1
|
Platt Ii RN, Enabulele EE, Adeyemi E, Agbugui MO, Ajakaye OG, Amaechi EC, Ejikeugwu CP, Igbeneghu C, Njom VS, Dlamini P, Arya GA, Diaz R, Rabone M, Allan F, Webster B, Emery A, Rollinson D, Anderson TJC. Genomic data reveal a north-south split and introgression history of blood fluke populations across Africa. Nat Commun 2025; 16:3508. [PMID: 40223094 PMCID: PMC11994774 DOI: 10.1038/s41467-025-58543-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 03/20/2025] [Indexed: 04/15/2025] Open
Abstract
The human parasitic fluke, Schistosoma haematobium hybridizes with the livestock parasite S. bovis in the laboratory, but the frequency of hybridization in nature is unclear. Here, we analyze 34.6 million single nucleotide variants in 162 samples from 18 African countries, revealing a sharp genetic discontinuity between northern and southern S. haematobium. We find no evidence for recent hybridization. Instead the data reveal admixture events that occurred 257-879 generations ago in northern S. haematobium populations. Fifteen introgressed S. bovis genes are approaching fixation in northern S. haematobium with four genes potentially driving adaptation. Further, we identify 19 regions that are resistant to introgression; these are enriched on the sex chromosomes. These results (i) suggest strong barriers to gene flow between these species, (ii) indicate that hybridization may be less common than currently envisaged, but (iii) reveal profound genomic consequences of rare interspecific hybridization between schistosomes of medical and veterinary importance.
Collapse
Affiliation(s)
- Roy N Platt Ii
- Texas Biomedical Research Institute, San Antonio, TX, USA.
| | | | - Ehizogie Adeyemi
- Department of Pathology, University of Benin Teaching Hospital, Edo State, Benin City, Nigeria
| | - Marian O Agbugui
- Department of Biological Sciences, Edo State University, Uzairue, Nigeria
| | - Oluwaremilekun G Ajakaye
- Department of Animal and Environmental Biology, Adekunle Ajasin University, Akungba Akoko, Nigeria
| | - Ebube C Amaechi
- Department of Zoology, University of Ilorin, Kwara State, Ilorin, Nigeria
| | - Chika P Ejikeugwu
- Department of Pharmaceutical Microbiology and Biotechnology, Enugu State University of Science and Technology, Enugu, Nigeria
| | - Christopher Igbeneghu
- Department of Medical Laboratory Science, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Victor S Njom
- Department of Applied Biology and Biotechnology, Enugu State University of Science and Technology, Enugu, Nigeria
| | | | - Grace A Arya
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Robbie Diaz
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Muriel Rabone
- Science Department, Natural History Museum, London, UK
| | - Fiona Allan
- Science Department, Natural History Museum, London, UK
| | | | - Aidan Emery
- Science Department, Natural History Museum, London, UK
| | - David Rollinson
- Science Department, Natural History Museum, London, UK
- Global Schistosomiasis Alliance, London, UK
| | | |
Collapse
|
2
|
Mattiucci S, Palomba M, Belli B, Aco-Alburqueque R, Cipriani P, Roca-Gerones X, Santoro M, Webb SC, Nascetti G. Hybridization and introgression of the mitochondrial genome between the two species Anisakis pegreffii and A. simplex (s.s.) using a wide genotyping approach: evolutionary and ecological implications. Parasitology 2025:1-21. [PMID: 40181623 DOI: 10.1017/s0031182025000228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Anisakis pegreffii and A. simplex (s.s.) are the two zoonotic anisakids infecting cetaceans as well as pelagic/demersal fish and squids. In European waters, A. pegreffii prevails in the Mediterranean Sea, while A. simplex (s.s.) in the NE Atlantic Ocean. Abiotic conditions likely play a significant role in shaping their geographical distribution. The Iberian Atlantic and Alboran Sea waters are sympatric areas of the two species. A total of 429 adults and L3 stage from both sympatric and allopatric areas were studied by a wide nuclear genotyping approach (including newly and previously found diagnostic single nucleotide polymorphisms (SNPs) at nuclear DNA (nDNA) and microsatellite DNA loci) and sequenced at mitochondrial DNA (mtDNA) cox2. Admixture between the two species was detected in the sympatric areas studied by STRUCTURE Bayesian analysis; NEWHYBRIDS revealed different categories of hybridization between the two species, representing approximately 5%. A tendency for F1 female hybrids to interbreed with the parental species at the geographical distribution limits of both species was observed. This finding suggests that hybridization occurs when the two parental species significantly differ in abundance. Mitochondrial introgression of A. simplex (s.s.) in A. pegreffii from Mediterranean waters was also detected, likely as a result of past and/or paleo-introgression events. The high level of genetic differentiation between the two species and their backcrosses indicates that, despite current hybridization, reproductive isolation which maintains evolutionary boundaries between the two species, exists. Possible causes of hybridization phenomena are attempted, as well as their evolutionary and ecological implications, also considering a sea warming scenario in European waters.
Collapse
Affiliation(s)
- Simonetta Mattiucci
- Department of Public Health and Infectious Diseases, Section of Parasitology, Sapienza University of Rome, Rome, Italy
| | - Marialetizia Palomba
- Department of Ecological and Biological Sciences (DEB), Tuscia University, Viterbo, Italy
| | - Beatrice Belli
- Department of Public Health and Infectious Diseases, Section of Parasitology, Sapienza University of Rome, Rome, Italy
| | - Renato Aco-Alburqueque
- Department of Public Health and Infectious Diseases, Section of Parasitology, Sapienza University of Rome, Rome, Italy
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Paolo Cipriani
- Department of Public Health and Infectious Diseases, Section of Parasitology, Sapienza University of Rome, Rome, Italy
- Institute of Marine Research (IMR), Nordnes, Bergen, Norway
| | - Xavier Roca-Gerones
- Secció de Parasitologia, Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Mario Santoro
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Stephen C Webb
- Private Bag 2, Nelson 7042, Cawthron Institute, Nelson, New Zealand
| | - Giuseppe Nascetti
- Department of Ecological and Biological Sciences (DEB), Tuscia University, Viterbo, Italy
| |
Collapse
|
3
|
Lukubye B, Civitello DJ. Integrating hybridization and introgression into host-parasite epidemiology, ecology, and evolution. Trends Parasitol 2025; 41:129-137. [PMID: 39794180 DOI: 10.1016/j.pt.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/14/2024] [Accepted: 12/15/2024] [Indexed: 01/13/2025]
Abstract
Hybridization and introgression between host species or between parasite species are emerging challenges for human, plant, and animal health, especially as global trends like climate change and urbanization increase overlap of species ranges. This creates opportunities for heterospecific crosses between diverged taxa that could generate novel host and parasite genotypes with unique traits (e.g., transmission rate, virulence, susceptibility, and resistance) compared with their parental taxa. However, there seems to be slow appreciation of this biological phenomenon in empirical and theoretical approaches to host-parasite interactions. This limits our understanding of the effects of hybridization on epidemiology, ecology, and evolution. Here, we address some pressing questions regarding the emergence and relevance of eukaryotic hybrid genotypes for disease dynamics.
Collapse
Affiliation(s)
- Ben Lukubye
- Department of Biology, Emory University, Atlanta, GA 30322, USA.
| | | |
Collapse
|
4
|
Platt RN, Enabulele EE, Adeyemi E, Agbugui MO, Ajakaye OG, Amaechi EC, Ejikeugwu CE, Igbeneghu C, Njom VS, Dlamini P, Arya GA, Diaz R, Rabone M, Allan F, Webster B, Emery A, Rollinson D, Anderson TJC. Genomic data reveal a north-south split and introgression history of blood fluke ( Schistosoma haematobium) populations from across Africa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.06.606828. [PMID: 39149400 PMCID: PMC11326172 DOI: 10.1101/2024.08.06.606828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The human parasitic fluke, Schistosoma haematobium hybridizes with the livestock parasite S. bovis in the laboratory, but the frequency of hybridization in nature is unclear. We analyzed 34.6 million single nucleotide variants in 162 samples from 18 African countries, revealing a sharp genetic discontinuity between northern and southern S. haematobium. We found no evidence for recent hybridization. Instead the data reveal admixture events that occurred 257-879 generations ago in northern S. haematobium populations. Fifteen introgressed S. bovis genes are approaching fixation in northern S. haematobium with four genes potentially driving adaptation. We identified 19 regions that were resistant to introgression; these were enriched on the sex chromosomes. These results (i) suggest strong barriers to gene flow between these species, (ii) indicate that hybridization may be less common than currently envisaged, but (iii) reveal profound genomic consequences of rare interspecific hybridization between schistosomes of medical and veterinary importance.
Collapse
Affiliation(s)
- Roy N Platt
- Texas Biomedical Research Institute, San Antonio TX, United States
| | - Egie E Enabulele
- Texas Biomedical Research Institute, San Antonio TX, United States
| | - Ehizogie Adeyemi
- Department of Pathology, University of Benin Teaching Hospital, Edo State, Nigeria
| | - Marian O Agbugui
- Department of Biological Sciences, Edo State University, Uzairue, Nigeria
| | | | - Ebube C Amaechi
- Department of Zoology, University of Ilorin, Kwara State, Nigeria
| | | | - Christopher Igbeneghu
- Department of Medical Laboratory Science, Ladoke Akintola University of Technology, Nigeria
| | - Victor S Njom
- Department of Applied Biology and Biotechnology, Enugu State University of Science and Technology, Nigeria
| | | | - Grace A Arya
- Texas Biomedical Research Institute, San Antonio TX, United States
| | - Robbie Diaz
- Texas Biomedical Research Institute, San Antonio TX, United States
| | - Muriel Rabone
- Science Department, Natural History Museum, London, United Kingdom
| | - Fiona Allan
- Science Department, Natural History Museum, London, United Kingdom
| | - Bonnie Webster
- Science Department, Natural History Museum, London, United Kingdom
| | - Aidan Emery
- Science Department, Natural History Museum, London, United Kingdom
| | - David Rollinson
- Science Department, Natural History Museum, London, United Kingdom
- Global Schistosomiasis Alliance, London, United Kingdom
| | | |
Collapse
|
5
|
Duncan AB, Godoy O, Michalakis Y, Zélé F, Magalhães S. Interspecific interactions among parasites in multiple infections. Trends Parasitol 2024; 40:1042-1052. [PMID: 39428306 DOI: 10.1016/j.pt.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 10/22/2024]
Abstract
Individual hosts and populations frequently harbour multiple parasite species simultaneously. Despite their commonness, the consequences of interspecific interactions among parasites for determining infection outcomes are still poorly understood. We review and propose several expectations for multiple infections involving different species. We highlight that interspecific interactions affect the outcome of competition within hosts and that heterospecific parasites engage in cotransmission, gene exchange, and reproductive interference. Studies specifically comparing intra- and inter-specific coinfections and knowledge from community ecology may be instrumental to fully understand the consequences of interspecific multiple infections for parasite life history, ecology, and evolution.
Collapse
Affiliation(s)
- Alison B Duncan
- Institut des Sciences de l'Évolution de Montpellier (ISEM), Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France.
| | - Oscar Godoy
- Estación Biológica de Doñana, EBD, CSIC, Sevilla, 41092, Spain
| | - Yannis Michalakis
- Maladies Infectieuses et Vecteurs : Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Université Montpellier, CNRS, IRD, Montpellier 34394, France
| | - Flore Zélé
- Institut des Sciences de l'Évolution de Montpellier (ISEM), Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Sara Magalhães
- Centre for Ecology, Evolution, and Environmental Changes (cE3c), CHANGE - Global Change and Sustainability Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
6
|
Luo X, Hu C, Yin Q, Zhang X, Liu Z, Zhou C, Zhang J, Chen W, Yang Y. Dual-Mechanism Peptide SR25 has Broad Antimicrobial Activity and Potential Application for Healing Bacteria-infected Diabetic Wounds. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401793. [PMID: 38874469 PMCID: PMC11321617 DOI: 10.1002/advs.202401793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/12/2024] [Indexed: 06/15/2024]
Abstract
The rise of antibiotic resistance poses a significant public health crisis, particularly due to limited antimicrobial options for the treatment of infections with Gram-negative pathogens. Here, an antimicrobial peptide (AMP) SR25 is characterized, which effectively kills both Gram-negative and Gram-positive bacteria through a unique dual-targeting mechanism without detectable resistance. Meanwhile, an SR25-functionalized hydrogel is developed for the efficient treatment of infected diabetic wounds. SR25 is obtained through genome mining from an uncultured bovine enteric actinomycete named Nonomuraea Jilinensis sp. nov. Investigations reveal that SR25 has two independent cellular targets, disrupting bacterial membrane integrity and restraining the activity of succinate:quinone oxidoreductase (SQR). In a diabetic mice wound infection model, the SR25-incorporated hydrogel exhibits high efficacy against mixed infections of Escherichia coli (E. coli) and methicillin-resistant Staphylococcus aureus (MRSA), accelerating wound healing. Overall, these findings demonstrate the therapeutic potential of SR25 and highlight the value of mining drugs with multiple mechanisms from uncultured animal commensals for combating challenging bacterial pathogens.
Collapse
Affiliation(s)
- Xue‐Yue Luo
- Department of Preventive Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchunJilin130062P. R. China
| | - Chun‐Mei Hu
- Department of Preventive Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchunJilin130062P. R. China
| | - Qi Yin
- Department of Preventive Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchunJilin130062P. R. China
| | - Xiao‐Mei Zhang
- Department of Preventive Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchunJilin130062P. R. China
| | - Zhen‐Zhen Liu
- Department of Preventive Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchunJilin130062P. R. China
| | - Cheng‐Kai Zhou
- Department of Preventive Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchunJilin130062P. R. China
| | - Jian‐Gang Zhang
- Department of Preventive Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchunJilin130062P. R. China
| | - Wei Chen
- Department of Preventive Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchunJilin130062P. R. China
| | - Yong‐Jun Yang
- Department of Preventive Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchunJilin130062P. R. China
| |
Collapse
|
7
|
Castañeda S, Adeniyi-Ipadeola G, Wu Y, Suarez-Reyes C, Jain A, Ramírez JD, Weatherhead JE. Characterizing Excretory-Secretory Products Proteome Across Larval Development Stages in Ascaris suum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.03.601870. [PMID: 39005370 PMCID: PMC11245028 DOI: 10.1101/2024.07.03.601870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Introduction Ascaris lumbricoides and Ascaris suum are parasitic nematodes that primarily infest the small intestines of humans and pigs, respectively. Ascariasis poses a significant threat to human health and swine health. Understanding Ascaris larval development is crucial for developing novel therapeutic interventions that will prevent ascariasis in both humans and pigs. This study aimed to characterize the excretory-secretory (ES) proteome of different Ascaris suum larval stages (L3-egg, L3-lung, L3-trachea) to identify potential targets for intervention to prevent Ascaris -induced global morbidity. Methods Stage-specific larvae were isolated, cultured in vitro and ES-product was collected. Third-stage Ascaris larvae (L3) were isolated from embryonated eggs (L3-egg), isolated from the lungs of Balb/c mice infected with Ascaris suum eggs at day 8 post infection (L3-lungs) and isolated from the trachea of Balb/c mice infected with Ascaris suum eggs at day 12 post infection (L3-trachea). ES products were obtained by culturing larvae. Proteomic analysis was conducted using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and bioinformatic tools including MaxQuant, Perseus, and Andromeda, following a detailed protocol available on GitHub. The analysis encompassed peptide identification, scoring, and quantification against an organism-specific database, with subsequent quality control, correlation assessment, and differential abundance determination using the Amica algorithm. Results A total of 58 unique proteins were identified in the ES products. Fourteen proteins were common across all stages, while others were stage-specific. Principal component analysis revealed distinct protein profiles for each stage, suggesting qualitatively different proteomes. Gene ontology analysis indicated stage-specific GO enrichment of specific protein classes, such as nuclear proteins in L3-egg ES products and metabolic enzymes in L3-lung and L3-trachea ES products. Discussion This study revealed stage-specific differences in the composition of Ascaris ES products. Further investigation into the functional roles of these proteins and their interactions with host cells is crucial for developing novel therapeutic and diagnostic strategies against ascariasis.
Collapse
|
8
|
Diakité A, Agniwo P, Dabo A, Sidibé B, Savassi BA, Akplogan A, Guindo H, Dembélé L, Ibikounlé M, Niaré SD, Tembely S, Boissier J. Population genetic structure of Schistosoma bovis and S. curassoni collected from cattle in Mali. Parasite 2024; 31:36. [PMID: 38953782 PMCID: PMC11218738 DOI: 10.1051/parasite/2024035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/07/2024] [Indexed: 07/04/2024] Open
Abstract
Schistosomiasis is of medical and veterinary importance. Despite the critical situation of schistosomiasis in sub-Saharan Africa, few molecular epidemiological studies have been carried out to determine the role of animals in its transmission. In Mali, it has been over three decades since the last molecular study of animal schistosomes was carried out. It is now urgent to identify circulating strains of the parasite because of potential interactions with other schistosome species, which could complicate disease control. The aim of our work was to study the composition and genetic structure of schistosome populations collected from cattle. The prevalence of schistosome was 23.9%, with the prevalences of Schistosoma bovis (Sb) and S. curassoni (Sc) estimated at 12.6% and 9.8%, respectively. No hybrid strains or S. haematobium were found. The parasites displayed distinct geographical distribution with Sb dominant in Bamako (78.8% and 98% in Central Bamako Slaughterhouse and Sabalibougou Slaughterhouses, respectively) and Sc dominant in Kayes (95.3%). Of the 476 parasites with a complete genetic profile, 60.4% were pure Sc, and were mainly from Kayes. We identified two clusters at the site level (Fst of 0.057 and 0.042 for Sb and Sc, respectively). Cluster 1 was predominantly composed of pure Sb parasites and cluster 2 was mainly composed of pure Sc parasites, from Bamako and Kayes, respectively. Our study shows that cattle schistosomiasis remains endemic in Mali with S. bovis and S. curassoni. A robust genetic structure between the different schistosome populations was identified, which included two clusters based on the geographical distribution of the parasites.
Collapse
Affiliation(s)
- Assitan Diakité
- Department of Epidemiology of Infectious Diseases, Faculty of Pharmacy, Malaria Research and Training Center (MRTC), University of Sciences, Techniques and Technologies of Bamako, Environnement, Santé, Sociétés (USTTB/UCAD/UGB/CNRST/CNRS) BP 1805, IRL3189 Bamako Mali
| | - Privat Agniwo
- Department of Epidemiology of Infectious Diseases, Faculty of Pharmacy, Malaria Research and Training Center (MRTC), University of Sciences, Techniques and Technologies of Bamako, Environnement, Santé, Sociétés (USTTB/UCAD/UGB/CNRST/CNRS) BP 1805, IRL3189 Bamako Mali
- Interactions Hôtes-Pathogènes-Environnements (IHPE), Univ. Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia 58 Avenue Paul Alduy Bâtiment R 66860 Perpignan France
- Centre de Recherche pour la lutte contre les Maladies Infectieuses Tropicales (CReMIT/TIDRC), Université d’Abomey-Calavi 01 BP 526 Abomey-Calavi Bénin
| | - Abdoulaye Dabo
- Department of Epidemiology of Infectious Diseases, Faculty of Pharmacy, Malaria Research and Training Center (MRTC), University of Sciences, Techniques and Technologies of Bamako, Environnement, Santé, Sociétés (USTTB/UCAD/UGB/CNRST/CNRS) BP 1805, IRL3189 Bamako Mali
| | - Bakary Sidibé
- Department of Epidemiology of Infectious Diseases, Faculty of Pharmacy, Malaria Research and Training Center (MRTC), University of Sciences, Techniques and Technologies of Bamako, Environnement, Santé, Sociétés (USTTB/UCAD/UGB/CNRST/CNRS) BP 1805, IRL3189 Bamako Mali
| | - Boris A.E.S. Savassi
- Interactions Hôtes-Pathogènes-Environnements (IHPE), Univ. Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia 58 Avenue Paul Alduy Bâtiment R 66860 Perpignan France
- Centre de Recherche pour la lutte contre les Maladies Infectieuses Tropicales (CReMIT/TIDRC), Université d’Abomey-Calavi 01 BP 526 Abomey-Calavi Bénin
| | - Ahristode Akplogan
- Department of Epidemiology of Infectious Diseases, Faculty of Pharmacy, Malaria Research and Training Center (MRTC), University of Sciences, Techniques and Technologies of Bamako, Environnement, Santé, Sociétés (USTTB/UCAD/UGB/CNRST/CNRS) BP 1805, IRL3189 Bamako Mali
| | - Hassim Guindo
- Department of Epidemiology of Infectious Diseases, Faculty of Pharmacy, Malaria Research and Training Center (MRTC), University of Sciences, Techniques and Technologies of Bamako, Environnement, Santé, Sociétés (USTTB/UCAD/UGB/CNRST/CNRS) BP 1805, IRL3189 Bamako Mali
| | - Laurent Dembélé
- Department of Epidemiology of Infectious Diseases, Faculty of Pharmacy, Malaria Research and Training Center (MRTC), University of Sciences, Techniques and Technologies of Bamako, Environnement, Santé, Sociétés (USTTB/UCAD/UGB/CNRST/CNRS) BP 1805, IRL3189 Bamako Mali
| | - Moudachirou Ibikounlé
- Centre de Recherche pour la lutte contre les Maladies Infectieuses Tropicales (CReMIT/TIDRC), Université d’Abomey-Calavi 01 BP 526 Abomey-Calavi Bénin
| | - Safiatou Doumbo Niaré
- Interactions Hôtes-Pathogènes-Environnements (IHPE), Univ. Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia 58 Avenue Paul Alduy Bâtiment R 66860 Perpignan France
| | - Saidou Tembely
- Académie des Sciences du Mali, Baco-Djicoroni ACI Ouest Rue 619 Porte, 104 Bamako Mali
| | - Jérôme Boissier
- Interactions Hôtes-Pathogènes-Environnements (IHPE), Univ. Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia 58 Avenue Paul Alduy Bâtiment R 66860 Perpignan France
| |
Collapse
|
9
|
Mathieu-Bégné E, Kincaid-Smith J, Chaparro C, Allienne JF, Rey O, Boissier J, Toulza E. Schistosoma haematobium and Schistosoma bovis first generation hybrids undergo gene expressions changes consistent with species compatibility and heterosis. PLoS Negl Trop Dis 2024; 18:e0012267. [PMID: 38954732 PMCID: PMC11249247 DOI: 10.1371/journal.pntd.0012267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/15/2024] [Accepted: 06/03/2024] [Indexed: 07/04/2024] Open
Abstract
When two species hybridize, the two parental genomes are brought together and some alleles might interact for the first time. To date, the extent of the transcriptomic changes in first hybrid generations, along with their functional outcome constitute an important knowledge gap, especially in parasite species. Here we explored the molecular and functional outcomes of hybridization in first-generation hybrids between the blood fluke parasites Schistosoma haematobium and S. bovis. Through a transcriptomic approach, we measured gene expression in both parental species and hybrids. We described and quantified expression profiles encountered in hybrids along with the main biological processes impacted. Up to 7,100 genes fell into a particular hybrid expression profile (intermediate between the parental expression levels, over-expressed, under-expressed, or expressed like one of the parental lines). Most of these genes were different depending on the direction of the parental cross (S. bovis mother and S. haematobium father or the reverse) and depending on the sex. For a given sex and cross direction, the vast majority of genes were hence unassigned to a hybrid expression profile: either they were differentially expressed genes but not typical of any hybrid expression profiles or they were not differentially expressed neither between hybrids and parental lines nor between parental lines. The most prevalent profile of gene expression in hybrids was the intermediate one (24% of investigated genes). These results suggest that transcriptomic compatibility between S. haematobium and S. bovis remains quite high. We also found support for an over-dominance model (over- and under-expressed genes in hybrids compared to parental lines) potentially associated with heterosis. In females in particular, processes such as reproductive processes, metabolism and cell interactions as well as signaling pathways were indeed affected. Our study hence provides new insight on the biology of Schistosoma hybrids with evidences supporting compatibility and heterosis.
Collapse
Affiliation(s)
| | - Julien Kincaid-Smith
- IHPE, Université de Montpellier, CNRS, Ifremer, Université Perpignan Via Domitia, Perpignan, France
- CBGP, IRD, CIRAD, INRAE, Institut Agro, Université de Montpellier, Montpellier, France
| | - Cristian Chaparro
- IHPE, Université de Montpellier, CNRS, Ifremer, Université Perpignan Via Domitia, Perpignan, France
| | - Jean-François Allienne
- IHPE, Université de Montpellier, CNRS, Ifremer, Université Perpignan Via Domitia, Perpignan, France
| | - Olivier Rey
- IHPE, Université de Montpellier, CNRS, Ifremer, Université Perpignan Via Domitia, Perpignan, France
| | - Jérôme Boissier
- IHPE, Université de Montpellier, CNRS, Ifremer, Université Perpignan Via Domitia, Perpignan, France
| | - Eve Toulza
- IHPE, Université de Montpellier, CNRS, Ifremer, Université Perpignan Via Domitia, Perpignan, France
| |
Collapse
|
10
|
Alale TY, Sormunen JJ, Vesterinen EJ, Klemola T, Knott KE, Baltazar‐Soares M. Genomic signatures of hybridization between Ixodes ricinus and Ixodes persulcatus in natural populations. Ecol Evol 2024; 14:e11415. [PMID: 38770117 PMCID: PMC11103643 DOI: 10.1002/ece3.11415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/03/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024] Open
Abstract
Identifying hybridization between common pathogen vectors is essential due to the major public health implications through risks associated with hybrid's enhanced pathogen transmission potential. The hard-ticks Ixodes ricinus and Ixodes persulcatus are the two most common vectors of tick-borne pathogens that affect human and animal health in Europe. Ixodes ricinus is a known native species in Finland with a well-known distribution, whereas I. persulcatus has expanded in range and abundance over the past 60 years, and currently it appears the most common tick species in certain areas in Finland. Here we used double-digest restriction site-associated DNA (ddRAD) sequencing on 186 ticks (morphologically identified as 92 I. ricinus, and 94 I. persulcatus) collected across Finland to investigate whether RAD generated single nucleotide polymorphisms (SNPs) can discriminate tick species and identify potential hybridization events. Two different clustering methods were used to assign specific species based on how they clustered and identified hybrids among them. We were able to discriminate between the two tick species and identified 11 putative hybrids with admixed genomic proportions ranging from approximately 24 to 76 percent. Four of these hybrids were morphologically identified as I. ricinus while the remaining seven were identified as I. persulcatus. Our results thus indicate that RAD SNPs are robust in identifying both species of the ticks as well as putative hybrids. These results further suggest ongoing hybridization between I. ricinus and I. persulcatus in their natural populations in Finland. The unique ability of RAD markers to discriminate between tick species and hybrids adds a useful aspect to tick evolutionary studies. Our findings align with previous studies and suggest a shared evolutionary history between the species, with instances of individuals possessing a considerable proportion of the other species' genome. This study is a significant step in understanding the formation of hybridization zones due to range expansion potentially associated with climate change.
Collapse
Affiliation(s)
- Theophilus Yaw Alale
- Department of BiologyUniversity of TurkuTurkuFinland
- Biodiversity UnitUniversity of TurkuTurkuFinland
| | - Jani J. Sormunen
- Department of BiologyUniversity of TurkuTurkuFinland
- Biodiversity UnitUniversity of TurkuTurkuFinland
| | | | - Tero Klemola
- Department of BiologyUniversity of TurkuTurkuFinland
| | - K. Emily Knott
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | | |
Collapse
|
11
|
Perera DJ, Koger-Pease C, Paulini K, Daoudi M, Ndao M. Beyond schistosomiasis: unraveling co-infections and altered immunity. Clin Microbiol Rev 2024; 37:e0009823. [PMID: 38319102 PMCID: PMC10938899 DOI: 10.1128/cmr.00098-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
Schistosomiasis is a neglected tropical disease caused by the helminth Schistosoma spp. and has the second highest global impact of all parasites. Schistosoma are transmitted through contact with contaminated fresh water predominantly in Africa, Asia, the Middle East, and South America. Due to the widespread prevalence of Schistosoma, co-infection with other infectious agents is common but often poorly described. Herein, we review recent literature describing the impact of Schistosoma co-infection between species and Schistosoma co-infection with blood-borne protozoa, soil-transmitted helminths, various intestinal protozoa, Mycobacterium, Salmonella, various urinary tract infection-causing agents, and viral pathogens. In each case, disease severity and, of particular interest, the immune landscape, are altered as a consequence of co-infection. Understanding the impact of schistosomiasis co-infections will be important when considering treatment strategies and vaccine development moving forward.
Collapse
Affiliation(s)
- Dilhan J. Perera
- Division of Experimental Medicine, McGill University, Montreal, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Cal Koger-Pease
- Division of Experimental Medicine, McGill University, Montreal, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Kayla Paulini
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
| | - Mohamed Daoudi
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
| | - Momar Ndao
- Division of Experimental Medicine, McGill University, Montreal, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
- National Reference Centre for Parasitology, Research Institute of the McGill University Health Centre, Montreal, Canada
| |
Collapse
|
12
|
Heeren S, Maes I, Sanders M, Lye LF, Adaui V, Arevalo J, Llanos-Cuentas A, Garcia L, Lemey P, Beverley SM, Cotton JA, Dujardin JC, Van den Broeck F. Diversity and dissemination of viruses in pathogenic protozoa. Nat Commun 2023; 14:8343. [PMID: 38102141 PMCID: PMC10724245 DOI: 10.1038/s41467-023-44085-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023] Open
Abstract
Viruses are the most abundant biological entities on Earth and play a significant role in the evolution of many organisms and ecosystems. In pathogenic protozoa, the presence of viruses has been linked to an increased risk of treatment failure and severe clinical outcome. Here, we studied the molecular epidemiology of the zoonotic disease cutaneous leishmaniasis in Peru and Bolivia through a joint evolutionary analysis of Leishmania braziliensis and their dsRNA Leishmania virus 1. We show that parasite populations circulate in tropical rainforests and are associated with single viral lineages that appear in low prevalence. In contrast, groups of hybrid parasites are geographically and ecologically more dispersed and associated with an increased prevalence, diversity and spread of viruses. Our results suggest that parasite gene flow and hybridization increased the frequency of parasite-virus symbioses, a process that may change the epidemiology of leishmaniasis in the region.
Collapse
Affiliation(s)
- Senne Heeren
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Ilse Maes
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | | | - Lon-Fye Lye
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Vanessa Adaui
- Laboratory of Biomolecules, Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | - Jorge Arevalo
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Alejandro Llanos-Cuentas
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Lineth Garcia
- Instituto de Investigación Biomédicas e Investigación Social, Universidad Mayor de San Simon, Cochabamba, Bolivia
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Stephen M Beverley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - James A Cotton
- Welcome Sanger Institute, Hinxton, UK
- School of Biodiversity, One Health and Comparative Medicine, Wellcome Centre for Integrative Parasitology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Jean-Claude Dujardin
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| | - Frederik Van den Broeck
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium.
| |
Collapse
|
13
|
Porretta D, Canestrelli D. The ecological importance of hybridization. Trends Ecol Evol 2023; 38:1097-1108. [PMID: 37620217 DOI: 10.1016/j.tree.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023]
Abstract
Hybridization as an evolutionary process has been studied in depth over the past few decades. Research has focused on its role in shaping reproductive barriers, its adaptive value, and its genomic consequences. In contrast, our knowledge of ecological dimensions of hybridization is still in its infancy, despite hybridization being an inherently ecological interaction. Using examples from various organisms, we show that hybridization can affect and be affected by non-reproductive interactions, including predation, competition, parasitism, mutualism, commensalism, and organism-environment interactions, with significant implications for community structure and ecosystem functioning. However, since these dimensions of hybridization have mostly been revealed from studies designed to decipher other evolutionary processes, we argue that much of the eco-evolutionary importance of hybridization is yet to be discovered.
Collapse
Affiliation(s)
- Daniele Porretta
- Department of Environmental Biology, Sapienza University of Rome, Italy.
| | | |
Collapse
|
14
|
Díaz AV, Walker M, Webster JP. Reaching the World Health Organization elimination targets for schistosomiasis: the importance of a One Health perspective. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220274. [PMID: 37598697 PMCID: PMC10440173 DOI: 10.1098/rstb.2022.0274] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 07/19/2023] [Indexed: 08/22/2023] Open
Abstract
The past three years has seen the launch of a new World Health Organization (WHO) neglected tropical diseases (NTDs) roadmap, together with revised control and elimination guidelines. Across all, there is now a clear emphasis on the need to incorporate a One Health approach, recognizing the critical links between human and animal health and the environment. Schistosomiasis, caused by Schistosoma spp. trematodes, is a NTD of global medical and veterinary importance, with over 220 million people and untold millions of livestock currently infected. Its burden remains extremely high in certain regions, particularly within sub-Saharan Africa, despite over two decades of mass preventive chemotherapy (mass drug administration), predominantly to school-aged children. In Africa, in contrast to Asia, any zoonotic component of schistosomiasis transmission and its implications for disease control has, until recently, been largely ignored. Here, we review recent epidemiological, clinical, molecular, and modelling work across both Asia and Africa. We outline the evolutionary history and transmission dynamics of Schistosoma species, and emphasize the emerging risk raised by both wildlife reservoirs and viable hybridization between human and animal schistosomes. To achieve the 2030 WHO roadmap elimination targets, a truly multi-disciplinary One Health perspective must be implemented. This article is part of the theme issue 'Challenges and opportunities in the fight against neglected tropical diseases: a decade from the London Declaration on NTDs'.
Collapse
Affiliation(s)
- Adriana V. Díaz
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield AL9 7TA, UK
| | - Martin Walker
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield AL9 7TA, UK
- Department of Infectious Disease Epidemiology, London Centre for Neglected Tropical Disease Research, Faculty of Medicine, Imperial College, London W2 1PG, UK
| | - Joanne P. Webster
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield AL9 7TA, UK
- Department of Infectious Disease Epidemiology, London Centre for Neglected Tropical Disease Research, Faculty of Medicine, Imperial College, London W2 1PG, UK
| |
Collapse
|
15
|
Mixão V, Nunez-Rodriguez JC, Del Olmo V, Ksiezopolska E, Saus E, Boekhout T, Gacser A, Gabaldón T. Evolution of loss of heterozygosity patterns in hybrid genomes of Candida yeast pathogens. BMC Biol 2023; 21:105. [PMID: 37170256 PMCID: PMC10173528 DOI: 10.1186/s12915-023-01608-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 04/27/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Hybrids are chimeric organisms with highly plastic heterozygous genomes that may confer unique traits enabling the adaptation to new environments. However, most evolutionary theory frameworks predict that the high levels of genetic heterozygosity present in hybrids from divergent parents are likely to result in numerous deleterious epistatic interactions. Under this scenario, selection is expected to favor recombination events resulting in loss of heterozygosity (LOH) affecting genes involved in such negative interactions. Nevertheless, it is so far unknown whether this phenomenon actually drives genomic evolution in natural populations of hybrids. To determine the balance between selection and drift in the evolution of LOH patterns in natural yeast hybrids, we analyzed the genomic sequences from fifty-five hybrid strains of the pathogenic yeasts Candida orthopsilosis and Candida metapsilosis, which derived from at least six distinct natural hybridization events. RESULTS We found that, although LOH patterns in independent hybrid clades share some level of convergence that would not be expected from random occurrence, there is an apparent lack of strong functional selection. Moreover, while mitosis is associated with a limited number of inter-homeologous chromosome recombinations in these genomes, induced DNA breaks seem to increase the LOH rate. We also found that LOH does not accumulate linearly with time in these hybrids. Furthermore, some C. orthopsilosis hybrids present LOH patterns compatible with footprints of meiotic recombination. These meiotic-like patterns are at odds with a lack of evidence of sexual recombination and with our inability to experimentally induce sporulation in these hybrids. CONCLUSIONS Our results suggest that genetic drift is the prevailing force shaping LOH patterns in these hybrid genomes. Moreover, the observed LOH patterns suggest that these are likely not the result of continuous accumulation of sporadic events-as expected by mitotic repair of rare chromosomal breaks-but rather of acute episodes involving many LOH events in a short period of time.
Collapse
Affiliation(s)
- Verónica Mixão
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Jordi Girona, 29, 08034, Barcelona, Spain
- Mechanisms of Disease Program, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Present address: Genomics and Bioinformatics Unit, Infectious Diseases Department, National Institute of Health Dr. Ricardo Jorge, Av. Padre Cruz, 1649-016, Lisbon, Portugal
| | - Juan Carlos Nunez-Rodriguez
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Jordi Girona, 29, 08034, Barcelona, Spain
- Mechanisms of Disease Program, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Valentina Del Olmo
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Jordi Girona, 29, 08034, Barcelona, Spain
- Mechanisms of Disease Program, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ewa Ksiezopolska
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Jordi Girona, 29, 08034, Barcelona, Spain
- Mechanisms of Disease Program, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ester Saus
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Jordi Girona, 29, 08034, Barcelona, Spain
- Mechanisms of Disease Program, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Attila Gacser
- Department of Microbiology, University of Szeged, Szeged, Hungary
- MTA-SZTE "Lendület" Mycobiome Research Group, University of Szeged, Szeged, Hungary
| | - Toni Gabaldón
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Jordi Girona, 29, 08034, Barcelona, Spain.
- Mechanisms of Disease Program, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- ICREA, Pg. Lluis Companys 23, 08010, Barcelona, Spain.
- Centro de Investigación Biomédica En Red de Enfermedades Infecciosas, Barcelona, Spain.
| |
Collapse
|
16
|
Blin M, Dametto S, Agniwo P, Webster BL, Angora E, Dabo A, Boissier J. A duplex tetra-primer ARMS-PCR assay to discriminate three species of the Schistosoma haematobium group: Schistosoma curassoni, S. bovis, S. haematobium and their hybrids. Parasit Vectors 2023; 16:121. [PMID: 37029440 PMCID: PMC10082484 DOI: 10.1186/s13071-023-05754-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/22/2023] [Indexed: 04/09/2023] Open
Abstract
BACKGROUND The use of applications involving single nucleotide polymorphisms (SNPs) has greatly increased since the beginning of the 2000s, with the number of associated techniques expanding rapidly in the field of molecular research. Tetra-primer amplification refractory mutation system-PCR (T-ARMS-PCR) is one such technique involving SNP genotyping. It has the advantage of amplifying multiple alleles in a single reaction with the inclusion of an internal molecular control. We report here the development of a rapid, reliable and cost-effective duplex T-ARMS-PCR assay to distinguish between three Schistosoma species, namely Schistosoma haematobium (human parasite), Schistosoma bovis and Schistosoma curassoni (animal parasites), and their hybrids. This technique will facilitate studies of population genetics and the evolution of introgression events. METHODS During the development of the technique we focused on one of the five inter-species internal transcribed spacer (ITS) SNPs and one of the inter-species 18S SNPs which, when combined, discriminate between all three Schistosoma species and their hybrid forms. We designed T-ARMS-PCR primers to amplify amplicons of specific lengths for each species, which in turn can then be visualized on an electrophoresis gel. This was further tested using laboratory and field-collected adult worms and field-collected larval stages (miracidia) from Spain, Egypt, Mali, Senegal and Ivory Coast. The combined duplex T-ARMS-PCR and ITS + 18S primer set was then used to differentiate the three species in a single reaction. RESULTS The T-ARMS-PCR assay was able to detect DNA from both species being analysed at the maximum and minimum levels in the DNA ratios (95/5) tested. The duplex T-ARMS-PCR assay was also able to detect all hybrids tested and was validated by sequencing the ITS and the 18S amplicons of 148 of the field samples included in the study. CONCLUSIONS The duplex tetra-primer ARMS-PCR assay described here can be applied to differentiate between Schistosoma species and their hybrid forms that infect humans and animals, thereby providing a method to investigate the epidemiology of these species in endemic areas. The addition of several markers in a single reaction saves considerable time and is of long-standing interest for investigating genetic populations.
Collapse
Affiliation(s)
- Manon Blin
- Hosts Pathogens Environment Interactions, UMR 5244, CNRS, IFREMER, UM, University of Perpignan Via Domitia, Perpignan, 66860, France
- SAS ParaDev®, 66860, Perpignan, France
| | - Sarah Dametto
- Hosts Pathogens Environment Interactions, UMR 5244, CNRS, IFREMER, UM, University of Perpignan Via Domitia, Perpignan, 66860, France
| | - Privat Agniwo
- Hosts Pathogens Environment Interactions, UMR 5244, CNRS, IFREMER, UM, University of Perpignan Via Domitia, Perpignan, 66860, France
- Department of Epidemiology of Infectious Diseases, Faculty of Pharmacy, IRL 3189, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Bonnie L Webster
- Wolfson Wellcome Biomedical Laboratories, Department of Science, Natural History Museum, London, SW7 5BD, UK
- London Centre for Neglected Tropical Disease Research, Imperial College London School of Public Health, London, W2 1PG, UK
| | - Etienne Angora
- Swiss Tropical and Public Health Institute, P.O. Box, 4002, Basel, Switzerland
- University of Basel, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- Unité de Formation et de Recherche Sciences Pharmaceutiques et Biologiques, Université Félix Houphouët-Boigny, BPV 34, Abidjan, Côte d'Ivoire
| | - Abdoulaye Dabo
- Department of Epidemiology of Infectious Diseases, Faculty of Pharmacy, IRL 3189, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Jérôme Boissier
- Hosts Pathogens Environment Interactions, UMR 5244, CNRS, IFREMER, UM, University of Perpignan Via Domitia, Perpignan, 66860, France.
| |
Collapse
|
17
|
Thorn CS, Maness RW, Hulke JM, Delmore KE, Criscione CD. Population genomics of helminth parasites. J Helminthol 2023; 97:e29. [PMID: 36927601 DOI: 10.1017/s0022149x23000123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Next generation sequencing technologies have facilitated a shift from a few targeted loci in population genetic studies to whole genome approaches. Here, we review the types of questions and inferences regarding the population biology and evolution of parasitic helminths being addressed within the field of population genomics. Topics include parabiome, hybridization, population structure, loci under selection and linkage mapping. We highlight various advances, and note the current trends in the field, particularly a focus on human-related parasites despite the inherent biodiversity of helminth species. We conclude by advocating for a broader application of population genomics to reflect the taxonomic and life history breadth displayed by helminth parasites. As such, our basic knowledge about helminth population biology and evolution would be enhanced while the diversity of helminths in itself would facilitate population genomic comparative studies to address broader ecological and evolutionary concepts.
Collapse
Affiliation(s)
- C S Thorn
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX, 77843, USA
| | - R W Maness
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX, 77843, USA
| | - J M Hulke
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX, 77843, USA
| | - K E Delmore
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX, 77843, USA
| | - C D Criscione
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX, 77843, USA
| |
Collapse
|
18
|
Guichard M, Dainat B, Dietemann V. Prospects, challenges and perspectives in harnessing natural selection to solve the ‘varroa problem’ of honey bees. Evol Appl 2023; 16:593-608. [PMID: 36969141 PMCID: PMC10035043 DOI: 10.1111/eva.13533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 02/24/2023] Open
Abstract
Honey bees, Apis mellifera, of European origin are major pollinators of crops and wild flora. Their endemic and exported populations are threatened by a variety of abiotic and biotic factors. Among the latter, the ectoparasitic mite Varroa destructor is the most important single cause behind colony mortality. The selection of mite resistance in honey bee populations has been deemed a more sustainable solution to its control than varroacidal treatments. Because natural selection has led to the survival of some European and African honey bee populations to V. destructor infestations, harnessing its principles has recently been highlighted as a more efficient way to provide honey bee lineages that survive infestations when compared with conventional selection on resistance traits against the parasite. However, the challenges and drawbacks of harnessing natural selection to solve the varroa problem have only been minimally addressed. We argue that failing to consider these issues could lead to counterproductive results, such as increased mite virulence, loss of genetic diversity reducing host resilience, population collapses or poor acceptance by beekeepers. Therefore, it appears timely to evaluate the prospects for the success of such programmes and the qualities of the populations obtained. After reviewing the approaches proposed in the literature and their outcomes, we consider their advantages and drawbacks and propose perspectives to overcome their limitations. In these considerations, we not only reflect on the theoretical aspects of host-parasite relationships but also on the currently largely neglected practical constraints, that is, the requirements for productive beekeeping, conservation or rewilding objectives. To optimize natural selection-based programmes towards these objectives, we suggest designs based on a combination of nature-driven phenotypic differentiation and human-directed selection of traits. Such a dual strategy aims at allowing field-realistic evolutionary approaches towards the survival of V. destructor infestations and the improvement of honey bee health.
Collapse
Affiliation(s)
| | | | - Vincent Dietemann
- Swiss Bee Research Centre Agroscope Bern Switzerland
- Department of Ecology and Evolution, Biophore, UNIL‐Sorge University of Lausanne Lausanne Switzerland
| |
Collapse
|
19
|
Higuera A, Salas-Leiva DE, Curtis B, Patiño LH, Zhao D, Jerlström-Hultqvist J, Dlutek M, Muñoz M, Roger AJ, Ramírez JD. Draft genomes of Blastocystis subtypes from human samples of Colombia. Parasit Vectors 2023; 16:52. [PMID: 36732768 PMCID: PMC9896827 DOI: 10.1186/s13071-022-05619-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/14/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Blastocystis is one of the most common eukaryotic microorganisms colonizing the intestines of both humans and animals, but the conditions under which it may be a pathogen are unclear. METHODS To study the genomic characteristics of circulating subtypes (ST) in Colombia, we established nine xenic cultures from Blastocystis isolated from human fecal samples, we identified 10 different subtypes, since one sample had a mixed infection. Thus, the genomes of the subtypes ST1 (n = 3), ST2 (n = 1), ST3 (n = 2), ST6 (n = 1), ST7 (n = 1), and ST8 (n = 2) were sequenced using Illumina and Oxford Nanopore Technologies (ONT). RESULTS Analyses of these draft nuclear genomes indicated remarkable diversity in terms of genome size and guanine-cytosine (GC) content among the compared STs. Illumina sequencing-only draft genomes contained 824 to 2077 scaffolds, with total genome size ranging from 12 to 13.2 Mb and N50 values ranging from 10,585 to 29,404 base pairs (bp). The genome of one ST1 isolate was sequenced using ONT. This assembly was more contiguous, with a size of 20 million base pairs (Mb) spread over 116 scaffolds, and an N50 of 248,997 bp. CONCLUSION This work represents one of the few large-scale comparative genomic analyses of Blastocystis isolates, providing an additional glimpse into its genomic diversity.
Collapse
Affiliation(s)
- Adriana Higuera
- grid.412191.e0000 0001 2205 5940Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Dayana E. Salas-Leiva
- grid.5335.00000000121885934Department of Biochemistry, University of Cambridge, Hopkins Building, Downing Site, Tennis Court Road, Cambridge, CB2 1QW United Kingdom
| | - Bruce Curtis
- grid.55602.340000 0004 1936 8200Institute for Comparative Genomics (ICG), Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2 Canada
| | - Luz H. Patiño
- grid.412191.e0000 0001 2205 5940Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Dandan Zhao
- grid.55602.340000 0004 1936 8200Institute for Comparative Genomics (ICG), Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2 Canada
| | - Jon Jerlström-Hultqvist
- grid.8993.b0000 0004 1936 9457Department of Cell and Molecular Biology, BMC, Uppsala Universitet, Box 596, 751 24 Uppsala, Sweden
| | - Marlena Dlutek
- grid.55602.340000 0004 1936 8200Institute for Comparative Genomics (ICG), Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2 Canada
| | - Marina Muñoz
- grid.412191.e0000 0001 2205 5940Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Andrew J. Roger
- grid.55602.340000 0004 1936 8200Institute for Comparative Genomics (ICG), Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2 Canada
| | - Juan David Ramírez
- grid.412191.e0000 0001 2205 5940Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia ,grid.59734.3c0000 0001 0670 2351Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY USA
| |
Collapse
|
20
|
Reinholdt C, Winkelmann F, Koslowski N, Reisinger EC, Sombetzki M. Unisexual infection with Schistosoma mansoni in mice has the potential to boost the immune response against eggs after challenge infection. Front Immunol 2023; 14:1125912. [PMID: 36923416 PMCID: PMC10009330 DOI: 10.3389/fimmu.2023.1125912] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/10/2023] [Indexed: 03/02/2023] Open
Abstract
Introduction The complexity of the Schistosoma spp. life cycle and their effective immune evasion strategies, makes vaccine development challenging. Unisexual infection models, that excludes any immunomodulatory effects of the parasite eggs, may contribute to a better understanding of complex immunological processes and identification of new targets for vaccine research. We have recently shown that long-term unisexual infection with schistosomes in mice results in an unpolarized Th1/Th2 response associated with an abnormally enlarged spleen and diffuse liver inflammation. Herein, we investigated whether (i) unisexual worms can mate after three months of single sex infection and (ii) thus the Th2 response induced by oviposition can reverse or heal the described systemic inflammation. Methods Therefore, we infected 6-8 weeks old female C57BL/6j mice with 100 male or female cercariae and reinfected with the opposite sex for the same period after 12 weeks. At 24 weeks after initial infection, we histologically examined worm mating, as evidenced by the presence of parasite eggs, infection-related pathology associated with eggs, and characterization of fibrosis in the livers. Results Single worms are able to mate months after unisexual infection and start oviposition. Egg deposition has been associated with a typical Th2 immune response in the liver after unisexual reinfection, accompanied by increased recruitment of CD4+ T cells. Hepatic collagen levels were significantly increased in the reinfected groups compared to the naive and unisexually infected group. Discussion Our results indicate that the eggs are able to restore the Th1/Th2 immune balance of a previous unisexual infection. However, the organ damage caused by the unisexual worms does not subside, but rather provides the baseline for the emerging egg-triggered inflammation and fibrosis. Since single schistosomes can mate even several weeks after unisexual infection and then accumulate worm- and egg-related organ damage, infection status without positive egg detection is very important, especially in areas with low prevalence.
Collapse
Affiliation(s)
- Cindy Reinholdt
- Department of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Rostock, Germany
| | - Franziska Winkelmann
- Department of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Rostock, Germany
| | - Nicole Koslowski
- Department of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Rostock, Germany
| | - Emil C Reisinger
- Department of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Rostock, Germany
| | - Martina Sombetzki
- Department of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
21
|
Construction of a 980 nm laser-activated Pt(II) metallacycle nanosystem for efficient and safe photo-induced bacteria sterilization. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1440-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
22
|
Miranda GS, Rodrigues JGM, Silva JKADO, Camelo GMA, Silva-Souza N, Neves RH, Machado-Silva JR, Negrão-Corrêa DA. New challenges for the control of human schistosomiasis: The possible impact of wild rodents in Schistosoma mansoni transmission. Acta Trop 2022; 236:106677. [PMID: 36063905 DOI: 10.1016/j.actatropica.2022.106677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/27/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022]
Abstract
Schistosomiasis is a neglected parasitic disease caused by digenean trematodes from the genus Schistosoma that affects millions of people worldwide. Despite efforts to control its transmission, this disease remains active within several endemic regions of Africa, Asia, and the Americas. In addition to the deficits in sanitation and educational structure, another major obstacle hindering the eradication of schistosomiasis is the ability of Schistosoma spp. to naturally infect multiple vertebrate hosts, particularly wild rodents. Due to climate change and other anthropogenic disturbances, contact between humans and wild animals has increased, and this has contributed to more frequent interactions between Schistosoma species that typically infect different hosts. This new transmission dynamic involving Schistosoma spp., humans, wild rodents, and livestock could potentially increase the frequency of Schistosoma hybridization and the establishment of new genotypes and strains. Although it is not currently possible to precisely measure how this biological phenomenon affects the epidemiology and morbidity of schistosomiasis, we speculate that these Schistosoma variants may negatively impact control strategies, treatment regimens, and disease burden in humans. In the present study, we discuss the natural infections of wild rodents with Schistosoma spp., the role of these animals as Schistosoma spp. reservoirs, and how they may select hybrids and strains of Schistosoma mansoni. We also discuss measures required to shed light on the actual role of the wild rodents Nectomys squamipes and Holochilus sciureus in the transmission and morbidity of schistosomiasis in Brazil.
Collapse
Affiliation(s)
- Guilherme Silva Miranda
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, Belo Horizonte, MG CEP: 31270-010, Brazil; Department of Biology, Federal Institute of Education, Science and Technology of Maranhão, São Raimundo das Mangabeiras, Brazil
| | - João Gustavo Mendes Rodrigues
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, Belo Horizonte, MG CEP: 31270-010, Brazil
| | - Jeferson Kelvin Alves de Oliveira Silva
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, Belo Horizonte, MG CEP: 31270-010, Brazil
| | - Genil Mororó Araújo Camelo
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, Belo Horizonte, MG CEP: 31270-010, Brazil
| | - Nêuton Silva-Souza
- Department of Chemistry and Biology, State University of Maranhão, São Luis, Brazil
| | - Renata Heisler Neves
- Department of Microbiology, Immunology and Parasitology, Faculty of Medical Sciences, Biomedical Center, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - José Roberto Machado-Silva
- Department of Microbiology, Immunology and Parasitology, Faculty of Medical Sciences, Biomedical Center, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Deborah Aparecida Negrão-Corrêa
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, Belo Horizonte, MG CEP: 31270-010, Brazil.
| |
Collapse
|
23
|
Berger DJ, Léger E, Sankaranarayanan G, Sène M, Diouf ND, Rabone M, Emery A, Allan F, Cotton JA, Berriman M, Webster JP. Genomic evidence of contemporary hybridization between Schistosoma species. PLoS Pathog 2022; 18:e1010706. [PMID: 35939508 PMCID: PMC9387932 DOI: 10.1371/journal.ppat.1010706] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/18/2022] [Accepted: 06/27/2022] [Indexed: 11/19/2022] Open
Abstract
Hybridization between different species of parasites is increasingly being recognised as a major public and veterinary health concern at the interface of infectious diseases biology, evolution, epidemiology and ultimately control. Recent research has revealed that viable hybrids and introgressed lineages between Schistosoma spp. are prevalent across Africa and beyond, including those with zoonotic potential. However, it remains unclear whether these hybrid lineages represent recent hybridization events, suggesting hybridization is ongoing, and/or whether they represent introgressed lineages derived from ancient hybridization events. In human schistosomiasis, investigation is hampered by the inaccessibility of adult-stage worms due to their intravascular location, an issue which can be circumvented by post-mortem of livestock at abattoirs for Schistosoma spp. of known zoonotic potential. To characterise the composition of naturally-occurring schistosome hybrids, we performed whole-genome sequencing of 21 natural livestock infective schistosome isolates. To facilitate this, we also assembled a de novo chromosomal-scale draft assembly of Schistosoma curassoni. Genomic analyses identified isolates of S. bovis, S. curassoni and hybrids between the two species, all of which were early generation hybrids with multiple generations found within the same host. These results show that hybridization is an ongoing process within natural populations with the potential to further challenge elimination efforts against schistosomiasis.
Collapse
Affiliation(s)
- Duncan J. Berger
- Wellcome Sanger Institute, Hinxton, United Kingdom
- Royal Veterinary College, University of London, London, United Kingdom
| | - Elsa Léger
- Royal Veterinary College, University of London, London, United Kingdom
- London Centre for Neglected Tropical Diseases Research, Imperial College Faculty of Medicine, London, United Kingdom
| | | | - Mariama Sène
- Unité de Formation et de Recherche des Sciences Agronomiques, d’Aquaculture et de Technologies Alimentaires, Université Gaston Berger, Saint-Louis, Senegal
| | - Nicolas D. Diouf
- Unité de Formation et de Recherche des Sciences Agronomiques, d’Aquaculture et de Technologies Alimentaires, Université Gaston Berger, Saint-Louis, Senegal
| | - Muriel Rabone
- The Natural History Museum, Department of Life Sciences, Cromwell Road, London, United Kingdom
| | - Aidan Emery
- The Natural History Museum, Department of Life Sciences, Cromwell Road, London, United Kingdom
| | - Fiona Allan
- The Natural History Museum, Department of Life Sciences, Cromwell Road, London, United Kingdom
- Pelagic Ecology Research Group, Scottish Oceans Institute, Gatty Marine Laboratory, School of Biology, University of St Andrews, St Andrews, United Kingdom
| | - James A. Cotton
- Wellcome Sanger Institute, Hinxton, United Kingdom
- London Centre for Neglected Tropical Diseases Research, Imperial College Faculty of Medicine, London, United Kingdom
| | - Matthew Berriman
- Wellcome Sanger Institute, Hinxton, United Kingdom
- London Centre for Neglected Tropical Diseases Research, Imperial College Faculty of Medicine, London, United Kingdom
| | - Joanne P. Webster
- Royal Veterinary College, University of London, London, United Kingdom
- London Centre for Neglected Tropical Diseases Research, Imperial College Faculty of Medicine, London, United Kingdom
| |
Collapse
|
24
|
Corsi GI, Tichkule S, Sannella AR, Vatta P, Asnicar F, Segata N, Jex AR, van Oosterhout C, Cacciò SM. Recent genetic exchanges and admixture shape the genome and population structure of the zoonotic pathogen Cryptosporidium parvum. Mol Ecol 2022; 32:2633-2645. [PMID: 35652748 DOI: 10.1111/mec.16556] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/30/2022]
Abstract
Cryptosporidium parvum is a globally distributed zoonotic pathogen and a major cause of diarrhoeal disease in humans and ruminants. The parasite's life cycle comprises an obligatory sexual phase, during which genetic exchanges can occur between previously isolated lineages. Here, we compare 32 whole genome sequences from human- and ruminant-derived parasite isolates collected across Europe, Egypt and China. We identify three strongly supported clusters that comprise a mix of isolates from different host species, geographic origins, and subtypes. We show that: (1) recombination occurs between ruminant isolates into human isolates; (2) these recombinant regions can be passed on to other human subtypes through gene flow and population admixture; (3) there have been multiple genetic exchanges, and most are likely recent; (4) putative virulence genes are significantly enriched within these genetic exchanges, and (5) this results in an increase in their nucleotide diversity. We carefully dissect the phylogenetic sequence of two genetic exchanges, illustrating the long-term evolutionary consequences of these events. Our results suggest that increased globalisation and close human-animal contacts increase the opportunity for genetic exchanges between previously isolated parasite lineages, resulting in spillover and spillback events. We discuss how this can provide a novel substrate for natural selection at genes involved in host-parasite interactions, thereby potentially altering the dynamic coevolutionary equilibrium in the Red Queens arms race.
Collapse
Affiliation(s)
- Giulia I Corsi
- CIBO, University of Trento, Trento, Italy.,Center for non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Swapnil Tichkule
- Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Anna Rosa Sannella
- Department of Infectious Diseases, European Union Reference Laboratory for Parasites, Istituto Superiore di Sanità, Viale Regina Elena, 299, Rome, Italy
| | - Paolo Vatta
- Department of Infectious Diseases, European Union Reference Laboratory for Parasites, Istituto Superiore di Sanità, Viale Regina Elena, 299, Rome, Italy
| | | | | | - Aaron R Jex
- Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Cock van Oosterhout
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Simone M Cacciò
- Department of Infectious Diseases, European Union Reference Laboratory for Parasites, Istituto Superiore di Sanità, Viale Regina Elena, 299, Rome, Italy
| |
Collapse
|
25
|
Wang W, Wu F, Zhang Q, Zhou N, Zhang M, Zheng T, Li Y, Tang BZ. Aggregation-Induced Emission Nanoparticles for Single Near-Infrared Light-Triggered Photodynamic and Photothermal Antibacterial Therapy. ACS NANO 2022; 16:7961-7970. [PMID: 35504042 DOI: 10.1021/acsnano.2c00734] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Phototheranostics is a potential area for precision medicine, which has received increasing attention for antibacterial applications. Integrating all phototheranostic modalities in a single molecule and achieving precise spatial colocalization is a challenging task because of the complexity of energy dissipation and molecular design. Here, a type of quaternary amine functionalized aggregation-induced emission (AIE), AIEgen, was synthesized and used to produce singlet oxygen (1O2) and heat, which were used to eradicate the bacteria. With the introduction of the positive charge in AIEgen, AIE nanoparticles (AIE NPs) could selectively target bacteria. Notably, the AIE NPs displayed obvious antibacterial performance against Gram-positive bacteria (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli). The antibacterial rates of AIE NPs were as high as 99.9% and 99.8% for S. aureus and E. coli, respectively. Therefore, our results suggested the potential of AIE NPs acting as broad-spectrum antimicrobial materials, which provided a strategy for treating different microorganisms.
Collapse
Affiliation(s)
- Wentao Wang
- Jiangsu Collaborative Innovation Center for Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Fan Wu
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Qicheng Zhang
- Jiangsu Collaborative Innovation Center for Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Ninglin Zhou
- Jiangsu Collaborative Innovation Center for Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Ming Zhang
- Jiangsu Collaborative Innovation Center for Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Tao Zheng
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| | - Yuanyuan Li
- College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, People's Republic of China
| |
Collapse
|
26
|
Hamelin RC, Bilodeau GJ, Heinzelmann R, Hrywkiw K, Capron A, Dort E, Dale AL, Giroux E, Kus S, Carleson NC, Grünwald NJ, Feau N. Genomic biosurveillance detects a sexual hybrid in the sudden oak death pathogen. Commun Biol 2022; 5:477. [PMID: 35589982 PMCID: PMC9120034 DOI: 10.1038/s42003-022-03394-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 04/21/2022] [Indexed: 11/24/2022] Open
Abstract
Invasive exotic pathogens pose a threat to trees and forest ecosystems worldwide, hampering the provision of essential ecosystem services such as carbon sequestration and water purification. Hybridization is a major evolutionary force that can drive the emergence of pathogens. Phytophthora ramorum, an emergent pathogen that causes the sudden oak and larch death, spreads as reproductively isolated divergent clonal lineages. We use a genomic biosurveillance approach by sequencing genomes of P. ramorum from survey and inspection samples and report the discovery of variants of P. ramorum that are the result of hybridization via sexual recombination between North American and European lineages. We show that these hybrids are viable, can infect a host and produce spores for long-term survival and propagation. Genome sequencing revealed genotypic combinations at 54,515 single nucleotide polymorphism loci not present in parental lineages. More than 6,000 of those genotypes are predicted to have a functional impact in genes associated with host infection, including effectors, carbohydrate-active enzymes and proteases. We also observed post-meiotic mitotic recombination that could generate additional genotypic and phenotypic variation and contribute to homoploid hybrid speciation. Our study highlights the importance of plant pathogen biosurveillance to detect variants, including hybrids, and inform management and control.
Collapse
Affiliation(s)
- Richard C Hamelin
- The Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada.
| | | | - Renate Heinzelmann
- The Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Kelly Hrywkiw
- The Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Arnaud Capron
- The Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Erika Dort
- The Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Angela L Dale
- New Construction Materials, FPInnovations, Vancouver, BC, Canada
| | - Emilie Giroux
- Ottawa Plant Laboratory, Canadian Food Inspection Agency, Ottawa, ON, Canada
| | - Stacey Kus
- New Construction Materials, FPInnovations, Vancouver, BC, Canada
| | - Nick C Carleson
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Niklaus J Grünwald
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
- Horticultural Crops Research Unit, USDA ARS, Corvallis, OR, USA
| | - Nicolas Feau
- The Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
27
|
Angora EK, Vangraefschepe A, Allienne JF, Menan H, Coulibaly JT, Meïté A, Raso G, Winkler MS, Yavo W, Touré AO, N'Goran EK, Zinsstag J, Utzinger J, Balmer O, Boissier J. Population genetic structure of Schistosoma haematobium and Schistosoma haematobium × Schistosoma bovis hybrids among school-aged children in Côte d'Ivoire. Parasite 2022; 29:23. [PMID: 35522066 PMCID: PMC9074780 DOI: 10.1051/parasite/2022023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 04/04/2022] [Indexed: 11/29/2022] Open
Abstract
While population genetics of Schistosoma haematobium have been investigated in West Africa, only scant data are available from Côte d’Ivoire. The purpose of this study was to analyze both genetic variability and genetic structure among S. haematobium populations and to quantify the frequency of S. haematobium × S. bovis hybrids in school-aged children in different parts of Côte d’Ivoire. Urine samples were subjected to a filtration method and examined microscopically for Schistosoma eggs in four sites in the western and southern parts of Côte d’Ivoire. A total of 2692 miracidia were collected individually and stored on Whatman® FTA cards. Of these, 2561 miracidia were successfully genotyped for species and hybrid identification using rapid diagnostic multiplex mitochondrial cox1 PCR and PCR Restriction Fragment Length Polymorphism (PCR-RFLP) analysis of the nuclear ITS2 region. From 2164 miracidia, 1966 (90.9%) were successfully genotyped using at least 10 nuclear microsatellite loci to investigate genetic diversity and population structure. Significant differences were found between sites in all genetic diversity indices and genotypic differentiation was observed between the site in the West and the three sites in the East. Analysis at the infrapopulation level revealed clustering of parasite genotypes within individual children, particularly in Duekoué (West) and Sikensi (East). Of the six possible cox1-ITS2 genetic profiles obtained from miracidia, S. bovis cox1 × S. haematobium ITS2 (42.0%) was the most commonly observed in the populations. We identified only 15 miracidia (0.7%) with an S. bovis cox1 × S. bovis ITS2 genotype. Our study provides new insights into the population genetics of S. haematobium and S. haematobium × S. bovis hybrids in humans in Côte d’Ivoire and we advocate for researching hybrid schistosomes in animals such as rodents and cattle in Côte d’Ivoire.
Collapse
Affiliation(s)
- Etienne K Angora
- Swiss Tropical and Public Health Institute, P.O. Box, CH-4002 Basel, Switzerland - University of Basel, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland - Unité de Formation et de Recherche Sciences Pharmaceutiques et Biologiques, Université Félix Houphouët-Boigny, BPV 34 Abidjan, Côte d'Ivoire
| | - Alexane Vangraefschepe
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, 66860 Perpignan, France
| | - Jean-François Allienne
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, 66860 Perpignan, France
| | - Hervé Menan
- Unité de Formation et de Recherche Sciences Pharmaceutiques et Biologiques, Université Félix Houphouët-Boigny, BPV 34 Abidjan, Côte d'Ivoire
| | - Jean T Coulibaly
- Swiss Tropical and Public Health Institute, P.O. Box, CH-4002 Basel, Switzerland - University of Basel, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland - Unité de Formation et de Recherche Biosciences, Université Félix Houphouët-Boigny, 22 BP 770, Abidjan 22, Côte d'Ivoire - Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, 01 BP 1303, Abidjan 01, Côte d'Ivoire
| | - Aboulaye Meïté
- Programme National de Lutte contre les Maladies Tropicales Négligées à Chimiothérapie Préventive, 06 BP 6394, Abidjan 06, Côte d'Ivoire
| | - Giovanna Raso
- Swiss Tropical and Public Health Institute, P.O. Box, CH-4002 Basel, Switzerland - University of Basel, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland
| | - Mirko S Winkler
- Swiss Tropical and Public Health Institute, P.O. Box, CH-4002 Basel, Switzerland - University of Basel, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland
| | - William Yavo
- Unité de Formation et de Recherche Sciences Pharmaceutiques et Biologiques, Université Félix Houphouët-Boigny, BPV 34 Abidjan, Côte d'Ivoire
| | - André O Touré
- Institut Pasteur de Côte d'Ivoire, BPV 490 Abidjan, Côte d'Ivoire
| | - Eliézer K N'Goran
- Unité de Formation et de Recherche Biosciences, Université Félix Houphouët-Boigny, 22 BP 770, Abidjan 22, Côte d'Ivoire - Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, 01 BP 1303, Abidjan 01, Côte d'Ivoire
| | - Jakob Zinsstag
- Swiss Tropical and Public Health Institute, P.O. Box, CH-4002 Basel, Switzerland - University of Basel, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland
| | - Jürg Utzinger
- Swiss Tropical and Public Health Institute, P.O. Box, CH-4002 Basel, Switzerland - University of Basel, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland
| | - Oliver Balmer
- Swiss Tropical and Public Health Institute, P.O. Box, CH-4002 Basel, Switzerland - University of Basel, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland
| | - Jérôme Boissier
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, 66860 Perpignan, France
| |
Collapse
|
28
|
Liang S, Ponpetch K, Zhou YB, Guo J, Erko B, Stothard JR, Murad MH, Zhou XN, Satrija F, Webster JP, Remais JV, Utzinger J, Garba A. Diagnosis of Schistosoma infection in non-human animal hosts: A systematic review and meta-analysis. PLoS Negl Trop Dis 2022; 16:e0010389. [PMID: 35522699 PMCID: PMC9116658 DOI: 10.1371/journal.pntd.0010389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 05/18/2022] [Accepted: 04/03/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Reliable and field-applicable diagnosis of schistosome infections in non-human animals is important for surveillance, control, and verification of interruption of human schistosomiasis transmission. This study aimed to summarize uses of available diagnostic techniques through a systematic review and meta-analysis. METHODOLOGY AND PRINCIPAL FINDINGS We systematically searched the literature and reports comparing two or more diagnostic tests in non-human animals for schistosome infection. Out of 4,909 articles and reports screened, 19 met our inclusion criteria, four of which were considered in the meta-analysis. A total of 14 techniques (parasitologic, immunologic, and molecular) and nine types of non-human animals were involved in the studies. Notably, four studies compared parasitologic tests (miracidium hatching test (MHT), Kato-Katz (KK), the Danish Bilharziasis Laboratory technique (DBL), and formalin-ethyl acetate sedimentation-digestion (FEA-SD)) with quantitative polymerase chain reaction (qPCR), and sensitivity estimates (using qPCR as the reference) were extracted and included in the meta-analyses, showing significant heterogeneity across studies and animal hosts. The pooled estimate of sensitivity was 0.21 (95% confidence interval (CI): 0.03-0.48) with FEA-SD showing highest sensitivity (0.89, 95% CI: 0.65-1.00). CONCLUSIONS/SIGNIFICANCE Our findings suggest that the parasitologic technique FEA-SD and the molecular technique qPCR are the most promising techniques for schistosome diagnosis in non-human animal hosts. Future studies are needed for validation and standardization of the techniques for real-world field applications.
Collapse
Affiliation(s)
- Song Liang
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, United States of America
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| | - Keerati Ponpetch
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, United States of America
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
- Sirindhorn College of Public Health Trang, Faculty of Public Health and Allied Health Sciences, Praboromarajchanok Institute, Trang, Thailand
| | - Yi-Biao Zhou
- School of Public Health, Fudan University, Shanghai, People’s Republic of China
| | - Jiagang Guo
- Department of Control of Neglected Tropical Diseases, World Health Organization, Geneva, Switzerland
| | - Berhanu Erko
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - J. Russell Stothard
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Merseyside, United Kingdom
| | - M. Hassan Murad
- Division of Public Health, Infectious Diseases and Occupational Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Xiao-Nong Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People’s Republic of China
| | - Fadjar Satrija
- Department of Animal Infectious Diseases and Veterinary Public Health, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| | - Joanne P. Webster
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hertfordshire, United Kingdom
| | - Justin V. Remais
- School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Jürg Utzinger
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Amadou Garba
- Department of Control of Neglected Tropical Diseases, World Health Organization, Geneva, Switzerland
| |
Collapse
|
29
|
Hybridization between Anguillicola crassus and A. novaezelandiae, and viability of the F1 generation. J Helminthol 2022; 96:e22. [PMID: 35300740 DOI: 10.1017/s0022149x22000104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
For decades, it has remained unclear how the Asian swim bladder nematode Anguillicola crassus was able to supplant the previously stable population of its relative from New Zealand Anguillicola novaezelandiae in the Lake Bracciano, Italy. Previously, researchers have hypothesized that A. crassus possesses an ecological advantage due to a more efficient life cycle in combination with a pattern of unidirectional hybridization between A. novaezelandiae females and A. crassus males. The present study focuses on the viability of hybrid offspring and their allelic pattern, particularly in developed adult stages of the hybrid F1 generation. While the percentages of hybrid individuals from A. novaezelandiae mothers and A. crassus fathers increased from egg to adult stages, it was more distinct in egg stages of A. crassus females and A. novaezelandiae males, but did not occur in adult F1 individuals at all. Therefore, we corroborate the hypothesis of unidirectional hybridization by differentiating between egg and adult stages, and suggest this as another explanatory factor for the extinction of A. novaezelandiae in Lake Bracciano in Italy and the predominance of A. crassus.
Collapse
|
30
|
Dinç M, Yalçın T, Çavuş İ, Özbilgin A. Comparative proteomic analysis of Leishmania parasites isolated from visceral and cutaneous leishmaniasis patients. Parasitology 2022; 149:298-305. [PMID: 34758895 PMCID: PMC11010476 DOI: 10.1017/s0031182021001967] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/30/2021] [Accepted: 10/27/2021] [Indexed: 11/06/2022]
Abstract
Leishmaniasis is an infectious disease in which different clinical manifestations are classified into three primary forms: visceral, cutaneous and mucocutaneous. These disease forms are associated with parasite species of the protozoan genus Leishmania. For instance, Leishmania infantum and Leishmania tropica are typically linked with visceral (VL) and cutaneous (CL) leishmaniasis, respectively; however, these two species can also cause other form to a lesser extent. What is more alarming is this characteristic, which threatens current medical diagnosis and treatment, is started to be acquired by other species. Our purpose was to address this issue; therefore, gel-based and gel-free proteomic analyses were carried out on the species L. infantum to determine the proteins differentiating between the parasites caused VL and CL. In addition, L. tropica parasites representing the typical cases for CL were included. According to our results, electrophoresis gels of parasites caused to VL were distinguishable regarding the repetitive down-regulation on some specific locations. In addition, a distinct spot of an antioxidant enzyme, superoxide dismutase, was shown up only on the gels of CL samples regardless of the species. In the gel-free approach, 37 proteins that were verified with a second database search using a different search engine, were recognized from the comparison between VL and CL samples. Among them, 31 proteins for the CL group and six proteins for the VL group were determined differentially abundant. Two proteins from the gel-based analysis, pyruvate kinase and succinyl-coA:3-ketoacid-coenzyme A transferase analysis were encountered in the protein list of the CL group.
Collapse
Affiliation(s)
- Melike Dinç
- Izmir Institute of Technology, Integrated Research Centers, National Mass Spectrometry Application and Research Center, Izmir, Turkey
| | - Talat Yalçın
- Faculty of Science, Department of Chemistry, Izmir Institute of Technology, Izmir, Turkey
| | - İbrahim Çavuş
- Faculty of Medicine, Department of Parasitology, Manisa Celal Bayar University, Manisa, Turkey
| | - Ahmet Özbilgin
- Faculty of Medicine, Department of Parasitology, Manisa Celal Bayar University, Manisa, Turkey
| |
Collapse
|
31
|
Human-type and pig-type Ascaris hybrids found in pigs. Vet Parasitol 2022; 302:109646. [PMID: 34999317 DOI: 10.1016/j.vetpar.2021.109646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 01/14/2023]
Abstract
The discovery of hybrids between Ascaris lumbricoides and Ascaris suum has complicated our understanding of the relationship between the two species. We examined the same Ascaris specimens (48 from humans and 48 from pigs) using two methods: microsatellite markers combined with Bayesian clustering and PCR-RFLP of the nuclear internal transcribed spacer region. The results obtained by the two methods were inconsistent but showed that hybrid Ascaris identified through both approaches could infect pigs. The results of this study suggest that PCR-RFLP of ITS alone is not suitable for molecular identification of human-type and pig-type Ascaris hybrids. Use of multiple SSR markers combined with Bayesian analysis was the most reliable method in our study. Our results indicate that, in addition to host-specific Ascaris types, there may be some that do not show host specificity. Our results show for the first time that hybrid individuals can infect pigs as well as humans. This study has important theoretical and practical implications, including suggesting the need to re-evaluate long-term ascariasis control strategies.
Collapse
|
32
|
Parija S. Climate adaptation impacting parasitic infection. Trop Parasitol 2022; 12:3-7. [PMID: 35923263 PMCID: PMC9341137 DOI: 10.4103/tp.tp_32_22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/18/2022] Open
Abstract
The steady and ongoing change in climatic patterns across the globe is triggering a cascade of climate-adaptive phenomena, both genetic and behavioral in parasites, and influencing the host–pathogen–transmission triangle. Parasite and vector traits are now heavily influenced due to increasing temperature that almost dissolved geospatial boundaries and impacted the basic reproductive number of parasites. As consequence, continents unknown to some parasites are experiencing altered distribution and abundance of new and emerging parasites that are developing into a newer epidemiological model. These are posing a burden to healthcare and higher disease prevalence. This calls for multidisciplinary actions focusing on One Health to improve and innovate in areas of detection, reporting, and medical countermeasures to combat the growing threat of parasite emergence owing to climate adaptations for better public health outcomes.
Collapse
|
33
|
Landeryou T, Rabone M, Allan F, Maddren R, Rollinson D, Webster BL, Tchuem-Tchuenté LA, Anderson RM, Emery AM. Genome-wide insights into adaptive hybridisation across the Schistosoma haematobium group in West and Central Africa. PLoS Negl Trop Dis 2022; 16:e0010088. [PMID: 35100291 PMCID: PMC8803156 DOI: 10.1371/journal.pntd.0010088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 12/11/2021] [Indexed: 11/30/2022] Open
Abstract
Schistosomiasis remains a public health concern across sub-Saharan Africa; current control programmes rely on accurate mapping and high mass drug administration (MDA) coverage to attempt disease elimination. Inter-species hybridisation can occur between certain species, changing epidemiological dynamics within endemic regions, which has the potential to confound control interventions. The impact of hybridisation on disease dynamics is well illustrated in areas of Cameroon where urogenital schistosomiasis, primarily due to Schistosoma haematobium and hybrid infections, now predominate over intestinal schistosomiasis caused by Schistosoma guineensis. Genetic markers have shown the ability to identify hybrids, however the underlying genomic architecture of divergence and introgression between these species has yet to be established. In this study, restriction site associated DNA sequencing (RADseq) was used on archived adult worms initially identified as; Schistosoma bovis (n = 4), S. haematobium (n = 9), S. guineensis (n = 3) and S. guineensis x S. haematobium hybrids (n = 4) from Mali, Senegal, Niger, São Tomé and Cameroon. Genome-wide evidence supports the existence of S. guineensis and S. haematobium hybrid populations across Cameroon. The hybridisation of S. guineensis x S. haematobium has not been demonstrated on the island of São Tomé, where all samples showed no introgression with S. haematobium. Additionally, all S. haematobium isolates from Nigeria, Mali and Cameroon indicated signatures of genomic introgression from S. bovis. Adaptive loci across the S. haematobium group showed that voltage-gated calcium ion channels (Cav) could play a key role in the ability to increase the survivability of species, particularly in host systems. Where admixture has occurred between S. guineensis and S. haematobium, the excess introgressive influx of tegumental (outer helminth body) and antigenic genes from S. haematobium has increased the adaptive response in hybrids, leading to increased hybrid population fitness and viability.
Collapse
Affiliation(s)
- Toby Landeryou
- Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, Imperial College London, London, United Kingdom
- The Natural History Museum, Department of Life Sciences, London, United Kingdom
- London Centre for Neglected Tropical Disease Research (LCNTDR), Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Muriel Rabone
- The Natural History Museum, Department of Life Sciences, London, United Kingdom
- London Centre for Neglected Tropical Disease Research (LCNTDR), Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Fiona Allan
- The Natural History Museum, Department of Life Sciences, London, United Kingdom
- London Centre for Neglected Tropical Disease Research (LCNTDR), Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Rosie Maddren
- Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, Imperial College London, London, United Kingdom
- London Centre for Neglected Tropical Disease Research (LCNTDR), Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - David Rollinson
- The Natural History Museum, Department of Life Sciences, London, United Kingdom
- London Centre for Neglected Tropical Disease Research (LCNTDR), Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Bonnie L. Webster
- The Natural History Museum, Department of Life Sciences, London, United Kingdom
- London Centre for Neglected Tropical Disease Research (LCNTDR), Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, Imperial College London, London, United Kingdom
| | | | - Roy M. Anderson
- Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, Imperial College London, London, United Kingdom
- London Centre for Neglected Tropical Disease Research (LCNTDR), Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Aidan M. Emery
- The Natural History Museum, Department of Life Sciences, London, United Kingdom
- London Centre for Neglected Tropical Disease Research (LCNTDR), Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
34
|
Borlase A, Rudge JW, Léger E, Diouf ND, Fall CB, Diop SD, Catalano S, Sène M, Webster JP. Spillover, hybridization, and persistence in schistosome transmission dynamics at the human-animal interface. Proc Natl Acad Sci U S A 2021; 118:e2110711118. [PMID: 34615712 PMCID: PMC8521685 DOI: 10.1073/pnas.2110711118] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2021] [Indexed: 12/24/2022] Open
Abstract
Zoonotic spillover and hybridization of parasites are major emerging public and veterinary health concerns at the interface of infectious disease biology, evolution, and control. Schistosomiasis is a neglected tropical disease of global importance caused by parasites of the Schistosoma genus, and the Schistosoma spp. system within Africa represents a key example of a system where spillover of animal parasites into human populations has enabled formation of hybrids. Combining model-based approaches and analyses of parasitological, molecular, and epidemiological data from northern Senegal, a region with a high prevalence of schistosome hybrids, we aimed to unravel the transmission dynamics of this complex multihost, multiparasite system. Using Bayesian methods and by estimating the basic reproduction number (R0 ), we evaluate the frequency of zoonotic spillover of Schistosoma bovis from livestock and the potential for onward transmission of hybrid S. bovis × S. haematobium offspring within human populations. We estimate R0 of hybrid schistosomes to be greater than the critical threshold of one (1.76; 95% CI 1.59 to 1.99), demonstrating the potential for hybridization to facilitate spread and establishment of schistosomiasis beyond its original geographical boundaries. We estimate R0 for S. bovis to be greater than one in cattle (1.43; 95% CI 1.24 to 1.85) but not in other ruminants, confirming cattle as the primary zoonotic reservoir. Through longitudinal simulations, we also show that where S. bovis and S. haematobium are coendemic (in livestock and humans respectively), the relative importance of zoonotic transmission is predicted to increase as the disease in humans nears elimination.
Collapse
Affiliation(s)
- Anna Borlase
- Centre for Emerging, Endemic and Exotic Diseases, Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hatfield AL9 7TA, United Kingdom;
| | - James W Rudge
- Communicable Diseases Policy Research Group, Department of Global Health and Development, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom
- Faculty of Public Health, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Elsa Léger
- Centre for Emerging, Endemic and Exotic Diseases, Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hatfield AL9 7TA, United Kingdom
| | - Nicolas D Diouf
- Institut Supérieur de Formation Agricole et Rurale, Université de Thiès, Bambey BP 54, Senegal
- Unité de Formation et de Recherche des Sciences Agronomiques, d'Aquaculture et de Technologies Alimentaires, Université Gaston Berger, BP 32000 Saint-Louis, Senegal
| | - Cheikh B Fall
- Service de Parasitologie - Mycologie, Faculté de Médecine, Pharmacie et Odontologie, Université Cheikh Anta Diop, BP 5005 Dakar, Senegal
| | - Samba D Diop
- Institut Supérieur de Formation Agricole et Rurale, Université de Thiès, Bambey BP 54, Senegal
| | - Stefano Catalano
- Centre for Emerging, Endemic and Exotic Diseases, Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hatfield AL9 7TA, United Kingdom
| | - Mariama Sène
- Unité de Formation et de Recherche des Sciences Agronomiques, d'Aquaculture et de Technologies Alimentaires, Université Gaston Berger, BP 32000 Saint-Louis, Senegal
| | - Joanne P Webster
- Centre for Emerging, Endemic and Exotic Diseases, Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hatfield AL9 7TA, United Kingdom
| |
Collapse
|
35
|
Hybridized Zoonotic Schistosoma Infections Result in Hybridized Morbidity Profiles: A Clinical Morbidity Study amongst Co-Infected Human Populations of Senegal. Microorganisms 2021; 9:microorganisms9081776. [PMID: 34442855 PMCID: PMC8401530 DOI: 10.3390/microorganisms9081776] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/03/2021] [Accepted: 08/17/2021] [Indexed: 11/25/2022] Open
Abstract
Hybridization of infectious agents is a major emerging public and veterinary health concern at the interface of evolution, epidemiology, and control. Whilst evidence of the extent of hybridization amongst parasites is increasing, their impact on morbidity remains largely unknown. This may be predicted to be particularly pertinent where parasites of animals with contrasting pathogenicity viably hybridize with human parasites. Recent research has revealed that viable zoonotic hybrids between human urogenital Schistosoma haematobium with intestinal Schistosoma species of livestock, notably Schistosoma bovis, can be highly prevalent across Africa and beyond. Examining human populations in Senegal, we found increased hepatic but decreased urogenital morbidity, and reduced improvement following treatment with praziquantel, in those infected with zoonotic hybrids compared to non-hybrids. Our results have implications for effective monitoring and evaluation of control programmes, and demonstrate for the first time the potential impact of parasite hybridizations on host morbidity.
Collapse
|
36
|
Genotyping of Ascaris spp. infecting humans and pigs in Italy, Slovakia and Colombia. INFECTION GENETICS AND EVOLUTION 2021; 94:104997. [PMID: 34252615 DOI: 10.1016/j.meegid.2021.104997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND The systematics and taxonomy of Ascaris lumbricoides and Ascaris suum, two of the world's most widespread nematodes, still represent a highly debated scientific issue. Two different transmission scenarios have been described according to endemicity: separated host-specific transmission cycles in endemic regions, and a single pool of infection shared by humans and pigs in non-endemic regions. The swine roundworm A. suum is now recognized as an important cause of human ascariasis also in endemic areas such as China, where cross-infections and hybridization have also been reported, as well as in non-endemic regions like Italy. This study aimed to investigate the molecular epidemiology of human and pig ascariasis in three countries representing different epidemiological scenarios: Italy as a non-endemic country, Colombia as an endemic country, and Slovakia as a non-endemic country, but with a poor socio-economic context linked to some focal populations of Roma settlements. MATERIALS AND METHODS A total of 237 nematodes were analysed: 46 from Colombia (13 from humans, 33 from pigs), 114 from Slovakia (20 from humans, 94 from pigs) and 77 from Italy (17 from humans and 60 from pigs). Genotyping by PCR-RFLP of nuclear (ITS) and sequencing of mitochondrial (cox1) target regions were performed. ITS genotypes were used to estimate the Hardy-Weinberg (HW) equilibrium according to hosts and country of origin. The partial cox1 sequences were used to analyse genetic polymorphisms according to hosts and country of origin, as well as to infer the network of haplotypes, their evolutionary relationships and geographical distribution. RESULTS 110 quality cox1 sequences were obtained. Haplotype network revealed three main groups corresponding to clade A, B and C. Clade C included most of the human cases from Italy, while those from Slovakia and Colombia were grouped in clade B. Ascaris from Italian and Colombian pigs showed HW equilibrium at the ITS marker, while disequilibrium was found in A. lumbricoides from Slovak pigs, which suggest a high unexpected amount of roundworms of human origin circulating also in pigs. CONCLUSIONS This study updates and extends the current understanding of Ascaris species and genotypes circulating in different epidemiological scenarios, with particular attention to the inclusion of human-derived Ascaris in the phylogenetic cluster C. Despite the evidence of HW equilibrium in the ITS in pig-derived Italian samples, the amount of genetic variation seems to support the existence of two closely related species.
Collapse
|
37
|
Panzner U, Boissier J. Natural Intra- and Interclade Human Hybrid Schistosomes in Africa with Considerations on Prevention through Vaccination. Microorganisms 2021; 9:microorganisms9071465. [PMID: 34361901 PMCID: PMC8305539 DOI: 10.3390/microorganisms9071465] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/04/2022] Open
Abstract
Causal agents of schistosomiasis are dioecious, digenean schistosomes affecting mankind in 76 countries. Preventive measures are manifold but need to be complemented by vaccination for long-term protection; vaccine candidates in advanced pre-clinical/clinical stages include Sm14, Sm-TSP-2/Sm-TSP-2Al®, Smp80/SchistoShield®, and Sh28GST/Bilhvax®. Natural and anthropogenic changes impact on breaking species isolation barriers favoring introgressive hybridization, i.e., allelic exchange among gene pools of sympatric, interbreeding species leading to instant large genetic diversity. Phylogenetic distance matters, thus the less species differ phylogenetically the more likely they hybridize. PubMed and Embase databases were searched for publications limited to hybridale confirmation by mitochondrial cytochrome c oxidase (COX) and/or nuclear ribosomal internal transcribed spacer (ITS). Human schistosomal hybrids are predominantly reported from West Africa with clustering in the Senegal River Basin, and scattering to Europe, Central and Eastern Africa. Noteworthy is the dominance of Schistosoma haematobium interbreeding with human and veterinary species leading due to hybrid vigor to extinction and homogenization as seen for S. guineensis in Cameroon and S. haematobium in Niger, respectively. Heterosis seems to advantage S. haematobium/S. bovis interbreeds with dominant S. haematobium-ITS/S. bovis-COX1 profile to spread from West to East Africa and reoccur in France. S. haematobium/S. mansoni interactions seen among Senegalese and Côte d’Ivoirian children are unexpected due to their high phylogenetic distance. Detecting pure S. bovis and S. bovis/S. curassoni crosses capable of infecting humans observed in Corsica and Côte d’Ivoire, and Niger, respectively, is worrisome. Taken together, species hybridization urges control and preventive measures targeting human and veterinary sectors in line with the One-Health concept to be complemented by vaccination protecting against transmission, infection, and disease recurrence. Functional and structural diversity of naturally occurring human schistosomal hybrids may impact current vaccine candidates requiring further research including natural history studies in endemic areas targeted for clinical trials.
Collapse
Affiliation(s)
- Ursula Panzner
- Division of Infectious Diseases and Tropical Medicine, Ludwig Maximilian University of Munich, 80539 Munich, Germany
- Swiss Tropical and Public Health Institute, University of Basel, 4002 Basel, Switzerland
- Correspondence: ; Tel.: +49-176-6657-2910
| | - Jerome Boissier
- IHPE, University of Montpellier, CNRS, Ifremer, University of Perpignan, 66860 Perpignan, France;
| |
Collapse
|
38
|
Laing G, Vigilato MAN, Cleaveland S, Thumbi SM, Blumberg L, Salahuddin N, Abdela-Ridder B, Harrison W. One Health for neglected tropical diseases. Trans R Soc Trop Med Hyg 2021; 115:182-184. [PMID: 33169163 PMCID: PMC7842102 DOI: 10.1093/trstmh/traa117] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/23/2020] [Accepted: 10/17/2020] [Indexed: 11/29/2022] Open
Abstract
The forthcoming World Health Organization road map for neglected tropical
diseases (NTDs) 2021–2030 recognises the complexity surrounding control
and elimination of these 20 diseases of poverty. It emphasises the need for a
paradigm shift from disease-specific interventions to holistic cross-cutting
approaches coordinating with adjacent disciplines. The One Health approach
exemplifies this shift, extending beyond a conventional model of zoonotic
disease control to consider the interactions of human and animal health systems
within their shared environment and the wider social and economic context. This
approach can also promote sustainability and resilience within these systems. To
achieve the global ambition on NTD elimination and control, political will,
along with contextualised innovative scientific strategies, is required.
Collapse
Affiliation(s)
| | - Marco Antonio Natal Vigilato
- Pan American Center for Foot and Mouth Disease and Veterinary Public Health, Communicable Diseases and Environmental Determinants of Health Department, Pan American Health Organisation, Brazil
| | - Sarah Cleaveland
- Institute of Biodiversity Animal Health & Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - S M Thumbi
- Institute of Tropical and Infectious Diseases, University of Nairobi, Nairobi, Kenya.,Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3FL, UK.,NIHR Global Health Research Unit Tackling Infections to Benefit Africa (TIBA), University of Edinburgh, Edinburgh EH9 3FL, UK.,Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA 99164, USA
| | - Lucille Blumberg
- Centre for Emerging, Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg 2192, South Africa.,Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa
| | | | | | | |
Collapse
|
39
|
Kincaid-Smith J, Mathieu-Bégné E, Chaparro C, Reguera-Gomez M, Mulero S, Allienne JF, Toulza E, Boissier J. No pre-zygotic isolation mechanisms between Schistosoma haematobium and Schistosoma bovis parasites: From mating interactions to differential gene expression. PLoS Negl Trop Dis 2021; 15:e0009363. [PMID: 33945524 PMCID: PMC8127863 DOI: 10.1371/journal.pntd.0009363] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 05/14/2021] [Accepted: 04/06/2021] [Indexed: 01/21/2023] Open
Abstract
Species usually develop reproductive isolation mechanisms allowing them to avoid interbreeding. These preventive barriers can act before reproduction, "pre-zygotic barriers", or after reproduction, "post-zygotic barriers". Pre-zygotic barriers prevent unfavourable mating, while post-zygotic barriers determine the viability and selective success of the hybrid offspring. Hybridization in parasites and the underlying reproductive isolation mechanisms maintaining their genetic integrity have been overlooked. Using an integrated approach this work aims to quantify the relative importance of pre-zygotic barriers in Schistosoma haematobium x S. bovis crosses. These two co-endemic species cause schistosomiasis, one of the major debilitating parasitic diseases worldwide, and can hybridize naturally. Using mate choice experiments we first tested if a specific mate recognition system exists between both species. Second, using RNA-sequencing we analysed differential gene expression between homo- and hetero-specific pairing in male and female adult parasites. We show that homo- and hetero-specific pairing occurs randomly between these two species, and few genes in both sexes are affected by hetero-specific pairing. This suggests that i) mate choice is not a reproductive isolating factor, and that ii) no pre-zygotic barrier except spatial isolation "by the final vertebrate host" seems to limit interbreeding between these two species. Interestingly, among the few genes affected by the pairing status of the worms, some can be related to pathways affected during male and female interactions and may also present interesting candidates for species isolation mechanisms and hybridization in schistosome parasites.
Collapse
Affiliation(s)
- Julien Kincaid-Smith
- Univ. Montpellier, CNRS, IFREMER, UPVD, IHPE, Perpignan,
France
- Centre for Emerging, Endemic and Exotic Diseases (CEEED), Department of
Pathobiology and Population Sciences (PPS), Royal Veterinary College, University
of London, Hawkshead Campus, Herts, United Kingdom
| | | | | | - Marta Reguera-Gomez
- Departamento de Parasitología, Facultad de Farmacia, Universidad de
Valencia, Burjassot, Valencia, Spain
| | - Stephen Mulero
- Univ. Montpellier, CNRS, IFREMER, UPVD, IHPE, Perpignan,
France
| | | | - Eve Toulza
- Univ. Montpellier, CNRS, IFREMER, UPVD, IHPE, Perpignan,
France
| | - Jérôme Boissier
- Univ. Montpellier, CNRS, IFREMER, UPVD, IHPE, Perpignan,
France
| |
Collapse
|
40
|
Medina D, Greenspan SE, Carvalho T, Becker CG, Toledo LF. Co-infecting pathogen lineages have additive effects on host bacterial communities. FEMS Microbiol Ecol 2021; 97:6134751. [PMID: 33580951 DOI: 10.1093/femsec/fiab030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 02/11/2021] [Indexed: 01/08/2023] Open
Abstract
Amphibian skin bacteria may confer protection against the fungus Batrachochytrium dendrobatidis (Bd), but responses of skin bacteria to different Bd lineages are poorly understood. The global panzootic lineage (Bd-GPL) has caused amphibian declines and extinctions globally. However, other lineages are enzootic (Bd-Asia-2/Brazil). Increased contact rates between Bd-GPL and enzootic lineages via globalization pose unknown consequences for host-microbiome-pathogen dynamics. We conducted a laboratory experiment and used 16S rRNA amplicon-sequencing to assess: (i) whether two lineages (Bd-Asia-2/Brazil and Bd-GPL) and their recombinant, in single and mixed infections, differentially affect amphibian skin bacteria; (ii) and the changes associated with the transition to laboratory conditions. We determined no clear differences in bacterial diversity among Bd treatments, despite differences in infection intensity. However, we observed an additive effect of mixed infections on bacterial alpha diversity and a potentially antagonistic interaction between Bd genotypes. Additionally, observed changes in community composition suggest a higher ability of Bd-GPL to alter skin bacteria. Lastly, we observed a drastic reduction in bacterial diversity and a change in community structure in laboratory conditions. We provide evidence for complex interactions between Bd genotypes and amphibian skin bacteria during coinfections, and expand on the implications of experimental conditions in ecological studies.
Collapse
Affiliation(s)
- Daniel Medina
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Instituto de Biologia, Universidade Estadual de Campinas, R. Monteiro Lobato, 255 - CEP 13083-862, Campinas, São Paulo, Brazil.,Sistema Nacional de Investigación, SENACYT, Building 205, City of Knowledge, Clayton, Panama, Republic of Panama
| | - Sasha E Greenspan
- Department of Biological Sciences, The University of Alabama, 1339 Science and Engineering Complex, Tuscaloosa 35487, Alabama, USA
| | - Tamilie Carvalho
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Instituto de Biologia, Universidade Estadual de Campinas, R. Monteiro Lobato, 255 - CEP 13083-862, Campinas, São Paulo, Brazil
| | - C Guilherme Becker
- Department of Biological Sciences, The University of Alabama, 1339 Science and Engineering Complex, Tuscaloosa 35487, Alabama, USA
| | - Luís Felipe Toledo
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Instituto de Biologia, Universidade Estadual de Campinas, R. Monteiro Lobato, 255 - CEP 13083-862, Campinas, São Paulo, Brazil
| |
Collapse
|
41
|
Crego-Vicente B, Fernández-Soto P, Febrer-Sendra B, García-Bernalt Diego J, Boissier J, Angora EK, Oleaga A, Muro A. Application of a Genus-Specific LAMP Assay for Schistosome Species to Detect Schistosoma haematobium x Schistosoma bovis Hybrids. J Clin Med 2021; 10:jcm10061308. [PMID: 33810080 PMCID: PMC8004683 DOI: 10.3390/jcm10061308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/08/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023] Open
Abstract
Schistosomiasis is a disease of great medical and veterinary importance in tropical and subtropical regions caused by different species of parasitic flatworms of the genus Schistosoma. The emergence of natural hybrids of schistosomes indicate the risk of possible infection to humans and their zoonotic potential, specifically for Schistosoma haematobium and S. bovis. Hybrid schistosomes have the potential to replace existing species, generate new resistances, pathologies and extending host ranges. Hybrids may also confuse the serological, molecular and parasitological diagnosis. Currently, LAMP technology based on detection of nucleic acids is used for detection of many agents, including schistosomes. Here, we evaluate our previously developed species-specific LAMP assays for S. haematobium, S. mansoni, S. bovis and also the genus-specific LAMP for the simultaneous detection of several Schistosoma species against both DNA from pure and, for the first time, S. haematobium x S. bovis hybrids. Proper operation was evaluated with DNA from hybrid schistosomes and with human urine samples artificially contaminated with parasites' DNA. LAMP was performed with and without prior DNA extraction. The genus-specific LAMP properly amplified pure Schistosoma species and different S. haematobium-S. bovis hybrids with different sensitivity. The Schistosoma spp.-LAMP method is potentially adaptable for field diagnosis and disease surveillance in schistosomiasis endemic areas where human infections by schistosome hybrids are increasingly common.
Collapse
Affiliation(s)
- Beatriz Crego-Vicente
- Infectious and Tropical Diseases Research Group (e-INTRO), Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Biomedical Research Institute of Salamanca, Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (B.C.-V.); (B.F.-S.); (J.G.-B.D.)
| | - Pedro Fernández-Soto
- Infectious and Tropical Diseases Research Group (e-INTRO), Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Biomedical Research Institute of Salamanca, Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (B.C.-V.); (B.F.-S.); (J.G.-B.D.)
- Correspondence: (P.F.-S.); (A.M.); Tel.: +34-677596173 (P.F.-S.); +34-677596155 (A.M.)
| | - Begoña Febrer-Sendra
- Infectious and Tropical Diseases Research Group (e-INTRO), Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Biomedical Research Institute of Salamanca, Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (B.C.-V.); (B.F.-S.); (J.G.-B.D.)
| | - Juan García-Bernalt Diego
- Infectious and Tropical Diseases Research Group (e-INTRO), Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Biomedical Research Institute of Salamanca, Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (B.C.-V.); (B.F.-S.); (J.G.-B.D.)
| | - Jérôme Boissier
- IHPE, Université Montpellier, CNRS, Ifremer, Université Perpignan Via Domitia, 66100 Perpignan, France;
| | - Etienne K. Angora
- Swiss Tropical and Public Health Institute, P.O. Box CH-4002 Basel, Switzerland;
- Department of Public Health, University of Basel, P.O. Box CH-4003 Basel, Switzerland
- Unité de Formation et de Recherche Sciences Pharmaceutiques et Biologiques, Université Félix Houphouët-Boigny, Abidjan BPV 34, Côte d’Ivoire
| | - Ana Oleaga
- Parasitology Laboratory, Institute of Natural Resources and Agrobiology (IRNASA, CSIC), Cordel de Merinas 40-52, 37008 Salamanca, Spain;
| | - Antonio Muro
- Infectious and Tropical Diseases Research Group (e-INTRO), Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Biomedical Research Institute of Salamanca, Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (B.C.-V.); (B.F.-S.); (J.G.-B.D.)
- Correspondence: (P.F.-S.); (A.M.); Tel.: +34-677596173 (P.F.-S.); +34-677596155 (A.M.)
| |
Collapse
|
42
|
Taylor MJ. Specialty Grand Challenge: Embracing the Need for Research and Innovation as Fundamental Enablers for Programmatic Progress for All Neglected Tropical Diseases. FRONTIERS IN TROPICAL DISEASES 2021. [DOI: 10.3389/fitd.2021.669726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
43
|
Mawa PA, Kincaid-Smith J, Tukahebwa EM, Webster JP, Wilson S. Schistosomiasis Morbidity Hotspots: Roles of the Human Host, the Parasite and Their Interface in the Development of Severe Morbidity. Front Immunol 2021; 12:635869. [PMID: 33790908 PMCID: PMC8005546 DOI: 10.3389/fimmu.2021.635869] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/25/2021] [Indexed: 12/14/2022] Open
Abstract
Schistosomiasis is the second most important human parasitic disease in terms of socioeconomic impact, causing great morbidity and mortality, predominantly across the African continent. For intestinal schistosomiasis, severe morbidity manifests as periportal fibrosis (PPF) in which large tracts of macro-fibrosis of the liver, visible by ultrasound, can occlude the main portal vein leading to portal hypertension (PHT), sequelae such as ascites and collateral vasculature, and ultimately fatalities. For urogenital schistosomiasis, severe morbidity manifests as pathology throughout the urinary system and genitals, and is a definitive cause of squamous cell bladder carcinoma. Preventative chemotherapy (PC) programmes, delivered through mass drug administration (MDA) of praziquantel (PZQ), have been at the forefront of schistosomiasis control programmes in sub-Saharan Africa since their commencement in Uganda in 2003. However, despite many successes, 'biological hotspots' (as distinct from 'operational hotspots') of both persistent high transmission and morbidity remain. In some areas, this failure to gain control of schistosomiasis has devastating consequences, with not only persistently high infection intensities, but both "subtle" and severe morbidity remaining prevalent. These hotspots highlight the requirement to revisit research into severe morbidity and its mechanisms, a topic that has been out of favor during times of PC implementation. Indeed, the focality and spatially-structured epidemiology of schistosomiasis, its transmission persistence and the morbidity induced, has long suggested that gene-environmental-interactions playing out at the host-parasite interface are crucial. Here we review evidence of potential unique parasite factors, host factors, and their gene-environmental interactions in terms of explaining differential morbidity profiles in the human host. We then take the situation of schistosomiasis mansoni within the Albertine region of Uganda as a case study in terms of elucidating the factors behind the severe morbidity observed and the avenues and directions for future research currently underway within a new research and clinical trial programme (FibroScHot).
Collapse
Affiliation(s)
- Patrice A. Mawa
- Immunomodulation and Vaccines Programme, Medical Research Council-Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, Uganda
- Department of Immunology, Uganda Virus Research Institute, Entebbe, Uganda
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Julien Kincaid-Smith
- Centre for Emerging, Endemic and Exotic Diseases (CEEED), Department of Pathobiology and Population Sciences (PPS), Royal Veterinary College, University of London, Herts, United Kingdom
| | | | - Joanne P. Webster
- Centre for Emerging, Endemic and Exotic Diseases (CEEED), Department of Pathobiology and Population Sciences (PPS), Royal Veterinary College, University of London, Herts, United Kingdom
| | - Shona Wilson
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
44
|
Rey O, Toulza E, Chaparro C, Allienne JF, Kincaid-Smith J, Mathieu-Begné E, Allan F, Rollinson D, Webster BL, Boissier J. Diverging patterns of introgression from Schistosoma bovis across S. haematobium African lineages. PLoS Pathog 2021; 17:e1009313. [PMID: 33544762 PMCID: PMC7891765 DOI: 10.1371/journal.ppat.1009313] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 02/18/2021] [Accepted: 01/13/2021] [Indexed: 12/29/2022] Open
Abstract
Hybridization is a fascinating evolutionary phenomenon that raises the question of how species maintain their integrity. Inter-species hybridization occurs between certain Schistosoma species that can cause important public health and veterinary issues. In particular hybrids between Schistosoma haematobium and S. bovis associated with humans and animals respectively are frequently identified in Africa. Recent genomic evidence indicates that some S. haematobium populations show signatures of genomic introgression from S. bovis. Here, we conducted a genomic comparative study and investigated the genomic relationships between S. haematobium, S. bovis and their hybrids using 19 isolates originating from a wide geographical range over Africa, including samples initially classified as S. haematobium (n = 11), S. bovis (n = 6) and S. haematobium x S. bovis hybrids (n = 2). Based on a whole genomic sequencing approach, we developed 56,181 SNPs that allowed a clear differentiation of S. bovis isolates from a genomic cluster including all S. haematobium isolates and a natural S. haematobium-bovis hybrid. All the isolates from the S. haematobium cluster except the isolate from Madagascar harbored signatures of genomic introgression from S. bovis. Isolates from Corsica, Mali and Egypt harbored the S. bovis-like Invadolysin gene, an introgressed tract that has been previously detected in some introgressed S. haematobium populations from Niger. Together our results highlight the fact that introgression from S. bovis is widespread across S. haematobium and that the observed introgression is unidirectional. Hybridization is a fascinating evolutionary phenomenon that raises the question of how species maintain their integrity. Inter-species hybridization occurs between certain Schistosoma species that can cause important public health and veterinary issues. In particular hybrids between Schistosoma haematobium and S. bovis associated with humans and animals respectively are frequently identified in Africa. Recent genomic evidence indicates that some S. haematobium populations show signatures of genomic introgression from S. bovis. Here we conducted a comparative genomic study to assess the genomic diversity within S. haematobium and S. bovis species and genetic differentation at the genome scale between these two sister species over the African continent. We also investigated traces of possible ancient introgression from one species to another. We found that S. haematobium display low genetic diversity compared to S. bovis. We also found that most S. haematobium samples harbor signature of past introgression with S. bovis at some genomic positions. Our results strongly suggest that introgression occurred long time ago and that such introgression is unidirectional from S. bovis within S. haematobium. Such introgresssion event(s) result in diverging patterns of genomic introgression across S. haematobium lineages.
Collapse
Affiliation(s)
- Olivier Rey
- Univ. Montpellier, CNRS, IFREMER, UPVD, IHPE, Perpignan, France
- * E-mail:
| | - Eve Toulza
- Univ. Montpellier, CNRS, IFREMER, UPVD, IHPE, Perpignan, France
| | | | | | - Julien Kincaid-Smith
- Univ. Montpellier, CNRS, IFREMER, UPVD, IHPE, Perpignan, France
- Centre for Emerging, Endemic and Exotic Diseases (CEEED), Department of Pathobiology and Population Sciences (PPS), Royal Veterinary College, University of London, Hawkshead Campus, Herts, United Kingdom
| | | | - Fiona Allan
- Wolfson Wellcome Biomedical Laboratories, Department of Life Sciences, Natural History Museum, London, United Kingdom
- London Centre for Neglected Tropical Disease Research, Imperial College London School of Public Health, London, United Kingdom
| | - David Rollinson
- Wolfson Wellcome Biomedical Laboratories, Department of Life Sciences, Natural History Museum, London, United Kingdom
- London Centre for Neglected Tropical Disease Research, Imperial College London School of Public Health, London, United Kingdom
| | - Bonnie L. Webster
- Wolfson Wellcome Biomedical Laboratories, Department of Life Sciences, Natural History Museum, London, United Kingdom
- London Centre for Neglected Tropical Disease Research, Imperial College London School of Public Health, London, United Kingdom
| | - Jérôme Boissier
- Univ. Montpellier, CNRS, IFREMER, UPVD, IHPE, Perpignan, France
| |
Collapse
|
45
|
Konczal M, Przesmycka KJ, Mohammed RS, Hahn C, Cable J, Radwan J. Expansion of frozen hybrids in the guppy ectoparasite, Gyrodactylus turnbulli. Mol Ecol 2021; 30:1005-1016. [PMID: 33345416 PMCID: PMC7986700 DOI: 10.1111/mec.15781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 12/07/2020] [Accepted: 12/16/2020] [Indexed: 11/27/2022]
Abstract
Hybridization is one of the major factors contributing to the emergence of highly successful parasites. Hybrid vigour can play an important role in this process, but subsequent rounds of recombination in the hybrid population may dilute its effects. Increased fitness of hybrids can, however, be frozen by asexual reproduction. Here, we identify invasion of a 'frozen hybrid' genotype in natural populations of Gyrodactylus turnbulli, a facultatively sexual ectoparasitic flatworm that causes significant damage to its fish host. We resequenced genomes of these parasites infecting guppies from six Trinidad and Tobago populations, and found surprisingly high discrepancy in genome-wide nucleotide diversity between islands. The elevated heterozygosity on Tobago is maintained by predominantly clonal reproduction of hybrids formed from two diverged genomes. Hybridization has been followed by spread of the hybrids across the island, implying a selective advantage compared with native genotypes. Our results thus highlight that a single outcrossing event may be independently sufficient to cause pathogen expansion.
Collapse
Affiliation(s)
- Mateusz Konczal
- Faculty of BiologyEvolutionary Biology GroupAdam Mickiewicz UniversityPoznańPoland
| | | | - Ryan S. Mohammed
- Department of Life SciencesFaculty of Science and TechnologyThe University of the West Indies Zoology Museum, UWISt. AugustineTrinidad and Tobago
- School of BiosciencesCardiff UniversityCardiffUK
| | | | - Jo Cable
- School of BiosciencesCardiff UniversityCardiffUK
| | - Jacek Radwan
- Faculty of BiologyEvolutionary Biology GroupAdam Mickiewicz UniversityPoznańPoland
| |
Collapse
|
46
|
Differential expression of microRNAs and tRNA fragments mediate the adaptation of the liver fluke Fasciola gigantica to its intermediate snail and definitive mammalian hosts. Int J Parasitol 2021; 51:405-414. [PMID: 33513403 DOI: 10.1016/j.ijpara.2020.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/23/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023]
Abstract
The tropical liver fluke Fasciola gigantica affects livestock and humans in many Asian countries, large parts of Africa, and parts of Europe. Despite the public health and economic impacts of F. gigantica, understanding of F. gigantica biology and how the complex lifecycle of this liver fluke is transcriptionally regulated remain unknown. Here, we tested the hypothesis that the regulatory small non-coding RNAs (sncRNAs), microRNAs (miRNAs) and tRNA-derived fragments (tRFs) play roles in the adaptation of F. gigantica to its intermediate and definitive hosts. We sequenced sncRNAs of eight lifecycle stages of F. gigantica. In total, 56 miRNAs from 33 conserved families and four Fasciola-specific miRNAs were identified. Expression analysis of miRNAs suggested clear stage-related patterns. By leveraging the existing transcriptomic data, we predicted a miRNA-based regulation of metabolism, transport, growth and developmental processes. Also, by comparing miRNA complement of F. gigantica with that of Fasciola hepatica, we detected a high level of conservation and identified differences in some miRNAs, which can be used to distinguish the two species. Moreover, we found that tRFs at each lifecycle stage were predominantly derived by tRNA-Lys and tRNA-Gly at 5' half sites, but relatively high expression was related to the buffalo-infecting stages. Taken together, we provided a comprehensive overview of the dynamic transcriptional changes of small RNAs that occur during the developmental stages of F. gigantica. This global analysis of F. gigantica lifecycle stages revealed new roles of miRNAs and tRFs in parasite development and will facilitate future research into understanding of fasciolosis pathobiology.
Collapse
|
47
|
Liu S, Piao X, Hou N, Cai P, Ma Y, Chen Q. Duplex real-time PCR for sexing Schistosoma japonicum cercariae based on W chromosome-specific genes and its applications. PLoS Negl Trop Dis 2020; 14:e0008609. [PMID: 32822351 PMCID: PMC7467314 DOI: 10.1371/journal.pntd.0008609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 09/02/2020] [Accepted: 07/15/2020] [Indexed: 02/07/2023] Open
Abstract
As a unique feature among otherwise hermaphroditic trematodes, Schistosoma species are gonochoric parasites whose sex is genetically determined (ZZ for males and ZW for females). However, schistosome larvae are morphologically identical, and sex can only be discriminated by molecular methods. Here, we integrated published Schistosoma. japonicum transcriptome and genome data to identify W chromosome-specific genes as sex biomarkers. Three W chromosome-specific genes of S. japonicum were identified as sex biomarkers from a panel of 12 genes expressed only in females. An efficient duplex real-time PCR (qPCR) method for sexing cercariae was developed which could identify the sex of cercariae within 2 h without DNA extraction. Moreover, this method can be used to identify not only single-sex but also mixed-sex schistosome-infected snails. We observed a nearly equal proportion of single-male, single-female, and mixed-sex schistosome infections in artificially infected snails. Sex-known schistosome-infected snail models can be efficiently constructed with the aid of duplex qPCR. A field study revealed that single-sex schistosome infections were predominant among naturally infected snails. Finally, a schistosomiasis mouse model based on sex-known cercariae infection was shown to be more reliable than a model based on sex-unknown cercariae infection. The developed duplex qPCR method for sexing S. japonicum cercariae can be widely used for schistosomiasis modeling, genetic experiments, and field-based molecular epidemiological studies. Schistosoma japonicum is a major causative agent of human schistosomiasis. Unlike other parasitic worms, S. japonicum females are determined by the heterogametic sex chromosome (ZW) and males by the homogametic sex chromosome (ZZ). The life cycle of S. japonicum includes the egg, miracidium, mother sporocyst, daughter sporocyst, cercaria, schistosomulum, and adult stages. The sex of adult male and female worms can be morphologically distinguished, whereas the sex of larvae, such as cercariae, can only be discriminated by molecular methods. In this study, we established an efficient duplex real-time PCR method for sexing S. japonicum cercariae based on newly identified W chromosome-specific genes. The established duplex real-time PCR method will facilitate construction of sex-controlled schistosome-infected intermediate host or definitive host models for schistosome-host interplays and schistosomiasis studies. This method is also a powerful tool for investigating the epidemiology of single-sex and mixed-sex schistosome-infected snails in the field.
Collapse
Affiliation(s)
- Shuai Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
- * E-mail: (SL); (QC)
| | - Xianyu Piao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Nan Hou
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Pengfei Cai
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Yu Ma
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Qijun Chen
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agriculture University, Shenyang, P.R. China
- * E-mail: (SL); (QC)
| |
Collapse
|
48
|
Léger E, Borlase A, Fall CB, Diouf ND, Diop SD, Yasenev L, Catalano S, Thiam CT, Ndiaye A, Emery A, Morrell A, Rabone M, Ndao M, Faye B, Rollinson D, Rudge JW, Sène M, Webster JP. Prevalence and distribution of schistosomiasis in human, livestock, and snail populations in northern Senegal: a One Health epidemiological study of a multi-host system. Lancet Planet Health 2020; 4:e330-e342. [PMID: 32800151 PMCID: PMC7443702 DOI: 10.1016/s2542-5196(20)30129-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 05/30/2023]
Abstract
BACKGROUND Schistosomiasis is a neglected tropical disease of global medical and veterinary importance. As efforts to eliminate schistosomiasis as a public health problem and interrupt transmission gather momentum, the potential zoonotic risk posed by livestock Schistosoma species via viable hybridisation in sub-Saharan Africa have been largely overlooked. We aimed to investigate the prevalence, distribution, and multi-host, multiparasite transmission cycle of Haematobium group schistosomiasis in Senegal, West Africa. METHODS In this epidemiological study, we carried out systematic surveys in definitive hosts (humans, cattle, sheep, and goats) and snail intermediate hosts, in 2016-18, in two areas of Northern Senegal: Richard Toll and Lac de Guiers, where transmission is perennial; and Barkedji and Linguère, where transmission is seasonal. The occurrence and distribution of Schistosoma species and hybrids were assessed by molecular analyses of parasitological specimens obtained from the different hosts. Children in the study villages aged 5-17 years and enrolled in school were selected from school registers. Adults (aged 18-78 years) were self-selecting volunteers. Livestock from the study villages in both areas were also randomly sampled, as were post-mortem samples from local abattoirs. Additionally, five malacological surveys of snail intermediate hosts were carried out at each site in open water sources used by the communities and their animals. FINDINGS In May to August, 2016, we surveyed 375 children and 20 adults from Richard Toll and Lac de Guiers, and 201 children and 107 adults from Barkedji and Linguère; in October, 2017, to January, 2018, we surveyed 386 children and 88 adults from Richard Toll and Lac de Guiers, and 323 children and 85 adults from Barkedji and Linguère. In Richard Toll and Lac de Guiers the prevalence of urogenital schistosomiasis in children was estimated to be 87% (95% CI 80-95) in 2016 and 88% (82-95) in 2017-18. An estimated 63% (in 2016) and 72% (in 2017-18) of infected children were shedding Schistosoma haematobium-Schistosoma bovis hybrids. In adults in Richard Toll and Lac de Guiers, the prevalence of urogenital schistosomiasis was estimated to be 79% (52-97) in 2016 and 41% (30-54) in 2017-18, with 88% of infected samples containing S haematobium-S bovis hybrids. In Barkedji and Linguère the prevalence of urogenital schistosomiasis in children was estimated to be 30% (23-38) in 2016 and 42% (35-49) in 2017-18, with the proportion of infected children found to be shedding S haematobium-S bovis hybrid miracidia much lower than in Richard Toll and Lac de Guiers (11% in 2016 and 9% in 2017-18). In adults in Barkedji and Linguère, the prevalence of urogenital schistosomiasis was estimated to be 26% (17-36) in 2016 and 47% (34-60) in 2017-18, with 10% of infected samples containing S haematobium-S bovis hybrids. The prevalence of S bovis in the sympatric cattle population of Richard Toll and the Lac de Guiers was 92% (80-99), with S bovis also found in sheep (estimated prevalence 14% [5-31]) and goats (15% [5-33]). In Barkedji and Linguère the main schistosome species in livestock was Schistosoma curassoni, with an estimated prevalence of 73% (48-93) in sheep, 84% (61-98) in goats and 8% (2-24) in cattle. S haematobium-S bovis hybrids were not found in livestock. In Richard Toll and Lac de Guiers 35% of infected Bulinus spp snail intermediate hosts were found to be shedding S haematobium-S bovis hybrids (68% shedding S haematobium; 17% shedding S bovis); however, no snails were found to be shedding S haematobium hybrids in Barkedji and Linguère (29% shedding S haematobium; 71% shedding S curassoni). INTERPRETATION Our findings suggest that hybrids originate in humans via zoonotic spillover from livestock populations, where schistosomiasis is co-endemic. Introgressive hybridisation, evolving host ranges, and wider ecosystem contexts could affect the transmission dynamics of schistosomiasis and other pathogens, demonstrating the need to consider control measures within a One Health framework. FUNDING Zoonoses and Emerging Livestock Systems programme (UK Biotechnology and Biological Sciences Research Council, UK Department for International Development, UK Economic and Social Research Council, UK Medical Research Council, UK Natural Environment Research Council, and UK Defence Science and Technology Laboratory).
Collapse
Affiliation(s)
- Elsa Léger
- Centre for Emerging, Endemic and Exotic Diseases, Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hertfordshire, UK; London Centre for Neglected Tropical Disease Research, School of Public Health, Imperial College London, London, UK.
| | - Anna Borlase
- Centre for Emerging, Endemic and Exotic Diseases, Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hertfordshire, UK; London Centre for Neglected Tropical Disease Research, School of Public Health, Imperial College London, London, UK; NTD Modelling Consortium, Big Data Institute, University of Oxford, Oxford, UK
| | - Cheikh B Fall
- Faculté de Médecine, Pharmacie et Odontologie, Université Cheikh Anta Diop, Dakar, Senegal
| | - Nicolas D Diouf
- Institut Supérieur de Formation Agricole et Rurale, Université de Thiès, Bambey, Senegal; Unité de Formation et de Recherche des Sciences Agronomiques, d'Aquaculture et de Technologies Alimentaires, Université Gaston Berger, Saint-Louis, Senegal
| | - Samba D Diop
- Institut Supérieur de Formation Agricole et Rurale, Université de Thiès, Bambey, Senegal
| | - Lucy Yasenev
- Centre for Emerging, Endemic and Exotic Diseases, Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hertfordshire, UK
| | - Stefano Catalano
- Centre for Emerging, Endemic and Exotic Diseases, Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hertfordshire, UK; London Centre for Neglected Tropical Disease Research, School of Public Health, Imperial College London, London, UK
| | - Cheikh T Thiam
- Unité de Formation et de Recherche des Sciences Agronomiques, d'Aquaculture et de Technologies Alimentaires, Université Gaston Berger, Saint-Louis, Senegal
| | - Alassane Ndiaye
- Unité de Formation et de Recherche des Sciences Agronomiques, d'Aquaculture et de Technologies Alimentaires, Université Gaston Berger, Saint-Louis, Senegal
| | - Aidan Emery
- London Centre for Neglected Tropical Disease Research, School of Public Health, Imperial College London, London, UK; Parasites and Vectors Division, Life Sciences Department, Natural History Museum, London, UK
| | - Alice Morrell
- Centre for Emerging, Endemic and Exotic Diseases, Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hertfordshire, UK
| | - Muriel Rabone
- London Centre for Neglected Tropical Disease Research, School of Public Health, Imperial College London, London, UK; Parasites and Vectors Division, Life Sciences Department, Natural History Museum, London, UK
| | - Momar Ndao
- National Reference Centre for Parasitology, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Babacar Faye
- Faculté de Médecine, Pharmacie et Odontologie, Université Cheikh Anta Diop, Dakar, Senegal
| | - David Rollinson
- London Centre for Neglected Tropical Disease Research, School of Public Health, Imperial College London, London, UK; Parasites and Vectors Division, Life Sciences Department, Natural History Museum, London, UK
| | - James W Rudge
- London Centre for Neglected Tropical Disease Research, School of Public Health, Imperial College London, London, UK; Communicable Diseases Policy Research Group, London School of Hygiene & Tropical Medicine, London, UK; Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | - Mariama Sène
- Unité de Formation et de Recherche des Sciences Agronomiques, d'Aquaculture et de Technologies Alimentaires, Université Gaston Berger, Saint-Louis, Senegal
| | - Joanne P Webster
- Centre for Emerging, Endemic and Exotic Diseases, Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hertfordshire, UK; London Centre for Neglected Tropical Disease Research, School of Public Health, Imperial College London, London, UK
| |
Collapse
|
49
|
Stothard JR, Kayuni SA, Al-Harbi MH, Musaya J, Webster BL. Future schistosome hybridizations: Will all Schistosoma haematobium hybrids please stand-up! PLoS Negl Trop Dis 2020; 14:e0008201. [PMID: 32614820 PMCID: PMC7332241 DOI: 10.1371/journal.pntd.0008201] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- J. Russell Stothard
- Department of Tropical Disease Biology, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- * E-mail:
| | - Sekeleghe A. Kayuni
- Department of Tropical Disease Biology, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- MASM Medi Clinics Limited, Medical Society of Malawi (MASM), Blantyre, Malawi
| | - Mohammad H. Al-Harbi
- Department of Tropical Disease Biology, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Ministry of Health, Qassim, Kingdom of Saudi Arabia
| | - Janelisa Musaya
- Department of Pathology, College of Medicine, University of Malawi, Blantyre, Malawi
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital College of Medicine, Blantyre, Malawi
| | - Bonnie L. Webster
- Parasites and Vectors Division, Life Sciences Department, Natural History Museum, London, United Kingdom
| |
Collapse
|
50
|
Webster JP, Neves MI, Webster BL, Pennance T, Rabone M, Gouvras AN, Allan F, Walker M, Rollinson D. Parasite Population Genetic Contributions to the Schistosomiasis Consortium for Operational Research and Evaluation within Sub-Saharan Africa. Am J Trop Med Hyg 2020; 103:80-91. [PMID: 32400355 PMCID: PMC7351308 DOI: 10.4269/ajtmh.19-0827] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/08/2020] [Indexed: 12/27/2022] Open
Abstract
Analyses of the population genetic structure of schistosomes under the "Schistosomiasis Consortium for Operational Research and Evaluation" (SCORE) contrasting treatment pressure scenarios in Tanzania, Niger, and Zanzibar were performed to provide supplementary critical information with which to evaluate the impact of these large-scale control activities and guide how activities could be adjusted. We predicted that population genetic analyses would reveal information on a range of important parameters including, but not exclusive to, recruitment and transmission of genotypes, occurrence of hybridization events, differences in reproductive mode, and degrees of inbreeding, and hence, the evolutionary potential, and responses of parasite populations under contrasting treatment pressures. Key findings revealed that naturally high levels of gene flow and mixing of the parasite populations between neighboring sites were likely to dilute any effects imposed by the SCORE treatment arms. Furthermore, significant inherent differences in parasite fecundity were observed, independent of current treatment arm, but potentially of major impact in terms of maintaining high levels of ongoing transmission in persistent "biological hotspot" sites. Within Niger, naturally occurring Schistosoma haematobium/Schistosoma bovis viable hybrids were found to be abundant, often occurring in significantly higher proportions than that of single-species S. haematobium infections. By examining parasite population genetic structures across hosts, treatment regimens, and the spatial landscape, our results to date illustrate key transmission processes over and above that which could be achieved through standard parasitological monitoring of prevalence and intensity alone, as well as adding to our understanding of Schistosoma spp. life history strategies in general.
Collapse
Affiliation(s)
- Joanne P. Webster
- Department of Pathobiology and Population Sciences, Centre for Emerging, Endemic and Exotic Diseases (CEEED), Royal Veterinary College, University of London, Hawkshead Campus, Herts, United Kingdom
- London Centre for Neglected Tropical Disease Research (LCNTDR), Imperial College Faculty of Medicine, London, United Kingdom
| | - Maria Inês Neves
- Department of Pathobiology and Population Sciences, Centre for Emerging, Endemic and Exotic Diseases (CEEED), Royal Veterinary College, University of London, Hawkshead Campus, Herts, United Kingdom
- London Centre for Neglected Tropical Disease Research (LCNTDR), Imperial College Faculty of Medicine, London, United Kingdom
| | - Bonnie L. Webster
- London Centre for Neglected Tropical Disease Research (LCNTDR), Imperial College Faculty of Medicine, London, United Kingdom
- Department of Life Sciences, Wolfson Wellcome Biomedical Laboratories, The Natural History Museum, London, United Kingdom
| | - Tom Pennance
- London Centre for Neglected Tropical Disease Research (LCNTDR), Imperial College Faculty of Medicine, London, United Kingdom
- Department of Life Sciences, Wolfson Wellcome Biomedical Laboratories, The Natural History Museum, London, United Kingdom
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Muriel Rabone
- London Centre for Neglected Tropical Disease Research (LCNTDR), Imperial College Faculty of Medicine, London, United Kingdom
- Department of Life Sciences, Wolfson Wellcome Biomedical Laboratories, The Natural History Museum, London, United Kingdom
| | - Anouk N. Gouvras
- London Centre for Neglected Tropical Disease Research (LCNTDR), Imperial College Faculty of Medicine, London, United Kingdom
- Department of Life Sciences, Wolfson Wellcome Biomedical Laboratories, The Natural History Museum, London, United Kingdom
| | - Fiona Allan
- London Centre for Neglected Tropical Disease Research (LCNTDR), Imperial College Faculty of Medicine, London, United Kingdom
- Department of Life Sciences, Wolfson Wellcome Biomedical Laboratories, The Natural History Museum, London, United Kingdom
| | - Martin Walker
- Department of Pathobiology and Population Sciences, Centre for Emerging, Endemic and Exotic Diseases (CEEED), Royal Veterinary College, University of London, Hawkshead Campus, Herts, United Kingdom
- London Centre for Neglected Tropical Disease Research (LCNTDR), Imperial College Faculty of Medicine, London, United Kingdom
| | - David Rollinson
- London Centre for Neglected Tropical Disease Research (LCNTDR), Imperial College Faculty of Medicine, London, United Kingdom
- Department of Life Sciences, Wolfson Wellcome Biomedical Laboratories, The Natural History Museum, London, United Kingdom
| |
Collapse
|