1
|
Molecular and Cellular Interactions in Pathogenesis of Sporadic Parkinson Disease. Int J Mol Sci 2022; 23:ijms232113043. [PMID: 36361826 PMCID: PMC9657547 DOI: 10.3390/ijms232113043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/16/2022] [Accepted: 10/25/2022] [Indexed: 11/23/2022] Open
Abstract
An increasing number of the population all around the world suffer from age-associated neurodegenerative diseases including Parkinson’s disease (PD). This disorder presents different signs of genetic, epigenetic and environmental origin, and molecular, cellular and intracellular dysfunction. At the molecular level, α-synuclein (αSyn) was identified as the principal molecule constituting the Lewy bodies (LB). The gut microbiota participates in the pathogenesis of PD and may contribute to the loss of dopaminergic neurons through mitochondrial dysfunction. The most important pathogenetic link is an imbalance of Ca2+ ions, which is associated with redox imbalance in the cells and increased generation of reactive oxygen species (ROS). In this review, genetic, epigenetic and environmental factors that cause these disorders and their cause-and-effect relationships are considered. As a constituent of environmental factors, the example of organophosphates (OPs) is also reviewed. The role of endothelial damage in the pathogenesis of PD is discussed, and a ‘triple hit hypothesis’ is proposed as a modification of Braak’s dual hit one. In the absence of effective therapies for neurodegenerative diseases, more and more evidence is emerging about the positive impact of nutritional structure and healthy lifestyle on the state of blood vessels and the risk of developing these diseases.
Collapse
|
2
|
Weng SJ, Chen CFF, Huang YS, Chiu CH, Wu SC, Lin CY, Chueh SH, Cheng CY, Ma KH. Olfactory ensheathing cells improve the survival of porcine neural xenografts in a Parkinsonian rat model. Xenotransplantation 2019; 27:e12569. [PMID: 31777103 DOI: 10.1111/xen.12569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND Parkinson's disease (PD) features the motor control deficits resulting from irreversible, progressive degeneration of dopaminergic (DA) neurons of the nigrostriatal pathway. Although intracerebral transplantation of human fetal ventral mesencephalon (hfVM) has been proven effective at reviving DA function in the PD patients, this treatment is clinically limited by availability of hfVM and the related ethical issues. Homologous tissues to hfVM, such as porcine fetal ventral mesencephalon (pfVM) thus present a strong clinical potential if immune response following xenotransplantation could be tamed. Olfactory ensheathing cells (OECs) are glial cells showing immunomodulatory properties. It is unclear but intriuging whether these properties can be applied to reducing immune response following neural xenotransplantation of PD. METHODS To determine whether OECs may benefit neural xenografts for PD, different compositions of grafting cells were transplanted into striatum of the PD model rats. We used apomorphine-induced rotational behavior to evaluate effectiveness of the neural grafts on reviving DA function. Immunohistochemistry was applied to investigate the effect of OECs on the survival of neuroxenografts and underlying mechanisms of this effect. RESULTS Four weeks following the xenotransplantation, we found that the PD rats receiving pfVM + OECs co-graft exhibited a better improvement in apomorphine-induced rotational behavior compared with those receiving only pfVM cells. This result can be explained by higher survival of DA neurons (tyrosine hydroxylase immunoreactivity) in grafted striatum of pfVM + OECs group. Furthermore, pfVM + OECs group has less immune response (CD3+ T cells and OX-6+ microglia) around the grafted area compared with pfVM only group. These results suggest that OECs may enhance the survival of the striatal xenografts via dampening the immune response at the grafted sites. CONCLUSIONS Using allogeneic OECs as a co-graft material for xenogeneic neural grafts could be a feasible therapeutic strategy to enhance results and applicability of the cell replacement therapy for PD.
Collapse
Affiliation(s)
- Shao-Ju Weng
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Chien-Fu F Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Yuahn-Sieh Huang
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Chuang-Hsin Chiu
- Department of Nuclear Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shinn-Chih Wu
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Chen-Ying Lin
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Sheau-Huei Chueh
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Cheng-Yi Cheng
- Department of Nuclear Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Kuo-Hsing Ma
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
3
|
Mine Y, Momiyama T, Hayashi T, Kawase T. Grafted Miniature-Swine Neural Stem Cells of Early Embryonic Mesencephalic Neuroepithelial Origin can Repair the Damaged Neural Circuitry of Parkinson's Disease Model Rats. Neuroscience 2018; 386:51-67. [PMID: 29932984 DOI: 10.1016/j.neuroscience.2018.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 06/02/2018] [Accepted: 06/04/2018] [Indexed: 12/21/2022]
Abstract
Although recent progress in the use of human iPS cell-derived midbrain dopaminergic progenitors is remarkable, alternatives are essential in the strategies of treatment of basal-ganglia-related diseases. Attention has been focused on neural stem cells (NSCs) as one of the possible candidates of donor material for neural transplantation, because of their multipotency and self-renewal characteristics. In the present study, miniature-swine (mini-swine) mesencephalic neuroepithelial stem cells (M-NESCs) of embryonic 17 and 18 days grafted in the parkinsonian rat striatum were assessed immunohistochemically, behaviorally and electrophysiologically to confirm their feasibility for the neural xenografting as a donor material. Grafted mini-swine M-NESCs survived in parkinsonian rat striatum at 8 weeks after transplantation and many of them differentiated into tyrosine hydroxylase (TH)-positive cells. The parkinsonian model rats grafted with mini-swine M-NESCs exhibited a functional recovery from their parkinsonian behavioral defects. The majority of donor-derived TH-positive cells exhibited a matured morphology at 8 weeks. Whole-cell recordings from donor-derived neurons in the host rat brain slices incorporating the graft revealed the presence of multiple types of neurons including dopaminergic. Glutamatergic and GABAergic post-synaptic currents were evoked in the donor-derived cells by stimulation of the host site, suggesting they receive both excitatory and inhibitory synaptic inputs from host area. The present study shows that non-rodent mammalian M-NESCs can differentiate into functionally active neurons in the diseased xenogeneic environment and could improve the parkinsonian behavioral defects over the species. Neuroepithelial stem cells could be an attractive candidate as a source of donor material for neural transplantation.
Collapse
Affiliation(s)
- Yutaka Mine
- Department of Neurosurgery and Endovascular Surgery, Brain Nerve Center, Saiseikai Yokohamashi Tobu Hospital, Yokohama 230-8765, Japan; Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan; Department of Neurosurgery, Keio University School of Medicine, Tokyo 160-8582, Japan; Department of Clinical Research, Tochigi Medical Center, National Hospital Organization, Utsunomiya 320-8580, Japan
| | - Toshihiko Momiyama
- Division of Cerebral Structure, National Institute for Physiological Sciences, Okazaki 444-8787, Japan; Department of Pharmacology, Jikei University School of Medicine, Tokyo 105-8461, Japan.
| | - Takuro Hayashi
- Department of Neurosurgery, Keio University School of Medicine, Tokyo 160-8582, Japan; Department of Neurosurgery, Tokyo Medical Center, National Hospital Organization, Tokyo 152-8902, Japan
| | - Takeshi Kawase
- Department of Neurosurgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|
4
|
Veng LM, Bjugstad KB, Freed CR, Marrack P, Clarkson ED, Bell KP, Hutt C, Zawada WM. Xenografts of MHC-Deficient Mouse Embryonic Mesencephalon Improve Behavioral Recovery in Hemiparkinsonian Rats. Cell Transplant 2017. [DOI: 10.3727/096020198389735] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The limited availability of human embryonic tissue for dopamine cell transplants in Parkinson's patients has led to an increased interest in using xenogeneic donor tissue. Unfortunately, without aggressive immunosup-pression, such brain xenografts are rejected by the host immune system. Chronic brain xenograft rejection is largely mediated by helper T cells, which require presentation of xenoantigens by major histocompatability complex (MHC) class II for their activation. We examined survival and function of xenografts of E13 mouse mesencephalon deficient in either MHC class I, class II, or both after transplantation into adult hemiparkinsonian rats without immunosuppression. Recipients received grafts from C57BL/6 mice that were either: 1) wild-type (wt), 2) MHC class I knockout (KO), 3) MHC class II KO, 4) MHC class I and II double KO, or 5) saline sham transplants. At 6 weeks after transplantation, recipients of MHC class I KO, class II KO, and double KO xenografts significantly reduced methamphetamine-induced circling rate while rats with wt xenografts and sham-operated rats showed no improvement. MHC class II KO grafts had the greatest number of surviving dopamine neurons. All transplants, including saline sham controls, contained infiltrating host MHC class II-positive cells. Saline sham grafts and MHC class II KO xenografts contained significantly fewer infiltrating host MHC class II-positive cells than did wt grafts. Our results show that MHC class II-deficient xenografts survive transplantation for at least 6 weeks in the absence of immunosup-pression, reduce rotational asymmetry, and provoke lesser immune reaction than wt grafts.
Collapse
Affiliation(s)
- Lone M. Veng
- Neuroscience Program, University of Colorado School of Medicine, Denver, CO 80262
- Departments of Pharmacology, University of Colorado School of Medicine, Denver, CO 80262
| | - Kimberly B. Bjugstad
- Division of Clinical Pharmacology, University of Colorado School of Medicine, Denver, CO 80262
| | - Curt R. Freed
- Neuroscience Program, University of Colorado School of Medicine, Denver, CO 80262
- Departments of Medicine, University of Colorado School of Medicine, Denver, CO 80262
- Departments of Pharmacology, University of Colorado School of Medicine, Denver, CO 80262
- Division of Clinical Pharmacology, University of Colorado School of Medicine, Denver, CO 80262
| | - Philippa Marrack
- Howard Hughes Medical Institute, National Jewish Medical and Research Center, Denver, CO 80206
| | - Edward D. Clarkson
- Division of Clinical Pharmacology, University of Colorado School of Medicine, Denver, CO 80262
| | - K. Patricia Bell
- Division of Clinical Pharmacology, University of Colorado School of Medicine, Denver, CO 80262
| | - Cindy Hutt
- Division of Clinical Pharmacology, University of Colorado School of Medicine, Denver, CO 80262
| | - W. Michael Zawada
- Neuroscience Program, University of Colorado School of Medicine, Denver, CO 80262
- Departments of Medicine, University of Colorado School of Medicine, Denver, CO 80262
- Division of Clinical Pharmacology, University of Colorado School of Medicine, Denver, CO 80262
| |
Collapse
|
5
|
Koopmans J, de Haan A, Bruin E, van der Gun I, van Dijk H, Rozing J, de Leij L, Staal M. Individual Human Serum Differs in the Amount of Antibodies with Affinity for Pig Fetal Ventral Mesencephalic Cells and the Ability to Lyse These Cells by Complement Activation. Cell Transplant 2017; 13:631-7. [PMID: 15648733 DOI: 10.3727/000000004783983503] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Xenografting pig fetal ventral mesencephalic (pfVM) cells to repair the dopamine deficit in patients with Parkinson's disease is the focus of both experimental and clinical investigations. Although there have been marked advances in the experimental and even clinical application of these xenogeneic transplantations, questions regarding the host's xenospecific immune response remain unanswered. It has been shown that human serum is able to lyse pfVM tissue by both anti-gal-gal and non-anti-gal-gal antibodies by complement activation. The aim of this study was to investigate whether interindividual differences exist in the levels of pfVM cell-specific IgM and IgG subclass antibodies, their ability to lyse pfVM cells in vitro and the relationship between both. Pig fetal VM cells were incubated with heat-inactivated serum from 10 different individuals and binding of IgM antibodies and IgG subclass antibodies to pfVM cells was analyzed by flow cytometry. The ability to lyse pfVM cells was analyzed exposing 51Cr-labeled pfVM cells to fresh serum or isolated IgM and IgG from the same individuals and subsequent determination of released 51Cr from lysed cells. Strong differences were found between individuals in the levels of pfVM cell-specific IgM antibodies: antibody levels differed up to 40-fold. pfVM-specific IgG1 and IgG2 levels were only detectable in a few individuals. The ability to lyse pfVM cells ranged from negligible lysis up to 66.5% specific lysis. There was a strong correlation between the levels of individual pfVM-specific IgM antibodies and the ability to lyse pfVM cells in vitro. Isolated IgM, but not IgG, was able to lyse pfVM cells in the presence of complement. In conclusion, the interindividual differences in the levels of IgM with affinity for pfVM cells and their ability to lyse pfVM cells in vitro are considerable. Only few individuals possessed IgG1 and IgG2 subclass antibodies with affinity for pfVM. These findings may influence patient selection for porcine transplants and chances of graft survival in individual patients.
Collapse
Affiliation(s)
- Jan Koopmans
- Department of Neurosurgery, University Hospital Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Koopmans J, de Haan A, Bruin E, van der Gun I, van Dijk H, Rozing J, de Leij L, Staal M. Porcine Fetal Ventral Mesencephalic Cells are Targets for Primed Xenoreactive Human T Cells. Cell Transplant 2017; 15:381-7. [PMID: 16970280 DOI: 10.3727/000000006783981846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Xenotransplantation of porcine fetal ventral mesencephalic (pfVM) cells to overcome the dopamine shortage in the striatum of patients with Parkinson's disease seems a viable alternative to allotransplantion of human fetal donor tissue, especially because the latter is complicated by both practical and ethical issues. There is, however, little known about the xenospecific immune responses involved in such an intracerebral xenotransplantation. The aim of our study was to investigate whether 1) naive human peripheral blood mononuclear cells (PMBC) display cytotoxicity against pfVM cells of E28 pig fetuses, and 2) priming of human PBMC by xenogeneic antigen presenting cells (APC) modulates pfVM-directed cellular cytotoxicity. For this purpose fresh PMBC from nine individual donors were primed by incubation with either irradiated pfVM cells or porcine spleen cells (PSC) as APC in the presence of IL-2 for 1 week before assessing cytotoxicity in a 51Cr release assay. Also, direct NK reactivity and antibody-dependent cellular cytotoxicity (ADCC) of fresh PMBC against pfVM cells was assessed. No direct cytotoxicity of naive cells (either NK reactivity or ADCC) against pfVM cells could be determined. Only PMBC primed with PSC were capable of lysing pfVM cells. PBMC primed with pfVM cells did not show cytolytic capacity towards pfVM. Interestingly, large differences in xenospecific T-cell responses exist between individual donor PBMC. Thus, human T cells are capable of killing pfVM cells in a xenoreactive response, but only after priming by donor APC. The large interindividual differences between human donors in their xenoreactive response may influence patient selection for xenotransplantation and chances of graft survival for individual patients.
Collapse
Affiliation(s)
- Jan Koopmans
- Department of Neurosurgery, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Martin C, Melchior B, Nerrière-Daguin V, Naveilhan P, Soulillou JP, Brachet P. β1 Integrin as a Xenoantigen in Fetal Porcine Mesencephalic Cells Transplanted into the Rat Brain. Cell Transplant 2017; 14:527-36. [PMID: 16355564 DOI: 10.3727/000000005783982800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Xenografts of fetal porcine mesencephalic cells implanted into the rat striatum are generally rejected within several weeks. The fetal donor mesencephalon predominantly consists of neurons, but also contains microglial and endothelial cells, which are more immunogenic. In the present work, we investigated the occurrence of donor endothelial cells in grafts of porcine mesencephalic cells implanted into the rat striatum. Pig endothelial cells were monitored by immunochemical methods, using a monoclonal antibody (mAb) that recognizes a peptidic epitope of the porcine β1 integrin, and isolectin IB4, for the staining of the Galα1,3Gal epitope. The analysis also involved the detection of the pig hyaluronate receptor CD44, and the cell adhesion molecule CD31. The anti-β1 integrin mAb revealed endothelial-like cells in grafts of porcine mesencephalic cells as soon as 1 week after implantation. A similar staining pattern was obtained with the IB4 lectin. Unlike aortic endothelial cells, these pig brain-derived endothelial-like cells were not recognized by the anti-CD44 antibody. They also failed to express the CD31 adhesion molecule, a fact which suggests that they remained poorly mature, even in grafts maintained during 45 days in immunosuppressed rats. Interestingly, a strong expression of β1 integrin immunoreactivity was noticed in a large proportion (80%) of the cells freshly dissociated from the fetal pig mesencephalic tissue. The immunoreactivity decreased progressively after transplantation of the cells into the rat brain. This observation suggests that dissociated neuroblasts are capable of a temporary expression of β1 integrin. This molecule is known to participate in the process of cell sorting and migration in the developing brain. Hence, its expression could be the hallmark of a rescue mechanism triggered by the disruption of the cell/matrix interactions during the dissociation of the fetal mesencephalon. This disruption might account for part of the dramatic cell death process that occurs during the manipulation of the donor tissue.
Collapse
Affiliation(s)
- Caroline Martin
- Institut National de la Santé et de la Recherche Médicale, Unité 643, Nantes, France
| | | | | | | | | | | |
Collapse
|
8
|
Hoornaert CJ, Le Blon D, Quarta A, Daans J, Goossens H, Berneman Z, Ponsaerts P. Concise Review: Innate and Adaptive Immune Recognition of Allogeneic and Xenogeneic Cell Transplants in the Central Nervous System. Stem Cells Transl Med 2017; 6:1434-1441. [PMID: 28244236 PMCID: PMC5442707 DOI: 10.1002/sctm.16-0434] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 01/16/2017] [Indexed: 12/13/2022] Open
Abstract
Over the last 30 years, numerous allogeneic and xenogeneic cell grafts have been transplanted into the central nervous system (CNS) of mice and men in an attempt to cure neurological diseases. In the early studies, human or porcine embryonic neural cells were grafted in the striatum of animals or patients in an attempt to replace lost neurons. Although the immune-privileged status of the brain as a recipient organ was widely accepted, it rapidly became evident that CNS-grafted allogeneic and xenogeneic cells could be recognized and rejected by the immune system, resulting in poor neural graft survival and limited functional recovery. Since then, the CNS transplantation field has witnessed a sharp rise in the number of studies in which allogeneic and xenogeneic neural or mesenchymal stem cells (NSCs or MSCs, respectively) are transplanted, predominantly aiming at providing trophic stimulation and promoting endogenous repair of the brain. Interestingly, in many recent NSC and MSC-based publications functional improvement was used as the principal measure to evaluate the success of cell transplantation, while the fate of transplanted cells remained largely unreported. In this review, we first attempt to understand why primary neural cell isolates were largely substituted for NSCs and MSCs in cell grafting studies. Next, we review the current knowledge on the immune mechanisms involved in the recognition and rejection of allogeneic and xenogeneic cellular grafts in the CNS. Finally, we propose strategies to reduce graft immunogenicity and to improve graft survival in order to design improved cell-based CNS therapies. Stem Cells Translational Medicine 2017;6:1434-1441.
Collapse
Affiliation(s)
- Chloé J Hoornaert
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Vaccine and Infectious Disease Institute (Vaxinfectio), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Debbie Le Blon
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Vaccine and Infectious Disease Institute (Vaxinfectio), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Alessandra Quarta
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Vaccine and Infectious Disease Institute (Vaxinfectio), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Jasmijn Daans
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Vaccine and Infectious Disease Institute (Vaxinfectio), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Herman Goossens
- Vaccine and Infectious Disease Institute (Vaxinfectio), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Zwi Berneman
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Vaccine and Infectious Disease Institute (Vaxinfectio), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Vaccine and Infectious Disease Institute (Vaxinfectio), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
9
|
Antibacterial Activity of Isolated Immunodominant Proteins of Naja Naja (Oxiana) Venom. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2017; 16:297-305. [PMID: 28496483 PMCID: PMC5423255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The aim of this study is to investigate antibacterial effects of immunodominant proteins isolated from the venom of Naja Naja Oxiana snake against Staphylococcus aureus, Escherichia coli, Bacillus subtilis and Pseudomonas aeruginosa. The innate immune system is an important line of defense against bacterial diseases. Antibacterial peptides and proteins produced by snake venoms have recently attracted significant attention due to their relevance to bacterial diseases and the potential of being converted into new therapeutic agents. Identification of immunodominant proteins of the venom of Naja Naja Oxiana snake was performed by SDS-PAGE and western blot analysis. Identified proteins were isolated directly from preparative gel electrophoresis by Electro-elution. In the next step, antibacterial effects of immunodominant proteins were tested against several strains of clinical isolates, including S.aureus, B.subtilis (Gram-positive bacteria) P.aeruginosa and E.coli (Gram-negative bacteria) using broth microdilution and disc-diffusion assays. In order to compare the results of the disc-diffusion assay, antibacterial effects of several antibiotics (Gentamicin, Ampicillin, Penicillin, Amoxicillin and Ciprofloxacin) were also examined using the same conditions. Results showed that immunodominant proteins of (14, and 65kDa) with high immunogenicity were very effective in inhibiting the growth of two Gram-positive bacteria (S.aureus, B.sub) that were tested. However, they were only moderately effective in inhibiting the growth of the two tested Gram-negative bacteria (P.aeruginosa and E.coli). However, immunodominant proteins of 22 kDa and 32kDa with high immunogenicity, showed slight effectiveness in inhibiting the growth of two; the Gram-positive and Gram-negative bacteria that were tested. To the best of our knowledge, these immunodominant proteins are novel antigens for potent antimicrobial effects against two gram-positive bacteria (S.aureus, B.subtilis ) and less antimicrobial effect against two gram-negative bacteria (E.coli, P.aeruginosa) that were prepared .
Collapse
|
10
|
Aron Badin R, Vadori M, Vanhove B, Nerriere-Daguin V, Naveilhan P, Neveu I, Jan C, Lévèque X, Venturi E, Mermillod P, Van Camp N, Dollé F, Guillermier M, Denaro L, Manara R, Citton V, Simioni P, Zampieri P, D'avella D, Rubello D, Fante F, Boldrin M, De Benedictis GM, Cavicchioli L, Sgarabotto D, Plebani M, Stefani AL, Brachet P, Blancho G, Soulillou JP, Hantraye P, Cozzi E. Cell Therapy for Parkinson's Disease: A Translational Approach to Assess the Role of Local and Systemic Immunosuppression. Am J Transplant 2016; 16:2016-29. [PMID: 26749114 DOI: 10.1111/ajt.13704] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 11/29/2015] [Accepted: 12/22/2015] [Indexed: 01/25/2023]
Abstract
Neural transplantation is a promising therapeutic approach for neurodegenerative diseases; however, many patients receiving intracerebral fetal allografts exhibit signs of immunization to donor antigens that could compromise the graft. In this context, we intracerebrally transplanted mesencephalic pig xenografts into primates to identify a suitable strategy to enable long-term cell survival, maturation, and differentiation. Parkinsonian primates received WT or CTLA4-Ig transgenic porcine xenografts and different durations of peripheral immunosuppression to test whether systemic plus graft-mediated local immunosuppression might avoid rejection. A striking recovery of spontaneous locomotion was observed in primates receiving systemic plus local immunosuppression for 6 mo. Recovery was associated with restoration of dopaminergic activity detected both by positron emission tomography imaging and histological examination. Local infiltration by T cells and CD80/86+ microglial cells expressing indoleamine 2,3-dioxigenase were observed only in CTLA4-Ig recipients. Results suggest that in this primate neurotransplantation model, peripheral immunosuppression is indispensable to achieve the long-term survival of porcine neuronal xenografts that is required to study the beneficial immunomodulatory effect of local blockade of T cell costimulation.
Collapse
Affiliation(s)
- R Aron Badin
- MIRCen, CEA UMR 9199, Fontenay-aux-Roses, France
| | - M Vadori
- CORIT (Consortium for Research in Organ Transplantation), Padua, Italy
| | - B Vanhove
- Institut National de la Santé et de la Recherche Médicale UMR1064, Nantes, France.,CHU de Nantes, Institut de Transplantation Urologie Néphrologie, Université de Nantes, Nantes, France
| | - V Nerriere-Daguin
- Institut National de la Santé et de la Recherche Médicale UMR1064, Nantes, France
| | - P Naveilhan
- Institut National de la Santé et de la Recherche Médicale UMR913, Nantes, France
| | - I Neveu
- Institut National de la Santé et de la Recherche Médicale UMR913, Nantes, France
| | - C Jan
- MIRCen, CEA UMR 9199, Fontenay-aux-Roses, France
| | - X Lévèque
- Institut National de la Santé et de la Recherche Médicale UMR1064, Nantes, France
| | - E Venturi
- INRA Physio Reproduction Femelle CR de Tours, Nouzilly, France
| | - P Mermillod
- INRA Physio Reproduction Femelle CR de Tours, Nouzilly, France
| | - N Van Camp
- MIRCen, CEA UMR 9199, Fontenay-aux-Roses, France
| | - F Dollé
- CEA, I²BM, Service Hospitalier Frédéric Joliot, Orsay, France
| | | | - L Denaro
- Neurosciences, University of Padua, Padua, Italy
| | - R Manara
- Neurosciences, University of Padua, Padua, Italy
| | - V Citton
- Neurosciences, University of Padua, Padua, Italy
| | - P Simioni
- Neurosciences, University of Padua, Padua, Italy
| | - P Zampieri
- Neurosciences, University of Padua, Padua, Italy
| | - D D'avella
- Neurosciences, University of Padua, Padua, Italy
| | - D Rubello
- Nuclear Medicine, S. Maria della Misericordia Hospital, Rovigo, Italy
| | - F Fante
- CORIT (Consortium for Research in Organ Transplantation), Padua, Italy
| | - M Boldrin
- CORIT (Consortium for Research in Organ Transplantation), Padua, Italy
| | - G M De Benedictis
- Department of Animal Medicine, Production and Health, University of Padua, Legnaro, Italy
| | - L Cavicchioli
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| | - D Sgarabotto
- Transplant Infectious Disease Unit, Padua University Hospital, Padua, Italy
| | - M Plebani
- Department of Laboratory Medicine, Padua University Hospital, Padua, Italy
| | - A L Stefani
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - P Brachet
- Institut National de la Santé et de la Recherche Médicale UMR1064, Nantes, France
| | - G Blancho
- Institut National de la Santé et de la Recherche Médicale UMR1064, Nantes, France.,CHU de Nantes, Institut de Transplantation Urologie Néphrologie, Université de Nantes, Nantes, France
| | - J P Soulillou
- Institut National de la Santé et de la Recherche Médicale UMR1064, Nantes, France
| | - P Hantraye
- MIRCen, CEA UMR 9199, Fontenay-aux-Roses, France
| | - E Cozzi
- CORIT (Consortium for Research in Organ Transplantation), Padua, Italy.,Transplant Immunology Unit, Padua University Hospital, Padua, Italy
| |
Collapse
|
11
|
Current status of neuronal cell xenotransplantation. Int J Surg 2015; 23:267-272. [DOI: 10.1016/j.ijsu.2015.09.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 09/07/2015] [Accepted: 09/15/2015] [Indexed: 11/18/2022]
|
12
|
Roberton VH, Rosser AE, Kelly CM. Neonatal desensitization for the study of regenerative medicine. Regen Med 2015; 10:265-74. [DOI: 10.2217/rme.14.76] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cell replacement is a therapeutic option for numerous diseases of the CNS. Current research has identified a number of potential human donor cell types, for which preclinical testing through xenotransplantation in animal models is imperative. Immune modulation is necessary to promote donor cell survival for sufficient time to assess safety and efficacy. Neonatal desensitization can promote survival of human donor cells in adult rat hosts with little impact on the health of the host and for substantially longer than conventional methods, and has subsequently been applied in a range of studies with variable outcomes. Reviewing these findings may provide insight into the method and its potential for use in preclinical studies in regenerative medicine.
Collapse
Affiliation(s)
- Victoria H Roberton
- Brain Repair Group, Sir Martin Evans Building, School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Anne E Rosser
- Brain Repair Group, Sir Martin Evans Building, School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
- Department of Psychological Medicine & Neurology, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Claire M Kelly
- School of Health Sciences, Cardiff Metropolitan University, Western Avenue, Cardiff, CF5 2YB, UK
| |
Collapse
|
13
|
Mehrban N, Zhu B, Tamagnini F, Young FI, Wasmuth A, Hudson KL, Thomson AR, Birchall MA, Randall AD, Song B, Woolfson DN. Functionalized α-Helical Peptide Hydrogels for Neural Tissue Engineering. ACS Biomater Sci Eng 2015; 1:431-439. [PMID: 26240838 PMCID: PMC4517957 DOI: 10.1021/acsbiomaterials.5b00051] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/28/2015] [Indexed: 12/31/2022]
Abstract
![]()
Trauma to the central and peripheral
nervous systems often lead
to serious morbidity. Current surgical methods for repairing or replacing
such damage have limitations. Tissue engineering offers a potential
alternative. Here we show that functionalized α-helical-peptide
hydrogels can be used to induce attachment, migration, proliferation
and differentiation of murine embryonic neural stem cells (NSCs).
Specifically, compared with undecorated gels, those functionalized
with Arg-Gly-Asp-Ser (RGDS) peptides increase the proliferative activity
of NSCs; promote their directional migration; induce differentiation,
with increased expression of microtubule-associated protein-2, and
a low expression of glial fibrillary acidic protein; and lead to the
formation of larger neurospheres. Electrophysiological measurements
from NSCs grown in RGDS-decorated gels indicate developmental progress
toward mature neuron-like behavior. Our data indicate that these functional
peptide hydrogels may go some way toward overcoming the limitations
of current approaches to nerve-tissue repair.
Collapse
Affiliation(s)
- Nazia Mehrban
- School of Chemistry, University of Bristol , Bristol BS8 1TS, United Kingdom
| | - Bangfu Zhu
- School of Dentistry, Cardiff University , Cardiff CF10 3XQ, United Kingdom
| | | | - Fraser I Young
- School of Dentistry, Cardiff University , Cardiff CF10 3XQ, United Kingdom
| | - Alexandra Wasmuth
- School of Chemistry, University of Bristol , Bristol BS8 1TS, United Kingdom
| | - Kieran L Hudson
- School of Chemistry, University of Bristol , Bristol BS8 1TS, United Kingdom
| | - Andrew R Thomson
- School of Chemistry, University of Bristol , Bristol BS8 1TS, United Kingdom
| | - Martin A Birchall
- University College London Ear Institute , London WC1X 8DA, United Kingdom
| | - Andrew D Randall
- Medical School, University of Exeter , Exeter EX4 4PS, United Kingdom
| | - Bing Song
- School of Dentistry, Cardiff University , Cardiff CF10 3XQ, United Kingdom
| | - Derek N Woolfson
- School of Chemistry, University of Bristol , Bristol BS8 1TS, United Kingdom ; School of Biochemistry, University of Bristol , Bristol BS8 1TD, United Kingdom ; BrisSynBio, University of Bristol , Bristol BS8 1TQ, United Kingdom
| |
Collapse
|
14
|
Mathieux E, Nerrière-Daguin V, Lévèque X, Michel-Monigadon D, Durand T, Bonnamain V, Ménoret S, Anegon I, Naveilhan P, Neveu I. IgG response to intracerebral xenotransplantation: specificity and role in the rejection of porcine neurons. Am J Transplant 2014; 14:1109-19. [PMID: 24612827 DOI: 10.1111/ajt.12656] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 11/25/2013] [Accepted: 12/14/2013] [Indexed: 01/25/2023]
Abstract
Xenogenic fetal neuroblasts are considered as a potential source of transplantable cells for the treatment of neurodegenerative diseases, but immunological barriers limit their use in the clinic. While considerable work has been performed to decipher the role of the cellular immune response in the rejection of intracerebral xenotransplants, there is much still to learn about the humoral reaction. To this end, the IgG response to the transplantation of fetal porcine neural cells (PNC) into the rat brain was analyzed. Rat sera did not contain preformed antibodies against PNC, but elicited anti-porcine IgG was clearly detected in the host blood once the graft was rejected. Only the IgG1 and IgG2a subclasses were up-regulated, suggesting a T-helper 2 immune response. The main target of these elicited IgG antibodies was porcine neurons, as determined by double labeling in vitro and in vivo. Complement and anti-porcine IgG were present in the rejecting grafts, suggesting an active role of the host humoral response in graft rejection. This hypothesis was confirmed by the prolonged survival of fetal porcine neurons in the striatum of immunoglobulin-deficient rats. These data suggest that the prolonged survival of intracerebral xenotransplants relies on the control of both cell-mediated and humoral immune responses.
Collapse
Affiliation(s)
- E Mathieux
- INSERM, UMR 1064, Center for Research in Transplantation and Immunology, Nantes, France; CHU de Nantes, Institut de Transplantation et de Recherche en Transplantation, ITERT, Nantes, France; LUNAM Université, Université de Nantes, Faculté de Médecine, Nantes, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Sevc J, Goldberg D, van Gorp S, Leerink M, Juhas S, Juhasova J, Marsala S, Hruska-Plochan M, Hefferan MP, Motlik J, Rypacek F, Machova L, Kakinohana O, Santucci C, Johe K, Lukacova N, Yamada K, Bui JD, Marsala M. Effective long-term immunosuppression in rats by subcutaneously implanted sustained-release tacrolimus pellet: Effect on spinally grafted human neural precursor survival. Exp Neurol 2013; 248:85-99. [DOI: 10.1016/j.expneurol.2013.05.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 05/21/2013] [Accepted: 05/26/2013] [Indexed: 01/14/2023]
|
16
|
Wang SZ, He H, Han R, Zhu JL, Kou JQ, Ding XL, Qin ZH. The Protective Effects of Cobra Venom from Naja naja atra on Acute and Chronic Nephropathy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2013; 2013:478049. [PMID: 23983784 PMCID: PMC3745861 DOI: 10.1155/2013/478049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 05/23/2013] [Accepted: 05/23/2013] [Indexed: 12/25/2022]
Abstract
This study investigated the effects of Naja naja atra venom (NNAV) on acute and chronic nephropathy in rats. Rats received 6 mg/kg adriamycin (ADR) once to evoke the chronic nephropathy or 8 ml/kg 50% v/v glycerol to produce acute renal failure (ARF). The NNAV was given orally once a day starting five days prior to ADR or glycerol injection and continued to the end of experiments. The animals were placed in metabolic cages for 24 h for urine collection for urinary protein determination. The kidney function-related biochemical changes and index of oxidative stress were determined with automatic biochemistry analyzer or colorimetric enzyme assay kits. The pathomorphological changes were observed using light and transmission electron microcopies. The levels of inflammatory cytokines and NF- κ B activation were determined using ELISA kits, Western blot analysis, or immunofluorescence. The results showed that NNAV relieved ADR-induced chronic nephropathy and glycerol-triggered acute renal failure syndromes including proteinuria, hypoalbuminemia, hyperlipidemia, serum electrolyte unbalance, renal oxidative stress, and pathological damages. NNAV reduced kidney levels of TNF- α and IL-1 β , but it increased the levels of I κ B- α and inhibited NF- κ B p65 nuclear localization. These findings suggest that NNAV may be a valuable therapeutic drug for acute and chronic kidney diseases.
Collapse
Affiliation(s)
- Shu-Zhi Wang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Soochow University School of Pharmaceutical Science, 199 Ren Ai Road, Suzhou 215123, China
| | - He He
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Soochow University School of Pharmaceutical Science, 199 Ren Ai Road, Suzhou 215123, China
| | - Rong Han
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Soochow University School of Pharmaceutical Science, 199 Ren Ai Road, Suzhou 215123, China
| | - Jia-Li Zhu
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Soochow University School of Pharmaceutical Science, 199 Ren Ai Road, Suzhou 215123, China
| | - Jian-Qun Kou
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Soochow University School of Pharmaceutical Science, 199 Ren Ai Road, Suzhou 215123, China
| | - Xiao-Lan Ding
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Soochow University School of Pharmaceutical Science, 199 Ren Ai Road, Suzhou 215123, China
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Soochow University School of Pharmaceutical Science, 199 Ren Ai Road, Suzhou 215123, China
| |
Collapse
|
17
|
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide, classically characterized by a triad of motor features: bradykinesia, rigidity and resting tremor. Neurodegeneration in PD critically involves the dopaminergic neurons of the substantia nigra pars compacta, which results in a severe reduction in dopamine levels in the dorsal striatum. However, the disease also exhibits extensive non-nigral pathology and as many non-motor as motor features. Nevertheless, owing to the relatively circumscribed nature of the nigrostriatal lesion in PD, dopaminergic cell transplantation has emerged as a potentially reparative therapy for the disease. Sources for such cells are varied and include the developing ventral mesencephalon, several autologous somatic cell types, embryonic stem cells and induced pluripotent stem cells. In this article, we review the origins of dopaminergic transplantation for PD and the emergent hunt for a suitable long-term source of transplantable dopaminergic neurons.
Collapse
Affiliation(s)
- Sean C Dyson
- Cambridge University Centre for Brain Repair, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK.
| | | |
Collapse
|
18
|
Khoo MLM, Tao H, Meedeniya ACB, Mackay-Sim A, Ma DDF. Transplantation of neuronal-primed human bone marrow mesenchymal stem cells in hemiparkinsonian rodents. PLoS One 2011; 6:e19025. [PMID: 21625433 PMCID: PMC3100305 DOI: 10.1371/journal.pone.0019025] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 03/15/2011] [Indexed: 01/03/2023] Open
Abstract
Bone marrow-derived human mesenchymal stem cells (hMSCs) have shown promise in in vitro neuronal differentiation and in cellular therapy for neurodegenerative disorders, including Parkinson' disease. However, the effects of intracerebral transplantation are not well defined, and studies do not agreed on the optimal neuronal differentiation method. Here, we investigated three growth factor-based neuronal differentiation procedures (using FGF-2/EGF/PDGF/SHH/FGF-8/GDNF), and found all to be capable of eliciting an immature neural phenotype, in terms of cell morphology and gene/protein expression. The neuronal-priming (FGF-2/EGF) method induced neurosphere-like formation and the highest NES and NR4A2 expression by hMSCs. Transplantation of undifferentiated and neuronal-primed hMSCs into the striatum and substantia nigra of 6-OHDA-lesioned hemiparkinsonian rats revealed transient graft survival of 7 days, despite the reported immunosuppressive properties of MSCs and cyclosporine-immunosuppression of rats. Neither differentiation of hMSCs nor induction of host neurogenesis was observed at injection sites, and hMSCs continued producing mesodermal fibronectin. Strategies for improving engraftment and differentiation post-transplantation, such as prior in vitro neuronal-priming, nigral and striatal grafting, and co-transplantation of olfactory ensheathing cells that promote neural regeneration, were unable to provide advantages. Innate inflammatory responses (Iba-1-positive microglia/macrophage and GFAP-positive astrocyte activation and accumulation) were detected around grafts within 7 days. Our findings indicate that growth factor-based methods allow hMSC differentiation toward immature neuronal-like cells, and contrary to previous reports, only transient survival and engraftment of hMSCs occurs following transplantation in immunosuppressed hemiparkinsonian rats. In addition, suppression of host innate inflammatory responses may be a key factor for improving hMSC survival and engraftment.
Collapse
Affiliation(s)
- Melissa L. M. Khoo
- Blood Stem Cells and Cancer Research, St Vincent's Centre for Applied Medical Research, Sydney, New South Wales, Australia, and The University of New South Wales, Sydney, New South Wales, Australia
| | - Helen Tao
- Blood Stem Cells and Cancer Research, St Vincent's Centre for Applied Medical Research, Sydney, New South Wales, Australia, and The University of New South Wales, Sydney, New South Wales, Australia
| | - Adrian C. B. Meedeniya
- National Centre for Adult Stem Cell Research, Eskitis Institute for Cell and Molecular Therapies, Griffith University, Brisbane, Queensland, Australia
| | - Alan Mackay-Sim
- National Centre for Adult Stem Cell Research, Eskitis Institute for Cell and Molecular Therapies, Griffith University, Brisbane, Queensland, Australia
| | - David D. F. Ma
- Blood Stem Cells and Cancer Research, St Vincent's Centre for Applied Medical Research, Sydney, New South Wales, Australia, and The University of New South Wales, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
19
|
Yin F, Guo L, Lu RF, Zhu QS. Spontaneous differentiation of porcine neural progenitors in vitro. Cytotechnology 2011; 63:363-70. [PMID: 21465265 DOI: 10.1007/s10616-011-9353-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 03/17/2011] [Indexed: 01/19/2023] Open
Abstract
The pig is the non-primate species that is immunologically closest to humans, and has been considered as an alternative source to human allografts for transplantation. In fact, there has been recent interest in identifying and culturing porcine neural progenitor cells (PNPCs) in vitro, but the long-term culturing has not yet been characterized. Here, we reported the spontaneous differentiation of PNPCs into neuronal and glial cells. For in vitro cultures, the primary cells of the subventricular zone of the forebrain striatum were cultured in the presence of epidermal growth factor and basic fibroblast growth factor to allow the growth of spherical masses that exhibit sustained growth and self-renewal capacity. After growth factor removal, the neurospheres with 10 and 130 days of culture spontaneously differentiated into Tuj1-positive neurons and GFAP-positive astrocytes as seen by double immunocytofluorescence. Molecular characterization using reverse transcription-polymerase chain reaction showed that neurospheres expressed nestin, neuron-specific enolase, and glial fibrillary acidic protein (GFAP). In addition, after cultured in the differentiation medium for 3 months, the growth of neurosphere became slow and displayed cystic structures with the same morphology as that of embryonic bodies derived from embryonic stem cells. It is concluded that PNPCs have the ability to provide an expandable source of neural cells that can develop into neuronal and glial subtypes.
Collapse
Affiliation(s)
- Fei Yin
- Department of Spine Surgery, The First Hospital, Jilin University, Changchun, 130021, China
| | | | | | | |
Collapse
|
20
|
Intracerebral xenotransplantation: recent findings and perspectives for local immunosuppression. Curr Opin Organ Transplant 2011; 16:190-4. [DOI: 10.1097/mot.0b013e32834494b5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
21
|
Chen Z, Phillips LK, Gould E, Campisi J, Lee SW, Ormerod BK, Zwierzchoniewska M, Martinez OM, Palmer TD. MHC mismatch inhibits neurogenesis and neuron maturation in stem cell allografts. PLoS One 2011; 6:e14787. [PMID: 21479168 PMCID: PMC3068158 DOI: 10.1371/journal.pone.0014787] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 02/27/2011] [Indexed: 12/26/2022] Open
Abstract
Background The role of histocompatibility and immune recognition in stem cell transplant therapy has been controversial, with many reports arguing that undifferentiated stem cells are protected from immune recognition due to the absence of major histocompatibility complex (MHC) markers. This argument is even more persuasive in transplantation into the central nervous system (CNS) where the graft rejection response is minimal. Methodology/Principal Findings In this study, we evaluate graft survival and neuron production in perfectly matched vs. strongly mismatched neural stem cells transplanted into the hippocampus in mice. Although allogeneic cells survive, we observe that MHC-mismatch decreases surviving cell numbers and strongly inhibits the differentiation and retention of graft-derived as well as endogenously produced new neurons. Immune suppression with cyclosporine-A did not improve outcome but non-steroidal anti-inflammatory drugs, indomethacin or rosiglitazone, were able to restore allogeneic neuron production, integration and retention to the level of syngeneic grafts. Conclusions/Significance These results suggest an important but unsuspected role for innate, rather than adaptive, immunity in the survival and function of MHC-mismatched cellular grafts in the CNS.
Collapse
Affiliation(s)
- Zhiguo Chen
- Stanford Institute for Stem Cell Biology and Regenerative Medicine and Department of Neurosurgery, Stanford, California, United States of America
- * E-mail:
| | - Lori K. Phillips
- Department of Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Elizabeth Gould
- Stanford Institute for Stem Cell Biology and Regenerative Medicine and Department of Neurosurgery, Stanford, California, United States of America
| | - Jay Campisi
- Department of Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Star W. Lee
- Stanford Institute for Stem Cell Biology and Regenerative Medicine and Department of Neurosurgery, Stanford, California, United States of America
| | - Brandi K. Ormerod
- Stanford Institute for Stem Cell Biology and Regenerative Medicine and Department of Neurosurgery, Stanford, California, United States of America
| | - Monika Zwierzchoniewska
- Department of Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Olivia M. Martinez
- Department of Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Theo D. Palmer
- Stanford Institute for Stem Cell Biology and Regenerative Medicine and Department of Neurosurgery, Stanford, California, United States of America
| |
Collapse
|
22
|
Oh JY, Kim MK, Lee HJ, Ko JH, Kim Y, Park CS, Kang HJ, Park CG, Kim SJ, Lee JH, Wee WR. Complement depletion with cobra venom factor delays acute cell-mediated rejection in pig-to-mouse corneal xenotransplantation. Xenotransplantation 2010; 17:140-6. [PMID: 20522246 DOI: 10.1111/j.1399-3089.2010.00574.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND We have demonstrated earlier that porcine corneal xenografts underwent an acute cell-mediated rejection in mice despite the absence of T cells. In the present study, we investigated the effect of complement depletion by cobra venom factor (CVF) on the corneal xenograft rejection in a pig-to-mouse model. METHODS Porcine corneas were orthotopically transplanted into C57BL/6 (B6) and severe combined immunodeficiency (SCID) mice. For complement depletion, 25 microg of CVF (1 g/kg bodyweight) was injected intraperitoneally on the day before and 1, 3, 5, and 7 days after transplantation. Graft survival was clinically assessed by slit lamp biomicroscopy and the median survival time (MST) was calculated. The grafts were histologically evaluated serially after transplantation using antibodies against CD4, CD8, NK1.1, and F4/80. RESULTS The CVF treatment significantly prolonged the porcine corneal xenograft survival in both B6 (MST 9.4 vs. 15.5 days; P = 0.0011) and SCID mice (MST 16.4 vs. 20.5 days; P = 0.0474). Histologically, whereas macrophages and CD4(+) T cells were progressively infiltrated into porcine corneal grafts in CVF-untreated B6 mice, the infiltration by both cells was markedly delayed and decreased in the xenografts in CVF-treated B6 mice. Likewise, macrophage infiltration, which was prominent in rejected porcine xenografts in SCID mice, was also reduced in CVF-treated SCID mice. CONCLUSIONS Our results suggest that complement depletion by CVF delayed, although did not prevent, an acute cell-mediated rejection in a pig-to-mouse corneal xenotransplantation.
Collapse
Affiliation(s)
- Joo Youn Oh
- Seoul Artificial Eye Center, Seoul National University Hospital Clinical Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Michel-Monigadon D, Bonnamain V, Nerrière-Daguin V, Dugast AS, Lévèque X, Plat M, Venturi E, Brachet P, Anegon I, Vanhove B, Neveu I, Naveilhan P. Trophic and immunoregulatory properties of neural precursor cells: benefit for intracerebral transplantation. Exp Neurol 2010; 230:35-47. [PMID: 20470774 DOI: 10.1016/j.expneurol.2010.04.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 04/27/2010] [Accepted: 04/30/2010] [Indexed: 12/20/2022]
Abstract
Intracerebral xenotransplantation of porcine fetal neuroblasts (pNB) is considered as an alternative to human neuroblasts for the treatment of neurodegenerative diseases. However, pNB are systematically rejected, even in an immunoprivileged site such as the brain. Within this context, neural stem/precursor cells (NSPC), which were suggested as exhibiting low immunogenicity, appeared as a useful source of xenogeneic cells. To determine the advantage of using porcine NSPC (pNSPC) in xenotransplantation, pNB and pNSPC were grafted into the striatum of rats without immunosuppression. At day 63, all the pNB were rejected while 40% of the rats transplanted with pNSPC exhibited large and healthy grafts with numerous pNF70-positive cells. The absence of inflammation at day 63 and the occasional presence of T cells in pNSPC grafts evoked a weak host immune response which might be partly due to the immunosuppressive properties of the transplanted cells. T cell proliferation assays confirmed such a hypothesis by revealing an inhibitory effect of pNSPC on T cells through a soluble factor. In addition to their immunosuppressive effect, in contrast to pNB, very few pNSPC differentiated into tyrosine hydroxylase-positive neurons but the cells triggered an intense innervation of the striatum by rat dopaminergic fibers coming from the substantia nigra. Further experiments will be required to optimize the use of pNSPC in regenerative medicine but here we show that their immunomodulatory and trophic activities might be of great interest for restorative strategies. This article is part of a Special Issue entitled "Interaction between repair, disease, & inflammation."
Collapse
|
24
|
Minocycline Promotes Long-Term Survival of Neuronal Transplant in the Brain by Inhibiting Late Microglial Activation and T-Cell Recruitment. Transplantation 2010; 89:816-23. [DOI: 10.1097/tp.0b013e3181cbe041] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Valente RH, Guimarães PR, Junqueira M, Neves-Ferreira AGC, Soares MR, Chapeaurouge A, Trugilho MR, León IR, Rocha SL, Oliveira-Carvalho AL, Wermelinger LS, Dutra DL, Leão LI, Junqueira-de-Azevedo IL, Ho PL, Zingali RB, Perales J, Domont GB. Bothrops insularis venomics: A proteomic analysis supported by transcriptomic-generated sequence data. J Proteomics 2009; 72:241-55. [DOI: 10.1016/j.jprot.2009.01.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 01/05/2009] [Accepted: 01/07/2009] [Indexed: 11/30/2022]
|
26
|
Human neural stem cells and astrocytes, but not neurons, suppress an allogeneic lymphocyte response. Stem Cell Res 2008; 2:56-67. [PMID: 19383409 DOI: 10.1016/j.scr.2008.06.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 06/04/2008] [Accepted: 06/28/2008] [Indexed: 01/15/2023] Open
Abstract
Transplantation of human neural stem cells (NSCs) and their derivatives is a promising future treatment for neurodegenerative disease and traumatic nervous system lesions. An important issue is what kind of immunological reaction the cellular transplant and host interaction will result in. Previously, we reported that human NSCs, despite expressing MHC class I and class II molecules, do not trigger an allogeneic T cell response. Here, the immunocompetence of human NSCs, as well as differentiated neural cells, was further studied. Astrocytes expressed both MHC class I and class II molecules to a degree equivalent to that of the NSCs, whereas neurons expressed only MHC class I molecules. Neither the NSCs nor the differentiated cells triggered an allogeneic lymphocyte response. Instead, these potential donor NSCs and astrocytes, but not the neurons, exhibited a suppressive effect on an allogeneic immune response. The suppressive effect mediated by NSCs most likely involves cell-cell interaction. When the immunogenicity of human NSCs was tested in an acute spinal cord injury model in rodent, a xenogeneic rejection response was triggered. Thus, human NSCs and their derived astrocytes do not initiate, but instead suppress, an allogeneic response, while they cannot block a graft rejection in a xenogeneic setting.
Collapse
|
27
|
Coyne TM, Marcus AJ, Reynolds K, Black IB, Woodbury D. Disparate host response and donor survival after the transplantation of mesenchymal or neuroectodermal cells to the intact rodent brain. Transplantation 2008; 84:1507-16. [PMID: 18091528 DOI: 10.1097/01.tp.0000288185.09601.4d] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND To circumvent ethical and legal complications associated with embryonic cell sources, investigators have proposed the use of nonneural donor sources for use in neural transplantation strategies. Leading candidate sources include autologous marrow stromal cells (MSCs) and fibroblasts, which are mesodermal derivatives. However, we recently reported that MSCs transplanted to the adult brain are rapidly rejected by an inflammatory response. Whether extrinsic variables or intrinsic mesenchymal traits stimulated inflammation and rejection is unknown. To determine the future utility of these cells in neural transplantation, we have now performed a systematic analysis of MSC transplantation to the brain. METHODS To examine the effects of extrinsic variables on transplantation, green fluorescent protein (GFP)-expressing rat MSCs, cultured under distinct conditions, were transplanted stereotactically to the normal adult rat striatum, and donor survival and the host response was compared. To examine whether intrinsic donor traits promoted rejection, 50,000 GFP-expressing rat MSCs, fibroblasts, or astrocytes were transplanted stereotactically to the adult rat striatum and graft survival and the host response was compared. RESULTS Irrespective of preoperative culture conditions, MSCs elicited an inflammatory response and were rejected by 14 days, indicating acute rejection was not mediated by culture conditions. Comparison of MSC, fibroblast, or astrocyte grafts revealed that mesenchymal derivatives, MSCs and fibroblasts, elicited an inflammatory response and were rapidly rejected, whereas neuroectodermal astrocytes demonstrated robust survival in the absence of inflammation. CONCLUSIONS Our findings suggest that intrinsic characteristics of mesenchymal cells may stimulate host inflammation, and thus may not represent an ideal donor source for transplantation to the adult brain.
Collapse
Affiliation(s)
- Thomas M Coyne
- Department of Neuroscience and Cell Biology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, NJ, USA.
| | | | | | | | | |
Collapse
|
28
|
The search for a curative cell therapy in Parkinson's disease. J Neurol Sci 2007; 265:32-42. [PMID: 17936303 DOI: 10.1016/j.jns.2007.09.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 09/03/2007] [Accepted: 09/07/2007] [Indexed: 01/17/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder, characterised by the progressive loss of dopaminergic neurons in the substantia nigra, and typically treated by dopamine replacement. This treatment, although very effective in the early stages of the disease, is not curative and has side-effects. As such there has been a search for a more definitive treatment for this condition, which has mainly concentrated on replacing the lost neurons with neural grafts. Possible cell sources for replacement range from autologous grafts of dopamine secreting cells to allografts of fetal ventral mesencephalon and neural precursor cells derived from fetal tissue or embryonic stem cells. Some of these cells have been the subject of clinical trials, which to date have produced disparate outcomes. Therefore, whilst cell therapies remain a promising treatment for PD, there is need for further refinement of the techniques involved in this experimental procedure, before any new trials in patients are undertaken.
Collapse
|
29
|
Wang XJ, Liu WG, Zhang YH, Lu GQ, Chen SD. Effect of transplantation of c17.2 cells transfected with interleukin-10 gene on intracerebral immune response in rat model of Parkinson's disease. Neurosci Lett 2007; 423:95-9. [PMID: 17673368 DOI: 10.1016/j.neulet.2007.06.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 06/15/2007] [Accepted: 06/18/2007] [Indexed: 01/18/2023]
Abstract
Currently, regulation of immune response after grafting has become a hot topic in Parkinson's disease (PD) transplantation research. Interleukin-10 (IL-10) is an important regulator of immune system. Presently, we transplanted c17.2 neural stem cells transfected with pcDNA3.1-Hygro-IL-10 vector (IL-10-c17.2 cells) or Mock-c17.2 cells (c17.2 cells transfected with pcDNA3.1-Hygro vector) into the brains of 6-hydroxydopamine-lesioned PD model rats. From days 10 to 60 after grafting, double immunohistochemistry showed that IL-10 expression was detected in IL-10-c17.2 cells in vivo. Further immunohistochemistry analyses revealed that intracerebral cellular (ED1 and CD8) and humoral (C3 and IgM) immune responses were down-regulated in the rats treated with IL-10-c17.2 cells compared with controls treated with Mock-c17.2 cells. The reduction in ED1 immunostaining in the rats treated with IL-10-c17.2 cells remained significant until day 60 after transplantation. Our results suggest the potential application value of IL-10 in the transplantation treatment of PD.
Collapse
Affiliation(s)
- Xi-Jin Wang
- Department of Neurology & Neuroscience Institute, Rui-Jin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, PR China
| | | | | | | | | |
Collapse
|
30
|
Yan J, Xu L, Welsh AM, Chen D, Hazel T, Johe K, Koliatsos VE. Combined immunosuppressive agents or CD4 antibodies prolong survival of human neural stem cell grafts and improve disease outcomes in amyotrophic lateral sclerosis transgenic mice. Stem Cells 2006; 24:1976-85. [PMID: 16644922 DOI: 10.1634/stemcells.2005-0518] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a target for cell-replacement therapies, including therapies based on human neural stem cells (NSCs). These therapies must be first tested in the appropriate animal models, including transgenic rodents harboring superoxide dismutase (SOD1) mutations linked to familial ALS. However, these rodent subjects reject discordant xenografts. In the present investigation, we grafted NSCs from human embryonic spinal cord into the ventral lumbar cord of 2-month-old SOD1-G93A transgenic mice. Animals were immunosuppressed with FK506, FK506 plus rapamycin, FK506 plus rapamycin plus mycophenolate mofetil, or CD4 antibodies. With FK506 monotherapy, human NSC grafts were rejected within 1 week, whereas combinations of FK506 with one or two of the other agents or CD4 antibodies protected grafts into end-stage illness (i.e., more than 2 months after grafting). The combination of FK506 with rapamycin appeared to be optimal with respect to efficacy and simplicity of administration. Graft protection was achieved via the blockade of CD4- and CD8-cell infiltration and attenuation of the microglial phagocytic response from the host. Surviving NSCs differentiated extensively into neurons that began to establish networks with host nerve cells, including alpha-motor neurons. Immunosuppressed animals with live cells showed later onset and a slower progression of motor neuron disease and lived longer compared with immunosuppressed control animals with dead NSC grafts. Our findings indicate that combined immunosuppression promotes the survival of human NSCs grafted in the spinal cord of SOD1-G93A mice and, in doing so, allows the differentiation of NSCs into neurons and leads to the improvement of key parameters of motor neuron disease.
Collapse
Affiliation(s)
- Jun Yan
- Department of Pathology, Neuropathology Division, The Johns Hopkins University School of Medicine, Ross Building, Room 558, 720 Rutland Avenue, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Harrower TP, Tyers P, Hooks Y, Barker RA. Long-term survival and integration of porcine expanded neural precursor cell grafts in a rat model of Parkinson's disease. Exp Neurol 2006; 197:56-69. [PMID: 16246328 DOI: 10.1016/j.expneurol.2005.07.026] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2005] [Revised: 06/30/2005] [Accepted: 07/26/2005] [Indexed: 11/24/2022]
Abstract
Porcine fetal neural tissue has been considered as an alternative source to human allografts for transplantation in neurodegenerative disorders by virtue of the fact that it can overcome the ethical and practical difficulties using human fetal neural tissue. However, primary porcine neural xenografts are rejected while porcine expanded neural precursor neural cells (PNPCs) seem to be less immunogenic and thus survive better [Armstrong, R.J., Harrower, T.P., Hurelbrink, C.B., McLaughin, M., Ratcliffe, E.L., Tyers, P., Richards, A., Dunnett, S.B., Rosser, A.E., Barker, R.A., 2001a. Porcine neural xenografts in the immunocompetent rat: immune response following grafting of expanded neural precursor cells. Neuroscience 106, 201-216]. In this study, we extended these observations to investigate the long-term survival of such transplants in immunosuppressed rats. Unilateral 6 OHDA lesioned rats received grafts into the dopamine denervated striatum of either primary porcine fetal neural tissue dissected from the E26 cortex or cortically derived neural stem cells which had been derived from the same source but expanded in vitro for 21 days. All cortically derived neural stem cell grafts survived up to 5 months in contrast to the poor survival of primary porcine xenografts. Histological analysis demonstrated good graft integration with fibers extending into the surrounding host tissue including white matter with synapse formation, and in addition there was evidence of host vascularization and myelinated fibers within the graft area. This study has therefore shown for the first time the reliable long-term survival of grafts derived from porcine expanded neural precursors in a rat model of PD, with maturation and integration into the host brain. This demonstrates that such xenografted cells may be able to recreate the damaged circuitry in PD although strategies for dopaminergic differentiation of the porcine neural precursor cell remain to be refined.
Collapse
Affiliation(s)
- T P Harrower
- Cambridge Centre for Brain Repair, Forvie Site, Robinson Way, Cambridge CB2 2PY, UK.
| | | | | | | |
Collapse
|
32
|
Kuan WL, Barker RA. New therapeutic approaches to Parkinson's disease including neural transplants. Neurorehabil Neural Repair 2005; 19:155-81. [PMID: 16093408 DOI: 10.1177/1545968305277219] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder of the brain and typically presents with a disorder of movement. The core pathological event underlying the condition is the loss of the dopaminergic nigrostriatal pathway with the formation of alpha-synuclein positive Lewy bodies. As a result, drugs that target the degenerating dopaminergic network within the brain work well at least in the early stages of the disease. Unfortunately, with time these therapies fail and produce their own unique side-effect profile, and this, coupled with the more diffuse pathological and clinical findings in advancing disease, has led to a search for more effective therapies. In this review, the authors will briefly discuss the emerging new drug therapies in PD before concentrating on a more detailed discussion on the state of cell therapies to cure PD.
Collapse
Affiliation(s)
- W-L Kuan
- Cambridge Centre for Brain Repair, Cambridge University, UK
| | | |
Collapse
|
33
|
Robichon R, Jaafar A, Terqui M, Brachet P, Peschanski M. Pig xenografts to the immunocompetent rat brain: Survival rates using distinct neurotoxic lesions in the nigrostriatal pathway and two rat strains. Exp Neurol 2005; 194:333-40. [PMID: 16022861 DOI: 10.1016/j.expneurol.2004.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2004] [Revised: 12/01/2004] [Accepted: 12/02/2004] [Indexed: 11/17/2022]
Abstract
Porcine foetal neurons for xenotransplantation in Parkinson's disease (PD) is an alternative source to human fetuses. One of the obstacles facing brain xenotransplantation is the existence of an immune response, which prevents long-term graft survival. Experimental results concerning the survival time of porcine foetal neurons implanted into the brain of immunocompetent rats have been quite different from one study to another, suggesting an effect on graft survival of uncontrolled experimental parameters. To identify such parameters, we have first analyzed the survival of porcine foetal nigral neurons at 5 and 10 weeks after implantation into the striatum of immunocompetent rats having different types of brain lesion affecting cells (quinolinic acid) or projections to the striatum (MPP+, 6-OHDA). In a second experiment, graft survival was analyzed in two strains of recipient rats (female Sprague-Dawley and male Lewis rats) in conditions of ipsilateral dopaminergic denervation using 6-OHDA. The characteristics of surviving grafts were assessed by measuring the graft volume, the number of TH+ neurons, the size of TH+ neurons soma, and CD5+ cell infiltration. Long-term survival (> or = 10 weeks) of porcine neurons could be observed in all experimental models. However, there was no significant difference in graft survival rates and characteristics of the surviving grafts between the lesioned groups, or between Sprague-Dawley and Lewis rats. Altogether, results were highly variable within groups of grafts exposed to similar experimental procedures at both 5 and 10 weeks post-grafting. We conclude that the distinct neurotoxins and host rat strains used in our experimental design are not major factors influencing the rejection time-course of primary neural xenografts.
Collapse
Affiliation(s)
- R Robichon
- INSERM/UPVM U 421, Plasticité cellulaire et Thérapeutique, Faculté de Médecine, 8 rue du General Sarrail, 94010 Créteil Cedex, France
| | | | | | | | | |
Collapse
|
34
|
Factors affecting neuronal cell xenotransplantation. Curr Opin Organ Transplant 2005. [DOI: 10.1097/01.mot.0000174043.67944.6d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Abstract
Transplantation of cells and tissues to the mammalian brain and CNS has revived the interest in the immunological status of brain and its response to grafted tissue. The previously held view that the brain was an absolute "immunologically privileged site" allowing indefinite survival without rejection of grafts of cells has proven to be wrong. Thus, the brain should be regarded as a site where immune responses can occur, albeit in a modified form, and under certain circumstances these are as vigorous as those seen in other peripheral sites. Clinical cell transplant trials have now been performed in Parkinson's disease, Huntington's disease, demyelinating diseases, retinal disorders, stroke, epilepsy, and even deafness, and normally are designed as cell replacement strategies, although implantation of genetically modified cells for supplementation of growth factors has also been tried. In addition, some disorders of the CNS for which cell therapies are being considered have an immunological basis, such as multiple sclerosis, which further complicates the situation. Embryonic neural tissue allografted into the CNS of animals and patients with neurodegenerative conditions survives, makes and receives synapses, and ameliorates behavioral deficits. The use of aborted human tissue is logistically and ethically complicated, which has lead to the search for alternative sources of cells, including xenogeneic tissue, genetically modified cells, and stem cells, all of which can and will induce some level of immune reaction. We review some of the immunological factors involved in transplantation of cells to CNS.
Collapse
Affiliation(s)
- Roger A Barker
- Cambridge Center for Brain Repair and Department of Neurology, Cambridge CB2 6SP, United Kingdom
| | | |
Collapse
|
36
|
Martin C, Plat M, Nerriére-Daguin V, Coulon F, Uzbekova S, Venturi E, Condé F, Hermel JM, Hantraye P, Tesson L, Anegon I, Melchior B, Peschanski M, Le Mauff B, Boeffard F, Sergent-Tanguy S, Neveu I, Naveilhan P, Soulillou JP, Terqui M, Brachet P, Vanhove B. Transgenic expression of CTLA4-Ig by fetal pig neurons for xenotransplantation. Transgenic Res 2005; 14:373-84. [PMID: 16201404 DOI: 10.1007/s11248-004-7268-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The transplantation of fetal porcine neurons is a potential therapeutic strategy for the treatment of human neurodegenerative disorders. A major obstacle to xenotransplantation, however, is the immune-mediated rejection that is resistant to conventional immunosuppression. To determine whether genetically modified donor pig neurons could be used to deliver immunosuppressive proteins locally in the brain, transgenic pigs were developed that express the human T cell inhibitory molecule hCTLA4-Ig under the control of the neuron-specific enolase promoter. Expression was found in various areas of the brain of transgenic pigs, including the mesencephalon, hippocampus and cortex. Neurons from 28-day old embryos secreted hCTLA4-Ig in vitro and this resulted in a 50% reduction of the proliferative response of human T lymphocytes in xenogenic proliferation assays. Transgenic embryonic neurons also secreted hCTLA4-Ig and had developed normally in vivo several weeks after transplantation into the striatum of immunosuppressed rats that were used here to study the engraftment in the absence of immunity. In conclusion, these data show that neurons from our transgenic pigs express hCTLA4-Ig in situ and support the use of this material in future pre-clinical trials in neuron xenotransplantation.
Collapse
Affiliation(s)
- Caroline Martin
- Institut de Transplantation et de Recherche en Transplantation, INSERM U643, CHU Hôtel Dieu, 30, Bld J Monnet, Nantes, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Li S, Wang J, Zhang X, Ren Y, Wang N, Zhao K, Chen X, Zhao C, Li X, Shao J, Yin J, West M, Xu N, Liu S. Proteomic characterization of two snake venoms: Naja naja atra and Agkistrodon halys. Biochem J 2005; 384:119-27. [PMID: 15285721 PMCID: PMC1134095 DOI: 10.1042/bj20040354] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Snake venom is a complex mixture of proteins and peptides, and a number of studies have described the biological properties of several venomous proteins. Nevertheless, a complete proteomic profile of venom from any of the many species of snake is not available. Proteomics now makes it possible to globally identify proteins from a complex mixture. To assess the venom proteomic profiles from Naja naja atra and Agkistrodon halys, snakes common to southern China, we used a combination strategy, which included the following four different approaches: (i) shotgun digestion plus HPLC with ion-trap tandem MS, (ii) one-dimensional SDS/PAGE plus HPLC with tandem MS, (iii) gel filtration plus HPLC with tandem MS and (iv) gel filtration and 2DE (two-dimensional gel electrophoresis) plus MALDI-TOF (matrix-assisted laser desorption ionization-time-of-flight) MS. In the present paper, we report the novel identification of 124 and 74 proteins and peptides in cobra and viper venom respectively. Functional analysis based upon toxin categories reveals that, as expected, cobra venom has a high abundance of cardio- and neurotoxins, whereas viper venom contains a significant amount of haemotoxins and metalloproteinases. Although approx. 80% of gel spots from 2DE displayed high-quality MALDI-TOF-MS spectra, only 50% of these spots were confirmed to be venom proteins, which is more than likely to be a result of incomplete protein databases. Interestingly, these data suggest that post-translational modification may be a significant characteristic of venomous proteins.
Collapse
Affiliation(s)
- Shuting Li
- *Beijing Genomics Institute (BGI), Chinese Academy of Sciences, I-Zone, Shunyi, Beijing 101300, China
- †Beijing Proteomics Institute (BPI), I-Zone, Shunyi, Beijing 101300, China
| | - Jingqiang Wang
- *Beijing Genomics Institute (BGI), Chinese Academy of Sciences, I-Zone, Shunyi, Beijing 101300, China
- †Beijing Proteomics Institute (BPI), I-Zone, Shunyi, Beijing 101300, China
| | - Xumin Zhang
- *Beijing Genomics Institute (BGI), Chinese Academy of Sciences, I-Zone, Shunyi, Beijing 101300, China
- †Beijing Proteomics Institute (BPI), I-Zone, Shunyi, Beijing 101300, China
| | - Yan Ren
- *Beijing Genomics Institute (BGI), Chinese Academy of Sciences, I-Zone, Shunyi, Beijing 101300, China
- †Beijing Proteomics Institute (BPI), I-Zone, Shunyi, Beijing 101300, China
| | - Ning Wang
- *Beijing Genomics Institute (BGI), Chinese Academy of Sciences, I-Zone, Shunyi, Beijing 101300, China
| | - Kang Zhao
- *Beijing Genomics Institute (BGI), Chinese Academy of Sciences, I-Zone, Shunyi, Beijing 101300, China
- †Beijing Proteomics Institute (BPI), I-Zone, Shunyi, Beijing 101300, China
| | - Xishu Chen
- *Beijing Genomics Institute (BGI), Chinese Academy of Sciences, I-Zone, Shunyi, Beijing 101300, China
- †Beijing Proteomics Institute (BPI), I-Zone, Shunyi, Beijing 101300, China
| | - Caifeng Zhao
- *Beijing Genomics Institute (BGI), Chinese Academy of Sciences, I-Zone, Shunyi, Beijing 101300, China
- †Beijing Proteomics Institute (BPI), I-Zone, Shunyi, Beijing 101300, China
| | - Xiaolei Li
- *Beijing Genomics Institute (BGI), Chinese Academy of Sciences, I-Zone, Shunyi, Beijing 101300, China
- †Beijing Proteomics Institute (BPI), I-Zone, Shunyi, Beijing 101300, China
| | - Jianmin Shao
- *Beijing Genomics Institute (BGI), Chinese Academy of Sciences, I-Zone, Shunyi, Beijing 101300, China
- †Beijing Proteomics Institute (BPI), I-Zone, Shunyi, Beijing 101300, China
| | - Jianning Yin
- *Beijing Genomics Institute (BGI), Chinese Academy of Sciences, I-Zone, Shunyi, Beijing 101300, China
- †Beijing Proteomics Institute (BPI), I-Zone, Shunyi, Beijing 101300, China
| | - Matthew B. West
- ‡The Department of Medicine, University of Louisville, Louisville, KY 40202, U.S.A
| | - Ningzhi Xu
- *Beijing Genomics Institute (BGI), Chinese Academy of Sciences, I-Zone, Shunyi, Beijing 101300, China
- †Beijing Proteomics Institute (BPI), I-Zone, Shunyi, Beijing 101300, China
| | - Siqi Liu
- *Beijing Genomics Institute (BGI), Chinese Academy of Sciences, I-Zone, Shunyi, Beijing 101300, China
- †Beijing Proteomics Institute (BPI), I-Zone, Shunyi, Beijing 101300, China
- ‡The Department of Medicine, University of Louisville, Louisville, KY 40202, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
38
|
Melchior B, Nérrière-Daguin V, Degauque N, Brouard S, Guillet M, Soulillou JP, Brachet P. Compartmentalization of TCR repertoire alteration during rejection of an intrabrain xenograft. Exp Neurol 2005; 192:373-83. [PMID: 15755555 DOI: 10.1016/j.expneurol.2004.11.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2004] [Revised: 10/20/2004] [Accepted: 11/15/2004] [Indexed: 12/25/2022]
Abstract
Xenograft rejections of embryonic pig neural cells implanted into the adult rat striatum occurs within 3-4 weeks, following a dramatic T cell infiltration. Little is known about the cross-talk between the brain and peripheral lymphoid tissues which results in this recruitment and lymphocyte homing. To better characterize the dynamics of the T cell response against xenogeneic neural cells implanted into the brain parenchyma, we used both qualitative and quantitative methods to follow the alterations of the CDR3 length distribution (CDR3-LD) of the TCR (T cell receptor) beta chain in the transplanted striatum and compared this response to that observed in the deep cervical lymph nodes, spleen, and blood. Data showed that the T cell repertoire diversity was highly altered in the recipient brain during xenograft rejection. Comparison of the alterations of the CDR3-LD between several animals revealed a single public alteration in the Vbeta20 family, and many private alterations of the CDR3-LD which differed from one infiltrated brain to another. Alterations of the T cell repertoire were also observed in lymphocytes homed into the deep cervical lymph nodes. However, they differed from the alterations detected in the infiltrated brains. Conversely, no significant alteration of the CDR3-LD was detected in the spleen or in the blood. These data suggest that the deep cervical lymph nodes play an active role in the process of xenograft recognition or/and rejection. However, they also indicate that the fate of T cells homed in the brain and deep cervical lymph nodes differs.
Collapse
Affiliation(s)
- Benoît Melchior
- Institut National de la Santé et de la Recherche Médicale, 44093 Nantes, Cedex 01, France
| | | | | | | | | | | | | |
Collapse
|
39
|
Sonntag KC, Simantov R, Isacson O. Stem cells may reshape the prospect of Parkinson's disease therapy. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2005; 134:34-51. [PMID: 15790528 DOI: 10.1016/j.molbrainres.2004.09.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/09/2004] [Indexed: 12/21/2022]
Abstract
The concept of cell replacement to compensate for cell loss and restore functionality has entered several disease entities including neurodegenerative disorders. Recent clinical studies have shown that transplantation of fetal dopaminergic (DA) cells into the brain of Parkinson's disease (PD) patients can reduce disease-associated motor deficits. However, the use of fetal tissue is associated with practical and ethical problems including low efficiency, variability in the clinical outcome and controversy regarding the use of fetuses as donor. An alternative cell resource could be embryonic stem (ES) cells, which can be cultivated in unlimited amounts and which have the potential to differentiate into mature DA cells. Several differentiation protocols have been developed, and some progress has been made in understanding the mechanisms underlying DA specification in ES cell development, but the "holy grail" in this paradigm, which is the production of sufficient amounts of the "right" therapeutic DA cell, has not yet been accomplished. To achieve this goal, several criteria on the transplanted DA cells need to be fulfilled, mainly addressing cell survival, accurate integration in the brain circuitry, normal function, no tumor formation, and no immunogenicity. Here, we summarize the current state of ES cell-derived DA neurogenesis and discuss the aspects involved in generating an optimal cell source for cell replacement in PD.
Collapse
Affiliation(s)
- Kai-Christian Sonntag
- Udall Parkinson's Disease Research Center of Excellence, McLean Hospital/Harvard Medical School, 115 Mill Street, Belmont, MA 02478, USA.
| | | | | |
Collapse
|
40
|
Harrower TP, Richards A, Cruz G, Copeman L, Dunnett SB, Barker RA. Complement regulatory proteins are expressed at low levels in embryonic human, wild type and transgenic porcine neural tissue. Xenotransplantation 2004; 11:60-71. [PMID: 14962294 DOI: 10.1111/j.1399-3089.2004.00084.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Allotransplantation of human foetal neural tissue for neurodegenerative disorders has been shown to provide clinical benefit but is limited by a number of issues including donor supply. The use of porcine foetal tissue as an alternative source of cells is being investigated but xenotransplants survive poorly as a result of immunological rejection, which may involve complement. In this study we investigated the expression of the membrane-bound complement regulatory proteins--decay accelerating factor (DAF), membrane co-factor protein (MCP) and CD59 in embryonic neural tissue. Cells were derived from human foetuses, wild-type porcine foetuses and porcine foetuses transgenic for human complement regulatory proteins and analysed using flow cytometry and immunocytochemistry. Functional assessment of human complement regulatory protein expression in transgenic porcine tissue was assessed by C3b deposition and cell survival on exposure to human complement. Human and wild-type porcine foetal neural tissue expressed moderate levels of MCP and CD59 but low or no levels of DAF. Neural tissue from porcine foetuses transgenic for human MCP (E174) expressed the transgene but failed to significantly inhibit human C3b deposition compared with non-transgenic tissue. In contrast, foetal neural tissue from two different human DAF transgenic pig lines (A74 and E71) known to express high levels of human DAF on endothelial cells, failed to express significant levels of human DAF in foetal neural tissue. Complement regulatory proteins such as MCP and CD59 are expressed in the human and wild-type embryonic brain but in contrast, DAF is expressed at very low levels. Pigs transgenic for human DAF express very low levels of human DAF on embryonic neural tissue. In pigs transgenic for human MCP, the transgene is expressed at similar levels to that in human embryonic neural tissue but at an insufficient level to prevent activation of the complement cascade. Thus alternative approaches to reducing complement activation by xenografted neural foetal tissue will be required if this process proves to be important in the rejection process.
Collapse
Affiliation(s)
- T P Harrower
- Cambridge Centre for Brain Repair, Forvie Site, Robinson, Cambridge, UK.
| | | | | | | | | | | |
Collapse
|
41
|
Sumitran-Holgersson S, Brevig T, Widner H, Holgersson J. Activated porcine embryonic brain endothelial cells induce a proliferative human T-lymphocyte response. Cell Transplant 2004; 12:637-46. [PMID: 14579932 DOI: 10.3727/000000003108747118] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Transplantation of allogeneic embryonic neural tissue is a potential treatment for patients with Parkinson's and Huntington's diseases. The supply of human donor tissue is limited, and alternatives such as the use of animal (e.g., porcine) donor tissue are currently being evaluated. Before porcine grafts can be used clinically, strategies to prevent neural xenograft rejection must be developed. Knowledge on how human T lymphocytes recognize porcine embryonic neural tissue would facilitate the development of such strategies. To investigate the ability of porcine embryonic brain microvascular endothelial cells (PBMEC) to stimulate human T-cell proliferation, PBMEC were immuno-magnetically isolated and cocultured with purified human CD4 or CD8 single-positive T cells. PBMEC had a cobblestone-like growth pattern and expressed the endothelial cell markers CD31 and CD106. PBMEC stimulated with the supernatant of phytohemagglutinin-activated porcine peripheral blood mononuclear cells or porcine IFN-gamma, but not nonstimulated PBMEC, induced proliferation of both CD8 and CD4 T cells as assessed by [3H]thymidine incorporation. Flow cytometric analyses showed that the degree of CD8 and CD4 T cell proliferation correlated with the expression levels of class I and II major histocompatibility complex (MHC) antigens, respectively. PBMEC expressed a CTLA-4/Fc-reactive molecule, most likely CD86, suggesting that these cells are able to deliver a costimulatory signal to the T cells. Human TNF-alpha, but not human IFN-gamma, induced class I, but not class II, MHC expression on PBMEC. Within a neural graft or the regional lymph nodes, PBMEC might stimulate human T cells via the direct pathway, and should therefore be removed from the donor tissue prior to transplantation.
Collapse
Affiliation(s)
- Suchitra Sumitran-Holgersson
- Division of Clinical Immunology, Karolinska Institutet, Huddinge University Hospital AB, S-141 86 Stockholm, Sweden
| | | | | | | |
Collapse
|
42
|
Sayles M, Jain M, Barker RA. The cellular repair of the brain in Parkinson's disease—past, present and future. Transpl Immunol 2004; 12:321-42. [PMID: 15157925 DOI: 10.1016/j.trim.2003.12.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Damage to the central nervous system was once considered irreparable. However, there is now growing optimism that neural transplant therapies may one day enable complete circuit reconstruction and thus functional benefit for patients with neurodegenerative conditions such as Parkinson's disease (PD), and perhaps even those with more widespread damage such as stroke patients. Indeed, since the late 1980s hundreds of patients with Parkinson's disease have received allografts of dopamine-rich embryonic human neural tissue. The grafted tissue has been shown to survive and ameliorate many of the symptoms of the disease, both in the clinical setting and in animal models of the disease. However, practical problems associated with tissue procurement and storage, and ethical concerns over using aborted human fetal tissue have fuelled a search for alternative sources of suitable material for grafting. In particular, stem cells and xenogeneic embryonic dopamine-rich neural tissue are being explored, both of which bring their own practical and ethical dilemmas. Here we review the progress made in neural transplantation, both in the laboratory and in the clinic with particular attention to the development of stem cell and xenogeneic tissue based therapy.
Collapse
Affiliation(s)
- Mark Sayles
- Cambridge Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge, CB2 2PY, UK
| | | | | |
Collapse
|
43
|
Mirza B, Krook H, Andersson P, Larsson LC, Korsgren O, Widner H. Intracerebral cytokine profiles in adult rats grafted with neural tissue of different immunological disparity. Brain Res Bull 2004; 63:105-18. [PMID: 15130699 DOI: 10.1016/j.brainresbull.2004.01.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2003] [Revised: 01/23/2004] [Accepted: 01/30/2004] [Indexed: 02/06/2023]
Abstract
To understand graft rejection in cell based therapies for brain repair we have quantified IL-1beta, IL-2, IL-4, IL-10, IL-12p40, IFN-gamma and TNF-alpha mRNA levels using real-time PCR, at days 4, 14, and 42 post-transplantation, in rats engrafted with syngeneic, allogeneic, concordant and discordant xenogeneic neural tissues. In addition, in the discordant xenografts immunohistochemistry and in situ hybridization were applied to detect local expression of IFN-gamma, TNF-alpha, IL-10 and TGF-beta. Allografts remained non-rejected but expressed IL-1beta, TNF-alpha and IL-4 transcripts but not IL-12p40 and IFN-gamma. Xenografts demonstrated distinct cytokine profiles that differed from syngeneic and allogeneic grafts. Non-rejected discordant xenografts contained higher levels of TNF-alpha transcripts and lower levels of IL-2 transcripts than the rejected ones at day 42. Discordant xenografts displayed a stronger and earlier expression of IL-1beta and TNF-alpha, followed by T-helper 1 and T-helper 2 associated cytokine expression. The number of cells expressing mRNA encoding TNF-alpha and TGF-beta was significantly increased over time in the discordant group. In conclusion, the immunological disparity of the implanted tissue explains survival rates and is associated with different cytokine profiles. In allografts, a chronic inflammatory reaction was detected and in xenogeneic grafts a delayed hypersensitivity like reaction may be involved in rejection.
Collapse
Affiliation(s)
- Bilal Mirza
- Section for Neuronal Survival, Department of Physiological Sciences and Neuroscience, Wallenberg Neuroscience Center, Lund University, BMC-A10, 221 84 Lund, Sweden.
| | | | | | | | | | | |
Collapse
|
44
|
Björklund A, Dunnett SB, Brundin P, Stoessl AJ, Freed CR, Breeze RE, Levivier M, Peschanski M, Studer L, Barker R. Neural transplantation for the treatment of Parkinson's disease. Lancet Neurol 2003; 2:437-45. [PMID: 12849125 DOI: 10.1016/s1474-4422(03)00442-3] [Citation(s) in RCA: 236] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Anders Björklund
- Wallenberg Neuroscience Center, Section of Neurobiology, Lund University, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Armstrong RJE, Tyers P, Jain M, Richards A, Dunnett SB, Rosser AE, Barker RA. Transplantation of expanded neural precursor cells from the developing pig ventral mesencephalon in a rat model of Parkinson's disease. Exp Brain Res 2003; 151:204-17. [PMID: 12783147 DOI: 10.1007/s00221-003-1491-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2002] [Accepted: 04/08/2003] [Indexed: 10/26/2022]
Abstract
Neural precursor cell populations can be expanded in vitro under the influence of growth factors, and may be of use to replace cells lost to neurodegenerative conditions such as the dopaminergic neurons in Parkinson's disease (PD). We explore here whether expanding neural precursor cells from the region in which nigral dopaminergic neurones emerge in normal development renders them more likely to differentiate into TH-positive neurones when transplanted in a rat model of PD. Embryonic neural precursor cells (ENPs) were isolated from the developing pig ventral mesencephalon (VM) at two different gestational ages and were implanted into the striatum or the substantia nigra of cyclosporin A-immunosuppressed, 6-hydroxydopamine-lesioned rats, which were sacrificed 9 or 18 weeks later. The properties of ENPs varied according to the gestational age of the donor: ENPs that expanded robustly and survived transplantation could be derived from E22 VM, but not from E27 VM. ENPs developed into neurones that displayed diffuse fibre projections, including those appropriate for the implantation site. However, behaviourally significant numbers of TH-positive neurones were not seen. A rejection response was apparent in most animals by 18 weeks. These data show that donor age is an important variable when deriving ENPs for transplantation. Furthermore, derivation of ENPs from the VM at the time of normal dopaminergic neurogenesis is inadequate to ensure functional dopaminergic grafts on transplantation.
Collapse
Affiliation(s)
- Richard J E Armstrong
- Cambridge Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, CB2 2PY, Cambridge, UK
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
1. Neural stem cells can be cultured from the CNS of different mammalian species at many stages of development. They have an extensive capacity for self-renewal and will proliferate ex vivo in response to mitogenic growth factors or following genetic modification with immortalising oncogenes. Neural stem cells are multipotent since their differentiating progeny will give rise to the principal cellular phenotypes comprising the mature CNS: neurons, astrocytes and oligodendrocytes. 2. Neural stem cells can also be derived from more primitive embryonic stem (ES) cells cultured from the blastocyst. ES cells are considered to be pluripotent since they can give rise to the full cellular spectrum and will, therefore, contribute to all three of the embryonic germ layers: endoderm, mesoderm and ectoderm. However, pluripotent cells have also been derived from germ cells and teratocarcinomas (embryonal carcinomas) and their progeny may also give rise to the multiple cellular phenotypes contributing to the CNS. In a recent development, ES cells have also been isolated and grown from human blastocysts, thus raising the possibility of growing autologous stem cells when combined with nuclear transfer technology. 3. There is now an emerging recognition that the adult mammalian brain, including that of primates and humans, harbours stem cell populations suggesting the existence of a previously unrecognised neural plasticity to the mature CNS, and thereby raising the possibility of promoting endogenous neural reconstruction. 4. Such reports have fuelled expectations for the clinical exploitation of neural stem cells in cell replacement or recruitment strategies for the treatment of a variety of human neurological conditions including Parkinson's disease (PD), Huntington's disease, multiple sclerosis and ischaemic brain injury. Owing to their migratory capacity within the CNS, neural stem cells may also find potential clinical application as cellular vectors for widespread gene delivery and the expression of therapeutic proteins. In this regard, they may be eminently suitable for the correction of genetically-determined CNS disorders and in the management of certain tumors responsive to cytokines. Since large numbers of stem cells can be generated efficiently in culture, they may obviate some of the technical and ethical limitations associated with the use of fresh (primary) embryonic neural tissue in current transplantation strategies. 5. While considerable recent progress has been made in terms of developing new techniques allowing for the long-term culture of human stem cells, the successful clinical application of these cells is presently limited by our understanding of both (i) the intrinsic and extrinsic regulators of stem cell proliferation and (ii) those factors controlling cell lineage determination and differentiation. Although such cells may also provide accessible model systems for studying neural development, progress in the field has been further limited by the lack of suitable markers needed for the identification and selection of cells within proliferating heterogeneous populations of precursor cells. There is a further need to distinguish between the committed fate (defined during normal development) and the potential specification (implying flexibility of fate through manipulation of its environment) of stem cells undergoing differentiation. 6. With these challenges lying ahead, it is the opinion of the authors that stem-cell therapy is likely to remain within the experimental arena for the foreseeable future. In this regard, few (if any) of the in vivo studies employing neural stem cell grafts have shown convincingly that behavioural recovery can be achieved in the various model paradigms. Moreover, issues relating to the quality control of cultured cells and their safety following transplantation have only begun to be addressed. 7. While on the one hand cell biotechnologists have been quick to realise the potential commercial value, human stem cell research and its clinical applications has been the subject of intense ethical and legislative considerations. The present chapter aims to review some recent aspects of stem cell research applicable to developmental neurobiology and the potential applications in clinical neuroscience.
Collapse
Affiliation(s)
- T Ostenfeld
- MRC Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
47
|
Cicchetti F, Fodor W, Deacon TW, van Horne C, Rollins S, Burton W, Costantini LC, Isacson O. Immune parameters relevant to neural xenograft survival in the primate brain. Xenotransplantation 2003; 10:41-9. [PMID: 12535224 DOI: 10.1034/j.1399-3089.2003.01130.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The lack of supply and access to human tissue has prompted the development of xenotransplantation as a potential clinical modality for neural cell transplantation. The goal of the present study was to achieve a better understanding of the immune factors involved in neural xenograft rejection in primates. Initially, we quantified complement mediated cell lysis of porcine fetal neurons by primate serum and demonstrated that anti-C5 antibody treatment inhibited cell death. We then developed an immunosuppression protocol that included in vivo anti-C5 monoclonal antibody treatment, triple drug therapy (cyclosporine, methylprednisolone, azathioprine) and donor tissue derived from CD59 or H-transferase transgenic pigs and applied it to pig-to-primate neural cell transplant models. Pre-formed alphaGal, induced alphaGal and primate anti-mouse antibody (PAMA) titers were monitored to assess the immune response. Four primates were transplanted. The three CD59 neural cell recipients showed an induced anti-alphaGal response, whereas the H-transferase neural cell recipient exhibited consistently low anti-alphaGal titers. Two of these recipients contained surviving grafts as detected by immunohistochemistry using selected neural markers. Graft survival correlated with high dose cyclosporine treatment, complete complement blockade and the absence of an induced PAMA response to the murine anti-C5 monoclonal antibodies.
Collapse
Affiliation(s)
- F Cicchetti
- Neuroregeneration Laboratories, Harvard Medical School/McLean Hospital, Belmont, MA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Armstrong RJE, Hurelbrink CB, Tyers P, Ratcliffe EL, Richards A, Dunnett SB, Rosser AE, Barker RA. The potential for circuit reconstruction by expanded neural precursor cells explored through porcine xenografts in a rat model of Parkinson's disease. Exp Neurol 2002; 175:98-111. [PMID: 12009763 DOI: 10.1006/exnr.2002.7889] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Neural precursors with the properties of neural stem cells can be isolated from the developing brain, can be expanded in culture, and have been suggested as a potential source of cells for neuronal replacement therapies in degenerative disorders such as Parkinson's disease (PD). Under such conditions an improved spectrum of functional benefit may be obtained through homotypic reconstruction of degenerated neural circuitry, and to this end we have investigated the potential of expanded neural precursor cells (ENPs) to form long axonal projections following transplantation in the 6-hydroxydopamine-lesioned rat model of PD. ENPs have been isolated from the embryonic pig, since implantation in a xenograft environment is thought to favor axonal growth. These porcine ENPs possessed similar properties in vitro to those described in other species: they proliferated in response to epidermal and fibroblast growth factor-2, expressed the neuroepithelial marker nestin, and differentiated into neurons, astrocytes, and occasional oligodendrocytes on mitogen withdrawal. The use of pig-specific markers following xenotransplantion into cyclosporin A-immunosuppressed rats revealed that many cells differentiated into neurons and displayed extensive axogenesis, such that when placed in the region of the substantia nigra fibers projected throughout the striatal neuropil. These neurons were not restricted in the targets to which they could project since following intrastriatal grafting fibers were seen in the normal striatal targets of the pallidum and substantia nigra. Staining for a pig-specific synaptic marker suggested that synapses were formed in these distant sites. A small number of these cells differentiated spontaneously to express a catecholaminergic phenotype, but were insufficient to mediate behavioral recovery. Our results suggest that when the efficiency of neurochemical phenotype induction is increased, ENP-derived neurons have the potential to be a uniquely flexible source of cells for therapeutic cell replacement where anatomical reconstruction is advantageous.
Collapse
Affiliation(s)
- Richard J E Armstrong
- Cambridge Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge, CB2 2PY, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Melchior B, Rémy S, Nerrière-Daguin V, Heslan JM, Soulillou JP, Brachet P. Temporal analysis of cytokine gene expression during infiltration of porcine neuronal grafts implanted into the rat brain. J Neurosci Res 2002; 68:284-92. [PMID: 12111858 DOI: 10.1002/jnr.10216] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A large array of evidence supports the involvement of infiltrating T lymphocytes in the rejection process of intracerebral neuronal xenografts. Little is known, however, about the molecular mechanisms that drive the recruitment of this cell type. In the present work, we used real-time RT-PCR methodology to investigate the kinetics of cytokine gene expression during the infiltration of fetal porcine neurons (PNEU) implanted into the striatum of LEW.1A rats. T lymphocyte infiltration was followed by measuring the intracerebral levels of transcripts encoding the beta chain of the T cell receptor. These transcripts remained barely detectable until the fourth week (28 days) postimplantation, when a sudden accumulation occurred. Their kinetics, which support previous immunohistochemical observations, indicate that alphabetaT lymphocyte recruitment occurs rapidly after a delay of several weeks in this experimental model. Infiltration of PNEU grafts by T lymphocytes was accompanied by a concomitant, dramatic augmentation of transcripts coding for monocyte chemotactic protein-1 and RANTES (for regulated on activation, normal T cell expressed and secreted), two chemokines targeting this cell type, among others. Likewise, a sudden accumulation of transcripts of proinflammatory lymphokines [interleukin (IL)-1alpha, tumor necrosis factor-alpha, IL-6] as well as Th1 cytokines (IL-2, interferon-gamma) was also detected. In contrast, IL-4, -10, and -13 mRNA remained barely detectable at the different time points. No significant changes were noticed for IL-12 or transforming growth factor-beta transcripts. These data support the concept that T lymphocyte infiltration of PNEU grafts is actively promoted by a local production of chemokines and proinflammatory lymphokines and is based on a Th1 polarization.
Collapse
MESH Headings
- Animals
- Antigens, CD
- Antigens, Neoplasm
- Antigens, Surface
- Avian Proteins
- Basigin
- Blood Proteins
- Brain Tissue Transplantation/adverse effects
- Brain Tissue Transplantation/methods
- Cells, Cultured
- Chemokine CCL2/metabolism
- Chemokine CCL5/metabolism
- Chemotaxis, Leukocyte/immunology
- Cytokines/genetics
- Fetus
- Gene Expression Regulation/immunology
- Graft Rejection/immunology
- Graft Rejection/metabolism
- Graft Rejection/physiopathology
- Immunohistochemistry
- Interferon-gamma/metabolism
- Interleukin-2 Receptor alpha Subunit
- Interleukins/metabolism
- Kinetics
- Male
- Membrane Glycoproteins/metabolism
- RNA, Messenger/immunology
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred Lew
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Interleukin/metabolism
- Swine
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Time Factors
- Transforming Growth Factor beta/metabolism
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Benoît Melchior
- Institut National de la Santé et de la Recherche Médicale, Unité 437, Centre Hospitalier Universitaire, Nantes, France
| | | | | | | | | | | |
Collapse
|
50
|
Affiliation(s)
- Roger A Barker
- Cambridge Centre for Brain Repair, and Department of Neurology, University of Cambridge, Forvie Site, Cambridge, United Kingdom.
| |
Collapse
|