1
|
Wang S, Mahalingam S, Merits A. Alphavirus nsP2: A Multifunctional Regulator of Viral Replication and Promising Target for Anti-Alphavirus Therapies. Rev Med Virol 2025; 35:e70030. [PMID: 40064592 PMCID: PMC11893376 DOI: 10.1002/rmv.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 02/19/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025]
Abstract
Alphaviruses are re-emerging vector-born pathogens that cause arthralgia or encephalitic diseases on a global scale. While a vaccine against chikungunya virus was recently approved, no vaccines currently exist for other alphaviruses, nor are there antiviral drugs for the treatment of alphavirus infections. Alphaviruses have positive-strand RNA genomes, and their RNA replication is coordinated by activities of the multifunctional nonstructural protein 2 (nsP2), a helicase-protease and a subunit of viral RNA replicase. We provide a comprehensive overview of nsP2 functions and inhibitors of its activities for their potential as effective antivirals. Furthermore, analysis of nsP2 activities suggests that it could be targeted to develop advanced live attenuated vaccines and strategies for controlling alphavirus transmission by mosquito vectors.
Collapse
Affiliation(s)
- Sainan Wang
- Institute of BioengineeringUniversity of TartuTartuEstonia
| | - Suresh Mahalingam
- Institute for Biomedicine and GlycomicsGriffith UniversityGold CoastAustralia
- Global Virus Network (GVN) Centre of Excellence in ArbovirusesGriffith UniversityGold CoastAustralia
- School of Pharmacy and Medical SciencesGriffith UniversityGold CoastAustralia
| | - Andres Merits
- Institute of BioengineeringUniversity of TartuTartuEstonia
| |
Collapse
|
2
|
Fritsch H, Giovanetti M, Clemente LG, da Rocha Fernandes G, Fonseca V, de Lima MM, Falcão M, de Jesus N, de Cerqueira EM, Venâncio da Cunha R, de Oliveira Francisco MVL, de Siqueira IC, de Oliveira C, Xavier J, Ferreira JGG, Queiroz FR, Smith E, Tisoncik-Go J, Van Voorhis WC, Rabinowitz PM, Wasserheit JN, Gale M, de Filippis AMB, Alcantara LCJ. Unraveling the Complexity of Chikungunya Virus Infection Immunological and Genetic Insights in Acute and Chronic Patients. Genes (Basel) 2024; 15:1365. [PMID: 39596565 PMCID: PMC11593632 DOI: 10.3390/genes15111365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
Background: The chikungunya virus (CHIKV), transmitted by infected Aedes mosquitoes, has caused a significant number of infections worldwide. In Brazil, the emergence of the CHIKV-ECSA genotype in 2014 posed a major public health challenge due to its association with more severe symptoms. Objectives/Methods: This study aimed to shed new light on the host immune response by examining the whole-blood transcriptomic profile of both CHIKV-acute and chronically infected individuals from Feira de Santana, Bahia, Brazil, a region heavily affected by CHIKV, Dengue, and Zika virus epidemics. Results: Our data reveal complex symptomatology characterized by arthralgia and post-chikungunya neuropathy in individuals with chronic sequelae, particularly affecting women living in socially vulnerable situations. Analysis of gene modules suggests heightened metabolic processes, represented by an increase in NADH, COX5A, COA3, CYC1, and cap methylation in patients with acute disease. In contrast, individuals with chronic manifestations exhibit a distinct pattern of histone methylation, probably mediated by NCOA3 in the coactivation of different nuclear receptors, KMT2 genes, KDM3B and TET2, and with alterations in the immunological response, majorly led by IL-17RA, IL-6R, and STAT3 Th17 genes. Conclusion: Our results emphasize the complexity of CHIKV disease progression, demonstrating the heterogeneous gene expression and symptomatologic scenario across both acute and chronic phases. Moreover, the identification of specific gene modules associated with viral pathogenesis provides critical insights into the molecular mechanisms underlying these distinct clinical manifestations.
Collapse
Affiliation(s)
- Hegger Fritsch
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (H.F.); (J.X.)
- Institut National de la Santé et de la Recherche Médicale, U1259—MAVIVHe, Université de Tours, 37032 Tours, France
| | - Marta Giovanetti
- Department of Science and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-002, Brazil;
- Climate Amplified Diseases and Epidemics (CLIMADE)—CLIMADE Americas, Belo Horizonte 30190-002, Brazil
| | - Luan Gaspar Clemente
- Escola Superior de Agricultura Luiz de Queiroz, Departamento de Zootecnia, Universidade de São Paulo, Piracicaba 13418-900, Brazil;
| | | | - Vagner Fonseca
- Departamento de Ciências Exatas e da Terra, Universidade Estadual da Bahia, Salvador 41150-000, Brazil;
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Maricelia Maia de Lima
- Departamento de Saúde, Universidade Estadual de Feira de Santana, Feira de Santana 44036-900, Brazil; (M.M.d.L.); (E.M.d.C.)
- Secretaria de Municipal de Saúde de Feira de Santana, Divisão de Vigilância Epidemiológica, Feira de Santana 44027-010, Brazil; (M.F.); (N.d.J.)
| | - Melissa Falcão
- Secretaria de Municipal de Saúde de Feira de Santana, Divisão de Vigilância Epidemiológica, Feira de Santana 44027-010, Brazil; (M.F.); (N.d.J.)
| | - Neuza de Jesus
- Secretaria de Municipal de Saúde de Feira de Santana, Divisão de Vigilância Epidemiológica, Feira de Santana 44027-010, Brazil; (M.F.); (N.d.J.)
| | - Erenilde Marques de Cerqueira
- Departamento de Saúde, Universidade Estadual de Feira de Santana, Feira de Santana 44036-900, Brazil; (M.M.d.L.); (E.M.d.C.)
| | | | | | | | - Carla de Oliveira
- Laboratório de Arbovírus e Vírus Hemorrágicos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil;
| | - Joilson Xavier
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (H.F.); (J.X.)
| | - Jorge Gomes Goulart Ferreira
- Núcleo de Ensino, Pesquisa e Inovação, Instituto Mário Penna, Belo Horizonte 30380-420, Brazil; (J.G.G.F.); (F.R.Q.)
| | - Fábio Ribeiro Queiroz
- Núcleo de Ensino, Pesquisa e Inovação, Instituto Mário Penna, Belo Horizonte 30380-420, Brazil; (J.G.G.F.); (F.R.Q.)
| | - Elise Smith
- Department of Immunology, University of Washington, Seattle, WA 98109, USA; (E.S.); (J.T.-G.); (M.G.J.)
| | - Jennifer Tisoncik-Go
- Department of Immunology, University of Washington, Seattle, WA 98109, USA; (E.S.); (J.T.-G.); (M.G.J.)
| | | | - Peter M. Rabinowitz
- Departments of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA;
| | | | - Michael Gale
- Department of Immunology, University of Washington, Seattle, WA 98109, USA; (E.S.); (J.T.-G.); (M.G.J.)
| | - Ana Maria Bispo de Filippis
- Laboratório de Arbovírus e Vírus Hemorrágicos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil;
| | - Luiz Carlos Junior Alcantara
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-002, Brazil;
- Climate Amplified Diseases and Epidemics (CLIMADE)—CLIMADE Americas, Belo Horizonte 30190-002, Brazil
| |
Collapse
|
3
|
da Silva MOL, Figueiredo CM, Neris RLS, Guimarães-Andrade IP, Gavino-Leopoldino D, Miler-da-Silva LL, Valença HDM, Ladislau L, de Lima CVF, Coccarelli FM, Benjamim CF, Assunção-Miranda I. Chikungunya and Mayaro Viruses Induce Chronic Skeletal Muscle Atrophy Triggered by Pro-Inflammatory and Oxidative Response. Int J Mol Sci 2024; 25:8909. [PMID: 39201595 PMCID: PMC11354814 DOI: 10.3390/ijms25168909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 09/02/2024] Open
Abstract
Chikungunya (CHIKV) and Mayaro (MAYV) viruses are arthritogenic alphaviruses that promote an incapacitating and long-lasting inflammatory muscle-articular disease. Despite studies pointing out the importance of skeletal muscle (SkM) in viral pathogenesis, the long-term consequences on its physiology and the mechanism of persistence of symptoms are still poorly understood. Combining molecular, morphological, nuclear magnetic resonance imaging, and histological analysis, we conduct a temporal investigation of CHIKV and MAYV replication in a wild-type mice model, focusing on the impact on SkM composition, structure, and repair in the acute and late phases of infection. We found that viral replication and induced inflammation promote a rapid loss of muscle mass and reduction in fiber cross-sectional area by upregulation of muscle-specific E3 ubiquitin ligases MuRF1 and Atrogin-1 expression, both key regulators of SkM fibers atrophy. Despite a reduction in inflammation and clearance of infectious viral particles, SkM atrophy persists until 30 days post-infection. The genomic CHIKV and MAYV RNAs were still detected in SkM in the late phase, along with the upregulation of chemokines and anti-inflammatory cytokine expression. In agreement with the involvement of inflammatory mediators on induced atrophy, the neutralization of TNF and a reduction in oxidative stress using monomethyl fumarate, an agonist of Nrf2, decreases atrogen expression and atrophic fibers while increasing weight gain in treated mice. These data indicate that arthritogenic alphavirus infection could chronically impact body SkM composition and also harm repair machinery, contributing to a better understanding of mechanisms of arthritogenic alphavirus pathogenesis and with a description of potentially new targets of therapeutic intervention.
Collapse
Affiliation(s)
- Mariana Oliveira Lopes da Silva
- Department of Virology, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (M.O.L.d.S.); (C.M.F.); (R.L.S.N.); (I.P.G.-A.); (D.G.-L.)
| | - Camila Menezes Figueiredo
- Department of Virology, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (M.O.L.d.S.); (C.M.F.); (R.L.S.N.); (I.P.G.-A.); (D.G.-L.)
| | - Rômulo Leão Silva Neris
- Department of Virology, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (M.O.L.d.S.); (C.M.F.); (R.L.S.N.); (I.P.G.-A.); (D.G.-L.)
| | - Iris Paula Guimarães-Andrade
- Department of Virology, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (M.O.L.d.S.); (C.M.F.); (R.L.S.N.); (I.P.G.-A.); (D.G.-L.)
| | - Daniel Gavino-Leopoldino
- Department of Virology, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (M.O.L.d.S.); (C.M.F.); (R.L.S.N.); (I.P.G.-A.); (D.G.-L.)
| | - Leonardo Linhares Miler-da-Silva
- Department of Virology, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (M.O.L.d.S.); (C.M.F.); (R.L.S.N.); (I.P.G.-A.); (D.G.-L.)
| | - Helber da Maia Valença
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (H.d.M.V.)
| | - Leandro Ladislau
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (H.d.M.V.)
| | - Caroline Victorino Felix de Lima
- National Center for Structural Biology and Bioimaging (CENABio), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (C.V.F.d.L.); (F.M.C.)
- Instituto D’Or de Pesquisa e Ensino, Rio de Janeiro 22281-100, Brazil
| | - Fernanda Meireles Coccarelli
- National Center for Structural Biology and Bioimaging (CENABio), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (C.V.F.d.L.); (F.M.C.)
- Instituto D’Or de Pesquisa e Ensino, Rio de Janeiro 22281-100, Brazil
| | - Claudia Farias Benjamim
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil;
| | - Iranaia Assunção-Miranda
- Department of Virology, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (M.O.L.d.S.); (C.M.F.); (R.L.S.N.); (I.P.G.-A.); (D.G.-L.)
| |
Collapse
|
4
|
Bartholomeeusen K, Daniel M, LaBeaud DA, Gasque P, Peeling RW, Stephenson KE, Ng LFP, Ariën KK. Chikungunya fever. Nat Rev Dis Primers 2023; 9:17. [PMID: 37024497 PMCID: PMC11126297 DOI: 10.1038/s41572-023-00429-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/10/2023] [Indexed: 04/08/2023]
Abstract
Chikungunya virus is widespread throughout the tropics, where it causes recurrent outbreaks of chikungunya fever. In recent years, outbreaks have afflicted populations in East and Central Africa, South America and Southeast Asia. The virus is transmitted by Aedes aegypti and Aedes albopictus mosquitoes. Chikungunya fever is characterized by severe arthralgia and myalgia that can persist for years and have considerable detrimental effects on health, quality of life and economic productivity. The effects of climate change as well as increased globalization of commerce and travel have led to growth of the habitat of Aedes mosquitoes. As a result, increasing numbers of people will be at risk of chikungunya fever in the coming years. In the absence of specific antiviral treatments and with vaccines still in development, surveillance and vector control are essential to suppress re-emergence and epidemics.
Collapse
Affiliation(s)
- Koen Bartholomeeusen
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Matthieu Daniel
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, Saint-Denis, France
- Service de Médecine d'Urgences-SAMU-SMUR, CHU de La Réunion, Saint-Denis, France
| | - Desiree A LaBeaud
- Department of Pediatrics, Division of Infectious Disease, Stanford University School of Medicine, Stanford, CA, USA
| | - Philippe Gasque
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, Saint-Denis, France
- Laboratoire d'Immunologie Clinique et Expérimentale Océan Indien LICE-OI, Université de La Réunion, Saint-Denis, France
| | - Rosanna W Peeling
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, UK
| | - Kathryn E Stephenson
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Lisa F P Ng
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research, Singapore, Singapore
- National Institute of Health Research, Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, UK
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Kevin K Ariën
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium.
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
5
|
Constant LEC, Rajsfus BF, Carneiro PH, Sisnande T, Mohana-Borges R, Allonso D. Overview on Chikungunya Virus Infection: From Epidemiology to State-of-the-Art Experimental Models. Front Microbiol 2021; 12:744164. [PMID: 34675908 PMCID: PMC8524093 DOI: 10.3389/fmicb.2021.744164] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/07/2021] [Indexed: 12/27/2022] Open
Abstract
Chikungunya virus (CHIKV) is currently one of the most relevant arboviruses to public health. It is a member of the Togaviridae family and alphavirus genus and causes an arthritogenic disease known as chikungunya fever (CHIKF). It is characterized by a multifaceted disease, which is distinguished from other arbovirus infections by the intense and debilitating arthralgia that can last for months or years in some individuals. Despite the great social and economic burden caused by CHIKV infection, there is no vaccine or specific antiviral drugs currently available. Recent outbreaks have shown a change in the severity profile of the disease in which atypical and severe manifestation lead to hundreds of deaths, reinforcing the necessity to understand the replication and pathogenesis processes. CHIKF is a complex disease resultant from the infection of a plethora of cell types. Although there are several in vivo models for studying CHIKV infection, none of them reproduces integrally the disease signature observed in humans, which is a challenge for vaccine and drug development. Therefore, understanding the potentials and limitations of the state-of-the-art experimental models is imperative to advance in the field. In this context, the present review outlines the present knowledge on CHIKV epidemiology, replication, pathogenesis, and immunity and also brings a critical perspective on the current in vitro and in vivo state-of-the-art experimental models of CHIKF.
Collapse
Affiliation(s)
- Larissa E. C. Constant
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Biotecnologia e Bioengenharia Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bia F. Rajsfus
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Biotecnologia e Bioengenharia Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro H. Carneiro
- Laboratório de Biotecnologia e Bioengenharia Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tháyna Sisnande
- Laboratório de Biotecnologia e Bioengenharia Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ronaldo Mohana-Borges
- Laboratório de Biotecnologia e Bioengenharia Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diego Allonso
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Varikkodan MM, Chen CC, Wu TY. Recombinant Baculovirus: A Flexible Drug Screening Platform for Chikungunya Virus. Int J Mol Sci 2021; 22:ijms22157891. [PMID: 34360656 PMCID: PMC8347121 DOI: 10.3390/ijms22157891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/12/2021] [Accepted: 07/21/2021] [Indexed: 11/16/2022] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted infectious agent that causes an endemic or epidemic outbreak(s) of Chikungunya fever that is reported in almost all countries. This virus is an intense global threat, due to its high rate of contagion and the lack of effective remedies. In this study, we developed two baculovirus expression vector system (BEVS)-based approaches for the screening of anti-CHIKV drugs in Spodoptera frugiperda insect (Sf21) cells and U-2OS cells. First, structural protein of CHIKV was co-expressed through BEVS and thereby induced cell fusion in Sf21 cells. We used an internal ribosome entry site (IRES) to co-express the green fluorescent protein (EGFP) for identifying these fusion events. The EGFP-positive Sf21 cells fused with each other and with uninfected cells to form syncytia. We identified that ursolic acid has potential anti-CHIKV activity in vitro, by using this approach. Second, BacMam virus-based gene delivery has been successfully applied for the transient expression of non-structural proteins with a subgenomic promoter-EGFP (SP-EGFP) cassette in U-2OS cells to act as an in vitro CHIKV replicon system. Our BacMam-based screening system has identified that the potential effects of baicalin and baicalein phytocompounds can inhibit the replicon activity of CHIKV in U-2OS cells. In conclusion, our results suggested that BEVS can be a potential tool for screening drugs against CHIKV.
Collapse
Affiliation(s)
- Muhammed Muhsin Varikkodan
- Department of Chemistry, Chung Yuan Christian University, Chungli 320, Taiwan;
- Department of Bioscience Technology, Chung Yuan Christian University, Chungli 320, Taiwan;
| | - Chun-Chung Chen
- Department of Bioscience Technology, Chung Yuan Christian University, Chungli 320, Taiwan;
| | - Tzong-Yuan Wu
- Department of Chemistry, Chung Yuan Christian University, Chungli 320, Taiwan;
- Department of Bioscience Technology, Chung Yuan Christian University, Chungli 320, Taiwan;
- Correspondence: ; Tel.: +886-3-2653520
| |
Collapse
|
7
|
Suchowiecki K, Reid SP, Simon GL, Firestein GS, Chang A. Persistent Joint Pain Following Arthropod Virus Infections. Curr Rheumatol Rep 2021; 23:26. [PMID: 33847834 PMCID: PMC8042844 DOI: 10.1007/s11926-021-00987-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Persistent joint pain is a common manifestation of arthropod-borne viral infections and can cause long-term disability. We review the epidemiology, pathophysiology, diagnosis, and management of arthritogenic alphavirus infection. RECENT FINDINGS The global re-emergence of alphaviral outbreaks has led to an increase in virus-induced arthralgia and arthritis. Alphaviruses, including Chikungunya, O'nyong'nyong, Sindbis, Barmah Forest, Ross River, and Mayaro viruses, are associated with acute and/or chronic rheumatic symptoms. Identification of Mxra8 as a viral entry receptor in the alphaviral replication pathway creates opportunities for treatment and prevention. Recent evidence suggesting virus does not persist in synovial fluid during chronic chikungunya infection indicates that immunomodulators may be given safely. The etiology of persistent joint pain after alphavirus infection is still poorly understood. New diagnostic tools along and evidence-based treatment could significantly improve morbidity and long-term disability.
Collapse
Affiliation(s)
- Karol Suchowiecki
- Department of Medicine, George Washington University, 2150 Pennsylvania Ave Suite 5-416, Washington, DC 20037 USA
| | - St. Patrick Reid
- Department of Pathology and Microbiology, 985900 Nebraska Medical Center, Omaha, NE 68198-5900 USA
| | - Gary L. Simon
- Department of Medicine, George Washington University, 2150 Pennsylvania Ave Suite 5-416, Washington, DC 20037 USA
| | - Gary S. Firestein
- UC San Diego Health Sciences, 9500 Gilman Drive #0602, La Jolla, CA 92093 USA
| | - Aileen Chang
- Department of Medicine, George Washington University, 2150 Pennsylvania Ave Suite 5-416, Washington, DC 20037 USA
| |
Collapse
|
8
|
Abstract
Viral infections lead to the death of more than a million people each year around the world, both directly and indirectly. Viruses interfere with many cell functions, particularly critical pathways for cell death, by affecting various intracellular mediators. MicroRNAs (miRNAs) are a major example of these mediators because they are involved in many (if not most) cellular mechanisms. Virus-regulated miRNAs have been implicated in three cell death pathways, namely, apoptosis, autophagy, and anoikis. Several molecules (e.g., BECN1 and B cell lymphoma 2 [BCL2] family members) are involved in both apoptosis and autophagy, while activation of anoikis leads to cell death similar to apoptosis. These mechanistic similarities suggest that common regulators, including some miRNAs (e.g., miR-21 and miR-192), are involved in different cell death pathways. Because the balance between cell proliferation and cell death is pivotal to the homeostasis of the human body, miRNAs that regulate cell death pathways have drawn much attention from researchers. miR-21 is regulated by several viruses and can affect both apoptosis and anoikis via modulating various targets, such as PDCD4, PTEN, interleukin (IL)-12, Maspin, and Fas-L. miR-34 can be downregulated by viral infection and has different effects on apoptosis, depending on the type of virus and/or host cell. The present review summarizes the existing knowledge on virus-regulated miRNAs involved in the modulation of cell death pathways. Understanding the mechanisms for virus-mediated regulation of cell death pathways could provide valuable information to improve the diagnosis and treatment of many viral diseases.
Collapse
|
9
|
Prow NA, Hirata TDC, Tang B, Larcher T, Mukhopadhyay P, Alves TL, Le TT, Gardner J, Poo YS, Nakayama E, Lutzky VP, Nakaya HI, Suhrbier A. Exacerbation of Chikungunya Virus Rheumatic Immunopathology by a High Fiber Diet and Butyrate. Front Immunol 2019; 10:2736. [PMID: 31849947 PMCID: PMC6888101 DOI: 10.3389/fimmu.2019.02736] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/08/2019] [Indexed: 12/21/2022] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito transmitted alphavirus associated with a robust systemic infection and an acute inflammatory rheumatic disease. A high fiber diet has been widely promoted for its ability to ameliorate inflammatory diseases. Fiber is fermented in the gut into short chain fatty acids such as acetate, propionate, and butyrate, which enter the circulation providing systemic anti-inflammatory activities. Herein we show that mice fed a high fiber diet show a clear exacerbation of CHIKV arthropathy, with increased edema and neutrophil infiltrates. RNA-Seq analyses illustrated that a high fiber diet, in this setting, promoted a range of pro-neutrophil responses including Th17/IL-17. Gene Set Enrichment Analyses demonstrated significant similarities with mouse models of inflammatory psoriasis and significant depression of macrophage resolution phase signatures in the CHIKV arthritic lesions from mice fed a high fiber diet. Supplementation of the drinking water with butyrate also increased edema after CHIKV infection. However, the mechanisms involved were different, with modulation of AP-1 and NF-κB responses identified, potentially implicating deoptimization of endothelial barrier repair. Thus, neither fiber nor short chain fatty acids provided benefits in this acute infectious disease setting, which is characterized by widespread viral cytopathic effects and a need for tissue repair.
Collapse
Affiliation(s)
- Natalie A Prow
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,Australian Infectious Disease Research Centre, University of Queensland, Brisbane, QLD, Australia
| | - Thiago D C Hirata
- Computational Systems Biology Laboratory, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Bing Tang
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Thibaut Larcher
- Institut National de Recherche Agronomique, Unité Mixte de Recherche 703, Oniris, Nantes, France
| | - Pamela Mukhopadhyay
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Tiago Lubiana Alves
- Computational Systems Biology Laboratory, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Thuy T Le
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Joy Gardner
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Yee Suan Poo
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Eri Nakayama
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Viviana P Lutzky
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Helder I Nakaya
- Computational Systems Biology Laboratory, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Andreas Suhrbier
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,Australian Infectious Disease Research Centre, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
10
|
Rheumatic manifestations of chikungunya: emerging concepts and interventions. Nat Rev Rheumatol 2019; 15:597-611. [DOI: 10.1038/s41584-019-0276-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2019] [Indexed: 12/15/2022]
|
11
|
Soares-Schanoski A, Baptista Cruz N, de Castro-Jorge LA, de Carvalho RVH, dos Santos CA, da Rós N, Oliveira Ú, Costa DD, dos Santos CLS, Cunha MDP, Oliveira MLS, Alves JC, Océa RADLC, Ribeiro DR, Gonçalves ANA, Gonzalez-Dias P, Suhrbier A, Zanotto PMDA, de Azevedo IJ, Zamboni DS, Almeida RP, Ho PL, Kalil J, Nishiyama MY, Nakaya HI. Systems analysis of subjects acutely infected with the Chikungunya virus. PLoS Pathog 2019; 15:e1007880. [PMID: 31211814 PMCID: PMC6599120 DOI: 10.1371/journal.ppat.1007880] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/28/2019] [Accepted: 05/30/2019] [Indexed: 12/21/2022] Open
Abstract
The largest ever recorded epidemic of the Chikungunya virus (CHIKV) broke out in 2004 and affected four continents. Acute symptomatic infections are typically associated with the onset of fever and often debilitating polyarthralgia/polyarthritis. In this study, a systems biology approach was adopted to analyze the blood transcriptomes of adults acutely infected with the CHIKV. Gene signatures that were associated with viral RNA levels and the onset of symptoms were identified. Among these genes, the putative role of the Eukaryotic Initiation Factor (eIF) family genes and apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC3A) in the CHIKV replication process were displayed. We further compared these signatures with signatures induced by the Dengue virus infection and rheumatoid arthritis. Finally, we demonstrated that the CHIKV in vitro infection of murine bone marrow-derived macrophages induced IL-1 beta production in a mechanism that is significantly dependent on the inflammasome NLRP3 activation. The observations provided valuable insights into virus-host interactions during the acute phase and can be instrumental in the investigation of new and effective therapeutic interventions. The Chikungunya virus (CHIKV) has infected millions of people worldwide and presents a serious public health issue. Acute symptomatic infections caused by contracting this mosquito-transmitted arbovirus are typically associated with an abrupt onset of fever and often debilitating polyarthralgia/ polyarthritis, as well as prolonged periods of disability in some patients. These dramatic effects call for a careful evaluation of the molecular mechanisms involved in this puzzling infection. By analyzing the blood transcriptome of adults acutely infected with CHIKV, we were able to provide a detailed picture of the early molecular events induced by the infection. Additionally, the systems biology approach revealed genes that can be investigated extensively as probable therapeutic targets for the disease.
Collapse
Affiliation(s)
| | - Natália Baptista Cruz
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Luíza Antunes de Castro-Jorge
- Departamento de Biologia Celular, Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Renan Villanova Homem de Carvalho
- Departamento de Biologia Celular, Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Cliomar Alves dos Santos
- Health Foundation Parreiras Horta, Central Laboratory of Public Health (LACEN/SE), State Secretary for Health, Sergipe, Brazil
| | - Nancy da Rós
- Special Laboratory for Applied Toxinology, Butantan Institute, São Paulo, Brazil
| | - Úrsula Oliveira
- Special Laboratory for Applied Toxinology, Butantan Institute, São Paulo, Brazil
| | - Danuza Duarte Costa
- Health Foundation Parreiras Horta, Central Laboratory of Public Health (LACEN/SE), State Secretary for Health, Sergipe, Brazil
| | | | - Marielton dos Passos Cunha
- Laboratory of Molecular Evolution and Bioinformatics, Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | | | - Juliana Cardoso Alves
- Division of Immunology and Molecular Biology Laboratory, University Hospital/EBSERH, Federal University of Sergipe, Sergipe, Brazil
| | | | - Danielle Rodrigues Ribeiro
- Division of Immunology and Molecular Biology Laboratory, University Hospital/EBSERH, Federal University of Sergipe, Sergipe, Brazil
| | - André Nicolau Aquime Gonçalves
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Patricia Gonzalez-Dias
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Paolo Marinho de Andrade Zanotto
- Laboratory of Molecular Evolution and Bioinformatics, Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | | | - Dario S. Zamboni
- Departamento de Biologia Celular, Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Roque Pacheco Almeida
- Division of Immunology and Molecular Biology Laboratory, University Hospital/EBSERH, Federal University of Sergipe, Sergipe, Brazil
| | - Paulo Lee Ho
- Bacteriology Service, Bioindustrial Division, Butantan Institute, São Paulo, Brazil
| | - Jorge Kalil
- Heart Institute, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Helder I. Nakaya
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
12
|
Hsu CH, Cruz-Lopez F, Vargas Torres D, Perez-Padilla J, Lorenzi OD, Rivera A, Staples JE, Lugo E, Munoz-Jordan J, Fischer M, Garcia Gubern C, Rivera Garcia B, Alvarado L, Sharp TM. Risk factors for hospitalization of patients with chikungunya virus infection at sentinel hospitals in Puerto Rico. PLoS Negl Trop Dis 2019; 13:e0007084. [PMID: 30640900 PMCID: PMC6347300 DOI: 10.1371/journal.pntd.0007084] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 01/25/2019] [Accepted: 12/17/2018] [Indexed: 12/27/2022] Open
Abstract
Background Hospitalization of patients during outbreaks of chikungunya virus has been reported to be uncommon (0.5–8.7%), but more frequent among infants and the elderly. CHIKV was first detected in Puerto Rico in May 2014. We enrolled patients with acute febrile illness (AFI) presenting to two hospital emergency departments in Puerto Rico and tested them for CHIKV infection to describe the frequency of detection of CHIKV-infected patients, identify risk factors for hospitalization, and describe patients with severe manifestations. Methodology/Principal findings Serum specimens were collected from patients with AFI and tested by rRT-PCR. During May–December 2014, a total of 3,035 patients were enrolled, and 1,469 (48.4%) had CHIKV infection. A total of 157 (10.7%) CHIKV-infected patients were hospitalized, six (0.4%) were admitted to the intensive care unit, and two died (0.1%). Common symptoms among all CHIKV-infected patients were arthralgia (82.6%), lethargy (80.6%), and myalgia (80.5%). Compared to patients aged 1–69 years (7.3%), infant (67.2%) and elderly (17.3%) patients were nine and two times more likely to be hospitalized, respectively (relative risk [RR] and 95% confidence interval [CI] = 9.16 [7.05–11.90] and 2.36 [1.54–3.62]). Multiple symptoms of AFI were associated with decreased risk of hospitalization, including arthralgia (RR = 0.31 [0.23–0.41]) and myalgia (RR = 0.29 [0.22–0.39]). Respiratory symptoms were associated with increased risk of hospitalization, including rhinorrhea (RR = 1.68 [1.24–2.27) and cough (RR = 1.77 [1.31–2.39]). Manifestations present among <5% of patients but associated with patient hospitalization included cyanosis (RR = 2.20 [1.17–4.12) and seizures (RR = 3.23 [1.80–5.81). Discussion Among this cohort of CHIKV-infected patients, hospitalization was uncommon, admission to the ICU was infrequent, and death was rare. Risk of hospitalization was higher in patients with symptoms of respiratory illness and other manifestations that may not have been the result of CHIKV infection. Chikungunya is an emerging infectious disease caused by a virus (chikungunya virus, CHIKV) transmitted through the bite of infected mosquitos; typical symptoms are fever and joint pain. After CHIKV was first detected in Puerto Rico in 2014, an epidemic quickly spread across the island. Because previous reports identified varying frequencies of hospitalization of CHIKV-infected patients, we used an existing hospital-based disease detection system to better understand the frequency and reasons for hospitalization of CHIKV-infected patients in Puerto Rico. Among 1,469 patients with laboratory-confirmed CHIKV infection, 11% were hospitalized, most of whom were infants or elderly. Six CHIKV-infected patients were admitted to the intensive care unit, and two died. Although several illness characteristics were associated with hospitalization, most of these were not typical of chikungunya and instead suggested underlying or concomitant respiratory disease. By enrolling patients when they presented to the emergency department and testing them for evidence of CHIKV infection, we determined that hospitalization in this population occurred in roughly one-in-ten CHIKV-infected patients, one-in-two hundred were admitted to the intensive care unit, and one-in-one thousand died. These findings provide information on the spectrum of disease caused by CHIKV, and identified underlying or concomitant respiratory illness as a risk factor associated with hospitalization.
Collapse
Affiliation(s)
- Christopher H. Hsu
- Centers for Disease Control and Prevention, Poxvirus and Rabies Branch, Atlanta, GA, United States of America
- Centers for Disease Control and Prevention, Epidemic Intelligence Service, Atlanta, GA, United States of America
| | - Fabiola Cruz-Lopez
- Centers for Disease Control and Prevention, Dengue Branch, San Juan, Puerto Rico
- Ponce Health Sciences University, Ponce, Puerto Rico
| | | | - Janice Perez-Padilla
- Centers for Disease Control and Prevention, Dengue Branch, San Juan, Puerto Rico
| | - Olga D. Lorenzi
- Centers for Disease Control and Prevention, Dengue Branch, San Juan, Puerto Rico
| | - Aidsa Rivera
- Centers for Disease Control and Prevention, Dengue Branch, San Juan, Puerto Rico
| | - J. Erin Staples
- Centers for Disease Control and Prevention, Arboviral Diseases Branch, Fort Collins, CO, United States of America
| | - Esteban Lugo
- San Lucas Episcopal Hospital, Ponce, Puerto Rico
| | - Jorge Munoz-Jordan
- Centers for Disease Control and Prevention, Dengue Branch, San Juan, Puerto Rico
| | - Marc Fischer
- Centers for Disease Control and Prevention, Arboviral Diseases Branch, Fort Collins, CO, United States of America
| | - Carlos Garcia Gubern
- Ponce Health Sciences University, Ponce, Puerto Rico
- San Lucas Episcopal Hospital, Ponce, Puerto Rico
| | | | - Luisa Alvarado
- Centers for Disease Control and Prevention, Dengue Branch, San Juan, Puerto Rico
- San Lucas Episcopal Hospital, Ponce, Puerto Rico
| | - Tyler M. Sharp
- Centers for Disease Control and Prevention, Dengue Branch, San Juan, Puerto Rico
- * E-mail:
| |
Collapse
|
13
|
Sindbis Virus Infection Causes Cell Death by nsP2-Induced Transcriptional Shutoff or by nsP3-Dependent Translational Shutoff. J Virol 2018; 92:JVI.01388-18. [PMID: 30232189 DOI: 10.1128/jvi.01388-18] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 09/12/2018] [Indexed: 11/20/2022] Open
Abstract
Sindbis virus (SINV) is a representative member of the Alphavirus genus in the Togaviridae family. The hallmark of SINV replication in vertebrate cells is a rapid development of the cytopathic effect (CPE), which usually occurs within 24 h postinfection. Mechanistic understanding of CPE might lead to development of new prophylactic vaccines and therapeutic means against alphavirus infections. However, development of noncytopathic SINV variants and those of other Old World alphaviruses was always highly inefficient and usually resulted in selection of mutants demonstrating poor replication of the viral genome and transcription of subgenomic RNA. This likely caused a nonspecific negative effect on the rates of CPE development. The results of this study demonstrate that CPE induced by SINV and likely by other Old World alphaviruses is a multicomponent process, in which transcriptional and translational shutoffs are the key contributors. Inhibition of cellular transcription and translation is determined by SINV nsP2 and nsP3 proteins, respectively. Defined mutations in the nsP2-specific peptide between amino acids (aa) 674 and 688 prevent virus-induced degradation of the catalytic subunit of cellular-DNA-dependent RNA polymerase II and transcription inhibition and make SINV a strong type I interferon (IFN) inducer without affecting its replication rates. Mutations in the nsP3 macrodomain, which were demonstrated to inhibit its mono-ADP-ribosylhydrolase activity, downregulate the second component of CPE development, inhibition of cellular translation, and also have no effect on virus replication rates. Only the combination of nsP2- and nsP3-specific mutations in the SINV genome has a dramatic negative effect on the ability of virus to induce CPE.IMPORTANCE Alphaviruses are a group of important human and animal pathogens with worldwide distribution. Their characteristic feature is a highly cytopathic phenotype in cells of vertebrate origin. The molecular mechanism of CPE remains poorly understood. In this study, by using Sindbis virus (SINV) as a model of the Old World alphaviruses, we demonstrated that SINV-specific CPE is redundantly determined by viral nsP2 and nsP3 proteins. NsP2 induces the global transcriptional shutoff, and this nuclear function can be abolished by the mutations of the small, surface-exposed peptide in the nsP2 protease domain. NsP3, in turn, determines the development of translational shutoff, and this activity depends on nsP3 macrodomain-associated mono-ADP-ribosylhydrolase activity. A combination of defined mutations in nsP2 and nsP3, which abolish SINV-induced transcription and translation inhibition, in the same viral genome does not affect SINV replication rates but makes it noncytopathic and a potent inducer of type I interferon.
Collapse
|
14
|
Rodríguez Y, Rojas M, Pacheco Y, Acosta-Ampudia Y, Ramírez-Santana C, Monsalve DM, Gershwin ME, Anaya JM. Guillain-Barré syndrome, transverse myelitis and infectious diseases. Cell Mol Immunol 2018; 15:547-562. [PMID: 29375121 PMCID: PMC6079071 DOI: 10.1038/cmi.2017.142] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 11/07/2017] [Accepted: 11/07/2017] [Indexed: 02/07/2023] Open
Abstract
Guillain-Barré syndrome (GBS) and transverse myelitis (TM) both represent immunologically mediated polyneuropathies of major clinical importance. Both are thought to have a genetic predisposition, but as of yet no specific genetic risk loci have been clearly defined. Both are considered autoimmune, but again the etiologies remain enigmatic. Both may be induced via molecular mimicry, particularly from infectious agents and vaccines, but clearly host factor and co-founding host responses will modulate disease susceptibility and natural history. GBS is an acute inflammatory immune-mediated polyradiculoneuropathy characterized by tingling, progressive weakness, autonomic dysfunction, and pain. Immune injury specifically takes place at the myelin sheath and related Schwann-cell components in acute inflammatory demyelinating polyneuropathy, whereas in acute motor axonal neuropathy membranes on the nerve axon (the axolemma) are the primary target for immune-related injury. Outbreaks of GBS have been reported, most frequently related to Campylobacter jejuni infection, however, other agents such as Zika Virus have been strongly associated. Patients with GBS related to infections frequently produce antibodies against human peripheral nerve gangliosides. In contrast, TM is an inflammatory disorder characterized by acute or subacute motor, sensory, and autonomic spinal cord dysfunction. There is interruption of ascending and descending neuroanatomical pathways on the transverse plane of the spinal cord similar to GBS. It has been suggested to be triggered by infectious agents and molecular mimicry. In this review, we will focus on the putative role of infectious agents as triggering factors of GBS and TM.
Collapse
Affiliation(s)
- Yhojan Rodríguez
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Manuel Rojas
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Yovana Pacheco
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Yeny Acosta-Ampudia
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Carolina Ramírez-Santana
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Diana M Monsalve
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis, School of Medicine, Davis, USA, CA
| | - Juan-Manuel Anaya
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia.
| |
Collapse
|
15
|
Quan TM, Phuong HT, Vy NHT, Thanh NTL, Lien NTN, Hong TTK, Dung PN, Chau NVV, Boni MF, Clapham HE. Evidence of previous but not current transmission of chikungunya virus in southern and central Vietnam: Results from a systematic review and a seroprevalence study in four locations. PLoS Negl Trop Dis 2018; 12:e0006246. [PMID: 29425199 PMCID: PMC5823466 DOI: 10.1371/journal.pntd.0006246] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 02/22/2018] [Accepted: 01/18/2018] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Arbovirus infections are a serious concern in tropical countries due to their high levels of transmission and morbidity. With the outbreaks of chikungunya (CHIKV) in surrounding regions in recent years and the fact that the environment in Vietnam is suitable for the vectors of CHIKV, the possibility of transmission of CHIKV in Vietnam is of great interest. However, information about CHIKV activity in Vietnam remains limited. METHODOLOGY In order to address this question, we performed a systematic review of CHIKV in Vietnam and a CHIKV seroprevalence survey. The seroprevalence survey tested for CHIKV IgG in population serum samples from individuals of all ages in 2015 from four locations in Vietnam. PRINCIPAL FINDINGS The four locations were An Giang province (n = 137), Ho Chi Minh City (n = 136), Dak Lak province (n = 137), and Hue City (n = 136). The findings give us evidence of some CHIKV activity: 73/546 of overall samples were seropositive (13.4%). The age-adjusted seroprevalences were 12.30% (6.58-18.02), 13.42% (7.16-19.68), 7.97% (3.56-12.38), and 3.72% (1.75-5.69) in An Giang province, Ho Chi Minh City, Dak Lak province, and Hue City respectively. However, the age-stratified seroprevalence suggests that the last transmission ended around 30 years ago, consistent with results from the systematic review. We see no evidence for on-going transmission in three of the locations, though with some evidence of recent exposure in Dak Lak, most likely due to transmission in neighbouring countries. Before the 1980s, when transmission was occurring, we estimate on average 2-4% of the population were infected each year in HCMC and An Giang and Hue (though transmision ended earlier in Hue). We estimate lower transmission in Dak Lak, with around 1% of the population infected each year. CONCLUSION In conclusion, we find evidence of past CHIKV transmission in central and southern Vietnam, but no evidence of recent sustained transmission. When transmission of CHIKV did occur, it appeared to be widespread and affect a geographically diverse population. The estimated susceptibility of the population to chikungunya is continually increasing, therefore the possibility of future CHIKV transmission in Vietnam remains.
Collapse
Affiliation(s)
- Tran Minh Quan
- Mathematical Modelling Department, Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
- * E-mail:
| | - Huynh Thi Phuong
- Mathematical Modelling Department, Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
| | - Nguyen Ha Thao Vy
- Mathematical Modelling Department, Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
| | - Nguyen Thi Le Thanh
- Mathematical Modelling Department, Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
| | - Nguyen Thi Nam Lien
- Microbiology Department, Hue Central Hospital, Hue, Thua Thien Hue province, Vietnam
| | - Tran Thi Kim Hong
- Laboratory Department, Dak Lak General Hospital, Buon Ma Thuot, Vietnam
| | - Pham Ngoc Dung
- Laboratory Department, An Giang General Hospital, An Giang province, Vietnam
| | | | - Maciej F. Boni
- Mathematical Modelling Department, Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Hannah E. Clapham
- Mathematical Modelling Department, Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
16
|
Mogami R, Pereira Vaz JL, de Fátima Barcelos Chagas Y, de Abreu MM, Torezani RS, de Almeida Vieira A, Junqueira Filho EA, Barbosa YB, Carvalho ACP, Lopes AJ. Ultrasonography of Hands and Wrists in the Diagnosis of Complications of Chikungunya Fever. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2018; 37:511-520. [PMID: 28786505 DOI: 10.1002/jum.14344] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 05/02/2017] [Indexed: 06/07/2023]
Abstract
The purpose of this series was to describe the ultrasonographic and radiographic manifestations of changes to the hands and wrists in 50 patients with chronic musculoskeletal symptoms secondary to Chikungunya fever during the 2016 outbreak that occurred in Rio de Janeiro, Brazil. Most of the plain radiographs were normal (62%). The most common ultrasonographic findings were small joint synovitis (84%), wrist synovitis (74%), finger tenosynovitis (70%), and cellulitis (50%). In most cases, power Doppler did not show an increase in synovial vascular flow. The plain radiographs showed no specific findings, whereas the ultrasound images revealed synovial compromise and neural thickening.
Collapse
Affiliation(s)
- Roberto Mogami
- Department of Radiology, Pedro Ernesto University Hospital, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - João Luiz Pereira Vaz
- Department of Rheumatology, Gafrée e Guinle University Hospital, Federal State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Yêdda de Fátima Barcelos Chagas
- Department of Rheumatology, Gafrée e Guinle University Hospital, Federal State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mirhelen Mendes de Abreu
- Department of Rheumatology, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo Sperling Torezani
- Department of Radiology, Pedro Ernesto University Hospital, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - André de Almeida Vieira
- Department of Radiology, Pedro Ernesto University Hospital, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Yasmin Baptista Barbosa
- Department of Radiology, Pedro Ernesto University Hospital, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Antonio Carlos Pires Carvalho
- Department of Radiology, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Agnaldo José Lopes
- Postgraduate Programe in Medical Sciences, School of Medical Sciences, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
17
|
Amdekar S, Parashar D, Alagarasu K. Chikungunya Virus-Induced Arthritis: Role of Host and Viral Factors in the Pathogenesis. Viral Immunol 2017; 30:691-702. [PMID: 28910194 DOI: 10.1089/vim.2017.0052] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chikungunya virus (CHIKV), a member of Alphavirus genus, is responsible for chikungunya fever (CHIKF), which is characterized by the presence of fever, rash, myalgia, and arthralgia. Reemergence of CHIKV has become a significant public health concern in Asian and African countries and is newly emerging in the Middle East, Pacific, American, and European countries. Cytokines, innate (monocytes, natural killer cells) and adaptive immune response (role of B cells and T cells i.e. CD4+ and CD8+), and/or viral factors contribute to CHIKV-induced arthritis. Vector factors such as vector competence (that includes extrinsic and intrinsic factors) and effect of genome mutations on viral replication and fitness in mosquitoes are responsible for the spread of virus, although they are not directly responsible for CHIKV-induced arthritis. CHIKV-induced arthritis mimics arthritis by involving joints and a common pattern of leukocyte infiltrate, cytokine production, and complement activation. Successful establishment of CHIKV infection and induction of arthritis depends on its ability to manipulate host cellular processes or host factors. CHIKV-induced joint damage is due to host inflammatory response mediated by macrophages, T cells, and antibodies, as well as the possible persistence of the virus in hidden sites. This review provides insight into mechanisms of CHIKV-induced arthritis. Understanding the pathogenesis of CHIKV-induced arthritis will help in developing novel strategies to predict and prevent the disease in virus-infected subjects and combat the disease, thereby decreasing the worldwide burden of the disease.
Collapse
Affiliation(s)
- Sarika Amdekar
- Dengue/Chikungunya Group, ICMR-National Institute of Virology , Pune, India
| | - Deepti Parashar
- Dengue/Chikungunya Group, ICMR-National Institute of Virology , Pune, India
| | | |
Collapse
|
18
|
Giry C, Roquebert B, Li-Pat-Yuen G, Gasque P, Jaffar-Bandjee MC. Improved detection of genus-specific Alphavirus using a generic TaqMan® assay. BMC Microbiol 2017; 17:164. [PMID: 28738838 PMCID: PMC5525299 DOI: 10.1186/s12866-017-1080-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 07/18/2017] [Indexed: 01/04/2023] Open
Abstract
Background Alphaviruses are arthropod borne RNA viruses of medical importance. Geographical expansion of mosquitoes of the Aedes genus in the past decades has been associated with major Alphavirus-associated outbreaks. Climate changes and intensification of air travels have favored vector expansion and virus dissemination in new territories leading to virus emergence not only in tropical areas but also in temperate regions. The detection of emergence is based upon surveillance networks with epidemiological and laboratory investigation. Method A specific, sensitive and rapid screening test for genus-specific Alphavirus is critically required. To address this issue, we developed a new molecular assay targeting nsP4 gene and using a TaqMan® real time RT-PCR method for the specific detection of all major Alphavirus genus members. Results This assay was tested for specificity using several Alphavirus species. We also tested successfully clinical sensitivity using patient’s samples collected during the Chikungunya outbreak of 2005–2006 in the Indian Ocean. Conclusions This new pan-Alphavirus molecular diagnostic tool offers great potential for exclusion diagnosis and emergence detection given its broad specificity restricted to Alphavirus genus.
Collapse
Affiliation(s)
- Claude Giry
- Centre National Arbovirus Associé, CHU de la Réunion-Site Nord, Saint-Denis, La Réunion, France. .,Laboratoire de microbiologie, CHU de la Réunion-Site Nord, Saint-Denis, La Réunion, France.
| | - Bénédicte Roquebert
- Centre National Arbovirus Associé, CHU de la Réunion-Site Nord, Saint-Denis, La Réunion, France.,Laboratoire de microbiologie, CHU de la Réunion-Site Nord, Saint-Denis, La Réunion, France.,UMR PIMIT, Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, Sainte-Clotilde, La Réunion, France
| | - Ghislaine Li-Pat-Yuen
- Centre National Arbovirus Associé, CHU de la Réunion-Site Nord, Saint-Denis, La Réunion, France.,Laboratoire de microbiologie, CHU de la Réunion-Site Nord, Saint-Denis, La Réunion, France
| | - Philippe Gasque
- Laboratoire d'immunologie clinique et expérimentale ZOI (LICE-OI), CHU de la Réunion-Site Nord, Saint-Denis, La Réunion, France.,UMR PIMIT, Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, Sainte-Clotilde, La Réunion, France
| | - Marie-Christine Jaffar-Bandjee
- Centre National Arbovirus Associé, CHU de la Réunion-Site Nord, Saint-Denis, La Réunion, France.,Laboratoire de microbiologie, CHU de la Réunion-Site Nord, Saint-Denis, La Réunion, France.,Laboratoire d'immunologie clinique et expérimentale ZOI (LICE-OI), CHU de la Réunion-Site Nord, Saint-Denis, La Réunion, France.,UMR PIMIT, Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, Sainte-Clotilde, La Réunion, France
| |
Collapse
|
19
|
Jasti AK, Selmi C, Sarmiento-Monroy JC, Vega DA, Anaya JM, Gershwin ME. Guillain-Barré syndrome: causes, immunopathogenic mechanisms and treatment. Expert Rev Clin Immunol 2016. [DOI: 10.1080/1744666x.2016.1193006 10.1080/1744666x.2016.1193006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
20
|
Kuo SC, Wang YM, Ho YJ, Chang TY, Lai ZZ, Tsui PY, Wu TY, Lin CC. Suramin treatment reduces chikungunya pathogenesis in mice. Antiviral Res 2016; 134:89-96. [DOI: 10.1016/j.antiviral.2016.07.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 07/19/2016] [Accepted: 07/19/2016] [Indexed: 12/29/2022]
|
21
|
Jasti AK, Selmi C, Sarmiento-Monroy JC, Vega DA, Anaya JM, Gershwin ME. Guillain-Barré syndrome: causes, immunopathogenic mechanisms and treatment. Expert Rev Clin Immunol 2016; 12:1175-1189. [PMID: 27292311 DOI: 10.1080/1744666x.2016.1193006] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Guillain-Barré syndrome is a rare disease representing the most frequent cause of acute flaccid symmetrical weakness of the limbs and areflexia usually reaching its peak within a month. The etiology and pathogenesis remain largely enigmatic and the syndrome results in death or severe disability in 9-17% of cases despite immunotherapy. Areas covered: In terms of etiology, Guillain-Barré syndrome is linked to Campylobacter infection but less than 0.1% of infections result in the syndrome. In terms of pathogenesis, activated macrophages and T cells and serum antibodies against gangliosides are observed but their significance is unclear. Expert commentary: Guillain-Barré syndrome is a heterogeneous condition with numerous subtypes and recent data point towards the role of ganglioside epitopes by immunohistochemical methods. Ultimately, the syndrome results from a permissive genetic background on which environmental factors, including infections, vaccination and the influence of aging, lead to disease.
Collapse
Affiliation(s)
- Anil K Jasti
- a Division of Rheumatology, Allergy, and Clinical Immunology , University of California Davis , Davis , CA , USA
| | - Carlo Selmi
- b Rheumatology and Clinical Immunology , Humanitas Research Hospital , Rozzano , Milan , Italy.,c BIOMETRA Department , University of Milan , Milan , Italy
| | - Juan C Sarmiento-Monroy
- d Center for Autoimmune Diseases Research (CREA) , Universidad del Rosario , Bogota , Colombia
| | - Daniel A Vega
- e Intensive Care Unit, Mederi, Hospital Universitario Mayor , Universidad del Rosario , Bogotá , Colombia
| | - Juan-Manuel Anaya
- d Center for Autoimmune Diseases Research (CREA) , Universidad del Rosario , Bogota , Colombia
| | - M Eric Gershwin
- a Division of Rheumatology, Allergy, and Clinical Immunology , University of California Davis , Davis , CA , USA
| |
Collapse
|
22
|
Abstract
The incidence and likely causes of fever of unknown origin (FUO) have changed over the last few decades, largely because enhanced capabilities of laboratory testing and imaging have helped confirm earlier diagnoses. History and examination are still of paramount importance for cryptogenic infections. Adolescents who have persisting nonspecific complaints of fatigue sometimes are referred to Pediatric Infectious Diseases consultants for FUO because the problem began with an acute febrile illness or measured temperatures are misidentified as "fevers". A thorough history that reveals myriad symptoms when juxtaposed against normal findings on examination and simple laboratory testing can suggest a diagnosis of "fatigue of deconditioning". "Treatment" is forced return to school, and reconditioning. The management of patients with acute onset of fever without an obvious source or focus of infection is dependent on age. Infants under one month of age are at risk for serious and rapidly progressive bacterial and viral infections, and yet initially can have fever without other observable abnormalities. Urgent investigation and pre-emptive therapies usually are prudent. By two months of age, clinical judgment best guides management. Between one and two months of age, a decision to investigate or not depends on considerations of the height and duration of fever, the patient's observable behavior/interaction, knowledge of concurrent family illnesses, and likelihood of close observation and follow up. Children 6 months-36 months of age with acute onset of fever who appear well and have no observable focus of infection can be evaluated clinically, without laboratory investigation or antibiotic therapy, unless risk factors elevate the likelihood of urinary tract infection.
Collapse
|
23
|
Abstract
Chikungunya fever is an increasingly common viral infection transmitted to humans by species of the Aedes mosquitoes. Characterized by fevers, myalgias, arthralgias, headache, and rash, the infection is endemic to tropical areas. However, identification of disease vectors to Europe and the Americas has raised concern for possible spread of chikungunya to these areas. More recently, these concerns have become a reality; with more than 500,000 new cases in the Western hemisphere in the last 2 years, questions have arisen about the implications of infection during pregnancy and delivery. A literature review was performed using MEDLINE in order to gather information regarding the obstetric implications of this infection. It appears that although this virus can cross the placenta in the first and second trimester leading to fetal infection and miscarriage, this is a very rare occurrence. In contrast, active maternal infection within 4 days of delivery conveys a high risk of vertical transmission. Maternal infection during pregnancy does not appear to be more severe than infection on the nonpregnant female. Given the increasing incidence of chikungunya, obstetric providers should be aware of the disease and its implication for the gravid female.
Collapse
|
24
|
Sharma A, Balakathiresan NS, Maheshwari RK. Chikungunya Virus Infection Alters Expression of MicroRNAs Involved in Cellular Proliferation, Immune Response and Apoptosis. Intervirology 2016; 58:332-41. [PMID: 26829480 DOI: 10.1159/000441309] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 09/23/2015] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE(S) Chikungunya virus (CHIKV) is a reemerging virus of significant importance that has caused large-scale outbreaks in the countries with a temperate climate. CHIKV causes debilitating arthralgia which can persist for weeks and up to a year. Fibroblast cells are the main target of CHIKV infection. In this study, we analyzed microRNA (miRNA) modulation in the fibroblast cells infected with CHIKV at an early stage of infection. METHODS 760 miRNAs were analyzed for modulation following infection with CHIKV at 6 h after infection. Bioinformatic analysis was done to identify the signaling pathway that may be targeted by the significantly modulated miRNAs. Validation of the miRNAs was done using a singleplex miRNA assay and protein target validation of modulated miRNAs was done by Western blot analysis. RESULTS Computational analysis of the significantly modulated miRNAs indicated their involvement in signaling pathways such as Toll-like receptor, mTOR, JAK-STAT and Pi3-Akt pathways, which have been shown to play important roles during CHIKV infection. Topoisomerase IIβ, a target of two of the modulated miRNAs, was downregulated upon CHIKV infection. CONCLUSION(S) We identified several miRNAs that may play important roles in early events after CHIKV infection and can be potential therapeutic targets against CHIKV infection.
Collapse
Affiliation(s)
- Anuj Sharma
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Md., USA
| | | | | |
Collapse
|
25
|
Couderc T, Lecuit M. Chikungunya virus pathogenesis: From bedside to bench. Antiviral Res 2015; 121:120-31. [PMID: 26159730 DOI: 10.1016/j.antiviral.2015.07.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 07/04/2015] [Indexed: 11/28/2022]
Abstract
Chikungunya virus (CHIKV) is an arbovirus transmitted to humans by mosquito bite. A decade ago, the virus caused a major outbreak in the islands of the Indian Ocean, then reached India and Southeast Asia. More recently, CHIKV has emerged in the Americas, first reaching the Caribbean and now extending to Central, South and North America. It is therefore considered a major public health and economic threat. CHIKV causes febrile illness typically associated with debilitating joint pains. In rare cases, it may also cause central nervous system disease, notably in neonates. Joint symptoms may persist for months to years, and lead to arthritis. This review focuses on the spectrum of signs and symptoms associated with CHIKV infection in humans. It also illustrates how the analysis of clinical and biological data from human cohorts and the development of animal and cellular models of infection has helped to identify the tissue and cell tropisms of the virus and to decipher host responses in benign, severe or persistent disease. This article forms part of a symposium in Antiviral Research on "Chikungunya discovers the New World".
Collapse
Affiliation(s)
- Thérèse Couderc
- Institut Pasteur, Biology of Infection Unit, Paris, France; Inserm U1117, Paris, France.
| | - Marc Lecuit
- Institut Pasteur, Biology of Infection Unit, Paris, France; Inserm U1117, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Division of Infectious Diseases and Tropical Medicine, Necker-Enfants Malades University Hospital, Institut Imagine, Paris, France; Global Virus Network.
| |
Collapse
|
26
|
Goh LYH, Hobson-Peters J, Prow NA, Baker K, Piyasena TBH, Taylor CT, Rana A, Hastie ML, Gorman JJ, Hall RA. The Chikungunya Virus Capsid Protein Contains Linear B Cell Epitopes in the N- and C-Terminal Regions that are Dependent on an Intact C-Terminus for Antibody Recognition. Viruses 2015; 7:2943-64. [PMID: 26061335 PMCID: PMC4488721 DOI: 10.3390/v7062754] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/02/2015] [Accepted: 05/29/2015] [Indexed: 01/14/2023] Open
Abstract
Chikungunya virus (CHIKV) is an arthropod-borne agent that causes severe arthritic disease in humans and is considered a serious health threat in areas where competent mosquito vectors are prevalent. CHIKV has recently been responsible for several millions of cases of disease, involving over 40 countries. The recent re-emergence of CHIKV and its potential threat to human health has stimulated interest in better understanding of the biology and pathogenesis of the virus, and requirement for improved treatment, prevention and control measures. In this study, we mapped the binding sites of a panel of eleven monoclonal antibodies (mAbs) previously generated towards the capsid protein (CP) of CHIKV. Using N- and C-terminally truncated recombinant forms of the CHIKV CP, two putative binding regions, between residues 1–35 and 140–210, were identified. Competitive binding also revealed that five of the CP-specific mAbs recognized a series of overlapping epitopes in the latter domain. We also identified a smaller, N-terminally truncated product of native CP that may represent an alternative translation product of the CHIKV 26S RNA and have potential functional significance during CHIKV replication. Our data also provides evidence that the C-terminus of CP is required for authentic antigenic structure of CP. This study shows that these anti-CP mAbs will be valuable research tools for further investigating the structure and function of the CHIKV CP.
Collapse
Affiliation(s)
- Lucas Y H Goh
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Natalie A Prow
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Kelly Baker
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Thisun B H Piyasena
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Carmel T Taylor
- Public Health Virology, Queensland Health Forensic and Scientific Services, Coopers Plain, Queensland 4108, Australia.
| | - Ashok Rana
- Protein Discovery Centre, QIMR Berghofer Medical Research Institute, Herston, Queensland 4029, Australia.
| | - Marcus L Hastie
- Protein Discovery Centre, QIMR Berghofer Medical Research Institute, Herston, Queensland 4029, Australia.
| | - Jeff J Gorman
- Protein Discovery Centre, QIMR Berghofer Medical Research Institute, Herston, Queensland 4029, Australia.
| | - Roy A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia.
| |
Collapse
|
27
|
Chen TH, Jian SW, Wang CY, Lin C, Wang PF, Su CL, Teng HJ, Shu PY, Wu HS. Susceptibility of Aedes albopictus and Aedes aegypti to three imported Chikungunya virus strains, including the E1/226V variant in Taiwan. J Formos Med Assoc 2015; 114:546-52. [DOI: 10.1016/j.jfma.2014.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 12/03/2014] [Accepted: 12/26/2014] [Indexed: 10/24/2022] Open
|
28
|
Goh LYH, Kam YW, Metz SW, Hobson-Peters J, Prow NA, McCarthy S, Smith DW, Pijlman GP, Ng LFP, Hall RA. A sensitive epitope-blocking ELISA for the detection of Chikungunya virus-specific antibodies in patients. J Virol Methods 2015; 222:55-61. [PMID: 26025459 DOI: 10.1016/j.jviromet.2015.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 05/25/2015] [Accepted: 05/25/2015] [Indexed: 01/09/2023]
Abstract
Chikungunya fever (CHIKF) has re-emerged as an arboviral disease that mimics clinical symptoms of other diseases such as dengue, malaria, as well as other alphavirus-related illnesses leading to problems with definitive diagnosis of the infection. Herein we describe the development and evaluation of a sensitive epitope-blocking ELISA (EB-ELISA) capable of specifically detecting anti-chikungunya virus (CHIKV) antibodies in clinical samples. The assay uses a monoclonal antibody (mAb) that binds an epitope on the E2 protein of CHIKV and does not exhibit cross-reactivity to other related alphaviruses. We also demonstrated the use of recombinant CHIK virus-like particles (VLPs) as a safe alternative antigen to infectious virions in the assay. Based on testing of 60 serum samples from patients in the acute or convalescent phase of CHIKV infection, the EB-ELISA provided us with 100% sensitivity, and exhibited 98.5% specificity when Ross River virus (RRV)- or Barmah Forest virus (BFV)-immune serum samples were included. This assay meets the public health demands of a rapid, robust, sensitive and specific, yet simple assay for specifically diagnosing CHIK-infections in humans.
Collapse
Affiliation(s)
- Lucas Y H Goh
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia 4072, QLD, Australia
| | - Yiu-Wing Kam
- Laboratory of Microbial Immunity, Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore 138648, Singapore
| | - Stefan W Metz
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia 4072, QLD, Australia
| | - Natalie A Prow
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia 4072, QLD, Australia
| | - Suzi McCarthy
- School of Pathology and Laboratory Medicine, The University of Western Australia, Crawley 6009, WA, Australia; Division of Microbiology and Infectious Diseases, PathWest Laboratory Medicine, Nedlands 6009, WA, Australia
| | - David W Smith
- School of Pathology and Laboratory Medicine, The University of Western Australia, Crawley 6009, WA, Australia; Division of Microbiology and Infectious Diseases, PathWest Laboratory Medicine, Nedlands 6009, WA, Australia
| | - Gorben P Pijlman
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Lisa F P Ng
- Laboratory of Microbial Immunity, Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore 138648, Singapore
| | - Roy A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia 4072, QLD, Australia.
| |
Collapse
|
29
|
Abstract
Infections with several types of viral and bacterial pathogens are able to cause arthritic disease. Arthropod vectors such as ticks and mosquitoes transmit a number of these arthritis-causing pathogens, and as these vectors increase their global distribution, so too do the diseases they spread. The typical clinical manifestations of infectious arthritis are often similar in presentation to rheumatoid arthritis. Hence, care needs to be taken in the diagnoses and management of these conditions. Additionally, clinical reports suggest that prolonged arthropathies may result from infection, highlighting the need for careful clinical management and further research into underlying disease mechanisms.
Collapse
Affiliation(s)
- Lara J Herrero
- Emerging Viruses and Inflammation Research Group, Institute for Glycomics, Griffith University, QLD 4222, Australia.
| | - Adam Taylor
- Emerging Viruses and Inflammation Research Group, Institute for Glycomics, Griffith University, QLD 4222, Australia.
| | - Stefan Wolf
- Emerging Viruses and Inflammation Research Group, Institute for Glycomics, Griffith University, QLD 4222, Australia.
| | - Suresh Mahalingam
- Emerging Viruses and Inflammation Research Group, Institute for Glycomics, Griffith University, QLD 4222, Australia.
| |
Collapse
|
30
|
Chang LJ, Dowd KA, Mendoza FH, Saunders JG, Sitar S, Plummer SH, Yamshchikov G, Sarwar UN, Hu Z, Enama ME, Bailer RT, Koup RA, Schwartz RM, Akahata W, Nabel GJ, Mascola JR, Pierson TC, Graham BS, Ledgerwood JE. Safety and tolerability of chikungunya virus-like particle vaccine in healthy adults: a phase 1 dose-escalation trial. Lancet 2014; 384:2046-52. [PMID: 25132507 DOI: 10.1016/s0140-6736(14)61185-5] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BACKGROUND Chikungunya virus--a mosquito-borne alphavirus--is endemic in Africa and south and southeast Asia and has recently emerged in the Caribbean. No drugs or vaccines are available for treatment or prevention. We aimed to assess the safety, tolerability, and immunogenicity of a new candidate vaccine. METHODS VRC 311 was a phase 1, dose-escalation, open-label clinical trial of a virus-like particle (VLP) chikungunya virus vaccine, VRC-CHKVLP059-00-VP, in healthy adults aged 18-50 years who were enrolled at the National Institutes of Health Clinical Center (Bethesda, MD, USA). Participants were assigned to sequential dose level groups to receive vaccinations at 10 μg, 20 μg, or 40 μg on weeks 0, 4, and 20, with follow-up for 44 weeks after enrolment. The primary endpoints were safety and tolerability of the vaccine. Secondary endpoints were chikungunya virus-specific immune responses assessed by ELISA and neutralising antibody assays. This trial is registered with ClinicalTrials.gov, NCT01489358. FINDINGS 25 participants were enrolled from Dec 12, 2011, to March 22, 2012, into the three dosage groups: 10 μg (n=5), 20 μg (n=10), and 40 μg (n=10). The protocol was completed by all five participants at the 10 μg dose, all ten participants at the 20 μg dose, and eight of ten participants at the 40 μg dose; non-completions were for personal circumstances unrelated to adverse events. 73 vaccinations were administered. All injections were well tolerated, with no serious adverse events reported. Neutralising antibodies were detected in all dose groups after the second vaccination (geometric mean titres of the half maximum inhibitory concentration: 2688 in the 10 μg group, 1775 in the 20 μg group, and 7246 in the 40 μg group), and a significant boost occurred after the third vaccination in all dose groups (10 μg group p=0·0197, 20 μg group p<0·0001, and 40 μg group p<0·0001). 4 weeks after the third vaccination, the geometric mean titres of the half maximum inhibitory concentration were 8745 for the 10 μg group, 4525 for the 20 μg group, and 5390 for the 40 μg group. INTERPRETATION The chikungunya VLP vaccine was immunogenic, safe, and well tolerated. This study represents an important step in vaccine development to combat this rapidly emerging pathogen. Further studies should be done in a larger number of participants and in more diverse populations. FUNDING Intramural Research Program of the Vaccine Research Center, National Institute of Allergy and Infectious Diseases, and National Institutes of Health.
Collapse
Affiliation(s)
- Lee-Jah Chang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kimberly A Dowd
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Floreliz H Mendoza
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jamie G Saunders
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sandra Sitar
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sarah H Plummer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Galina Yamshchikov
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Uzma N Sarwar
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Zonghui Hu
- Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mary E Enama
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Robert T Bailer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Richard M Schwartz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Wataru Akahata
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Gary J Nabel
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Theodore C Pierson
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Julie E Ledgerwood
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
31
|
Goh LYH, Hobson-Peters J, Prow NA, Gardner J, Bielefeldt-Ohmann H, Suhrbier A, Hall RA. Monoclonal antibodies specific for the capsid protein of chikungunya virus suitable for multiple applications. J Gen Virol 2014; 96:507-512. [PMID: 25480927 DOI: 10.1099/jgv.0.000002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne pathogen responsible for epidemics of debilitating arthritic disease. The recent outbreak (2004-2014) resulted in an estimated 1.4-6.5 million cases, with imported cases reported in nearly 40 countries. The development of CHIKV-specific diagnostics and research tools is thus highly desirable. Herein we describe the generation and characterization of the first mAbs specific for the capsid protein (CP) of CHIKV. The antibodies recognized isolates representing the major genotypes of CHIKV, as well as several other alphaviruses, and were reactive in a range of assays including ELISA, Western blot, immunofluorescence and immunohistochemistry (IHC). We have also used the anti-CP mAb 5.5G9 in IHC studies to show that capsid antigen is persistently expressed 30 days post-infection in cells with macrophage morphology in a mouse model of chronic CHIKV disease. These antibodies may thus represent useful tools for further research, including investigations into the structure and function of CHIKV CP, and as valuable reagents for CHIKV detection in a range of settings.
Collapse
Affiliation(s)
- Lucas Y H Goh
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Natalie A Prow
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Joy Gardner
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Queensland 4029, Australia
| | - Helle Bielefeldt-Ohmann
- School of Veterinary Science, University of Queensland, Gatton, Queensland 4343, Australia.,Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Andreas Suhrbier
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Queensland 4029, Australia.,Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Roy A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
32
|
Poo YS, Rudd PA, Gardner J, Wilson JAC, Larcher T, Colle MA, Le TT, Nakaya HI, Warrilow D, Allcock R, Bielefeldt-Ohmann H, Schroder WA, Khromykh AA, Lopez JA, Suhrbier A. Multiple immune factors are involved in controlling acute and chronic chikungunya virus infection. PLoS Negl Trop Dis 2014; 8:e3354. [PMID: 25474568 PMCID: PMC4256279 DOI: 10.1371/journal.pntd.0003354] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 10/15/2014] [Indexed: 12/18/2022] Open
Abstract
The recent epidemic of the arthritogenic alphavirus, chikungunya virus (CHIKV) has prompted a quest to understand the correlates of protection against virus and disease in order to inform development of new interventions. Herein we highlight the propensity of CHIKV infections to persist long term, both as persistent, steady-state, viraemias in multiple B cell deficient mouse strains, and as persistent RNA (including negative-strand RNA) in wild-type mice. The knockout mouse studies provided evidence for a role for T cells (but not NK cells) in viraemia suppression, and confirmed the role of T cells in arthritis promotion, with vaccine-induced T cells also shown to be arthritogenic in the absence of antibody responses. However, MHC class II-restricted T cells were not required for production of anti-viral IgG2c responses post CHIKV infection. The anti-viral cytokines, TNF and IFNγ, were persistently elevated in persistently infected B and T cell deficient mice, with adoptive transfer of anti-CHIKV antibodies unable to clear permanently the viraemia from these, or B cell deficient, mice. The NOD background increased viraemia and promoted arthritis, with B, T and NK deficient NOD mice showing high-levels of persistent viraemia and ultimately succumbing to encephalitic disease. In wild-type mice persistent CHIKV RNA and negative strand RNA (detected for up to 100 days post infection) was associated with persistence of cellular infiltrates, CHIKV antigen and stimulation of IFNα/β and T cell responses. These studies highlight that, secondary to antibodies, several factors are involved in virus control, and suggest that chronic arthritic disease is a consequence of persistent, replicating and transcriptionally active CHIKV RNA. The largest epidemic ever recorded for chikungunya virus (CHIKV) started in 2004 in Africa, then spread across Asia and recently caused tens of thousands of cases in Papua New Guinea and the Caribbean. This mosquito-borne alphavirus primarily causes an often debilitating, acute and chronic polyarthritis/polyarthalgia. Despite robust anti-viral immune responses CHIKV is able to persist, with such persistence poorly understood and the likely cause of chronic disease. Herein we highlight the propensity of CHIKV to persist long term, both as a persistent viraemia in different B cell deficient mouse strains, but also as persistent viral RNA in wild-type mice. These studies suggest that, aside from antibodies, other immune factors, such as CD4 T cells and TNF, are active in viraemia control. The work also supports the notion that CHIKV disease, with the exception of encephalitis, is largely an immunopathology. Persistent CHIKV RNA in wild-type mice continues to stimulate type I interferon and T cell responses, with this model of chronic disease recapitulating many of the features seen in chronic CHIKV patients.
Collapse
Affiliation(s)
- Yee Suan Poo
- QIMR Berghofer Medical Research Institute, and the Australian Infectious Diseases Research Centre, Brisbane, Queensland, Australia
- School of Medicine/School of Molecular and Microbial Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Penny A. Rudd
- QIMR Berghofer Medical Research Institute, and the Australian Infectious Diseases Research Centre, Brisbane, Queensland, Australia
- School of Medicine/School of Molecular and Microbial Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Joy Gardner
- QIMR Berghofer Medical Research Institute, and the Australian Infectious Diseases Research Centre, Brisbane, Queensland, Australia
| | - Jane A. C. Wilson
- QIMR Berghofer Medical Research Institute, and the Australian Infectious Diseases Research Centre, Brisbane, Queensland, Australia
- School of Medicine/School of Molecular and Microbial Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Thibaut Larcher
- Institut National de Recherche Agronomique, Unité Mixte de Recherche 703, Oniris, Nantes, France
| | - Marie-Anne Colle
- Institut National de Recherche Agronomique, Unité Mixte de Recherche 703, Oniris, Nantes, France
| | - Thuy T. Le
- QIMR Berghofer Medical Research Institute, and the Australian Infectious Diseases Research Centre, Brisbane, Queensland, Australia
| | - Helder I. Nakaya
- School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - David Warrilow
- Public Health Virology Laboratory, Department of Health, Queensland Government, Brisbane, Queensland, Australia
| | - Richard Allcock
- Lotterywest State Biomedical Facility Genomics, Royal Perth Hospital, Perth, Western Australia, Australia
| | | | - Wayne A. Schroder
- QIMR Berghofer Medical Research Institute, and the Australian Infectious Diseases Research Centre, Brisbane, Queensland, Australia
| | - Alexander A. Khromykh
- School of Medicine/School of Molecular and Microbial Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - José A. Lopez
- QIMR Berghofer Medical Research Institute, and the Australian Infectious Diseases Research Centre, Brisbane, Queensland, Australia
- School of Natural Sciences, Griffith University, Nathan, Australia
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, and the Australian Infectious Diseases Research Centre, Brisbane, Queensland, Australia
- School of Medicine/School of Molecular and Microbial Sciences, University of Queensland, Brisbane, Queensland, Australia
- School of Natural Sciences, Griffith University, Nathan, Australia
- * E-mail:
| |
Collapse
|
33
|
van den Doel P, Volz A, Roose JM, Sewbalaksing VD, Pijlman GP, van Middelkoop I, Duiverman V, van de Wetering E, Sutter G, Osterhaus ADME, Martina BEE. Recombinant modified vaccinia virus Ankara expressing glycoprotein E2 of Chikungunya virus protects AG129 mice against lethal challenge. PLoS Negl Trop Dis 2014; 8:e3101. [PMID: 25188230 PMCID: PMC4154657 DOI: 10.1371/journal.pntd.0003101] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 07/07/2014] [Indexed: 01/04/2023] Open
Abstract
Chikungunya virus (CHIKV) infection is characterized by rash, acute high fever, chills, headache, nausea, photophobia, vomiting, and severe polyarthralgia. There is evidence that arthralgia can persist for years and result in long-term discomfort. Neurologic disease with fatal outcome has been documented, although at low incidences. The CHIKV RNA genome encodes five structural proteins (C, E1, E2, E3 and 6K). The E1 spike protein drives the fusion process within the cytoplasm, while the E2 protein is believed to interact with cellular receptors and therefore most probably constitutes the target of neutralizing antibodies. We have constructed recombinant Modified Vaccinia Ankara (MVA) expressing E3E2, 6KE1, or the entire CHIKV envelope polyprotein cassette E3E26KE1. MVA is an appropriate platform because of its demonstrated clinical safety and its suitability for expression of various heterologous proteins. After completing the immunization scheme, animals were challenged with CHIV-S27. Immunization of AG129 mice with MVAs expressing E2 or E3E26KE1 elicited neutralizing antibodies in all animals and provided 100% protection against lethal disease. In contrast, 75% of the animals immunized with 6KE1 were protected against lethal infection. In conclusion, MVA expressing the glycoprotein E2 of CHIKV represents as an immunogenic and effective candidate vaccine against CHIKV infections.
Collapse
Affiliation(s)
- Petra van den Doel
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Asisa Volz
- Institute for Infectious Diseases and Zoonoses, University of Munich LMU, Munich, Germany
| | - Jouke M. Roose
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Gorben P. Pijlman
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | | | - Vincent Duiverman
- Erasmus Medical Center Laboratory Animal Science Center (EDC), Rotterdam, The Netherlands
| | - Eva van de Wetering
- Erasmus Medical Center Laboratory Animal Science Center (EDC), Rotterdam, The Netherlands
| | - Gerd Sutter
- Institute for Infectious Diseases and Zoonoses, University of Munich LMU, Munich, Germany
| | - Albert D. M. E. Osterhaus
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
- Artemis One Health, Utrecht, The Netherlands
| | - Byron E. E. Martina
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
- Artemis One Health, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
34
|
Smith DR. Global protein profiling studies of chikungunya virus infection identify different proteins but common biological processes. Rev Med Virol 2014; 25:3-18. [PMID: 25066270 DOI: 10.1002/rmv.1802] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/26/2014] [Accepted: 06/26/2014] [Indexed: 12/24/2022]
Abstract
Chikungunya fever (CHIKF) caused by the mosquito-transmitted chikungunya virus (CHIKV) swept into international prominence from late 2005 as an epidemic of CHIKF spread around countries surrounding the Indian Ocean. Although significant advances have been made in understanding the pathobiology of CHIKF, numerous questions still remain. In the absence of commercially available specific drugs to treat the disease, or a vaccine to prevent the diseases, the questions have particular significance. A number of studies have used global proteome analysis to increase our understanding of the process of CHIKV infection using a number of different experimental techniques and experimental systems. In all, over 700 proteins have been identified in nine different analyses by five different groups as being differentially regulated. Remarkably, only a single protein, eukaryotic elongation factor 2, has been identified by more than two different groups as being differentially regulated during CHIKV infection. This review provides a critical overview of the studies that have used global protein profiling to understand CHIKV infection and shows that while a broad consensus is emerging on which biological processes are altered during CHIKV infection, this consensus is poorly supported in terms of consistent identification of any key proteins mediating those biological processes.
Collapse
Affiliation(s)
- Duncan R Smith
- Institute of Molecular Biosciences, Mahidol University, Bangkok, Thailand; Center for Emerging and Neglected Infectious Diseases, Mahidol University, Bangkok, Thailand
| |
Collapse
|
35
|
Shytuhina A, Pristatsky P, He J, Casimiro DR, Schwartz RM, Hoang VM, Ha S. Development and application of a reversed-phase high-performance liquid chromatographic method for quantitation and characterization of a Chikungunya virus-like particle vaccine. J Chromatogr A 2014; 1364:192-7. [PMID: 25234500 DOI: 10.1016/j.chroma.2014.05.087] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/20/2014] [Accepted: 05/30/2014] [Indexed: 11/19/2022]
Abstract
To effectively support the development of a Chikungunya (CHIKV) virus-like particle (VLP) vaccine, a sensitive and robust high-performance liquid chromatography (HPLC) method that can quantitate CHIKV VLPs and monitor product purity throughout the manufacturing process is needed. We developed a sensitive reversed-phase HPLC (RP-HPLC) method that separates capsid, E1, and E2 proteins in CHIKV VLP vaccine with good resolution. Each protein component was verified by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and matrix-assisted laser desorption/ionization time-of-flight (MALDI-ToF) mass spectrometry (MS). The post-translational modifications on the viral glycoproteins E1 and E2 were further identified by intact protein mass measurements with liquid chromatography-mass spectrometry (LC-MS). The RP-HPLC method has a linear range of 0.51-12 μg protein, an accuracy of 96-106% and a precision of 12% RSD, suitable for vaccine product release testing. In addition, we demonstrated that the RP-HPLC method is useful for characterizing viral glycoprotein post-translational modifications, monitoring product purity during process development and assessing product stability during formulation development.
Collapse
Affiliation(s)
- Anastasija Shytuhina
- Vaccine Bioprocess Research & Development, Merck Research Laboratories, West Point, PA, 19486, United States
| | - Pavlo Pristatsky
- Vaccine Bioprocess Research & Development, Merck Research Laboratories, West Point, PA, 19486, United States
| | - Jian He
- Vaccine Bioprocess Research & Development, Merck Research Laboratories, West Point, PA, 19486, United States
| | - Danilo R Casimiro
- Vaccine Bioprocess Research & Development, Merck Research Laboratories, West Point, PA, 19486, United States
| | - Richard M Schwartz
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Gaithersburg, MD 20878, United States
| | - Van M Hoang
- Vaccine Bioprocess Research & Development, Merck Research Laboratories, West Point, PA, 19486, United States
| | - Sha Ha
- Vaccine Bioprocess Research & Development, Merck Research Laboratories, West Point, PA, 19486, United States.
| |
Collapse
|
36
|
Chikungunya viruses that escape monoclonal antibody therapy are clinically attenuated, stable, and not purified in mosquitoes. J Virol 2014; 88:8213-26. [PMID: 24829346 DOI: 10.1128/jvi.01032-14] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Chikungunya virus (CHIKV) is a reemerging mosquito-transmitted alphavirus that causes epidemics of debilitating polyarthritis in humans. A prior study identified two anti-CHIKV monoclonal antibodies ([MAbs] CHK-152 and CHK-166) against the E2 and E1 structural proteins, which had therapeutic efficacy in immunocompetent and immunocompromised mice. Combination MAb therapy was required as administration of a single MAb resulted in the rapid selection of neutralization escape variants and treatment failure in mice. Here, we initially evaluated the efficacy of combination MAb therapy in a nonhuman primate model of CHIKV infection. Treatment of rhesus macaques with CHK-152 and CHK-166 reduced viral spread and infection in distant tissue sites and also neutralized reservoirs of infectious virus. Escape viruses were not detected in the residual viral RNA present in tissues and organs of rhesus macaques. To evaluate the possible significance of MAb resistance, we engineered neutralization escape variant viruses (E1-K61T, E2-D59N, and the double mutant E1-K61T E2-D59N) that conferred resistance to CHK-152 and CHK-166 and tested them for fitness in mosquito cells, mammalian cells, mice, and Aedes albopictus mosquitoes. In both cell culture and mosquitoes, the mutant viruses grew equivalently and did not revert to wild-type (WT) sequence. All escape variants showed evidence of mild clinical attenuation, with decreased musculoskeletal disease at early times after infection in WT mice and a prolonged survival time in immunocompromised Ifnar1(-/-) mice. Unexpectedly, this was not associated with decreased infectivity, and consensus sequencing from tissues revealed no evidence of reversion or compensatory mutations. Competition studies with CHIKV WT also revealed no fitness compromise of the double mutant (E1-K61T E2-D59N) neutralization escape variant in WT mice. Collectively, our study suggests that neutralization escape viruses selected during combination MAb therapy with CHK-152 plus CHK-166 retain fitness, cause less severe clinical disease, and likely would not be purified during the enzootic cycle. IMPORTANCE Chikungunya virus (CHIKV) causes explosive epidemics of acute and chronic arthritis in humans in Africa, the Indian subcontinent, and Southeast Asia and recently has spread to the New World. As there are no approved vaccines or therapies for human use, the possibility of CHIKV-induced debilitating disease is high in many parts of the world. To this end, our laboratory recently generated a combination monoclonal antibody therapy that aborted lethal and arthritogenic disease in wild-type and immunocompromised mice when administered as a single dose several days after infection. In this study, we show the efficacy of the antibody combination in nonhuman primates and also evaluate the significance of possible neutralization escape mutations in mosquito and mammalian cells, mice, and Aedes albopictus vector mosquitoes. Our experiments show that escape viruses from combination antibody therapy cause less severe CHIKV clinical disease, retain fitness, and likely would not be purified by mosquito vectors.
Collapse
|
37
|
Iovinella I, Pelosi P, Conti B. A rationale to design longer lasting mosquito repellents. Parasitol Res 2014; 113:1813-20. [DOI: 10.1007/s00436-014-3827-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 02/21/2014] [Indexed: 12/21/2022]
|
38
|
Goh LY, Hobson-Peters J, Prow NA, Gardner J, Bielefeldt-Ohmann H, Pyke AT, Suhrbier A, Hall RA. Neutralizing monoclonal antibodies to the E2 protein of chikungunya virus protects against disease in a mouse model. Clin Immunol 2013; 149:487-97. [DOI: 10.1016/j.clim.2013.10.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 09/09/2013] [Accepted: 10/02/2013] [Indexed: 12/26/2022]
|
39
|
Molecular mechanisms involved in the pathogenesis of alphavirus-induced arthritis. BIOMED RESEARCH INTERNATIONAL 2013; 2013:973516. [PMID: 24069610 PMCID: PMC3771267 DOI: 10.1155/2013/973516] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Accepted: 07/22/2013] [Indexed: 11/17/2022]
Abstract
Arthritogenic alphaviruses, including Ross River virus (RRV), Chikungunya virus (CHIKV), Sindbis virus (SINV), Mayaro virus (MAYV), O'nyong-nyong virus (ONNV), and Barmah Forest virus (BFV), cause incapacitating and long lasting articular disease/myalgia. Outbreaks of viral arthritis and the global distribution of these diseases point to the emergence of arthritogenic alphaviruses as an important public health problem. This review discusses the molecular mechanisms involved in alphavirus-induced arthritis, exploring the recent data obtained with in vitro systems and in vivo studies using animal models and samples from patients. The factors associated to the extension and persistence of symptoms are highlighted, focusing on (a) virus replication in target cells, and tissues, including macrophages and muscle cells; (b) the inflammatory and immune responses with recruitment and activation of macrophage, NK cells and T lymphocytes to the lesion focus and the increase of inflammatory mediators levels; and (c) the persistence of virus or viral products in joint and muscle tissues. We also discuss the importance of the establishment of novel animal models to test new molecular targets and to develop more efficient and selective drugs to treat these diseases.
Collapse
|
40
|
Wintachai P, Wikan N, Kuadkitkan A, Jaimipuk T, Ubol S, Pulmanausahakul R, Auewarakul P, Kasinrerk W, Weng WY, Panyasrivanit M, Paemanee A, Kittisenachai S, Roytrakul S, Smith DR. Identification of prohibitin as a Chikungunya virus receptor protein. J Med Virol 2013; 84:1757-70. [PMID: 22997079 DOI: 10.1002/jmv.23403] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Chikungunya virus (CHIKV) has recently re-emerged causing millions of infections in countries around the Indian Ocean. While CHIKV has a broad host cell range and productively infects a number of different cell types, macrophages have been identified as a potential viral reservoir serving to increase the duration of symptoms. To date no CHIKV interacting protein has been characterized and this study sought to identify CHIKV binding proteins expressed on target cell membranes. Two-dimensional virus overlay identified prohibitin (PHB) as a microglial cell expressed CHIKV binding protein. Co-localization, co-immunoprecipitation as well as antibody and siRNA mediated infection inhibition studies all confirmed a role for PHB in mediating internalization of CHIKV into microglial cells. PHB is the first identified CHIKV receptor protein, and this study is evidence that PHB may play a role in the internalization of multiple viruses.
Collapse
|
41
|
Nakaya HI, Gardner J, Poo YS, Major L, Pulendran B, Suhrbier A. Gene profiling of Chikungunya virus arthritis in a mouse model reveals significant overlap with rheumatoid arthritis. ACTA ACUST UNITED AC 2013; 64:3553-63. [PMID: 22833339 DOI: 10.1002/art.34631] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes a chronic debilitating polyarthralgia/polyarthritis, for which current treatments are often inadequate. To assess whether new drugs being developed for rheumatoid arthritis (RA) might find utility in the treatment of alphaviral arthritides, we sought to determine whether the inflammatory gene expression signature of CHIKV arthritis shows any similarities with RA or collagen-induced arthritis (CIA), a mouse model of RA. METHODS Using a recently developed animal model of CHIKV arthritis in adult wild-type mice, we generated a consensus CHIKV arthritis gene expression signature, which was used to interrogate publicly available microarray studies of RA and CIA. Pathway analyses were then performed using the overlapping gene signatures. RESULTS Gene set enrichment analysis showed that there was a highly significant overlap in the differentially expressed genes in the CHIKV arthritis model and in RA. This concordance also increased with the severity of RA, as measured by the inflammation score. A highly significant overlap was also seen between CHIKV arthritis and CIA. Pathway analysis revealed that the overlap between these arthritides was spread over a range of different inflammatory processes. Involvement of T cells and interferon-γ (IFNγ) in CHIKV arthritis was confirmed in studies of MHCII-deficient mice and IFNγ-deficient mice, respectively. CONCLUSION These results suggest that RA, a chronic autoimmune arthritis, and CHIKV disease, usually a self-limiting viral arthropathy, share multiple inflammatory processes. New drugs and biologic therapies being developed for RA may thus find application in the treatment of alphaviral arthritides.
Collapse
Affiliation(s)
- Helder I Nakaya
- Emory Vaccine Center at Yerkes National Primate Research Center, Atlanta, Georgia, USA
| | | | | | | | | | | |
Collapse
|
42
|
Kumar S, Jaffar-Bandjee MC, Giry C, Connen de Kerillis L, Merits A, Gasque P, Hoarau JJ. Mouse macrophage innate immune response to Chikungunya virus infection. Virol J 2012; 9:313. [PMID: 23253140 PMCID: PMC3577478 DOI: 10.1186/1743-422x-9-313] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 12/12/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Infection with Chikungunya alphavirus (CHIKV) can cause severe arthralgia and chronic arthritis in humans with persistence of the virus in perivascular macrophages of the synovial membrane by mechanisms largely ill-characterized. FINDINGS We herein analysed the innate immune response (cytokine and programmed cell death) of RAW264.7 mouse macrophages following CHIKV infection. We found that the infection was restrained to a small percentage of cells and was not associated with a robust type I IFN innate immune response (IFN-α4 and ISG56). TNF-α, IL-6 and GM-CSF expression were upregulated while IFN-γ, IL-1α, IL-2, IL-4, IL-5, IL-10 or IL-17 expression could not be evidenced prior to and after CHIKV exposure. Although CHIKV is known to drive apoptosis in many cell types, we found no canonical signs of programmed cell death (cleaved caspase-3, -9) in infected RAW264.7 cells. CONCLUSION These data argue for the capacity of CHIKV to infect and drive a specific innate immune response in RAW264.7 macrophage cell which seems to be polarized to assist viral persistence through the control of apoptosis and IFN signalling.
Collapse
Affiliation(s)
- Shiril Kumar
- GRI/IRG (EA4517), Immunopathology and infectious diseases research grouping, University of La Reunion, CHU and CYROI research centres, St-Denis, La Reunion, France
| | | | | | | | | | | | | |
Collapse
|
43
|
Neighbours LM, Long K, Whitmore AC, Heise MT. Myd88-dependent toll-like receptor 7 signaling mediates protection from severe Ross River virus-induced disease in mice. J Virol 2012; 86:10675-85. [PMID: 22837203 PMCID: PMC3457316 DOI: 10.1128/jvi.00601-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 07/16/2012] [Indexed: 12/14/2022] Open
Abstract
Arthralgia-associated alphaviruses, including chikungunya virus (CHIKV) and Ross River virus (RRV), pose significant public health threats because of their ability to cause explosive outbreaks of debilitating arthralgia and myalgia in human populations. Although the host inflammatory response is known to contribute to the pathogenesis of alphavirus-induced arthritis and myositis, the role that Toll-like receptors (TLRs), which are major regulators of host antiviral and inflammatory responses, play in the pathogenesis of alphavirus-induced arthritis and myositis has not been extensively studied. Using a mouse model of RRV-induced myositis/arthritis, we found that myeloid differentiation primary response gene 88 (Myd88)-dependent TLR7 signaling is involved in protection from severe RRV-associated disease. Infections of Myd88- and TLR7-deficient mouse strains with RRV revealed that both Myd88 and TLR7 significantly contributed to protection from RRV-induced mortality, and both mouse strains exhibited more severe tissue damage than wild-type (WT) mice following RRV infection. While viral loads were unchanged in either Myd88 or TLR7 knockout mice compared to WT mice at early times postinfection, both Myd88 and TLR7 knockout mice exhibited higher viral loads than WT mice at late times postinfection. Furthermore, while high levels of RRV-specific antibody were produced in TLR7-deficient mice, this antibody had very little neutralizing activity and had lower affinity than WT antibody. Additionally, TLR7- and Myd88-deficient mice showed defects in germinal center activity, suggesting that TLR7-dependent signaling is critical for the development of protective antibody responses against RRV.
Collapse
Affiliation(s)
- Lauren M. Neighbours
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Carolina Vaccine Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kristin Long
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Carolina Vaccine Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Alan C. Whitmore
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Carolina Vaccine Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Mark T. Heise
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Carolina Vaccine Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
44
|
Tang BL. The cell biology of Chikungunya virus infection. Cell Microbiol 2012; 14:1354-1363. [PMID: 22686853 DOI: 10.1111/j.1462-5822.2012.01825.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 05/31/2012] [Accepted: 06/04/2012] [Indexed: 11/29/2022]
Abstract
Chikungunya virus (CHIKV) infection causes a disease which appears to affect multiple cell types and tissues. The acute phase is manifested by a non-fatal febrile illness, polyarthralgia and maculopapular rashes in adults, but with recurrent arthralgia that may linger for months during convalescence. The issue of cellular and tissue tropism of CHIKV has elicited interest primarily because of this lingering incapacitating chronic joint pain, as well as clear encephalopathy in severe cases among neonates during the re-emergence of the virus in recent epidemics. The principle cell types productively infected by CHIKV are skin fibroblasts, epithelial cells and lymphoid tissues. There is controversy as to whether CHIKV productively infects haematopoietic cells and neurones/glia. CHIKV infection triggers rapid and robust innate immune responses which quickly clears the acute phase infection. However, significant acute as well as chronic infection of less obvious cell types, such as monocytes, neurones/glia or even CNS neural progenitors may conceivably occur. There is therefore a need to ascertain the full range potential of CHIKV tropism, fully understand the cellular responses triggered during the acute the convalescent phases, and explore possible cell types that might be the source of chronic problems associated with CHIKV infection.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine and NUS Graduate School of Integrative Sciences and Engineering, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|
45
|
McTighe SP, Vaidyanathan R. Vector competence of Aedes albopictus from Virginia and Georgia for chikungunya virus isolated in the Comoros Islands, 2005. Vector Borne Zoonotic Dis 2012; 12:867-71. [PMID: 22897347 DOI: 10.1089/vbz.2012.0978] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We evaluated recently colonized samples from Virginia and Georgia (USA) of Aedes albopictus, an important vector of chikungunya virus (CHIKV), to determine whether they became infected with and transmitted COM125, a CHIKV isolate from the Comoros Islands. Seven days after imbibing an infective blood meal containing a minimum of 8.5×10(4) plaque-forming units (pfu)/mL, 31-86% of A. albopictus from the counties of Fairfax, Loudon, Rockingham, and Suffolk, Virginia, and Fulton, Georgia were infected. The average viral titer per mosquito was 1.1×10(4) pfu/mL (2×10(2)-3.3×10(4)). We detected CHIKV in salivary expectorate of infected mosquitoes from Rockingham (8%), Fulton (22%), and Loudon (48%) counties 7 days after blood feeding. Because CHIKV has no vaccines or specific antiviral treatments, vector control and education are critical to prevent its transmission. We discuss how local populations of A. albopictus could transmit CHIKV introduced to the southeastern USA from the Indian Ocean or Indian Subcontinent.
Collapse
Affiliation(s)
- Shane P McTighe
- SRI International, 140 Research Drive, Harrisonburg, VA 22802, USA
| | | |
Collapse
|
46
|
Kucharz EJ, Cebula-Byrska I. Chikungunya fever. Eur J Intern Med 2012; 23:325-9. [PMID: 22560378 DOI: 10.1016/j.ejim.2012.01.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 01/25/2012] [Accepted: 01/26/2012] [Indexed: 11/15/2022]
Abstract
Chikungunya fever (CF) is an acute illness caused by Chikungunya virus (CHIKV) belonging to the alphavirus genus of the Alphaviruses (Togaviridae) family. The virus is transmitted by Aedes mosquitoes. CF is primarily tropical disease occurring in Africa, Asia and Indian Ocean islands but in the last decade an outbreak of CHIKV autochthonous infections were reported in Italy and France. It is associated with viral genome mutations facilitating transmission of the disease by Aedes albopictus, a mosquito occurring in several European countries. The CF is highly symptomatic, characterized by fever, cutaneuos rash and severe athralgia and arthritis. In some patients severe neurological or hemorrhagic manifestations occur. The disease is self-limiting but a part of the patients suffers from a long-lasting arthritis akin to rheumatoid arthritis. Treatment is only symptomatic. Prevention includes reduction of mosquito bite (mosquito net, repellent) or application of measures against mosquito larvae. Vaccination is not currently available but investigations are in progress. CF presents a significant worldwide health problem affecting in the last decade millions of person, and currently dangerous also for European countries.
Collapse
Affiliation(s)
- Eugene J Kucharz
- Department of Internal Medicine and Rheumatology, Medical University of Silesia, Katowice, Poland.
| | | |
Collapse
|
47
|
Abstract
Mosquito-transmitted alphaviruses causing human rheumatic disease are globally distributed and include chikungunya virus, Ross River virus, Barmah Forest virus, Sindbis virus, o'nyong-nyong virus and Mayaro virus. These viruses cause endemic disease and, occasionally, large epidemics; for instance, the 2004-2011 chikungunya epidemic resulted in 1.4-6.5 million cases, with imported cases reported in nearly 40 countries. The disease is usually self-limiting and characterized by acute and chronic symmetrical peripheral polyarthralgia-polyarthritis, with acute disease usually including fever, myalgia and/or rash. Arthropathy can be debilitating, usually lasts weeks to months and can be protracted; although adequate attention to differential diagnoses is recommended. The latest chikungunya virus epidemic was also associated with some severe disease manifestations and mortality, primarily in elderly patients with comorbidities and the young. Chronic alphaviral rheumatic disease probably arises from inflammatory responses stimulated by the virus persisting in joint tissues, despite robust antiviral immune responses. Serodiagnosis by ELISA is the standard; although international standardization is often lacking. Treatment usually involves simple analgesics and/or NSAIDs, which can provide relief, but better drug treatments are clearly needed. However, the small market size and/or the unpredictable and rapid nature of epidemics present major hurdles for development and deployment of new alphavirus-specific interventions.
Collapse
Affiliation(s)
- Andreas Suhrbier
- Immunovirology Laboratory, Queensland Institute of Medical Research, 300 Herston Road, Brisbane, Queensland 4006, Australia.
| | | | | |
Collapse
|
48
|
Abere B, Wikan N, Ubol S, Auewarakul P, Paemanee A, Kittisenachai S, Roytrakul S, Smith DR. Proteomic analysis of chikungunya virus infected microgial cells. PLoS One 2012; 7:e34800. [PMID: 22514668 PMCID: PMC3326055 DOI: 10.1371/journal.pone.0034800] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 03/08/2012] [Indexed: 11/19/2022] Open
Abstract
Chikungunya virus (CHIKV) is a recently re-emerged public health problem in many countries bordering the Indian Ocean and elsewhere. Chikungunya fever is a relatively self limiting febrile disease, but the consequences of chikungunya fever can include a long lasting, debilitating arthralgia, and occasional neurological involvement has been reported. Macrophages have been implicated as an important cell target of CHIKV with regards to both their role as an immune mediator, as well evidence pointing to long term viral persistence in these cells. Microglial cells are the resident brain macrophages, and so this study sought to define the proteomic changes in a human microglial cell line (CHME-5) in response to CHIKV infection. GeLC-MS/MS analysis of CHIKV infected and mock infected cells identified some 1455 individual proteins, of which 90 proteins, belonging to diverse cellular pathways, were significantly down regulated at a significance level of p<0.01. Analysis of the protein profile in response to infection did not support a global inhibition of either normal or IRES-mediated translation, but was consistent with the targeting of specific cellular pathways including those regulating innate antiviral mechanisms.
Collapse
Affiliation(s)
- Bizunesh Abere
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, Bangkok, Thailand
| | - Nitwara Wikan
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, Bangkok, Thailand
| | - Sukathida Ubol
- Department of Microbiology Faculty of Science, Mahidol University, Bangkok, Thailand
- Center for Emerging and Neglected Infectious Diseases, Mahidol University, Bangkok, Thailand
| | - Prasert Auewarakul
- Center for Emerging and Neglected Infectious Diseases, Mahidol University, Bangkok, Thailand
- Department of Microbiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Atchara Paemanee
- Genome Institute, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Suthathip Kittisenachai
- Genome Institute, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Sittiruk Roytrakul
- Genome Institute, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
- * E-mail: (SR); (DRS)
| | - Duncan R. Smith
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, Bangkok, Thailand
- Center for Emerging and Neglected Infectious Diseases, Mahidol University, Bangkok, Thailand
- * E-mail: (SR); (DRS)
| |
Collapse
|
49
|
Devaux CA. Emerging and re-emerging viruses: A global challenge illustrated by Chikungunya virus outbreaks. World J Virol 2012; 1:11-22. [PMID: 24175207 PMCID: PMC3782263 DOI: 10.5501/wjv.v1.i1.11] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 09/07/2011] [Accepted: 09/15/2011] [Indexed: 02/05/2023] Open
Abstract
In recent decades, the issue of emerging and re-emerging infectious diseases, especially those related to viruses, has become an increasingly important area of concern in public health. It is of significance to anticipate future epidemics by accumulating knowledge through appropriate research and by monitoring their emergence using indicators from different sources. The objective is to alert and respond effectively in order to reduce the adverse impact on the general populations. Most of the emerging pathogens in humans originate from known zoonosis. These pathogens have been engaged in long-standing and highly successful interactions with their hosts since their origins are exquisitely adapted to host parasitism. They developed strategies aimed at: (1) maximizing invasion rate; (2) selecting host traits that can reduce their impact on host life span and fertility; (3) ensuring timely replication and survival both within host and between hosts; and (4) facilitating reliable transmission to progeny. In this context, Arboviruses (or ARthropod-BOrne viruses), will represent with certainty a threat for the coming century. The unprecedented epidemic of Chikungunya virus which occurred between 2005 and 2006 in the French Reunion Island in the Indian Ocean, followed by several outbreaks in other parts of the world, such as India and Southern Europe, has attracted the attention of medical and state authorities about the risks linked to this re-emerging mosquito-borne virus. This is an excellent model to illustrate the issues we are facing today and to improve how to respond tomorrow.
Collapse
Affiliation(s)
- Christian A Devaux
- Christian A Devaux, Center for the study of Pathogens and health Biotechnology-CPBS, UMR5236 CNRS-UM1-UM2, F-34293 Montpellier cedex 5, France
| |
Collapse
|
50
|
Wikan N, Sakoonwatanyoo P, Ubol S, Yoksan S, Smith DR. Chikungunya virus infection of cell lines: analysis of the East, Central and South African lineage. PLoS One 2012; 7:e31102. [PMID: 22299053 PMCID: PMC3267766 DOI: 10.1371/journal.pone.0031102] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 01/02/2012] [Indexed: 01/16/2023] Open
Abstract
Chikungunya virus (CHIKV) is a re-emerging mosquito borne alphavirus that has caused large scale epidemics in the countries around the Indian Ocean, as well as leading to autochthonous transmission in some European countries. The transmission of the disease has been driven by the emergence of an African lineage of CHIKV with enhanced transmission and dissemination in Aedes mosquito hosts. Two main genotypes of this lineage have been circulating, characterized by the presence of a substitution of a valine for an alanine at position 226 of the E1 protein. The outbreak, numbering in millions of cases in the infected areas, has been associated with increasing numbers of cases with non-classical presentation including encephalitis and meningitis. This study sought to compare the original Ross strain with two isolates from the recent outbreak of chikungunya fever in respect of infectivity and the induction of apoptosis in eight mammalian cell lines and two insect cell lines, in addition to generating a comprehensive virus production profile for one of the newer isolates. Results showed that in mammalian cells there were few differences in either tropism or pathogenicity as assessed by induction of apoptosis with the exception of Hela cells were the recent valine isolate showed less infectivity. The Aedes albopictus C6/36 cell line was however significantly more permissive for both of the more recent isolates than the Ross strain. The results suggest that the increased infectivity seen in insect cells derives from an evolution of the CHIKV genome not solely associated with the E1:226 substitution.
Collapse
Affiliation(s)
- Nitwara Wikan
- Institute of Molecular Biosciences, Mahidol University, Bangkok, Thailand
| | - Prirayapak Sakoonwatanyoo
- Department of Clinical Pathology, Faculty of Medicine, Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand
| | - Sukathida Ubol
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center for Emerging and Neglected Infectious Diseases, Mahidol University, Bangkok, Thailand
| | - Sutee Yoksan
- Institute of Molecular Biosciences, Mahidol University, Bangkok, Thailand
- Center for Emerging and Neglected Infectious Diseases, Mahidol University, Bangkok, Thailand
| | - Duncan R. Smith
- Institute of Molecular Biosciences, Mahidol University, Bangkok, Thailand
- Center for Emerging and Neglected Infectious Diseases, Mahidol University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|