
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
- Department of Stem Cell Transplantation and Hemotherapy/Cellular Therapy, Hospital Israelita Albert Einstein, Sao Paulo, 05652-900, Brazil
| | - Bin Liu
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Alexander Biederstädt
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Elif Gokdemir
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Susmita Ghosh
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Kiran Kundu
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Francia Reyes-Silva
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Xin Ru Jiang
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Xinhai Wan
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - April L. Gilbert
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Merve Dede
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Vakul Mohanty
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Jinzhuang Dou
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Patrick Zhang
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Enli Liu
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Luis Muniz-Feliciano
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Gary M. Deyter
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Abhinav K. Jain
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | | | - Simona Colla
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Guillermo Garcia-Manero
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Elizabeth J. Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Hussein A. Abbas
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - Kunal Rai
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
- MD Anderson Cancer Center Epigenetics Therapy Initiative, Houston, TX, USA 77030
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| | - May Daher
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 77030
| |
Collapse
|
12
|
Dvorakova T, Finisguerra V, Formenti M, Loriot A, Boudhan L, Zhu J, Van den Eynde BJ. Enhanced tumor response to adoptive T cell therapy with PHD2/3-deficient CD8 T cells. Nat Commun 2024; 15:7789. [PMID: 39242595 PMCID: PMC11379939 DOI: 10.1038/s41467-024-51782-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 08/17/2024] [Indexed: 09/09/2024] Open
Abstract
While adoptive cell therapy has shown success in hematological malignancies, its potential against solid tumors is hindered by an immunosuppressive tumor microenvironment (TME). In recent years, members of the hypoxia-inducible factor (HIF) family have gained recognition as important regulators of T-cell metabolism and function. The role of HIF signalling in activated CD8 T cell function in the context of adoptive cell transfer, however, has not been explored in full depth. Here we utilize CRISPR-Cas9 technology to delete prolyl hydroxylase domain-containing enzymes (PHD) 2 and 3, thereby stabilizing HIF-1 signalling, in CD8 T cells that have already undergone differentiation and activation, modelling the T cell phenotype utilized in clinical settings. We observe a significant boost in T-cell activation and effector functions following PHD2/3 deletion, which is dependent on HIF-1α, and is accompanied by an increased glycolytic flux. This improvement in CD8 T cell performance translates into an enhancement in tumor response to adoptive T cell therapy in mice, across various tumor models, even including those reported to be extremely resistant to immunotherapeutic interventions. These findings hold promise for advancing CD8 T-cell based therapies and overcoming the immune suppression barriers within challenging tumor microenvironments.
Collapse
Affiliation(s)
- Tereza Dvorakova
- de Duve Institute, UCLouvain, Brussels, B-1200, Belgium
- Ludwig Institute for Cancer Research, Brussels, B-1200, Belgium
- WEL Research Institute, Wavre, 1300, Belgium
| | - Veronica Finisguerra
- de Duve Institute, UCLouvain, Brussels, B-1200, Belgium
- Ludwig Institute for Cancer Research, Brussels, B-1200, Belgium
- WEL Research Institute, Wavre, 1300, Belgium
| | - Matteo Formenti
- de Duve Institute, UCLouvain, Brussels, B-1200, Belgium
- Ludwig Institute for Cancer Research, Brussels, B-1200, Belgium
- WEL Research Institute, Wavre, 1300, Belgium
| | - Axelle Loriot
- de Duve Institute, UCLouvain, Brussels, B-1200, Belgium
| | - Loubna Boudhan
- de Duve Institute, UCLouvain, Brussels, B-1200, Belgium
- Ludwig Institute for Cancer Research, Brussels, B-1200, Belgium
- WEL Research Institute, Wavre, 1300, Belgium
| | - Jingjing Zhu
- de Duve Institute, UCLouvain, Brussels, B-1200, Belgium.
- Ludwig Institute for Cancer Research, Brussels, B-1200, Belgium.
- WEL Research Institute, Wavre, 1300, Belgium.
| | - Benoit J Van den Eynde
- de Duve Institute, UCLouvain, Brussels, B-1200, Belgium.
- Ludwig Institute for Cancer Research, Brussels, B-1200, Belgium.
- WEL Research Institute, Wavre, 1300, Belgium.
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford Oxford, Oxfordshire, UK.
| |
Collapse
|
13
|
White E, Papagno L, Samri A, Sugata K, Hejblum B, Henry AR, Rogan DC, Darko S, Recordon-Pinson P, Dudoit Y, Llewellyn-Lacey S, Chakrabarti LA, Buseyne F, Migueles SA, Price DA, Andreola MA, Satou Y, Thiebaut R, Katlama C, Autran B, Douek DC, Appay V. Clonal succession after prolonged antiretroviral therapy rejuvenates CD8 + T cell responses against HIV-1. Nat Immunol 2024; 25:1555-1564. [PMID: 39179934 DOI: 10.1038/s41590-024-01931-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/15/2024] [Indexed: 08/26/2024]
Abstract
Human immunodeficiency virus 1 (HIV-1) infection is characterized by a dynamic and persistent state of viral replication that overwhelms the host immune system in the absence of antiretroviral therapy (ART). The impact of prolonged treatment on the antiviral efficacy of HIV-1-specific CD8+ T cells has nonetheless remained unknown. Here, we used single-cell technologies to address this issue in a cohort of aging individuals infected early during the pandemic and subsequently treated with continuous ART. Our data showed that long-term ART was associated with a process of clonal succession, which effectively rejuvenated HIV-1-specific CD8+ T cell populations in the face of immune senescence. Tracking individual transcriptomes further revealed that initially dominant CD8+ T cell clonotypes displayed signatures of exhaustion and terminal differentiation, whereas newly dominant CD8+ T cell clonotypes displayed signatures of early differentiation and stemness associated with natural control of viral replication. These findings reveal a degree of immune resilience that could inform adjunctive treatments for HIV-1.
Collapse
Affiliation(s)
- Eoghann White
- ImmunoConcEpT, UMR 5164, Université de Bordeaux, CNRS, INSERM, Bordeaux, France
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, INSERM, Paris, France
| | - Laura Papagno
- ImmunoConcEpT, UMR 5164, Université de Bordeaux, CNRS, INSERM, Bordeaux, France
| | - Assia Samri
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, INSERM, Paris, France
| | - Kenji Sugata
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Boris Hejblum
- Bordeaux Population Health Research Centre, U1219, Université de Bordeaux, INSERM, Inria SISTM, Bordeaux, France
| | - Amy R Henry
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Daniel C Rogan
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Samuel Darko
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Patricia Recordon-Pinson
- Microbiologie Fondamentale et Pathogénicité, UMR 5234, Université de Bordeaux, CNRS, Bordeaux, France
| | - Yasmine Dudoit
- Institut Pierre Louis d'Epidémiologie et de Sante Publique, AP-HP, Pitié-Salpêtrière Hospital, Department of Infectious Diseases, Sorbonne Université, INSERM, Paris, France
| | - Sian Llewellyn-Lacey
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Lisa A Chakrabarti
- CIVIC Group, Virus and Immunity Unit, Institut Pasteur, CNRS UMR 3569, Université Paris Cité, Paris, France
| | - Florence Buseyne
- Unité d'Epidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, CNRS UMR 3569, Université Paris Cité, Paris, France
| | - Stephen A Migueles
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, UK
| | - Marie-Aline Andreola
- Microbiologie Fondamentale et Pathogénicité, UMR 5234, Université de Bordeaux, CNRS, Bordeaux, France
| | - Yorifumi Satou
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Rodolphe Thiebaut
- Bordeaux Population Health Research Centre, U1219, Université de Bordeaux, INSERM, Inria SISTM, Bordeaux, France
- CHU de Bordeaux, Service d'Information Médicale, Bordeaux, France
| | - Christine Katlama
- Institut Pierre Louis d'Epidémiologie et de Sante Publique, AP-HP, Pitié-Salpêtrière Hospital, Department of Infectious Diseases, Sorbonne Université, INSERM, Paris, France
| | - Brigitte Autran
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, INSERM, Paris, France
| | - Daniel C Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Victor Appay
- ImmunoConcEpT, UMR 5164, Université de Bordeaux, CNRS, INSERM, Bordeaux, France.
| |
Collapse
|
14
|
Zhao T, Jing Y, Li Y, Huang Y, Lu Y, Chen Y. Delving deeper into the mechanisms fundamental to HIV-associated immunopathology using single-cell sequencing techniques: A scoping review of current literature. Heliyon 2024; 10:e35856. [PMID: 39224354 PMCID: PMC11366914 DOI: 10.1016/j.heliyon.2024.e35856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Human immunodeficiency virus (HIV) infection has evolved into an established global pandemic over the past four decades; however, despite massive research investment globally, the precise underlying mechanisms which are fundamental to HIV-related pathogenesis remain unclear. Single cell ribonucleic acid (RNA) sequencing methods are increasingly being used for the identification of specific cell-type transcriptional changes in HIV infection. In this scoping review, we have considered information extracted from fourteen published HIV-associated single-cell RNA sequencing-related studies, hoping to throw light on the underlying mechanisms of HIV infection and pathogenesis, and to explore potential candidate biomarkers for HIV disease progression and antiviral treatment. Generally, HIV positive individuals tend to manifest disturbances of frequency of multiple cellular types, and specifically exhibit diminished levels of CD4+ T-cells and enriched numbers of CD8+ T-cells. Cell-specific transcriptional changes tend to be linked to cell permissiveness, hyperacute or acute HIV infection, viremia, and cell productivity. The transcriptomes of CD4+ T-cell and CD8+ T-cell subpopulations are also observed to change in HIV-positive diabetic individuals, spontaneous HIV controllers, individuals with high levels of HIV viremia, and those in an acute phase of HIV infection. The transcriptional changes seen in B cells, natural killer (NK) cells, and myeloid dendritic cells (mDCs) of HIV-infected individuals demonstrate that the humoral immune response, antiviral response, and immune response regulation, respectively, are all altered following HIV infection. Antiretroviral therapy (ART) plays a crucial role in achieving immune reconstitution, in improving immunological disruption, and in mitigating immune system imbalances in HIV-infected individuals, while not fully restoring inherent cellular transcription to levels seen in HIV-negative individuals. The preceding observations not only illustrate compelling advances in the understanding of HIV-associated immunopathogenesis, but also identify specific cell-type transcriptional changes that may serve as potential biomarkers for HIV disease monitoring and therapeutic targeting.
Collapse
Affiliation(s)
| | | | - Yao Li
- Department of Infectious Disease, Chongqing Public Health Medical Center, Chongqing, 400036, China
| | - Yinqiu Huang
- Department of Infectious Disease, Chongqing Public Health Medical Center, Chongqing, 400036, China
| | - Yanqiu Lu
- Department of Infectious Disease, Chongqing Public Health Medical Center, Chongqing, 400036, China
| | - Yaokai Chen
- Department of Infectious Disease, Chongqing Public Health Medical Center, Chongqing, 400036, China
| |
Collapse
|
15
|
Wang L, Liao F, Yang L, Jiang L, Duan L, Wang B, Mu D, Chen J, Huang Y, Hu Q, Chen W. KLRG1-expressing CD8+ T cells are exhausted and polyfunctional in patients with chronic hepatitis B. PLoS One 2024; 19:e0303945. [PMID: 38776335 PMCID: PMC11111010 DOI: 10.1371/journal.pone.0303945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/03/2024] [Indexed: 05/24/2024] Open
Abstract
Killer cell lectin-like receptor G1 (KLRG1) has traditionally been regarded as an inhibitory receptor of T cell exhaustion in chronic infection and inflammation. However, its exact role in hepatitis B virus (HBV) infection remains elusive. CD8+ T cells from 190 patients with chronic hepatitis B were analyzed ex vivo for checkpoint and apoptosis markers, transcription factors, cytokines and subtypes in 190 patients with chronic hepatitis B. KLRG1+ and KLRG1- CD8+ T cells were sorted for transcriptome analysis. The impact of the KLRG1-E-cadherin pathway on the suppression of HBV replication mediated by virus-specific T cells was validated in vitro. As expected, HBV-specific CD8+ T cells expressed higher levels of KLRG1 and showed an exhausted molecular phenotype and function. However, despite being enriched for the inhibitory molecules, thymocyte selection-associated high mobility group box protein (TOX), eomesodermin (EOMES), and Helios, CD8+ T cells expressing KLRG1 produced significant levels of tumour necrosis factor (TNF)-α, interferon (IFN)-γ, perforin, and granzyme B, demonstrating not exhausted but active function. Consistent with the in vitro phenotypic assay results, RNA sequencing (RNA-seq) data showed that signature effector T cell and exhausted T cell genes were enriched in KLRG1+ CD8+ T cells. Furthermore, in vitro testing confirmed that KLRG1-E-cadherin binding inhibits the antiviral efficacy of HBV-specific CD8+ T cells. Based on these findings, we concluded that KLRG1+ CD8+ T cells are not only a terminally exhausted subgroup but also exhibit functional diversity, despite inhibitory signs in HBV infection.
Collapse
Affiliation(s)
- Li Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fangli Liao
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liping Yang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Linshan Jiang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liang Duan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bo Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Di Mu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Juan Chen
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Ying Huang
- Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Qin Hu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weixian Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
16
|
Zhu Y, Tan H, Wang J, Zhuang H, Zhao H, Lu X. Molecular insight into T cell exhaustion in hepatocellular carcinoma. Pharmacol Res 2024; 203:107161. [PMID: 38554789 DOI: 10.1016/j.phrs.2024.107161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/17/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Hepatocellular carcinoma is one of the leading causes of cancer-related mortality globally. The emergence of immunotherapy has been shown to be a promising therapeutic approach for hepatocellular carcinoma in recent years. It has been well known that T cell plays a key role in current immunotherapy. However, sustained exposure to antigenic stimulation within the tumor microenvironment may lead to T cell exhaustion, which may cause treatment ineffectiveness. Therefore, reversing T cell exhaustion has been an important issue for the clinical application of immunotherapy, and a comprehensive understanding of the intricacies surrounding T cell exhaustion and its underlying mechanisms is imperative for devising strategies to overcome the T cell exhaustion during treatment. In this review, we summarized the reported drivers of T cell exhaustion in hepatocellular carcinoma and delineate potential ways to reverse it. Additionally, we discussed the interplay among metabolic plasticity, epigenetic regulation, and transcriptional factors in exhausted T cells in hepatocellular carcinoma, and their implication for future clinical applications.
Collapse
Affiliation(s)
- Yonghua Zhu
- Department of General Surgery, Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huabing Tan
- Department of Infectious Diseases, Hepatology Institute, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China; Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, Hubei Province 442000, China
| | - Jincheng Wang
- Graduate School of Biomedical Science and Engineering, Hokkaido University, Japan
| | - Haiwen Zhuang
- Department of General Surgery, Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huanbin Zhao
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Xiaojie Lu
- Department of General Surgery, Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
17
|
Zannikou M, Fish EN, Platanias LC. Signaling by Type I Interferons in Immune Cells: Disease Consequences. Cancers (Basel) 2024; 16:1600. [PMID: 38672681 PMCID: PMC11049350 DOI: 10.3390/cancers16081600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/08/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
This review addresses interferon (IFN) signaling in immune cells and the tumor microenvironment (TME) and examines how this affects cancer progression. The data reveal that IFNs exert dual roles in cancers, dependent on the TME, exhibiting both anti-tumor activity and promoting cancer progression. We discuss the abnormal IFN signaling induced by cancerous cells that alters immune responses to permit their survival and proliferation.
Collapse
Affiliation(s)
- Markella Zannikou
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, 303 East Superior Ave., Chicago, IL 60611, USA
| | - Eleanor N. Fish
- Toronto General Hospital Research Institute, University Health Network, 67 College Street, Toronto, ON M5G 2M1, Canada;
- Department of Immunology, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Leonidas C. Platanias
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, 303 East Superior Ave., Chicago, IL 60611, USA
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, 820 S. Damen Ave., Chicago, IL 60612, USA
| |
Collapse
|
18
|
Pulliam T, Jani S, Jing L, Ryu H, Jojic A, Shasha C, Zhang J, Kulikauskas R, Church C, Garnett-Benson C, Gooley T, Chapuis A, Paulson K, Smith KN, Pardoll DM, Newell EW, Koelle DM, Topalian SL, Nghiem P. Circulating cancer-specific CD8 T cell frequency is associated with response to PD-1 blockade in Merkel cell carcinoma. Cell Rep Med 2024; 5:101412. [PMID: 38340723 PMCID: PMC10897614 DOI: 10.1016/j.xcrm.2024.101412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/01/2023] [Accepted: 01/12/2024] [Indexed: 02/12/2024]
Abstract
Understanding cancer immunobiology has been hampered by difficulty identifying cancer-specific T cells. Merkel cell polyomavirus (MCPyV) causes most Merkel cell carcinomas (MCCs). All patients with virus-driven MCC express MCPyV oncoproteins, facilitating identification of virus (cancer)-specific T cells. We studied MCPyV-specific T cells from 27 patients with MCC using MCPyV peptide-HLA-I multimers, 26-color flow cytometry, single-cell transcriptomics, and T cell receptor (TCR) sequencing. In a prospective clinical trial, higher circulating MCPyV-specific CD8 T cell frequency before anti-PD-1 treatment was strongly associated with 2-year recurrence-free survival (75% if detectable, 0% if undetectable, p = 0.0018; ClinicalTrial.gov: NCT02488759). Intratumorally, such T cells were typically present, but their frequency did not significantly associate with response. Circulating MCPyV-specific CD8 T cells had increased stem/memory and decreased exhaustion signatures relative to their intratumoral counterparts. These results suggest that cancer-specific CD8 T cells in the blood may play a role in anti-PD-1 responses. Thus, strategies that augment their number or mobilize them into tumors could improve outcomes.
Collapse
Affiliation(s)
- Thomas Pulliam
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Saumya Jani
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98109, USA
| | - Lichen Jing
- Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Heeju Ryu
- Vaccine and Infectious Disease Department, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Ana Jojic
- Vaccine and Infectious Disease Department, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Carolyn Shasha
- Vaccine and Infectious Disease Department, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Jiajia Zhang
- Department of Oncology, Johns Hopkins University, Baltimore, MD 21827, USA; The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Rima Kulikauskas
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Candice Church
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | | | - Ted Gooley
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Aude Chapuis
- Department of Medicine, University of Washington, Seattle, WA 98109, USA; Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Kelly Paulson
- Paul G. Allen Research Center, Providence-Swedish Cancer Institute, Seattle, WA 98104, USA; Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA
| | - Kellie N Smith
- Department of Oncology, Johns Hopkins University, Baltimore, MD 21827, USA; The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Drew M Pardoll
- Department of Oncology, Johns Hopkins University, Baltimore, MD 21827, USA; The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Evan W Newell
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98109, USA; Vaccine and Infectious Disease Department, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - David M Koelle
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98109, USA; Department of Medicine, University of Washington, Seattle, WA 98109, USA; Vaccine and Infectious Disease Department, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Global Health, University of Washington, Seattle, WA 98109, USA; Benaroya Research Institute, Seattle, WA 98101, USA
| | - Suzanne L Topalian
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD 21287, USA; Department of Surgery, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Paul Nghiem
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
19
|
Clutton GT, Weideman AMK, Mischell MA, Kallon S, Conrad SZ, Shaw FR, Warren JA, Lin L, Kuruc JD, Xu Y, Gay CM, Armistead PM, G. Hudgens M, Goonetilleke NP. CD3 downregulation identifies high-avidity human CD8 T cells. Clin Exp Immunol 2024; 215:279-290. [PMID: 37950348 PMCID: PMC10876116 DOI: 10.1093/cei/uxad124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/22/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023] Open
Abstract
CD8 T cells recognize infected and cancerous cells via their T-cell receptor (TCR), which binds peptide-MHC complexes on the target cell. The affinity of the interaction between the TCR and peptide-MHC contributes to the antigen sensitivity, or functional avidity, of the CD8 T cell. In response to peptide-MHC stimulation, the TCR-CD3 complex and CD8 co-receptor are downmodulated. We quantified CD3 and CD8 downmodulation following stimulation of human CD8 T cells with CMV, EBV, and HIV peptides spanning eight MHC restrictions, observing a strong correlation between the levels of CD3 and CD8 downmodulation and functional avidity, regardless of peptide viral origin. In TCR-transduced T cells targeting a tumor-associated antigen, changes in TCR-peptide affinity were sufficient to modify CD3 and CD8 downmodulation. Correlation analysis and generalized linear modeling indicated that CD3 downmodulation was the stronger correlate of avidity. CD3 downmodulation, simply measured using flow cytometry, can be used to identify high-avidity CD8 T cells in a clinical context.
Collapse
Affiliation(s)
- Genevieve T Clutton
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ann Marie K Weideman
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Melissa A Mischell
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sallay Kallon
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shayla Z Conrad
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Fiona R Shaw
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joanna A Warren
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lin Lin
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - JoAnn D Kuruc
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yinyan Xu
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Cynthia M Gay
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Paul M Armistead
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael G. Hudgens
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nilu P Goonetilleke
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
20
|
Wu J, Lu Z, Zhao H, Lu M, Gao Q, Che N, Wang J, Ma T. The expanding Pandora's toolbox of CD8 +T cell: from transcriptional control to metabolic firing. J Transl Med 2023; 21:905. [PMID: 38082437 PMCID: PMC10714647 DOI: 10.1186/s12967-023-04775-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
CD8+ T cells are the executor in adaptive immune response, especially in anti-tumor immunity. They are the subset immune cells that are of high plasticity and multifunction. Their development, differentiation, activation and metabolism are delicately regulated by multiple factors. Stimuli from the internal and external environment could remodel CD8+ T cells, and correspondingly they will also make adjustments to the microenvironmental changes. Here we describe the most updated progresses in CD8+ T biology from transcriptional regulation to metabolism mechanisms, and also their interactions with the microenvironment, especially in cancer and immunotherapy. The expanding landscape of CD8+ T cell biology and discovery of potential targets to regulate CD8+ T cells will provide new viewpoints for clinical immunotherapy.
Collapse
Affiliation(s)
- Jinghong Wu
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Zhendong Lu
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Hong Zhao
- Department of Pathology, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Mingjun Lu
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Qing Gao
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Nanying Che
- Department of Pathology, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Jinghui Wang
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China.
| | - Teng Ma
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China.
| |
Collapse
|
21
|
Cai C, Gao Y, Adamo S, Rivera-Ballesteros O, Hansson L, Österborg A, Bergman P, Sandberg JK, Ljunggren HG, Björkström NK, Strålin K, Llewellyn-Lacey S, Price DA, Qin C, Grifoni A, Weiskopf D, Wherry EJ, Sette A, Aleman S, Buggert M. SARS-CoV-2 vaccination enhances the effector qualities of spike-specific T cells induced by COVID-19. Sci Immunol 2023; 8:eadh0687. [PMID: 38064569 PMCID: PMC7615587 DOI: 10.1126/sciimmunol.adh0687] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 10/31/2023] [Indexed: 12/18/2023]
Abstract
T cells are critical for immune protection against severe COVID-19, but it has remained unclear whether repeated exposure to SARS-CoV-2 antigens delivered in the context of vaccination fuels T cell exhaustion or reshapes T cell functionality. Here, we sampled convalescent donors with a history of mild or severe COVID-19 before and after SARS-CoV-2 vaccination to profile the functional spectrum of hybrid T cell immunity. Using combined single-cell technologies and high-dimensional flow cytometry, we found that the frequencies and functional capabilities of spike-specific CD4+ and CD8+ T cells in previously infected individuals were enhanced by vaccination, despite concomitant increases in the expression of inhibitory receptors such as PD-1 and TIM3. In contrast, CD4+ and CD8+ T cells targeting non-spike proteins remained functionally static and waned over time, and only minimal effects were observed in healthy vaccinated donors experiencing breakthrough infections with SARS-CoV-2. Moreover, hybrid immunity was characterized by elevated expression of IFN-γ, which was linked with clonotype specificity in the CD8+ T cell lineage. Collectively, these findings identify a molecular hallmark of hybrid immunity and suggest that vaccination after infection is associated with cumulative immunological benefits over time, potentially conferring enhanced protection against subsequent episodes of COVID-19.
Collapse
Affiliation(s)
- Curtis Cai
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Yu Gao
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Sarah Adamo
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Olga Rivera-Ballesteros
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lotta Hansson
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Anders Österborg
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Peter Bergman
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Johan K. Sandberg
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Hans-Gustaf Ljunggren
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Niklas K. Björkström
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Kristoffer Strålin
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Huddinge, Infectious Diseases, Karolinska Institutet, Stockholm, Sweden
| | - Sian Llewellyn-Lacey
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
| | - David A. Price
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
| | - Chuan Qin
- Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing, China
- National Health Commission Key Laboratory of Human Disease Comparative Medicine, Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, California, USA
| | - E. John Wherry
- Institute for Immunology, Perelman School of Medicine at the University of Pennsylvania, Pennsylvania, USA
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania, Pennsylvania, USA
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine at the University of Pennsylvania, Pennsylvania, USA
| | - Alessandro Sette
- National Health Commission Key Laboratory of Human Disease Comparative Medicine, Comparative Medicine Center, Peking Union Medical College, Beijing, China
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, California, USA
| | - Soo Aleman
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Huddinge, Infectious Diseases, Karolinska Institutet, Stockholm, Sweden
| | - Marcus Buggert
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
22
|
Zhou Y, Farooq MA, Ajmal I, He C, Gao Y, Guo D, Duan Y, Jiang W. Co-expression of IL-4/IL-15-based inverted cytokine receptor in CAR-T cells overcomes IL-4 signaling in immunosuppressive pancreatic tumor microenvironment. Biomed Pharmacother 2023; 168:115740. [PMID: 37865999 DOI: 10.1016/j.biopha.2023.115740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/04/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023] Open
Abstract
The efficacy of CAR-T cell therapy has been hindered by several factors that are intrinsic to the tumor microenvironment. Many strategies are being employed to overcome these barriers and improve immunotherapies efficacy. Interleukin (IL)- 4 is a cytokine released by tumor cells inside the tumor microenvironment and it can oppose T cell effector functions via engagement with the IL-4 receptor on the surface of T cells. To overcome IL-4-mediated immunosuppressive signals, we designed a novel inverted cytokine receptor (ICR). Our novel CAR construct (4/15NKG2D-CAR), consisted of an NKG2D-based chimeric antigen receptor, co-expressing IL-4R as an extracellular domain and IL-15R as a transmembrane and intracellular domain. In this way, IL-4R inhibitory signals were converted into IL-15R activation signals downstream. This strategy increased the efficacy of NKG2D-CAR-T cells in the pancreatic tumor microenvironment in vitro and in vivo. 4/15NKG2D-CAR-T cells exhibited increased activation, degranulation, cytokine release, and cytotoxic ability of NKG2D-CAR-T cells against IL-4+ pancreatic cell lines. Furthermore, 4/15NKG2D-CAR-T cells exhibited more expansion, less exhaustion, and an increased percentage of less differentiated T cell phenotypes in vitro when compared with NKG2D-CAR-T cells. That is why IL-4R/IL-15R-modified CAR-T cells eradicated more tumors in vivo and outperformed NKG2D-CAR-T cells. Thus, we report here a novel NKG2D-CAR-T cells that could overcome IL-4-mediated immunosuppression in solid tumors.
Collapse
Affiliation(s)
- Ying Zhou
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Muhammad Asad Farooq
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Iqra Ajmal
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Cong He
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yaoxin Gao
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Dandan Guo
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yixin Duan
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Wenzheng Jiang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
23
|
Gicobi JK, Mao Z, DeFranco G, Hirdler JB, Li Y, Vianzon VV, Dellacecca ER, Hsu MA, Barham W, Yan Y, Mansfield AS, Lin Y, Wu X, Hitosugi T, Owen D, Grams MP, Orme JJ, Lucien F, Zeng H, Park SS, Dong H. Salvage therapy expands highly cytotoxic and metabolically fit resilient CD8 + T cells via ME1 up-regulation. SCIENCE ADVANCES 2023; 9:eadi2414. [PMID: 37967193 PMCID: PMC10651128 DOI: 10.1126/sciadv.adi2414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/16/2023] [Indexed: 11/17/2023]
Abstract
Patients with advanced cancers who either do not experience initial response to or progress while on immune checkpoint inhibitors (ICIs) receive salvage radiotherapy to reduce tumor burden and tumor-related symptoms. Occasionally, some patients experience substantial global tumor regression with a rebound of cytotoxic CD8+ T cells. We have termed the rebound of cytotoxic CD8+ T cells in response to salvage therapy as T cell resilience and examined the underlying mechanisms of resilience. Resilient T cells are enriched for CX3CR1+ CD8+ T cells with low mitochondrial membrane potential, accumulate less reactive oxygen species (ROS), and express more malic enzyme 1 (ME1). ME1 overexpression enhanced the cytotoxicity and expansion of effector CD8+ T cells partially via the type I interferon pathway. ME1 also increased mitochondrial respiration while maintaining the redox state balance. ME1 increased the cytotoxicity of peripheral lymphocytes from patients with advanced cancers. Thus, preserved resilient T cells in patients rebound after salvage therapy and ME1 enhances their resiliency.
Collapse
Affiliation(s)
- Joanina K. Gicobi
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Zhiming Mao
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Grace DeFranco
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | | | - Ying Li
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Vianca V. Vianzon
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Emilia R. Dellacecca
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Michelle A. Hsu
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Whitney Barham
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Yiyi Yan
- Division of Medical Oncology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Yi Lin
- Division of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Xiaosheng Wu
- Division of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Taro Hitosugi
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Dawn Owen
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Michael P. Grams
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Jacob J. Orme
- Division of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | | | - Hu Zeng
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
- Department of Rheumatology, Mayo Clinic, Rochester, MN, USA
| | - Sean S. Park
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Haidong Dong
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
- Department of Urology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
24
|
Klocke C, Moran A, Adey A, McWeeney S, Wu G. Identification of Cellular Interactions in the Tumor Immune Microenvironment Underlying CD8 T Cell Exhaustion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.09.566384. [PMID: 38014233 PMCID: PMC10680664 DOI: 10.1101/2023.11.09.566384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
While immune checkpoint inhibitors show success in treating a subset of patients with certain late-stage cancers, these treatments fail in many other patients as a result of mechanisms that have yet to be fully characterized. The process of CD8 T cell exhaustion, by which T cells become dysfunctional in response to prolonged antigen exposure, has been implicated in immunotherapy resistance. Single-cell RNA sequencing (scRNA-seq) produces an abundance of data to analyze this process; however, due to the complexity of the process, contributions of other cell types to a process within a single cell type cannot be simply inferred. We constructed an analysis framework to first rank human skin tumor samples by degree of exhaustion in tumor-infiltrating CD8 T cells and then identify immune cell type-specific gene-regulatory network patterns significantly associated with T cell exhaustion. Using this framework, we further analyzed scRNA-seq data from human tumor and chronic viral infection samples to compare the T cell exhaustion process between these two contexts. In doing so, we identified transcription factor activity in the macrophages of both tissue types associated with this process. Our framework can be applied beyond the tumor immune microenvironment to any system involving cell-cell communication, facilitating insights into key biological processes that underpin the effective treatment of cancer and other complicated diseases.
Collapse
|
25
|
Torki E, Gharezade A, Doroudchi M, Sheikhi S, Mansury D, Sullman MJM, Fouladseresht H. The kinetics of inhibitory immune checkpoints during and post-COVID-19: the knowns and unknowns. Clin Exp Med 2023; 23:3299-3319. [PMID: 37697158 DOI: 10.1007/s10238-023-01188-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/31/2023] [Indexed: 09/13/2023]
Abstract
The immune system is tightly regulated to prevent immune reactions to self-antigens and to avoid excessive immune responses during and after challenges from non-self-antigens. Inhibitory immune checkpoints (IICPs), as the major regulators of immune system responses, are extremely important for maintaining the homeostasis of cells and tissues. However, the high and sustained co-expression of IICPs in chronic infections, under persistent antigenic stimulations, results in reduced immune cell functioning and more severe and prolonged disease complications. Furthermore, IICPs-mediated interactions can be hijacked by pathogens in order to evade immune induction or effector mechanisms. Therefore, IICPs can be potential targets for the prognosis and treatment of chronic infectious diseases. This is especially the case with regards to the most challenging infectious disease of recent times, coronavirus disease-2019 (COVID-19), whose long-term complications can persist long after recovery. This article reviews the current knowledge about the kinetics and functioning of the IICPs during and post-COVID-19.
Collapse
Affiliation(s)
- Ensiye Torki
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arezou Gharezade
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehrnoosh Doroudchi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shima Sheikhi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Davood Mansury
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mark J M Sullman
- Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
- Department of Social Sciences, University of Nicosia, Nicosia, Cyprus
| | - Hamed Fouladseresht
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
26
|
Vizcarra EA, Ulu A, Landrith TA, Qiu X, Godzik A, Wilson EH. Group 1 metabotropic glutamate receptor expression defines a T cell memory population during chronic Toxoplasma infection that enhances IFN-gamma and perforin production in the CNS. Brain Behav Immun 2023; 114:131-143. [PMID: 37604212 DOI: 10.1016/j.bbi.2023.08.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/23/2023] Open
Abstract
Within the brain, a pro-inflammatory response is essential to prevent clinical disease due to Toxoplasma gondii reactivation. Infection in the immunocompromised leads to lethal Toxoplasmic encephalitis while in the immunocompetent, there is persistent low-grade inflammation which is devoid of clinical symptoms. This signifies that there is a well-balanced and regulated inflammatory response to T. gondii in the brain. T cells are the dominant immune cells that prevent clinical disease, and this is mediated through the secretion of effector molecules such as perforins and IFN-γ. The presence of cognate antigen, the expression of survival cytokines, and the alteration of the epigenetic landscape drive the development of memory T cells. However, specific extrinsic signals that promote the formation and maintenance of memory T cells within tissue are poorly understood. During chronic infection, there is an increase in extracellular glutamate that, due to its function as an excitatory neurotransmitter, is normally tightly controlled in the CNS. Here we demonstrate that CD8+ T cells from the T. gondii-infected brain parenchyma are enriched for metabotropic glutamate receptors (mGluR's). Characterization studies determined that mGluR+ expression by CD8+ T cells defines a distinct memory population at the transcriptional and protein level. Finally, using receptor antagonists and agonists we demonstrate mGluR signaling is required for optimal CD8+ T cell production of the effector cytokine IFNγ. This work suggests that glutamate is an important environmental signal of inflammation that promotes T cell function. Understanding glutamate's influence on T cells in the brain can provide insights into the mechanisms that govern protective immunity against CNS-infiltrating pathogens and neuroinflammation.
Collapse
Affiliation(s)
- Edward A Vizcarra
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, United States
| | - Arzu Ulu
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, United States
| | - Tyler A Landrith
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, United States
| | - Xinru Qiu
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, United States
| | - Adam Godzik
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, United States
| | - Emma H Wilson
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, United States.
| |
Collapse
|
27
|
Hao L, Li S, Hu X. New insights into T-cell exhaustion in liver cancer: from mechanism to therapy. J Cancer Res Clin Oncol 2023; 149:12543-12560. [PMID: 37423958 DOI: 10.1007/s00432-023-05083-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 06/29/2023] [Indexed: 07/11/2023]
Abstract
Liver cancer is one of the most common malignancies. T-cell exhaustion is associated with immunosuppression of tumor and chronic infection. Although immunotherapies that enhance the immune response by targeting programmed cell death-1(PD-1)/programmed cell death ligand 1 (PD-L1) have been applied to malignancies, these treatments have shown limited response rates. This suggested that additional inhibitory receptors (IRs) also contributed to T-cell exhaustion and tumor prognosis. Exhausted T-cells (Tex) in the tumor immune microenvironment (TME) are usually in a dysfunctional state of exhaustion, such as impaired activity and proliferative ability, increased apoptosis rate, and reduced production of effector cytokines. Tex cells participate in the negative regulation of tumor immunity mainly through IRs on the cell surface, changes in cytokines and immunomodulatory cell types, causing tumor immune escape. However, T-cell exhaustion is not irreversible and targeted immune checkpoint inhibitors (ICIs) can effectively reverse the exhaustion of T-cells and restore the anti-tumor immune response. Therefore, the research on the mechanism of T-cell exhaustion in liver cancer, aimed at maintaining or restoring the effector function of Tex cells, might provide a new method for the treatment of liver cancer. In this review, we summarized the basic characteristics of Tex cells (such as IRs and cytokines), discussed the mechanisms associated with T-cell exhaustion, and specifically discussed how these exhaustion characteristics were acquired and shaped by key factors within TME. Then new insights into the molecular mechanism of T-cell exhaustion suggested a potential way to improve the efficacy of cancer immunotherapy, namely to restore the effector function of Tex cells. In addition, we also reviewed the research progress of T-cell exhaustion in recent years and provided suggestions for further research.
Collapse
Affiliation(s)
- Liyuan Hao
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-Er-Qiao Road, Chengdu, 610075, Sichuan Province, People's Republic of China
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-Er-Qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China
| | - Shenghao Li
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-Er-Qiao Road, Chengdu, 610075, Sichuan Province, People's Republic of China
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-Er-Qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China
| | - Xiaoyu Hu
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-Er-Qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China.
| |
Collapse
|
28
|
Garman B, Jiang C, Daouti S, Kumar S, Mehta P, Jacques MK, Menard L, Manjarrez-Orduno N, Dolfi S, Mukherjee P, Rai SC, Lako A, Koenitzer JD, David JM. Comprehensive immunophenotyping of solid tumor-infiltrating immune cells reveals the expression characteristics of LAG-3 and its ligands. Front Immunol 2023; 14:1151748. [PMID: 37795090 PMCID: PMC10546411 DOI: 10.3389/fimmu.2023.1151748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 09/04/2023] [Indexed: 10/06/2023] Open
Abstract
Background Immune cell expression profiling from patient samples is critical for the successful development of immuno-oncology agents and is useful to understand mechanism-of-action, to identify exploratory biomarkers predictive of response, and to guide treatment selection and combination therapy strategies. LAG-3 is an inhibitory immune checkpoint that can suppress antitumor T-cell responses and targeting LAG-3, in combination with PD-1, is a rational approach to enhance antitumor immunity that has recently demonstrated clinical success. Here, we sought to identify human immune cell subsets that express LAG-3 and its ligands, to characterize the marker expression profile of these subsets, and to investigate the potential relationship between LAG-3 expressing subsets and clinical outcomes to immuno-oncology therapies. Methods Comprehensive high-parameter immunophenotyping was performed using mass and flow cytometry of tumor-infiltrating lymphocytes (TILs) and peripheral blood mononuclear cells (PBMCs) from two independent cohorts of samples from patients with various solid tumor types. Profiling of circulating immune cells by single cell RNA-seq was conducted on samples from a clinical trial cohort of melanoma patients treated with immunotherapy. Results LAG-3 was most highly expressed by subsets of tumor-infiltrating CD8 T central memory (TCM) and effector memory (TEM) cells and was frequently co-expressed with PD-1. We determined that these PD-1+ LAG-3+ CD8 memory T cells exhibited a unique marker profile, with greater expression of activation (CD69, HLA-DR), inhibitory (TIM-3, TIGIT, CTLA-4) and stimulatory (4-1BB, ICOS) markers compared to cells that expressed only PD-1 or LAG-3, or that were negative for both checkpoints. In contrast to tumors, LAG-3 expression was more limited in circulating immune cells from healthy donors and solid tumor patients. Additionally, we found abundant expression of the LAG-3 ligands MHC-II and galectin-3 in diverse immune cell types, whereas FGL1 and LSECtin were minimally expressed by immune cells in the tumor microenvironment (TME). Lastly, we found an inverse relationship between baseline and on-treatment levels of circulating LAG3 transcript-expressing CD8 memory T cells and response to combination PD-1 and CTLA-4 blockade in a clinical trial cohort of melanoma patients profiled by scRNAseq. Conclusions These results provide insights into the nature of LAG-3- and ligand-expressing immune cells within the TME, and suggest a biological basis for informing mechanistic hypotheses, treatment selection strategies, and combination immunotherapy approaches to support continued development of dual PD-1 and LAG-3 blockade.
Collapse
Affiliation(s)
- Bradley Garman
- Translational Medicine, Bristol Myers Squibb, Lawrenceville, NJ, United States
| | - Can Jiang
- Translational Medicine, Bristol Myers Squibb, Lawrenceville, NJ, United States
| | - Sherif Daouti
- Translational Medicine, Bristol Myers Squibb, Lawrenceville, NJ, United States
| | - Sanah Kumar
- Translational Medicine, Bristol Myers Squibb, Lawrenceville, NJ, United States
| | - Priyanka Mehta
- Translational Medicine, Bristol Myers Squibb, Lawrenceville, NJ, United States
| | - Miye K. Jacques
- Translational Medicine, Bristol Myers Squibb, Lawrenceville, NJ, United States
| | - Laurence Menard
- Translational Medicine, Bristol Myers Squibb, Lawrenceville, NJ, United States
| | | | - Sonia Dolfi
- Translational Medicine, Bristol Myers Squibb, Lawrenceville, NJ, United States
| | - Piali Mukherjee
- Translational Medicine, Bristol Myers Squibb, Lawrenceville, NJ, United States
- Epigenomics Core Facility, Weill Cornell Medicine, New York City, NY, United States
| | | | - Ana Lako
- Translational Medicine, Bristol Myers Squibb, Lawrenceville, NJ, United States
| | | | - Justin M. David
- Translational Medicine, Bristol Myers Squibb, Lawrenceville, NJ, United States
| |
Collapse
|
29
|
Blanch-Lombarte O, Ouchi D, Jimenez-Moyano E, Carabelli J, Marin MA, Peña R, Pelletier A, Talla A, Sharma A, Dalmau J, Santos JR, Sékaly RP, Clotet B, Prado JG. Selective loss of CD107a TIGIT+ memory HIV-1-specific CD8+ T cells in PLWH over a decade of ART. eLife 2023; 12:e83737. [PMID: 37723971 PMCID: PMC10508883 DOI: 10.7554/elife.83737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 08/30/2023] [Indexed: 09/20/2023] Open
Abstract
The co-expression of inhibitory receptors (IRs) is a hallmark of CD8+ T-cell exhaustion (Tex) in people living with HIV-1 (PLWH). Understanding alterations of IRs expression in PLWH on long-term antiretroviral treatment (ART) remains elusive but is critical to overcoming CD8+ Tex and designing novel HIV-1 cure immunotherapies. To address this, we combine high-dimensional supervised and unsupervised analysis of IRs concomitant with functional markers across the CD8+ T-cell landscape on 24 PLWH over a decade on ART. We define irreversible alterations of IRs co-expression patterns in CD8+ T cells not mitigated by ART and identify negative associations between the frequency of TIGIT+ and TIGIT+ TIM-3+ and CD4+ T-cell levels. Moreover, changes in total, SEB-activated, and HIV-1-specific CD8+ T cells delineate a complex reshaping of memory and effector-like cellular clusters on ART. Indeed, we identify a selective reduction of HIV-1 specific-CD8+ T-cell memory-like clusters sharing TIGIT expression and low CD107a that can be recovered by mAb TIGIT blockade independently of IFNγ and IL-2. Collectively, these data characterize with unprecedented detail the patterns of IRs expression and functions across the CD8+ T-cell landscape and indicate the potential of TIGIT as a target for Tex precision immunotherapies in PLWH at all ART stages.
Collapse
Affiliation(s)
- Oscar Blanch-Lombarte
- IrsiCaixa AIDS Research InstituteBarcelonaSpain
- Universitat Autònoma de Barcelona, Cerdanyola del VallèsBarcelonaSpain
| | - Dan Ouchi
- IrsiCaixa AIDS Research InstituteBarcelonaSpain
| | | | | | | | - Ruth Peña
- IrsiCaixa AIDS Research InstituteBarcelonaSpain
| | - Adam Pelletier
- Pathology Department, Case Western Reserve UniversityClevelandUnited States
| | - Aarthi Talla
- Pathology Department, Case Western Reserve UniversityClevelandUnited States
| | - Ashish Sharma
- Pathology Department, Case Western Reserve UniversityClevelandUnited States
| | | | - José Ramón Santos
- Lluita contra la SIDA Foundation, Hospital Universitari Germans Trias i PujolBarcelonaSpain
- Infectious Diseases Department, Hospital Universitari Germans Trias i PujolBadalonaSpain
| | | | - Bonaventura Clotet
- IrsiCaixa AIDS Research InstituteBarcelonaSpain
- Lluita contra la SIDA Foundation, Hospital Universitari Germans Trias i PujolBarcelonaSpain
- Infectious Diseases Department, Hospital Universitari Germans Trias i PujolBadalonaSpain
- Germans Trias i Pujol Research Institute (IGTP)BadalonaSpain
- Faculty of Medicine, University of Vic - Central University of Catalonia (UVic-UCC)CataloniaSpain
| | - Julia G Prado
- IrsiCaixa AIDS Research InstituteBarcelonaSpain
- Germans Trias i Pujol Research Institute (IGTP)BadalonaSpain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
30
|
Lan X, Zebley CC, Youngblood B. Cellular and molecular waypoints along the path of T cell exhaustion. Sci Immunol 2023; 8:eadg3868. [PMID: 37656775 PMCID: PMC10618911 DOI: 10.1126/sciimmunol.adg3868] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 08/09/2023] [Indexed: 09/03/2023]
Abstract
Thirty years of foundational research investigating molecular and cellular mechanisms promoting T cell exhaustion are now enabling rational design of T cell-based therapies for the treatment of chronic infections and cancer. Once described as a static cell fate, it is now well appreciated that the developmental path toward exhaustion is composed of a heterogeneous pool of cells with varying degrees of effector potential that ultimately converge on a terminally differentiated state. Recent description of the developmental stages along the differentiation trajectory of T cell exhaustion has provided insight into past immunotherapeutic success and future opportunities. Here, we discuss the hallmarks of distinct developmental stages occurring along the path to T cell dysfunction and the impact of these discrete CD8+ T cell fates on cancer immunotherapy.
Collapse
Affiliation(s)
- Xin Lan
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Caitlin C. Zebley
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Ben Youngblood
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
31
|
Jacobsen LM, Diggins K, Blanchfield L, McNichols J, Perry DJ, Brant J, Dong X, Bacher R, Gersuk VH, Schatz DA, Atkinson MA, Mathews CE, Haller MJ, Long SA, Linsley PS, Brusko TM. Responders to low-dose ATG induce CD4+ T cell exhaustion in type 1 diabetes. JCI Insight 2023; 8:e161812. [PMID: 37432736 PMCID: PMC10543726 DOI: 10.1172/jci.insight.161812] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/06/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUNDLow-dose anti-thymocyte globulin (ATG) transiently preserves C-peptide and lowers HbA1c in individuals with recent-onset type 1 diabetes (T1D); however, the mechanisms of action and features of the response remain unclear. Here, we characterized the post hoc immunological outcomes of ATG administration and their potential use as biomarkers of metabolic response to therapy (i.e., improved preservation of endogenous insulin production).METHODSWe assessed gene and protein expression, targeted gene methylation, and cytokine concentrations in peripheral blood following treatment with ATG (n = 29), ATG plus granulocyte colony-stimulating factor (ATG/G-CSF, n = 28), or placebo (n = 31).RESULTSTreatment with low-dose ATG preserved regulatory T cells (Tregs), as measured by stable methylation of FOXP3 Treg-specific demethylation region (TSDR) and increased proportions of CD4+FOXP3+ Tregs (P < 0.001) identified by flow cytometry. While treatment effects were consistent across participants, not all maintained C-peptide. Responders exhibited a transient rise in IL-6, IP-10, and TNF-α (P < 0.05 for all) 2 weeks after treatment and a durable CD4+ exhaustion phenotype (increased PD-1+KLRG1+CD57- on CD4+ T cells [P = 0.011] and PD1+CD4+ Temra MFI [P < 0.001] at 12 weeks, following ATG and ATG/G-CSF, respectively). ATG nonresponders displayed higher proportions of senescent T cells (at baseline and after treatment) and increased methylation of EOMES (i.e., less expression of this exhaustion marker).CONCLUSIONAltogether in these exploratory analyses, Th1 inflammation-associated serum and CD4+ exhaustion transcript and cellular phenotyping profiles may be useful for identifying signatures of clinical response to ATG in T1D.TRIAL REGISTRATIONClinicalTrials.gov NCT02215200.FUNDINGThe Leona M. and Harry B. Helmsley Charitable Trust (2019PG-T1D011), the NIH (R01 DK106191 Supplement, K08 DK128628), NIH TrialNet (U01 DK085461), and the NIH NIAID (P01 AI042288).
Collapse
Affiliation(s)
- Laura M. Jacobsen
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Kirsten Diggins
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Lori Blanchfield
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - James McNichols
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Daniel J. Perry
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Jason Brant
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Xiaoru Dong
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
- Department of Biostatistics, University of Florida, Gainesville, Florida, USA
| | - Rhonda Bacher
- Department of Biostatistics, University of Florida, Gainesville, Florida, USA
| | - Vivian H. Gersuk
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Desmond A. Schatz
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Mark A. Atkinson
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Clayton E. Mathews
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Michael J. Haller
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - S. Alice Long
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Peter S. Linsley
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Todd M. Brusko
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| |
Collapse
|
32
|
Yamada M, Macedo C, Louis K, Shi T, Landsittel D, Nguyen C, Shinjoh M, Michaels MG, Feingold B, Mazariegos GV, Green M, Metes D. Distinct association between chronic Epstein-Barr virus infection and T cell compartments from pediatric heart, kidney, and liver transplant recipients. Am J Transplant 2023; 23:1145-1158. [PMID: 37187296 DOI: 10.1016/j.ajt.2023.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/23/2023] [Accepted: 05/11/2023] [Indexed: 05/17/2023]
Abstract
Chronic Epstein-Barr virus (EBV) infection after pediatric organ transplantation (Tx) accounts for significant morbidity and mortality. The risk of complications, such as posttransplant lymphoproliferative disorders, in high viral load (HVL) carriers is the highest in heart Tx recipients. However, the immunologic signatures of such a risk have been insufficiently defined. Here, we assessed the phenotypic, functional, and transcriptomic profiles of peripheral blood CD8+/CD4+ T cells, including EBV-specific T cells, in 77 pediatric heart, kidney, and liver Tx recipients and established the relationship between memory differentiation and progression toward exhaustion. Unlike kidney and liver HVL carriers, heart HVL carriers displayed distinct CD8+ T cells with (1) up-regulation of interleukin-21R, (2) decreased naive phenotype and altered memory differentiation, (3) accumulation of terminally exhausted (TEX PD-1+T-bet-Eomes+) and decrease of functional precursors of exhausted (TPEX PD-1intT-bet+) effector subsets, and (4) transcriptomic signatures supporting the phenotypic changes. In addition, CD4+ T cells from heart HVL carriers displayed similar changes in naive and memory subsets, elevated Th1 follicular helper cells, and plasma interleukin-21, suggesting an alternative inflammatory mechanism that governs T cell responses in heart Tx recipients. These results may explain the different incidences of EBV complications and may help improve the risk stratification and clinical management of different types of Tx recipients.
Collapse
Affiliation(s)
- Masaki Yamada
- Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, USA; Thomas E. Starzl Transplant Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Camila Macedo
- Thomas E. Starzl Transplant Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kevin Louis
- Thomas E. Starzl Transplant Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Kidney Transplant Department, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
| | - Tiange Shi
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Douglas Landsittel
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University, Indiana, Pennsylvania, USA
| | - Christina Nguyen
- Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, USA
| | - Masayoshi Shinjoh
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Marian G Michaels
- Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, USA; Thomas E. Starzl Transplant Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Brian Feingold
- Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, USA; Clinical and Translational Science, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - George V Mazariegos
- Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, USA; Thomas E. Starzl Transplant Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michael Green
- Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, USA; Thomas E. Starzl Transplant Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Diana Metes
- Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, USA; Thomas E. Starzl Transplant Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
33
|
Buggert M, Price DA, Mackay LK, Betts MR. Human circulating and tissue-resident memory CD8 + T cells. Nat Immunol 2023:10.1038/s41590-023-01538-6. [PMID: 37349380 DOI: 10.1038/s41590-023-01538-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/04/2023] [Indexed: 06/24/2023]
Abstract
Our current knowledge of human memory CD8+ T cells is derived largely from studies of the intravascular space. However, emerging data are starting to challenge some of the dogmas based on this work, suggesting that a conceptual revision may be necessary. In this review, we provide a brief history of the field and summarize the biology of circulating and tissue-resident memory CD8+ T cells, which are ultimately responsible for effective immune surveillance. We also incorporate recent findings into a biologically integrated model of human memory CD8+ T cell differentiation. Finally, we address how future innovative human studies could improve our understanding of anatomically localized CD8+ T cells to inform the development of more effective immunotherapies and vaccines, the need for which has been emphasized by the global struggle to contain severe acute respiratory syndrome coronavirus 2.
Collapse
Affiliation(s)
- Marcus Buggert
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden.
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, UK
| | - Laura K Mackay
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Michael R Betts
- Institute for Immunology and Center for AIDS Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
34
|
Sun L, Su Y, Jiao A, Wang X, Zhang B. T cells in health and disease. Signal Transduct Target Ther 2023; 8:235. [PMID: 37332039 PMCID: PMC10277291 DOI: 10.1038/s41392-023-01471-y] [Citation(s) in RCA: 309] [Impact Index Per Article: 154.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 06/20/2023] Open
Abstract
T cells are crucial for immune functions to maintain health and prevent disease. T cell development occurs in a stepwise process in the thymus and mainly generates CD4+ and CD8+ T cell subsets. Upon antigen stimulation, naïve T cells differentiate into CD4+ helper and CD8+ cytotoxic effector and memory cells, mediating direct killing, diverse immune regulatory function, and long-term protection. In response to acute and chronic infections and tumors, T cells adopt distinct differentiation trajectories and develop into a range of heterogeneous populations with various phenotype, differentiation potential, and functionality under precise and elaborate regulations of transcriptional and epigenetic programs. Abnormal T-cell immunity can initiate and promote the pathogenesis of autoimmune diseases. In this review, we summarize the current understanding of T cell development, CD4+ and CD8+ T cell classification, and differentiation in physiological settings. We further elaborate the heterogeneity, differentiation, functionality, and regulation network of CD4+ and CD8+ T cells in infectious disease, chronic infection and tumor, and autoimmune disease, highlighting the exhausted CD8+ T cell differentiation trajectory, CD4+ T cell helper function, T cell contributions to immunotherapy and autoimmune pathogenesis. We also discuss the development and function of γδ T cells in tissue surveillance, infection, and tumor immunity. Finally, we summarized current T-cell-based immunotherapies in both cancer and autoimmune diseases, with an emphasis on their clinical applications. A better understanding of T cell immunity provides insight into developing novel prophylactic and therapeutic strategies in human diseases.
Collapse
Affiliation(s)
- Lina Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Anjun Jiao
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Xin Wang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China.
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China.
| |
Collapse
|
35
|
Tian W, Qin G, Jia M, Li W, Cai W, Wang H, Zhao Y, Bao X, Wei W, Zhang Y, Shao Q. Hierarchical transcriptional network governing heterogeneous T cell exhaustion and its implications for immune checkpoint blockade. Front Immunol 2023; 14:1198551. [PMID: 37398674 PMCID: PMC10311999 DOI: 10.3389/fimmu.2023.1198551] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/06/2023] [Indexed: 07/04/2023] Open
Abstract
The fundamental principle of immune checkpoint blockade (ICB) is to protect tumor-infiltrating T cells from being exhausted. Despite the remarkable success achieved by ICB treatment, only a small group of patients benefit from it. Characterized by a hypofunctional state with the expression of multiple inhibitory receptors, exhausted T (Tex) cells are a major obstacle in improving ICB. T cell exhaustion is a progressive process which adapts to persistent antigen stimulation in chronic infections and cancers. In this review, we elucidate the heterogeneity of Tex cells and offer new insights into the hierarchical transcriptional regulation of T cell exhaustion. Factors and signaling pathways that induce and promote exhaustion are also summarized. Moreover, we review the epigenetic and metabolic alterations of Tex cells and discuss how PD-1 signaling affects the balance between T cell activation and exhaustion, aiming to provide more therapeutic targets for applications of combinational immunotherapies.
Collapse
Affiliation(s)
- Weihong Tian
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
- Life Science Institute, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Gaofeng Qin
- Life Science Institute, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Miaomiao Jia
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing, Zhejiang, China
| | - Wuhao Li
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Weili Cai
- Institute of Medical Genetics and Reproductive Immunity, School of Medical Science and Laboratory Medicine, Jiangsu College of Nursing, Huai’an, Jiangsu, China
| | - Hui Wang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yangjing Zhao
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xuanwen Bao
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University & Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, Zhejiang, China
| | - Wangzhi Wei
- Life Science Institute, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Yu Zhang
- Life Science Institute, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Qixiang Shao
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
- Institute of Medical Genetics and Reproductive Immunity, School of Medical Science and Laboratory Medicine, Jiangsu College of Nursing, Huai’an, Jiangsu, China
| |
Collapse
|
36
|
Klein S, Mischke J, Beruldsen F, Prinz I, Antunes DA, Cornberg M, Kraft ARM. Individual Epitope-Specific CD8 + T Cell Immune Responses Are Shaped Differently during Chronic Viral Infection. Pathogens 2023; 12:pathogens12050716. [PMID: 37242386 DOI: 10.3390/pathogens12050716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
A hallmark in chronic viral infections are exhausted antigen-specific CD8+ T cell responses and the inability of the immune system to eliminate the virus. Currently, there is limited information on the variability of epitope-specific T cell exhaustion within one immune response and the relevance to the T cell receptor (TCR) repertoire. The aim of this study was a comprehensive analysis and comparison of three lymphocytic choriomeningitis virus (LCMV) epitope-specific CD8+ T cell responses (NP396, GP33 and NP205) in a chronic setting with immune intervention, e.g., immune checkpoint inhibitor (ICI) therapy, in regard to the TCR repertoire. These responses, though measured within the same mice, were individual and independent from each other. The massively exhausted NP396-specific CD8+ T cells revealed a significantly reduced TCR repertoire diversity, whereas less-exhausted GP33-specific CD8+ T cell responses were rather unaffected by chronicity in regard to their TCR repertoire diversity. NP205-specific CD8+ T cell responses showed a very special TCR repertoire with a prominent public motif of TCR clonotypes that was present in all NP205-specific responses, which separated this from NP396- and GP33-specific responses. Additionally, we showed that TCR repertoire shifts induced by ICI therapy are heterogeneous on the epitope level, by revealing profound effects in NP396-, less severe and opposed effects in NP205-, and minor effects in GP33-specific responses. Overall, our data revealed individual epitope-specific responses within one viral response that are differently affected by exhaustion and ICI therapy. These individual shapings of epitope-specific T cell responses and their TCR repertoires in an LCMV mouse model indicates important implications for focusing on epitope-specific responses in future evaluations for therapeutic approaches, e.g., for chronic hepatitis virus infections in humans.
Collapse
Affiliation(s)
- Sebastian Klein
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
- Twincore Centre for Experimental and Clinical Infection Medicine, 30625 Hannover, Germany
| | - Jasmin Mischke
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
- Twincore Centre for Experimental and Clinical Infection Medicine, 30625 Hannover, Germany
| | - Finn Beruldsen
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Immo Prinz
- Institute of Systems Immunology, University Medical Center Eppendorf, 20251 Hamburg, Germany
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Dinler A Antunes
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Markus Cornberg
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
- Twincore Centre for Experimental and Clinical Infection Medicine, 30625 Hannover, Germany
- German Centre for Infection Research (DZIF), 30625 Hannover, Germany
- Centre for Individualised Infection Medicine (CIIM), c/o CRC Hannover, 30625 Hannover, Germany
| | - Anke R M Kraft
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
- Twincore Centre for Experimental and Clinical Infection Medicine, 30625 Hannover, Germany
- German Centre for Infection Research (DZIF), 30625 Hannover, Germany
- Centre for Individualised Infection Medicine (CIIM), c/o CRC Hannover, 30625 Hannover, Germany
| |
Collapse
|
37
|
Hope JL, Otero DC, Bae EA, Stairiker CJ, Palete AB, Faso HA, Lin M, Henriquez ML, Roy S, Seo H, Lei X, Wang ES, Chow S, Tinoco R, Daniels GA, Yip K, Campos AR, Yin J, Adams PD, Rao A, Bradley LM. PSGL-1 attenuates early TCR signaling to suppress CD8 + T cell progenitor differentiation and elicit terminal CD8 + T cell exhaustion. Cell Rep 2023; 42:112436. [PMID: 37115668 PMCID: PMC10403047 DOI: 10.1016/j.celrep.2023.112436] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 01/27/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
PSGL-1 (P-selectin glycoprotein-1) is a T cell-intrinsic checkpoint regulator of exhaustion with an unknown mechanism of action. Here, we show that PSGL-1 acts upstream of PD-1 and requires co-ligation with the T cell receptor (TCR) to attenuate activation of mouse and human CD8+ T cells and drive terminal T cell exhaustion. PSGL-1 directly restrains TCR signaling via Zap70 and maintains expression of the Zap70 inhibitor Sts-1. PSGL-1 deficiency empowers CD8+ T cells to respond to low-affinity TCR ligands and inhibit growth of PD-1-blockade-resistant melanoma by enabling tumor-infiltrating T cells to sustain an elevated metabolic gene signature supportive of increased glycolysis and glucose uptake to promote effector function. This outcome is coupled to an increased abundance of CD8+ T cell stem cell-like progenitors that maintain effector functions. Additionally, pharmacologic blockade of PSGL-1 curtails T cell exhaustion, indicating that PSGL-1 represents an immunotherapeutic target for PD-1-blockade-resistant tumors.
Collapse
Affiliation(s)
- Jennifer L Hope
- Cancer Metabolism and Microenvironment, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Dennis C Otero
- Cancer Metabolism and Microenvironment, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Eun-Ah Bae
- Cancer Metabolism and Microenvironment, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Christopher J Stairiker
- Cancer Metabolism and Microenvironment, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Ashley B Palete
- Cancer Metabolism and Microenvironment, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Hannah A Faso
- Cancer Metabolism and Microenvironment, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Michelle Lin
- Cancer Metabolism and Microenvironment, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Monique L Henriquez
- Cancer Metabolism and Microenvironment, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Sreeja Roy
- Cancer Metabolism and Microenvironment, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Hyungseok Seo
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Xue Lei
- Cancer Genome and Epigenetics, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Eric S Wang
- Cancer Molecular Therapeutics, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Savio Chow
- Cancer Genome and Epigenetics, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Roberto Tinoco
- Cancer Metabolism and Microenvironment, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Gregory A Daniels
- Department of Medicine, Moores Cancer Center at UC San Diego Health, La Jolla, CA 92037, USA
| | - Kevin Yip
- Cancer Genome and Epigenetics, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Alexandre Rosa Campos
- Proteomics Core, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Jun Yin
- Bioinformatics Core, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Peter D Adams
- Cancer Genome and Epigenetics, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Anjana Rao
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Linda M Bradley
- Cancer Metabolism and Microenvironment, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
38
|
Watowich MB, Gilbert MR, Larion M. T cell exhaustion in malignant gliomas. Trends Cancer 2023; 9:270-292. [PMID: 36681605 PMCID: PMC10038906 DOI: 10.1016/j.trecan.2022.12.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 01/21/2023]
Abstract
Despite advances in understanding tumor biology, malignant gliomas remain incurable. While immunotherapy has improved outcomes in other cancer types, comparable efficacy has not yet been demonstrated for primary cancers of the central nervous system (CNS). T cell exhaustion, defined as a progressive decrease in effector function, sustained expression of inhibitory receptors, metabolic dysfunction, and distinct epigenetic and transcriptional alterations, contributes to the failure of immunotherapy in the CNS. Herein, we describe recent advances in understanding the drivers of T cell exhaustion in the glioma microenvironment. We discuss the extrinsic and intrinsic factors that contribute to exhaustion and highlight potential avenues for reversing this phenotype. Our ability to directly target specific immunosuppressive drivers in brain cancers would be a major advance in immunotherapy.
Collapse
Affiliation(s)
- Matthew B Watowich
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mark R Gilbert
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mioara Larion
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
39
|
Pritchard GH, Phan AT, Christian DA, Blain TJ, Fang Q, Johnson J, Roy NH, Shallberg L, Kedl RM, Hunter CA. Early T-bet promotes LFA1 upregulation required for CD8+ effector and memory T cell development. J Exp Med 2023; 220:e20191287. [PMID: 36445307 PMCID: PMC9712775 DOI: 10.1084/jem.20191287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/29/2022] [Accepted: 11/10/2022] [Indexed: 12/03/2022] Open
Abstract
The T-box transcription factor T-bet is regarded as a "master regulator" of CD4+ Th1 differentiation and IFN-γ production. However, in multiple models of infection, T-bet appears less critical for CD8+ T cell expansion and effector function. Here, we show that following vaccination with a replication-deficient strain of Toxoplasma gondii, CD8+ T cell expression of T-bet is required for optimal expansion of parasite-specific effector CD8+ T cells. Analysis of the early events associated with T cell activation reveals that the α chain of LFA1, CD11a, is a target of T-bet, and T-bet is necessary for CD8+ T cell upregulation of this integrin, which influences the initial priming of CD8+ effector T cells. We propose that the early expression of T-bet represents a T cell-intrinsic factor that optimizes T-DC interactions necessary to generate effector responses.
Collapse
Affiliation(s)
- Gretchen Harms Pritchard
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - Anthony T. Phan
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - David A. Christian
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - Trevor J. Blain
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Denver, Aurora, CO
| | - Qun Fang
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - John Johnson
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - Nathan H. Roy
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia Research Institute and Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA
| | - Lindsey Shallberg
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ross M. Kedl
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Denver, Aurora, CO
| | - Christopher A. Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
40
|
Blake MK, O’Connell P, Aldhamen YA. Fundamentals to therapeutics: Epigenetic modulation of CD8 + T Cell exhaustion in the tumor microenvironment. Front Cell Dev Biol 2023; 10:1082195. [PMID: 36684449 PMCID: PMC9846628 DOI: 10.3389/fcell.2022.1082195] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023] Open
Abstract
In the setting of chronic antigen exposure in the tumor microenvironment (TME), cytotoxic CD8+ T cells (CTLs) lose their immune surveillance capabilities and ability to clear tumor cells as a result of their differentiation into terminally exhausted CD8+ T cells. Immune checkpoint blockade (ICB) therapies reinvigorate exhausted CD8+ T cells by targeting specific inhibitory receptors, thus promoting their cytolytic activity towards tumor cells. Despite exciting results with ICB therapies, many patients with solid tumors still fail to respond to such therapies and patients who initially respond can develop resistance. Recently, through new sequencing technologies such as the assay for transposase-accessible chromatin with sequencing (ATAC-seq), epigenetics has been appreciated as a contributing factor that enforces T cell differentiation toward exhaustion in the TME. Importantly, specific epigenetic alterations and epigenetic factors have been found to control CD8+ T cell exhaustion phenotypes. In this review, we will explain the background of T cell differentiation and various exhaustion states and discuss how epigenetics play an important role in these processes. Then we will outline specific epigenetic changes and certain epigenetic and transcription factors that are known to contribute to CD8+ T cell exhaustion. We will also discuss the most recent methodologies that are used to study and discover such epigenetic modulations. Finally, we will explain how epigenetic reprogramming is a promising approach that might facilitate the development of novel exhausted T cell-targeting immunotherapies.
Collapse
Affiliation(s)
| | | | - Yasser A. Aldhamen
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
41
|
Moseki RM, Barber DL, Du Bruyn E, Shey M, Van der Plas H, Wilkinson RJ, Meintjes G, Riou C. Phenotypic Profile of Mycobacterium tuberculosis-Specific CD4 T-Cell Responses in People With Advanced Human Immunodeficiency Virus Who Develop Tuberculosis-Associated Immune Reconstitution Inflammatory Syndrome. Open Forum Infect Dis 2023; 10:ofac546. [PMID: 36726536 PMCID: PMC9879713 DOI: 10.1093/ofid/ofac546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/17/2022] [Indexed: 01/28/2023] Open
Abstract
Background Tuberculosis-associated immune reconstitution inflammatory syndrome (TB-IRIS) is a frequent complication of cotreatment for TB and human immunodeficiency virus (HIV)-1. We characterized Mycobacterium tuberculosis (Mtb)-specific CD4 T-cell phenotype and transcription factor profile associated with the development of TB-IRIS. Methods We examined the role of CD4 T-cell transcription factors in a murine model of mycobacterial IRIS. In humans, we used a longitudinal study design to compare the magnitude of antiretroviral therapy, activation, transcription factor profile, and cytotoxic potential of Mtb-specific CD4 T cells between TB-IRIS (n = 25) and appropriate non-IRIS control patients (n = 18) using flow cytometry. Results In the murine model, CD4 T-cell expression of Eomesodermin (Eomes), but not Tbet, was associated with experimentally induced IRIS. In patients, TB-IRIS onset was associated with the expansion of Mtb-specific IFNγ+CD4 T cells (P = .039). Patients with TB-IRIS had higher HLA-DR expression (P = .016), but no differences in the expression of T-bet or Eomes were observed. At TB-IRIS onset, Eomes+Tbet+Mtb-specific IFNγ+CD4+ T cells showed higher expression of granzyme B in patients with TB-IRIS (P = .026). Conclusions Although the murine model of Mycobacterium avium complex-IRIS suggests that Eomes+CD4 T cells underly IRIS, TB-IRIS was not associated with Eomes expression in patients. Mycobacterium tuberculosis-specific IFNγ+CD4 T-cell responses in TB-IRIS patients are differentiated, highly activated, and potentially cytotoxic.
Collapse
Affiliation(s)
- Raymond M Moseki
- Wellcome Center for Infectious Diseases Research in Africa (CIDRI-Africa), University of Cape Town, Cape Town, South Africa.,Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Daniel L Barber
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Health, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Elsa Du Bruyn
- Wellcome Center for Infectious Diseases Research in Africa (CIDRI-Africa), University of Cape Town, Cape Town, South Africa.,Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Muki Shey
- Wellcome Center for Infectious Diseases Research in Africa (CIDRI-Africa), University of Cape Town, Cape Town, South Africa.,Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Helen Van der Plas
- Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa.,Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Robert J Wilkinson
- Wellcome Center for Infectious Diseases Research in Africa (CIDRI-Africa), University of Cape Town, Cape Town, South Africa.,Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa.,Department of Medicine, University of Cape Town, Cape Town, South Africa.,Department of Infectious Diseases, Imperial College London, London, United Kingdom.,The Francis Crick Institute, London, United Kingdom
| | - Graeme Meintjes
- Wellcome Center for Infectious Diseases Research in Africa (CIDRI-Africa), University of Cape Town, Cape Town, South Africa.,Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa.,Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Catherine Riou
- Wellcome Center for Infectious Diseases Research in Africa (CIDRI-Africa), University of Cape Town, Cape Town, South Africa.,Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa.,Department of Pathology, Division of Medical Virology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
42
|
Shi Z, Du Q, Wang X, Wang J, Chen H, Lang Y, Kong L, Luo W, Yang M, Zhou H. Granzyme B in circulating CD8+ T cells as a biomarker of immunotherapy effectiveness and disability in neuromyelitis optica spectrum disorders. Front Immunol 2022; 13:1027158. [PMID: 36439094 PMCID: PMC9682179 DOI: 10.3389/fimmu.2022.1027158] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/21/2022] [Indexed: 09/05/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Neuromyelitis optica spectrum disorders (NMOSD) are chronical inflammatory demyelinating diseases of the central nervous system (CNS) and the underlying mechanism remains unclear. Several recent studies have demonstrated that T cells play a pivotal role in the pathogenesis of NMOSD.In this study, we investigated CD8+ T cell phenotypes and levels of the cytotoxic protein granzyme B (GzmB), as well as their potential clinical application in NMOSD. METHODS In this study, 90 peripheral blood samples were collected from 59 NMOSD patients with seropositive anti-aquaporin-4 (AQP4) antibodies and 31 sex- and age-matched healthy donors (HDs). Flow cytometry was used to detect circulating levels of GzmB and CD8+ T cell subpopulations, including naïve (TN, CCD7+CD45RA+), central memory (TCM, CCD7+CD45RA-), effector memory (TEM, CCD7-CD45RA-), terminal differentiation effector memory cells (TEMRA, CCD7-CD45RA+) in both groups. The associations between GzmB levels in CD8+T cells and clinical characteristics of NMOSD were evaluated. RESULTS NMOSD patients exhibited significantly decreased proportions of CD8+TN cells and increased proportions of highly differentiated CD8+T cells (TEMRA) compared with HDs. In addition, levels of GzmB in CD8+ T cells were markedly higher in NMOSD patients than in HDs. Moreover, we observed that high proportions of GzmB-expressing CD8+ T cells were more common in patients with a poor response to immunotherapies, and showed a good potential to distinguish poor responders from responders (ACU=0.89). Clinical correlation analysis indicated that high levels of GzmB in CD8+ T cells were not only related to severe disability but also significantly associated with increased serum levels of neurofilament light (NFL) and glial fibrillary acidic protein (GFAP). Multivariate linear regression analyses further suggested that GzmB expression in CD8+ T cells was predominantly associated with disability and immunotherapy effectiveness in NMOSD, independent of the sex, age, and disease phase. Transcription factor T-bet in CD8+ T cells were also significantly elevated in NMOSD and were associated with increasing number of circulating CD8+TEMRA cells and GzmB-expressing CD8+T cells. CONCLUSIONS Our study support the involvement of GzmB-expressing CD8+ T cells in the inflammatory response in patients with NMOSD and provide a potential biomarker for disease immunotherapy effectiveness and disability progression.
Collapse
Affiliation(s)
- Ziyan Shi
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Qin Du
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaofei Wang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Jianchen Wang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Hongxi Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Yanling Lang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Lingyao Kong
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Wenqin Luo
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Mu Yang
- Centre for Translational Research in Cancer, Sichuan Cancer Hospital & Institute, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hongyu Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
43
|
Wallace Z, Kopycinski J, Yang H, McCully ML, Eggeling C, Chojnacki J, Dorrell L. Immune mobilising T cell receptors redirect polyclonal CD8 + T cells in chronic HIV infection to form immunological synapses. Sci Rep 2022; 12:18366. [PMID: 36319836 PMCID: PMC9626491 DOI: 10.1038/s41598-022-23228-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 10/27/2022] [Indexed: 11/05/2022] Open
Abstract
T cell exhaustion develops in human immunodeficiency virus (HIV) infection due to chronic viral antigenic stimulation. This adaptive response primarily affects virus-specific CD8+ T cells, which may remain dysfunctional despite viral load-reducing antiretroviral therapy; however, abnormalities may also be evident in non-HIV-specific populations. Both could limit the efficacy of cell therapies against viral reservoirs. Here, we show that bulk (polyclonal) CD8+ T cells from people living with HIV (PLWH) express proposed markers of dysfunctional HIV-specific T cells at high levels yet form lytic immunological synapses (IS) and eliminate primary resting infected (HIV Gaglo) CD4+ T cells, when redirected by potent bispecific T cell-retargeting molecules, Immune mobilising monoclonal T cell receptors (TCR) Against Virus (ImmTAV). While PLWH CD8+ T cells are functionally impaired when compared to CD8+ T cells from HIV-naïve donors, ImmTAV redirection enables them to eliminate Gaglo CD4+ T cells that are insensitive to autologous HIV-specific cytolytic T cells. ImmTAV molecules may therefore be able to target HIV reservoirs, which represent a major barrier to a cure.
Collapse
Affiliation(s)
- Zoë Wallace
- Nuffield Department of Medicine, University of Oxford, Oxford, UK. .,Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, UK. .,Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, UK.
| | - Jakub Kopycinski
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Hongbing Yang
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | | | - Christian Eggeling
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.,Leibniz Institute of Photonic Technology & Institute of Applied Optics and Biophysics, Friedrich-Schiller University, Jena, Germany
| | - Jakub Chojnacki
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Lucy Dorrell
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, UK.,Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, UK
| |
Collapse
|
44
|
Williams DW, Flores BR, Xu Y, Wang Y, Yu D, Peters BA, Adedimeji A, Wilson TE, Merenstein D, Tien PC, Cohen MH, Weber KM, Adimora AA, Ofotokun I, Fischl M, Turan J, Turan B, Laumet G, Landay AL, Dastgheyb RM, Gange SJ, Weiser SD, Rubin LH. T-cell activation state differentially contributes to neuropsychiatric complications in women with HIV. Brain Behav Immun Health 2022; 25:100498. [PMID: 36097532 PMCID: PMC9463560 DOI: 10.1016/j.bbih.2022.100498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/07/2022] [Accepted: 08/13/2022] [Indexed: 02/02/2023] Open
Abstract
Neuropsychiatric complications are common among women with HIV (WWH). The pathophysiological mechanisms underlying these complications are not fully known but likely driven in part by immune modulation. We examined associations between T-cell activation states which are required to mount an effective immune response (activation, co-stimulation/normal function, exhaustion, senescence) and neuropsychiatric complications in WWH. 369 WWH (78% HIV RNA undetectable/<20cp/mL) enrolled in the Women's Interagency HIV Study completed neuropsychological testing and measures of depression (Center for Epidemiological Studies Depression Scale-CES-D), self-reported stress levels (Perceived Stress Scale-10), and post-traumatic stress (PTSD Checklist-Civilian Scale). Multiparametric flow cytometry evaluated T-cell activation state. Partial least squares regressions were used to examine T-cell phenotypes and neuropsychiatric outcome associations after confounder adjustment. In the total sample and among virally suppressed (VS)-WWH, CD4+ T-cell exhaustion was associated with poorer learning and attention/working memory (P's < 0.05). In the total sample, CD4+ T-cell activation was associated with better attention/working memory and CD8+ T-cell co-stimulation and senescence was associated with poorer executive function (P's < 0.05). For mental health outcomes, in the total sample, CD4+ T-cell activation was associated with more perceived stress and CD4+ T-cell exhaustion was associated with less depressive symptoms (P's < 0.05). Among VS-WWH, CD4+ senescence was associated with less perceive stress and CD8+ T-cell co-stimulation and senescence was associated with higher depression (P's < 0.05). Together, results suggest the contribution of peripheral CD4+ and CD8+ T-cell activation status to neuropsychiatric complications in WWH.
Collapse
Affiliation(s)
- Dionna W. Williams
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Division of Clinical Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bianca R. Flores
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yanxun Xu
- Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, USA
- Division of Biostatistics and Bioinformatics at the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yuezhe Wang
- Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, USA
| | - Danyang Yu
- Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, USA
| | - Brandilyn A. Peters
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Adebola Adedimeji
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Tracey E. Wilson
- Department of Community Health Sciences, State University of New York Downstate Health Science University, School of Public Health, Brooklyn, NY, USA
| | - Daniel Merenstein
- Department of Family Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Phyllis C. Tien
- Department of Medicine, UCSF and Medical Service, Department of Veteran Affairs Medical Center, San Francisco, CA, USA
| | | | | | - Adaora A. Adimora
- Division of Infectious Disease, University of North Carolina at Chapel Hill, NC, USA
| | - Igho Ofotokun
- Department of Medicine, Emory University and Grady Healthcare System, Atlanta, Georgia Mailman School of Public Health, Columbia University, NY, NY, USA
| | - Margaret Fischl
- Department of Medicine, University of Miami Health System, Miami, FL, USA
| | - Janet Turan
- Departments of Health Policy and Organization, School of Public Health, University of Alabama at Birmingham, USA
| | - Bülent Turan
- Department of Psychology, Koc University, Istanbul, Turkey
| | - Geoffroy Laumet
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Alan L. Landay
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Raha M. Dastgheyb
- Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stephen J. Gange
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Sheri D. Weiser
- Department of Medicine, UCSF and Medical Service, Department of Veteran Affairs Medical Center, San Francisco, CA, USA
- Division of HIV, ID and Global Medicine, Department of Medicine, UCSF, San Francisco, CA, USA
| | - Leah H. Rubin
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
- Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
45
|
Regulation of CD4 T Cell Responses by the Transcription Factor Eomesodermin. Biomolecules 2022; 12:biom12111549. [PMID: 36358898 PMCID: PMC9687629 DOI: 10.3390/biom12111549] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
Central to the impacts of CD4 T cells, both positive in settings of infectious disease and cancer and negative in the settings of autoimmunity and allergy, is their ability to differentiate into distinct effector subsets with specialized functions. The programming required to support such responses is largely dictated by lineage-specifying transcription factors, often called ‘master regulators’. However, it is increasingly clear that many aspects of CD4 T cell immunobiology that can determine the outcomes of disease states involve a broader transcriptional network. Eomesodermin (Eomes) is emerging as an important member of this class of transcription factors. While best studied in CD8 T cells and NK cells, an increasing body of work has focused on impacts of Eomes expression in CD4 T cell responses in an array of different settings. Here, we focus on the varied impacts reported in these studies that, together, indicate the potential of targeting Eomes expression in CD4 T cells as a strategy to improve a variety of clinical outcomes.
Collapse
|
46
|
Fardoos R, Nyquist SK, Asowata OE, Kazer SW, Singh A, Ngoepe A, Giandhari J, Mthabela N, Ramjit D, Singh S, Karim F, Buus S, Anderson F, Porterfield JZ, Sibiya AL, Bipath R, Moodley K, Kuhn W, Berger B, Nguyen S, de Oliveira T, Ndung’u T, Goulder P, Shalek AK, Leslie A, Kløverpris HN. HIV specific CD8 + T RM-like cells in tonsils express exhaustive signatures in the absence of natural HIV control. Front Immunol 2022; 13:912038. [PMID: 36330531 PMCID: PMC9623418 DOI: 10.3389/fimmu.2022.912038] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022] Open
Abstract
Lymphoid tissues are an important HIV reservoir site that persists in the face of antiretroviral therapy and natural immunity. Targeting these reservoirs by harnessing the antiviral activity of local tissue-resident memory (TRM) CD8+ T-cells is of great interest, but limited data exist on TRM-like cells within lymph nodes of people living with HIV (PLWH). Here, we studied tonsil CD8+ T-cells obtained from PLWH and uninfected controls from South Africa. We show that these cells are preferentially located outside the germinal centers (GCs), the main reservoir site for HIV, and display a low cytolytic and a transcriptionally TRM-like profile distinct from blood CD8+ T-cells. In PLWH, CD8+ TRM-like cells are expanded and adopt a more cytolytic, activated, and exhausted phenotype not reversed by antiretroviral therapy (ART). This phenotype was enhanced in HIV-specific CD8+ T-cells from tonsils compared to matched blood suggesting a higher antigen burden in tonsils. Single-cell transcriptional and clonotype resolution showed that these HIV-specific CD8+ T-cells in the tonsils express heterogeneous signatures of T-cell activation, clonal expansion, and exhaustion ex-vivo. Interestingly, this signature was absent in a natural HIV controller, who expressed lower PD-1 and CXCR5 levels and reduced transcriptional evidence of T-cell activation, exhaustion, and cytolytic activity. These data provide important insights into lymphoid tissue-derived HIV-specific CD8+ TRM-like phenotypes in settings of HIV remission and highlight their potential for immunotherapy and targeting of the HIV reservoirs.
Collapse
Affiliation(s)
- Rabiah Fardoos
- Africa Health Research Institute (AHRI), Durban, South Africa
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Sarah K. Nyquist
- Institute for Medical Engineering & Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Program in Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, United States
| | | | - Samuel W. Kazer
- Institute for Medical Engineering & Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Alveera Singh
- Africa Health Research Institute (AHRI), Durban, South Africa
| | - Abigail Ngoepe
- Africa Health Research Institute (AHRI), Durban, South Africa
| | - Jennifer Giandhari
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | | | - Dirhona Ramjit
- Africa Health Research Institute (AHRI), Durban, South Africa
| | - Samita Singh
- Africa Health Research Institute (AHRI), Durban, South Africa
| | - Farina Karim
- Africa Health Research Institute (AHRI), Durban, South Africa
| | - Søren Buus
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Frank Anderson
- Discipline of General Surgery, Inkosi Albert Luthuli Central Hospital, University of KwaZulu-Natal, Durban, South Africa
| | - J. Zachary Porterfield
- Africa Health Research Institute (AHRI), Durban, South Africa
- Department of Otolaryngology-Head & Neck Surgery, Division of Infectious Diseases, University of Kentucky, Lexington, KY, United States
- Department of Microbiology, Immunology and Molecular Genetics, - Division of Infectious Diseases, University of Kentucky, Lexington, KY, United States
- Department of Internal Medicine - Division of Infectious Diseases, University of Kentucky, Lexington, KY, United States
| | - Andile L. Sibiya
- Department of Otorhinolaryngology & Head & Neck Surgery, Inkosi Albert Luthuli Central Hospital, University of KwaZulu-Natal, Durban, South Africa
| | - Rishan Bipath
- Department of Otorhinolaryngology, King Edward VIII hospital, University of KwaZulu-Natal, Durban, South Africa
| | - Kumeshan Moodley
- Department of Ear Nose and Throat, General Justice Gizenga Mpanza Regional Hospital (Stanger Hospital), University of KwaZulu-Natal, Durban, South Africa
| | - Warren Kuhn
- Department of Otorhinolaryngology & Head & Neck Surgery, Inkosi Albert Luthuli Central Hospital, University of KwaZulu-Natal, Durban, South Africa
- Department of Ear Nose and Throat, General Justice Gizenga Mpanza Regional Hospital (Stanger Hospital), University of KwaZulu-Natal, Durban, South Africa
| | - Bonnie Berger
- Computer Science & Artificial Intelligence Lab and Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Son Nguyen
- Institute for Medical Engineering & Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Tulio de Oliveira
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Thumbi Ndung’u
- Africa Health Research Institute (AHRI), Durban, South Africa
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu Natal, Durban, South Africa
- University College London, Division of Infection and Immunity, London, United Kingdom
| | - Philip Goulder
- Africa Health Research Institute (AHRI), Durban, South Africa
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu Natal, Durban, South Africa
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Alex K. Shalek
- Institute for Medical Engineering & Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, United States
- Ragon Institute of MGH, Harvard, Cambridge, MA, United States
| | - Alasdair Leslie
- Africa Health Research Institute (AHRI), Durban, South Africa
- University College London, Division of Infection and Immunity, London, United Kingdom
| | - Henrik N. Kløverpris
- Africa Health Research Institute (AHRI), Durban, South Africa
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- University College London, Division of Infection and Immunity, London, United Kingdom
| |
Collapse
|
47
|
Gao Z, Feng Y, Xu J, Liang J. T-cell exhaustion in immune-mediated inflammatory diseases: New implications for immunotherapy. Front Immunol 2022; 13:977394. [PMID: 36211414 PMCID: PMC9538155 DOI: 10.3389/fimmu.2022.977394] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Immune-mediated inflammatory diseases(IMIDs) are referred to as highly disabling chronic diseases affecting different organs and systems. Inappropriate or excessive immune responses with chronic inflammation are typical manifestations. Usually in patients with chronic infection and cancer, due to long-term exposure to persistent antigens and inflammation microenvironment, T-cells are continuously stimulated and gradually differentiate into an exhausted state. Exhausted T-cells gradually lose effector function and characteristics of memory T-cells. However, existing studies have found that exhausted T-cells are not only present in the infection and tumor environment, but also in autoimmunity, and are associated with better prognosis of IMIDs. This suggests new prospects for the application of this reversible process of T-cell exhaustion in the treatment of IMID. This review will focus on the research progress of T-cell exhaustion in several IMIDs and its potential application for diagnosis and treatment in IMIDs.
Collapse
Affiliation(s)
- Zhanyan Gao
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yang Feng
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinhua Xu
- Shanghai Institute of Dermatology, Shanghai, China
- *Correspondence: Jun Liang, ; Jinhua Xu,
| | - Jun Liang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Jun Liang, ; Jinhua Xu,
| |
Collapse
|
48
|
Khanna D, Padilla C, Tsoi LC, Nagaraja V, Khanna PP, Tabib T, Kahlenberg JM, Young A, Huang S, Gudjonsson JE, Fox DA, Lafyatis R. Tofacitinib blocks IFN-regulated biomarker genes in skin fibroblasts and keratinocytes in a systemic sclerosis trial. JCI Insight 2022; 7:e159566. [PMID: 35943798 PMCID: PMC9536259 DOI: 10.1172/jci.insight.159566] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUNDSystemic sclerosis (SSc) is an autoimmune, connective tissue disease characterized by vasculopathy and fibrosis of the skin and internal organs.METHODSWe randomized 15 participants with early diffuse cutaneous SSc to tofacitinib 5 mg twice a day or matching placebo in a phase I/II double-blind, placebo-controlled trial. The primary outcome measure was safety and tolerability at or before week 24. To understand the changes in gene expression associated with tofacitinib treatment in each skin cell population, we compared single-cell gene expression in punch skin biopsies obtained at baseline and 6 weeks following the initiation of treatment.RESULTSTofacitinib was well tolerated; no participants experienced grade 3 or higher adverse events before or at week 24. Trends in efficacy outcome measures favored tofacitnib. Baseline gene expression in fibroblast and keratinocyte subpopulations indicated IFN-activated gene expression. Tofacitinib inhibited IFN-regulated gene expression in SFRP2/DPP4 fibroblasts (progenitors of myofibroblasts) and in MYOC/CCL19, representing adventitial fibroblasts (P < 0.05), as well as in the basal and keratinized layers of the epidermis. Gene expression in macrophages and DCs indicated inhibition of STAT3 by tofacitinib (P < 0.05). No clinically meaningful inhibition of T cells and endothelial cells in the skin tissue was observed.CONCLUSIONThese results indicate that mesenchymal and epithelial cells of a target organ in SSc, not the infiltrating lymphocytes, may be the primary focus for therapeutic effects of a Janus kinase inhibitor.TRIAL REGISTRATIONClinicalTrials.gov NCT03274076.FUNDINGPfizer, NIH/National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) R01 AR070470, NIH/NIAMS K24 AR063120, Taubman Medical Research Institute and NIH P30 AR075043, and NIH/NIAMS K01 AR072129.
Collapse
Affiliation(s)
- Dinesh Khanna
- Division of Rheumatology, Department of Internal Medicine, and
- University of Michigan Scleroderma Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Cristina Padilla
- Division of Rheumatology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Vivek Nagaraja
- Division of Rheumatology, Department of Internal Medicine, and
- University of Michigan Scleroderma Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Puja P Khanna
- Division of Rheumatology, Department of Internal Medicine, and
- VA Medical Center, Ann Arbor, Michigan, USA
| | - Tracy Tabib
- Division of Rheumatology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Amber Young
- Division of Rheumatology, Department of Internal Medicine, and
| | - Suiyuan Huang
- University of Michigan Scleroderma Program, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | | | - David A Fox
- Division of Rheumatology, Department of Internal Medicine, and
| | - Robert Lafyatis
- Division of Rheumatology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
49
|
Huang CH, Fan JH, Jeng WJ, Chang ST, Yang CK, Teng W, Wu TH, Hsieh YC, Chen WT, Chen YC, Sheen IS, Lin YC, Lin CY. Innate-like bystander-activated CD38 + HLA-DR + CD8 + T cells play a pathogenic role in patients with chronic hepatitis C. Hepatology 2022; 76:803-818. [PMID: 35060158 DOI: 10.1002/hep.32349] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS HCV-specific T cells are few and exhausted in patients with chronic hepatitis C (CHC). Whether these T cells are responsible for the liver damage and fibrosis is still debated. However, cluster of differentiation 38-positive (CD38+ ) human leukocyte antigen DR-positive (HLA-DR+ ) CD8+ T cells are regarded as bystander CD8+ T cells that cause liver injury in acute hepatitis. We propose that these innate CD8+ T cells play a pathogenic role in CHC. METHODS Lymphocytes from peripheral blood were obtained from 108 patients with CHC and 43 healthy subjects. Immunophenotyping, functional assays, T-cell receptor (TCR) repertoire, and cytotoxic assay of CD38+ HLA-DR+ CD8+ T cells were studied. RESULTS The percentage of CD38+ HLA-DR+ CD8+ T cells increased significantly in patients with CHC. These cells expressed higher levels of effector memory and proinflammatory chemokine molecules and showed higher interferon-γ production than CD38- HLA-DR- CD8 T cells. They were largely composed of non-HCV-specific CD8+ T cells as assessed by HLA-A2-restricted pentamers and next-generation sequencing analysis of the TCR repertoire. In addition, these CD38+ HLA-DR+ CD8+ T cells had strong cytotoxicity, which could be inhibited by anti-DNAX accessory molecule 1, anti-NKG2 family member D, and anti-natural killer NKp30 antibodies. Lastly, the percentage of CD38+ HLA-DR+ CD8+ T cells was significantly associated with liver injury and fibrosis and decreased significantly along with serum alanine aminotransferase normalization after successful direct-acting antiviral treatment. CONCLUSIONS The TCR-independent, cytokine-responsive bystander CD38+ HLA-DR+ CD8+ T cells are strongly cytotoxic and play a pathogenic role in patients with CHC.
Collapse
Affiliation(s)
- Chien-Hao Huang
- Division of Hepatology, Department of Gastroenterology and Hepatology, Chang-Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
- College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Jian-He Fan
- Division of Hepatology, Department of Gastroenterology and Hepatology, Chang-Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
- College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Wen-Juei Jeng
- Division of Hepatology, Department of Gastroenterology and Hepatology, Chang-Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
- College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Shu-Ting Chang
- Division of Hepatology, Department of Gastroenterology and Hepatology, Chang-Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Chan-Keng Yang
- Division of Medical Oncology/Hematology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Wei Teng
- Division of Hepatology, Department of Gastroenterology and Hepatology, Chang-Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
- College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Tsung-Han Wu
- Division of General Surgery, Chang-Gung Memorial Hospital, Linkou Medical Center, Taiwan
| | - Yi-Chung Hsieh
- Division of Hepatology, Department of Gastroenterology and Hepatology, Chang-Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
- College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Wei-Ting Chen
- Division of Hepatology, Department of Gastroenterology and Hepatology, Chang-Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
- College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Yi-Cheng Chen
- Division of Hepatology, Department of Gastroenterology and Hepatology, Chang-Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
- College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - I-Shyan Sheen
- Division of Hepatology, Department of Gastroenterology and Hepatology, Chang-Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
- College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Yung-Chang Lin
- Division of Medical Oncology/Hematology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chun-Yen Lin
- Division of Hepatology, Department of Gastroenterology and Hepatology, Chang-Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
- College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| |
Collapse
|
50
|
Pichler AC, Cannons JL, Schwartzberg PL. The Road Less Taken: Less Appreciated Pathways for Manipulating CD8 + T Cell Exhaustion. Front Immunol 2022; 13:926714. [PMID: 35874734 PMCID: PMC9297918 DOI: 10.3389/fimmu.2022.926714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Exhausted CD8+ T (Tex) cells are a distinct cell population that arise during persistent antigen exposure in the context of chronic infections and cancers. Although characterized by progressive loss of effector functions, high and sustained inhibitory receptor expression and distinct transcriptional and epigenetic programs, Tex cells are heterogeneous. Among these, a self-renewing TCF-1+ Tex population, having unique characteristics and the ability to respond to immune-checkpoint blockade, gives rise to TCF-1- terminally Tex cells. These TCF-1+ cells have stem cell-like properties similar to memory T cell populations, but the signals that regulate the developmental pathways and relationships among exhausted cell populations are still unclear. Here, we review our current understanding of Tex cell biology, and discuss some less appreciated molecules and pathways affecting T cell exhaustion. We highlight two co-stimulatory receptors, CD226 and CD137, and their role in inducing or restraining T cell exhaustion, as well as signaling pathways that may be amenable to pharmacological inhibition with a focus on Phosphoinositide-3 Kinase and IL-2 partial agonists. Finally, we discuss novel methods that may increase TCF-1+ populations and therefore improve immunotherapy responsiveness. Understanding features of and pathways to exhaustion has important implications for the success of immunotherapy, including checkpoint blockade and adoptive T-cell transfer therapies.
Collapse
Affiliation(s)
- Andrea C. Pichler
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jennifer L. Cannons
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Pamela L. Schwartzberg
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|