1
|
Saxena S, Kumar Panwar V, Mittal A, Mujahid MT, Agarwal M, Srivastava NK, Singhal A. Rare Association of Disseminated Cutaneous Leishmaniasis With Urethral Stricture: A Case Report. Cureus 2025; 17:e80179. [PMID: 40190865 PMCID: PMC11972424 DOI: 10.7759/cureus.80179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2025] [Indexed: 04/09/2025] Open
Abstract
Leishmaniasis, a parasitic disease transmitted by sandflies, rarely presents with urogenital complications. This case highlights an unusual presentation of disseminated cutaneous leishmaniasis with urethral involvement. A 42-year-old male from an endemic region presented with macular-papules-nodular lesions on lips, nose, and tongue, accompanied by genital ulcers and urinary complications. Histopathological examination confirmed Leishmania parasites. The patient developed urethral stricture and urethrocutaneous fistula, which were managed successfully with systemic amphotericin B and staged urethroplasty. This case emphasizes the importance of considering leishmaniasis in the differential diagnosis of urogenital manifestations in endemic regions. The successful outcome demonstrates the effectiveness of combined medical and surgical management.
Collapse
Affiliation(s)
- Siddharta Saxena
- Department of Urology, All India Institute of Medical Sciences, Rishikesh, Rishikesh, IND
| | - Vikas Kumar Panwar
- Department of Urology, All India Institute of Medical Sciences, Rishikesh, Rishikesh, IND
| | - Ankur Mittal
- Department of Urology, All India Institute of Medical Sciences, Rishikesh, Rishikesh, IND
| | - Mohammed Taher Mujahid
- Department of Urology, All India Institute of Medical Sciences, Rishikesh, Rishikesh, IND
| | - Mehul Agarwal
- Department of Urology, All India Institute of Medical Sciences, Rishikesh, Rishikesh, IND
| | - Nalin K Srivastava
- Department of Urology, All India Institute of Medical Sciences, Rishikesh, Rishikesh, IND
| | - Avin Singhal
- Department of Urology, All India Institute of Medical Sciences, Rishikesh, Rishikesh, IND
| |
Collapse
|
2
|
Mihu AG, Patiu M, Dima DM, Oatis DA, Cismaru CM, Lighezan R, Olariu TR. Visceral Leishmaniasis in a 25-Year-Old Female Kidney Transplant Recipient from a Non-Endemic Region: A Case Report from Romania. Microorganisms 2025; 13:403. [PMID: 40005769 PMCID: PMC11858124 DOI: 10.3390/microorganisms13020403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/09/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Visceral leishmaniasis is a rare parasitic infection in non-endemic regions such as Romania. We report the case of a 25-year-old female kidney transplant recipient from Cluj County, Romania, who developed persistent bicytopenia with anemia and thrombocytopenia. Despite no history of travel outside Cluj County and being the only organ recipient from the same donor to experience signs and symptoms, she was diagnosed with visceral leishmaniasis. The second bone marrow aspirate performed revealed Leishmania amastigotes. She was quickly sent to Victor Babes Infectious Disease Hospital in Bucharest for additional tests and treatment. The kidney function of the patient was maintained. This case highlights the importance of considering leishmaniasis in immunosuppressed patients presenting with unexplained cytopenia, even in non-endemic regions. This is the first documented case of visceral leishmaniasis in a kidney transplant recipient in Romania. The present report could serve as a foundation for future educational programs targeted toward informing both healthcare providers and patients about the risks, diagnosis, and management of leishmaniasis in immunosuppressed individuals in non-endemic regions.
Collapse
Affiliation(s)
- Alin Gabriel Mihu
- Center for Diagnosis and Study of Parasitic Diseases, Department of Infectious Disease, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.G.M.); (T.R.O.)
- Department of Biology and Life Sciences, Vasile Goldis Western University, 310300 Arad, Romania
| | - Mariana Patiu
- Department of Hematology, Ion Chiricuta Oncology Institute, 400015 Cluj-Napoca, Romania; (M.P.); (D.M.D.)
| | - Delia Monica Dima
- Department of Hematology, Ion Chiricuta Oncology Institute, 400015 Cluj-Napoca, Romania; (M.P.); (D.M.D.)
| | - Daniela Adriana Oatis
- Center for Diagnosis and Study of Parasitic Diseases, Department of Infectious Disease, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.G.M.); (T.R.O.)
- Department of Medicine, Vasile Goldis Western University, 310300 Arad, Romania
| | - Cristina Mihaela Cismaru
- Clinical Hospital of Infectious Diseases of Cluj-Napoca, 400348 Cluj-Napoca, Romania;
- Department of Infectious Diseases, Iuliu Hatieganu University of Medicine and Pharmacy, 400348 Cluj-Napoca, Romania
| | - Rodica Lighezan
- Discipline of Parasitology, Department of Infectious Disease, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Regional Blood Transfusion Center, 300737 Timisoara, Romania
| | - Tudor Rares Olariu
- Center for Diagnosis and Study of Parasitic Diseases, Department of Infectious Disease, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.G.M.); (T.R.O.)
- Discipline of Parasitology, Department of Infectious Disease, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Clinical Laboratory, Municipal Clinical Emergency Teaching Hospital, 300254 Timisoara, Romania
- Patogen Preventia, 300124 Timisoara, Romania
| |
Collapse
|
3
|
da Cruz AB, Carneiro FM, Taniwaki NN, Namiyama GM, dos Santos DO, Castellão KG, Ferreira IMR, Hiramoto RM, Pereira-Chioccola VL. Performance of Extracellular Vesicles From Leishmania ( Leishmania) infantum for Serological Diagnosis of Human and Canine Visceral Leishmaniasis. J Parasitol Res 2025; 2025:8355886. [PMID: 39877665 PMCID: PMC11774571 DOI: 10.1155/japr/8355886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/31/2024] [Indexed: 01/31/2025] Open
Abstract
Visceral leishmaniasis (VL) is a zoonotic disease in which dogs are the main reservoirs. Until now, the serological tests do not present satisfactory sensitivity for diagnosis of these hosts. One of the functions of extracellular vesicles (EVs) is related to immunological host response. Here, we evaluated the ability of EVs released by Leishmania (Leishmania) infantum promastigotes (Leish-EVs) to be source of antigens for use in serological diagnosis for human visceral leishmaniasis (HumVL) and canine visceral leishmaniasis (CanVL). A total of 300 sera were tested. The 155 human sera were divided into 4 groups and 145 canine sera into 3 groups. In human sera, Leish-EVs were reactive in 73/74 sera from patients with VL (Hum-VL) with 98.64% sensitivity. The 26 sera from healthy individuals (NH) and 27 from individuals with asymptomatic toxoplasmosis (ATx) were nonreagent (100% specificity). Leish-EVs-ELISA had cross-reactivity or inconclusive results in 13.5% of sera from Chagas disease patients (CD). In canine sera, Leish-EVs were reactive in 60/63 sera from dogs with CanVL (Can-VL) with 95.24% sensitivity. Leish-EVs were nonreactive in sera from 57 dogs without Can-VL (NC) and 25 with other infections (OIs) with 100% specificity. Hum-VL produced more IgG1 against Leish-EVs than IgG2, IgG3, and IgG4. Can-VL produced more IgG2 against Leish-EVs than IgG1. In conclusion, this study provides evidence that Leish-EVs released by L. (L.) infantum when used as antigen in ELISA identified the host antibodies. The methodology was effective for serological diagnosis of VL, since results exhibited good sensitivity and specificity for human and canine sera.
Collapse
Affiliation(s)
- Allecineia Bispo da Cruz
- Parasitology and Mycology Center, Adolfo Lutz Institute, Sao Paulo, Brazil
- Graduate Program in Science, Coordinator for Disease Control, Ministry of Health of São Paulo State, Sao Paulo, Brazil
| | - Francieli Marinho Carneiro
- Parasitology and Mycology Center, Adolfo Lutz Institute, Sao Paulo, Brazil
- Graduate Program in Science, Coordinator for Disease Control, Ministry of Health of São Paulo State, Sao Paulo, Brazil
| | | | | | - Débora Oliveira dos Santos
- Parasitology and Mycology Center, Adolfo Lutz Institute, Sao Paulo, Brazil
- Graduate Program in Science, Coordinator for Disease Control, Ministry of Health of São Paulo State, Sao Paulo, Brazil
| | | | | | | | - Vera Lucia Pereira-Chioccola
- Parasitology and Mycology Center, Adolfo Lutz Institute, Sao Paulo, Brazil
- Graduate Program in Science, Coordinator for Disease Control, Ministry of Health of São Paulo State, Sao Paulo, Brazil
| |
Collapse
|
4
|
Rihs JB, Vilela MT, Dos Santos JSC, de Souza Filho JA, Caldas S, Leite RS, Mol MPG. qPCR as a Tool for the Diagnosis of Visceral and Cutaneous Leishmaniasis: A Systematic Review and Meta-Analysis. Acta Parasitol 2025; 70:16. [PMID: 39777570 DOI: 10.1007/s11686-024-00942-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 10/21/2024] [Indexed: 01/11/2025]
Abstract
INTRODUCTION Ensuring accuracy in the diagnosis of leishmaniasis is crucial due to the myriad of potential differential diagnoses. Given the inherent limitations of serological techniques, real-time polymerase chain reaction (qPCR) emerges as a superior alternative. Furthermore, parasitological methods, conventionally regarded as the gold standard owing to their high specificity, encounter challenges concerning sensitivity and invasiveness for patients. In this context, the present study aims to assess, via meta-analysis, the performance of qPCR in diagnosing visceral and cutaneous leishmaniasis. METHOD This meta-analysis encompassed studies published between January 2011 and December 2022, sourced from six databases (PubMed, LILACS, Scopus, Scielo, EMBASE, and Web of Science), utilizing the keywords "qPCR," "molecular diagnosis," and "leishmaniasis." Epidemiological studies focusing on the efficacy of qPCR for leishmaniasis diagnosis were included. Data such as study demographics, geographic locations, sampling techniques, and the number of positive qPCR results were aggregated and analyzed to derive overall positivity rates, sensitivity, and specificity values associated with qPCR. Heterogeneity analysis was conducted on the data to select appropriate models, and the collective efficacy data of qPCR were illustrated in forest plots. RESULTS Fifty-four studies met all inclusion criteria. The positivity rates for human visceral and cutaneous leishmaniasis were 27.07% (95% CI: 17.81-36.33%) and 60.40% (95% CI: 30.23-90.57%), respectively. In cases of visceral leishmaniasis in dogs, cats, and wild animals, the positivity rates were 26.55% (95% CI: 21.40-31.70%), 0.92% (95% CI: 0.09-1.75%), and 28.98% (95% CI: 21.86-35.10%), respectively. Analysis of the selected studies revealed high overall sensitivity and specificity values achieved with qPCR, at 91.08% (95% CI: 81.77-100.39%) and 98.08% (95% CI: 97.13-99.03%), respectively. CONCLUSION This study indicates that qPCR is a highly sensitive and specific tool, adequately suitable for the diagnosis of human visceral and cutaneous leishmaniasis, as well as visceral leishmaniasis in animals.
Collapse
Affiliation(s)
- José Bryan Rihs
- Ezequiel Dias Foundation, Directorate of Research and Development, Belo Horizonte, Minas Gerais, 30510-010, Brazil.
| | - Mariana Teixeira Vilela
- Ezequiel Dias Foundation, Directorate of Research and Development, Belo Horizonte, Minas Gerais, 30510-010, Brazil
| | | | - Job Alves de Souza Filho
- Ezequiel Dias Foundation, Directorate of Research and Development, Belo Horizonte, Minas Gerais, 30510-010, Brazil
| | - Sérgio Caldas
- Ezequiel Dias Foundation, Directorate of Research and Development, Belo Horizonte, Minas Gerais, 30510-010, Brazil
| | - Rodrigo Souza Leite
- Ezequiel Dias Foundation, Directorate of Research and Development, Belo Horizonte, Minas Gerais, 30510-010, Brazil
| | - Marcos Paulo Gomes Mol
- Ezequiel Dias Foundation, Directorate of Research and Development, Belo Horizonte, Minas Gerais, 30510-010, Brazil
| |
Collapse
|
5
|
Arthur MN, Hanson G, Broni E, Sakyi PO, Mensah-Brown H, Miller WA, Kwofie SK. Natural Product Identification and Molecular Docking Studies of Leishmania Major Pteridine Reductase Inhibitors. Pharmaceuticals (Basel) 2024; 18:6. [PMID: 39861069 PMCID: PMC11768234 DOI: 10.3390/ph18010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/16/2024] [Accepted: 11/23/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Pteridine reductase 1 (PTR1) has been one of the prime targets for discovering novel antileishmanial therapeutics in the fight against Leishmaniasis. This enzyme catalyzes the NADPH-dependent reduction of pterins to their tetrahydro forms. While chemotherapy remains the primary treatment, its effectiveness is constrained by drug resistance, unfavorable side effects, and substantial associated costs. Methods: This study addresses the urgent need for novel, cost-effective drugs by employing in silico techniques to identify potential lead compounds targeting the PTR1 enzyme. A library of 1463 natural compounds from AfroDb and NANPDB, prefiltered based on Lipinski's rules, was used to screen against the LmPTR1 target. The X-ray structure of LmPTR1 complexed with NADP and dihydrobiopterin (Protein Data Bank ID: 1E92) was identified to contain the critical residues Arg17, Leu18, Ser111, Phe113, Pro224, Gly225, Ser227, Leu229, and Val230 including the triad of residues Asp181-Tyr194-Lys198, which are critical for the catalytic process involving the reduction of dihydrofolate to tetrahydrofolate. Results: The docking yielded 155 compounds meeting the stringent criteria of -8.9 kcal/mol instead of the widely used -7.0 kcal/mol. These compounds demonstrated binding affinities comparable to the known inhibitors; methotrexate (-9.5 kcal/mol), jatrorrhizine (-9.0 kcal/mol), pyrimethamine (-7.3 kcal/mol), hardwickiic acid (-8.1 kcal/mol), and columbamine (-8.6 kcal/mol). Protein-ligand interactions and molecular dynamics (MD) simulation revealed favorable hydrophobic and hydrogen bonding with critical residues, such as Lys198, Arg17, Ser111, Tyr194, Asp181, and Gly225. Crucial to the drug development, the compounds were physiochemically and pharmacologically profiled, narrowing the selection to eight compounds, excluding those with potential toxicities. The five selected compounds ZINC000095486253, ZINC000095486221, ZINC000095486249, 8alpha-hydroxy-13-epi-pimar-16-en-6,18-olide, and pachycladin D were predicted to be antiprotozoal (Leishmania) with Pa values of 0.642, 0.297, 0.543, 0.431, and 0.350, respectively. Conclusions: This study identified five lead compounds that showed substantial binding affinity against LmPTR1 as well as critical residue interactions. A 100 ns MD combined with molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) calculations confirmed the robust binding interactions and provided insights into the dynamics and stability of the protein-ligand complexes.
Collapse
Affiliation(s)
- Moses N. Arthur
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Legon, Accra P.O. Box LG 581, Ghana; (M.N.A.); (G.H.)
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA
| | - George Hanson
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Legon, Accra P.O. Box LG 581, Ghana; (M.N.A.); (G.H.)
| | - Emmanuel Broni
- Department of Medicine, Loyola University Medical Center, Maywood, IL 60153, USA;
| | - Patrick O. Sakyi
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 56, Ghana;
- Department of Chemical Sciences, School of Sciences, University of Energy and Natural Resources, Sunyani P.O. Box 214, Ghana
| | - Henrietta Mensah-Brown
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra P.O. Box LG 54, Ghana;
| | - Whelton A. Miller
- Department of Medicine, Loyola University Medical Center, Maywood, IL 60153, USA;
- Department of Molecular Pharmacology & Neuroscience, Loyola University Medical Center, Maywood, IL 60153, USA
| | - Samuel K. Kwofie
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 77, Ghana
| |
Collapse
|
6
|
Nikookar SH, Akbari MR, Oshaghi MA, Hosseini-Vasoukolaei N, Enayati A, Motevalli-Haghi F, Fakhar M. Molecular detection of Leishmania DNA in wild-caught sand flies, Phlebotomus and Sergentomyia spp. in northern Iran. Parasite Epidemiol Control 2024; 27:e00395. [PMID: 39691461 PMCID: PMC11650325 DOI: 10.1016/j.parepi.2024.e00395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 12/19/2024] Open
Abstract
Leishmaniasis is currently considered a major health problem in Iran, posing an increasing threat to society's development in various dimensions. This study aimed to detect Leishmania infection in wild-caught sand flies in Sari City, northern Iran. Sand flies were collected using sticky traps, and Leishmania DNA was identified using polymerase chain reaction (PCR) targeting the ITS2-rDNA region, followed by restriction fragment length polymorphism (RFLP) analysis. A total of 138 female sand flies were tested, among which, only 1 specimen of Ph. papatasi (11.11 %) and Ph. major (14.28 %), 4 specimens of Ph. kandelakii (7.27 %) and Se. dentata (8.33 %), and 2 specimens of Se. sintoni (50 %) were naturally infected with L. (L.) major. This was observed in the ITS2 nested-PCR amplification assays where a ∼ 245 bp PCR band was produced. Also, RFLP analysis by Mnl1 revealed the fragments of 55 and 70 and 120 bp for infected sand flies which are characteristic of L. (L.) major. Most of the sand flies were unfed, collected during warm season, found indoor. This study reperesents the first molecular detection of L. (L.) major in wild-caught sand flies, specifically in Ph. papatasi in this region, as well as Ph. kandelakii and Ph. major in Iran and even the world.
Collapse
Affiliation(s)
- Seyed Hassan Nikookar
- Health Sciences Research Center, Department of Medical Entomology and Vector Control, School of Public Health, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Reza Akbari
- MSc Student Research Committee, School of Public Health, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Ali Oshaghi
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasibeh Hosseini-Vasoukolaei
- Department of Medical Entomology and Vector Control, School of Public Health, Health Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmadali Enayati
- Department of Medical Entomology and Vector Control, School of Public Health, Health Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Farzad Motevalli-Haghi
- Department of Medical Entomology and Vector Control, School of Public Health, Health Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahdi Fakhar
- Iranian National Registry Center for Lophomoniasis and Toxoplasmosis, Toxoplasmosis Research Center, Imam Khomeini Hospital, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Microbiology and Immunology, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| |
Collapse
|
7
|
Oliveira SSC, Marinho FA, Sangenito LS, Seabra SH, Menna-Barreto RF, d’Avila CM, Santos ALS, Branquinha MH. Susceptibility of Leishmania amazonensis Axenic Amastigotes to the Calpain Inhibitor MDL28170. Trop Med Infect Dis 2024; 9:259. [PMID: 39591265 PMCID: PMC11598141 DOI: 10.3390/tropicalmed9110259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Leishmaniasis encompasses a group of neglected diseases caused by flagellated protozoa belonging to the Leishmania genus, associated with high morbidity and mortality. The search for compounds with anti-Leishmania activity that exhibit lower toxicity and can overcome the emergence of resistant strains remains a significant goal. In this context, the calpain inhibitor MDL28170 has previously demonstrated deleterious effects against promastigote forms of Leishmania amazonensis, which led us to investigate its role on axenic amastigote forms. The calpain inhibitor MDL28170 was able to decrease the viability of amastigotes in a typically dose-dependent manner. The treatment with the IC50 dose (13.5 μM) for 72 h led to significant amastigote lysis and increased cell-to-cell aggregation. Ultrastructural analysis revealed several cellular alterations, including disruption of the trans-Golgi network and the formation of autophagosomes when treated with MDL28170 at ½ × IC50 dose. Additionally, mitochondrial swelling and the formation of concentric membranous structures inside the mitochondrion were observed after incubation with the IC50 dose. These results reinforce the potential application of the calpain inhibitor MDL28170 against L. amazonensis, highlighting its effectiveness and possible mechanism of action against the parasite.
Collapse
Affiliation(s)
- Simone S. C. Oliveira
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (S.S.C.O.); (F.A.M.); (L.S.S.)
| | - Fernanda A. Marinho
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (S.S.C.O.); (F.A.M.); (L.S.S.)
| | - Leandro S. Sangenito
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (S.S.C.O.); (F.A.M.); (L.S.S.)
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro, Campus Nilópolis, Rio de Janeiro 26530-060, Brazil
| | - Sergio H. Seabra
- Laboratório de Biologia Celular e Tecidual, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro 28013-602, Brazil;
| | - Rubem F. Menna-Barreto
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-360, Brazil;
| | - Claudia M. d’Avila
- Laboratório de Doenças Parasitárias, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-360, Brazil;
| | - André L. S. Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (S.S.C.O.); (F.A.M.); (L.S.S.)
- Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, Brazil
| | - Marta H. Branquinha
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (S.S.C.O.); (F.A.M.); (L.S.S.)
| |
Collapse
|
8
|
Lafleur A, Daffis S, Mowbray C, Arana B. Immunotherapeutic Strategies as Potential Treatment Options for Cutaneous Leishmaniasis. Vaccines (Basel) 2024; 12:1179. [PMID: 39460345 PMCID: PMC11511131 DOI: 10.3390/vaccines12101179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Cutaneous leishmaniasis (CL), caused by protozoan parasites of the Leishmania genus, is prevalent in tropical and subtropical regions, with important morbidity, particularly in low- to middle-income countries. Current systemic treatments, including pentavalent antimonials and miltefosine, are associated with significant toxicity, reduced efficacy, and are frequently ineffective in cases of severe or chronic CL. Immunotherapies leverage the immune system to combat microbial infection and offer a promising adjunct or alternative approach to the current standard of care for CL. However, the heterogeneous clinical presentation of CL, which is dependent on parasite species and host immunity, may require informed clinical intervention with immunotherapies. This review explores the clinical and immunological characteristics of CL, emphasising the current landscape of immunotherapies in in vivo models and clinical studies. Such immune-based interventions aim to modulate immune responses against Leishmania, with additive therapeutic effects enabling the efficacy of lower drug doses and decreasing the associated toxicity. Understanding the mechanisms that underlie immunotherapy for CL provides critical insights into developing safer and more effective treatments for this neglected tropical disease. Identifying suitable therapeutic candidates and establishing their safety and efficacy are essential steps in this process. However, the feasibility and utility of these treatments in resource-limited settings must also be considered, taking into account factors such as cost of production, temperature stability, and overall patient access.
Collapse
Affiliation(s)
- Andrea Lafleur
- Doctoral Training Centre, University of Oxford, Oxford OX1 3NP, UK
| | - Stephane Daffis
- Drugs for Neglected Diseases initiative (DNDi), 1202 Geneva, Switzerland; (S.D.)
| | - Charles Mowbray
- Drugs for Neglected Diseases initiative (DNDi), 1202 Geneva, Switzerland; (S.D.)
| | - Byron Arana
- Drugs for Neglected Diseases initiative (DNDi), 1202 Geneva, Switzerland; (S.D.)
| |
Collapse
|
9
|
Shtaiwi A. Thiadiazine-thiones as inhibitors of leishmania pteridine reductase (PTR1) target: investigations and in silico approach. J Biomol Struct Dyn 2024; 42:8588-8597. [PMID: 37578348 DOI: 10.1080/07391102.2023.2246589] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 08/05/2023] [Indexed: 08/15/2023]
Abstract
Leishmaniasis is a widespread parasitic disease and is one of the major public health concerns in developing countries. Many drugs have been identified for leishmania as targets, but the potential toxicity and long-term treatment remain the most significant problems in terms of further development. The present study employed physicochemical investigations, structure-based virtual screening, ADMET analysis, molecular dynamics simulation, and MM-PBSA, to identify potential compounds for Leishmania. We evaluated 30,926 natural products from the NPASS database, and four potentials passed the pharmacokinetic ADMET studies and were verified using the molecular docking approach. Molecular docking results showed good binding interaction of the compounds with the active site of leishmania pteridine reductase enzyme PTR1, with compound TTC1 showing FRED and Autodock binding energies of -10.33 and -10.94, respectively, which were comparable with the antileishmania drugs of Allopurinol, Miltefosine and the original ligand, methotrexate. TTC1 compound was found to be favorable for hydrophobic interaction with PTR1. In addition, the physicochemical properties of the compounds were studied using the SwissADME web server. All compounds followed Lipinski's rule of five and can be considered as good oral candidates. The analysis of the 100 ns molecular dynamics simulation results based on the best-docked TTC1 with PTR1 receptor demonstrates stable interactions, and the complex undergoes low conformational fluctuations. The average of the calculated binding free energy of the TTC1-1e7w complex is (-68.67 kJ/mol), and the result demonstrated that the TTC1 promoted stability to the Leishmania-PTR1 complex. The potential compounds can be further explored for their antileishmanial activity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Amneh Shtaiwi
- Faculty of Pharmacy, Middle East University, Amman, Jordan
| |
Collapse
|
10
|
Tamanna, Fu C, Qadir M, Shah MIA, Shtaiwi A, Khan R, Khan SU, Htar TT, Zada A, Lodhi MA, Ateeq M, Ali A, Naeem M, Ibrahim M, Khan SW. Thiadiazine thione derivatives as anti-leishmanial agents: synthesis, biological evaluation, structure activity relationship, ADMET, molecular docking and molecular dynamics simulation studies. J Biomol Struct Dyn 2024; 42:7758-7772. [PMID: 37551015 DOI: 10.1080/07391102.2023.2245480] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/21/2023] [Indexed: 08/09/2023]
Abstract
During last decades, 3,5-disubstituted-tetrahydro-2H-thiadiazine-2-thione scaffold remains the center of interest due to their ease of preparation, diverse range substituents at N-3 and N-5 positions, and profound biological activities. In the current study, a series of 3,5-disubstituted-tetrahydro-2H-thiadiazine-2-thiones were synthesized in good to excellent yield, and the structure of the compounds were confirmed by various spectroscopic techniques such as FTIR, 1H-NMR, 13C-NMR and Mass spectrometry, and finally evaluated against Leishmania major. Whereas, all the evaluated compounds (1-33), demonstrate potential leishmanicidal activities with IC50 values in the range of (1.30- 149.98 uM). Among the evaluated compounds such as 3, 4, 6, and 10 exhibited excellent leishmanicidal activities with IC50 values of (2.17 μM), (2.39 μM), (2.00 μM), and (1.39 μM), respectively even better than the standard amphotericin B (IC50 = 0.50) and pentamidine (IC50 = 7.52). In order to investigate binding interaction of the most active compounds, molecular docking study was conducted with Leishmania major. Further molecular dynamic simulation study was also carried out to assess the stability and correct binding of the most active compound 10, within active site of the Leishamania major. Likewise, the physiochemical properties, drug likeness, and ADMET of the most active compounds were investigated, it was found that none of the compounds violate Lipiniski's rule of five, which show that this class of compounds had enough potential to be used as drug candidate in near future.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Tamanna
- Department of Chemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Chaoping Fu
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, P.R. China
| | - Meshil Qadir
- Department of Chemistry, Abdul Wali Khan University, Mardan, Pakistan
| | | | - Amneh Shtaiwi
- School of Pharmacy, Middle East University, Amman, Jordan
| | - Rasool Khan
- Institute of Chemical Sciences, University of Peshawar, Peshawar, Pakistan
| | - Shafi Ullah Khan
- School of Pharmacy, Monash University Malaysia, Subang Jaya, Selangor, Malaysia
| | - Thet Thet Htar
- School of Pharmacy, Monash University Malaysia, Subang Jaya, Selangor, Malaysia
| | - Amir Zada
- Department of Chemistry, Abdul Wali Khan University, Mardan, Pakistan
| | | | - Muhammad Ateeq
- Department of Chemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Arif Ali
- Department of Chemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Mohammad Naeem
- Department of Chemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Mohammad Ibrahim
- Department of Chemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Sher Wali Khan
- Department of Chemistry, Shaheed Benazir Bhutto University, Sheringal Upper Dir, Pakistan
| |
Collapse
|
11
|
Ullah N, Sagar M, Abidin ZU, Naeem MA, Din SZU, Ahmad I. Photodynamic therapy in management of cutaneous leishmaniasis: A systematic review. Lasers Med Sci 2024; 39:226. [PMID: 39207568 DOI: 10.1007/s10103-024-04174-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
This systematic review evaluated the efficacy and safety of photodynamic therapy (PDT) in the management of cutaneous leishmaniasis (CL). The electronic search for identification of relevant studies, adhered to the PICOS (Population, Intervention, Comparator, Outcomes and Study type) framework, was conducted through PubMed, Google scholar, Dimensions, X-mol, and Semantic Scholar till December 2023. All types of studies reporting PDT in the management of CL with no language restriction were included. Methodological quality appraised of the selected studies was performed using Jadad index. Of the 317 identified studies, 21 reported PDT for the treatment of CL lesions, consisting of two randomized controlled trials (RCTs), four single-center open study, one case series and 14 case reports. Collectively, these studies presented a total of 304 patients with ages ranging from 1 to 82 years, undergoing varying number of PDT sessions (3-28) and follow-up durations spanning 4 weeks to 24 months. The CL lesions predominantly manifested on the exposed body areas, such as face, limbs, neck, ear and nose, and characterized with the use of clinical variables, such as plaques, papules, erythema and ulceration. PDT protocols differed in the photosensitizer type, incubation time, light source characteristics (e.g., wavelength, output power, and energy density), duration of light illumination, number of PDT sessions and their respective frequencies. Treatment response was assessed through the clinical presentation (i.e., at the baseline and after PDT completion) or by the absence of Leishmania parasites. Adverse effects comprised of pain, burning and tingling sensation experienced during PDT, followed by erythema, pigmentation changes and edema post-treatment. This systematic review revealed that PDT is an efficacious and safe modality for the treatment of CL, with mild and transient side effects.
Collapse
Affiliation(s)
- Naeem Ullah
- Department of Physics, Islamia College Peshawar, Khyber Pakhtunkhwa, Pakistan
| | | | - Zain Ul Abidin
- Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
| | | | - Syed Zaheer Ud Din
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Iftikhar Ahmad
- Institute of Radiotherapy and Nuclear Medicine (IRNUM), Peshawar, Pakistan.
| |
Collapse
|
12
|
Palomino-Cano C, Moreno E, Irache JM, Espuelas S. Targeting and activation of macrophages in leishmaniasis. A focus on iron oxide nanoparticles. Front Immunol 2024; 15:1437430. [PMID: 39211053 PMCID: PMC11357945 DOI: 10.3389/fimmu.2024.1437430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024] Open
Abstract
Macrophages play a pivotal role as host cells for Leishmania parasites, displaying a notable functional adaptability ranging from the proinflammatory, leishmanicidal M1 phenotype to the anti-inflammatory, parasite-permissive M2 phenotype. While macrophages can potentially eradicate amastigotes through appropriate activation, Leishmania employs diverse strategies to thwart this activation and redirect macrophages toward an M2 phenotype, facilitating its survival and replication. Additionally, a competition for iron between the two entities exits, as iron is vital for both and is also implicated in macrophage defensive oxidative mechanisms and modulation of their phenotype. This review explores the intricate interplay between macrophages, Leishmania, and iron. We focus the attention on the potential of iron oxide nanoparticles (IONPs) as a sort of immunotherapy to treat some leishmaniasis forms by reprogramming Leishmania-permissive M2 macrophages into antimicrobial M1 macrophages. Through the specific targeting of iron in macrophages, the use of IONPs emerges as a promising strategy to finely tune the parasite-host interaction, endowing macrophages with an augmented antimicrobial arsenal capable of efficiently eliminating these intrusive microbes.
Collapse
Affiliation(s)
- Carmen Palomino-Cano
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | - Esther Moreno
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | - Juan M. Irache
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Navarra Medical Research Institute (IdiSNA), Pamplona, Spain
| | - Socorro Espuelas
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Navarra Medical Research Institute (IdiSNA), Pamplona, Spain
| |
Collapse
|
13
|
Guo J, Wang P, Li Y, Liu Y, Ye Y, Chen Y, Kankala RK, Tong F. Advances in hybridized nanoarchitectures for improved oro-dental health. J Nanobiotechnology 2024; 22:469. [PMID: 39113060 PMCID: PMC11305065 DOI: 10.1186/s12951-024-02680-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/01/2024] [Indexed: 08/11/2024] Open
Abstract
On a global note, oral health plays a critical role in improving the overall human health. In this vein, dental-related issues with dentin exposure often facilitate the risk of developing various oral-related diseases in gums and teeth. Several oral-based ailments include gums-associated (gingivitis or periodontitis), tooth-based (dental caries, root infection, enamel erosion, and edentulous or total tooth loss), as well as miscellaneous diseases in the buccal or oral cavity (bad breath, mouth sores, and oral cancer). Although established conventional treatment modalities have been available to improve oral health, these therapeutic options suffer from several limitations, such as fail to eradicate bacterial biofilms, deprived regeneration of dental pulp cells, and poor remineralization of teeth, resulting in dental emergencies. To this end, the advent of nanotechnology has resulted in the development of various innovative nanoarchitectured composites from diverse sources. This review presents a comprehensive overview of different nanoarchitectured composites for improving overall oral health. Initially, we emphasize various oral-related diseases, providing detailed pathological circumstances and their effects on human health along with deficiencies of the conventional therapeutic modalities. Further, the importance of various nanostructured components is emphasized, highlighting their predominant actions in solving crucial dental issues, such as anti-bacterial, remineralization, and tissue regeneration abilities. In addition to an emphasis on the synthesis of different nanostructures, various nano-therapeutic solutions from diverse sources are discussed, including natural (plant, animal, and marine)-based components and other synthetic (organic- and inorganic-) architectures, as well as their composites for improving oral health. Finally, we summarize the article with an interesting outlook on overcoming the challenges of translating these innovative platforms to clinics.
Collapse
Affiliation(s)
- Jun Guo
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China.
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China.
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China.
| | - Pei Wang
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China
| | - Yuyao Li
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China
| | - Yifan Liu
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China
| | - Yingtong Ye
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, People's Republic of China
| | - Yi Chen
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, People's Republic of China.
| | - Fei Tong
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China.
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China.
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China.
| |
Collapse
|
14
|
Abdollahi M, Fakhar M, Tajfard M, Jamali J, Mahdizadeh M. Educational WhatsApp-delivered intervention based on social cognitive theory to promote leishmaniosis preventive behavior of health ambassadors: a randomized controlled trial. BMC Infect Dis 2024; 24:786. [PMID: 39103794 PMCID: PMC11301894 DOI: 10.1186/s12879-024-09590-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 07/04/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Multidimensional strategies can promote preventive behaviors to prevent cutaneous leishmaniosis. WhatsApp, the popular messenger of Iranians, can be used as a platform to provide health education interventions. This study aimed to investigate the effect of using an educational intervention in WhatsApp based on social cognitive theory (SCT) on the preventive behaviors of health ambassadors. METHODS A randomized clinical trial was conducted from September 2020 to April 2021 on 220 people living in endemic areas of leishmaniosis in Mashhad Province, Iran. By the cluster method sampling, the samples were randomly divided into two intervention and control groups. The intervention was performed for the intervention group over two weeks. Data were collected using a researcher-made questionnaire based on the constructs of SCT before and after the intervention. SPSS 16 was implemented to test multiple statistical analyses. RESULTS Findings from the intervention group compared with the control group showed that the scores of SCT constructs and preventive behaviors were significantly changed (P < 0.001) across time during baseline through follow-up. These changes were not significant in the control group. CONCLUSIONS The educational intervention based on the SCT model to promote leishmaniosis preventive behaviors is effective. This intervention module can be tested in other targeted populations in endemic areas to prevent and control leishmaniosis. TRIAL REGISTRATION Iranian Registry of Clinical Trials Registry IRCT20200615047784N1, registered 02/09/2020.
Collapse
Affiliation(s)
- Monireh Abdollahi
- Department of Health Education and Health Promotion, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Fakhar
- Department of Health Education and Health Promotion, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Tajfard
- Department of Health Education and Health Promotion, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
- Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jamshid Jamali
- Department of Biostatistics, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrsadat Mahdizadeh
- Department of Health Education and Health Promotion, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran.
- Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
15
|
Albuquerque LWN, Ferreira SCA, Nunes ICM, Santos HCN, Santos MS, Varjão MTS, Silva AEDA, Leite AB, Duarte AWF, Alexandre-Moreira MS, Queiroz ACDE. In vitro evaluation against Leishmania amazonensis and Leishmania chagasi of medicinal plant species of interest to the Unified Health System. AN ACAD BRAS CIENC 2024; 96:e20230888. [PMID: 39046021 DOI: 10.1590/0001-3764202420230888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/30/2023] [Indexed: 07/25/2024] Open
Abstract
Leishmaniasis is a disease of public health relevance that demands new therapeutic alternatives due to the toxicity of conventional treatments. In this study, 27 plants of interest to the Unified Health System (SUS) were evaluated for cytotoxicity in macrophages, leishmanicidal activity and production of nitric oxide (NO). None of the species demonstrated cytotoxicity to macrophages (CC50 >100 μg/mL). Extracts from Chenopodium ambrosioides, Equisetum arvense, Maytenus ilicifolia showed greater efficacy in inducing the death of Leishmania amazonensis amastigotes with IC50 of 68.4, 82.3, 75.7 μg/mL, respectively. The species Cynara scolymus, Punica granatum and Passiflora alata were the most effective in inducing an increase in the indirect concentration of NO (41.31, 29.30 and 28.86 µM, respectively) in cultures of macrophages infected with L. amazonensis. Furthermore, Punica granatum was also the most effective species in inducing an increase in NO in macrophages infected by Leishmania chagasi (19.90 µM). The results obtained so far support the continuation of studies, with the possibility of developing safer and more effective treatments for leishmaniasis, using natural products. The identification of plants that stimulate the production of NO in macrophages infected by Leishmania opens doors for more detailed investigations of the mechanism of action of these natural products.
Collapse
Affiliation(s)
- Lilyana Waleska N Albuquerque
- Universidade Federal de Alagoas, Instituto de Ciências Biológicas e da Saúde, Laboratório de Farmacologia e Imunologia, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, 57072-900 Maceió, AL, Brazil
| | - Shakira C A Ferreira
- Universidade Federal de Alagoas, Instituto de Ciências Biológicas e da Saúde, Laboratório de Farmacologia e Imunologia, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, 57072-900 Maceió, AL, Brazil
| | - Izabelly Carollynny M Nunes
- Universidade Federal de Alagoas, Instituto de Ciências Biológicas e da Saúde, Laboratório de Farmacologia e Imunologia, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, 57072-900 Maceió, AL, Brazil
| | - Hilda Caroline N Santos
- Universidade Federal de Alagoas, Instituto de Ciências Biológicas e da Saúde, Laboratório de Farmacologia e Imunologia, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, 57072-900 Maceió, AL, Brazil
| | - Mariana S Santos
- Universidade Federal de Alagoas, Instituto de Ciências Biológicas e da Saúde, Laboratório de Farmacologia e Imunologia, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, 57072-900 Maceió, AL, Brazil
| | - Márcio Thomaz S Varjão
- Universidade Federal de Alagoas, Instituto de Ciências Biológicas e da Saúde, Laboratório de Farmacologia e Imunologia, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, 57072-900 Maceió, AL, Brazil
| | - Amanda Evelyn DA Silva
- Universidade Federal de Alagoas, Instituto de Ciências Biológicas e da Saúde, Laboratório de Farmacologia e Imunologia, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, 57072-900 Maceió, AL, Brazil
| | - Anderson B Leite
- Universidade Federal de Alagoas, Instituto de Ciências Biológicas e da Saúde, Laboratório de Farmacologia e Imunologia, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, 57072-900 Maceió, AL, Brazil
| | - Alysson W F Duarte
- Universidade Federal de Alagoas, Centro de Ciências Médicas e de Enfermagem, Laboratório de Microbiologia, Imunologia e Parasitologia, Campus Arapiraca, Av. Manoel Severino Barbosa, s/n, Bom Sucesso, 57309-005 Arapiraca, AL, Brazil
| | - Magna Suzana Alexandre-Moreira
- Universidade Federal de Alagoas, Instituto de Ciências Biológicas e da Saúde, Laboratório de Farmacologia e Imunologia, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, 57072-900 Maceió, AL, Brazil
| | - Aline C DE Queiroz
- Universidade Federal de Alagoas, Instituto de Ciências Biológicas e da Saúde, Laboratório de Farmacologia e Imunologia, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, 57072-900 Maceió, AL, Brazil
- Universidade Federal de Alagoas, Centro de Ciências Médicas e de Enfermagem, Laboratório de Microbiologia, Imunologia e Parasitologia, Campus Arapiraca, Av. Manoel Severino Barbosa, s/n, Bom Sucesso, 57309-005 Arapiraca, AL, Brazil
| |
Collapse
|
16
|
Kantzanou M, Kostares E, Kostare G, Papagiannopoulou E, Kostares M, Tsakris A. Prevalence of Leishmaniasis among Blood Donors: A Systematic Review and Meta-Analysis. Diseases 2024; 12:160. [PMID: 39057131 PMCID: PMC11276524 DOI: 10.3390/diseases12070160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/07/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Our study seeks to provide a comprehensive assessment of leishmaniasis prevalence among blood donors, employing rigorous methodologies to inform public health initiatives and transfusion safety measures. A thorough literature search was conducted using electronic databases (Medline, Scopus, Web of Science, and Google Scholar) to identify the relevant studies reporting the prevalence of leishmaniasis among blood donors, gathering a wide range of studies encompassing different geographic locations and time periods. The pooled prevalence with a 95% confidence interval (CI) was estimated, and quality assessment, outlier analysis, and influential analysis were performed to ensure the robustness and validity of the findings. Our search and subsequent analyses led to the inclusion of thirty-five studies in our review. Using molecular diagnostic methods, the prevalence was estimated at 2.3% (95% CI 1-3.9%), while serological diagnostic methods indicated a higher prevalence rate of 4.5% (95% CI 2.8-6.7%). Notably, we observed significant heterogeneity among the included studies for each analysis. The observed heterogeneity highlights the need for future research to delve into the factors influencing leishmaniasis prevalence, with prospective and retrospective studies addressing the limitations identified in this review.
Collapse
Affiliation(s)
- Maria Kantzanou
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Evangelos Kostares
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Georgia Kostare
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Evangelia Papagiannopoulou
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Michael Kostares
- Department of Anatomy, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Athanasios Tsakris
- Department of Anatomy, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| |
Collapse
|
17
|
Barrie U, Floyd K, Datta A, Wetzel DM. MAPK/ERK activation in macrophages promotes Leishmania internalization and pathogenesis. Microbes Infect 2024; 26:105353. [PMID: 38763478 DOI: 10.1016/j.micinf.2024.105353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/21/2024]
Abstract
The obligate intracellular parasite Leishmania binds several receptors to trigger uptake by phagocytic cells, ultimately resulting in visceral or cutaneous leishmaniasis. A series of signaling pathways in host cells, which are critical for establishment and persistence of infection, are activated during Leishmania internalization. Thus, preventing Leishmania uptake by phagocytes could be a novel therapeutic strategy for leishmaniasis. However, the host cellular machinery mediating promastigote and amastigote uptake is not well understood. Here, using small molecule inhibitors of Mitogen-activated protein/Extracellular signal regulated kinases (MAPK/ERK), we demonstrate that ERK1/2 mediates Leishmania amazonensis uptake and (to a lesser extent) phagocytosis of beads by macrophages. We find that inhibiting host MEK1/2 or ERK1/2 leads to inefficient amastigote uptake. Moreover, using inhibitors and primary macrophages lacking spleen tyrosine kinase (SYK) or Abl family kinases, we show that SYK and Abl family kinases mediate Raf, MEK, and ERK1/2 activity and are necessary for uptake. Finally, we demonstrate that trametinib, a MEK1/2 inhibitor used to treat cancer, reduces disease severity and parasite burden in Leishmania-infected mice, even if it is started after lesions develop. Our results show that maximal Leishmania infection requires MAPK/ERK and highlight potential for MAPK/ERK-mediated signaling pathways to be novel therapeutic targets for leishmaniasis.
Collapse
Affiliation(s)
- Umaru Barrie
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, United States; Medical Scientist Training Program, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, United States
| | - Katherine Floyd
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, United States
| | - Arani Datta
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, United States
| | - Dawn M Wetzel
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, United States; Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, United States.
| |
Collapse
|
18
|
Roy S, Roy S, Halder S, Jana K, Ukil A. Leishmania exploits host cAMP/EPAC/calcineurin signaling to induce an IL-33-mediated anti-inflammatory environment for the establishment of infection. J Biol Chem 2024; 300:107366. [PMID: 38750790 PMCID: PMC11208913 DOI: 10.1016/j.jbc.2024.107366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/03/2024] [Accepted: 05/05/2024] [Indexed: 06/10/2024] Open
Abstract
Host anti-inflammatory responses are critical for the progression of visceral leishmaniasis, and the pleiotropic cytokine interleukin (IL)-33 was found to be upregulated in infection. Here, we documented that IL-33 induction is a consequence of elevated cAMP-mediated exchange protein activated by cAMP (EPAC)/calcineurin-dependent signaling and essential for the sustenance of infection. Leishmania donovani-infected macrophages showed upregulation of IL-33 and its neutralization resulted in decreased parasite survival and increased inflammatory responses. Infection-induced cAMP was involved in IL-33 production and of its downstream effectors PKA and EPAC, only the latter was responsible for elevated IL-33 level. EPAC initiated Rap-dependent phospholipase C activation, which triggered the release of intracellular calcium followed by calcium/calmodulin complex formation. Screening of calmodulin-dependent enzymes affirmed involvement of the phosphatase calcineurin in cAMP/EPAC/calcium/calmodulin signaling-induced IL-33 production and parasite survival. Activated calcineurin ensured nuclear localization of the transcription factors, nuclear factor of activated T cell 1 and hypoxia-inducible factor 1 alpha required for IL-33 transcription, and we further confirmed this by chromatin immunoprecipitation assay. Administering specific inhibitors of nuclear factor of activated T cell 1 and hypoxia-inducible factor 1 alpha in BALB/c mouse model of visceral leishmaniasis decreased liver and spleen parasite burden along with reduction in IL-33 level. Splenocyte supernatants of inhibitor-treated infected mice further documented an increase in tumor necrosis factor alpha and IL-12 level with simultaneous decrease of IL-10, thereby indicating an overall disease-escalating effect of IL-33. Thus, this study demonstrates that cAMP/EPAC/calcineurin signaling is crucial for the activation of IL-33 and in effect creates anti-inflammatory responses, essential for infection.
Collapse
Affiliation(s)
- Souravi Roy
- Department of Biochemistry, University of Calcutta, Kolkata, India
| | - Shalini Roy
- Department of Biochemistry, University of Calcutta, Kolkata, India
| | - Satyajit Halder
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Kuladip Jana
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Anindita Ukil
- Department of Biochemistry, University of Calcutta, Kolkata, India.
| |
Collapse
|
19
|
Kancharla P, Ortiz D, Fargo CM, Zhang X, Li Y, Sanchez M, Kumar A, Yeluguri M, Dodean RA, Caridha D, Madejczyk MS, Martin M, Jin X, Blount C, Chetree R, Pannone K, Dinh HT, DeLuca J, Evans M, Nadeau R, Vuong C, Leed S, Dennis WE, Roncal N, Pybus BS, Lee PJ, Roth A, Reynolds KA, Kelly JX, Landfear SM. Discovery and Optimization of Tambjamines as a Novel Class of Antileishmanial Agents. J Med Chem 2024; 67:8323-8345. [PMID: 38722757 PMCID: PMC11163866 DOI: 10.1021/acs.jmedchem.4c00517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Leishmaniasis is a neglected tropical disease that is estimated to afflict over 12 million people. Current drugs for leishmaniasis suffer from serious deficiencies, including toxicity, high cost, modest efficacy, primarily parenteral delivery, and emergence of widespread resistance. We have discovered and developed a natural product-inspired tambjamine chemotype, known to be effective against Plasmodium spp, as a novel class of antileishmanial agents. Herein, we report in vitro and in vivo antileishmanial activities, detailed structure-activity relationships, and metabolic/pharmacokinetic profiles of a large library of tambjamines. A number of tambjamines exhibited excellent potency against both Leishmania mexicana and Leishmania donovani parasites with good safety and metabolic profiles. Notably, tambjamine 110 offered excellent potency and provided partial protection to leishmania-infected mice at 40 and/or 60 mg/kg/10 days of oral treatment. This study presents the first account of antileishmanial activity in the tambjamine family and paves the way for the generation of new oral antileishmanial drugs.
Collapse
Affiliation(s)
- Papireddy Kancharla
- Department of Chemistry, Portland State University, Portland, Oregon 97201, United States
| | - Diana Ortiz
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, 97239, United States
| | - Corinne M. Fargo
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, 97239, United States
| | - Xiaowei Zhang
- Department of Veterans Affairs Medical Center, Portland, Oregon 97239, United States
| | - Yuexin Li
- Department of Veterans Affairs Medical Center, Portland, Oregon 97239, United States
| | - Marco Sanchez
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, 97239, United States
| | - Amrendra Kumar
- Department of Chemistry, Portland State University, Portland, Oregon 97201, United States
| | - Monish Yeluguri
- Department of Chemistry, Portland State University, Portland, Oregon 97201, United States
| | - Rozalia A. Dodean
- Department of Chemistry, Portland State University, Portland, Oregon 97201, United States
| | - Diana Caridha
- Experimental Therapeutics Branch, CIDR, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Michael S. Madejczyk
- Experimental Therapeutics Branch, CIDR, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Monica Martin
- Experimental Therapeutics Branch, CIDR, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Xiannu Jin
- Experimental Therapeutics Branch, CIDR, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Cameron Blount
- Experimental Therapeutics Branch, CIDR, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Ravi Chetree
- Experimental Therapeutics Branch, CIDR, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Kristina Pannone
- Experimental Therapeutics Branch, CIDR, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Hieu T. Dinh
- Experimental Therapeutics Branch, CIDR, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Jesse DeLuca
- Experimental Therapeutics Branch, CIDR, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Martin Evans
- Experimental Therapeutics Branch, CIDR, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Robert Nadeau
- Experimental Therapeutics Branch, CIDR, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Chau Vuong
- Experimental Therapeutics Branch, CIDR, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Susan Leed
- Experimental Therapeutics Branch, CIDR, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - William E. Dennis
- Experimental Therapeutics Branch, CIDR, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Norma Roncal
- Experimental Therapeutics Branch, CIDR, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Brandon S. Pybus
- Experimental Therapeutics Branch, CIDR, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Patricia J. Lee
- Experimental Therapeutics Branch, CIDR, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Alison Roth
- Experimental Therapeutics Branch, CIDR, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Kevin A. Reynolds
- Department of Chemistry, Portland State University, Portland, Oregon 97201, United States
| | - Jane X. Kelly
- Department of Chemistry, Portland State University, Portland, Oregon 97201, United States
- Department of Veterans Affairs Medical Center, Portland, Oregon 97239, United States
| | - Scott M. Landfear
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, 97239, United States
| |
Collapse
|
20
|
González JF, Dea-Ayuela MA, Huck L, Orduña JM, Bolás-Fernández F, de la Cuesta E, Haseen N, Mohammed AA, Menéndez JC. Dual Antitubercular and Antileishmanial Profiles of Quinoxaline Di- N-Oxides Containing an Amino Acidic Side Chain. Pharmaceuticals (Basel) 2024; 17:487. [PMID: 38675447 PMCID: PMC11054274 DOI: 10.3390/ph17040487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/02/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
We present a new category of quinoxaline di-N-oxides (QdNOs) containing amino acid side chains with dual antituberculosis and antileishmanial activity. These compounds were synthesized by combining a regioselective 2,5-piperazinedione opening and a Beirut reaction and were screened for their activity against Mycobacterium tuberculosis and the promastigote and amastigote forms of representative species of the Leishmania genus. Most QdNOs exhibited promising antitubercular activity with IC50 values ranging from 4.28 to 49.95 μM, comparable to clinically established drugs. Structure-activity relationship analysis emphasized the importance of substituents on the aromatic ring and the side chain. Antileishmanial tests showed that some selected compounds exhibited activity comparable to the positive control miltefosine against promastigotes of Leishmania amazonensis and Leishmania donovani. Notably, some compounds were found to be also more potent and less toxic than miltefosine in intracellular amastigote assays against Leishmania amazonensis. The compound showing the best dual antitubercular and leishmanicidal profile and a good selectivity index, 4h, can be regarded as a hit compound that opens up new opportunities for the development of integrated therapies against co-infections.
Collapse
Affiliation(s)
- Juan F. González
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain; (J.F.G.); (L.H.); (J.M.O.); (E.d.l.C.)
| | - María-Auxiliadora Dea-Ayuela
- Departamento de Farmacia, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, c/Santiago Ramón y Cajal, Alfara del Patriarca, 46115 Valencia, Spain;
| | - Lena Huck
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain; (J.F.G.); (L.H.); (J.M.O.); (E.d.l.C.)
| | - José María Orduña
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain; (J.F.G.); (L.H.); (J.M.O.); (E.d.l.C.)
| | - Francisco Bolás-Fernández
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain;
| | - Elena de la Cuesta
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain; (J.F.G.); (L.H.); (J.M.O.); (E.d.l.C.)
| | - Nazia Haseen
- AMIPRO SDN.BHD. Level 3, Bangunan Inkubator Universiti, Sains@USM, Lebuh Bukit Jambul, Bayan Lepas 11900, Pulau Pinang, Malaysia; (N.H.); (A.A.M.)
| | - Ashraf Ali Mohammed
- AMIPRO SDN.BHD. Level 3, Bangunan Inkubator Universiti, Sains@USM, Lebuh Bukit Jambul, Bayan Lepas 11900, Pulau Pinang, Malaysia; (N.H.); (A.A.M.)
| | - J. Carlos Menéndez
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain; (J.F.G.); (L.H.); (J.M.O.); (E.d.l.C.)
| |
Collapse
|
21
|
Ullah W, Khan A, Niaz S, Al-Garadi MA, Nasreen N, Swelum AA, Ben Said M. Epidemiological survey, molecular profiling and phylogenetic analysis of cutaneous leishmaniasis in Khyber Pakhtunkhwa, Pakistan. Trans R Soc Trop Med Hyg 2024; 118:273-286. [PMID: 38055843 DOI: 10.1093/trstmh/trad086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/22/2023] [Accepted: 11/16/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Cutaneous leishmaniasis (CL), an emerging vector-borne ailment in Khyber Pakhtunkhwa (KPK), Pakistan, exhibits diverse spread patterns and outbreaks. METHODS To comprehend its epidemiology and identify parasite species, we conducted an active survey on suspected CL cases (n=8845) in KPK. RESULTS Microscopy and internal transcribed spacer-1 PCR-restriction fragment length polymorphism (RFLP) molecular techniques detected Leishmania spp. in blood samples. Phylogenetic analysis gauged genetic affinities with other areas. District Bannu displayed the highest CL impact (14.58%), while Swat had the lowest impact (4.33%) among cases. Annual blood examination rate, parasite incidence and slide positivity rate were 4.96 per 1000 people, 0.0233 and 0.047%, respectively. CL infections were prevalent in 1- to 20-y-olds, with males (57.17%) more vulnerable than females (42.82%). Single lesions occurred in 43.73% of patients, while 31.2% people had two lesions, 17.31% had three lesions and 7.74% had more than three lesions. Most had sand-fly exposure but lacked preventive measures like repellents and bed nets. Leishmania tropica was confirmed via RFLP analysis in amplified samples. Phylogenetic analysis unveiled genetic parallels between L. tropica of KPK and isolates from China, Iran, Afghanistan, India, Syria and Morocco. CONCLUSIONS Urgent comprehensive control measures are imperative. Early detection, targeted interventions and raising awareness of CL and sand-fly vectors are vital for reducing the disease's impact. International collaboration and monitoring are crucial to tackle Leishmania spp.'s genetic diversity and curtail its cross-border spread.
Collapse
Affiliation(s)
- Wasia Ullah
- Depart ment of Zoology, Abdul Wali Khan University, Khyber Pakhtunkhwa, Pakistan
| | - Adil Khan
- Department of Botany/Zoology, Bacha Khan University Charsadda, Khyber Pakhtunkhwa, Pakistan
- Department of Biology, Mountain Allison university, Sackville, new Brunswick, Canada
| | - Sadaf Niaz
- Depart ment of Zoology, Abdul Wali Khan University, Khyber Pakhtunkhwa, Pakistan
| | - Maged A Al-Garadi
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nasreen Nasreen
- Depart ment of Zoology, Abdul Wali Khan University, Khyber Pakhtunkhwa, Pakistan
| | - Ayman A Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mourad Ben Said
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba 2010, Tunisia
- Department of Basic Sciences, Higher Institute of Biotechnology of Sidi Thabet, University of Manouba, Manouba 2010, Tunisia
| |
Collapse
|
22
|
da Silva Lira Filho A, Lafleur A, Marcet-Palacios M, Olivier M. Identification of potential novel proteomic markers of Leishmania spp.-derived exosomes. Front Cell Infect Microbiol 2024; 14:1354636. [PMID: 38440791 PMCID: PMC10910114 DOI: 10.3389/fcimb.2024.1354636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/05/2024] [Indexed: 03/06/2024] Open
Abstract
Introduction Extracellular vesicles (EVs) are heterogenous cell-derived membrane-bound structures which can be subdivided into three distinct classes according to distinct morphological characteristics, cellular origins, and functions. Small EVs, or exosomes, can be produced by the protozoan parasite Leishmania through the evolutionarily conserved ESCRT pathway, and act as effectors of virulence and drivers of pathogenesis within mammalian hosts. Techniques for the identification of EVs of non-mammalian origin, however, remain inaccurate in comparison to their well-characterized mammalian counterparts. Thus, we still lack reliable and specific markers for Leishmania-derived exosomes, which poses a significant challenge to the field. Methods Herein, we utilized serial differential ultracentrifugation to separate Leishmania-derived EV populations into three distinct fractions. Nanoparticle tracking analysis and transmission electron microscopy were used to validate their morphological characteristics, and bioinformatic analysis of LC-MS/MS proteomics corroborated cellular origins and function. Discussion Proteomic data indicated potential novel proteic markers of Leishmania-derived exosomes, including proteins involved in endosomal machinery and the ESCRT pathway, as well as the parasitic phosphatase PRL-1. Further investigation is required to determine the specificity and sensitivity of these markers.
Collapse
Affiliation(s)
- Alonso da Silva Lira Filho
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Andrea Lafleur
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Marcelo Marcet-Palacios
- Department of Medicine, Alberta Respiratory Centre, University of Alberta, Edmonton, AB, Canada
- Department of Biological Sciences Technology, Laboratory Research and Biotechnology, Northern Alberta Institute of Technology, Edmonton, AB, Canada
| | - Martin Olivier
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| |
Collapse
|
23
|
Nath M, Bhowmik D, Saha S, Nandi R, Kumar D. Identification of potential inhibitor against Leishmania donovani mitochondrial DNA primase through in-silico and in vitro drug repurposing approaches. Sci Rep 2024; 14:3246. [PMID: 38332162 PMCID: PMC10853515 DOI: 10.1038/s41598-024-53316-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/30/2024] [Indexed: 02/10/2024] Open
Abstract
Leishmania donovani is the causal organism of leishmaniasis with critical health implications affecting about 12 million people around the globe. Due to less efficacy, adverse side effects, and resistance, the available therapeutic molecules fail to control leishmaniasis. The mitochondrial primase of Leishmania donovani (LdmtPRI1) is a vital cog in the DNA replication mechanism, as the enzyme initiates the replication of the mitochondrial genome of Leishmania donovani. Hence, we target this protein as a probable drug target against leishmaniasis. The de-novo approach enabled computational prediction of the three-dimensional structure of LdmtPRI1, and its active sites were identified. Ligands from commercially available drug compounds were selected and docked against LdmtPRI1. The compounds were chosen for pharmacokinetic study and molecular dynamics simulation based on their binding energies and protein interactions. The LdmtPRI1 gene was cloned, overexpressed, and purified, and a primase activity assay was performed. The selected compounds were verified experimentally by the parasite and primase inhibition assay. Capecitabine was observed to be effective against the promastigote form of Leishmania donovani, as well as inhibiting primase activity. This study's findings suggest capecitabine might be a potential anti-leishmanial drug candidate after adequate further studies.
Collapse
Affiliation(s)
- Mitul Nath
- Department of Microbiology, Assam University, Silchar, Assam, 788011, India
| | - Deep Bhowmik
- Department of Microbiology, Assam University, Silchar, Assam, 788011, India
| | - Satabdi Saha
- Department of Microbiology, Assam University, Silchar, Assam, 788011, India
| | - Rajat Nandi
- Department of Microbiology, Assam University, Silchar, Assam, 788011, India
| | - Diwakar Kumar
- Department of Microbiology, Assam University, Silchar, Assam, 788011, India.
| |
Collapse
|
24
|
Khodabandeh M, Moradian E, Sarvari M, Khiabani MS. Visceral Leishmaniasis (VL) Clinical Presentation, Laboratory Findings, Treatment Options and Outcome. IRANIAN JOURNAL OF PARASITOLOGY 2024; 19:28-37. [PMID: 38654944 PMCID: PMC11033536 DOI: 10.18502/ijpa.v19i1.15190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/14/2023] [Indexed: 04/26/2024]
Abstract
Background Black disease, also known as visceral leishmaniasis (VL), is a parasitic illness caused by various Leishmania species. The risk of morbidity and mortality increases with delayed diagnosis and treatment. Early VL diagnosis and fast appropriate treatment are critical issues in endemic areas. Methods This study was a retrospective cross-sectional study to investigate the diagnostic and therapeutic course of patients admitted with the diagnosis of VL in the Children's Medical Center (CMC) Hospital, Tehran, Iran. All cases of VL in patients under the age of 18 hospitalized between the years 2012 to 2022 were enrolled. Results Twenty-seven patients were enrolled with an average age of 28.13 months with the majority of females (51.8%). Common clinical signs were fever (96.2%) and splenomegaly (92.59%). However, lymphadenopathy was rare. The largest number of patients was from Tehran Province, followed by Ardabil, Khuzestan, Gilan, and Alborz provinces. The most common hematological abnormalities were anemia (85.1%) and thrombocytopenia (44.4%). In accordance with the treatment strategy, liposomal amphotericin B and amphotericin B deoxycholate were given to 11 and 5 patients, respectively. Eleven of them received glucantime. The average length of hospitalization for liposomal amphotericin B was 15.36 ± 12.49 days. In comparison with glucantime (18.38 ±10.26 days) and amphotericin B deoxycholate (20.20± 6.18 days), liposomal amphotericin B group hospitalization was shorter than others were. Conclusion VL should be included in the differential diagnosis of any child who presents with fever, splenomegaly, and anemia. Concerning the treatment strategy in this study, liposomal amphotericin B had more efficiency and shorter hospitalization duration.
Collapse
Affiliation(s)
- Mahmoud Khodabandeh
- Department of Infectious Diseases, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Children's Medical Center, Pediatrics Center of Excellence, Tehran, Iran
- Department of Pediatrics, Children's Medical Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Moradian
- Children's Medical Center, Pediatrics Center of Excellence, Tehran, Iran
| | - Maedeh Sarvari
- School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mahsa Soti Khiabani
- Children's Medical Center, Pediatrics Center of Excellence, Tehran, Iran
- Department of Pediatrics, Children's Medical Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Gebremeskele BT, Adane G, Adem M, Tajebe F. Diagnostic performance of CL Detect rapid-immunochromatographic test for cutaneous leishmaniasis: a systematic review and meta-analysis. Syst Rev 2023; 12:240. [PMID: 38115138 PMCID: PMC10731771 DOI: 10.1186/s13643-023-02422-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Sensitive, robust, and fast point-of-care tests are needed for cutaneous leishmaniasis (CL) diagnosis. The recently developed CL Detect rapid test (InBios) for detecting Leishmania peroxidoxin antigen has been evaluated in several studies. However, diagnostic performances were controversial. Therefore, this systematic review and meta-analysis aimed to determine the pooled sensitivity and specificity of CL Detect for CL diagnosis. METHODS PubMed, Scopus, EMBASE, ScienceDirect, and Google Scholar were sources of articles. We included studies reporting the diagnostic accuracy of CL Detect and CL-suspected patients in the English language. The methodological qualities of the included studies were appraised using the quality assessment of diagnostic accuracy studies-2 (QUADAS-2). Meta-analysis was conducted using Stata 14.2 and R software. RESULTS A total of 9 articles were included. The study sample size ranged from 11 to 274. The sensitivities of the individual studies ranged from 23 to 100%, and the specificities ranged from 78 to 100%. Pooled sensitivity and specificity were 68% (95% CI, 41-86%) and 94% (95% CI, 87-97%), respectively. AUC displayed 0.899. Pooled sensitivity was lower (47%, 95% CI, 34-61%) when PCR was used as a reference than microscopy (83%, 95% CI, 39-97%). Pooled sensitivity was lower (48%, 95% CI, 30-67%) for all lesion durations compared to ≤ 4 months (89%, 95% CI, 43-99%). CONCLUSIONS CL Detect has poor sensitivity and does not meet the minimal sensitivity of 95% of target product profiles designed for CL point-of-care tests. Currently, the CL Detect test looks unsuitable for CL diagnosis, despite its high specificity. Findings are limited by the low number of studies available. Further large-scale studies are recommended. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42022323497.
Collapse
Affiliation(s)
- Behailu Taye Gebremeskele
- Department of Medical Laboratory Science, College of Medicine and Health Science, Dilla University, Dilla, Ethiopia.
- Department of Immunology and Molecular Biology, School of Biomedical and Laboratory Science, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia.
| | - Gashaw Adane
- Department of Immunology and Molecular Biology, School of Biomedical and Laboratory Science, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| | - Mohammed Adem
- Department of Immunology and Molecular Biology, School of Biomedical and Laboratory Science, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| | - Fitsumbrhan Tajebe
- Department of Immunology and Molecular Biology, School of Biomedical and Laboratory Science, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
26
|
Vlassoff C, Giron N, Vera Soto MJ, Maia-Elkhoury ANS, Lal A, Castellanos LG, Almeida G, Lim C. Ensuring access to essential health products: Lessons from Colombia's leishmaniasis control and elimination initiative. PLoS Negl Trop Dis 2023; 17:e0011752. [PMID: 38039275 PMCID: PMC10691678 DOI: 10.1371/journal.pntd.0011752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/27/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND This paper identifies opportunities and challenges for leishmaniasis control and elimination in Colombia, emphasizing the role of pooled procurement of essential medicines and supplies. Colombia is among the countries most affected by leishmaniasis globally, and also faces the dual challenge of procuring critically needed medicines in the context of limited national resources. It recently renewed its commitment to the control and elimination of leishmaniasis under its 2022-2031 Public Health Plan (PDSP) through a comprehensive public health approach. METHODOLOGY/PRINCIPAL FINDINGS The methodology comprises a comprehensive literature review and key informant interviews with leishmaniasis experts from the Colombian national control program and PAHO/WHO, focusing on cutaneous, mucocutaneous, and visceral leishmaniasis. Leishmaniasis is endemic throughout Colombia, with over 11 million people at risk, many of whom live in poverty-stricken, remote and isolated rural areas with limited access to health services. Leishmaniasis care, including medicines, is provided free of charge, but many barriers were nonetheless identified at environmental, population, and health system levels, including the supply of quality-assured medicines. Opportunities to alleviate these barriers were identified, including the support of the PAHO Strategic Fund. Within the context of the sustainable development goals and international leishmaniasis control and elimination targets, Colombian officials have established their own priorities, the highest of which is the reduction of deaths from visceral leishmaniasis. CONCLUSIONS/SIGNIFICANCE The elimination of leishmaniasis as a public health problem presents significant challenges, given its biological complexity and diversity, physical and clinical manifestations, social and economic impacts, frequently burdensome treatment regimens, and insufficient supply of necessary medicines. However, rigorous prevention and control efforts through strong political commitment and a highly motivated workforce can dramatically reduce its burden. Colombia's new PDSP, which highlights leishmaniasis control, is an opportunity for a revitalized health system response through committed leadership, intersectoral actions, and partnerships with international organizations that share a common vision.
Collapse
Affiliation(s)
- Carol Vlassoff
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| | - Nora Giron
- Strategic Fund, Pan American Health Organization, Washington, DC, United States of America
| | - Mauricio Javier Vera Soto
- Subdireccion de enfermedades transmisibles, Ministerio de Salud y Protección Social, Bogotá, Colombia
| | | | - Arush Lal
- Strategic Fund, Pan American Health Organization, Washington, DC, United States of America
| | - Luis Gerardo Castellanos
- Neglected, Tropical and Vector-Borne Diseases Unit, Pan American Health Organization, Washington, DC, United States of America
| | - Gisele Almeida
- Department of Health Systems and Services, Pan American Health Organization, Washington, DC, United States of America
| | - Christopher Lim
- Strategic Fund, Pan American Health Organization, Washington, DC, United States of America
| |
Collapse
|
27
|
Saayman M, Kannigadu C, Aucamp J, Janse van Rensburg HD, Joseph C, Swarts AJ, N'Da DD. Design, synthesis, electrochemistry and anti-trypanosomatid hit/lead identification of nitrofuranylazines. RSC Med Chem 2023; 14:2012-2029. [PMID: 37859713 PMCID: PMC10583827 DOI: 10.1039/d3md00220a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/12/2023] [Indexed: 10/21/2023] Open
Abstract
Chagas disease and leishmaniasis are vector-borne infectious diseases affecting both humans and animals. These neglected tropical diseases can be fatal if not treated. Hundreds to thousands of new Chagas disease and leishmaniasis cases are being reported by the WHO every year, and currently available treatments are insufficient. Severe adverse effects, impractical administrations and increased pathogen resistance against current clinical treatments underscore a serious need for the development of new drugs to curb these ailments. In search for such drugs, we investigated a series of nitrofuran-based azine derivatives. Herein, we report the design, synthesis, electrochemistry, and biological activity of these derivatives against promastigotes and amastigotes of Leishmania major, and L. donovani strains, as well as epimastigotes and trypomastigotes of Trypanosoma cruzi. Two leishmanicidal early leads and one trypanosomacidal hit with submicromolar activity were uncovered and stand for further in vivo investigation in the search for new antitrypanosomatid drugs. Future objective will focus on the identification of involved biological targets with the parasites.
Collapse
Affiliation(s)
- Maryna Saayman
- Centre of Excellence for Pharmaceutical Sciences, North-West University Potchefstroom 2520 South Africa +27 18 299 4243 +27 18 299 2256
| | - Christina Kannigadu
- Centre of Excellence for Pharmaceutical Sciences, North-West University Potchefstroom 2520 South Africa +27 18 299 4243 +27 18 299 2256
| | - Janine Aucamp
- Centre of Excellence for Pharmaceutical Sciences, North-West University Potchefstroom 2520 South Africa +27 18 299 4243 +27 18 299 2256
| | - Helena D Janse van Rensburg
- Centre of Excellence for Pharmaceutical Sciences, North-West University Potchefstroom 2520 South Africa +27 18 299 4243 +27 18 299 2256
| | - Cassiem Joseph
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand Johannesburg-Braamfontein 2050 South Africa
| | - Andrew J Swarts
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand Johannesburg-Braamfontein 2050 South Africa
| | - David D N'Da
- Centre of Excellence for Pharmaceutical Sciences, North-West University Potchefstroom 2520 South Africa +27 18 299 4243 +27 18 299 2256
| |
Collapse
|
28
|
Haddadan SA, Mohebali M, Hajjaran H, Foroushani AR, Kakooei Z, Afshar MJA, Zarei Z, Alizadeh Z, Akhoundi B. In Vitro Study on Four Types of Commercial Lectins on Leishmania infantum, L. major and L. tropica with Stage-Specific Binding and Leishmania Species Identification. IRANIAN JOURNAL OF PARASITOLOGY 2023; 18:456-463. [PMID: 38169603 PMCID: PMC10758074 DOI: 10.18502/ijpa.v18i4.14245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/16/2023] [Indexed: 01/05/2024]
Abstract
Background We aimed to verify the susceptibility of Leishmania infantum, L. major and L. tropica, to commercial lectins in order to identify the three Leishmania species. Methods The degree of agglutination was determined both macroscopically and microscopically and was scored negative (-) to positive (from 1+- 4+) based on their percentage of agglutination. Results Jacalin and UEA-1 were capable of agglutination of L. infantum isolates in both logarithmic and stationary phases at a concentration of 1000 μg/ml (100%). L. tropica isolates showed agglutination with the lectin UEA-1 in both logarithmic and stationary phases (62.5% and 87.5%). L. major and L. tropica showed 75% agglutination with lectin Jacalin in both logarithmic and stationary phases. L. tropica isolates showed 25% agglutination with the lectin WGA in the logarithmic phase. L. infantum, L. major and L. tropica isolates showed 25, 12.5 and 37.5% agglutination in the stationary phase, however, did not show agglutination in logarithmic phases. L. major isolates showed 12.5% agglutination with the lectin PHA in the stationary phase, however, were incapable of agglutination with the L. tropica and L. infantum in both logarithmic and stationary phases. Conclusion Despite the fact, that JCA and I-UEA lectins were not able to completely separate L. infantum, L. major and L. tropica. WGA lectin and PHA lectin can help in separating the species of Leishmania parasites.
Collapse
Affiliation(s)
- Sona Aghaee Haddadan
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mohebali
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Research of Endemic Parasites of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Homa Hajjaran
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Rahimi Foroushani
- Department of Epidemiology and Biostatics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Kakooei
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Abbaszadeh Afshar
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- School of Allied Medical Sciences, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Zabihollah Zarei
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Alizadeh
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Behnaz Akhoundi
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Wang T, Rampisela D. Visceral Leishmaniasis With Blastocystis Co-infection: A Case Report. Cureus 2023; 15:e44050. [PMID: 37746419 PMCID: PMC10517707 DOI: 10.7759/cureus.44050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
Visceral leishmaniasis (VL) is a form of leishmaniasis, which causes significant mortality if untreated. The coexistence of VL with Blastocystis infection has not been well-documented in the literature. In this paper, we present the case of a 72-year-old male who experienced four months of recurrent diarrhea and later developed weight loss, fever, night sweats, and pancytopenia. The stool ova and parasite (O&P) examination revealed Blastocystis spp. vacuolar bodies and he was treated with metronidazole which resolved the diarrhea but not other symptoms. Further evaluation, including an abdominal Computed Tomogram (CT) scan and ultrasonography (USG), revealed splenomegaly. A splenic biopsy confirmed VL with numerous Leishmania amastigotes. Treatment with Amphotericin B led to clinical improvement. This paper discusses the clinical and diagnostic features of VL and Blastocystis, highlighting their differential diagnosis, and available treatments.
Collapse
Affiliation(s)
- Tengfei Wang
- Pathology, Baylor Scott & White Health, Temple, USA
| | | |
Collapse
|
30
|
Campagnaro GD, Lorenzon LB, Rodrigues MA, Defina TPA, Pinzan CF, Ferreira TR, Cruz AK. Overexpression of Leishmania major protein arginine methyltransferase 6 reduces parasite infectivity in vivo. Acta Trop 2023; 244:106959. [PMID: 37257676 DOI: 10.1016/j.actatropica.2023.106959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/02/2023]
Abstract
Arginine methylation is catalysed by Protein Arginine Methyltransferases (PRMTs) and can affect how a target protein functions and how it interacts with other macromolecules, which in turn impacts on cell metabolism and gene expression control. Leishmania parasites express five different PRMTs, and although the presence of each individual PRMT is not essential per se, the imbalanced activity of these PRMTs can impact the virulence of Leishmania parasites in vitro and in vivo. Here we created a Leishmania major cell line overexpressing PRMT6 and show that similar to what was observed for the T. brucei homologous enzyme, L. major PRMT6 probably has a narrow substrate range. However, its overexpression notably impairs the infection in mice, with a mild reduction in the number of viable parasites in the lymph nodes. Our results indicate that arginine methylation by LmjPRMT6 plays a significant role in the adaptation of the parasite to the environment found in the mammalian host.
Collapse
Affiliation(s)
- Gustavo Daniel Campagnaro
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Lucas Bigolin Lorenzon
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Mateus Augusto Rodrigues
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Tânia Paula Aquino Defina
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Camila Figueiredo Pinzan
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Tiago Rodrigues Ferreira
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Angela Kaysel Cruz
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
31
|
Freitas CS, Santiago SS, Lage DP, Antinarelli LMR, Oliveira FM, Vale DL, Martins VT, Magalhaes LND, Bandeira RS, Ramos FF, Pereira IAG, de Jesus MM, Ludolf F, Tavares GSV, Costa AV, Ferreira RS, Coimbra ES, Teixeira RR, Coelho EAF. In vitro evaluation of antileishmanial activity, mode of action and cellular response induced by vanillin synthetic derivatives against Leishmania species able to cause cutaneous and visceral leishmaniasis. Exp Parasitol 2023:108555. [PMID: 37247802 DOI: 10.1016/j.exppara.2023.108555] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/15/2023] [Accepted: 05/26/2023] [Indexed: 05/31/2023]
Abstract
The treatment against leishmaniasis presents problems, mainly due to their toxicity of the drugs, high cost and/or by the emergence of parasite resistant strains. In this context, new therapeutics should be searched. In this study, two novel synthetic derivatives from vanillin: [4-(2-hydroxy-3-(4-octyl-1H-1,2,3-triazol-1-yl)propoxy)-3-methoxybenzaldehyde] or 3s and [4-(3-(4-decyl-1H-1,2,3-triazol-1-yl)-2-hydroxypropoxy)-3-methoxybenzaldehyde] or 3t, were evaluated regarding their antileishmanial activity against distinct parasite species able to cause cutaneous and visceral leishmaniasis. Results showed that compounds 3s and 3t were effective against Leishmania infantum, L. amazonensis and L. braziliensis promastigote and amastigote-like forms, showing selectivity index (SI) of 25.1, 18.2 and 22.9, respectively, when 3s was used against promastigotes, and of 45.2, 7.5 and 15.0, respectively, against amastigote-like stage. Using the compound 3t, SI values were 45.2, 53.0 and 80.0, respectively, against promastigotes, and of 35.9, 46.0 and 58.4, respectively, against amastigote-like forms. Amphotericin B (AmpB) showed SI values of 5.0, 7.5 and 15.0, respectively, against promastigotes, and of 3.8, 5.0 and 7.5, respectively, against amastigote-like stage. The treatment of infected macrophages and inhibition of the infection upon pre-incubation with the molecules showed that they were effective in reducing the infection degree and inhibiting the infection in pre-incubated parasites, respectively, as compared to data obtained using AmpB. The mechanism of action of 3s and 3t was evaluated in L. infantum, revealing that both 3s and 3t altered the parasite mitochondrial membrane potential leading to reactive oxygen species production, increase in lipid corps and changes in the cell cycle, causing the parasite' death. A preliminary assay using the cell culture supernatant from treated and infected macrophages showed that 3s and 3t induced higher IL-12 and lower IL-10 values; suggesting the development of an in vitro Th1-type response in the treated cells. In this context, data indicated that 3s and 3t could be considered therapeutic agents to be tested in future studies against leishmaniasis.
Collapse
Affiliation(s)
- Camila S Freitas
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Samira S Santiago
- Grupo de Síntese e Pesquisa de Compostos Bioativos, Departamento de Química, Universidade Federal de Viçosa, Avenida PH Rolfs S/N, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Daniela P Lage
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Luciana M R Antinarelli
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Campus Universitário, 36036-900, Juiz de Fora, Minas Gerais, Brazil
| | - Fabrício M Oliveira
- Instituto Federal de Educação de Minas Gerais, Rua Afonso Sardinha 90, Bairro Pioneiros, 36420-000, Ouro Branco, Minas Gerais, Brazil
| | - Danniele L Vale
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Vívian T Martins
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Lícia N D Magalhaes
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Raquel S Bandeira
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda F Ramos
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Isabela A G Pereira
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Marcelo M de Jesus
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda Ludolf
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Grasiele S V Tavares
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Adilson V Costa
- Departamento de Química e Física, Universidade Federal Do Espírito Santo, Alto Universitário, S/n Guararema, 29500-000, Alegre, Espírito Santo, Brazil
| | - Rafaela S Ferreira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Elaine S Coimbra
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Campus Universitário, 36036-900, Juiz de Fora, Minas Gerais, Brazil
| | - Róbson R Teixeira
- Grupo de Síntese e Pesquisa de Compostos Bioativos, Departamento de Química, Universidade Federal de Viçosa, Avenida PH Rolfs S/N, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Eduardo A F Coelho
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100, Belo Horizonte, Minas Gerais, Brazil; Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
32
|
Dube P, Angula KT, Legoabe LJ, Jordaan A, Boitz Zarella JM, Warner DF, Doggett JS, Beteck RM. Quinolone-3-amidoalkanol: A New Class of Potent and Broad-Spectrum Antimicrobial Agent. ACS OMEGA 2023; 8:17086-17102. [PMID: 37214682 PMCID: PMC10193574 DOI: 10.1021/acsomega.3c01406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/18/2023] [Indexed: 05/24/2023]
Abstract
Herein, we describe 39 novel quinolone compounds bearing a hydrophilic amine chain and varied substituted benzyloxy units. These compounds demonstrate broad-spectrum activities against acid-fast bacterium, Gram-positive and -negative bacteria, fungi, and leishmania parasite. Compound 30 maintained antitubercular activity against moxifloxacin-, isoniazid-, and rifampicin-resistant Mycobacterium tuberculosis, while 37 exhibited low micromolar activities (<1 μg/mL) against World Health Organization (WHO) critical pathogens: Cryptococcus neoformans, Acinetobacter baumannii, and Pseudomonas aeruginosa. Compounds in this study are metabolically robust, demonstrating % remnant of >98% after 30 min in the presence of human, rat, and mouse liver microsomes. Several compounds thus reported here are promising leads for the treatment of diseases caused by infectious agents.
Collapse
Affiliation(s)
- Phelelisiwe
S. Dube
- Centre
of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa
| | - Klaudia T. Angula
- Centre
of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa
| | - Lesetja J. Legoabe
- Centre
of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa
| | - Audrey Jordaan
- SAMRC/NHLS/UCT
Molecular Mycobacteriology Research Unit, Department of Pathology, University of Cape Town Observatory, Cape Town 7925, South Africa
- Institute
of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Jan M. Boitz Zarella
- Division
of Infectious Diseases, VA Portland Healthcare
System, Portland, Oregon 97239, United States
| | - Digby F. Warner
- SAMRC/NHLS/UCT
Molecular Mycobacteriology Research Unit, Department of Pathology, University of Cape Town Observatory, Cape Town 7925, South Africa
- Institute
of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
- Wellcome
Centre for Infectious Diseases Research in Africa (CIDRI-Africa),
Faculty of Health Sciences, University of
Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - J. Stone Doggett
- Division
of Infectious Diseases, VA Portland Healthcare
System, Portland, Oregon 97239, United States
| | - Richard M. Beteck
- Centre
of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa
| |
Collapse
|
33
|
Al-Ghafli H, Barribeau SM. Double trouble: trypanosomatids with two hosts have lower infection prevalence than single host trypanosomatids. Evol Med Public Health 2023; 11:202-218. [PMID: 37404250 PMCID: PMC10317189 DOI: 10.1093/emph/eoad014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 04/21/2023] [Indexed: 07/06/2023] Open
Abstract
Trypanosomatids are a diverse family of protozoan parasites, some of which cause devastating human and livestock diseases. There are two distinct infection life cycles in trypanosomatids; some species complete their entire life cycle in a single host (monoxenous) while others infect two hosts (dixenous). Dixenous trypanosomatids are mostly vectored by insects, and the human trypanosomatid diseases are caused mainly by vectored parasites. While infection prevalence has been described for subsets of hosts and trypanosomatids, little is known about whether monoxenous and dixenous trypanosomatids differ in infection prevalence. Here, we use meta-analyses to synthesise all published evidence of trypanosomatid infection prevalence for the last two decades, encompassing 931 unique host-trypansomatid systems. In examining 584 studies that describe infection prevalence, we find, strikingly, that monoxenous species are two-fold more prevalent than dixenous species across all hosts. We also find that dixenous trypanosomatids have significantly lower infection prevalence in insects than their non-insect hosts. To our knowledge, these results reveal for the first time, a fundamental difference in infection prevalence according to host specificity where vectored species might have lower infection prevalence as a result of a potential 'jack of all trades, master of none' style trade-off between the vector and subsequent hosts.
Collapse
Affiliation(s)
- Hawra Al-Ghafli
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary, and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Seth M Barribeau
- Corresponding author. Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary, and Ecological Sciences, University of Liverpool, Liverpool, UK. E-mail:
| |
Collapse
|
34
|
Fujimori M, Valencia-Portillo RT, Lindoso JAL, Celeste BJ, de Almeida RP, Costa CHN, da Cruz AM, Druzian AF, Duthie MS, Fortaleza CMCB, de Oliveira ALL, Paniago AMM, Queiroz IT, Reed S, Vallur AC, Goto H, Sanchez MCA. Recombinant protein KR95 as an alternative for serological diagnosis of human visceral leishmaniasis in the Americas. PLoS One 2023; 18:e0282483. [PMID: 36862710 PMCID: PMC9980733 DOI: 10.1371/journal.pone.0282483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/15/2023] [Indexed: 03/03/2023] Open
Abstract
In the Americas, visceral leishmaniasis (VL) is caused by the protozoan Leishmania infantum, leading to death if not promptly diagnosed and treated. In Brazil, the disease reaches all regions, and in 2020, 1,933 VL cases were reported with 9.5% lethality. Thus, an accurate diagnosis is essential to provide the appropriate treatment. Serological VL diagnosis is based mainly on immunochromatographic tests, but their performance may vary by location, and evaluation of diagnostic alternatives is necessary. In this study, we aimed to evaluate the performance of ELISA with the scantily studied recombinant antigens, K18 and KR95, comparing their performance with the already known rK28 and rK39. Sera from parasitologically confirmed symptomatic VL patients (n = 90) and healthy endemic controls (n = 90) were submitted to ELISA with rK18 and rKR95. Sensitivity (95% CI) was, respectively, 83.3% (74.2-89.7) and 95.6% (88.8-98.6), and specificity (95% CI) was 93.3% (85.9-97.2) and 97.8% (91.8-99.9). For validation of ELISA with the recombinant antigens, we included samples from 122 VL patients and 83 healthy controls collected in three regions in Brazil (Northeast, Southeast, and Midwest). When comparing the results obtained with the VL patients' samples, significantly lower sensitivity was obtained by rK18-ELISA (88.5%, 95% CI: 81.5-93.2) compared with rK28-ELISA (95.9%, 95% CI: 90.5-98.5), but the sensitivity was similar comparing rKR95-ELISA (95.1%, 95% CI: 89.5-98.0), rK28-ELISA (95.9%, 95% CI: 90.5-98.5), and rK39-ELISA (94.3%, 95% CI: 88.4-97.4). Analyzing the specificity, it was lowest with rK18-ELISA (62.7%, 95% CI: 51.9-72.3) with 83 healthy control samples. Conversely, higher and similar specificity was obtained by rKR95-ELISA (96.4%, 95% CI: 89.5-99.2), rK28-ELISA (95.2%, 95% CI: 87.9-98.5), and rK39-ELISA (95.2%, 95% CI: 87.9-98.5). There was no difference in sensitivity and specificity across localities. Cross-reactivity assessment, performed with sera of patients diagnosed with inflammatory disorders and other infectious diseases, was 34.2% with rK18-ELISA and 3.1% with rKR95-ELISA. Based on these data, we suggest using recombinant antigen KR95 in serological assays for VL diagnosis.
Collapse
Affiliation(s)
- Mahyumi Fujimori
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | | | - José Angelo Lauletta Lindoso
- Departamento de Doenças Infecciosas e Parasitárias, Faculdade de Medicina, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Instituto de Infectologia Emílio Ribas, Secretaria de Estado da Saúde, São Paulo, São Paulo, Brazil
| | - Beatriz Julieta Celeste
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Departamento de Medicina Preventiva, Faculdade de Medicina, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Roque Pacheco de Almeida
- Departamento de Medicina Interna e Patologia, Hospital Universitário/EBSERH, Universidade Federal de Sergipe, Aracaju, Sergipe, Brazil
| | | | - Alda Maria da Cruz
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz/FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Angelita Fernandes Druzian
- Faculdade de Medicina, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | | | | | | | | | - Igor Thiago Queiroz
- Hospital Giselda Trigueiro, Secretaria Estadual da Saúde Pública, Natal, Rio Grande do Norte, Brazil
| | - Steve Reed
- HDT Bio, Seattle, Washington, United States of America
| | - Aarthy C. Vallur
- InBios International Inc, Seattle, Washington, United States of America
| | - Hiro Goto
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Departamento de Medicina Preventiva, Faculdade de Medicina, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Maria Carmen Arroyo Sanchez
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Departamento de Medicina Preventiva, Faculdade de Medicina, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
35
|
Chakkumpulakkal Puthan Veettil T, Duffin RN, Roy S, Vongsvivut J, Tobin MJ, Martin M, Adegoke JA, Andrews PC, Wood BR. Synchrotron-Infrared Microspectroscopy of Live Leishmania major Infected Macrophages and Isolated Promastigotes and Amastigotes. Anal Chem 2023; 95:3986-3995. [PMID: 36787387 DOI: 10.1021/acs.analchem.2c04004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The prevalence of neglected tropical diseases (NTDs) is advancing at an alarming rate. The NTD leishmaniasis is now endemic in over 90 tropical and sub-tropical low socioeconomic countries. Current diagnosis for this disease involves serological assessment of infected tissue by either light microscopy, antibody tests, or culturing with in vitro or in vivo animal inoculation. Furthermore, co-infection by other pathogens can make it difficult to accurately determine Leishmania infection with light microscopy. Herein, for the first time, we demonstrate the potential of combining synchrotron Fourier-transform infrared (FTIR) microspectroscopy with powerful discrimination tools, such as partial least squares-discriminant analysis (PLS-DA), support vector machine-discriminant analysis (SVM-DA), and k-nearest neighbors (KNN), to characterize the parasitic forms of Leishmania major both isolated and within infected macrophages. For measurements performed on functional infected and uninfected macrophages in physiological solutions, the sensitivities from PLS-DA, SVM-DA, and KNN classification methods were found to be 0.923, 0.981, and 0.989, while the specificities were 0.897, 1.00, and 0.975, respectively. Cross-validated PLS-DA models on live amastigotes and promastigotes showed a sensitivity and specificity of 0.98 in the lipid region, while a specificity and sensitivity of 1.00 was achieved in the fingerprint region. The study demonstrates the potential of the FTIR technique to identify unique diagnostic bands and utilize them to generate machine learning models to predict Leishmania infection. For the first time, we examine the potential of infrared spectroscopy to study the molecular structure of parasitic forms in their native aqueous functional state, laying the groundwork for future clinical studies using more portable devices.
Collapse
Affiliation(s)
| | - Rebekah N Duffin
- School of Chemistry, Faculty of Science, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Supti Roy
- Centre for Biospectroscopy, School of Chemistry, Faculty of Science, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | | | - Mark J Tobin
- Australian Synchrotron, 800 Blackburn Rd, Clayton, Victoria 3168, Australia
| | - Miguela Martin
- School of Chemistry, Faculty of Science, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - John A Adegoke
- School of Chemistry, Faculty of Science, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Philip C Andrews
- School of Chemistry, Faculty of Science, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Bayden R Wood
- Centre for Biospectroscopy, School of Chemistry, Faculty of Science, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| |
Collapse
|
36
|
Bailén M, Illescas C, Quijada M, Martínez-Díaz RA, Ochoa E, Gómez-Muñoz MT, Navarro-Rocha J, González-Coloma A. Anti-Trypanosomatidae Activity of Essential Oils and Their Main Components from Selected Medicinal Plants. Molecules 2023; 28:1467. [PMID: 36771132 PMCID: PMC9920086 DOI: 10.3390/molecules28031467] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Kinetoplastida is a group of flagellated protozoa characterized by the presence of a kinetoplast, a structure which is part of a large mitochondria and contains DNA. Parasites of this group include genera such as Leishmania, that cause disease in humans and animals, and Phytomonas, that are capable of infecting plants. Due to the lack of treatments, the low efficacy, or the high toxicity of the employed therapeutic agents there is a need to seek potential alternative treatments. In the present work, the antiparasitic activity on Leishmania infantum and Phytomonas davidi of 23 essential oils (EOs) from plants of the Lamiaceae and Asteraceae families, extracted by hydrodistillation (HD) at laboratory scale and steam distillation (SD) in a pilot plant, were evaluated. The chemical compositions of the EOs were determined by gas chromatography-mass spectrometry. Additionally, the cytotoxic activity on mammalian cells of the major components from the most active EOs was evaluated, and their anti-Phytomonas and anti-Leishmania effects analyzed. L. infantum was more sensitive to the EOs than P. davidi. The EOs with the best anti-kinetoplastid activity were S. montana, T. vulgaris, M. suaveolens, and L. luisieri. Steam distillation increased the linalyl acetate, β-caryophyllene, and trans-α-necrodyl acetate contents of the EOs, and decreased the amount of borneol and 1,8 cineol. The major active components of the EOs were tested, with thymol being the strongest anti-Phytomonas compound followed by carvacrol. Our study identified potential treatments against kinetoplastids.
Collapse
Affiliation(s)
- María Bailén
- Department of Preventive Medicine, Public Health and Microbiology, Faculty of Medicine, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Cristina Illescas
- Department of Preventive Medicine, Public Health and Microbiology, Faculty of Medicine, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Mónica Quijada
- Department of Preventive Medicine, Public Health and Microbiology, Faculty of Medicine, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Rafael Alberto Martínez-Díaz
- Department of Preventive Medicine, Public Health and Microbiology, Faculty of Medicine, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Eneko Ochoa
- Research and Development Division, AleoVitro, 48160 Derio, Spain
| | - María Teresa Gómez-Muñoz
- Department of Animal Health, Faculty of Veterinary Sciences, University Complutense of Madrid, 28040 Madrid, Spain
| | - Juliana Navarro-Rocha
- Centro de Investigación y Tecnología Agroalimentaria de Aragón, Unidad de Recursos Forestales, 50059 Zaragoza, Spain
| | | |
Collapse
|
37
|
Rai P, Arya H, Saha S, Kumar D, Bhatt TK. Drug repurposing based novel anti-leishmanial drug screening using in-silico and in-vitro approaches. J Biomol Struct Dyn 2022; 40:10812-10820. [PMID: 36529188 DOI: 10.1080/07391102.2021.1950574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Visceral leishmaniasis is a neglected tropical disease and is mainly caused by L. donovani in the Indian subcontinent. The mitochondria genome replication in Leishmania spp. is having a very specific mechanism, and it is initiated by a key enzyme called mitochondrial primase. This enzyme is essential for the onset of the replication process and growth of the parasite. Therefore, we focused on the primase protein as a potential therapeutic target for combating leishmaniasis diseases. We started our studies molecular modeling and followed by docking of the FDA-approved drug library into the binding site of the primase protein. The top 30 selected compounds were subjected for molecular dynamics studies. Also, the target protein was cloned, purified, and tested experimentally (primase activity assays and inhibition assays). Some compounds were very effective against the Leishmania cell culture. All these approaches helped us to identify few possible novel anti-leishmanial drugs such as Pioglitazone and Mupirocin. These drugs are effectively involved in inhibiting the promastigote of L. donovani, and it can be utilized in the next level of clinical trials. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Praveen Rai
- Department of Biotechnology, Central University of Rajasthan, Ajmer, India
| | - Hemant Arya
- Department of Biotechnology, Central University of Rajasthan, Ajmer, India
| | - Satabdi Saha
- Department of Microbiology, Assam University, Silchar, India
| | - Diwakar Kumar
- Department of Microbiology, Assam University, Silchar, India
| | - Tarun Kumar Bhatt
- Department of Biotechnology, Central University of Rajasthan, Ajmer, India
| |
Collapse
|
38
|
Kumar P, Kumar P, Singh N, Khajuria S, Patel R, Rajana VK, Mandal D, Velayutham R. Limitations of current chemotherapy and future of nanoformulation-based AmB delivery for visceral leishmaniasis-An updated review. Front Bioeng Biotechnol 2022; 10:1016925. [PMID: 36588956 PMCID: PMC9794769 DOI: 10.3389/fbioe.2022.1016925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/31/2022] [Indexed: 12/15/2022] Open
Abstract
Visceral leishmaniasis (VL) is the most lethal of all leishmaniasis diseasesand the second most common parasiticdisease after malaria and,still, categorized as a neglected tropical disease (NTD). According to the latest WHO study, >20 Leishmania species spread 0.7-1.0 million new cases of leishmaniasis each year. VL is caused by the genus, Leishmania donovani (LD), which affects between 50,000 and 90,000 people worldwide each year. Lack of new drug development, increasing drug resistance, toxicity and high cost even with the first line of treatmentof Amphotericin B (AmB), demands new formulation for treatment of VLFurther the lack of a vaccine, allowedthe researchers to develop nanofomulation-based AmB for improved delivery. The limitation of AmB is its kidney and liver toxicity which forced the development of costly liposomal AmB (AmBisome) nanoformulation. Success of AmBisome have inspired and attracted a wide range of AmB nanoformulations ranging from polymeric, solid lipid, liposomal/micellar, metallic, macrophage receptor-targetednanoparticles (NP) and even with sophisticated carbon/quantum dot-based AmBnano delivery systems. Notably, NP-based AmB delivery has shown increased efficacy due to increased uptake, on-target delivery and synergistic impact of NP and AmB. In this review, we have discussed the different forms of leishmaniasis disease and their current treatment options with limitations. The discovery, mechanism of action of AmB, clinical status of AmB and improvement with AmBisome over fungizone (AmB-deoxycholate)for VL treatment was further discussed. At last, the development of various AmB nanoformulation was discussed along with its adavantages over traditional chemotherapy-based delivery.
Collapse
Affiliation(s)
- Prakash Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, India
| | - Pawan Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, India
| | - Nidhi Singh
- National Institute of Pharmaceutical Education and Research, Ahmedabad, India
| | - Salil Khajuria
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, India
| | - Rahul Patel
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, India
| | - Vinod Kumar Rajana
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, India
| | - Debabrata Mandal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, India,*Correspondence: Ravichandiran Velayutham, ; Debabrata Mandal,
| | - Ravichandiran Velayutham
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, India,National Institute of Pharmaceutical Education and Research, Kolkata, India,*Correspondence: Ravichandiran Velayutham, ; Debabrata Mandal,
| |
Collapse
|
39
|
Bahreini MS, Yazdi AR, Jowkar F, Motamedi M, Mikaeili F. Cytotoxic screening and in vitro effect of sodium chlorite against Leishmania major promastigotes. J Parasit Dis 2022; 46:945-951. [PMID: 36457781 PMCID: PMC9606154 DOI: 10.1007/s12639-022-01511-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/07/2022] [Indexed: 10/17/2022] Open
Abstract
Cutaneous leishmaniasis (CL) is one of the most important parasitic diseases in the world. Despite the existence of many therapeutic strategies, the treatment of this infection still faces problems. Sodium chlorite as an antimicrobial agent has been shown to have acceptable tissue regenerative and wound healing properties. Therefore, the present study aimed to analyze the in vitro effects of different concentrations of sodium chlorite on Leishmania major promastigotes and macrophage cells. The inhibitory and toxicity effect of various concentrations (0.0035, - 1.8 mg/ml) of sodium chlorite on the standard Iranian strain of L. major promastigotes were evaluated via counting the cells and flow cytometry. Furthermore, cytotoxicity on promastigotes and J774 macrophage cell line were performed by MTT assay. The results of the inhibitory test demonstrated that sodium chlorite had dose-dependent, anti-leishmanial activities. The half-maximal inhibitory concentration (IC50) for promastigotes and J774 cells by cytotoxicity test was detected at 0.17 mg/ml and 0.08 mg/ml after 48 h respectively. Flow cytometry results showed that 27.34% death of promastigotes was observed in 0.0035 mg/ml of sodium chlorite and 78.12% in 1.8 mg/ml. The results of the present study showed that sodium chlorite could be used as an effective treatment for CL, especially in cases resistant to treatment with pentavalent compounds. However, the toxicity of this substance in high concentrations should be considered in clinical setting.
Collapse
Affiliation(s)
- Mohammad Saleh Bahreini
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Reza Yazdi
- Dermatology Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farideh Jowkar
- Dermatology Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Molecular Dermatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marjan Motamedi
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fattaneh Mikaeili
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
40
|
Favi E, Santolamazza G, Botticelli F, Alfieri C, Delbue S, Cacciola R, Guarneri A, Ferraresso M. Epidemiology, Clinical Characteristics, Diagnostic Work Up, and Treatment Options of Leishmania Infection in Kidney Transplant Recipients: A Systematic Review. Trop Med Infect Dis 2022; 7:258. [PMID: 36287999 PMCID: PMC9609696 DOI: 10.3390/tropicalmed7100258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/28/2022] Open
Abstract
Current knowledge on Leishmania infection after kidney transplantation (KT) is limited. In order to offer a comprehensive guide for the management of post-transplant Leishmaniasis, we performed a systematic review following the latest PRISMA Checklist and using PubMed, Scopus, and Embase as databases. No time restrictions were applied, including all English-edited articles on Leishmaniasis in KT recipients. Selected items were assessed for methodological quality using a modified Newcastle-Ottawa Scale. Given the nature and quality of the studies (case reports and retrospective uncontrolled case series), data could not be meta-analyzed. A descriptive summary was therefore provided. Eventually, we selected 70 studies, describing a total of 159 cases of Leishmaniasis. Most of the patients were adult, male, and Caucasian. Furthermore, they were frequently living or travelling to endemic regions. The onset of the disease was variable, but more often in the late transplant course. The clinical features were basically similar to those reported in the general population. However, a generalized delay in diagnosis and treatment could be detected. Bone marrow aspiration was the preferred diagnostic modality. The main treatment options included pentavalent antimonial and liposomal amphotericin B, both showing mixed results. Overall, the outcomes appeared as concerning, with several patients dying or losing their transplant.
Collapse
Affiliation(s)
- Evaldo Favi
- Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Giuliano Santolamazza
- Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Francesco Botticelli
- Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Carlo Alfieri
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
- Nephrology, Dialysis and Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Serena Delbue
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, 20122 Milan, Italy
| | - Roberto Cacciola
- Surgery, King Salman Armed Forces Hospital, Tabuk 47512, Kingdom of Saudi Arabia
- HPB Surgery and Transplantation, Fondazione PTV, 00133 Rome, Italy
| | - Andrea Guarneri
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Mariano Ferraresso
- Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| |
Collapse
|
41
|
Distance-based paper device using combined SYBR safe and gold nanoparticle probe LAMP assay to detect Leishmania among patients with HIV. Sci Rep 2022; 12:14558. [PMID: 36028548 PMCID: PMC9418321 DOI: 10.1038/s41598-022-18765-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/18/2022] [Indexed: 11/23/2022] Open
Abstract
Asymptomatic visceral leishmaniasis cases increase continuously, particularly among patients with HIV who are at risk to develop further symptoms of leishmaniasis. A simple, sensitive and reliable diagnosis is crucially needed due to risk populations mostly residing in rural communities with limited resources of laboratory equipment. In this study, a highly sensitive and selective determination of Leishmania among asymptomatic patients with Leishmania/HIV co-infection was achieved to simultaneously interpret and semi-quantify using colorimetric precipitates (gold-nanoparticle probe; AuNP-probe) and fluorescence (SYBR safe dye and distance-based paper device; dPAD) in one-step loop-mediated isothermal amplification (LAMP) assay. The sensitivities and specificities of 3 detection methods were equivalent and had reliable performances achieving as high as 95.5%. Detection limits were 102 parasites/mL (0.0147 ng/µL) which were 10 times more sensitive than other related studies. To empower leishmaniasis surveillance as well as prevention and control, this dPAD combined with SYBR safe and gold nanoparticle probe LAMP assay is reliably fast, simple, inexpensive and practical for field diagnostics to point-of-care settings in resource-limited areas which can be set up in all levels of healthcare facilities, especially in low to middle income countries.
Collapse
|
42
|
Numan M, Naz S, Gilani R, Minhas A, Ahmed H, Cao J. Evaluation of Household Preparedness and Risk Factors for Cutaneous Leishmaniasis (CL) Using the Community Assessment for Public Health Emergency Response (CASPER) Method in Pakistan. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:5068. [PMID: 35564462 PMCID: PMC9104477 DOI: 10.3390/ijerph19095068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 11/16/2022]
Abstract
(1) Background: In endemic areas of Pakistan, local community knowledge and attitudes towards cutaneous leishmaniasis (CL) are critical elements in the effective control and management of the disease. A cross-sectional epidemiologic design was used to assess the disease concern, preparedness, practices, and preventive behavior of the households and to assist the personnel and health care professionals in strengthening their planning efforts and awareness of CL. (2) Methods: A two-stage cluster sampling process, i.e., Community Assessment for Public Health Emergency Response (CASPER) was conducted from September 2020 to March 2021 on present household-level information about community needs and health status regarding CL in a cost-effective, timely, and representative manner. (3) Results: In the current study, 67% of the respondents were aware of CL and its causative agent and showed a low level of pandemic preparedness. The majority (74%) of the respondents mentioned that they did not avoid sandfly exposure areas. The majority (84%) of respondents had unsatisfactory behavior towards using bed nets, sprays, or repellents. (4) Conclusion: In endemic areas of Pakistan, the inadequate concern and low preparedness of the local community toward CL are critical aspects in efficient control and management of the disease.
Collapse
Affiliation(s)
- Muhammad Numan
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Chak Shahzad, Islamabad 45550, Pakistan;
| | - Shumaila Naz
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi 46000, Pakistan; (S.N.); (R.G.)
| | - Rehama Gilani
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi 46000, Pakistan; (S.N.); (R.G.)
| | - Azhar Minhas
- Department of Dermatology, Combined Military Hospital (CMH), Quetta 87300, Pakistan;
| | - Haroon Ahmed
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Chak Shahzad, Islamabad 45550, Pakistan;
| | - Jianping Cao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai 200025, China
- Key Laboratory of Parasite and Vector Biology, National Health Commission of the People’s Republic of China, Shanghai 200025, China
- World Health Organization Collaborating Center for Tropical Diseases, Shanghai 200025, China
- The School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
43
|
Machado AS, Lage DP, Vale DL, Freitas CS, Linhares FP, Cardoso JMO, Oliveira-da-Silva JA, Pereira IAG, Ramos FF, Tavares GSV, Ludolf F, Bandeira RS, Maia LGN, Menezes-Souza D, Duarte MC, Chávez-Fumagalli MA, Roatt BM, Christodoulides M, Martins VT, Coelho EAF. Leishmania LiHyC protein is immunogenic and induces protection against visceral leishmaniasis. Parasite Immunol 2022; 44:e12921. [PMID: 35437797 DOI: 10.1111/pim.12921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 11/27/2022]
Abstract
AIMS Treatment against visceral leishmaniasis (VL) presents problems by toxicity of drugs, high cost and/or emergence of resistant strains. The diagnosis is hampered by variable sensitivity and/or specificity of tests. In this context, prophylactic vaccination could represent a control measure against disease. In this study, the protective efficacy from Leishmania LiHyC protein was evaluated in murine model against Leishmania infantum infection. METHODS AND RESULTS LiHyC was used as recombinant protein (rLiHyC) associated with saponin (rLiHyC/S) or Poloxamer 407-based polymeric micelles (rLiHyC/M) to immunize mice. Animals received also saline, saponin or empty micelles as controls. The immunogenicity was evaluated before and after challenge, and results showed that vaccination with rLiHyC/S or rLiHyC/M induced the production of high levels of IFN-γ, IL-12 and GM-CSF in cell culture supernatants, as well as higher IFN-γ expression evaluated by RT-qPCR and involvement from CD4+ and CD8+ T cell subtypes producing IFN-γ, TNF-α and IL-2. A positive lymphoproliferative response was also found in cell cultures from vaccinated animals, besides high levels of rLiHyC- and parasite-specific nitrite and IgG2a antibodies. Immunological assays correlated with significant reductions in the parasite load in spleens, livers, bone marrows and draining lymph nodes from vaccinated mice, when compared to values found in the controls. The micellar composition showed slightly better immunological and parasitological data, as compared to rLiHyC/S. CONCLUSION Results suggest that rLiHyC associated with adjuvants could be considered for future studies as a vaccine candidate against VL.
Collapse
Affiliation(s)
- Amanda S Machado
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Daniela P Lage
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Danniele L Vale
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Camila S Freitas
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Flávia P Linhares
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Jamille M O Cardoso
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas/NUPEB, Departamento de Ciências Biológicas, Insituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - João A Oliveira-da-Silva
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Isabela A G Pereira
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda F Ramos
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Grasiele S V Tavares
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda Ludolf
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Raquel S Bandeira
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Luiz G N Maia
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Daniel Menezes-Souza
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil.,Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Mariana C Duarte
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil.,Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Miguel A Chávez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Urb. San José S/N, Umacollo, Arequipa, Peru
| | - Bruno M Roatt
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas/NUPEB, Departamento de Ciências Biológicas, Insituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Myron Christodoulides
- Neisseria Research Group, Molecular Microbiology, School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, England
| | - Vívian T Martins
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Eduardo A F Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil.,Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
44
|
Singh A, Yadagiri G, Negi M, Kushwaha AK, Singh OP, Sundar S, Mudavath SL. Carboxymethyl chitosan modified lipid nanoformulations as a highly efficacious and biocompatible oral anti-leishmanial drug carrier system. Int J Biol Macromol 2022; 204:373-385. [PMID: 35149096 DOI: 10.1016/j.ijbiomac.2022.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 12/18/2022]
Abstract
Herein, carboxymethyl chitosan (CMC) grafted lipid nanoformulations were facilely prepared by thin-film hydration method as a highly efficient biocompatible anti-leishmanial carrier encapsulating amphotericin B (AmB). Nanoformulations were characterized for their physicochemical characteristics wherein TEM analysis confirmed the spherical structure, whereas FTIR analysis revealed the conjugation of CMC onto nanoformulations and confirmed the free state of AmB. Furthermore, the wettability study confirmed the presence of CMC on the surface of nanoformulations attributed to the enhanced hydrophilicity. Surface hydrophilicity additionally contributes towards consistent mucin retention ability for up to 6 h, superior mucoadhesiveness, and hence enhanced bioavailability. The proposed nanoformulations with high encapsulation and drug loading properties displayed controlled drug release in the physiological microenvironment. In vitro, antileishmanial results showed an astounding 97% inhibition in amastigote growth. Additionally, in vivo studies showed that treatment with nanoformulations significantly reduced the liver parasitic burden (93.5%) without causing any toxicity when given orally.
Collapse
Affiliation(s)
- Aakriti Singh
- Infectious Disease Biology Laboratory, Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, Punjab 140306, India
| | - Ganesh Yadagiri
- Infectious Disease Biology Laboratory, Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, Punjab 140306, India
| | - Manorma Negi
- Infectious Disease Biology Laboratory, Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, Punjab 140306, India
| | - Anurag Kumar Kushwaha
- Infectious Disease Research Laboratory, Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Om Prakash Singh
- Infectious Disease Research Laboratory, Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India; Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Shyam Sundar
- Infectious Disease Research Laboratory, Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Shyam Lal Mudavath
- Infectious Disease Biology Laboratory, Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, Punjab 140306, India.
| |
Collapse
|
45
|
Afshar PJ, Bahrampour A, Shahesmaeili A. Determination of the trend of incidence of cutaneous leishmaniasis in Kerman province 2014-2020 and forecasting until 2023. A time series study. PLoS Negl Trop Dis 2022; 16:e0010250. [PMID: 35404935 PMCID: PMC9049530 DOI: 10.1371/journal.pntd.0010250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 04/28/2022] [Accepted: 02/11/2022] [Indexed: 11/18/2022] Open
Abstract
Introduction Cutaneous leishmaniasis (CL) is currently a health problem in several parts of Iran, particularly Kerman. This study was conducted to determine the incidence and trend of CL in Kerman during 2014–2020 and its forecast up to 2023. The effects of meteorological variables on incidence was also evaluated. Materials and methods 4993 definite cases of CL recorded from January 2014 to December 2020 by the Vice-Chancellor for Health at Kerman University of Medical Sciences were entered. Meteorological variables were obtained from the national meteorological site. The time series SARIMA methods were used to evaluate the effects of meteorological variables on CL. Results Monthly rainfall at the lag 0 (β = -0.507, 95% confidence interval:-0.955,-0.058) and monthly sunny hours at the lag 0 (β = -0.214, 95% confidence interval:-0.308,-0.119) negatively associated with the incidence of CL. Based on the Akaike information criterion (AIC) the multivariable model (AIC = 613) was more suitable than univariable model (AIC = 690.66) to estimate the trend and forecast the incidence up to 36 months. Conclusion The decreasing pattern of CL in Kerman province highlights the success of preventive, diagnostic and therapeutic interventions during the recent years. However, due to endemicity of disease, extension and continuation of such interventions especially before and during the time periods with higher incidence is essential. Cutaneous leishmaniasis (CL) is one of the most prevalent tropical diseases and the most common form of leishmaniasis, which is found in different regions. Due to different geographical climates, the transmission pattern and the impact of meteorological variables on CL is different. In this study we evaluated the incidence and trend of CL during 2014–2020 and its forecast up to 2023 in Kerman province, Iran. In addition, the impact of meteorological variables on its incidence was assessed. Our finding showed a decreasing trend of CL during the studied years. There was a negative association between CL and sunny hours per day and rainfall at lag 0.
Collapse
Affiliation(s)
- Parya Jangipour Afshar
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran, Department of Biostatistics and Epidemiology, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Abbas Bahrampour
- Modeling in Health Research Center, Institute for Futures Studies in Health, Department of Biostatistics and Epidemiology, Faculty of Health, Kerman University of Medical Sciences, Kerman Iran
| | - Armita Shahesmaeili
- HIV/STI Surveillance Research Center, and WHO Collaborating center for HIV surveillance Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
- * E-mail:
| |
Collapse
|
46
|
Bamigbola IE, Ali S. Paradoxical immune response in leishmaniasis: the role of toll-like receptors in disease progression. Parasite Immunol 2022; 44:e12910. [PMID: 35119120 PMCID: PMC9285711 DOI: 10.1111/pim.12910] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 11/30/2022]
Abstract
Toll-like receptors (TLRs), members of pattern recognition receptors, are expressed on many cells of the innate immune system and their engagements with antigens regulates specific immune responses. TLRs signalling influences species-specific immune responses during Leishmania infection, thus, TLRs play a decisive role towards elimination or exacerbation of Leishmania infection. To date, there is no single therapeutic or prophylactic approach that fully effective against Leishmaniasis. An in-depth understanding of the mechanisms by which Leishmania species evade, or exploit host immune machinery could lead to the development of novel therapeutic approaches for the prevention and management of leishmaniasis. In this review, the role of TLRs in the induction of a paradoxical immune response in leishmaniasis was discussed. This review focuses on highlighting the novel interplay of TLR2/TLR9 driven resistance or susceptibility to 5 clinically important Leishmania species in human. The activation of TLR2/TLR9 can induce a diverse anti-Leishmania activities depending on the species of infecting Leishmania parasite. Infection with L. infantum and L. mexicana initiate TLR2/9 activation leading to host protective immune response while infection with L. major, L. donovani, and L. amazonensis trigger either a TLR2/9 related protective or non-protective immune responses. These findings suggest that TLR2 and TLR9 are targets worth pursuing either for modulation or blockage to trigger host protective immune response towards leishmaniasis.
Collapse
Affiliation(s)
- Ifeoluwa E Bamigbola
- Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Selman Ali
- Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| |
Collapse
|
47
|
da Silva RB, Bertoldo WDR, Naves LL, de Vito FB, Damasceno JD, Tosi LRO, Machado CR, Pedrosa AL. Specific Human ATR and ATM Inhibitors Modulate Single Strand DNA Formation in Leishmania major Exposed to Oxidative Agent. Front Cell Infect Microbiol 2022; 11:802613. [PMID: 35059327 PMCID: PMC8763966 DOI: 10.3389/fcimb.2021.802613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/02/2021] [Indexed: 12/03/2022] Open
Abstract
Leishmania parasites are the causative agents of a group of neglected tropical diseases known as leishmaniasis. The molecular mechanisms employed by these parasites to adapt to the adverse conditions found in their hosts are not yet completely understood. DNA repair pathways can be used by Leishmania to enable survival in the interior of macrophages, where the parasite is constantly exposed to oxygen reactive species. In higher eukaryotes, DNA repair pathways are coordinated by the central protein kinases ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3 related (ATR). The enzyme Exonuclease-1 (EXO1) plays important roles in DNA replication, repair, and recombination, and it can be regulated by ATM- and ATR-mediated signaling pathways. In this study, the DNA damage response pathways in promastigote forms of L. major were investigated using bioinformatics tools, exposure of lineages to oxidizing agents and radiation damage, treatment of cells with ATM and ATR inhibitors, and flow cytometry analysis. We demonstrated high structural and important residue conservation for the catalytic activity of the putative LmjEXO1. The overexpression of putative LmjEXO1 made L. major cells more susceptible to genotoxic damage, most likely due to the nuclease activity of this enzyme and the occurrence of hyper-resection of DNA strands. These cells could be rescued by the addition of caffeine or a selective ATM inhibitor. In contrast, ATR-specific inhibition made the control cells more susceptible to oxidative damage in an LmjEXO1 overexpression-like manner. We demonstrated that ATR-specific inhibition results in the formation of extended single-stranded DNA, most likely due to EXO1 nucleasic activity. Antagonistically, ATM inhibition prevented single-strand DNA formation, which could explain the survival phenotype of lineages overexpressing LmjEXO1. These results suggest that an ATM homolog in Leishmania could act to promote end resection by putative LmjEXO1, and an ATR homologue could prevent hyper-resection, ensuring adequate repair of the parasite DNA.
Collapse
Affiliation(s)
- Raíssa Bernardes da Silva
- Departamento de Bioquímica, Farmacologia e Fisiologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil
| | - Willian Dos Reis Bertoldo
- Departamento de Bioquímica, Farmacologia e Fisiologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil.,Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lucila Langoni Naves
- Departamento de Bioquímica, Farmacologia e Fisiologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil
| | - Fernanda Bernadelli de Vito
- Departamento de Clínica Médica, Instituto de Ciências da Saúde, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil
| | - Jeziel Dener Damasceno
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Luiz Ricardo Orsini Tosi
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Carlos Renato Machado
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - André Luiz Pedrosa
- Departamento de Bioquímica, Farmacologia e Fisiologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil
| |
Collapse
|
48
|
Erber AC, Sandler PJ, de Avelar DM, Swoboda I, Cota G, Walochnik J. Diagnosis of visceral and cutaneous leishmaniasis using loop-mediated isothermal amplification (LAMP) protocols: a systematic review and meta-analysis. Parasit Vectors 2022; 15:34. [PMID: 35073980 PMCID: PMC8785018 DOI: 10.1186/s13071-021-05133-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/16/2021] [Indexed: 12/13/2022] Open
Abstract
Sensitive, reliable and fast diagnostic tools that are applicable in low-resource settings, at the point of care (PoC), are seen as crucial in the fight against visceral leishmaniasis (VL) and cutaneous leishmaniasis (CL). Addressing the need for a PoC test, several diagnostic tests, including serological and molecular methods, have been developed and evaluated in the past. One promising molecular method, already implemented for diagnosis of a range of diseases, is the loop-mediated isothermal amplification (LAMP) protocol. In this systematic review and meta-analysis, using a comprehensive search strategy, we focus on studies evaluating the performance of LAMP for the diagnosis of leishmaniasis in humans and other mammals such as dogs, compared with microscopy and/or any other molecular diagnostic method. A meta-analysis, pooling sensitivity and specificity rates and calculating areas under the curve (AUCs) in summary receiver operating characteristic (SROC) plots, was conducted on datasets extracted from studies, grouped by clinical condition and sample type. We found high sensitivity and specificity for LAMP when compared with microscopy and PCR using blood samples, with pooled estimate values of > 90% for all subgroups, corresponding to calculated AUC values > 0.96, except for LAMP compared to microscopy for diagnosis of CL. However, only a limited number of studies were truly comparable. Most of the observed heterogeneity is likely based on true differences between the studies rather than sampling error only. Due to simple readout methods and low laboratory equipment requirements for sample preparation compared to other molecular methods, LAMP is a promising candidate for a molecular (near-)PoC diagnostic method for VL and CL.
Collapse
Affiliation(s)
- Astrid Christine Erber
- Department of Epidemiology, Center for Public Health, Medical University of Vienna, Kinderspitalgasse 15, 1st floor, 1090, Vienna, Austria. .,Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, New Richards Building, Old Road Campus, Roosevelt Drive, Oxford, OX3 7LG, UK.
| | - Peter Julian Sandler
- Department of Applied Life Sciences, FH Campus Wien University of Applied Sciences, Helmut-Qualtinger Gasse 2, 1030, Vienna, Austria
| | - Daniel Moreira de Avelar
- Pesquisa Clínica e Políticas Públicas em Doenças Infecciosas e Parasitárias, Instituto René Rachou-Fundação Oswaldo Cruz, Fiocruz, Belo Horizonte, Minas Gerais, Brazil
| | - Ines Swoboda
- Department of Applied Life Sciences, FH Campus Wien University of Applied Sciences, Helmut-Qualtinger Gasse 2, 1030, Vienna, Austria
| | - Gláucia Cota
- Pesquisa Clínica e Políticas Públicas em Doenças Infecciosas e Parasitárias, Instituto René Rachou-Fundação Oswaldo Cruz, Fiocruz, Belo Horizonte, Minas Gerais, Brazil
| | - Julia Walochnik
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Kinderspitalgasse 15, 1090, Vienna, Austria
| |
Collapse
|
49
|
Gallo-Francisco PH, Brocchi M, Giorgio S. Leishmania and its relationships with bacteria. Future Microbiol 2022; 17:199-218. [PMID: 35040703 DOI: 10.2217/fmb-2021-0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Leishmaniasis is a zoonotic and neglected disease, which represents an important public health problem worldwide. Different species of Leishmania are associated with different manifestations, and a practical problem that can worsen the condition of hosts infected with Leishmania is the secondary infection caused by bacteria. This review aims to examine the importance and prevalence of bacteria co-infection during leishmaniasis and the nature of this ecological relationship. In the cases discussed in this review, the facilitation phenomenon, defined as any interaction where the action of one organism has a beneficial effect on an organism of another species, was considered in the Leishmania-bacteria interaction, as well as the effects on one another and their consequences for the host.
Collapse
Affiliation(s)
- Pedro H Gallo-Francisco
- Department of Animal Biology, Biology Institute, State University of Campinas, Campinas SP, 13083-862, Brazil
| | - Marcelo Brocchi
- Department of Genetics, Microbiology & Immunology, Biology Institute, State University of Campinas, Campinas SP, Brazil
| | - Selma Giorgio
- Department of Animal Biology, Biology Institute, State University of Campinas, Campinas SP, 13083-862, Brazil
| |
Collapse
|
50
|
Singh R, Anand A, Rawat AK, Saini S, Mahapatra B, Singh NK, Mishra AK, Singh S, Singh N, Kishore D, Kumar V, Das P, Singh RK. CD300a Receptor Blocking Enhances Early Clearance of Leishmania donovani From Its Mammalian Host Through Modulation of Effector Functions of Phagocytic and Antigen Experienced T Cells. Front Immunol 2022; 12:793611. [PMID: 35116028 PMCID: PMC8803664 DOI: 10.3389/fimmu.2021.793611] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/27/2021] [Indexed: 12/17/2022] Open
Abstract
The parasites of the genus Leishmania survive and proliferate in the host phagocytic cells by taking control over their microbicidal functions. The parasite also promotes differentiation of antigen-specific anti-inflammatory cytokines producing effector T cells, which eventually results in disease pathogenesis. The mechanisms that parasites employ to dominate host adaptive immunity are largely unknown. For the first time, we report that L. donovani, which causes visceral leishmaniasis in the Indian subcontinent, upregulates the expression of an immune inhibitory receptor i.e., CD300a on antigen presenting and phagocytic cells to dampen their effector functions. The blocking of CD300a signals in leishmania antigens activated macrophages and dendritic cells enhanced the production of nitric oxide, pro-inflammatory cytokines along with MHCI/II genes expression, and reduced parasitic uptake. Further, the abrogation of CD300a signals in Leishmania infected mice benefited antigen-experienced, i.e., CD4+CD44+ and CD8+CD44+ T cells to acquire more pro-inflammatory cytokines producing phenotypes and helped in the early clearance of parasites from their visceral organs. The CD300a receptor blocking also enhanced the conversion of CD4+ T effectors cells to their memory phenotypes i.e., CCR7high CD62Lhigh up to 1.6 and 1.9 fold after 14 and 21 days post-infection, respectively. These findings implicate that CD300a is an important determinant of host phagocytic cells functions and T cells differentiation against Leishmania antigens.
Collapse
Affiliation(s)
- Rajan Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Anshul Anand
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Arun K. Rawat
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Shashi Saini
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Baishakhi Mahapatra
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Naveen K. Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Alok K. Mishra
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Samer Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Science, Banaras Hindu University, Varanasi, India
| | - Nisha Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Dhiraj Kishore
- Department of Medicine, Institute of Medical Science, Banaras Hindu University, Varanasi, India
| | - Vinod Kumar
- Department of Molecular Biology, Rajendra Memorial Research Institute, Patna, India
| | - Pradeep Das
- Department of Molecular Biology, Rajendra Memorial Research Institute, Patna, India
| | - Rakesh K. Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
- *Correspondence: Rakesh K. Singh,
| |
Collapse
|