1
|
Çalışkan DM, Kumar S, Hinse S, Schughart K, Wiewrodt R, Fischer S, Krueger V, Wiebe K, Barth P, Mellmann A, Ludwig S, Brunotte L. Molecular characterisation of influenza B virus from the 2017/18 season in primary models of the human lung reveals improved adaptation to the lower respiratory tract. Emerg Microbes Infect 2024; 13:2402868. [PMID: 39248230 PMCID: PMC11421153 DOI: 10.1080/22221751.2024.2402868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
The 2017/18 influenza season was characterized by unusual high numbers of severe infections and hospitalizations. Instead of influenza A viruses, this season was dominated by infections with influenza B viruses of the Yamagata lineage. While this IBV/Yam dominance was associated with a vaccine mismatch, a contribution of virus intrinsic features to the clinical severity of the infections was speculated. Here, we performed a molecular and phenotypic characterization of three IBV isolates from patients with severe flu symptoms in 2018 and compared it to an IBV/Yam isolate from 2016 using experimental models of increasing complexity, including human lung explants, lung organoids, and alveolar macrophages. Viral genome sequencing revealed the presence of clade but also isolate specific mutations in all viral genes, except NP, M1, and NEP. Comparative replication kinetics in different cell lines provided further evidence for improved replication fitness, tolerance towards higher temperatures, and the development of immune evasion mechanisms by the 2018 IBV isolates. Most importantly, immunohistochemistry of infected human lung explants revealed an impressively altered cell tropism, extending from AT2 to AT1 cells and macrophages. Finally, transcriptomics of infected human lung explants demonstrated significantly reduced amounts of type I and type III IFNs by the 2018 IBV isolate, supporting the existence of additional immune evasion mechanisms. Our results show that the severeness of the 2017/18 Flu season was not only the result of a vaccine mismatch but was also facilitated by improved adaptation of the circulating IBV strains to the environment of the human lower respiratory tract.
Collapse
Affiliation(s)
- Duygu Merve Çalışkan
- Institute of Virology, University of Münster, Münster, Germany
- EvoPAD Research Training Group 2220, University of Münster, Münster, Germany
| | - Sriram Kumar
- Institute of Virology, University of Münster, Münster, Germany
- EvoPAD Research Training Group 2220, University of Münster, Münster, Germany
| | - Saskia Hinse
- Institute of Virology, University of Münster, Münster, Germany
| | - Klaus Schughart
- Institute of Virology, University of Münster, Münster, Germany
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Rainer Wiewrodt
- Department of Medicine A, Haematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
- Department of Medicine A, University Hospital Muenster, Muenster, Germany
- Department of Respiratory Medicine and Thoracic Oncology, Foundation Mathias Spital, Rheine and Ibbenbueren, Germany
| | - Stefan Fischer
- Department of Medicine A, University Hospital Muenster, Muenster, Germany
- Department of Respiratory Medicine and Thoracic Oncology, Foundation Mathias Spital, Rheine and Ibbenbueren, Germany
| | - Vera Krueger
- Department of Medicine A, University Hospital Muenster, Muenster, Germany
- Department of Respiratory Medicine and Thoracic Oncology, Foundation Mathias Spital, Rheine and Ibbenbueren, Germany
| | - Karsten Wiebe
- Department of Thoracic Surgery, University Hospital Münster, Muenster, Germany
| | - Peter Barth
- Gerhard-Domagk-Institute of Pathology, University of Münster, Muenster, Germany
| | | | - Stephan Ludwig
- Institute of Virology, University of Münster, Münster, Germany
- EvoPAD Research Training Group 2220, University of Münster, Münster, Germany
| | - Linda Brunotte
- Institute of Virology, University of Münster, Münster, Germany
| |
Collapse
|
2
|
Chen Z, Tsui JLH, Gutierrez B, Moreno SB, du Plessis L, Deng X, Cai J, Bajaj S, Suchard MA, Pybus OG, Lemey P, Kraemer MUG, Yu H. COVID-19 pandemic interventions reshaped the global dispersal of seasonal influenza viruses. Science 2024; 386:eadq3003. [PMID: 39509510 PMCID: PMC11760156 DOI: 10.1126/science.adq3003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/11/2024] [Indexed: 11/15/2024]
Abstract
The global dynamics of seasonal influenza viruses inform the design of surveillance, intervention, and vaccination strategies. The COVID-19 pandemic provided a singular opportunity to evaluate how influenza circulation worldwide was perturbed by human behavioral changes. We combine molecular, epidemiological, and international travel data and find that the pandemic's onset led to a shift in the intensity and structure of international influenza lineage movement. During the pandemic, South Asia played an important role as a phylogenetic trunk location of influenza A viruses, whereas West Asia maintained the circulation of influenza B/Victoria. We explore drivers of influenza lineage dynamics across the pandemic period and reasons for the possible extinction of the B/Yamagata lineage. After a period of 3 years, the intensity of among-region influenza lineage movements returned to pre-pandemic levels, with the exception of B/Yamagata, after the recovery of global air traffic, highlighting the robustness of global lineage dispersal patterns to substantial perturbation.
Collapse
Affiliation(s)
- Zhiyuan Chen
- School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University; Shanghai, China
| | | | - Bernardo Gutierrez
- Department of Biology, University of Oxford; Oxford, UK
- Colegio de Ciencias Biologicas y Ambientales, Universidad San Francisco de Quito USFQ; Quito, Ecuador
| | | | - Louis du Plessis
- Department of Biosystems Science and Engineering, ETH Zürich; Basel, Switzerland
- Swiss Institute of Bioinformatics; Lausanne, Switzerland
| | - Xiaowei Deng
- School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University; Shanghai, China
- Department of Epidemiology, National Vaccine Innovation Platform, School of Public Health, Nanjing Medical University; Nanjing, China
| | - Jun Cai
- School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University; Shanghai, China
| | - Sumali Bajaj
- Department of Biology, University of Oxford; Oxford, UK
| | - Marc A. Suchard
- Departments of Biostatistics, Biomathematics and Human Genetics, University of California, Los Angeles; Los Angeles, CA, USA
| | - Oliver G. Pybus
- Department of Biology, University of Oxford; Oxford, UK
- Department of Pathobiology and Population Sciences, Royal Veterinary College; London, UK
- Pandemic Sciences Institute, University of Oxford; Oxford, UK
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven; Leuven, Belgium
| | - Moritz U. G. Kraemer
- Department of Biology, University of Oxford; Oxford, UK
- Pandemic Sciences Institute, University of Oxford; Oxford, UK
| | - Hongjie Yu
- School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University; Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University; Shanghai, China
- Department of Infectious Diseases, Huashan Hospital, Fudan University; Shanghai, China
| |
Collapse
|
3
|
Do THT, Wille M, Wheatley AK, Koutsakos M. Triton X-100-treated virus-based ELLA demonstrates discordant antigenic evolution of influenza B virus hemagglutinin and neuraminidase. J Virol 2024; 98:e0118624. [PMID: 39360825 PMCID: PMC11494982 DOI: 10.1128/jvi.01186-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/14/2024] [Indexed: 10/23/2024] Open
Abstract
Neuraminidase (NA)-specific antibodies have been associated with protection against influenza and thus NA is considered a promising target for next-generation vaccines against influenza A (IAV) and B viruses (IBV). NA inhibition (NI) by antibodies is typically assessed using an enzyme-linked lectin assay (ELLA). However, ELLA can be confounded by anti-hemagglutinin (anti-HA) antibodies that block NA by steric hindrance (termed HA interference). Although strategies have been employed to overcome HA interference for IAV, similar approaches have not been assessed for IBV. We found that HA interference is common in ELLA using IBV, rendering the technique unreliable. Anti-HA antibodies were not completely depleted from sera by HA-expressing cell lines, and this approach was of limited utility. In contrast, we find that treatment of virions with Triton X-100, but not Tween-20 or ether, efficiently separates the HA and NA components and overcomes interference caused by anti-HA antibodies. We also characterize a panel of recombinant IBV NA proteins that further validated the results from Triton X-100-treated virus-based ELLA. Using these reagents and assays, we demonstrate discordant antigenic evolution between IBV NA and HA over the last 80 years. This optimized ELLA protocol will facilitate further in-depth serological surveys of IBV immunity as well as antigenic characterization of the IBV NA on a larger scale.IMPORTANCEInfluenza B viruses (IBVs) contribute to annual epidemics and may cause severe disease, especially in children. Consequently, several approaches are being explored to improve vaccine efficacy, including the addition of neuraminidase (NA). Antigen selection and assessment of serological responses will require a reliable serological assay to specifically quantify NA inhibition (NI). Although such assays have been assessed for influenza A viruses (IAVs), this has not been done of influenza B viruses. Our study identifies a readily applicable strategy to measure the inhibitory activity of neuraminidase-specific antibodies against influenza B virus without interference from anti-hemagglutinin (anti-HA) antibodies. This will aid broader serological assessment of influenza B virus-specific antibodies and antigenic characterization of the influenza B virus neuraminidase.
Collapse
Affiliation(s)
- Thi H. T. Do
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Michelle Wille
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
- Centre for Pathogen Genomics, University of Melbourne, Melbourne, Victoria, Australia
| | - Adam K. Wheatley
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Marios Koutsakos
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| |
Collapse
|
4
|
Ashraf MA, Raza MA, Amjad MN, Ud Din G, Yue L, Shen B, Chen L, Dong W, Xu H, Hu Y. A comprehensive review of influenza B virus, its biological and clinical aspects. Front Microbiol 2024; 15:1467029. [PMID: 39296301 PMCID: PMC11408344 DOI: 10.3389/fmicb.2024.1467029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/22/2024] [Indexed: 09/21/2024] Open
Abstract
Influenza B virus (IBV) stands as a paradox, often overshadowed by its more notorious counterpart, influenza A virus (IAV). Yet, it remains a captivating and elusive subject of scientific inquiry. Influenza B is important because it causes seasonal flu outbreaks that can lead to severe respiratory illnesses, including bronchitis, pneumonia, and exacerbations of chronic conditions like asthma. Limitations in the influenza B virus's epidemiological, immunological, and etiological evolution must be addressed promptly. This comprehensive review covers evolutionary epidemiology and pathogenesis, host-virus interactions, viral isolation and propagation, advanced molecular detection assays, vaccine composition and no animal reservoir for influenza B virus. Complex viral etiology begins with intranasal transmission of influenza B virus with the release of a segmented RNA genome that attacks host cell machinery for transcription and translation within the nucleus and the release of viral progeny. Influenza B virus prevalence in domesticated and wild canines, sea mammals, and birds is frequent, yet there is no zoonosis. The periodic circulation of influenza B virus indicates a 1-3-year cycle for monophyletic strain replacement within the Victoria strain due to frequent antigenic drift in the HA near the receptor-binding site (RBS), while the antigenic stability of Yamagata viruses portrays a more conservative evolutionary pattern. Additionally, this article outlines contemporary antiviral strategies, including pharmacological interventions and vaccination efforts. This article serves as a resource for researchers, healthcare professionals, and anyone interested in the mysterious nature of the influenza B virus. It provides valuable insights and knowledge essential for comprehending and effectively countering this viral foe, which continues to pose a significant public health threat.
Collapse
Affiliation(s)
- Muhammad Awais Ashraf
- CAS Key Laboratory of Molecular Virology and Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Muhammad Asif Raza
- CAS Key Laboratory of Molecular Virology and Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Muhammad Nabeel Amjad
- CAS Key Laboratory of Molecular Virology and Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ghayyas Ud Din
- CAS Key Laboratory of Molecular Virology and Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lihuan Yue
- CAS Key Laboratory of Molecular Virology and Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Bei Shen
- CAS Key Laboratory of Molecular Virology and Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Lingdie Chen
- CAS Key Laboratory of Molecular Virology and Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Dong
- Pediatric Department, Nanxiang Branch of Ruijin Hospital, Shanghai, China
| | - Huiting Xu
- Pediatric Department, Nanxiang Branch of Ruijin Hospital, Shanghai, China
| | - Yihong Hu
- CAS Key Laboratory of Molecular Virology and Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Pekarek MJ, Weaver EA. Influenza B Virus Vaccine Innovation through Computational Design. Pathogens 2024; 13:755. [PMID: 39338946 PMCID: PMC11434669 DOI: 10.3390/pathogens13090755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024] Open
Abstract
As respiratory pathogens, influenza B viruses (IBVs) cause a significant socioeconomic burden each year. Vaccine and antiviral development for influenza viruses has historically viewed IBVs as a secondary concern to influenza A viruses (IAVs) due to their lack of animal reservoirs compared to IAVs. However, prior to the global spread of SARS-CoV-2, the seasonal epidemics caused by IBVs were becoming less predictable and inducing more severe disease, especially in high-risk populations. Globally, researchers have begun to recognize the need for improved prevention strategies for IBVs as a primary concern. This review discusses what is known about IBV evolutionary patterns and the effect of the spread of SARS-CoV-2 on these patterns. We also analyze recent advancements in the development of novel vaccines tested against IBVs, highlighting the promise of computational vaccine design strategies when used to target both IBVs and IAVs and explain why these novel strategies can be employed to improve the effectiveness of IBV vaccines.
Collapse
Affiliation(s)
| | - Eric A. Weaver
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| |
Collapse
|
6
|
Chon I, Win SMK, Phyu WW, Saito R, Kyaw Y, Win NC, Lasham DJ, Tin HH, Tamura T, Otoguro T, Wagatsuma K, Sun Y, Li J, Watanabe H. Whole-Genome Analysis of the Influenza A(H1N1)pdm09 Viruses Isolated from Influenza-like Illness Outpatients in Myanmar and Community-Acquired Oseltamivir-Resistant Strains Present from 2015 to 2019. Viruses 2024; 16:1300. [PMID: 39205274 PMCID: PMC11360699 DOI: 10.3390/v16081300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
In this study, we describe the genetic characteristics of influenza A(H1N1)pdm09 strains detected in Myanmar from 2015 to 2019. Whole genomes from 60 A(H1N1)pdm09 virus isolates were amplified using real-time polymerase chain reaction and successfully sequenced using the Illumina iSeq100 platforms. Eight individual phylogenetic trees were retrieved for each segment along with those of the World Health Organization (WHO)-recommended Southern Hemisphere vaccine strains for the respective years. A(H1N1)pdm09 viruses from 2015 were found to belong to clade 6B, those from 2016 to 6B.1, 2017 to 6B.1A, and 2019 to 6B.1A.5a, and were genetically distinct from the Southern Hemisphere vaccine strains for the respective seasons, A/California/7/2009 and A/Michigan/45/2015. We observed one virus with intra-subtype reassortment, collected in the 2015 season. Importantly, three viruses possessed the H275Y substitution in the neuraminidase protein, appearing to be community-acquired without the prior administration of neuraminidase inhibitors. These viruses exhibited highly reduced susceptibility to oseltamivir and peramivir. This study demonstrates the importance of monitoring genetic variations in influenza viruses that will contribute to the selection of global influenza vaccines.
Collapse
Affiliation(s)
- Irina Chon
- Division of International Health (Public Health), Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan; (R.S.); (K.W.); (Y.S.); (J.L.)
| | - Su Mon Kyaw Win
- Infectious Diseases Research Center of Niigata University in Myanmar (IDRC), Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan; (S.M.K.W.); (N.C.W.); (D.J.L.); (T.T.); (T.O.); (H.W.)
| | - Wint Wint Phyu
- Department of Microbiology, University of Medicine, Magway 04012, Myanmar;
| | - Reiko Saito
- Division of International Health (Public Health), Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan; (R.S.); (K.W.); (Y.S.); (J.L.)
- Infectious Diseases Research Center of Niigata University in Myanmar (IDRC), Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan; (S.M.K.W.); (N.C.W.); (D.J.L.); (T.T.); (T.O.); (H.W.)
| | - Yadanar Kyaw
- Respiratory Medicine Department, Thingangyun Sanpya General Hospital, Yangon 110-71, Myanmar;
| | - Nay Chi Win
- Infectious Diseases Research Center of Niigata University in Myanmar (IDRC), Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan; (S.M.K.W.); (N.C.W.); (D.J.L.); (T.T.); (T.O.); (H.W.)
| | - Di Ja Lasham
- Infectious Diseases Research Center of Niigata University in Myanmar (IDRC), Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan; (S.M.K.W.); (N.C.W.); (D.J.L.); (T.T.); (T.O.); (H.W.)
| | - Htay Htay Tin
- University of Medical Technology, Yangon 110-12, Myanmar;
| | - Tsutomu Tamura
- Infectious Diseases Research Center of Niigata University in Myanmar (IDRC), Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan; (S.M.K.W.); (N.C.W.); (D.J.L.); (T.T.); (T.O.); (H.W.)
| | - Teruhime Otoguro
- Infectious Diseases Research Center of Niigata University in Myanmar (IDRC), Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan; (S.M.K.W.); (N.C.W.); (D.J.L.); (T.T.); (T.O.); (H.W.)
| | - Keita Wagatsuma
- Division of International Health (Public Health), Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan; (R.S.); (K.W.); (Y.S.); (J.L.)
- Institute for Research Administration, Niigata University, Niigata 951-8510, Japan
| | - Yuyang Sun
- Division of International Health (Public Health), Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan; (R.S.); (K.W.); (Y.S.); (J.L.)
| | - Jiaming Li
- Division of International Health (Public Health), Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan; (R.S.); (K.W.); (Y.S.); (J.L.)
| | - Hisami Watanabe
- Infectious Diseases Research Center of Niigata University in Myanmar (IDRC), Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan; (S.M.K.W.); (N.C.W.); (D.J.L.); (T.T.); (T.O.); (H.W.)
| |
Collapse
|
7
|
Edler P, Schwab LSU, Aban M, Wille M, Spirason N, Deng YM, Carlock MA, Ross TM, Juno JA, Rockman S, Wheatley AK, Kent SJ, Barr IG, Price DJ, Koutsakos M. Immune imprinting in early life shapes cross-reactivity to influenza B virus haemagglutinin. Nat Microbiol 2024; 9:2073-2083. [PMID: 38890491 DOI: 10.1038/s41564-024-01732-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 05/15/2024] [Indexed: 06/20/2024]
Abstract
Influenza exposures early in life are believed to shape future susceptibility to influenza infections by imprinting immunological biases that affect cross-reactivity to future influenza viruses. However, direct serological evidence linked to susceptibility is limited. Here we analysed haemagglutination-inhibition titres in 1,451 cross-sectional samples collected between 1992 and 2020, from individuals born between 1917 and 2008, against influenza B virus (IBV) isolates from 1940 to 2021. We included testing of 'future' isolates that circulated after sample collection. We show that immunological biases are conferred by early life IBV infection and result in lineage-specific cross-reactivity of a birth cohort towards future IBV isolates. This translates into differential estimates of susceptibility between birth cohorts towards the B/Yamagata and B/Victoria lineages, predicting lineage-specific birth-cohort distributions of observed medically attended IBV infections. Our data suggest that immunological measurements of imprinting could be important in modelling and predicting virus epidemiology.
Collapse
Affiliation(s)
- Peta Edler
- Department of Infectious Diseases, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Lara S U Schwab
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Malet Aban
- WHO Collaborating Centre for Reference and Research on Influenza, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Michelle Wille
- WHO Collaborating Centre for Reference and Research on Influenza, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Centre for Pathogen Genomics, University of Melbourne, Melbourne, Victoria, Australia
| | - Natalie Spirason
- WHO Collaborating Centre for Reference and Research on Influenza, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Yi-Mo Deng
- WHO Collaborating Centre for Reference and Research on Influenza, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Michael A Carlock
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
- Florida Research and Innovation Centre, Cleveland Clinic, Port Saint Lucie, FL, USA
| | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
- Florida Research and Innovation Centre, Cleveland Clinic, Port Saint Lucie, FL, USA
- Department of Infection Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jennifer A Juno
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Steve Rockman
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
- Vaccine Product Development, CSL Seqirus Ltd, Parkville, Victoria, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Health, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Ian G Barr
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
- WHO Collaborating Centre for Reference and Research on Influenza, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - David J Price
- Department of Infectious Diseases, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
- Centre for Epidemiology & Biostatistics, Melbourne School of Population & Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Marios Koutsakos
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia.
| |
Collapse
|
8
|
Singer B, Di Nardo A, Hein J, Ferretti L. Comparing Phylogeographies to Reveal Incompatible Geographical Histories within Genomes. Mol Biol Evol 2024; 41:msae126. [PMID: 38922185 PMCID: PMC11251493 DOI: 10.1093/molbev/msae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
Modern phylogeography aims at reconstructing the geographic movement of organisms based on their genomic sequences and spatial information. Phylogeographic approaches are often applied to pathogen sequences and therefore tend to neglect the possibility of recombination, which decouples the evolutionary and geographic histories of different parts of the genome. Genomic regions of recombining or reassorting pathogens often originate and evolve at different times and locations, which characterize their unique spatial histories. Measuring the extent of these differences requires new methods to compare geographic information on phylogenetic trees reconstructed from different parts of the genome. Here we develop for the first time a set of measures of phylogeographic incompatibility, aimed at detecting differences between geographical histories in terms of distances between phylogeographies. We study the effect of varying demography and recombination on phylogeographic incompatibilities using coalescent simulations. We further apply these measures to the evolutionary history of human and livestock pathogens, either reassorting or recombining, such as the Victoria and Yamagata lineages of influenza B and the O/Ind-2001 foot-and-mouth disease virus strain. Our results reveal diverse geographical paths of migration that characterize the origins and evolutionary histories of different viral genes and genomic segments. These incompatibility measures can be applied to any phylogeography, and more generally to any phylogeny where each tip has been assigned either a continuous or discrete "trait" independent of the sequence. We illustrate this flexibility with an analysis of the interplay between the phylogeography and phylolinguistics of Uralic-speaking human populations, hinting at patrilinear language transmission.
Collapse
Affiliation(s)
- Benjamin Singer
- Department of Medicine, Stanford University, Stanford, CA, USA
| | | | - Jotun Hein
- Department of Statistics, University of Oxford, Oxford, UK
| | - Luca Ferretti
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
9
|
Xu L, Ren W, Wang Q, Li J. Advances in Nucleic Acid Universal Influenza Vaccines. Vaccines (Basel) 2024; 12:664. [PMID: 38932393 PMCID: PMC11209422 DOI: 10.3390/vaccines12060664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Currently, vaccination with influenza vaccines is still an effective strategy to prevent infection by seasonal influenza virus in spite of some drawbacks with them. However, due to the rapid evolution of influenza viruses, including seasonal influenza viruses and emerging zoonotic influenza viruses, there is an urgent need to develop broad-spectrum influenza vaccines to cope with the evolution of influenza viruses. Nucleic acid vaccines might meet the requirements well. Nucleic acid vaccines are classified into DNA vaccines and RNA vaccines. Both types induced potent cellular and humoral immune responses, showing great promise for the development of universal influenza vaccines. In this review, the current status of an influenza universal nucleic acid vaccine was summarized.
Collapse
Affiliation(s)
- Liang Xu
- Department of Infectious Disease, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing 210003, China; (L.X.); (W.R.); (Q.W.)
| | - Weigang Ren
- Department of Infectious Disease, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing 210003, China; (L.X.); (W.R.); (Q.W.)
| | - Qin Wang
- Department of Infectious Disease, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing 210003, China; (L.X.); (W.R.); (Q.W.)
| | - Junwei Li
- Department of Infectious Disease, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing 210003, China; (L.X.); (W.R.); (Q.W.)
- Medical Innovation Center for Infectious Disease of Jiangsu Province, Nanjing 210003, China
| |
Collapse
|
10
|
Wong PF, Isakova-Sivak I, Stepanova E, Krutikova E, Bazhenova E, Rekstin A, Rudenko L. Development of Cross-Reactive Live Attenuated Influenza Vaccine Candidates against Both Lineages of Influenza B Virus. Vaccines (Basel) 2024; 12:95. [PMID: 38250908 PMCID: PMC10821225 DOI: 10.3390/vaccines12010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/30/2023] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND Influenza viruses continue to cause a significant social and economic burden globally. Vaccination is recognized as the most effective measure to control influenza. Live attenuated influenza vaccines (LAIVs) are an effective means of preventing influenza, especially among children. A reverse genetics (RG) system is required to rapidly update the antigenic composition of vaccines, as well as to design LAIVs with a broader spectrum of protection. Such a system has been developed for the Russian LAIVs only for type A strains, but not for influenza B viruses (IBV). METHODS All genes of the B/USSR/60/69 master donor virus (B60) were cloned into RG plasmids, and the engineered B60, as well as a panel of IBV LAIV reassortants were rescued from plasmid DNAs encoding all viral genes. The engineered viruses were evaluated in vitro and in a mouse model. RESULTS The B60 RG system was successfully developed, which made it possible to rescue LAIV reassortants with the desired antigenic composition, including hybrid strains with hemagglutinin and neuraminidase genes belonging to the viruses from different IBV lineages. The LAIV candidate carrying the HA of the B/Victoria-lineage virus and NA from the B/Yamagata-lineage virus demonstrated optimal characteristics in terms of safety, immunogenicity and cross-protection, prompting its further assessment as a broadly protective component of trivalent LAIV. CONCLUSIONS The new RG system for B60 MDV allowed the rapid generation of type B LAIV reassortants with desired genome compositions. The generation of hybrid LAIV reassortants with HA and NA genes belonging to the opposite IBV lineages is a promising approach for the development of IBV vaccines with broad cross-protection.
Collapse
Affiliation(s)
| | - Irina Isakova-Sivak
- Department of Virology, Institute of Experimental Medicine, 197022 St. Petersburg, Russia; (P.-F.W.); (E.S.); (E.K.); (E.B.); (A.R.); (L.R.)
| | | | | | | | | | | |
Collapse
|
11
|
Han AX, de Jong SPJ, Russell CA. Co-evolution of immunity and seasonal influenza viruses. Nat Rev Microbiol 2023; 21:805-817. [PMID: 37532870 DOI: 10.1038/s41579-023-00945-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2023] [Indexed: 08/04/2023]
Abstract
Seasonal influenza viruses cause recurring global epidemics by continually evolving to escape host immunity. The viral constraints and host immune responses that limit and drive the evolution of these viruses are increasingly well understood. However, it remains unclear how most of these advances improve the capacity to reduce the impact of seasonal influenza viruses on human health. In this Review, we synthesize recent progress made in understanding the interplay between the evolution of immunity induced by previous infections or vaccination and the evolution of seasonal influenza viruses driven by the heterogeneous accumulation of antibody-mediated immunity in humans. We discuss the functional constraints that limit the evolution of the viruses, the within-host evolutionary processes that drive the emergence of new virus variants, as well as current and prospective options for influenza virus control, including the viral and immunological barriers that must be overcome to improve the effectiveness of vaccines and antiviral drugs.
Collapse
Affiliation(s)
- Alvin X Han
- Department of Medical Microbiology & Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Simon P J de Jong
- Department of Medical Microbiology & Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Colin A Russell
- Department of Medical Microbiology & Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
- Department of Global Health, School of Public Health, Boston University, Boston, MA, USA.
| |
Collapse
|
12
|
Zheng L, Lin Y, Yang J, Fang K, Wu J, Zheng M. Global variability of influenza activity and virus subtype circulation from 2011 to 2023. BMJ Open Respir Res 2023; 10:e001638. [PMID: 37491131 PMCID: PMC10577751 DOI: 10.1136/bmjresp-2023-001638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/07/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND Although decreased influenza activity has been reported in many countries during the COVID-19 pandemic, it remains unknown how global influenza activity has changed. We described the global variability of influenza activity and virus subtype circulation from 2011 to 2023 to prepare for the potential influenza outbreak with the control of the COVID-19 pandemic. METHODS Influenza virological surveillance data between 2011 and 2023 were obtained from the WHO-FluNet database. We first calculated and compared the influenza activity before and during the COVID-19 pandemic. For countries whose influenza activity has recovered, we also described changes in the duration of influenza epidemics. We then determined the proportion of influenza cases caused by the different influenza virus types. RESULTS In total, 73 countries with 2.17 million influenza cases were included. In the early stage of the COVID-19 pandemic, decreased influenza activity was observed in all WHO regions. In 2022 and 2023, rebound in influenza activity was observed in all WHO regions, especially in Western Pacific Region. At the same time, a change in the duration of the influenza epidemic was observed in several Southern Hemisphere countries. Moreover, in all WHO regions, few B/Yamagata viruses were detected during the COVID-19 pandemic. CONCLUSIONS Lack of exposure to influenza will diminish population immunity and increase the severity of large epidemics on a future global resurgence. Ongoing monitoring of the changes in the duration of the influenza epidemic and circulation subtypes should be the focus of future work.
Collapse
Affiliation(s)
- Luyan Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China
| | - Yushi Lin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China
| | - Jing Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China
| | - Kailu Fang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China
| | - Jie Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China
| | - Min Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China
| |
Collapse
|
13
|
Li YQ, Ghafari M, Holbrook AJ, Boonen I, Amor N, Catalano S, Webster JP, Li YY, Li HT, Vergote V, Maes P, Chong YL, Laudisoit A, Baelo P, Ngoy S, Mbalitini SG, Gembu GC, Musaba AP, Goüy de Bellocq J, Leirs H, Verheyen E, Pybus OG, Katzourakis A, Alagaili AN, Gryseels S, Li YC, Suchard MA, Bletsa M, Lemey P. The evolutionary history of hepaciviruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.30.547218. [PMID: 37425679 PMCID: PMC10327235 DOI: 10.1101/2023.06.30.547218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
In the search for natural reservoirs of hepatitis C virus (HCV), a broad diversity of non-human viruses within the Hepacivirus genus has been uncovered. However, the evolutionary dynamics that shaped the diversity and timescale of hepaciviruses evolution remain elusive. To gain further insights into the origins and evolution of this genus, we screened a large dataset of wild mammal samples (n = 1,672) from Africa and Asia, and generated 34 full-length hepacivirus genomes. Phylogenetic analysis of these data together with publicly available genomes emphasizes the importance of rodents as hepacivirus hosts and we identify 13 rodent species and 3 rodent genera (in Cricetidae and Muridae families) as novel hosts of hepaciviruses. Through co-phylogenetic analyses, we demonstrate that hepacivirus diversity has been affected by cross-species transmission events against the backdrop of detectable signal of virus-host co-divergence in the deep evolutionary history. Using a Bayesian phylogenetic multidimensional scaling approach, we explore the extent to which host relatedness and geographic distances have structured present-day hepacivirus diversity. Our results provide evidence for a substantial structuring of mammalian hepacivirus diversity by host as well as geography, with a somewhat more irregular diffusion process in geographic space. Finally, using a mechanistic model that accounts for substitution saturation, we provide the first formal estimates of the timescale of hepacivirus evolution and estimate the origin of the genus to be about 22 million years ago. Our results offer a comprehensive overview of the micro- and macroevolutionary processes that have shaped hepacivirus diversity and enhance our understanding of the long-term evolution of the Hepacivirus genus.
Collapse
Affiliation(s)
- YQ Li
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, KU Leuven, Leuven, 3000, Belgium
| | - M Ghafari
- Department of Biology, University of Oxford, Oxford, OX1, UK
| | - AJ Holbrook
- Department of Biostatistics, University of California, Los Angeles, CA 90095, USA
| | - I Boonen
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, KU Leuven, Leuven, 3000, Belgium
| | - N Amor
- Laboratory of Biodiversity, Parasitology, and Ecology of Aquatic Ecosystems, Department of Biology - Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, 2092, Tunisia
| | - S Catalano
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
- Department of Pathobiology and Population Sciences, the Royal Veterinary College, University of London, Herts, AL9 7TA, UK
| | - JP Webster
- Department of Pathobiology and Population Sciences, the Royal Veterinary College, University of London, Herts, AL9 7TA, UK
| | - YY Li
- College of Life Sciences, Linyi University, Linyi, 276000, China
- Marine College, Shandong University (Weihai), Weihai, 264209, China
| | - HT Li
- College of Life Sciences, Liaocheng University, Liaocheng, 252000, China
- Marine College, Shandong University (Weihai), Weihai, 264209, China
| | - V Vergote
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, KU Leuven, Leuven, 3000, Belgium
| | - P Maes
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, KU Leuven, Leuven, 3000, Belgium
| | - YL Chong
- Animal Resource Science and Management Group, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak (UNIMAS), 94300, Malaysia
- Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, 999077, China
| | - A Laudisoit
- EcoHealth Alliance, New York, NY 10018, USA
- Evolutionary Ecology group (EVECO), Department of Biology, University of Antwerp, Antwerp, 2020, Belgium
| | - P Baelo
- Faculty of Sciences, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | - S Ngoy
- Faculty of Sciences, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | - SG Mbalitini
- Faculty of Sciences, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | - GC Gembu
- Faculty of Sciences, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | - Akawa P Musaba
- Faculty of Sciences, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | - J Goüy de Bellocq
- Institute of Vertebrate Biology, The Czech Academy of Sciences, Květná 8, 603 65 Brno, Czech Republic
| | - H Leirs
- Evolutionary Ecology group (EVECO), Department of Biology, University of Antwerp, Antwerp, 2020, Belgium
| | - E Verheyen
- Evolutionary Ecology group (EVECO), Department of Biology, University of Antwerp, Antwerp, 2020, Belgium
| | - OG Pybus
- Department of Biology, University of Oxford, Oxford, OX1, UK
- Department of Pathobiology and Population Sciences, the Royal Veterinary College, University of London, Herts, AL9 7TA, UK
| | - A Katzourakis
- Department of Biology, University of Oxford, Oxford, OX1, UK
| | - AN Alagaili
- Laboratory of Biodiversity, Parasitology, and Ecology of Aquatic Ecosystems, Department of Biology - Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, 2092, Tunisia
| | - S Gryseels
- Evolutionary Ecology group (EVECO), Department of Biology, University of Antwerp, Antwerp, 2020, Belgium
| | - YC Li
- Marine College, Shandong University (Weihai), Weihai, 264209, China
| | - MA Suchard
- Department of Biostatistics, University of California, Los Angeles, CA 90095, USA
| | - M Bletsa
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, KU Leuven, Leuven, 3000, Belgium
- Department of Hygiene Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, 11527, Greece
| | - P Lemey
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, KU Leuven, Leuven, 3000, Belgium
| |
Collapse
|
14
|
Pellegrini F, Buonavoglia A, Omar AH, Diakoudi G, Lucente MS, Odigie AE, Sposato A, Augelli R, Camero M, Decaro N, Elia G, Bányai K, Martella V, Lanave G. A Cold Case of Equine Influenza Disentangled with Nanopore Sequencing. Animals (Basel) 2023; 13:ani13071153. [PMID: 37048408 PMCID: PMC10093709 DOI: 10.3390/ani13071153] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Massive sequencing techniques have allowed us to develop straightforward approaches for the whole genome sequencing of viruses, including influenza viruses, generating information that is useful for improving the levels and dimensions of data analysis, even for archival samples. Using the Nanopore platform, we determined the whole genome sequence of an H3N8 equine influenza virus, identified from a 2005 outbreak in Apulia, Italy, whose origin had remained epidemiologically unexplained. The virus was tightly related (>99% at the nucleotide level) in all the genome segments to viruses identified in Poland in 2005–2008 and it was seemingly introduced locally with horse trading for the meat industry. In the phylogenetic analysis based on the eight genome segments, strain ITA/2005/horse/Bari was found to cluster with sub-lineage Florida 2 in the HA and M genes, whilst in the other genes it clustered with strains of the Eurasian lineage, revealing a multi-reassortant nature.
Collapse
Affiliation(s)
- Francesco Pellegrini
- Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Italy (G.L.)
| | - Alessio Buonavoglia
- Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Italy (G.L.)
| | - Ahmed H. Omar
- Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Italy (G.L.)
| | - Georgia Diakoudi
- Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Italy (G.L.)
| | - Maria S. Lucente
- Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Italy (G.L.)
| | - Amienwanlen E. Odigie
- Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Italy (G.L.)
| | - Alessio Sposato
- Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Italy (G.L.)
| | | | - Michele Camero
- Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Italy (G.L.)
| | - Nicola Decaro
- Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Italy (G.L.)
| | - Gabriella Elia
- Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Italy (G.L.)
| | - Krisztián Bányai
- Veterinary Medical Research Institute, 1143 Budapest, Hungary
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, 1400 Budapest, Hungary
| | - Vito Martella
- Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Italy (G.L.)
- Correspondence:
| | - Gianvito Lanave
- Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Italy (G.L.)
| |
Collapse
|
15
|
Zhou L, Yang H, Pan W, Xu J, Feng Y, Zhang W, Shao Z, Li T, Li S, Huang T, Wang C, Li W, Li M, He S, Zhan Y, Pan M. Association between meteorological factors and the epidemics of influenza (sub)types in a subtropical basin of Southwest China. Epidemics 2022; 41:100650. [PMID: 36375312 DOI: 10.1016/j.epidem.2022.100650] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/13/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND The effects of climatic conditions on the prevalence of individual influenza (sub)types are not well understood in the subtropics. This study aims to evaluate the associations between meteorological factors and seasonal epidemics of A(H3N2), A(H1N1)pdm09, and type B influenza viruses, as well as to estimate the interactions between climatic variables in a subtropical basin region. METHODS The seasonality of influenza (sub)types during 2010-2019 were characterized in Chengdu Plain Economic Zone, a densely populated and highly humid plain area in Sichuan Basin in subtropical Southwest China. Generalized additive models were adopted to assess the independent exposure-response relationship between meteorological variables and influenza prevalence. The interactions of meteorological variables were further estimated using bivariate response surface models and strata models. RESULTS Our analyses indicated that the temperature, relative humidity, and absolute humidity have exhibited a major influence on influenza infection in Chengdu Plain Economic Zone. Low temperature was shown to promote the prevalence of A(H1N1)pdm09 and type B in winter-spring days at all levels of relative humidity. High risk of A(H3N2) infections was observed at low temperature or high temperature, and at higher relative humidity. Moreover, absolute humidity decreased or increased influenza (sub)type infections within different ranges. CONCLUSIONS This study found different nonlinear relationships between meteorological factors and the seasonality of influenza (sub)types, as well as significant interactive effects between climatic variables, contributing to the research on the climate drivers of influenza prevalence in warm-humid basin regions in the subtropics.
Collapse
Affiliation(s)
- Linlin Zhou
- Department of Pathogenic Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Huiping Yang
- Sichuan Center for Disease Control and Prevention, Chengdu 610041, China
| | - Wen Pan
- College of Computer Science, Sichuan University, Chengdu 610065, China
| | - Jianan Xu
- Sichuan Center for Disease Control and Prevention, Chengdu 610041, China
| | - Yuliang Feng
- Sichuan Center for Disease Control and Prevention, Chengdu 610041, China
| | - Weihua Zhang
- College of Computer Science, Sichuan University, Chengdu 610065, China
| | - Zerui Shao
- College of Computer Science, Sichuan University, Chengdu 610065, China
| | - Tianshu Li
- Sichuan Center for Disease Control and Prevention, Chengdu 610041, China
| | - Shuang Li
- Sichuan Center for Disease Control and Prevention, Chengdu 610041, China
| | - Ting Huang
- Sichuan Center for Disease Control and Prevention, Chengdu 610041, China
| | - Chuang Wang
- Department of Medical Technology, West China School of Public Health, Sichuan University, Chengdu 610041, China
| | - Wanyi Li
- Department of Pathogenic Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Mingyuan Li
- Department of Pathogenic Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Shusen He
- Sichuan Center for Disease Control and Prevention, Chengdu 610041, China
| | - Yu Zhan
- Department of Environmental Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Ming Pan
- Sichuan Center for Disease Control and Prevention, Chengdu 610041, China.
| |
Collapse
|
16
|
Heider A, Wedde M, Dürrwald R, Wolff T, Schweiger B. Molecular characterization and evolution dynamics of influenza B viruses circulating in Germany from season 1996/1997 to 2019/2020. Virus Res 2022; 322:198926. [PMID: 36096395 DOI: 10.1016/j.virusres.2022.198926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 12/24/2022]
Abstract
Influenza B viruses are responsible for significant disease burden caused by viruses of both the Yamagata- and Victoria-lineage. Since the circulating patterns of influenza B viruses in different countries vary we investigated molecular properties and evolution dynamics of influenza B viruses circulating in Germany between 1996 and 2020. A change of the dominant lineage occurred in Germany in seven seasons in over past 25 years. A total of 676 sequences of hemagglutinin coding domain 1 (HA1) and 516 sequences of neuraminidase (NA) genes of Yamagata- and Victoria-lineage viruses were analyzed using time-scaled phylogenetic tree. Phylogenetic analysis demonstrated that Yamagata-lineage viruses are more diverse than the Victoria-lineage viruses and could be divided into nine genetic groups whereas Victoria-lineage viruses presented six genetic groups. Comparative phylogenetic analyses of both the HA and NA segments together revealed a number of inter-lineage as well as inter- and intra-clade reassortants. We identified key amino acid substitutions in major HA epitopes such as in four antigenic sites and receptor-binding sites (RBS) and in the regions close to them, with most substitutions in the 120-loop of both lineage viruses. Altogether, seventeen substitutions were fixed over time within the Yamagata-lineage with twelve of them in the antigenic sites. Thirteen substitutions were identified within the Victoria-lineage, with eleven of them in the antigenic sites. Moreover, all Victoria-lineage viruses of the 2017/2018 season were characterized by a deletion of two amino acids at the position 162-163 in the antigenic site of HA1. The viruses with triple deletion Δ162-164 were found in Germany since season 2018/2019. We highlighted the interplay between substitutions in the glycosylation sites and RBS and antigenic epitope during HA evolution. The results obtained underscore the need for continuous monitoring of circulating influenza B viruses. Early detection of strains with genetic and antigenic variation is essential to predict the circulation patterns for the following season. Such information is important for the development of optimal vaccines and strategies for prevention and control of influenza.
Collapse
Affiliation(s)
- Alla Heider
- Division of Influenza Viruses and Other Respiratory Viruses, National Reference Centre for Influenza, Robert Koch-Institute, Seestrasse 10, Berlin 13353, Germany.
| | - Marianne Wedde
- Division of Influenza Viruses and Other Respiratory Viruses, National Reference Centre for Influenza, Robert Koch-Institute, Seestrasse 10, Berlin 13353, Germany
| | - Ralf Dürrwald
- Division of Influenza Viruses and Other Respiratory Viruses, National Reference Centre for Influenza, Robert Koch-Institute, Seestrasse 10, Berlin 13353, Germany
| | - Thorsten Wolff
- Division of Influenza Viruses and Other Respiratory Viruses, National Reference Centre for Influenza, Robert Koch-Institute, Seestrasse 10, Berlin 13353, Germany
| | - Brunhilde Schweiger
- Division of Influenza Viruses and Other Respiratory Viruses, National Reference Centre for Influenza, Robert Koch-Institute, Seestrasse 10, Berlin 13353, Germany
| |
Collapse
|
17
|
Phyu WW, Saito R, Kyaw Y, Lin N, Win SMK, Win NC, Ja LD, Htwe KTZ, Aung TZ, Tin HH, Pe EH, Chon I, Wagatsuma K, Watanabe H. Evolutionary Dynamics of Whole-Genome Influenza A/H3N2 Viruses Isolated in Myanmar from 2015 to 2019. Viruses 2022; 14:v14112414. [PMID: 36366512 PMCID: PMC9699102 DOI: 10.3390/v14112414] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/29/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
This study aimed to analyze the genetic and evolutionary characteristics of the influenza A/H3N2 viruses circulating in Myanmar from 2015 to 2019. Whole genomes from 79 virus isolates were amplified using real-time polymerase chain reaction and successfully sequenced using the Illumina iSeq100 platforms. Eight individual phylogenetic trees were retrieved for each segment along with those of the World Health Organization (WHO)-recommended Southern Hemisphere vaccine strains for the respective years. Based on the WHO clades classification, the A/H3N2 strains in Myanmar from 2015 to 2019 collectively belonged to clade 3c.2. These strains were further defined based on hemagglutinin substitutions as follows: clade 3C.2a (n = 39), 3C.2a1 (n = 2), and 3C.2a1b (n = 38). Genetic analysis revealed that the Myanmar strains differed from the Southern Hemisphere vaccine strains each year, indicating that the vaccine strains did not match the circulating strains. The highest rates of nucleotide substitution were estimated for hemagglutinin (3.37 × 10-3 substitutions/site/year) and neuraminidase (2.89 × 10-3 substitutions/site/year). The lowest rate was for non-structural protein segments (4.19 × 10-5 substitutions/site/year). The substantial genetic diversity that was revealed improved phylogenetic classification. This information will be particularly relevant for improving vaccine strain selection.
Collapse
Affiliation(s)
- Wint Wint Phyu
- Division of International Health (Public Health), Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
- Correspondence: ; Tel.: +81-25-227-2129
| | - Reiko Saito
- Division of International Health (Public Health), Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
- Infectious Diseases Research Center of Niigata University in Myanmar (IDRC), Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Yadanar Kyaw
- Respiratory Medicine Department, ThingangyunSanpya General Hospital, Yangon 110-71, Myanmar
| | - Nay Lin
- Microbiology Section, (200) Bedded Pyinmana General Hospital, Naypyitaw 150-31, Myanmar
| | - Su Mon Kyaw Win
- Infectious Diseases Research Center of Niigata University in Myanmar (IDRC), Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Nay Chi Win
- Infectious Diseases Research Center of Niigata University in Myanmar (IDRC), Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Lasham Di Ja
- Infectious Diseases Research Center of Niigata University in Myanmar (IDRC), Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Khin Thu Zar Htwe
- Department of Microbiology, University of Medicine, Mandalay 050-21, Myanmar
| | - Thin Zar Aung
- Microbiology Section, Mandalay General Hospital, Mandalay 050-31, Myanmar
| | - Htay Htay Tin
- National Health Laboratory, Department of Medical Services, Dagon Township, Yangon 111-91, Myanmar
| | - Eh Htoo Pe
- National Health Laboratory, Department of Medical Services, Dagon Township, Yangon 111-91, Myanmar
| | - Irina Chon
- Division of International Health (Public Health), Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
- Infectious Diseases Research Center of Niigata University in Myanmar (IDRC), Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Keita Wagatsuma
- Division of International Health (Public Health), Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
- Japan Society for the Promotion of Science, Tokyo 102-0083, Japan
| | - Hisami Watanabe
- Infectious Diseases Research Center of Niigata University in Myanmar (IDRC), Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| |
Collapse
|
18
|
Rosu ME, Lexmond P, Bestebroer TM, Hauser BM, Smith DJ, Herfst S, Fouchier RAM. Substitutions near the HA receptor binding site explain the origin and major antigenic change of the B/Victoria and B/Yamagata lineages. Proc Natl Acad Sci U S A 2022; 119:e2211616119. [PMID: 36215486 PMCID: PMC9586307 DOI: 10.1073/pnas.2211616119] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/13/2022] [Indexed: 11/18/2022] Open
Abstract
Influenza B virus primarily infects humans, causing seasonal epidemics globally. Two antigenic variants-Victoria-like and Yamagata-like-were detected in the 1980s, of which the molecular basis of emergence is still incompletely understood. Here, the antigenic properties of a unique collection of historical virus isolates, sampled from 1962 to 2000 and passaged exclusively in mammalian cells to preserve antigenic properties, were determined with the hemagglutination inhibition assay and an antigenic map was built to quantify and visualize the divergence of the lineages. The antigenic map revealed only three distinct antigenic clusters-Early, Victoria, and Yamagata-with relatively little antigenic diversity in each cluster until 2000. Viruses with Victoria-like antigenic properties emerged around 1972 and diversified subsequently into two genetic lineages. Viruses with Yamagata-like antigenic properties evolved from one lineage and became clearly antigenically distinct from the Victoria-like viruses around 1988. Recombinant mutant viruses were tested to show that insertions and deletions (indels), as observed frequently in influenza B virus hemagglutinin, had little effect on antigenic properties. In contrast, amino-acid substitutions at positions 148, 149, 150, and 203, adjacent to the hemagglutinin receptor binding site, determined the main antigenic differences between the Early, Victoria-like, and Yamagata-like viruses. Surprisingly, substitutions at two of the four positions reverted in recent viruses of the Victoria lineage, resulting in antigenic properties similar to viruses circulating ∼50 y earlier. These data shed light on the antigenic diversification of influenza viruses and suggest there may be limits to the antigenic evolution of influenza B virus.
Collapse
Affiliation(s)
- Miruna E. Rosu
- Department of Viroscience, Erasmus Medical Centre, Rotterdam 3015 CE, The Netherlands
| | - Pascal Lexmond
- Department of Viroscience, Erasmus Medical Centre, Rotterdam 3015 CE, The Netherlands
| | - Theo M. Bestebroer
- Department of Viroscience, Erasmus Medical Centre, Rotterdam 3015 CE, The Netherlands
| | - Blake M. Hauser
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Derek J. Smith
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Sander Herfst
- Department of Viroscience, Erasmus Medical Centre, Rotterdam 3015 CE, The Netherlands
| | - Ron A. M. Fouchier
- Department of Viroscience, Erasmus Medical Centre, Rotterdam 3015 CE, The Netherlands
| |
Collapse
|
19
|
Helmy SA, El-Morsi RM, Helmy SAM, El-Masry SM. Towards novel nano-based vaccine platforms for SARS-CoV-2 and its variants of concern: Advances, challenges and limitations. J Drug Deliv Sci Technol 2022; 76:103762. [PMID: 36097606 PMCID: PMC9452404 DOI: 10.1016/j.jddst.2022.103762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/07/2022] [Accepted: 08/29/2022] [Indexed: 11/24/2022]
Abstract
Vaccination is the most effective tool available for fighting the spread of COVID-19. Recently, emerging variants of SARS-CoV-2 have led to growing concerns about increased transmissibility and decreased vaccine effectiveness. Currently, many vaccines are approved for emergency use and more are under development. This review highlights the ongoing advances in the design and development of different nano-based vaccine platforms. The challenges, limitations, and ethical consideration imposed by these nanocarriers are also discussed. Further, the effectiveness of the leading vaccine candidates against all SARS-CoV-2 variants of concern are highlighted. The review also focuses on the possibility of using an alternative non-invasive routes of vaccine administration using micro and nanotechnologies to enhance vaccination compliance and coverage.
Collapse
Affiliation(s)
- Sally A Helmy
- Department of Clinical and Hospital Pharmacy, Faculty of Pharmacy, Taibah University, AL-Madinah AL-Munawarah, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Rasha M El-Morsi
- Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University for Science and Technology, Egypt
| | - Soha A M Helmy
- Department of Languages and Translation, College of Arts and Humanities, Taibah University, AL-Madinah AL-Munawarah, Saudi Arabia
- Department of Foreign Languages, Faculty of Education, Tanta University, Tanta, Egypt
| | - Soha M El-Masry
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| |
Collapse
|
20
|
Xie R, Adam DC, Edwards KM, Gurung S, Wei X, Cowling BJ, Dhanasekaran V. Genomic Epidemiology of Seasonal Influenza Circulation in China During Prolonged Border Closure from 2020 to 2021. Virus Evol 2022; 8:veac062. [PMID: 35919872 PMCID: PMC9338706 DOI: 10.1093/ve/veac062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 12/04/2022] Open
Abstract
China experienced a resurgence of seasonal influenza activity throughout 2021 despite intermittent control measures and prolonged international border closure. We show genomic evidence for multiple A(H3N2), A(H1N1), and B/Victoria transmission lineages circulating over 3 years, with the 2021 resurgence mainly driven by two B/Victoria clades. Phylodynamic analysis revealed unsampled ancestry prior to widespread outbreaks in December 2020, showing that influenza lineages can circulate cryptically under non-pharmaceutical interventions enacted against COVID-19. Novel haemagglutinin gene mutations and altered age profiles of infected individuals were observed, and Jiangxi province was identified as a major source for nationwide outbreaks. Following major holiday periods, fluctuations in the effective reproduction number were observed, underscoring the importance of influenza vaccination prior to holiday periods or travel. Extensive heterogeneity in seasonal influenza circulation patterns in China determined by historical strain circulation indicates that a better understanding of demographic patterns is needed for improving effective controls.
Collapse
Affiliation(s)
- Ruopeng Xie
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong , Hong Kong, China
- HKU-Pasteur Research Pole, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong , Hong Kong, China
| | - Dillon C Adam
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong , Hong Kong, China
| | - Kimberly M Edwards
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong , Hong Kong, China
- HKU-Pasteur Research Pole, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong , Hong Kong, China
| | - Shreya Gurung
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong , Hong Kong, China
- HKU-Pasteur Research Pole, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong , Hong Kong, China
| | - Xiaoman Wei
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong , Hong Kong, China
- HKU-Pasteur Research Pole, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong , Hong Kong, China
| | - Benjamin J Cowling
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong , Hong Kong, China
| | - Vijaykrishna Dhanasekaran
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong , Hong Kong, China
- HKU-Pasteur Research Pole, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong , Hong Kong, China
| |
Collapse
|
21
|
da Costa JC, Siqueira MM, Brown D, Lopes JO, da Costa BC, Gama EL, Aguiar-Oliveira MDL. Vaccine Mismatches, Viral Circulation, and Clinical Severity Patterns of Influenza B Victoria and Yamagata Infections in Brazil over the Decade 2010-2020: A Statistical and Phylogeny-Trait Analyses. Viruses 2022; 14:1477. [PMID: 35891457 PMCID: PMC9321334 DOI: 10.3390/v14071477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/25/2022] [Accepted: 07/01/2022] [Indexed: 12/15/2022] Open
Abstract
Worldwide, infections by influenza viruses are considered a major public health challenge. In this study, influenza B vaccine mismatches and clinical aspects of Victoria and Yamagata infections in Brazil were assessed. Clinical samples were collected from patients suspected of influenza infection. In addition, sociodemographic, clinical, and epidemiological information were collected by the epidemiological surveillance teams. Influenza B lineages were determined by real-time RT-PCR and/or Sanger sequencing. In addition, putative phylogeny−trait associations were assessed by using the BaTS program after phylogenetic reconstruction by a Bayesian Markov Chain Monte Carlo method (BEAST software package). Over 2010−2020, B/Victoria and B/Yamagata-like lineages co-circulated in almost all seasonal epidemics, with B/Victoria predominance in most years. Vaccine mismatches between circulating viruses and the trivalent vaccine strains occurred in five of the eleven seasons (45.5%). No significant differences were identified in clinical presentation or disease severity caused by both strains, but subjects infected by B/Victoria-like viruses were significantly younger than their B/Yamagata-like counterparts (16.7 vs. 31.4 years, p < 0.001). This study contributes to a better understanding of the circulation patterns and clinical outcomes of B/Victoria- and B/Yamagata-like lineages in Brazil and advocate for the inclusion of a quadrivalent vaccine in the scope of the Brazilian National Immunization Program.
Collapse
Affiliation(s)
- Jaline Cabral da Costa
- Laboratory of Respiratory Virus and Measles, Oswaldo Cruz Institute, Oswaldo Cruz Foundation. Av. Brasil, 4365 Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil; (M.M.S.); (D.B.); (J.O.L.); (B.C.d.C.); (E.L.G.)
| | | | | | | | | | | | - Maria de Lourdes Aguiar-Oliveira
- Laboratory of Respiratory Virus and Measles, Oswaldo Cruz Institute, Oswaldo Cruz Foundation. Av. Brasil, 4365 Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil; (M.M.S.); (D.B.); (J.O.L.); (B.C.d.C.); (E.L.G.)
| |
Collapse
|
22
|
Metsky HC, Welch NL, Pillai PP, Haradhvala NJ, Rumker L, Mantena S, Zhang YB, Yang DK, Ackerman CM, Weller J, Blainey PC, Myhrvold C, Mitzenmacher M, Sabeti PC. Designing sensitive viral diagnostics with machine learning. Nat Biotechnol 2022; 40:1123-1131. [PMID: 35241837 PMCID: PMC9287178 DOI: 10.1038/s41587-022-01213-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 01/07/2022] [Indexed: 12/20/2022]
Abstract
Design of nucleic acid-based viral diagnostics typically follows heuristic rules and, to contend with viral variation, focuses on a genome's conserved regions. A design process could, instead, directly optimize diagnostic effectiveness using a learned model of sensitivity for targets and their variants. Toward that goal, we screen 19,209 diagnostic-target pairs, concentrated on CRISPR-based diagnostics, and train a deep neural network to accurately predict diagnostic readout. We join this model with combinatorial optimization to maximize sensitivity over the full spectrum of a virus's genomic variation. We introduce Activity-informed Design with All-inclusive Patrolling of Targets (ADAPT), a system for automated design, and use it to design diagnostics for 1,933 vertebrate-infecting viral species within 2 hours for most species and within 24 hours for all but three. We experimentally show that ADAPT's designs are sensitive and specific to the lineage level and permit lower limits of detection, across a virus's variation, than the outputs of standard design techniques. Our strategy could facilitate a proactive resource of assays for detecting pathogens.
Collapse
Affiliation(s)
- Hayden C Metsky
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, USA.
| | - Nicole L Welch
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Virology Program, Division of Medical Sciences, Harvard Medical School, Boston, MA, USA
| | | | - Nicholas J Haradhvala
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Biophysics Program, Harvard Medical School, Boston, MA, USA
| | - Laurie Rumker
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Bioinformatics and Integrative Genomics Program, Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Sreekar Mantena
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Yibin B Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - David K Yang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Cheri M Ackerman
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, MIT, Cambridge, MA, USA
| | | | - Paul C Blainey
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, MIT, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, USA
| | - Cameron Myhrvold
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Michael Mitzenmacher
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Pardis C Sabeti
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
23
|
Tsybalova LM, Stepanova LA, Ramsay ES, Vasin AV. Influenza B: Prospects for the Development of Cross-Protective Vaccines. Viruses 2022; 14:1323. [PMID: 35746794 PMCID: PMC9228933 DOI: 10.3390/v14061323] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/09/2022] [Accepted: 06/12/2022] [Indexed: 01/04/2023] Open
Abstract
In this review, we analyze the epidemiological and ecological features of influenza B, one of the most common and severe respiratory infections. The review presents various strategies for cross-protective influenza B vaccine development, including recombinant viruses, virus-like particles, and recombinant proteins. We provide an overview of viral proteins as cross-protective vaccine targets, along with other updated broadly protective vaccine strategies. The importance of developing such vaccines lies not only in influenza B prevention, but also in the very attractive prospect of eradicating the influenza B virus in the human population.
Collapse
Affiliation(s)
- Liudmila M. Tsybalova
- Smorodintsev Research Institute of Influenza, Prof. Popova Str., 15/17, 197376 St. Petersburg, Russia; (L.A.S.); (E.S.R.); or (A.V.V.)
| | - Liudmila A. Stepanova
- Smorodintsev Research Institute of Influenza, Prof. Popova Str., 15/17, 197376 St. Petersburg, Russia; (L.A.S.); (E.S.R.); or (A.V.V.)
| | - Edward S. Ramsay
- Smorodintsev Research Institute of Influenza, Prof. Popova Str., 15/17, 197376 St. Petersburg, Russia; (L.A.S.); (E.S.R.); or (A.V.V.)
| | - Andrey V. Vasin
- Smorodintsev Research Institute of Influenza, Prof. Popova Str., 15/17, 197376 St. Petersburg, Russia; (L.A.S.); (E.S.R.); or (A.V.V.)
- Research Institute of Influenza named after A.A. Smorodintsev, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya, 29, 195251 St. Petersburg, Russia
| |
Collapse
|
24
|
Epidemiology and Molecular Analyses of Influenza B Viruses in Senegal from 2010 to 2019. Viruses 2022; 14:v14051063. [PMID: 35632804 PMCID: PMC9143141 DOI: 10.3390/v14051063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
Influenza virus types A and B are responsible for acute viral infections that affect annually 1 billion people, with 290,000 to 650,000 deaths worldwide. In this study, we investigated the circulation of influenza B viruses over a 10-year period (2010–2019). Specimens from patients suspected of influenza infection were collected. Influenza detection was performed following RNA extraction and real-time RT-PCR. Genes coding for hemagglutinin (HA) and neuraminidase (NA) of influenza B viruses were partially sequenced, and phylogenetic analyses were carried out subsequently. During the study period, we received and tested a total of 15,156 specimens. Influenza B virus was detected in 1322 (8.7%) specimens. The mean age of influenza B positive patients was 10.9 years. When compared to reference viruses, HA genes from Senegalese circulating viruses showed deletions in the HA1 region. Phylogenetic analysis highlighted the co-circulation of B/Victoria and B/Yamagata lineage viruses with reassortant viruses. We also noted a clear seasonal pattern of circulation of influenza B viruses in Senegal.
Collapse
|
25
|
Kou Z, Fan X, Li J, Shao Z, Qiang X. Using amino acid features to identify the pathogenicity of influenza B virus. Infect Dis Poverty 2022; 11:50. [PMID: 35509019 PMCID: PMC9066401 DOI: 10.1186/s40249-022-00974-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Influenza B virus can cause epidemics with high pathogenicity, so it poses a serious threat to public health. A feature representation algorithm is proposed in this paper to identify the pathogenicity phenotype of influenza B virus. METHODS The dataset included all 11 influenza virus proteins encoded in eight genome segments of 1724 strains. Two types of features were hierarchically used to build the prediction model. Amino acid features were directly delivered from 67 feature descriptors and input into the random forest classifier to output informative features about the class label and probabilistic prediction. The sequential forward search strategy was used to optimize the informative features. The final features for each strain had low dimensions and included knowledge from different perspectives, which were used to build the machine learning model for pathogenicity identification. RESULTS The 40 signature positions were achieved by entropy screening. Mutations at position 135 of the hemagglutinin protein had the highest entropy value (1.06). After the informative features were directly generated from the 67 random forest models, the dimensions for class and probabilistic features were optimized as 4 and 3, respectively. The optimal class features had a maximum accuracy of 94.2% and a maximum Matthews correlation coefficient of 88.4%, while the optimal probabilistic features had a maximum accuracy of 94.1% and a maximum Matthews correlation coefficient of 88.2%. The optimized features outperformed the original informative features and amino acid features from individual descriptors. The sequential forward search strategy had better performance than the classical ensemble method. CONCLUSIONS The optimized informative features had the best performance and were used to build a predictive model so as to identify the phenotype of influenza B virus with high pathogenicity and provide early risk warning for disease control.
Collapse
Affiliation(s)
- Zheng Kou
- Institute of Computing Science and Technology, Guangzhou University, Guangzhou, 510006, China.
| | - Xinyue Fan
- Institute of Computing Science and Technology, Guangzhou University, Guangzhou, 510006, China
| | - Junjie Li
- Institute of Computing Science and Technology, Guangzhou University, Guangzhou, 510006, China
| | - Zehui Shao
- Institute of Computing Science and Technology, Guangzhou University, Guangzhou, 510006, China
| | - Xiaoli Qiang
- School of Computer Science and Cyber Engineering, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
26
|
Wang Y, Tang CY, Wan XF. Antigenic characterization of influenza and SARS-CoV-2 viruses. Anal Bioanal Chem 2022; 414:2841-2881. [PMID: 34905077 PMCID: PMC8669429 DOI: 10.1007/s00216-021-03806-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/21/2021] [Accepted: 11/24/2021] [Indexed: 12/24/2022]
Abstract
Antigenic characterization of emerging and re-emerging viruses is necessary for the prevention of and response to outbreaks, evaluation of infection mechanisms, understanding of virus evolution, and selection of strains for vaccine development. Primary analytic methods, including enzyme-linked immunosorbent/lectin assays, hemagglutination inhibition, neuraminidase inhibition, micro-neutralization assays, and antigenic cartography, have been widely used in the field of influenza research. These techniques have been improved upon over time for increased analytical capacity, and some have been mobilized for the rapid characterization of the SARS-CoV-2 virus as well as its variants, facilitating the development of highly effective vaccines within 1 year of the initially reported outbreak. While great strides have been made for evaluating the antigenic properties of these viruses, multiple challenges prevent efficient vaccine strain selection and accurate assessment. For influenza, these barriers include the requirement for a large virus quantity to perform the assays, more than what can typically be provided by the clinical samples alone, cell- or egg-adapted mutations that can cause antigenic mismatch between the vaccine strain and circulating viruses, and up to a 6-month duration of vaccine development after vaccine strain selection, which allows viruses to continue evolving with potential for antigenic drift and, thus, antigenic mismatch between the vaccine strain and the emerging epidemic strain. SARS-CoV-2 characterization has faced similar challenges with the additional barrier of the need for facilities with high biosafety levels due to its infectious nature. In this study, we review the primary analytic methods used for antigenic characterization of influenza and SARS-CoV-2 and discuss the barriers of these methods and current developments for addressing these challenges.
Collapse
Affiliation(s)
- Yang Wang
- MU Center for Influenza and Emerging Infectious Diseases (CIEID), University of Missouri, Columbia, MO, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Cynthia Y Tang
- MU Center for Influenza and Emerging Infectious Diseases (CIEID), University of Missouri, Columbia, MO, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA
| | - Xiu-Feng Wan
- MU Center for Influenza and Emerging Infectious Diseases (CIEID), University of Missouri, Columbia, MO, USA.
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA.
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA.
- Department of Electrical Engineering & Computer Science, College of Engineering, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
27
|
Sánchez-de Prada L, Rojo-Rello S, Domínguez-Gil M, Tamayo-Gómez E, Ortiz de Lejarazu-Leonardo R, Eiros JM, Sanz-Muñoz I. Influenza B Lineages Have More in Common Than Meets the Eye. Trivalent Influenza Vaccines Trigger Heterotypic Antibodies Against Both Influenza B Viruses. Front Microbiol 2021; 12:737216. [PMID: 34858361 PMCID: PMC8632244 DOI: 10.3389/fmicb.2021.737216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
Influenza B is accountable for an important burden during flu epidemics, causing special impact in children and the elderly. Vaccination is the best approach to address influenza infections. However, one of the main problems of this virus is that two different lineages circulate together, Victoria and Yamagata; and trivalent vaccines, that only contain one of these lineages, are still in use. For that reason, if during an epidemic, the lineage not included in the vaccine predominates, a mismatch would occur, and the vaccine effectiveness will be very poor. In this work, we evaluated the cross-protection given by the trivalent Influenza vaccine and compared serological profiles based on age, sex, and the type of vaccine used. We performed a retrospective analysis of serum samples obtained before and after seasonal influenza vaccination during 20 seasons (1998–2018). The results showed that heterotypic reactivity between both influenza B lineages is common, but always lower than the homologous response. Age is a relevant factor for this cross-reactivity between both lineages, while the sex and the type of vaccine not. Vaccination with trivalent influenza vaccines elicits cross-reactive antibodies against both lineages, however, this response might not be enough to provide an appropriate serological protection in case of mismatch.
Collapse
Affiliation(s)
- Laura Sánchez-de Prada
- Department of Microbiology, Hospital Clínico Universitario de Valladolid, Valladolid, Spain.,National Influenza Center of Valladolid, Valladolid, Spain
| | - Silvia Rojo-Rello
- Department of Microbiology, Hospital Clínico Universitario de Valladolid, Valladolid, Spain.,National Influenza Center of Valladolid, Valladolid, Spain
| | - Marta Domínguez-Gil
- National Influenza Center of Valladolid, Valladolid, Spain.,Department of Microbiology, Hospital Universitario Río Hortega, Valladolid, Spain
| | - Eduardo Tamayo-Gómez
- Department of Anesthesia, Critical Care and Pain Medicine, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | | | - José María Eiros
- Department of Microbiology, Hospital Clínico Universitario de Valladolid, Valladolid, Spain.,National Influenza Center of Valladolid, Valladolid, Spain.,Department of Microbiology, Hospital Universitario Río Hortega, Valladolid, Spain
| | | |
Collapse
|
28
|
Abstract
The SARS-CoV-2 pandemic has seen a notable global reduction in influenza cases of both influenza A and B viruses. In particular, the B/Yamagata lineage has not been isolated from April 2020 to August 2021, suggesting that this influenza lineage may have become extinct, which may provide opportunities for improving availability and effectiveness of influenza vaccines.
Collapse
Affiliation(s)
- Marios Koutsakos
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
| | - Adam K Wheatley
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | | | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Steve Rockman
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Seqirus Ltd, Parkville, Victoria, Australia
| |
Collapse
|
29
|
Cell-Adapted Mutations and Antigenic Diversity of Influenza B Viruses in Missouri, 2019-2020 Season. Viruses 2021; 13:v13101896. [PMID: 34696325 PMCID: PMC8538563 DOI: 10.3390/v13101896] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/12/2021] [Accepted: 09/16/2021] [Indexed: 01/31/2023] Open
Abstract
Influenza B viruses (IBVs) are causing an increasing burden of morbidity and mortality, yet the prevalence of culture-adapted mutations in human seasonal IBVs are unclear. We collected 368 clinical samples from patients with influenza-like illness in Missouri during the 2019–2020 influenza season and recovered 146 influenza isolates including 38 IBV isolates. Of MDCK-CCL34, MDCK-Siat1, and humanized MDCK (hCK), hCK showed the highest virus recovery efficiency. All Missourian IBVs belonged to the Victoria V1A.3 lineage, all of which contained a three-amino acid deletion on the HA protein and were antigenically distant from the Victoria lineage IBV vaccine strain used during that season. By comparing genomic sequences of these IBVs in 31 paired samples, eight cell-adapted nonsynonymous mutations were identified, with the majority in the RNA polymerase. Analyses of IBV clinical sample–isolate pairs from public databases further showed that cell- and egg-adapted mutations occurred more widely in viral proteins, including the receptor and antibody binding sites on HA. Our study suggests that hCK is an effective platform for IBV isolation and that culture-adapted mutations may occur during IBV isolation. As culture-adapted mutations may affect subsequent virus studies and vaccine development, the knowledge from this study may help optimize strategies for influenza surveillance, vaccine strain selection, and vaccine development.
Collapse
|
30
|
Van Poelvoorde LAE, Bogaerts B, Fu Q, De Keersmaecker SCJ, Thomas I, Van Goethem N, Van Gucht S, Winand R, Saelens X, Roosens N, Vanneste K. Whole-genome-based phylogenomic analysis of the Belgian 2016-2017 influenza A(H3N2) outbreak season allows improved surveillance. Microb Genom 2021; 7. [PMID: 34477544 PMCID: PMC8715427 DOI: 10.1099/mgen.0.000643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Seasonal influenza epidemics are associated with high mortality and morbidity in the human population. Influenza surveillance is critical for providing information to national influenza programmes and for making vaccine composition predictions. Vaccination prevents viral infections, but rapid influenza evolution results in emerging mutants that differ antigenically from vaccine strains. Current influenza surveillance relies on Sanger sequencing of the haemagglutinin (HA) gene. Its classification according to World Health Organization (WHO) and European Centre for Disease Prevention and Control (ECDC) guidelines is based on combining certain genotypic amino acid mutations and phylogenetic analysis. Next-generation sequencing technologies enable a shift to whole-genome sequencing (WGS) for influenza surveillance, but this requires laboratory workflow adaptations and advanced bioinformatics workflows. In this study, 253 influenza A(H3N2) positive clinical specimens from the 2016–2017 Belgian season underwent WGS using the Illumina MiSeq system. HA-based classification according to WHO/ECDC guidelines did not allow classification of all samples. A new approach, considering the whole genome, was investigated based on using powerful phylogenomic tools including beast and Nextstrain, which substantially improved phylogenetic classification. Moreover, Bayesian inference via beast facilitated reassortment detection by both manual inspection and computational methods, detecting intra-subtype reassortants at an estimated rate of 15 %. Real-time analysis (i.e. as an outbreak is ongoing) via Nextstrain allowed positioning of the Belgian isolates into the globally circulating context. Finally, integration of patient data with phylogenetic groups and reassortment status allowed detection of several associations that would have been missed when solely considering HA, such as hospitalized patients being more likely to be infected with A(H3N2) reassortants, and the possibility to link several phylogenetic groups to disease severity indicators could be relevant for epidemiological monitoring. Our study demonstrates that WGS offers multiple advantages for influenza monitoring in (inter)national influenza surveillance, and proposes an improved methodology. This allows leveraging all information contained in influenza genomes, and allows for more accurate genetic characterization and reassortment detection.
Collapse
Affiliation(s)
- Laura A E Van Poelvoorde
- Transversal Activities in Applied Genomics, Sciensano, Juliette Wytsmanstraat 14, Brussels, Belgium.,National Influenza Centre, Sciensano, Juliette Wytsmanstraat 14, Brussels, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium.,VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
| | - Bert Bogaerts
- Transversal Activities in Applied Genomics, Sciensano, Juliette Wytsmanstraat 14, Brussels, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,Department of Information Technology, IDLab, IMEC, Ghent University, Ghent, Belgium
| | - Qiang Fu
- Transversal Activities in Applied Genomics, Sciensano, Juliette Wytsmanstraat 14, Brussels, Belgium
| | | | - Isabelle Thomas
- National Influenza Centre, Sciensano, Juliette Wytsmanstraat 14, Brussels, Belgium
| | | | - Steven Van Gucht
- National Influenza Centre, Sciensano, Juliette Wytsmanstraat 14, Brussels, Belgium
| | - Raf Winand
- Transversal Activities in Applied Genomics, Sciensano, Juliette Wytsmanstraat 14, Brussels, Belgium
| | - Xavier Saelens
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium.,VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
| | - Nancy Roosens
- Transversal Activities in Applied Genomics, Sciensano, Juliette Wytsmanstraat 14, Brussels, Belgium
| | - Kevin Vanneste
- Transversal Activities in Applied Genomics, Sciensano, Juliette Wytsmanstraat 14, Brussels, Belgium
| |
Collapse
|
31
|
Hellferscee O, Treurnicht F, Gaelejwe L, Moerdyk A, Reubenson G, McMorrow M, Tempia S, McAnerney J, Walaza S, Wolter N, von Gottberg A, Cohen C. Detection of Victoria lineage influenza B viruses with K162 and N163 deletions in the hemagglutinin gene, South Africa, 2018. Health Sci Rep 2021; 4:e367. [PMID: 34557595 PMCID: PMC8448392 DOI: 10.1002/hsr2.367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 07/29/2021] [Accepted: 08/08/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND A group of Victoria lineage influenza B viruses with a two amino acid deletion in the hemagglutinin (HA) at residues K162 and N163, was detected during the 2016 to 2017 Northern Hemisphere influenza season and continues to spread geographically. We describe the first identification of viruses with these deletions from South Africa in 2018. METHODS Nasopharyngeal samples were obtained from the syndromic surveillance programs. Real-time reverse transcription-polymerase chain reaction was used for virus detection and lineage determination. Influenza genetic characterization was done using next-generation sequencing on the MiSeq platform. The duration of virus circulation was determined using thresholds calculated using the Moving Epidemic Method; duration was used as an indicator of disease transmissibility and impact. RESULTS In 2018, 42% (426/1015) of influenza-positive specimens were influenza B viruses. Of 426 influenza B-positive samples, 376 (88%) had the lineage determined of which 75% (283/376) were Victoria lineage. The transmissibility of the 2018 South African influenza season was high for a few weeks, although the severity remained moderate through most of the season. The sequenced 2018 South African Victoria lineage influenza B viruses clustered in sub-clade V1A.1 with the 162-163 deletions. CONCLUSIONS We report the first detection of the 162-163 deletion variant of influenza B/Victoria viruses from South Africa in 2018, and suggest that this deletion variant replaced the previous circulating influenza B/Victoria viruses. These deletions putatively affect the antigenic properties of the viruses because they border an immune-dominant region at the tip of the HA. Therefore, close monitoring of these newly emerging viruses is essential.
Collapse
Affiliation(s)
- Orienka Hellferscee
- Centre for Respiratory Diseases and MeningitisNational Institute for Communicable Diseases of the National Health Laboratory ServiceJohannesburgSouth Africa
- Department of Medical Virology, School of Pathology, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Florette Treurnicht
- Department of Medical Virology, School of Pathology, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Lucinda Gaelejwe
- Centre for Respiratory Diseases and MeningitisNational Institute for Communicable Diseases of the National Health Laboratory ServiceJohannesburgSouth Africa
| | - Alexandra Moerdyk
- Centre for Respiratory Diseases and MeningitisNational Institute for Communicable Diseases of the National Health Laboratory ServiceJohannesburgSouth Africa
| | - Gary Reubenson
- Department of Paediatrics & Child Health, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Meredith McMorrow
- Influenza DivisionCenters for Disease Control and PreventionAtlantaGeorgiaUSA
- Influenza ProgramCenters for Disease Control and PreventionPretoriaSouth Africa
| | - Stefano Tempia
- Centre for Respiratory Diseases and MeningitisNational Institute for Communicable Diseases of the National Health Laboratory ServiceJohannesburgSouth Africa
- Influenza DivisionCenters for Disease Control and PreventionAtlantaGeorgiaUSA
- Influenza ProgramCenters for Disease Control and PreventionPretoriaSouth Africa
- MassGenicsDuluthGeorgiaUSA
- School of Public Health, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Johanna McAnerney
- Centre for Respiratory Diseases and MeningitisNational Institute for Communicable Diseases of the National Health Laboratory ServiceJohannesburgSouth Africa
| | - Sibongile Walaza
- Centre for Respiratory Diseases and MeningitisNational Institute for Communicable Diseases of the National Health Laboratory ServiceJohannesburgSouth Africa
- School of Public Health, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Nicole Wolter
- Centre for Respiratory Diseases and MeningitisNational Institute for Communicable Diseases of the National Health Laboratory ServiceJohannesburgSouth Africa
- School of Pathology, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Anne von Gottberg
- Centre for Respiratory Diseases and MeningitisNational Institute for Communicable Diseases of the National Health Laboratory ServiceJohannesburgSouth Africa
- School of Pathology, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Cheryl Cohen
- Centre for Respiratory Diseases and MeningitisNational Institute for Communicable Diseases of the National Health Laboratory ServiceJohannesburgSouth Africa
- School of Public Health, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| |
Collapse
|
32
|
Mutation E48K in PB1 Polymerase Subunit Improves Stability of a Candidate Live Attenuated Influenza B Virus Vaccine. Vaccines (Basel) 2021; 9:vaccines9070800. [PMID: 34358217 PMCID: PMC8310045 DOI: 10.3390/vaccines9070800] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/24/2021] [Accepted: 07/01/2021] [Indexed: 11/17/2022] Open
Abstract
Influenza B virus (IBV) is a major respiratory pathogen of humans, particularly in the elderly and children, and vaccines are the most effective way to control it. In previous work, incorporation of two mutations (E580G, S660A) along with the addition of an HA epitope tag in the PB1 segment of B/Brisbane/60/2008 (B/Bris) resulted in an attenuated strain that was safe and effective as a live attenuated vaccine. A third attempted mutation (K391E) in PB1 was not always stable. Interestingly, viruses that maintained the K391E mutation were associated with the mutation E48K. To explore the contribution of the E48K mutation to stability of the K391E mutation, a vaccine candidate was generated by inserting both mutations, along with attenuating mutations E580G and S660A, in PB1 of B/Bris (B/Bris PB1att 4M). Serial passages of the B/Bris PB1att 4M vaccine candidate in eggs and MDCK indicated high stability. In silico structural analysis revealed a potential interaction between amino acids at positions 48 and 391. In mice, B/Bris PB1att 4M was safe and provided complete protection against homologous challenge. These results confirm the compensatory effect of mutation E48K to stabilize the K391E mutation, resulting in a safer, yet still protective, IBV LAIV vaccine.
Collapse
|
33
|
Vieira MC, Donato CM, Arevalo P, Rimmelzwaan GF, Wood T, Lopez L, Huang QS, Dhanasekaran V, Koelle K, Cobey S. Lineage-specific protection and immune imprinting shape the age distributions of influenza B cases. Nat Commun 2021; 12:4313. [PMID: 34262041 PMCID: PMC8280188 DOI: 10.1038/s41467-021-24566-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
How a history of influenza virus infections contributes to protection is not fully understood, but such protection might explain the contrasting age distributions of cases of the two lineages of influenza B, B/Victoria and B/Yamagata. Fitting a statistical model to those distributions using surveillance data from New Zealand, we found they could be explained by historical changes in lineage frequencies combined with cross-protection between strains of the same lineage. We found additional protection against B/Yamagata in people for whom it was their first influenza B infection, similar to the immune imprinting observed in influenza A. While the data were not informative about B/Victoria imprinting, B/Yamagata imprinting could explain the fewer B/Yamagata than B/Victoria cases in cohorts born in the 1990s and the bimodal age distribution of B/Yamagata cases. Longitudinal studies can test if these forms of protection inferred from historical data extend to more recent strains and other populations.
Collapse
Affiliation(s)
- Marcos C Vieira
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA.
| | - Celeste M Donato
- Enteric Diseases Group, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Philip Arevalo
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Guus F Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Timothy Wood
- Institute of Environmental Science and Research, Wellington, New Zealand
| | - Liza Lopez
- Institute of Environmental Science and Research, Wellington, New Zealand
| | - Q Sue Huang
- Institute of Environmental Science and Research, Wellington, New Zealand
| | - Vijaykrishna Dhanasekaran
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Katia Koelle
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Sarah Cobey
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
34
|
Zhou L, Feng Z, Liu J, Chen Y, Yang L, Liu S, Li X, Gao R, Zhu W, Wang D, Shu Y. A single N342D substitution in Influenza B Virus NA protein determines viral pathogenicity in mice. Emerg Microbes Infect 2021; 9:1853-1863. [PMID: 32746754 PMCID: PMC7473139 DOI: 10.1080/22221751.2020.1806005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Influenza B virus (IBV) is one of the most important human respiratory viruses: it causes approximately one-third of the global influenza-related disease burden each year. However, compared with the several pathogenicity-related molecular markers that have been identified for influenza A virus (IAV), little is known about potential IBV pathogenicity-related markers. Here, although the IBV strain B/Anhui-Tunxi/1528/2014 (AH1528/14) exhibited a more efficient replication ability in vitro and higher pathogenicity in vivo compared with IBV strain B/Anhui-Baohe/127/2015 (AH127/15), only three amino acids differences (HAA390E, NAN342D and PB1V212I) were observed among their full genomes. The contributions of each amino acid difference to the virus pathogenicity were further investigated. Compared with the wild type IBV virus rAH127, the recombinant virus harbouring a single substitution of HAA390E had a similar phenotype, whereas the recombinant virus harbouring PB1V212I replicated to a moderately higher titre in both MDCK cells and in mice. Notably, the virus harbouring NAN342D showed significantly better growth properties in MDCK cells and higher fatality rates in mice. In addition, the presence of NAN342D dramatically enhanced the viral neuraminidase activity. In conclusion, our study identified a novel IBV molecular marker, NAN342D, that could significantly increase the virulence of IBV in mice.
Collapse
Affiliation(s)
- Lijuan Zhou
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong, People's Republic of China.,National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Zhaomin Feng
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Jia Liu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Yongkun Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong, People's Republic of China
| | - Lei Yang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Suli Liu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong, People's Republic of China
| | - Xiyan Li
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Rongbao Gao
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Wenfei Zhu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Dayan Wang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Yuelong Shu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong, People's Republic of China.,National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| |
Collapse
|
35
|
Evolution of Type B Influenza Virus Using a Mass Spectrometry Based Phylonumerics Approach. Evol Biol 2021. [DOI: 10.1007/s11692-021-09535-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
36
|
Bhoyar RC, Jain A, Sehgal P, Divakar MK, Sharma D, Imran M, Jolly B, Ranjan G, Rophina M, Sharma S, Siwach S, Pandhare K, Sahoo S, Sahoo M, Nayak A, Mohanty JN, Das J, Bhandari S, Mathur SK, Kumar A, Sahlot R, Rojarani P, Lakshmi JV, Surekha A, Sekhar PC, Mahajan S, Masih S, Singh P, Kumar V, Jose B, Mahajan V, Gupta V, Gupta R, Arumugam P, Singh A, Nandy A, P. V. R, Jha RM, Kumari A, Gandotra S, Rao V, Faruq M, Kumar S, Reshma G. B, Varma G. N, Roy SS, Sengupta A, Chattopadhyay S, Singhal K, Pradhan S, Jha D, Naushin S, Wadhwa S, Tyagi N, Poojary M, Scaria V, Sivasubbu S. High throughput detection and genetic epidemiology of SARS-CoV-2 using COVIDSeq next-generation sequencing. PLoS One 2021; 16:e0247115. [PMID: 33596239 PMCID: PMC7888613 DOI: 10.1371/journal.pone.0247115] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 02/01/2021] [Indexed: 01/10/2023] Open
Abstract
The rapid emergence of coronavirus disease 2019 (COVID-19) as a global pandemic affecting millions of individuals globally has necessitated sensitive and high-throughput approaches for the diagnosis, surveillance, and determining the genetic epidemiology of SARS-CoV-2. In the present study, we used the COVIDSeq protocol, which involves multiplex-PCR, barcoding, and sequencing of samples for high-throughput detection and deciphering the genetic epidemiology of SARS-CoV-2. We used the approach on 752 clinical samples in duplicates, amounting to a total of 1536 samples which could be sequenced on a single S4 sequencing flow cell on NovaSeq 6000. Our analysis suggests a high concordance between technical duplicates and a high concordance of detection of SARS-CoV-2 between the COVIDSeq as well as RT-PCR approaches. An in-depth analysis revealed a total of six samples in which COVIDSeq detected SARS-CoV-2 in high confidence which were negative in RT-PCR. Additionally, the assay could detect SARS-CoV-2 in 21 samples and 16 samples which were classified inconclusive and pan-sarbeco positive respectively suggesting that COVIDSeq could be used as a confirmatory test. The sequencing approach also enabled insights into the evolution and genetic epidemiology of the SARS-CoV-2 samples. The samples were classified into a total of 3 clades. This study reports two lineages B.1.112 and B.1.99 for the first time in India. This study also revealed 1,143 unique single nucleotide variants and added a total of 73 novel variants identified for the first time. To the best of our knowledge, this is the first report of the COVIDSeq approach for detection and genetic epidemiology of SARS-CoV-2. Our analysis suggests that COVIDSeq could be a potential high sensitivity assay for the detection of SARS-CoV-2, with an additional advantage of enabling the genetic epidemiology of SARS-CoV-2.
Collapse
Affiliation(s)
- Rahul C. Bhoyar
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
| | - Abhinav Jain
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
- Academy for Scientific and Innovative Research, Human Resource Development Centre Campus, Ghaziabad, Uttar Pradesh, India
| | - Paras Sehgal
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
- Academy for Scientific and Innovative Research, Human Resource Development Centre Campus, Ghaziabad, Uttar Pradesh, India
| | - Mohit Kumar Divakar
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
- Academy for Scientific and Innovative Research, Human Resource Development Centre Campus, Ghaziabad, Uttar Pradesh, India
| | - Disha Sharma
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
| | - Mohamed Imran
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
- Academy for Scientific and Innovative Research, Human Resource Development Centre Campus, Ghaziabad, Uttar Pradesh, India
| | - Bani Jolly
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
- Academy for Scientific and Innovative Research, Human Resource Development Centre Campus, Ghaziabad, Uttar Pradesh, India
| | - Gyan Ranjan
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
- Academy for Scientific and Innovative Research, Human Resource Development Centre Campus, Ghaziabad, Uttar Pradesh, India
| | - Mercy Rophina
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
- Academy for Scientific and Innovative Research, Human Resource Development Centre Campus, Ghaziabad, Uttar Pradesh, India
| | - Sumit Sharma
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
| | - Sanjay Siwach
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
| | - Kavita Pandhare
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
| | - Swayamprabha Sahoo
- Institute of Medical Sciences and SUM Hospital, Siksha “O” Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Maheswata Sahoo
- Institute of Medical Sciences and SUM Hospital, Siksha “O” Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Ananya Nayak
- Institute of Medical Sciences and SUM Hospital, Siksha “O” Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Jatindra Nath Mohanty
- Institute of Medical Sciences and SUM Hospital, Siksha “O” Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Jayashankar Das
- Institute of Medical Sciences and SUM Hospital, Siksha “O” Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | | | | | - Anshul Kumar
- Sawai Man Singh Medical College, Jaipur, Rajasthan, India
| | - Rahul Sahlot
- Sawai Man Singh Medical College, Jaipur, Rajasthan, India
| | | | | | | | | | - Shelly Mahajan
- Center for Advanced Research in Imaging, Neuroscience & Genomics, New Delhi, Delhi, India
| | - Shet Masih
- Center for Advanced Research in Imaging, Neuroscience & Genomics, New Delhi, Delhi, India
| | - Pawan Singh
- Center for Advanced Research in Imaging, Neuroscience & Genomics, New Delhi, Delhi, India
| | - Vipin Kumar
- Center for Advanced Research in Imaging, Neuroscience & Genomics, New Delhi, Delhi, India
| | - Blessy Jose
- Center for Advanced Research in Imaging, Neuroscience & Genomics, New Delhi, Delhi, India
| | - Vidur Mahajan
- Center for Advanced Research in Imaging, Neuroscience & Genomics, New Delhi, Delhi, India
| | - Vivek Gupta
- Government Institute of Medical Sciences, NOIDA, Uttar Pradesh, India
| | - Rakesh Gupta
- Government Institute of Medical Sciences, NOIDA, Uttar Pradesh, India
| | - Prabhakar Arumugam
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
- Academy for Scientific and Innovative Research, Human Resource Development Centre Campus, Ghaziabad, Uttar Pradesh, India
| | - Anjali Singh
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
- Academy for Scientific and Innovative Research, Human Resource Development Centre Campus, Ghaziabad, Uttar Pradesh, India
| | - Ananya Nandy
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
- Academy for Scientific and Innovative Research, Human Resource Development Centre Campus, Ghaziabad, Uttar Pradesh, India
| | - Ragavendran P. V.
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
- Academy for Scientific and Innovative Research, Human Resource Development Centre Campus, Ghaziabad, Uttar Pradesh, India
| | - Rakesh Mohan Jha
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
- Academy for Scientific and Innovative Research, Human Resource Development Centre Campus, Ghaziabad, Uttar Pradesh, India
| | - Anupama Kumari
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
- Academy for Scientific and Innovative Research, Human Resource Development Centre Campus, Ghaziabad, Uttar Pradesh, India
| | - Sheetal Gandotra
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
- Academy for Scientific and Innovative Research, Human Resource Development Centre Campus, Ghaziabad, Uttar Pradesh, India
| | - Vivek Rao
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
- Academy for Scientific and Innovative Research, Human Resource Development Centre Campus, Ghaziabad, Uttar Pradesh, India
| | - Mohammed Faruq
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
- Academy for Scientific and Innovative Research, Human Resource Development Centre Campus, Ghaziabad, Uttar Pradesh, India
| | - Sanjeev Kumar
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
- Academy for Scientific and Innovative Research, Human Resource Development Centre Campus, Ghaziabad, Uttar Pradesh, India
| | - Betsy Reshma G.
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
- Academy for Scientific and Innovative Research, Human Resource Development Centre Campus, Ghaziabad, Uttar Pradesh, India
| | - Narendra Varma G.
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
| | - Shuvra Shekhar Roy
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
- Academy for Scientific and Innovative Research, Human Resource Development Centre Campus, Ghaziabad, Uttar Pradesh, India
| | - Antara Sengupta
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
- Academy for Scientific and Innovative Research, Human Resource Development Centre Campus, Ghaziabad, Uttar Pradesh, India
| | - Sabyasachi Chattopadhyay
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
- Academy for Scientific and Innovative Research, Human Resource Development Centre Campus, Ghaziabad, Uttar Pradesh, India
| | - Khushboo Singhal
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
- Academy for Scientific and Innovative Research, Human Resource Development Centre Campus, Ghaziabad, Uttar Pradesh, India
| | - Shalini Pradhan
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
| | - Diksha Jha
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
- Academy for Scientific and Innovative Research, Human Resource Development Centre Campus, Ghaziabad, Uttar Pradesh, India
| | - Salwa Naushin
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
- Academy for Scientific and Innovative Research, Human Resource Development Centre Campus, Ghaziabad, Uttar Pradesh, India
| | - Saruchi Wadhwa
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
- Academy for Scientific and Innovative Research, Human Resource Development Centre Campus, Ghaziabad, Uttar Pradesh, India
| | - Nishu Tyagi
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
- Academy for Scientific and Innovative Research, Human Resource Development Centre Campus, Ghaziabad, Uttar Pradesh, India
| | - Mukta Poojary
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
- Academy for Scientific and Innovative Research, Human Resource Development Centre Campus, Ghaziabad, Uttar Pradesh, India
| | - Vinod Scaria
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
- Academy for Scientific and Innovative Research, Human Resource Development Centre Campus, Ghaziabad, Uttar Pradesh, India
| | - Sridhar Sivasubbu
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
- Academy for Scientific and Innovative Research, Human Resource Development Centre Campus, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
37
|
Abstract
This article summarizes current knowledge on the related influenza B and C viruses and considers the few studies on the recently identified influenza D virus. We focus on the particular viral genome organizations, the viral propagation cycles, as well as structural and functional insight into the encoded viral gene products. This is complemented with comprehensive sections that address the evolutionary strategies and the epidemiological significance of these influenza virus types, as well as the current state of interventions available for their control.
Collapse
|
38
|
Karpiński TM, Ożarowski M, Seremak-Mrozikiewicz A, Wolski H, Wlodkowic D. The 2020 race towards SARS-CoV-2 specific vaccines. Theranostics 2021; 11:1690-1702. [PMID: 33408775 PMCID: PMC7778607 DOI: 10.7150/thno.53691] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/08/2020] [Indexed: 12/13/2022] Open
Abstract
The global outbreak of a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) highlighted a requirement for two pronged clinical interventions such as development of effective vaccines and acute therapeutic options for medium-to-severe stages of "coronavirus disease 2019" (COVID-19). Effective vaccines, if successfully developed, have been emphasized to become the most effective strategy in the global fight against the COVID-19 pandemic. Basic research advances in biotechnology and genetic engineering have already provided excellent progress and groundbreaking new discoveries in the field of the coronavirus biology and its epidemiology. In particular, for the vaccine development the advances in characterization of a capsid structure and identification of its antigens that can become targets for new vaccines. The development of the experimental vaccines requires a plethora of molecular techniques as well as strict compliance with safety procedures. The research and clinical data integrity, cross-validation of the results, and appropriated studies from the perspective of efficacy and potently side effects have recently become a hotly discussed topic. In this review, we present an update on latest advances and progress in an ongoing race to develop 52 different vaccines against SARS-CoV-2. Our analysis is focused on registered clinical trials (current as of November 04, 2020) that fulfill the international safety and efficacy criteria in the vaccine development. The requirements as well as benefits and risks of diverse types of SARS-CoV-2 vaccines are discussed including those containing whole-virus and live-attenuated vaccines, subunit vaccines, mRNA vaccines, DNA vaccines, live vector vaccines, and also plant-based vaccine formulation containing coronavirus-like particle (VLP). The challenges associated with the vaccine development as well as its distribution, safety and long-term effectiveness have also been highlighted and discussed.
Collapse
Affiliation(s)
- Tomasz M. Karpiński
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712 Poznań, Poland
| | - Marcin Ożarowski
- Department of Biotechnology, Institute of Natural Fibres and Medicinal Plants, Poznań, Poland
| | - Agnieszka Seremak-Mrozikiewicz
- Division of Perinatology and Women's Disease, Poznań University of Medical Sciences, Poznań, Poland
- Laboratory of Molecular Biology in Division of Perinatology and Women's Diseases, Poznań University of Medical Sciences, Poznań, Poland
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Poznań, Poland
| | - Hubert Wolski
- Division of Perinatology and Women's Disease, Poznań University of Medical Sciences, Poznań, Poland
- Division of Obstetrics and Gynecology, Tytus Chałubiński's Hospital, Zakopane, Poland
| | | |
Collapse
|
39
|
Wei J, Huang H, Qin H, Li S, Xing L, Li Y, Cao M, Wang Y, Bi Y, Liu Y, Yang Y. A newly developed real-time PCR assay for discriminating influenza B virus Yamagata and Victoria lineages. J Med Virol 2020; 92:3067-3072. [PMID: 32497291 DOI: 10.1002/jmv.26133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 04/27/2020] [Accepted: 06/01/2020] [Indexed: 11/07/2022]
Abstract
Currently, two distinct lineages of influenza B virus (IBV), B/Victoria and B/Yamagata lineage, have been co-circulating in human beings. Assessment of the prevalent lineage is key for the recommendation of the seasonal influenza vaccine composition and the evaluation of its efficacy. In this study, a multiplex qRT-PCR assay for the discrimination of the IBV lineages was designed based on the genetic differences of the hemagglutinin genes between B/Yamagata and B/Victoria lineages. The assay was highly specific and able to discriminate the lineages of IBV without any non-specific reaction against other influenza A viruses. The detection limit of the assay was determined to be 10 genome-equivalent copies and 2.8 × 10-2 50% tissue culture infectious doses (TCID50 ) of live IBV per reaction. Moreover, our assay was able to discriminate the lineages of IBVs in clinical samples with 100% accuracy, when compared with pyrosequencing. Our results indicate that this assay may represent an update of the existing qRT-PCR assays and will be of great use for the rapid and accurate diagnosis and surveillance of the circulating IBVs.
Collapse
Affiliation(s)
- Jinli Wei
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Huaxin Huang
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Hucheng Qin
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Shanqin Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Center for Influenza Research and Early-warning (CASCIRE), Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Li Xing
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Yanjie Li
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Mengli Cao
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Yanrong Wang
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Yuhai Bi
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Center for Influenza Research and Early-warning (CASCIRE), Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yingxia Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- Savid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yang Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
40
|
Lau YC, Perera RAPM, Fang VJ, Luk LH, Chu DKW, Wu P, Barr IG, Peiris JSM, Cowling BJ. Variation by lineage in serum antibody responses to influenza B virus infections. PLoS One 2020; 15:e0241693. [PMID: 33166348 PMCID: PMC7652285 DOI: 10.1371/journal.pone.0241693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022] Open
Abstract
Two lineages of influenza B virus currently co-circulate and have distinct antigenicity, termed Victoria and Yamagata after the B/Victoria/2/87 and B/Yamagata/16/88 strains, respectively. We analyzed antibody titer dynamics following PCR-confirmed influenza B virus infection in a longitudinal community-based cohort study conducted in Hong Kong from 2009–2014 to assess patterns in changes in antibody titers to B/Victoria and B/Yamagata viruses following infections with each lineage. Among 62 PCR-confirmed cases, almost half had undetectable hemagglutination inhibition (HAI) antibody titers to the lineage of infection both pre-infection and post-infection. Among those infected with influenza B/Victoria who showed an HAI titer response after infection, we found strong rises to the lineage of infection, positive but smaller cross-lineage HAI titer boosts, a small dependence of HAI titer boosts on pre-infection titers, and a shorter half-life of HAI titers in adults. Our study is limited by the low HAI sensitivity for non-ether-treated IBV antigen and the incapacity of performing other assays with higher sensitivity, as well as the mismatch between the B/Yamagata lineage circulating strain and the assay strain in one of the study seasons.
Collapse
Affiliation(s)
- Yiu Chung Lau
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Ranawaka A. P. M. Perera
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Vicky J. Fang
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Long Hei Luk
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Daniel K. W. Chu
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Peng Wu
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Ian G. Barr
- World Health Organization Collaborating Centre for Reference and Research, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | - J. S. Malik Peiris
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Hong Kong, China
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Benjamin J. Cowling
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Hong Kong, China
- * E-mail:
| |
Collapse
|
41
|
Zaraket H, Hurt AC, Clinch B, Barr I, Lee N. Burden of influenza B virus infection and considerations for clinical management. Antiviral Res 2020; 185:104970. [PMID: 33159999 DOI: 10.1016/j.antiviral.2020.104970] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 12/27/2022]
Abstract
Influenza B viruses cause significant morbidity and mortality, particularly in children, but the awareness of their impact is often less than influenza A viruses partly due to their lack of pandemic potential. Here, we summarise the biology, epidemiology and disease burden of influenza B, and review existing data on available antivirals for its management. There has long been uncertainty surrounding the clinical efficacy of neuraminidase inhibitors (NAIs) for influenza B treatment. In this article, we bring together the existing data on NAIs and discuss these alongside recent large randomised controlled trial data for the new polymerase inhibitor baloxavir in high-risk influenza B patients. Finally, we offer considerations for the clinical management of influenza B, with a focus on children and high-risk patients where disease burden is highest.
Collapse
Affiliation(s)
- Hassan Zaraket
- Center for Infectious Disease Research, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | | | | | - Ian Barr
- WHO Collaborating Centre for Reference and Research on Influenza, Melbourne, Australia; Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute, Melbourne, Australia
| | - Nelson Lee
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Canada.
| |
Collapse
|
42
|
Cardenas-Garcia S, Caceres CJ, Rajao D, Perez DR. Reverse genetics for influenza B viruses and recent advances in vaccine development. Curr Opin Virol 2020; 44:191-202. [PMID: 33254031 PMCID: PMC8693393 DOI: 10.1016/j.coviro.2020.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 02/06/2023]
Abstract
Influenza B virus is a respiratory pathogen that affects more severely the pediatric and elderly populations. There are two lineages of influenza B virus that seem to have differential predilection for age groups. Both lineages can co-circulate during the influenza season however one is usually more prominent than the other depending on the season. There are no defined indicators to predict which lineage will dominate in any given season. In recent years, the addition of viruses from both lineages to the seasonal influenza vaccine formulation has improved vaccine protection, although quadrivalent vaccines are not available worldwide. Reverse genetics has facilitated advancements in the field of vaccine development against influenza B virus. Different strategies have been explored showing promising results that could potentially lead to the development broadly protective influenza B virus vaccines.
Collapse
Affiliation(s)
- Stivalis Cardenas-Garcia
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, 953 College Station Rd, Athens, GA, 30602, USA.
| | - C Joaquin Caceres
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, 953 College Station Rd, Athens, GA, 30602, USA
| | - Daniela Rajao
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, 953 College Station Rd, Athens, GA, 30602, USA
| | - Daniel R Perez
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, 953 College Station Rd, Athens, GA, 30602, USA.
| |
Collapse
|
43
|
Madsen A, Dai YN, McMahon M, Schmitz AJ, Turner JS, Tan J, Lei T, Alsoussi WB, Strohmeier S, Amor M, Mohammed BM, Mudd PA, Simon V, Cox RJ, Fremont DH, Krammer F, Ellebedy AH. Human Antibodies Targeting Influenza B Virus Neuraminidase Active Site Are Broadly Protective. Immunity 2020; 53:852-863.e7. [PMID: 32976769 DOI: 10.1016/j.immuni.2020.08.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 06/01/2020] [Accepted: 08/25/2020] [Indexed: 12/23/2022]
Abstract
Influenza B virus (IBV) infections can cause severe disease in children and the elderly. Commonly used antivirals have lower clinical effectiveness against IBV compared to influenza A viruses (IAV). Neuraminidase (NA), the second major surface protein on the influenza virus, is emerging as a target of broadly protective antibodies that recognize the NA active site of IAVs. However, similarly broadly protective antibodies against IBV NA have not been identified. Here, we isolated and characterized human monoclonal antibodies (mAbs) that target IBV NA from an IBV-infected patient. Two mAbs displayed broad and potent capacity to inhibit IBV NA enzymatic activity, neutralize the virus in vitro, and protect against lethal IBV infection in mice in prophylactic and therapeutic settings. These mAbs inserted long CDR-H3 loops into the NA active site, engaging residues highly conserved among IBV NAs. These mAbs provide a blueprint for the development of improved vaccines and therapeutics against IBVs.
Collapse
Affiliation(s)
- Anders Madsen
- Influenza Centre, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | - Ya-Nan Dai
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Meagan McMahon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Aaron J Schmitz
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jackson S Turner
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jessica Tan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tingting Lei
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Wafaa B Alsoussi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shirin Strohmeier
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mostafa Amor
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bassem M Mohammed
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Philip A Mudd
- Division of Emergency Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rebecca J Cox
- Influenza Centre, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; Department of Microbiology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Daved H Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Ali H Ellebedy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
44
|
Plant EP, Manukyan H, Laassri M, Ye Z. Insights from the comparison of genomic variants from two influenza B viruses grown in the presence of human antibodies in cell culture. PLoS One 2020; 15:e0239015. [PMID: 32925936 PMCID: PMC7489522 DOI: 10.1371/journal.pone.0239015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/27/2020] [Indexed: 12/25/2022] Open
Abstract
Understanding the extent and limitation of viral genome evolution can provide insight about potential drug and vaccine targets. Influenza B Viruses (IBVs) infect humans in a seasonal manner and causes significant morbidity and mortality. IBVs are negative-sense single-stranded RNA viruses with a segmented genome and can be divided into two antigenically distinct lineages. The two lineages have been circulating and further evolving for almost four decades. The immune response to IBV infection can lead to antibodies that target the strain causing the infection. Some antibodies are cross-reactive and are able to bind strains from both lineages but, because of antigenic drift and immunodominance, both lineages continue to evolve and challenge human health. Here we investigate changes in the genomes of an IBVs from each lineage after passage in tissue culture in the presence of human sera containing polyclonal antibodies directed toward antigenically and temporally distinct viruses. Our previous analysis of the fourth segment, which encodes the major surface protein HA, revealed a pattern of change in which signature sequences from one lineage mutated to the signature sequences of the other lineage. Here we analyze genes from the other genomic segments and observe that most of the quasispecies’ heterogeneity occurs at the same loci in each lineage. The nature of the variants at these loci are investigated and possible reasons for this pattern are discussed. This work expands our understanding of the extent and limitations of genomic change in IBV.
Collapse
Affiliation(s)
- Ewan P. Plant
- Office of Vaccine Research and Review, US Food and Drug Administration, Silver Spring, Maryland, United States of America
- * E-mail:
| | - Hasmik Manukyan
- Office of Vaccine Research and Review, US Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Majid Laassri
- Office of Vaccine Research and Review, US Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Zhiping Ye
- Office of Vaccine Research and Review, US Food and Drug Administration, Silver Spring, Maryland, United States of America
| |
Collapse
|
45
|
The impact of candidate influenza virus and egg-based manufacture on vaccine effectiveness: Literature review and expert consensus. Vaccine 2020; 38:6047-6056. [PMID: 32600916 DOI: 10.1016/j.vaccine.2020.06.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 06/01/2020] [Accepted: 06/07/2020] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Influenza is associated with significant morbidity and mortality worldwide. Whilst vaccination is key for the prevention of influenza infection, there are many factors which may contribute to reduced vaccine effectiveness, including antigenic evolution via both antigenic drift and egg-adaptations. Due to the currently dissociated and indirect evidence supporting both the occurrence of these two phenomena in the egg-based manufacturing process and their effects on vaccine effectiveness, this topic remains a subject of debate. OBJECTIVE To review the evidence and level of agreement in expert opinion supporting a mechanistic basis for reduced vaccine effectiveness due to egg-based manufacturing, using an expert consensus-based methodology and literature reviews. METHODS Ten European influenza specialists were recruited to the expert panel. The overall research question was deconstructed into four component principles, which were examined in series using a novel, online, two-stage assessment of proportional group awareness and consensus. The first stage independently generated a list of supporting references for each component principle via literature searches and expert assessments. In the second stage, a summary of each reference was circulated amongst the experts, who rated their agreement that each reference supported the component principle on a 5-point Likert scale. Finally, the panel were asked if they agreed that, as a whole, the evidence supported a mechanistic basis for reduced vaccine effectiveness due to egg-based manufacturing. RESULTS All component principles were reported to have a majority of strong or very strong supporting evidence (70-90%). CONCLUSIONS On reviewing the evidence for all component principles, experts unanimously agreed that there is a mechanistic basis for reduced vaccine effectiveness resulting from candidate influenza virus variation due to egg-based manufacturing, particularly in the influenza A/H3N2 strain. Experts pointed to surveillance, candidate vaccine virus selection and manufacturing stages involving eggs as the most likely to impact vaccine effectiveness.
Collapse
|
46
|
Louca S. Phylogeographic Estimation and Simulation of Global Diffusive Dispersal. Syst Biol 2020; 70:340-359. [PMID: 32726450 DOI: 10.1093/sysbio/syaa061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 11/14/2022] Open
Abstract
The analysis of time-resolved phylogenies (timetrees) and geographic location data allows estimation of dispersal rates, for example, for invasive species and infectious diseases. Many estimation methods are based on the Brownian Motion model for diffusive dispersal on a 2D plane; however, the accuracy of these methods deteriorates substantially when dispersal occurs at global scales because spherical Brownian motion (SBM) differs from planar Brownian motion. No statistical method exists for estimating SBM diffusion coefficients from a given timetree and tip coordinates, and no method exists for simulating SBM along a given timetree. Here, I present new methods for simulating SBM along a given timetree, and for estimating SBM diffusivity from a given timetree and tip coordinates using a modification of Felsenstein's independent contrasts and maximum likelihood. My simulation and fitting methods can accommodate arbitrary time-dependent diffusivities and scale efficiently to trees with millions of tips, thus enabling new analyses even in cases where planar BM would be a sufficient approximation. I demonstrate these methods using a timetree of marine and terrestrial Cyanobacterial genomes, as well as timetrees of two globally circulating Influenza B clades. My methods are implemented in the R package "castor." [Independent contrasts; phylogenetic; random walk; simulation; spherical Brownian motion.].
Collapse
Affiliation(s)
- Stilianos Louca
- Department of Biology, University of Oregon, USA.,Institute of Ecology and Evolution, University of Oregon, USA
| |
Collapse
|
47
|
Abstract
Infectious disease research spans scales from the molecular to the global—from specific mechanisms of pathogen drug resistance, virulence, and replication to the movement of people, animals, and pathogens around the world. All of these research areas have been impacted by the recent growth of large-scale data sources and data analytics. Some of these advances rely on data or analytic methods that are common to most biomedical data science, while others leverage the unique nature of infectious disease, namely its communicability. This review outlines major research progress in the past few years and highlights some remaining opportunities, focusing on data or methodological approaches particular to infectious disease.
Collapse
Affiliation(s)
- Peter M. Kasson
- Department of Biomedical Engineering and Department of Molecular Physiology, University of Virginia, Charlottesville, Virginia 22908, USA
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, 752 37 Uppsala, Sweden
| |
Collapse
|
48
|
Nyasimi FM, Owuor DC, Ngoi JM, Mwihuri AG, Otieno GP, Otieno JR, Githinji G, Nyiro JU, Nokes DJ, Agoti CN. Epidemiological and evolutionary dynamics of influenza B virus in coastal Kenya as revealed by genomic analysis of strains sampled over a single season. Virus Evol 2020; 6:veaa045. [PMID: 33747542 PMCID: PMC7959010 DOI: 10.1093/ve/veaa045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The genomic epidemiology of influenza B virus (IBV) remains understudied in Africa despite significance to design of effective local and global control strategies. We undertook surveillance throughout 2016 in coastal Kenya, recruiting individuals presenting with acute respiratory illness at nine outpatient health facilities (any age) or admitted to the Kilifi County Hospital (<5 years old). Whole genomes were sequenced for a selected 111 positives; 94 (84.7%) of B/Victoria lineage and 17 (15.3%) of B/Yamagata lineage. Inter-lineage reassortment was detected in ten viruses; nine with B/Yamagata backbone but B/Victoria NA and NP segments and one with a B/Victoria backbone but B/Yamagata PB2, PB1, PA, and MP segments. Five phylogenomic clusters were identified among the sequenced viruses; (i), pure B/Victoria clade 1A (n = 93, 83.8%), (ii), reassortant B/Victoria clade 1A (n = 1, 0.9%), (iii), pure B/Yamagata clade 2 (n = 2, 1.8%), (iv), pure B/Yamagata clade 3 (n = 6, 5.4%), and (v), reassortant B/Yamagata clade 3 (n = 9, 8.1%). Using divergence dates and clustering patterns in the presence of global background sequences, we counted up to twenty-nine independent IBV strain introductions into the study area (∼900 km2) in 2016. Local viruses, including the reassortant B/Yamagata strains, clustered closely with viruses from neighbouring Tanzania and Uganda. Our study demonstrated that genomic analysis provides a clearer picture of locally circulating IBV diversity. The high number of IBV introductions highlights the challenge in controlling local influenza epidemics by targeted approaches, for example, sub-population vaccination or patient quarantine. The finding of divergent IBV strains co-circulating within a single season emphasises why broad immunity vaccines are the most ideal for influenza control in Kenya.
Collapse
Affiliation(s)
- Festus M Nyasimi
- Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI) – Wellcome Trust Research Programme, P.O. Box 230, Kilifi-80108, Kenya
- Department of Public Health, School of Health and Human Sciences, Pwani University, P.O. Box 195, Kilifi-80108, Kenya
| | - David Collins Owuor
- Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI) – Wellcome Trust Research Programme, P.O. Box 230, Kilifi-80108, Kenya
| | - Joyce M Ngoi
- Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI) – Wellcome Trust Research Programme, P.O. Box 230, Kilifi-80108, Kenya
| | - Alexander G Mwihuri
- Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI) – Wellcome Trust Research Programme, P.O. Box 230, Kilifi-80108, Kenya
| | - Grieven P Otieno
- Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI) – Wellcome Trust Research Programme, P.O. Box 230, Kilifi-80108, Kenya
| | - James R Otieno
- Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI) – Wellcome Trust Research Programme, P.O. Box 230, Kilifi-80108, Kenya
| | - George Githinji
- Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI) – Wellcome Trust Research Programme, P.O. Box 230, Kilifi-80108, Kenya
| | - Joyce U Nyiro
- Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI) – Wellcome Trust Research Programme, P.O. Box 230, Kilifi-80108, Kenya
| | - David James Nokes
- Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI) – Wellcome Trust Research Programme, P.O. Box 230, Kilifi-80108, Kenya
- Department of Public Health, School of Health and Human Sciences, Pwani University, P.O. Box 195, Kilifi-80108, Kenya
- School of Life Sciences and Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), University of Warwick, Coventry, CV4, 7AL, UK
| | - Charles N Agoti
- Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI) – Wellcome Trust Research Programme, P.O. Box 230, Kilifi-80108, Kenya
- Department of Public Health, School of Health and Human Sciences, Pwani University, P.O. Box 195, Kilifi-80108, Kenya
| |
Collapse
|
49
|
Kitano M, Matsuzaki T, Oka R, Baba K, Noda T, Yoshida Y, Sato K, Kiyota K, Mizutare T, Yoshida R, Sato A, Kamimori H, Shishido T, Naito A. The antiviral effects of baloxavir marboxil against influenza A virus infection in ferrets. Influenza Other Respir Viruses 2020; 14:710-719. [PMID: 32533654 PMCID: PMC7578299 DOI: 10.1111/irv.12760] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 05/06/2020] [Accepted: 05/09/2020] [Indexed: 12/17/2022] Open
Abstract
Background Baloxavir marboxil (BXM), the oral prodrug of baloxavir acid (BXA), greatly reduces virus titers as well as influenza symptoms of uncomplicated influenza in patients. Objectives To investigate the pharmacokinetic profiles of BXA and its efficacy against influenza A virus infection in ferrets. Methods Ferrets were dosed orally with BXM (10 and 30 mg/kg twice daily for 1 day), oseltamivir phosphate (OSP) (5 mg/kg twice daily for 2 days) or vehicle to measure the antiviral effects of BXM and OSP. The pharmacokinetic parameters of BXA was determined after single oral dosing of BXM. Results The maximum plasma concentrations of BXA were observed at 1.50 and 2.00 hours with the two BXM doses, which then declined with an elimination half‐life of 6.91 and 4.44 hours, respectively. BXM at both doses remained detectable in the plasma in ferrets, which may be due to higher stability in liver microsomes. BXM (10 and 30 mg/kg twice daily) treatment at Day 1 post‐infection (p.i.) reduced virus titers by ≥3 log10 of the 50% tissue culture infective doses by Day 2, which was significantly different compared with vehicle or OSP. Body temperature drops over time were significantly greater with BXM than with vehicle or OSP. Significant reduction in virus titers was also demonstrated when BXM was administrated after symptom onset at Day 2 p.i. compared with vehicle and OSP, although body temperature changes largely overlapped between Day 2 and Day 4. Conclusions The results highlight the rapid antiviral action of BXM with post‐exposure prophylaxis or therapeutic dosing in ferrets and offer support for further research on prevention of influenza virus infection and transmission.
Collapse
Affiliation(s)
| | | | - Ryoko Oka
- Shionogi & Co., Ltd., Toyonaka, Japan
| | - Kaoru Baba
- Shionogi TechnoAdvance Research, Co., Ltd., Toyonaka, Japan
| | - Takahiro Noda
- Shionogi TechnoAdvance Research, Co., Ltd., Toyonaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Lam EKS, Morris DH, Hurt AC, Barr IG, Russell CA. The impact of climate and antigenic evolution on seasonal influenza virus epidemics in Australia. Nat Commun 2020; 11:2741. [PMID: 32488106 PMCID: PMC7265451 DOI: 10.1038/s41467-020-16545-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 05/09/2020] [Indexed: 11/08/2022] Open
Abstract
Although seasonal influenza viruses circulate globally, prevention and treatment occur at the level of regions, cities, and communities. At these scales, the timing, duration and magnitude of epidemics vary substantially, but the underlying causes of this variation are poorly understood. Here, based on analyses of a 15-year city-level dataset of 18,250 laboratory-confirmed and antigenically-characterised influenza virus infections from Australia, we investigate the effects of previously hypothesised environmental and virological drivers of influenza epidemics. We find that anomalous fluctuations in temperature and humidity do not predict local epidemic onset timings. We also find that virus antigenic change has no consistent effect on epidemic size. In contrast, epidemic onset time and heterosubtypic competition have substantial effects on epidemic size and composition. Our findings suggest that the relationship between influenza population immunity and epidemiology is more complex than previously supposed and that the strong influence of short-term processes may hinder long-term epidemiological forecasts.
Collapse
Affiliation(s)
- Edward K S Lam
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Dylan H Morris
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Aeron C Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, VIDRL, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Microbiology and Immunology, University of Melbourne, Parkville, VIC, Australia
| | - Ian G Barr
- WHO Collaborating Centre for Reference and Research on Influenza, VIDRL, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Microbiology and Immunology, University of Melbourne, Parkville, VIC, Australia
- School of Applied Biomedical Sciences, Federation University, Churchill, VIC, Australia
| | - Colin A Russell
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|