1
|
Engelbrecht I, Horn SR, Giesy JP, Pieters R. Quantification of Pesticides and In Vitro Effects of Water-Soluble Fractions of Agricultural Soils in South Africa. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2025; 88:230-250. [PMID: 39955400 PMCID: PMC11870950 DOI: 10.1007/s00244-025-01115-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 01/20/2025] [Indexed: 02/17/2025]
Abstract
Although agrochemicals protect crops and reduce losses, these chemicals can migrate to non-target environments via run-off and leaching following irrigation or heavy rainfall, where non-target organisms can be exposed to a mixture of water-soluble compounds. This study investigated whether the water-soluble fractions of selected agricultural soils from South Africa contain quantifiable concentrations of four commonly used pesticides, 2,4-dichlorophenoxyacetic acid (2,4-D), atrazine, dicamba and imidacloprid, and whether the aqueous extracts induce effects in vitro. Effects investigated included cytotoxicity using the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] cell viability assay; xenobiotic metabolism using the H4IIE-luc rat hepatoma cell line; and (anti-)androgenic and (anti-)oestrogenic effects were screened for with the human breast carcinoma cell lines MDA-kb2 and T47D-KBluc, respectively. Oxidative stress responses were measured in H4IIE-luc and human duodenum adenocarcinoma (HuTu-80) cells. All extracts of soil induced oxidative stress, while several samples caused moderate to severe cytotoxicity and/or anti-androgenic effects. The herbicide atrazine had the greatest frequency of detection (89%), followed by dicamba (84%), 2,4-D (74%) and imidacloprid (32%). Concentrations of atrazine [2.0 × 10-1 to 2.1 × 102 ng/g, dry mass (dm)] and the neonicotinoid insecticide, imidacloprid (2.0 × 101 to 9.7 × 101 ng/g, dm), exceeded international soil quality guidelines. Overall, there was no observable trend between the biological effects and pesticides quantified. Nonetheless, the findings of this study show that agricultural soils in South Africa can elicit effects in vitro and contain quantifiable concentrations of polar pesticides. These agrochemicals might pose risks to the health of humans and the environment, but more assessment is necessary to quantify such potential effects.
Collapse
Affiliation(s)
- Ilzé Engelbrecht
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom, 2520, South Africa.
- Occupational Hygiene and Health Research Initiative, North-West University, Potchefstroom, 2520, South Africa.
| | - Suranie R Horn
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom, 2520, South Africa
- Occupational Hygiene and Health Research Initiative, North-West University, Potchefstroom, 2520, South Africa
| | - John P Giesy
- Toxicology Program Faculty, Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
- Department of Integrative Biology and Center for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX, 76798-7266, USA
| | - Rialet Pieters
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom, 2520, South Africa
| |
Collapse
|
2
|
Ke Y, Zheng W, Tian D, Ke S, Fu S, Zhang Z, Xie Y, Zhu J, Ren B, Zhang C, Yi X, Huang M. Occurrence and fate of five representative neonicotinoid insecticides across different wastewater treatment plants and the impact on receiving water bodies. ENVIRONMENTAL RESEARCH 2024; 263:120025. [PMID: 39293756 DOI: 10.1016/j.envres.2024.120025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/12/2024] [Accepted: 09/15/2024] [Indexed: 09/20/2024]
Abstract
Neonicotinoids (NEOs), despite their widespread use as insecticides, exhibit a notable knowledge deficit in regards to their presence in wastewater treatment plants (WWTPs) and their surrounding environments. This study delves into the presence and disposition of 5 NEOs: Thiamethoxam (THM), Clothianidin (CLO), Imidacloprid (IMD), Acetamiprid (ACE), and Thiacloprid (THA) across 3 domestic WWTPs and their receiving waters. Notably, THM, CLO, and ACE were consistently detected in all water and sludge samples, with THM emerging as the most abundant compound in both influent and effluent. Among the 3 WWTPs, WWTP 2, employing a fine bubble oxidation process, achieved the highest removal efficiency, surpassing 68%, in contrast to WWTP 1 (CAST) at 37% and WWTP 3 (A/A/O) at 7%. Biodegradation played a pivotal role in NEO removal, accounting for 36.7% and 68.2% of the total removal in WWTP 1 and WWTP 2, respectively. Surprisingly, in WWTP 3, biotransformation process inadvertently increased ACE and CLO concentrations by approximately 4.1% and 4.5%, respectively. The total NEO concentration in the receiving surface waters ranged from 72.7 to 155.5 ng/L, while sediment concentrations were significantly lower, spanning between 0.10 and 1.53 ng/g. WWTPs serve as both a removal and concentration point for NEOs, thereby significantly influencing their transportation. Additionally, the concentration of most NEOs in the receiving waters progressively increased from upstream to downstream, highlighting the substantial impact of WWTP discharges on natural water environments. This research offers valuable insights into NEO pollution surrounding WWTPs in the Pearl River Delta, ultimately aiding in pollution control and environmental protection decisions.
Collapse
Affiliation(s)
- Yuhan Ke
- School of Civil Engineering and Architecture, Guangxi University, Nanning, 530004, PR China
| | - Wanbing Zheng
- Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology & Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China; SCNU (NAN'AN) Green and Low-carbon Innovation Center & Nan'an SCNU Institute of Green and Low-carbon Research, South China Normal University, Quanzhou, 362300, PR China
| | - Di Tian
- School of Geography and Planning, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Siyu Ke
- SCNU (NAN'AN) Green and Low-carbon Innovation Center & Nan'an SCNU Institute of Green and Low-carbon Research, South China Normal University, Quanzhou, 362300, PR China
| | - Shuna Fu
- Agilent Technologies (China) Co. Ltd., Guangzhou, 510005, PR China
| | - Zhe Zhang
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (ChEE), University of Cincinnati, Cincinnati, OH, 45221-0012, USA
| | - Yue Xie
- Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology & Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China; SCNU (NAN'AN) Green and Low-carbon Innovation Center & Nan'an SCNU Institute of Green and Low-carbon Research, South China Normal University, Quanzhou, 362300, PR China
| | - Junyu Zhu
- Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology & Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China; SCNU (NAN'AN) Green and Low-carbon Innovation Center & Nan'an SCNU Institute of Green and Low-carbon Research, South China Normal University, Quanzhou, 362300, PR China
| | - Bangxing Ren
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (ChEE), University of Cincinnati, Cincinnati, OH, 45221-0012, USA
| | - Chao Zhang
- Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology & Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China; SCNU (NAN'AN) Green and Low-carbon Innovation Center & Nan'an SCNU Institute of Green and Low-carbon Research, South China Normal University, Quanzhou, 362300, PR China
| | - Xiaohui Yi
- Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology & Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China; SCNU (NAN'AN) Green and Low-carbon Innovation Center & Nan'an SCNU Institute of Green and Low-carbon Research, South China Normal University, Quanzhou, 362300, PR China
| | - Mingzhi Huang
- Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology & Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China; SCNU (NAN'AN) Green and Low-carbon Innovation Center & Nan'an SCNU Institute of Green and Low-carbon Research, South China Normal University, Quanzhou, 362300, PR China.
| |
Collapse
|
3
|
Zouaoui S, Rouabhi R. Lysosomal disruption, mitochondrial impairment, histopathological and oxidative stress in rat's nervous system after exposure to a neonicotinoid (imidacloprid). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59472-59489. [PMID: 39356435 DOI: 10.1007/s11356-024-35195-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 09/26/2024] [Indexed: 10/03/2024]
Abstract
Imidacloprid (IMI), a neonicotinoid pesticide, has been widely used due to its high efficiency against insect pests. However, its prolonged exposure may pose significant risks to non-target organisms, including mammals. Recent studies have raised concerns about its potential neurotoxicity, yet the underlying mechanisms remain poorly understood. This study aimed to assess the neurotoxic effects of chronic Imidacloprid exposure in Wistar rats, focusing on oxidative stress, mitochondrial dysfunction, and lysosomal disruption. Wistar rats were orally administered two doses of Imidacloprid (5 mg/kg and 50 mg/kg body weight) for three months. Neurotoxic effects were assessed by measuring key biochemical markers such as the enzymatic activities of catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD), and glutathione S-transferase (GST). Non-enzymatic markers, including glutathione (GSH) levels and malondialdehyde (MDA) index, were also evaluated. Mitochondrial function was assessed by analyzing oxygen consumption, swelling, and membrane permeability and histopathological changes. Lysosomal stability was examined using the Neutral Red Retention Time (NRRT) assay. Neutral red is a dye that accumulates in the acidic environment of lysosomes. Healthy lysosomes retain the dye, while compromised lysosomes lose it, indicating destabilization. By measuring the amount of neutral red retained in lysosomes, the NRRT assay assesses lysosomal integrity. Lysosomal pH variations were also monitored to evaluate functional changes. Microscopic analysis provided insight into structural changes in lysosomes and other cell components. Lysosomal destabilization was further confirmed by morphological alterations observed through light microscopy, revealing a progressive, time-dependent degeneration of lysosomal structures, including lysosomal expansion, neutral red dye leakage, and cell rounding. These changes reflected a temporal evolution of lysosomal damage, progressing from minor structural disruptions to more severe alterations as exposure continued, observable at the microscopic level. During the study, clinical observations of intoxicated rats included symptoms such as lethargy, reduced activity levels, and impaired motor coordination. High-dose Imidacloprid exposure led to noticeable behavioral changes, including decreased exploratory behavior and altered grooming patterns. Additionally, signs of neurotoxic effects, such as tremors or ataxia, were observed in the rats exposed to the higher dose, reflecting the systemic impact of chronic pesticide exposure. The results revealed a significant decrease in the enzymatic activities of CAT, GPx, and SOD, accompanied by an increase in GST activity. A notable reduction in glutathione levels and a rise in MDA index were observed, indicating enhanced oxidative stress in the brain. Mitochondrial impairment was evidenced by disturbances in oxygen consumption, increased swelling, and altered membrane permeability. Lysosomal destabilization was confirmed by reduced retention of neutral red dye, structural changes in lysosomes, and a significant rise in lysosomal pH in the IMI-exposed groups. In addition, the histopathological features indicate that imidacloprid at the given dose and exposure duration may have caused notable neurotoxic effects in Wistar rat brain tissue. Chronic exposure to Imidacloprid induces oxidative stress, mitochondrial dysfunction, lysosomal disruption and histopathological alterations in the central nervous system of Wistar rats. These findings provide valuable insights into the neurotoxic mechanisms of neonicotinoid pesticides, highlighting the need for further research to understand the long-term effects of Imidacloprid exposure on mammalian health.
Collapse
Affiliation(s)
- Sarra Zouaoui
- Laboratory of Toxicology and Ecosystems Pathologies, Echahid Cheikh Larbi Tebessi University, Tebessa, Algeria
- Applied Biology Department, Echahid Cheikh Larbi Tebessi University, Tebessa, Algeria
| | - Rachid Rouabhi
- Laboratory of Toxicology and Ecosystems Pathologies, Echahid Cheikh Larbi Tebessi University, Tebessa, Algeria.
- Applied Biology Department, Echahid Cheikh Larbi Tebessi University, Tebessa, Algeria.
| |
Collapse
|
4
|
Napierkowska S, Froment P, Kowalczyk A, Pamuła J, Birger M, Niżański W, Partyka A. The neonicotinoid, imidacloprid, disrupt the chicken sperm quality through calcium efflux. Poult Sci 2024; 103:103959. [PMID: 38943803 PMCID: PMC11261453 DOI: 10.1016/j.psj.2024.103959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 07/01/2024] Open
Abstract
Imidacloprid (IMI), an insecticide from the neonicotinoid group widely used in agriculture, has drawn attention due to its potential harmful effects on non-target species, including bird populations. In the present work, we investigated the effect of IMI on avian semen by in vitro exposure of rooster spermatozoa to this pesticide. The semen was collected twice a week. Samples collected on one day were pooled and incubated with the following IMI concentrations: 0 mM, 0.5 mM, 5 mM, 10 mM, and 50 mM at 36°C for 3 h. Comprehensive semen analysis was carried out after 1 h and 3 h of incubation, evaluating sperm motility parameters with the CASA system and using flow cytometry to assess membrane integrity, mitochondrial activity, acrosome integrity, chromatin structure, intracellular calcium level and apoptosis markers such as: early apoptosis and caspase activation and lipid peroxidation. The results of the first experiment suggest that low concentrations of IMI have a different effect on sperm motility compared to higher concentrations. In IMI samples, we also observed a lower percentage of cells with a high level of calcium ions compared to the control, and a lower level of lipid peroxidation. We concluded that IMI may act as a blocker of calcium channels, preventing the influx of these ions into the cell. To confirm this mechanism, we conducted a second experiment with calcium channel blockers: SNX 325, MRS-1845, and Nifedipine. The results of this experiment confirmed that the mechanism of action of IMI largely relies on the blockade of calcium channels in rooster sperm. Blocking the influx of calcium ions into the cell prevents the formation of Ca²⁺-dependent pores, thereby preventing an increase in cell membrane permeability, ultimately blocking early apoptosis and lipid peroxidation in chicken spermatozoa.
Collapse
Affiliation(s)
- Skarlet Napierkowska
- Wroclaw University of Environmental and Life Science, Department of Reproduction and Clinic of Farm Animal, Wrocław, Poland
| | - Pascal Froment
- INRAE, UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Artur Kowalczyk
- Wroclaw University of Environmental and Life Science, Institute of Animal Breeding, Wrocław, Poland
| | - Jędrzej Pamuła
- Wroclaw University of Environmental and Life Science, Department of Reproduction and Clinic of Farm Animal, Wrocław, Poland
| | - Mariusz Birger
- Wroclaw University of Environmental and Life Science, Department of Reproduction and Clinic of Farm Animal, Wrocław, Poland
| | - Wojciech Niżański
- Wroclaw University of Environmental and Life Science, Department of Reproduction and Clinic of Farm Animal, Wrocław, Poland
| | - Agnieszka Partyka
- Wroclaw University of Environmental and Life Science, Department of Reproduction and Clinic of Farm Animal, Wrocław, Poland.
| |
Collapse
|
5
|
Liu Z, Li N, Xu L, Huang R, Xu Z, Liu G, Liang X, Yang X. Associations between neonicotinoid insecticide levels in follicular fluid and serum and reproductive outcomes among women undergoing assisted reproductive technology: An observational study. Heliyon 2024; 10:e35618. [PMID: 39247291 PMCID: PMC11379559 DOI: 10.1016/j.heliyon.2024.e35618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 07/31/2024] [Indexed: 09/10/2024] Open
Abstract
Neonicotinoid insecticides (NEOs) are a widely used type of insecticide found globally, leading to broad human exposure. However, there is limited research on how internal exposure levels of NEOs and their metabolites impact in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) outcomes. A study was conducted at the Sixth Affiliated Hospital of Sun Yat-sen University between 2017 and 2020 involving 436 women undergoing IVF/ICSI treatment. Data on demographics and clinical history were collected from medical records. The concentrations of 11 NEOs and 4 NEO metabolites in follicular fluid and serum were measured using a salting-out assisted liquid-liquid extraction method and liquid chromatography-tandem mass spectrometry. Our findings indicated that NEOs were prevalent in women with infertility. One NEO metabolite, N-dm-ACE, was detected in all samples with median concentrations of 0.221 ng/mL in follicular fluid and 0.228 ng/mL in serum. The study showed a decrease in the number of retrieved oocytes, mature oocytes, 2 PN zygotes, and high-quality embryos as the number of exposed NEOs in follicular fluid increased. Women in the highest tertile of N-dm-ACE exposure had fewer mature oocytes, 2 PN zygotes, and lower oocyte maturity rates compared to those in the lowest tertile. The findings suggest that exposure to NEOs may negatively impact reproductive outcomes in IVF/ICSI pregnancies, particularly affecting oocyte retrieval and embryo quality. This study highlights the potential adverse effects of environmental NEO exposure on IVF/ICSI outcomes, emphasizing the importance of considering such exposures in preconception care.
Collapse
Affiliation(s)
- Ziyu Liu
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Engineering Technology Research Center of Fertility Preservation, People's Republic of China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, People's Republic of China
| | - Nijie Li
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Engineering Technology Research Center of Fertility Preservation, People's Republic of China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, People's Republic of China
| | - Linan Xu
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Engineering Technology Research Center of Fertility Preservation, People's Republic of China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, People's Republic of China
| | - Rui Huang
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Engineering Technology Research Center of Fertility Preservation, People's Republic of China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, People's Republic of China
| | - Zhenhan Xu
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Engineering Technology Research Center of Fertility Preservation, People's Republic of China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, People's Republic of China
| | - Guihua Liu
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Engineering Technology Research Center of Fertility Preservation, People's Republic of China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, People's Republic of China
| | - Xiaoyan Liang
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Engineering Technology Research Center of Fertility Preservation, People's Republic of China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, People's Republic of China
| | - Xing Yang
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Engineering Technology Research Center of Fertility Preservation, People's Republic of China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, People's Republic of China
| |
Collapse
|
6
|
Wen J, Liu Q, Geng S, Shi X, Wang J, Yao X, Hu L. Impact of imidacloprid exposure on gestational hyperglycemia: A multi-omics analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116561. [PMID: 38850706 DOI: 10.1016/j.ecoenv.2024.116561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/25/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
Imidacloprid (IMI), a commonly utilized neonicotinoid insecticide, has been identified to adversely impact glucose homeostasis. Pregnant women are believed to be more sensitive to toxins than non-pregnant women, and the impact of IMI exposure on gestational hyperglycemia remain unclear. To explore the impact, pregnant mice fed a high-fat diet were exposed to different doses (0.06, 0.6, 6 mg/kg bw/day) of IMI by gavage. Glucose homeostasis-related parameters were measured. The glucose homeostasis influenced by IMI treatment was explored through integrating gut microbiota, metabolomic and transcriptomic analysis. Results showed that IMI-H (6 mg/kg bw/day) exposure notably restricted gestational weight gain and perturbed glucose homeostasis characterized by reduced glucose tolerance and insulin sensitivity, alongside elevated levels of fasting blood glucose and insulin. Multi-omics analysis revealed that IMI-H exposure induced significant changes in the richness and composition of the gut microbiome. The metabolite profiles of serum samples and cecal contents, and transcriptome of liver and ileum were all affected by IMI-H treatment. The altered gut microbiota, metabolites and genes exhibited significant correlations with glucose homeostasis-related parameters. These differential metabolites and genes were implicated in various metabolic pathways including bile secretion, glucagon signaling pathway, lipid metabolism, fatty acid metabolism. Significant correlations were observed between the altered gut microbiota and caecum metabolome as well as liver transcriptome. For example, the abundance of Oscillibacter was strongly correlated with gut microflora-related metabolites (Icosenoic acid, Lysosulfatide, and fluticasone) and liver differential genes (Grin3b, Lifr, and Spta1). Together, IMI exposure resulted in significant changes in microbial composition, along with alterations in certain metabolites and genes associated with metabolic process, which may promote gestational hyperglycemia.
Collapse
Affiliation(s)
- Juan Wen
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu 210000, China.
| | - Qiao Liu
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu 210000, China
| | - Shijie Geng
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu 210000, China
| | - Xiaojing Shi
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Junya Wang
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu 210000, China
| | - Xiaodie Yao
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu 210000, China
| | - Lingmin Hu
- Department of Reproduction, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu 213000, China.
| |
Collapse
|
7
|
Godbole AM, Chen A, Vuong AM. Associations between neonicotinoids and liver function measures in US adults: National Health and Nutrition Examination Survey 2015-2016. Environ Epidemiol 2024; 8:e310. [PMID: 38799264 PMCID: PMC11115984 DOI: 10.1097/ee9.0000000000000310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/10/2024] [Indexed: 05/29/2024] Open
Abstract
Background Toxicological studies indicate that neonicotinoids may be associated with disruptions in liver function due to an increase in oxidative stress. There are scant epidemiological studies investigating the chronic hepatotoxic effects of neonicotinoids. Objective To examine the association between detectable concentrations of parent neonicotinoids and neonicotinoid metabolites with liver function markers among US adults, and whether sex modifies this association. Methods National Health and Nutrition Examination Survey 2015-2016 data were used to estimate associations between detectable neonicotinoids and serum alkaline phosphatase (ALP), alanine aminotransferase, aspartate aminotransferase, gamma-glutamyl transaminase (GGT), albumin, total bilirubin, total protein, and Hepatic Steatosis Index (HSI) using multiple linear regression. Results Detectable levels of N-desmethyl-acetamiprid were associated with a decrease in GGT (β = -3.54 unit/l; 95% confidence interval [CI] = -6.48, -0.61) and detectable levels of 5-hydroxy-imidacloprid were associated with a decrease in HSI (β = -1.11; 95% CI = -2.14, -0.07). Sex modified the association between any parent neonicotinoid and ALP (Pint = 0.064) and the association between clothianidin and ALP (Pint = 0.019), with a pattern of positive associations in males and inverse associations in females, though stratified associations did not reach statistical significance. Sex also modified the association between 5-hydroxy-imidacloprid and total protein (Pint = 0.062), with a significant positive association in females (β = 0.14 g/dl; 95% CI = 0.03, 0.25) and a null association in males. Conclusion Detectable concentrations of neonicotinoid metabolites were inversely associated with GGT and HSI in US adults. Evidence suggests neonicotinoids may influence liver function differently depending on sex. Future research is recommended to replicate the findings as the study was limited in its cross-sectional nature and inability to examine continuous neonicotinoid concentrations with liver function.
Collapse
Affiliation(s)
- Amruta M. Godbole
- Department of Epidemiology and Biostatistics, University of Nevada Las Vegas, School of Public Health, Las Vegas, Nevada
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ann M. Vuong
- Department of Epidemiology and Biostatistics, University of Nevada Las Vegas, School of Public Health, Las Vegas, Nevada
| |
Collapse
|
8
|
Benchikh I, Ziani K, Gonzalez Mateos A, Khaled BM. Non-acute exposure of neonicotinoids, health risk assessment, and evidence integration: a systematic review. Crit Rev Toxicol 2024; 54:194-213. [PMID: 38470098 DOI: 10.1080/10408444.2024.2310593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 01/08/2024] [Accepted: 01/18/2024] [Indexed: 03/13/2024]
Abstract
Neonicotinoid pesticides are utilized against an extensive range of insects. A growing body of evidence supports that these neuro-active insecticides are classified as toxicants in invertebrates. However, there is limited published data regarding their toxicity in vertebrates and mammals. the current systematic review is focused on the up-to-date knowledge available for several neonicotinoid pesticides and their non-acute toxicity on rodents and human physiology. Oral lethal dose 50 (LD50) of seven neonicotinoids (i.e. imidacloprid, acetamiprid, clothianidin, dinotefuran, thiamethoxam, thiacloprid, and nitenpyram) was initially identified. Subsequently, a screening of the literature was conducted to collect information about non-acute exposure to these insecticides. 99 studies were included and assessed for their risk of bias and level of evidence according to the Office of Health and Translation (OHAT) framework. All the 99 included papers indicate evidence of reproductive toxicity, hepatotoxicity, nephrotoxicity, neurotoxicity, immunotoxicity, and oxidative stress induction with a high level of evidence in the health effect of rodents and a moderate level of evidence for human health. The most studied type of these insecticides among 99 papers was imidacloprid (55 papers), followed by acetamiprid (22 papers), clothianidin (21 papers), and thiacloprid (11 papers). While 10 of 99 papers assessed the relationship between clothianidin, thiamethoxam, dinotefuran, and nitenpyram, showing evidence of liver injury, dysfunctions of oxidative stress markers in the reproductive system, and intestinal toxicity. This systematic review provides a comprehensive overview of the potential risks caused by neonicotinoid insecticides to humans and rodents with salient health effects. However, further research is needed to better emphasize and understand the patho-physiological mechanisms of these insecticides, taking into account various factors that can influence their toxicity.
Collapse
Affiliation(s)
- Imen Benchikh
- Laboratory of Applied Hydrology and Environment, Department of Biology, Faculty of Natural Sciences and Life, Belhadj Bouchaib University, Ain Témouchent, Algeria
- Laboratoire de Nutrition, Pathologie, Agro-Biotechnologie et Santé (Lab-NuPABS), Department of Biology, Faculty of Natural Sciences and Life, Djillali Liabès University, Sidi-Bel-Abbès, Algeria
| | - Kaddour Ziani
- Laboratory of Biotoxicology, Pharmacognosy and Biological Valorization of Plants, Department of Biology, University of Saida-Dr. Taher Moulay, Saida, Algeria
| | - Antonio Gonzalez Mateos
- Department of Physiology, Cell Biology and Communication Research Group, University of Extremadura, Caceres, Spain
| | - Boumediène Méghit Khaled
- Laboratoire de Nutrition, Pathologie, Agro-Biotechnologie et Santé (Lab-NuPABS), Department of Biology, Faculty of Natural Sciences and Life, Djillali Liabès University, Sidi-Bel-Abbès, Algeria
| |
Collapse
|
9
|
Shukla S, Jhamtani RC, Agarwal R. Biochemical and gene expression alterations due to individual exposure of atrazine, dichlorvos, and imidacloprid and their combination in zebrafish. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:118291-118303. [PMID: 37821735 DOI: 10.1007/s11356-023-30160-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
In environmental toxicology, combined toxicity has emerged as an important concern. Atrazine (ATZ), dichlorvos (DIC), and imidacloprid (IMD) are the major pesticides, extensively used to control insect, flies, mosquitoes, and weed. Here, we investigate whether the exposure to three different types of pesticides individually and in combination for 24 h alters antioxidant enzyme responses in zebrafish (Danio rerio). Oxidative stress parameters (biochemical and mRNA expression), acetylcholinesterase (AChE) activity, and Metallothionein-II (MT-II) mRNA expression levels were measured. Present work includes toxicological assessment of individual and combined (CMD) exposure of ATZ (185.4 µM), DIC (181 µM), IMD (97.8 µ), and CMD (ATZ 92.7 µM + DIC 90.5 µM + IMD 48.9 µM), in the liver, kidney, and brain of adult zebrafish. Lipid peroxidation (LPO), glutathione (GSH) content, AChE, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activity along with mRNA expression of SOD, CAT, GPx, and MT-II were evaluated. Briefly, LPO, GSH content, the activity of AChE, and all antioxidant enzymes enhanced significantly in individual exposure, which was further altered in the CMD group. The mRNA expression of SOD, CAT, GPx, and MT-II in the liver and kidney showed significant down-regulation in all exposed groups. In the brain, significant upregulation in mRNA expression of SOD, CAT, GPx, and MT-II was observed in DIC and IMD groups, while ATZ and CMD showed significant downregulation except for GPx. Findings postulate that the CMD group exhibits synergistic toxic manifestation. The present study provides the baseline data on the combined toxic effects of pesticides and suggests regulating the use of pesticides.
Collapse
Affiliation(s)
- Saurabh Shukla
- Laboratory of Analytical & Molecular Toxicology (Forensic Chemistry & Toxicology Laboratory), School of Forensic Science, National Forensic Sciences University, Sector 09, Gandhinagar, 382007, Gujarat, India
- Department of Forensic Science, School of Bioengineering and Bioscience, Lovely Professional University, Jalandhar, 144411, India
| | - Reena C Jhamtani
- Laboratory of Analytical & Molecular Toxicology (Forensic Chemistry & Toxicology Laboratory), School of Forensic Science, National Forensic Sciences University, Sector 09, Gandhinagar, 382007, Gujarat, India
- School of Forensic Science, Centurion University of Technology and Management, 752050, Bhubhaneshwar, Orrisa, India
| | - Rakhi Agarwal
- Laboratory of Analytical & Molecular Toxicology (Forensic Chemistry & Toxicology Laboratory), School of Forensic Science, National Forensic Sciences University, Sector 09, Gandhinagar, 382007, Gujarat, India.
- National Forensic Sciences University, Delhi Campus, Delhi, 110085, India.
| |
Collapse
|
10
|
Sardar A, David M, Jahan S, Afsar T, Ahmad A, Ullah A, Almajwal A, Shafique H, Razak S. Determination of biochemical and histopathological changes on testicular and epididymis tissues induced by exposure to insecticide Imidacloprid during postnatal development in rats. BMC Pharmacol Toxicol 2023; 24:68. [PMID: 38012698 PMCID: PMC10680247 DOI: 10.1186/s40360-023-00709-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 11/16/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Imidacloprid is a neonicotinoid insecticide belonging to the chloronicotinyl nitroguanidine chemical family. Toxicity of IMD for mammals in scientific studies has shown high mutagenic, immunotoxic, teratogenic and neurotoxic effects. The present study was designed to assess the toxic effects of imidacloprid (IMD) on the testicular and epididymis tissues as well as testosterone levels of neonatal male rats. METHODS Neonatal male rats from postnatal day (PND) 1 to PND 26 were consecutively administered with different concentrations of IMD (1, 5 and 10 mg/kg) subcutaneously. The effect of IMD on body and organ weight, lipid profile, histopathological alterations, oxidative stress and altered testosterone levels were assessed in the testis and plasma. RESULTS The results of body weight gain showed a significant difference in group 4 (10 mg/kg) animals as compared to the control. A significant increase in total cholesterol and triglycerides, while a decrease in high-density lipoprotein concentrations was evident. Similarly, a significant decrease in concentrations of antioxidant enzymes (CAT and SOD) among all the IMD-treated groups was evident, when compared to the control. Increased production of ROS was also noticed in the highest-dose treatment group. Further, we observed that IMD-treated rats indicated histopathological changes in the testis and epididymis along with a significant decrease in the plasma testosterone concentrations among IMI-treated groups in contrast to the control. Histological examination of the testis of IMD-treated neonatal male rats also showed decreased spermatogenesis in the treated groups when compared to the control. Furthermore, an increase in lumen diameter and a decrease in epithelial height of seminiferous tubules were also observed in IMD-treated rats in comparison with the control. CONCLUSION It is concluded that sub-chronic exposure to IMD in neonatal male rats may induce histopathological changes in reproductive tissues and damage normal testicular functions via inducing oxidative stress, decrease in body weight, disturbing normal blood lipid profile and testosterone concentration. IMD exposure can induce pathophysiological effects calls for further evaluation of this widely used insecticide.
Collapse
Affiliation(s)
- Amina Sardar
- Reproductive Physiology Laboratory, Department of Zoology, Quaid-I-Azam University, Islamabad, Pakistan
| | - Mehwish David
- Reproductive Physiology Laboratory, Department of Zoology, Quaid-I-Azam University, Islamabad, Pakistan
| | - Sarwat Jahan
- Reproductive Physiology Laboratory, Department of Zoology, Quaid-I-Azam University, Islamabad, Pakistan
| | - Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Aneela Ahmad
- Reproductive Physiology Laboratory, Department of Zoology, Quaid-I-Azam University, Islamabad, Pakistan
| | - Asad Ullah
- Reproductive Physiology Laboratory, Department of Zoology, Quaid-I-Azam University, Islamabad, Pakistan
| | - Ali Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Huma Shafique
- Institute of Cellular Medicine, Newcastle University Medical School, Newcastle University, Upon Tyne, United Kingdom
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
11
|
Wang L, Ma C, Wei D, Wang M, Xu Q, Wang J, Song Y, Huo W, Jing T, Wang C, Mao Z. Health risks of neonicotinoids chronic exposure and its association with glucose metabolism: A case-control study in rural China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122213. [PMID: 37467917 DOI: 10.1016/j.envpol.2023.122213] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/13/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023]
Abstract
Since neonicotinoids (NNIs) are widely used around the world, they are extensively distributed in the environment and frequently occurred in humans. This study was conducted to assess the risk of NNIs residues in vegetables and fruits in Henan province, and evaluate the associations of NNIs single and mixed exposure with glucose metabolism, and further explore whether testosterone mediated these relationships in Henan rural population. The data of vegetables and fruits were collected from Henan Province in 2020-2021, and participants were drawn from the Henan Rural Cohort study. Hazard quotient (HQ) and hazard index (HI) were used to assess the risk of exposure to the individual and combined NNIs through vegetables or fruits intake. Relative potency factor (RPF) method was utilized to normalize each NNIs to imidacloprid (IMIRPF). Generalized linear models were used to explore the effects of each NNIs and IMIRPF on glucose metabolism. Weight quartile sum (WQS) regression and Bayesian kernel machine regression (BKMR) model were applied to estimate the effect of NNIs mixtures on glucose metabolism. Mediation analysis was employed to explore whether testosterone mediated these relationships. The HQs and HI in both vegetables and fruits were much lower than 1, which indicated that NNIs in vegetables and fruits were not expected to cause significant adverse effects. However, plasma natural logarithm nitenpyram (Ln_NIT), Ln_thiacloprid-amid (Ln_THD-A), and Ln_IMIeq were positively associated with type 2 diabetes mellitus (T2DM) (odds ratio (OR) (95% confidence interval (CI)): 1.12 (1.05, 1.19), 1.21 (1.10, 1.32), and 1.48 (1.22, 1.80)). Both WQS regression and BKMR models observed significantly positive associations between NNIs mixture exposure and T2DM. Testosterone partially mediated these associations among women (PE = 6.67%). These findings suggest that human NNIs exposure may impair glucose metabolism and could contribute to rising rates of T2DM, and it's necessary to regulate the use of pesticides in rural areas.
Collapse
Affiliation(s)
- Lulu Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Cuicui Ma
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Dandan Wei
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Mian Wang
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Qingqing Xu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Juan Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yu Song
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Wenqian Huo
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Tao Jing
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Zhenxing Mao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China.
| |
Collapse
|
12
|
Abdelhafez HEDH, Hammam FM, EL-Dahshan AA, AboDalam H, Guo J. Imidacloprid Induces Neurotoxicity in Albino Male Rats by Inhibiting Acetylcholinesterase Activity, Altering Antioxidant Status, and Primary DNA Damage. J Toxicol 2023; 2023:4267469. [PMID: 37727350 PMCID: PMC10506876 DOI: 10.1155/2023/4267469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/18/2023] [Accepted: 09/04/2023] [Indexed: 09/21/2023] Open
Abstract
Imidacloprid (IMI) is a neonicotinoid insecticide used worldwide, either alone or in combination with other pesticides. The goal of this study was to assess the effects of IMI on the central nervous system of rats and its mechanism of oxidative stress-induced DNA damage by oxidant/antioxidant parameters. Fifteen male rats, divided into three groups, were used: the first group received 5 ml/kg body weight corn oil as a control, the second received a high oral dose of IMI (45 mg/kg body weight), while the third received a low dose (22 mg/kg body weight). After 28 days, acetylcholinesterase (AChE) activity, oxidative stress markers, histopathological alterations, and DNA damage were examined in the brains of these rats. The AChE activities decreased significantly after IMI exposure, reaching 2.45 and 2.75 nmol/min/mg protein in high dose and low dose, respectively, compared to the control group (3.75 nmol/g tissues), while the concentration of malondialdehyde MDA increased significantly (29.28 and 23.92 nmol/g tissues) vs. the control group (19.28 nmol/g tissues). The antioxidant status parameters such as reduced glutathione (GSH) content was 13.77 and 17.63 nmol/g, catalase (CAT) activity was 22.56 and 26.65 µmol/min/g, and superoxide dismutase (SOD) activity was 6.66 and 7.23 µmol/min/g in both doses against the control group (21.37 nmol/g, 30.67 µmol/min/g, 11.76 µmol/min/g), respectively, and histopathological changes in the brain tissues were observed. More in vivo research using epigenetic methods is needed to determine the ability of IMI and its metabolites to cause neurotoxicity and DNA lesions in mammalian brains.
Collapse
Affiliation(s)
- Hossam El Din H. Abdelhafez
- Mammalian and Aquatic Toxicology Department, Central Agricultural Pesticides Laboratory, Agricultural Research Center, P.O. Box. 12618, Dokki, Giza, Egypt
| | - Fatma M. Hammam
- Mammalian and Aquatic Toxicology Department, Central Agricultural Pesticides Laboratory, Agricultural Research Center, P.O. Box. 12618, Dokki, Giza, Egypt
| | - Asmaa A. EL-Dahshan
- Department of Zoology, Faculty of Science (Girls Branch), Al-Azhar University, Cairo, Egypt
| | - Hussien AboDalam
- Plant Pathology Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Jiangfeng Guo
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| |
Collapse
|
13
|
Mahai G, Wan Y, Wang A, Qian X, Li J, Li Y, Zhang W, He Z, Li Y, Xia W, Xu S. Exposure to multiple neonicotinoid insecticides, oxidative stress, and gestational diabetes mellitus: Association and potential mediation analyses. ENVIRONMENT INTERNATIONAL 2023; 179:108173. [PMID: 37651928 DOI: 10.1016/j.envint.2023.108173] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 08/01/2023] [Accepted: 08/24/2023] [Indexed: 09/02/2023]
Abstract
As the most extensively used insecticides worldwide, neonicotinoid insecticides (NNIs) have received a growing global concern over their adverse health effects. This study aimed to assess the associations of urinary concentrations of NNIs in early pregnancy with gestational diabetes mellitus (GDM) and the mediation roles of oxidative DNA damage, RNA damage, and lipid peroxidation in the associations. With a prospective nested case-control study, 519 GDM cases and 519 controls were matched on the infant's sex and maternal age. Urinary biomarkers of NNIs exposure and oxidative stress were measured in early pregnancy. We estimated the associations of single and the mixture of NNIs and their metabolites with GDM by conditional logistic regression and quantile g-computation models, respectively. The mediating roles of oxidative stress were evaluated by the structural equation model. The odds of GDM significantly increased by 15 %, 18 %, 26 %, 42 %, 49 %, and 13 % in each unit increment of ln-transformed concentrations of urinary imidacloprid (IMI), imidacloprid-olefin (IMI-olefin), desnitro-imidacloprid (DN-IMI), thiamethoxam (THM), clothianidin, and desmethyl-clothianidin, respectively. Exposure to the mixture of NNIs was associated with increased odds of GDM (adjusted OR: 1.76; 95 %CI: 1.45, 2.13). Advanced maternal age enhanced the associations of 5-hydroxy-IMI, DN-IMI, and IMI-olefin with GDM (P < 0.05), and being overweight/obese before pregnancy strengthened the effects of IMI, IMI-olefin, and THM on GDM (P < 0.05). In the association of NNIs exposure and GDM, the proportions mediated by oxidative DNA damage, RNA damage, and overall oxidative stress were 9.8 %, 11.8 %, and 14.5 %, respectively (P < 0.05). Exposure to individual NNIs and a mixture of NNIs were associated with GDM, and maternal age and pre-pregnancy BMI may modify the association. The possible mechanism underlying the association between NNIs and GDM may involve oxidative damage to nucleic acids.
Collapse
Affiliation(s)
- Gaga Mahai
- School of Life Sciences, Hainan University, Haikou, Hainan 570228, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Yanjian Wan
- Institute of Environmental Health, Wuhan Centers for Disease Prevention & Control, Wuhan, Hubei 430024, PR China
| | - Aizhen Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Xi Qian
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Juxiao Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Ying Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Wenxin Zhang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Zhenyu He
- Institute of Environmental Health, Wuhan Centers for Disease Prevention & Control, Wuhan, Hubei 430024, PR China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Shunqing Xu
- School of Life Sciences, Hainan University, Haikou, Hainan 570228, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| |
Collapse
|
14
|
Zeinab Mohamed, El-Kader AEKMA, Salah-Eldin AE, Mohamed O, Awadalla EA. Protective Effects of Curcumin against Acetamiprid-Induced Neurotoxicity in Male Albino Rats. BIOL BULL+ 2023; 50:509-521. [DOI: 10.1134/s1062359022602609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 09/01/2023]
|
15
|
Zuščíková L, Bažány D, Greifová H, Knížatová N, Kováčik A, Lukáč N, Jambor T. Screening of Toxic Effects of Neonicotinoid Insecticides with a Focus on Acetamiprid: A Review. TOXICS 2023; 11:598. [PMID: 37505564 PMCID: PMC10383352 DOI: 10.3390/toxics11070598] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023]
Abstract
Recently, neonicotinoids have become the fastest-growing class of insecticides in conventional crop protection, with extensive usage against a wide range of sucking and chewing pests. Neonicotinoids are widely used due to their high toxicity to invertebrates, simplicity, flexibility with which they may be applied, and lengthy persistence, and their systemic nature ensures that they spread to all sections of the target crop. However, these properties raise the risk of environmental contaminations and potential toxicity to non-target organisms. Acetamiprid is a new generation insecticide, which is a safer alternative for controlling insect pests because of its low toxicity to honeybees. Acetamiprid is intended to target nicotinic acetylcholine receptors in insects, but its widespread usage has resulted in negative impacts on non-target animals such as mammals. This review summarizes in vivo and in vitro animal studies that investigated the toxicity of specific neonicotinoids. With summarized data, it can be presumed that certain concentrations of neonicotinoids in the reproductive system cause oxidative stress in the testis; spermatogenesis disruption; spermatozoa degradation; interruptions to endocrine function and Sertoli and Leydig cell function. In the female reproductive system, acetamiprid evokes pathomorphological alterations in follicles, along with metabolic changes in the ovaries.
Collapse
Affiliation(s)
- Lucia Zuščíková
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. Andreja Hlinku 2, 949 76 Nitra, Slovakia
| | - Denis Bažány
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. Andreja Hlinku 2, 949 76 Nitra, Slovakia
| | - Hana Greifová
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. Andreja Hlinku 2, 949 76 Nitra, Slovakia
| | - Nikola Knížatová
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. Andreja Hlinku 2, 949 76 Nitra, Slovakia
| | - Anton Kováčik
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. Andreja Hlinku 2, 949 76 Nitra, Slovakia
| | - Norbert Lukáč
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. Andreja Hlinku 2, 949 76 Nitra, Slovakia
| | - Tomáš Jambor
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. Andreja Hlinku 2, 949 76 Nitra, Slovakia
| |
Collapse
|
16
|
Santiago MR, Salvo LM, Badaró-Pedroso C, Costa EMF. Single and mixed exposure to distinct groups of pesticides suggests endocrine disrupting properties of imidacloprid in zebrafish embryos. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2023; 58:217-228. [PMID: 36861322 DOI: 10.1080/03601234.2023.2184158] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Due to their selective toxicity to insects, nicotinoid compounds have been widely used to control pests in crops and livestock around the world. However, despite the advantages presented, much has been discussed about their harmful effects on exposed organisms, either directly or indirectly, with regards to endocrine disruption. This study aimed to evaluate the lethal and sublethal effects of imidacloprid (IMD) and abamectin (ABA) formulations, separately and combined, on zebrafish (Danio rerio) embryos at different developmental stages. For this, Fish Embryo Toxicity (FET) tests were carried out, exposing two hours post-fertilization (hpf) zebrafish to 96 hours of treatments with five different concentrations of abamectin (0.5-11.7 mg L-1), imidacloprid (0.0001-1.0 mg L-1), and imidacloprid/abamectin mixtures (LC50/2 - LC50/1000). The results showed that IMD and ABA caused toxic effects in zebrafish embryos. Significant effects were observed regarding egg coagulation, pericardial edema, and lack of larvae hatching. However, unlike ABA, the IMD dose-response curve for mortality had a bell curve display, where medium doses caused more mortality than higher and lower doses. These data demonstrate the toxic influence of sublethal IMD and ABA concentrations on zebrafish, suggesting that these compounds should be listed for river and reservoir water-quality monitoring.
Collapse
Affiliation(s)
- Magda Regina Santiago
- Center of Research and Development of Environmental Protection of the Biological Institute, APTA, São Paulo, Brazil
| | - Lígia Maria Salvo
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Elaine Maria Frade Costa
- Chief of Developmental Endocrinology Unit, Clinicas' Hospital University of Sao Paulo, Medical School, São Paulo, Brazil
| |
Collapse
|
17
|
Dardiotis E, Skouras P, Varvarelis OP, Aloizou AM, Hernández AF, Liampas I, Rikos D, Dastamani M, Golokhvast KS, Bogdanos DP, Tsatsakis A, Siokas V, Mitsias PD, Hadjigeorgiou GM. Pesticides and tremor: An overview of association, mechanisms and confounders. ENVIRONMENTAL RESEARCH 2023; 229:115442. [PMID: 36758916 DOI: 10.1016/j.envres.2023.115442] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 05/06/2023]
Abstract
Pesticides are a heterogeneous class of chemicals mainly used for the protection of crops from pests. Because of their very widespread use, acute or/and chronic exposure to these chemicals can lead to a plethora of sequelae inflicting diseases, many of which involve the nervous system. Tremor has been associated with pesticide exposure in human and animal studies. This review is aimed at assessing the studies currently available on the association between the various types of pesticides/insecticides and tremor, while also accounting for potential confounding factors. To our knowledge, this is the first coherent review on the subject. After appraising the available evidence, we call for more intensive research on this topic, as well as intonate the need of implementing future preventive measures to protect the exposed populations and to reduce potential disabilities and social drawbacks.
Collapse
Affiliation(s)
- Efthimios Dardiotis
- Department of Neurology, University Hospital of Larissa Greece, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece.
| | - Panagiotis Skouras
- Department of Neurology, University Hospital of Larissa Greece, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Orfeas-Petros Varvarelis
- Department of Neurology, University Hospital of Larissa Greece, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Athina-Maria Aloizou
- Department of Neurology, University Hospital of Larissa Greece, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Antonio F Hernández
- Department of Legal Medicine and Toxicology, University of Granada School of Medicine, Granada, Spain; Health Research Institute of Granada (ibs.GRANADA), Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Ioannis Liampas
- Department of Neurology, University Hospital of Larissa Greece, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Dimitrios Rikos
- Department of Neurology, University Hospital of Larissa Greece, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Metaxia Dastamani
- Department of Neurology, University Hospital of Larissa Greece, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Kirill S Golokhvast
- Siberian Federal Scientific Center of Agrobiotechnology RAS, Krasnoobsk, Russia, 630501
| | - Dimitrios P Bogdanos
- Department of Rheumatology and Clinical Immunology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Aristidis Tsatsakis
- Center of Toxicology Science & Research, Medical School, University of Crete, 71003, Heraklion, Crete, Greece
| | - Vasileios Siokas
- Department of Neurology, University Hospital of Larissa Greece, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Panayiotis D Mitsias
- Department of Neurology, School of Medicine, University of Crete, 71003, Heraklion, Greece; Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Georgios M Hadjigeorgiou
- Department of Neurology, University Hospital of Larissa Greece, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece; Department of Neurology, Medical School, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
18
|
Zhang X, Huang Y, Chen WJ, Wu S, Lei Q, Zhou Z, Zhang W, Mishra S, Bhatt P, Chen S. Environmental occurrence, toxicity concerns, and biodegradation of neonicotinoid insecticides. ENVIRONMENTAL RESEARCH 2023; 218:114953. [PMID: 36504008 DOI: 10.1016/j.envres.2022.114953] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/06/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Neonicotinoids (NEOs) are fourth generation pesticides, which emerged after organophosphates, pyrethroids, and carbamates and they are widely used in vegetables, fruits, cotton, rice, and other industrial crops to control insect pests. NEOs are considered ideal substitutes for highly toxic pesticides. Multiple studies have reported NEOs have harmful impacts on non-target biological targets, such as bees, aquatic animals, birds, and mammals. Thus, the remediation of neonicotinoid-sullied environments has gradually become a concern. Microbial degradation is a key natural method for eliminating neonicotinoid insecticides, as biodegradation is an effective, practical, and environmentally friendly strategy for the removal of pesticide residues. To date, several neonicotinoid-degrading strains have been isolated from the environment, including Stenotrophomonas maltophilia, Bacillus thuringiensis, Ensifer meliloti, Pseudomonas stutzeri, Variovorax boronicumulans, and Fusarium sp., and their degradation properties have been investigated. Furthermore, the metabolism and degradation pathways of neonicotinoids have been broadly detailed. Imidacloprid can form 6-chloronicotinic acid via the oxidative cleavage of guanidine residues, and it is then finally converted to non-toxic carbon dioxide. Acetamiprid can also be demethylated to remove cyanoimine (=N-CN) to form a less toxic intermediate metabolite. A few studies have discussed the neonicotinoid toxicity and microbial degradation in contaminated environments. This review is focused on providing an in-depth understanding of neonicotinoid toxicity, microbial degradation, catabolic pathways, and information related to the remediation process of NEOs. Future research directions are also proposed to provide a scientific basis for the risk assessment and removal of these pesticides.
Collapse
Affiliation(s)
- Xidong Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Yaohua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Wen-Juan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Siyi Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Qiqi Lei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Zhe Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Sandhya Mishra
- Environmental Technologies Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
| | - Pankaj Bhatt
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, 47906, USA.
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
19
|
Osman KA, Shaaban MMI, Ahmed NS. Biomarkers of imidacloprid toxicity in Japanese quail, Coturnix coturnix japonica. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:5662-5676. [PMID: 35980528 DOI: 10.1007/s11356-022-22580-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
The in vivo effect of the oral sublethal doses of 3.014 mg kg-1 of IMI (1/25 LD50) for 1, 7, 14, and 28 days every other day on Japanese quail was investigated. The results revealed that certain biomarkers in the selected tissues of the quail such as acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), aminotransaminases (alanine aminotransferase, ALT, and aspartate aminotransaminase, AST), phosphatases (acid phosphatase, ACP, and alkaline phosphatase, ALP), lactate dehydrogenase (LDH), adenosine-triphosphatase (ATPase), glutathione-S-transferase (GST), lipid peroxidation (LPO), and blood glucose showed significant inductions, while significant reductions in the levels of glutathione-reduced (GSH), deoxyribonucleic acid (DNA), and ribonucleic acid (RNA) were noticed. In this study, the molecular mechanisms of the toxic effects of imidacloprid on quails were elucidated regarding neurotoxicity, hepatotoxicity, oxidative stress, lipid peroxidation, antioxidant activity, and genotoxicity. Because IMI induced alterations in the levels of these biomarkers in Japanese quail; therefore, Japanese quail as a wild avian can be used as a suite bioindicator to detect imidacloprid toxicity.
Collapse
Affiliation(s)
- Khaled A Osman
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, P.O Box 21545, Alexandria, Egypt.
| | - Mahmoud M I Shaaban
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, P.O Box 21545, Alexandria, Egypt
| | - Nabila S Ahmed
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, P.O Box 21545, Alexandria, Egypt
| |
Collapse
|
20
|
Mahmut K, Demiray GA, Sevgiler Y. Oxidative and osmoregulatory effects of imidacloprid, cadmium, and their combinations on Daphnia magna. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 95:103963. [PMID: 36028165 DOI: 10.1016/j.etap.2022.103963] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Oxidative stress and osmoregulatory system damage-inducing potential of binary mixtures of neonicotinoid insecticide imidacloprid (IMI) and Cd2+ in Daphnia magna were evaluated. Animals were subjected to subchronic (7 days) and acute (48 h) of IMI and Cd2+ effects with single and binary mixtures. ATPase and antioxidant enzyme activities with lipid peroxidation were measured. Morphometric characteristics were also evaluated. Response patterns showed variability due to the duration, concentration, and toxicant type. While the enzyme activities mostly showed a decreasing trend upon the subchronic IMI effect, there was an increasing trend after the Cd2+. Declined enzyme activities were more pronounced with the acute higher IMI+Cd2+ exposure. Ca2+-ATPase and CAT were the most sensitive biomarkers in the toxicity response. IMI+Cd2+ exposures are appeared to increase their toxic effects due to their oxidative potential. ATPase inhibition and antioxidant enzyme alterations with a decrease in morphometric characteristics in Daphnia even at their low concentrations of IMI and Cd2+ show evidence of their toxicities on aquatic life. It was emphasized that investigating the combined effects of toxicants at their environmental level based on the multi-biomarker approach is essential in toxicity evaluation.
Collapse
Affiliation(s)
- Kemal Mahmut
- Çukurova University, Biotechnology Center, Adana, Turkey
| | - Gülüzar Atli Demiray
- Çukurova University, Biotechnology Center, Adana, Turkey; Çukurova University, Vocational School of Imamoglu, Adana, Turkey.
| | - Yusuf Sevgiler
- Adıyaman University, Faculty of Science and Letters, Department of Biology, Adıyaman, Turkey.
| |
Collapse
|
21
|
Benchaâbane S, Ayad AS, Loucif-Ayad W, Soltani N. Multibiomarker responses after exposure to a sublethal concentration of thiamethoxam in the African honeybee (Apis mellifera intermissa). Comp Biochem Physiol C Toxicol Pharmacol 2022; 257:109334. [PMID: 35351619 DOI: 10.1016/j.cbpc.2022.109334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/15/2022] [Accepted: 03/23/2022] [Indexed: 11/03/2022]
Abstract
Thiamethoxam is an insecticide mainly used in agriculture to control insect pests. However, non-target insect species, such as honeybees, may also be impacted. In this study, adults of Apis mellifera intermissa were orally exposed under laboratory conditions to a sublethal concentration of thiamethoxam (CL25= 0.17 ng/μl) for 9 days and the effects were evaluated at the biochemical level, by monitoring specific oxidative stress and neuronal biomarkers. Results showed an increase in the antioxidant enzymes, glutatione-S-transferase (GST), catalase (CAT) and glutathione peroxidase (GPx) and in content of malondialdehyde (MDA). The activity of acetylcholinesterase (AChE) was downregulated as evidence of a neurotoxic action and no significant change was observed in glutathione (GSH). Exposure to the insecticide thiamethoxam induced oxidative stress and defense mechanisms affecting honeybee physiology.
Collapse
Affiliation(s)
- S Benchaâbane
- Laboratory of Applied Animal Biology, Department of Biology, Faculty of Sciences, Badji Mokhtar University, Annaba 23000, Algeria.
| | - A S Ayad
- Laboratory of Applied Animal Biology, Department of Biology, Faculty of Sciences, Badji Mokhtar University, Annaba 23000, Algeria
| | - W Loucif-Ayad
- Laboratory of Applied Animal Biology, Department of Biology, Faculty of Sciences, Badji Mokhtar University, Annaba 23000, Algeria; Faculty of Medicine, Badji Mokhtar University, Annaba 23000, Algeria
| | - N Soltani
- Laboratory of Applied Animal Biology, Department of Biology, Faculty of Sciences, Badji Mokhtar University, Annaba 23000, Algeria
| |
Collapse
|
22
|
Li Z, Duan J, Chen L, Wang Y, Qin Q, Dang X, Zhou Z. Melatonin enhances the antioxidant capacity to rescue the honey bee Apis mellifera from the ecotoxicological effects caused by environmental imidacloprid. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113622. [PMID: 35617898 DOI: 10.1016/j.ecoenv.2022.113622] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 05/02/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Imidacloprid severely poisons the nontarget insect honey bee Apis mellifera. Few treatments are available to mitigate the adverse effects of imidacloprid. The primary concern is that the molecular understanding of imidacloprid toxicity is not comprehensive enough. Oxidative stress is the primary pathophysiological mechanism by which pesticides cause high mortality. Our pilot study found for the first time that imidacloprid stimulates bee brains to secrete melatonin, a free radical scavenger. However, the molecular basis for imidacloprid toxicity and the role of melatonin in coping with imidacloprid have not been systematically investigated in bees. This study administered an environmental dose of imidacloprid (36 ng/bee) orally to A. mellifera. The detoxification gene cytochrome P450 CYP4G11 was significantly induced. However, potent cytotoxicity of imidacloprid suppressed the expression of the antioxidants catalase (CAT) and thioredoxin reductase (TrxR), and the activity of guaiacol peroxidase (GPX), superoxide dismutase (SOD), and reduced glutathione (GSH) was not induced. The levels of reactive oxygen species (ROS) and the lipid peroxidation marker malondialdehyde (MDA) were increased. The expression of the apoptotic genes cysteinyl aspartate specific proteinase (Caspase-3) and apoptosis inducing factor (AIF) increased, and the apoptotic features of midgut cells were prominently apparent. These results suggest that imidacloprid disrupts the bee antioxidant system, causing severe oxidative stress and tissue damage and ultimately leading to apoptosis. Significantly, however, imidacloprid exposure also stimulated bee brains to continuously secrete melatonin. Further preadministration of exogenous melatonin (200 ng/bee) orally to bees significantly reversed and enhanced the activity of the imidacloprid-suppressed antioxidants CAT, SOD, and GSH, which allowed imidacloprid-induced ROS accumulation to be effectively alleviated. The MDA content, apoptotic genes Caspase-3 and AIF, and detoxification gene CYPG411 expression were restored to normalization; midgut cell damage, apoptosis, and mortality were significantly reduced. These findings strongly suggest that melatonin enhanced bee antioxidant capacity, thus attenuating oxidative stress and apoptosis to confer imidacloprid tolerance to honey bees. Melatonin secretion may be a defense mechanism to mitigate imidacloprid toxicity.
Collapse
Affiliation(s)
- Zhi Li
- College of Life Sciences, Chongqing Normal University, Chongqing, China; Chongqing Key Laboratory of Animal Biology, China.
| | - Jiaxin Duan
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Lanchun Chen
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Yuedi Wang
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Qiqian Qin
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Xiaoqun Dang
- College of Life Sciences, Chongqing Normal University, Chongqing, China; Chongqing Key Laboratory of Animal Biology, China
| | - Zeyang Zhou
- College of Life Sciences, Chongqing Normal University, Chongqing, China; Chongqing Key Laboratory of Microsporidia Infection and Control, China; The State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| |
Collapse
|
23
|
Verma PK, Singh P, Sharma P, Sood S, Raina R. Dose-Dependent Oxidative Damage in Erythrocytes and Hepatic Tissue of Wistar Rats Concurrently Exposed with Arsenic and Quinalphos: a Subacute Study. Biol Trace Elem Res 2022; 200:2160-2173. [PMID: 34189676 DOI: 10.1007/s12011-021-02807-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/21/2021] [Indexed: 11/24/2022]
Abstract
Concurrent exposure to a multitude of environmental toxicants pose serious health hazard to humans and animals. The present investigation was conceptualized to determine deleterious effects of concomitant subacute arsenic and quinalphos exposure on antioxidant responses of liver and erythrocytes of Wistar rats. Fifty-four Wistar rats were divided into nine groups with six animals in each. Animals were exposed to either quinalphos (1/100th and 1/10th of LD50) through oral gavage daily or arsenic (50 and 100 ppb) in drinking water alone and in combination for 28 days. While treatment with different toxicants alone also significantly reduced hemoglobin concentration, hepatic biomarkers and levels of antioxidant parameters as compared with control values, concomitant exposure significantly (P < 0.05) elevated levels of hepatic transaminases and alkaline phosphatase. Moreover, along with significant depletion in activities of SOD, CAT, TTH, AChE, and enzymes of glutathione complex, a significant enhancement of lipid peroxidation was also recorded in liver and erythrocytes in co-exposed animals in a dose-dependent manner when compared with exposure to individual toxicant. More severe alterations occurred in hepatic histo-architecture of rats receiving combined treatment as compared with those treated with either toxicant. Results indicated that oxidative damage in erythrocytes was more than that of the liver of rats on concomitant exposure of arsenic and quinalphos in a dose-dependent manner. In nutshell, our results revealed that combined treatment of quinalphos with arsenic potentiated toxic effects of either toxicant on antioxidant machinery of liver and erythrocytes and hepatic histomorphology of exposed Wistar rats.
Collapse
Affiliation(s)
- Pawan Kumar Verma
- Division of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-J, R S Pura, 181102, Jammu & Kashmir, India.
| | - Parvinder Singh
- Division of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-J, R S Pura, 181102, Jammu & Kashmir, India
| | - Priyanka Sharma
- Division of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-J, R S Pura, 181102, Jammu & Kashmir, India
| | - Shilpa Sood
- Division of Veterinary Pathology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-J, R S Pura, 181102, Jammu & Kashmir, India
| | - Rajinder Raina
- Division of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-J, R S Pura, 181102, Jammu & Kashmir, India
| |
Collapse
|
24
|
Assessment of the effect of sub-lethal acute toxicity of Emamectin benzoate in Labeo rohita using multiple biomarker approach. Toxicol Rep 2022; 9:102-110. [PMID: 35036329 PMCID: PMC8749126 DOI: 10.1016/j.toxrep.2022.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/04/2021] [Accepted: 01/04/2022] [Indexed: 12/19/2022] Open
Abstract
Emamectin benzoate (EMB) is a potent neurotoxin agent, widely used for ectoparasites control in aquaculture, but their detailed toxicological implications in Labeo rohita are unknown. Thus, this study was conceptualized to determine the LC50 and to investigate the effects of two sub-lethal concentrations 1/50th of 96 h LC50 (1.82 μgL-1) and 1/10thof 96 h LC50 (9.1 μgL-1) on hemato-immunological and biochemical responses in L. rohita (mean weight 25.54 ± 2.3 g and length 10.35 ± 2.4 cm) for a period of 24 h, 48 h, and 72 h. LC50 of EMB were 163 μgL-1, 112 μgL-1, 99 μgL-1 and 91 μgL-1 at 24 h, 48 h, 72 h, and 96 h respectively. The safe limit at 96 h LC50 of EMB was 2.30 μgL-1. In EMB treated fish, red blood cells, white blood cells, hemoglobin, and hematocrit counts were reduced (p < 0.05) significantly. Superoxide dismutase (SOD) activity in the liver and kidney declined (p < 0.05) at 72 h while in gill and muscle the activity increased significantly. Glutathione-s-transferase (GST) activity in the liver, gill, and kidney increased (p < 0.05) while muscle decreased significantly. Catalase (CAT) activity in liver, gill, and muscle decreased while in kidney increases. Glutamic-oxaloacetic acid transaminase (GOT) activity and Glutamate pyruvate transaminase (GPT) activity were increased in liver, kidney, and muscle tissue. The change in serum triglycerides, serum protein level was noticed. The level of cortisol, heat shock protein 70 (HSP70), and HSP90 increased (p < 0.05) while the immunological responses like immunoglobulin M (IgM) and complement 3(C3) activity decreased (p < 0.05) in EMB exposed fish. Thus, EMB exposure at two sub-lethal concentrations in L. rohita induces several hemato-immuno, and biochemical alterations in blood, serum, and different organs. The overall result of the present study indicated that EMB is toxic to fish even for a short-term exposure and low doses, and therefore utmost caution should be taken to prevent their drainage into water bodies.
Collapse
|
25
|
The Neonicotinoid Thiacloprid Interferes with the Development, Brain Antioxidants, and Neurochemistry of Chicken Embryos and Alters the Hatchling Behavior: Modulatory Potential of Phytochemicals. BIOLOGY 2022; 11:biology11010073. [PMID: 35053072 PMCID: PMC8773094 DOI: 10.3390/biology11010073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 01/01/2023]
Abstract
Simple Summary The present experiment was performed to investigate the toxic impact of thiacloprid (TH) on the brain of developing chicken embryos and also to measure its influence on the behavioral responses of hatchlings. The role of chicoric acid (CA) and rosmarinic acid (RA) in modulating the resulted effects was also investigated. TH resulted neurotoxic to chicken embryos and possibly neurotoxic to embryos of other vertebrates. Moreover, CA and RA exerted both an antioxidant and a neuroprotective effect on embryos. Abstract The present experiment was performed to investigate the toxic impact of thiacloprid (TH) on the brain of developing chicken embryos and also to measure its influence on the behavioral responses of hatchlings. The role of chicoric acid (CA) and rosmarinic acid (RA) in modulating the resulted effects was also investigated. The chicken eggs were in ovo inoculated with TH at different doses (0.1, 1, 10, and 100 ug/egg). TH increased the mortality and abnormality rates and altered the neurochemical parameters of exposed embryos dose-dependently. TH also decreased the brain level of monoamines and amino acid neurotransmitters and decreased the activities of acetylcholine esterase (AchE) and Na+/K+-ATPase. The brain activity of catalase (CAT) and superoxide dismutase (SOD) was diminished with downregulation of their mRNA expressions in the brain tissue. When TH was co-administered with CA and RA, the toxic impacts of the insecticide were markedly attenuated, and they showed a complementary effect when used in combination. Taken together, these findings suggested that TH is neurotoxic to chicken embryos and is possibly neurotoxic to embryos of other vertebrates. The findings also demonstrated the antioxidant and neuroprotective effects of CA and RA. Based on the present findings, the CA and RA can be used as invaluable ameliorative of TH-induced toxicity.
Collapse
|
26
|
Vuong AM, Zhang C, Chen A. Associations of neonicotinoids with insulin and glucose homeostasis parameters in US adults: NHANES 2015-2016. CHEMOSPHERE 2022; 286:131642. [PMID: 34351280 PMCID: PMC8578312 DOI: 10.1016/j.chemosphere.2021.131642] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/13/2021] [Accepted: 07/20/2021] [Indexed: 05/19/2023]
Abstract
Neonicotinoids are replacement insecticides increasingly used for organophosphates, methylcarbamates, and pyrethroids. Experimental evidence suggests neonicotinoids may affect glucose metabolism and insulin secretion through pancreatic β cell dysfunction, oxidative stress, and inflammation. However, no epidemiologic study has investigated neonicotinoids as potential diabetogens. We examined associations between neonicotinoids with insulin and glucose homeostasis parameters among 1381 non-diabetic adults in the National Health and Nutrition Examination Survey (2015-2016). Urinary concentrations of acetamiprid, clothianidin, imidacloprid, N-desmethyl-acetamiprid, and 5-hydroxy-imidacloprid were quantified. Fasting plasma glucose, insulin, and hemoglobin A1c (HbA1c) were assessed. Insulin resistance was defined as a homeostatic model assessment of insulin resistance ≥2.5. We used weighted linear and logistic regression to estimate associations between detectable neonicotinoids with insulin and glucose homeostasis parameters compared to non-detectable neonicotinoid concentrations. Weighted detection frequencies for imidacloprid, 5-hydroxy-imidacloprid, and N-desmethyl-acetamiprid were 4.4 %, 21.5 %, and 32.8 %, respectively. Detectable imidacloprid (β = -4.7 μIU/mL, 95 % confidence interval [CI] -8.5, -0.8) and 5-hydroxy-imidacloprid (β = -2.4 μIU/mL, 95 % CI -4.6, -0.2) were associated with lower fasting plasma insulin levels. Individuals with detectable 5-hydroxy-imidacloprid had lower odds of insulin resistance (odds ratio [OR] = 0.3, 95 % CI 0.2, 0.7). We observed evidence of sexually dimorphic associations between N-desmethyl-acetamiprid with glucose (pint = 0.079) and 5-hydroxy-imidacloprid with HbA1c (pint = 0.038), with patterns suggesting positive associations in males and negative associations in females. Associations between 5-hydroxy-imidacloprid and insulin were modified by body mass index (BMI) (pint = 0.013). We additionally observed age modified associations between 5-hydyroxy-imidacloprid and glucose (pint = 0.048). Results suggest neonicotinoids may be associated with insulin and glucose homeostasis indices and call for prospective studies to examine the metabolic impact of these replacement insecticides in humans.
Collapse
Affiliation(s)
- Ann M Vuong
- Department of Epidemiology and Biostatistics, University of Nevada Las Vegas, School of Public Health, Las Vegas, NV, United States.
| | - Cai Zhang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
27
|
Saad EM, Elassy NM, Salah-Eldein AM. Effect of induced sublethal intoxication with neonicotinoid insecticides on Egyptian toads (Sclerophrys regularis). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:5762-5770. [PMID: 34426866 DOI: 10.1007/s11356-021-15976-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
The toxicity role of insecticides affecting nontarget vertebrate of wildlife population has become essential subject to focus on. In this vein, the current study aimed to illustrate some biochemical and histopathological alterations induced by two neonicotinoids in Egyptian toads. Forty-five toads were collected and divided equally into three groups (15 toads/group): control group, thiamethoxam group, and acetamiprid group. Both treatment groups received thiamethoxam and acetamiprid (30 and 40 mg/L, respectively) four times within 12 days for induction of sublethal toxicity. Blood and liver tissue samples were collected. Both insecticides cause the same changes, but acetamiprid group exhibited a pronounced significant (P ≥ 0.001) effect than thiamethoxam group on increasing serum lipid profile, ALT, and AST. Moreover, acetamiprid showed a significant (P ≥ 0.001) decrease in hepatic total protein, GSH, and SOD and increase in MDA levels in comparison with thiamethoxam and control groups, respectively. The histopathological hepatic examination showed markable alterations in hepatic architecture in treatment groups that was distinct in acetamiprid group. Finally, our findings illustrate the indirect effect of neonicotinoids on toads and may realize their life-threatening factors. Graphical Abstract.
Collapse
Affiliation(s)
- Enas Mohamed Saad
- Wildlife and Zoo Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| | - Nehal Mohamed Elassy
- Wildlife and Zoo Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Ahmed Mohamed Salah-Eldein
- Wildlife and Zoo Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
28
|
Farag MR, Khalil SR, Zaglool AW, Hendam BM, Moustafa AA, Cocco R, Di Cerbo A, Alagawany M. Thiacloprid Induced Developmental Neurotoxicity via ROS-Oxidative Injury and Inflammation in Chicken Embryo: The Possible Attenuating Role of Chicoric and Rosmarinic Acids. BIOLOGY 2021; 10:biology10111100. [PMID: 34827094 PMCID: PMC8614723 DOI: 10.3390/biology10111100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/15/2021] [Accepted: 10/22/2021] [Indexed: 12/11/2022]
Abstract
Simple Summary The current study was designed to evaluate the negative impact of thiacloprid (TH) on the brain tissue of developing chicken embryo models and to evaluate the modulatory effects of chicoric (CA) and rosmarinic (RA) acids. The eggs were injected in ovo with different doses of TH (0.1, 1, 10, and 100 μg/egg). TH significantly increased the oxidative damage in the brain of exposed embryos in a dose-dependent manner (p < 0.001). TH significantly elevated the oxidative stress markers; protein carbonyl, malondialdehyde (MDA) content, and DNA damage (p < 0.001). Myeloperoxidase (MPO) activity and NO significantly increased with overexpression of the pro-inflammatory cytokines (IFN-γ; interferon gamma, TNF-α; tumor necrosis factor alpha, and IL-1β; interleukin-1 beta), stress-related and apoptotic genes (NF-KB, Caspase-3) in the brain tissue on both a biochemical and molecular levels (p < 0.05), while downregulating the expression of antiapoptotic Bcl-2. Co-treatment of CA and RA with TH markedly decreased the insecticide-induced toxicity with a prominent synergistic effect (p < 0.05). In conclusion, TH is suggested to be a possible neurotoxic to embryos of vertebrates and possibly humans. The study also revealed the antioxidant, anti-inflammatory, genoprotective, and antiapoptotic properties of CA and RA against TH toxicity. Abstract Insecticides are widely employed in agriculture to control pests and as major factors for enhancing crop productivity. Thiacloprid (TH) is one of the most-used insecticides worldwide. In this study, the negative impact of TH on the brain tissue of developing chicken embryo models and the modulatory effect of chicoric (CA) and rosmarinic (RA) acids were investigated. The eggs were injected in ovo with different doses of TH (0.1, 1, 10, and 100 μg/egg). TH significantly increased the oxidative damage in the brain of exposed embryos in a dose-dependent manner (p < 0.05). TH significantly elevated the oxidative stress markers; protein carbonyl, malondialdehyde content, and DNA damage (p < 0.05). Myeloperoxidase activity and nitric oxide significantly increased with overexpression of the pro-inflammatory cytokines (interferon gamma, tumor necrosis factor alpha, and interleukin-1 beta) and stress-related and apoptotic genes (NF-KB, Caspase-3) in the brain tissue on both biochemical and molecular levels (p < 0.05), while downregulating the expression of antiapoptotic Bcl-2. Co-treatment of CA and RA with TH markedly decreased the insecticide-induced toxicity with a prominent synergistic effect (p < 0.05). In conclusion, TH is suggested to be a possible neurotoxic to embryos of vertebrates including human. The study also revealed the antioxidant, anti-inflammatory, genoprotective, and antiapoptotic property of CA and RA against TH toxicity.
Collapse
Affiliation(s)
- Mayada R. Farag
- Forensic Medicine and Toxicology Department, Veterinary Medicine Faculty, Zagazig University, Zagazig 44519, Egypt;
- Correspondence: (M.R.F.); (A.D.C.); (M.A.)
| | - Samah R. Khalil
- Forensic Medicine and Toxicology Department, Veterinary Medicine Faculty, Zagazig University, Zagazig 44519, Egypt;
| | - Asmaa W. Zaglool
- Animal Wealth Development Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Basma M. Hendam
- Department of Husbandry and Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Amr A. Moustafa
- Biochemistry Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Raffaella Cocco
- Department of Veterinary Medicine, University of Sassari, via Vienna 2, 07100 Sassari, Italy;
| | - Alessandro Di Cerbo
- School of Bioscience and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy
- Correspondence: (M.R.F.); (A.D.C.); (M.A.)
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
- Correspondence: (M.R.F.); (A.D.C.); (M.A.)
| |
Collapse
|
29
|
Baysal M, Atlı-Eklioğlu Ö. Comparison of the toxicity of pure compounds and commercial formulations of imidacloprid and acetamiprid on HT-29 cells: Single and mixture exposure. Food Chem Toxicol 2021; 155:112430. [PMID: 34289392 DOI: 10.1016/j.fct.2021.112430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/28/2021] [Accepted: 07/17/2021] [Indexed: 01/06/2023]
Abstract
Neonicotinoids, which are widely used worldwide, including in Turkey, are an insecticide group that are synthetic derivatives of nicotine. Recently, they have attracted attention due to their toxic effects on non-target organisms, especially bees. Numerous studies have shown that neonicotinoids have been found in detectable levels in the environment and cause various undesirable effects on living organisms, including humans and other mammals. In this study, the possible toxic effects of imidacloprid and acetamiprid, commonly used neonicotinoids, are investigated by their pure forms and commercial formulations on HT-29 cells with individual and combined exposures. According to our results, imidacloprid and acetamiprid induced cytotoxicity by caspase-mediated apoptosis, mitochondrial membrane depolarization, DNA damage, and oxidative stress under these experimental conditions. It is worth mentioning low doses of DNA damage, mixture exposure causes toxic effects at lower concentrations than individual exposure, and formulation groups are at the forefront of toxicity formation, though this varies depending on the parameters.
Collapse
Affiliation(s)
- Merve Baysal
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Anadolu University, 26470, Eskisehir, Turkey
| | - Özlem Atlı-Eklioğlu
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Anadolu University, 26470, Eskisehir, Turkey.
| |
Collapse
|
30
|
Katić A, Kašuba V, Kopjar N, Lovaković BT, Marjanović Čermak AM, Mendaš G, Micek V, Milić M, Pavičić I, Pizent A, Žunec S, Želježić D. Effects of low-level imidacloprid oral exposure on cholinesterase activity, oxidative stress responses, and primary DNA damage in the blood and brain of male Wistar rats. Chem Biol Interact 2021; 338:109287. [PMID: 33129804 DOI: 10.1016/j.cbi.2020.109287] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/11/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023]
Abstract
Imidacloprid is a neonicotinoid insecticide that acts selectively as an agonist on insect nicotinic acetylcholine receptors. It is used for crop protection worldwide, as well as for non-agricultural uses. Imidacloprid systemic accumulation in food is an important source of imidacloprid exposure. Due to the undisputable need for investigations of imidacloprid toxicity in non-target species, we evaluated the effects of a 28-day oral exposure to low doses of imidacloprid (0.06 mg/kg b. w./day, 0.8 mg/kg b. w./day and 2.25 mg/kg b. w./day) on cholinesterase activity, oxidative stress responses and primary DNA damage in the blood and brain tissue of male Wistar rats. Exposure to imidacloprid did not cause significant changes in total cholinesterase, acetylcholinesterase and butyrylcholinesterase activities in plasma and brain tissue. Reactive oxygen species levels and lipid peroxidation increased significantly in the plasma of rats treated with the lowest dose of imidacloprid. Activities of glutathione-peroxidase in plasma and brain and superoxide dismutase in erythrocytes increased significantly at the highest applied dose. High performance liquid chromatography with UV diode array detector revealed the presence of imidacloprid in the plasma of all the treated animals and in the brain of the animals treated with the two higher doses. The alkaline comet assay results showed significant peripheral blood leukocyte damage at the lowest dose of imidacloprid and dose-dependent brain cell DNA damage. Oral 28-day exposure to low doses of imidacloprid in rats resulted in detectable levels of imidacloprid in plasma and brain tissue that directly induced DNA damage, particularly in brain tissue, with slight changes in plasma oxidative stress parameters.
Collapse
Affiliation(s)
- Anja Katić
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10000, Zagreb, Croatia.
| | - Vilena Kašuba
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10000, Zagreb, Croatia
| | - Nevenka Kopjar
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10000, Zagreb, Croatia
| | - Blanka Tariba Lovaković
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10000, Zagreb, Croatia
| | - Ana Marija Marjanović Čermak
- Radiation Dosimetry and Radiobiology Unit, Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10000, Zagreb, Croatia
| | - Gordana Mendaš
- Biochemistry and Organic Analytical Chemistry Unit, Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10000, Zagreb, Croatia
| | - Vedran Micek
- Animal Breeding Unit, Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10000, Zagreb, Croatia
| | - Mirta Milić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10000, Zagreb, Croatia
| | - Ivan Pavičić
- Radiation Dosimetry and Radiobiology Unit, Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10000, Zagreb, Croatia
| | - Alica Pizent
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10000, Zagreb, Croatia
| | - Suzana Žunec
- Toxicology Unit, Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10000, Zagreb, Croatia
| | - Davor Želježić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10000, Zagreb, Croatia
| |
Collapse
|
31
|
Khovarnagh N, Seyedalipour B. Antioxidant, histopathological and biochemical outcomes of short-term exposure to acetamiprid in liver and brain of rat: The protective role of N-acetylcysteine and S-methylcysteine. Saudi Pharm J 2021; 29:280-289. [PMID: 33981177 PMCID: PMC8084716 DOI: 10.1016/j.jsps.2021.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 02/06/2021] [Indexed: 01/24/2023] Open
Abstract
The present study was conducted to investigate the protective effects of N-Acetyl-L-cysteine (NAC) and S-methyl- L-cysteine (SMC) against hepatic oxidative stress and brain damage induced by acetamiprid (ACP) in rats, which were evaluated by histopathological changes, measuring serum biomarkers and antioxidant defense systems. In this study, 42 rats were randomly divided into 6 groups and administered by intraperitoneally for one week: the control group, the sham group (normal saline), ACP alone (5 mg/kg) (group1), NAC alone (160 mg/kg) (group2), ACP + SMC (100 mg/kg) (group3), ACP + NAC (group 4) and ACP + NAC + SMC (group 5). Our results showed that acetamiprid induces liver injures including infiltration of inflammatory cells, congestion and altered histo-architecture and brain damages including gliosis, hyperemia and necrosis. The biochemical analyses showed that acetamiprid significantly altered the structural and biochemical profiles of liver which may be due to the loss of integrity of cell membranes. Furthermore, antioxidant parameters results of ACP group revealed that glutathione (GSH) and total antioxidant capacity (TAC) levels decreased significantly, while lipid peroxidation (LPO) content and glutathione-S-transferase (GST) and catalase (CAT) activities increased in both tissues (P < 0.05), suggesting tissue oxidative damage, which was also confirmed histopathological. Conversely, administration of NAC and SMC ameliorated LPO, GSH content and antioxidant enzymes system considerably (P < 0.05) in both tissues. Moreover, NAC and SMC administration also improved liver and brain malfunction. These results indicate that both NAC and in to a lesser amount SMC have a potent antioxidant protection in both tissues of rat against ACP-induced oxidative stress.
Collapse
|
32
|
Yang G, Yuan X, Jin C, Wang D, Wang Y, Miao W, Jin Y. Imidacloprid disturbed the gut barrier function and interfered with bile acids metabolism in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115290. [PMID: 32798982 DOI: 10.1016/j.envpol.2020.115290] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/02/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
The toxicity of neonicotinoid insecticide imidacloprid (IMI) to mammals has recently received increasing attention. However, the effects of IMI on the gut barrier and liver function of male C57BL/6J mice are still unknown. The study showed that exposure to IMI could reduce relative liver weights, change hepatic tissue morphology and induce hepatic oxidative stress. The gut barrier function was greatly impaired by IMI exposure, which might increase the body's susceptibility to harmful substances in the gut. Meanwhile, the synthesis and metabolism of hepatic bile acids (BAs) was also affected by IMI exposure. The levels of serum and hepatic total bile acids (TBAs) decreased; in contrast, the fecal TBA levels increased after exposure to 30 mg/L IMI for 10 weeks. Sequencing of colonic contents revealed that the operational taxonomic units (OTUs) and α-diversity index increased and that the gram-negative bacteria overgrew, indicating that the balance of the gut microbiota was disrupted. The present study indicated that subchronic exposure to IMI interfered with the gut barrier function, interfering with BAs metabolism and causing gut microbiota imbalance in male C57BL/6J mice. Taken together, IMI residues appear to be potentially toxic to mammals and even humans.
Collapse
Affiliation(s)
- Guiling Yang
- State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Xianling Yuan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Cuiyuan Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Dou Wang
- State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Yanhua Wang
- State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| | - Wenyu Miao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China.
| |
Collapse
|
33
|
Sevİm Ç, Taghİzadehghalehjoughİ A, Kara M. In Vitro Investigation of the Effects of Imidacloprid on AChE, LDH, and GSH Levels in the L-929 Fibroblast Cell Line. Turk J Pharm Sci 2020; 17:506-510. [PMID: 33177931 DOI: 10.4274/tjps.galenos.2019.15807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/29/2019] [Indexed: 12/01/2022]
Abstract
Objectives There are several types of pesticides to control pests and several new types coming into use that could be less toxic compared to the old ones. Pesticide-induced oxidative stress, which is one of the main mechanisms of toxicity, is the research area focused most on over the last decade. There are several different studies in the literature on whether pesticide exposure induces oxidative stress parameter-mediated toxicity. Pesticide-induced oxidative stress level depends on the biochemical features of mammalian systems. Imidacloprid is a neonicotinoid pesticide in wide use that is considered safe; however, it has been reported in different studies that it may cause changes in oxidative stress parameters. Materials and Methods We investigated the dose- and time-dependent effects of imidacloprid on acetylcholinesterase (AChE), lactate dehydrogenase (LDH), and glutathione (GSH) levels in the L-929 fibroblast cell line. The effects of 1-500 μg imidacloprid dose range on AChE, GSH, and LDH were investigated. Results LDH levels were significantly increased dose dependently in the 250 and 500 ng imidacloprid groups compared to the control group. GSH levels nonsignificantly decreased dose dependently and GSH levels were lower in the 500 ng imidacloprid group compared to the control group. There were no significant differences between the groups in AChE levels. Conclusion These results indicated that high doses of imidacloprid may induce oxidative stress in fibroblast cells.
Collapse
Affiliation(s)
- Çiğdem Sevİm
- İstanbul University Faculty of Pharmacy, Department of Pharmaceutical Toxicology, İstanbul, Turkey
| | | | - Mehtap Kara
- Atatürk University Veterinary Faculty, Department of Pharmacology and Toxicology, Erzurum, Turkey
| |
Collapse
|
34
|
Impact of pesticide exposure on adipose tissue development and function. Biochem J 2020; 477:2639-2653. [DOI: 10.1042/bcj20200324] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/24/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022]
Abstract
Obesity is a leading cause of morbidity, mortality and health care expenditure whose incidence is rapidly rising across the globe. Although the cause of the obesity epidemic is typically viewed as a product of an increased availability of high calorie foods and/or a reduction in physical activity, there is mounting evidence that exposure to synthetic chemicals in our environment may play an important role. Pesticides, are a class of chemicals whose widespread use has coincided with the global rise of obesity over the past two decades. Importantly, given their lipophilic nature many pesticides have been shown to accumulate with adipose tissue depots, suggesting they may be disrupting the function of white adipose tissue (WAT), brown adipose tissue (BAT) and beige adipose tissue to promote obesity and metabolic diseases such as type 2 diabetes. In this review, we discuss epidemiological evidence linking pesticide exposure with body mass index (BMI) and the incidence of diabetes. We then review preclinical studies in rodent models which have directly evaluated the effects of different classes of insecticides and herbicides on obesity and metabolic dysfunction. Lastly, we review studies conducted in adipose tissue cells lines and the purported mechanisms by which pesticides may induce alterations in adipose tissue function. The review of the literature reveals major gaps in our knowledge regarding human exposure to pesticides and our understanding of whether physiologically relevant concentrations promote obesity and elicit alterations in key signaling pathways vital for maintaining adipose tissue metabolism.
Collapse
|
35
|
Thompson DA, Lehmler HJ, Kolpin DW, Hladik ML, Vargo JD, Schilling KE, LeFevre GH, Peeples TL, Poch MC, LaDuca LE, Cwiertny DM, Field RW. A critical review on the potential impacts of neonicotinoid insecticide use: current knowledge of environmental fate, toxicity, and implications for human health. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:1315-1346. [PMID: 32267911 PMCID: PMC11755762 DOI: 10.1039/c9em00586b] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Neonicotinoid insecticides are widely used in both urban and agricultural settings around the world. Historically, neonicotinoid insecticides have been viewed as ideal replacements for more toxic compounds, like organophosphates, due in part to their perceived limited potential to affect the environment and human health. This critical review investigates the environmental fate and toxicity of neonicotinoids and their metabolites and the potential risks associated with exposure. Neonicotinoids are found to be ubiquitous in the environment, drinking water, and food, with low-level exposure commonly documented below acceptable daily intake standards. Available toxicological data from animal studies indicate possible genotoxicity, cytotoxicity, impaired immune function, and reduced growth and reproductive success at low concentrations, while limited data from ecological or cross-sectional epidemiological studies have identified acute and chronic health effects ranging from acute respiratory, cardiovascular, and neurological symptoms to oxidative genetic damage and birth defects. Due to the heavy use of neonicotinoids and potential for cumulative chronic exposure, these insecticides represent novel risks and necessitate further study to fully understand their risks to humans.
Collapse
Affiliation(s)
- Darrin A Thompson
- University of Iowa, College of Public Health, Iowa City, IA, USA. and University of Iowa, Center for Health Effects of Environmental Contamination, Iowa City, IA, USA
| | | | - Dana W Kolpin
- U.S. Geological Survey, Central Midwest Water Science Center, Iowa City, IA, USA
| | - Michelle L Hladik
- U.S. Geological Survey, California Water Science Center, Sacramento, CA, USA
| | - John D Vargo
- State Hygienic Laboratory at the University of Iowa, Iowa City, IA, USA
| | | | - Gregory H LeFevre
- University of Iowa, Department of Civil & Environmental Engineering, Iowa City, IA, USA
| | - Tonya L Peeples
- Department of Chemical Engineering, University Park, PA, USA
| | - Matthew C Poch
- University of Iowa, College of Public Health, Iowa City, IA, USA.
| | - Lauren E LaDuca
- University of Iowa, College of Public Health, Iowa City, IA, USA.
| | - David M Cwiertny
- University of Iowa, Center for Health Effects of Environmental Contamination, Iowa City, IA, USA and University of Iowa, Department of Civil & Environmental Engineering, Iowa City, IA, USA
| | - R William Field
- University of Iowa, College of Public Health, Iowa City, IA, USA.
| |
Collapse
|
36
|
Abd El-Moneim Ibrahim K, Mohamed Abdelrahman S, K A Elhakim H, Ali Ragab E. Single or combined exposure to chlorpyrifos and cypermethrin provoke oxidative stress and downregulation in monoamine oxidase and acetylcholinesterase gene expression of the rat's brain. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:12692-12703. [PMID: 32006337 DOI: 10.1007/s11356-020-07864-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/23/2020] [Indexed: 02/07/2023]
Abstract
The extensive uses of organophosphates and pyrethroids have made it necessary to investigate the neurotoxicity of their combination as they may implicate in the neurodegenerative syndromes. Monoamine oxidase-A (MAO-A) and acetylcholinesterase (AChE) gene expression in the rat brain were evaluated after independent and combined intoxications with chlorpyrifos and cypermethrin. Twenty-four mature male rats were equally distributed into four groups. The first one was kept as a control group, whereas the second, third and fourth were orally gavage with chlorpyrifos (16.324 mg/kg), cypermethrin (25.089 mg/kg) and their combination (9.254 mg/kg), respectively, for 4 weeks. As compared to the control group, intoxications with chlorpyrifos and/or cypermethrin revealed significant (P < 0.05) declines in the levels of brain neurotransmitters (dopamine and serotonin) plus the enzymatic activities of MAO-A, AChE and sodium-potassium adenosine triphosphatase. The mRNA genes expression of MAO-A and AChE have also confirmed the enzymatic actions. Moreover, the oxidative injury recorded as the levels of malondialdehyde and nitric oxide markedly increased (P < 0.01), while the total thiol content reduced and the histopathological outcomes have confirmed these impacts. In conclusion, chlorpyrifos and cypermethrin revealed antagonistic inhibitions on the brain MAO-A and AChE gene regulation through neurotransmission deteriorations and oxidative damage, which could describe their contributions in the neuropathological progressions.
Collapse
Affiliation(s)
- Khairy Abd El-Moneim Ibrahim
- Mammalian Toxicology Department, Central Agricultural Pesticides Laboratory, Agricultural Research Center, Dokki, Giza, 12618, Egypt.
| | | | - Heba K A Elhakim
- Biochemistry Division, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Eman Ali Ragab
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
37
|
Tetsatsi ACM, Nkeng-Effouet PA, Alumeti DM, Bonsou GRF, Kamanyi A, Watcho P. Colibri® insecticide induces male reproductive toxicity: alleviating effects of Lannea acida (Anacardiaceae) in rats. Basic Clin Androl 2019; 29:16. [PMID: 31890217 PMCID: PMC6924042 DOI: 10.1186/s12610-019-0096-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022] Open
Abstract
Background Imidacloprid, a neonicotinoid insecticide, has been associated to severe reproductive toxicity in mammals. Although some preventive measures have been reported, curative strategies are yet to be explored. The present study was designed to investigate the alleviating effects of Lannea acida on the reproductive toxicity of colibri®, a commercial formulation of imidacloprid, in adult male rats. Materials and methods Seventy rats were orally administered with colibri® (22.5 mg/kg, 10 mL/kg) for 14 days and treated for other 14 or 28 days with either aqueous or methanol extracts of L. acida (170 or 340 mg/kg). Control animals were similarly treated with clomiphene citrate or vitamin E. Sexual organ weights, spermatozoa characteristics, sexual hormones, stress markers and testis histology were evaluated at the end of each treatment period. Results Colibri® exposition induced reproductive toxicity marked by a decrease in sex organ weights, spermatozoa count, motility and viability. Colibri® also decreased testosterone, luteinizing hormone, follicle stimulating hormone concentrations and increased testicular oxidative stress. Spermatozoa morphology and testis histology were also severely altered. Similar to clomiphene citrate and vitamin E, treatment with L. acida extracts significantly (p ≤ 0.05–0.001) reversed the above-mentioned damages, especially after 28 days of treatment with aqueous (340 mg/kg) and methanol (170 mg/kg) extracts. Conclusion Present results indicate that L. acida exerts curative effects against colibri®-induced male reproductive toxicity. These results justify the use of this plant as fertility enhancer and suggest that it could be an alternative in the management of pesticide-derived male infertility.
Collapse
Affiliation(s)
- Aimé Césaire Momo Tetsatsi
- 1Animal Physiology and Phytopharmacology Laboratory, Faculty of Science, University of Dschang, PO Box: 67, Dschang, Cameroon
| | | | - Désiré Munyali Alumeti
- 1Animal Physiology and Phytopharmacology Laboratory, Faculty of Science, University of Dschang, PO Box: 67, Dschang, Cameroon
| | - Georges Roméo Fozin Bonsou
- 1Animal Physiology and Phytopharmacology Laboratory, Faculty of Science, University of Dschang, PO Box: 67, Dschang, Cameroon
| | - Albert Kamanyi
- 1Animal Physiology and Phytopharmacology Laboratory, Faculty of Science, University of Dschang, PO Box: 67, Dschang, Cameroon
| | - Pierre Watcho
- 1Animal Physiology and Phytopharmacology Laboratory, Faculty of Science, University of Dschang, PO Box: 67, Dschang, Cameroon
| |
Collapse
|
38
|
Hassan AMS, Abo El-Ela FI, Abdel-Aziz AM. Investigating the potential protective effects of natural product quercetin against imidacloprid-induced biochemical toxicity and DNA damage in adults rats. Toxicol Rep 2019; 6:727-735. [PMID: 31388500 PMCID: PMC6676460 DOI: 10.1016/j.toxrep.2019.07.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/03/2019] [Accepted: 07/19/2019] [Indexed: 12/22/2022] Open
Abstract
Imidacloprid insecticide causes hepatotoxicity, renal damage and DNA damage. Quercetin revealed a significant protective action against the toxic effects of Imidacloprid. Quercetin counteracts the imidacloprid effects on liver, Kidney and DNA damage to the normal level.
Quercetin (QT) is a natural antioxidant materials that’s possesses different type of pharmacological activities. In the current study, the protective effect QT against imidacloprid (IMD)-induced toxicity in rats was studied. The experiment included thirty-six adult male rats groups treated with QT, IMD (two different doses), their combinations and control non-treated group for 21 consecutive days. Different biochemical analysis (serum liver and kidney enzymes level, cholesterol and Glucose levels) were evaluated. DNA damage using comet assay and histopathological examination of different body organs were also screened. Treatment with IMD increased ALT, AST, serum urea, creatinine, cholesterol and Glucose levels but decreased the levels of serum total protein, albumin and body weight with induction in triacylglycerol and cholesterol levels. Animals treated with QT prior to IMD administration showed normal enzymatic levels which indicating a protective effect of QT. In addition, QT protected the different body organs from the histological changes and DNA damages induced by IMD toxicity. The present results showed the protective effect of QT as a natural material against the IMD induced toxicity at different doses.
Collapse
Affiliation(s)
| | - Fatma I Abo El-Ela
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | | |
Collapse
|
39
|
Ndonwi EN, Atogho-Tiedeu B, Lontchi-Yimagou E, Shinkafi TS, Nanfa D, Balti EV, Indusmita R, Mahmood A, Katte JC, Mbanya A, Matsha T, Mbanya JC, Shakir A, Sobngwi E. Gestational Exposure to Pesticides Induces Oxidative Stress and Lipid Peroxidation in Offspring that Persist at Adult Age in an Animal Model. Toxicol Res 2019; 35:241-248. [PMID: 31341553 PMCID: PMC6629439 DOI: 10.5487/tr.2019.35.3.241] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 09/12/2018] [Accepted: 10/30/2018] [Indexed: 12/20/2022] Open
Abstract
Pesticide exposure may induce biochemical alterations including oxidative stress and lipid peroxidation. However, in the context of developmental origin of health and disease, putative trans-generational effect of exposure to pesticides are insufficiently studied. We therefore aimed to evaluate the biochemical effect of gestational exposure to four pesticides on female Wistar rats and their offspring at adult age. We studied 30 female nulliparous Wistar rats divided into 5 equal groups. Group 1 served as the control group and received distilled water while group 2, 3, 4 and 5 received orally pesticide 1 (imidacloprid), pesticide 2 (chlorpyrifos), pesticide 3 (imidacloprid + lambda cyhalothrin) and pesticide 4 (oxamyl) respectively once daily throughout gestation at a dose equivalent to 1/10 lethal dose 50. The mothers were followed up until one month post gestation. The offspring were followed up from birth until adult age (12 weeks). In all animals at each time point we evaluated malondialdehyde (MDA), oxidative stress and liver function enzymes. There was similar variation of total body weight in all the groups during and after gestation. However, Female Wistar rats of the exposed groups had significant alterations in liver SOD (-30.8% to +64.1%), catalase (-38.8% to -85.7%) and GSH (-29.2% to -86.5%) and; kidney catalase (> 100%), GSH (> 100%). Moreover, MDA, alanine transaminase (ALT) and aspartate transaminase (AST) levels were significantly higher in pesticide exposed rats compared to the control group. Similar alterations in antioxidant enzymes, MDA and liver function enzymes were observed in offspring of treated rats evidenced at weaning and persisting until adult age. Exposure to pesticides causes oxidative stress and lipid peroxidation in exposed female Wistar rats and their offspring. The persistence in offspring at adult age suggests transgenerational adverse effects.
Collapse
Affiliation(s)
- Elvis Ngwa Ndonwi
- Laboratory for Molecular Medicine and Metabolism, Biotechnology Center, University of Yaoundé 1, Yaoundé, Cameroon.,Department of Biochemistry, Jamia Hamdard Deemed University, New-Delhi, India.,Faculty of Science, University of Yaounde 1, Yaounde, Cameroon
| | - Barbara Atogho-Tiedeu
- Laboratory for Molecular Medicine and Metabolism, Biotechnology Center, University of Yaoundé 1, Yaoundé, Cameroon.,Faculty of Science, University of Yaounde 1, Yaounde, Cameroon
| | | | - Tijjani S Shinkafi
- Department of Biochemistry, Jamia Hamdard Deemed University, New-Delhi, India.,Department of Biochemistry, Usmanu Danfodiyo University Sokoto, Sokoto, Nigeria
| | - Dieudonne Nanfa
- Laboratory for Molecular Medicine and Metabolism, Biotechnology Center, University of Yaoundé 1, Yaoundé, Cameroon.,Faculty of Science, University of Yaounde 1, Yaounde, Cameroon
| | - Eric V Balti
- Diabetes Research Center, Brussels Free University-VUB, Brussels, Belgium
| | - Routray Indusmita
- Department of Biochemistry, Jamia Hamdard Deemed University, New-Delhi, India
| | - Amena Mahmood
- Department of Biochemistry, Jamia Hamdard Deemed University, New-Delhi, India
| | - Jean-Claude Katte
- National Obesity Centre, Yaoundé Central Hospital, Yaoundé, Cameroon
| | - Armand Mbanya
- Diabetes Research Center, Albert Einstein College of Medicine, New York, USA
| | - Tandi Matsha
- Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Jean Claude Mbanya
- Laboratory for Molecular Medicine and Metabolism, Biotechnology Center, University of Yaoundé 1, Yaoundé, Cameroon.,National Obesity Centre, Yaoundé Central Hospital, Yaoundé, Cameroon.,Department of Internal Medicine, Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1, Yaoundé, Cameroon
| | - Ali Shakir
- Department of Biochemistry, Usmanu Danfodiyo University Sokoto, Sokoto, Nigeria
| | - Eugene Sobngwi
- Laboratory for Molecular Medicine and Metabolism, Biotechnology Center, University of Yaoundé 1, Yaoundé, Cameroon.,National Obesity Centre, Yaoundé Central Hospital, Yaoundé, Cameroon.,Department of Internal Medicine, Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1, Yaoundé, Cameroon
| |
Collapse
|
40
|
Mahajan L, Verma PK, Raina R, Pankaj NK, Sood S, Singh M. Alteration in thiols homeostasis, protein and lipid peroxidation in renal tissue following subacute oral exposure of imidacloprid and arsenic in Wistar rats. Toxicol Rep 2018; 5:1114-1119. [PMID: 30456172 PMCID: PMC6231080 DOI: 10.1016/j.toxrep.2018.11.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 10/19/2018] [Accepted: 11/01/2018] [Indexed: 11/22/2022] Open
Abstract
The aim of present study was to assess whether No Observed Effect Level (NOEL) of imidacloprid (IMI) potentiates the arsenic induced renal toxicity at its maximum contaminant level in drinking water in Wistar rats. Significant elevation of lipid and protein oxidation with reduced level of total thiols and antioxidant enzymes (catalase, superoxide dismutase, glutathione reductase, glutathione peroxidase and glutathione-s-transferase) in renal tissue may have contributed to increased renal plasma biomarkers (creatinine and blood urea nitrogen) following repeated exposure of IMI and arsenic alone and in-combination. The altered renal biomarkers in co-exposed groups corroborated with histopathological alterations in renal tissue. The observations indicated that altered thiol homeostasis in renal tissue may be associated with increased lipid and protein oxidation in IMI and arsenic administered rats. It is concluded that administration of IMI potentiate the arsenic induced renal damage in Wistar rats.
Collapse
Affiliation(s)
- Lakshay Mahajan
- Division of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Science and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, R S Pura, 181102, India
| | - Pawan Kumar Verma
- Division of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Science and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, R S Pura, 181102, India
| | - Rajinder Raina
- Division of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Science and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, R S Pura, 181102, India
| | - Nrip K. Pankaj
- Division of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Science and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, R S Pura, 181102, India
| | - Shilpa Sood
- Division of Veterinary Pathology, Faculty of Veterinary Science and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, R S Pura, 181102, India
| | - Maninder Singh
- Division of Veterinary Public Health and Epidemiology, Faculty of Veterinary Science and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, R S Pura, 181102, India
| |
Collapse
|
41
|
Mahajan L, Verma PK, Raina R, Sood S. Toxic effects of imidacloprid combined with arsenic: Oxidative stress in rat liver. Toxicol Ind Health 2018; 34:726-735. [PMID: 30033815 DOI: 10.1177/0748233718778993] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Imidacloprid (IMI), a newer neonicotinoid insecticide, induces oxidative insult to hepatocytes due to the formation of reactive metabolites during hepatic metabolism. The present study aimed to determine the potentiating effect of arsenic (As) on IMI-induced hepatic damage in Wistar rats. Rats, randomly divided into eight groups with six in each, were subjected to daily oral administration for 28 days. Group I served as control; group II received IMI at the dose rate of 16.9 mg/kg body weight; groups III, IV, and V received As at the dose rate of 50, 100, and 150 ppb, respectively, in drinking water; groups VI, VII, and VIII received both IMI (16.9 mg/kg) and As in drinking water at the rate of 50, 100, and 150 ppb, respectively. Repeated oral administration of IMI or As resulted in significant ( p < 0.05) elevation of plasma phosphatases, transferases, hepatic malondialdehyde, and advanced oxidation protein product levels, but significantly ( p < 0.05) decreased levels of total proteins, thiols, and activities of antioxidant enzymes that indicate oxidation-induced hepatotoxicity. These findings were further corroborated by histological alterations in hepatic tissue of IMI or As-administered rats. The coadministration of both IMI and As in rats produced more severe alterations in these parameters in hepatic tissue. Reduced antioxidant indices and increased hepatic damage biomarkers with pronounced histopathological alterations in hepatic tissue after combined exposure to toxicants indicate potentiating toxic effect of As on IMI-induced hepatotoxicity.
Collapse
Affiliation(s)
- Lakshay Mahajan
- 1 Division of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Science and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, India
| | - Pawan Kumar Verma
- 1 Division of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Science and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, India
| | - Rajinder Raina
- 1 Division of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Science and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, India
| | - Shilpa Sood
- 2 Division of Veterinary Pathology, Faculty of Veterinary Science and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, India
| |
Collapse
|
42
|
Redox imbalance caused by pesticides: a review of OPENTOX-related research. Arh Hig Rada Toksikol 2018; 69:126-134. [PMID: 29990294 DOI: 10.2478/aiht-2018-69-3105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/01/2018] [Indexed: 11/20/2022] Open
Abstract
Pesticides are a highly diverse group of compounds and the most important chemical stressors in the environment. Mechanisms that could explain pesticide toxicity are constantly being studied and their interactions at the cellular level are often observed in well-controlled in vitro studies. Several pesticide groups have been found to impair the redox balance in the cell, but the mechanisms leading to oxidative stress for certain pesticides are only partly understood. As our scientific project "Organic pollutants in environment - markers and biomarkers of toxicity (OPENTOX)" is dedicated to studying toxic effects of selected insecticides and herbicides, this review is focused on reporting the knowledge regarding oxidative stress-related phenomena at the cellular level. We wanted to single out the most important facts relevant to the evaluation of our own findings from studies conducted on in vitro cell models.
Collapse
|
43
|
Lafi B, Chaâbane M, Elwej A, Grati M, Jamoussi K, Mnif H, Boudawara T, Ketata Bouaziz H, Zeghal N. Effects of co-exposure to imidacloprid and gibberellic acid on redox status, kidney variables and histopathology in adult rats. Arch Physiol Biochem 2018; 124:175-184. [PMID: 28875714 DOI: 10.1080/13813455.2017.1371195] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Data on the individual nephrotoxic effects of imidacloprid (IMI) and gibberellic acid (GA3) are scarce. Moreover, there is a lack of information about their combined effects on the renal tissue. Our study investigated the effects of IMI and GA3 separately or together on rats kidney. IMI (64 mg/kg bw) was given for 3 weeks by gavage either individually or in combination with GA3 (200 mg/L) via drinking water. IMI associated or no with GA3 increased the levels of kidney malondialdehyde, advanced oxidation protein products, protein carbonyls and metallothionein, plasma creatinine, urea, blood urea nitrogen and lactate dehydrogenase activity. A decline of kidney uric acid level and antioxidant status was also observed. All these changes were supported by histopathological observations. Our results highlighted the role of IMI and/or GA3-induced nephrotoxicity. Co-exposure to IMI and GA3 exhibited synergism in biochemical kidney variables and histopathology and antagonism in physical and morphological parameters.
Collapse
Affiliation(s)
- Bornia Lafi
- a Animal Physiology Laboratory, Research Unit of Toxicology and Environmental Health, Sfax Faculty of Sciences , University of Sfax , Sfax , Tunisia
| | - Mariem Chaâbane
- a Animal Physiology Laboratory, Research Unit of Toxicology and Environmental Health, Sfax Faculty of Sciences , University of Sfax , Sfax , Tunisia
| | - Awatef Elwej
- a Animal Physiology Laboratory, Research Unit of Toxicology and Environmental Health, Sfax Faculty of Sciences , University of Sfax , Sfax , Tunisia
| | - Malek Grati
- b Biochemistry Laboratory , CHU Hedi Chaker, University of Sfax , Sfax , Tunisia
| | - Kamel Jamoussi
- b Biochemistry Laboratory , CHU Hedi Chaker, University of Sfax , Sfax , Tunisia
| | - Hela Mnif
- c Anatomopathology Laboratory , CHU Habib Bourguiba, University of Sfax , Sfax , Tunisia
| | - Tahia Boudawara
- c Anatomopathology Laboratory , CHU Habib Bourguiba, University of Sfax , Sfax , Tunisia
| | - Hanen Ketata Bouaziz
- a Animal Physiology Laboratory, Research Unit of Toxicology and Environmental Health, Sfax Faculty of Sciences , University of Sfax , Sfax , Tunisia
| | - Najiba Zeghal
- a Animal Physiology Laboratory, Research Unit of Toxicology and Environmental Health, Sfax Faculty of Sciences , University of Sfax , Sfax , Tunisia
| |
Collapse
|
44
|
Emam H, Ahmed E, Abdel-Daim M. Antioxidant capacity of omega-3-fatty acids and vitamin E against imidacloprid-induced hepatotoxicity in Japanese quails. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:11694-11702. [PMID: 29442305 DOI: 10.1007/s11356-018-1481-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/04/2018] [Indexed: 06/08/2023]
Abstract
Imidacloprid (IM) is a neonicotinoid insecticide, used in a wide range of agricultural activities worldwide. However, it results in ecosystem disturbances and signs of toxicity in human and animals. The current study was designed to elucidate the protective effects of omega-3-fatty acids (OFAs) and vitamin E (Vit E) against IM hepatotoxicity in Japanese quails. Seventy male quails (30 days old) were divided into seven groups (n = 10); G1 -ve control; G2 received IM (+ve control); G3 received OFA; G4 received Vit E; and G5, G6, and G7 received OFA and/or Vit E with IM for 30 days, respectively. Blood and liver tissue samples were collected. Imidacloprid significantly (p < 0.05) increased serum levels of alanine transferase (ALT), aspartate transferase (AST), triglycerides (TGC), and low-density lipoprotein cholesterol (LDL-C), as well as liver tissue malondialdehyde (MDA) concentration. Moreover, IM caused a significant (p < 0.05) decrease in the levels of serum high-density lipoprotein cholesterol (HDL-C), as well as liver superoxide dismutase (SOD) enzyme activity and reduced-glutathione (GSH) concentration in comparison to the -ve control group. Histopathological changes in hepatocytes, including thick cell trabeculae with marked hydropic vacuolar degeneration of cytoplasm, were found in IM-treated group. Treatment with OFA and/or Vit E resulted in significant improvements in general body condition, serum HDL-C level, and liver tissue SOD enzyme activity and GSH concentration, as well as significant decreases in the levels of serum AST, ALT, TGC, LDL-C, and hepatic tissue MDA. In conclusion, OFA and Vit E have a protective effect against IM toxicity, especially in their combination.
Collapse
Affiliation(s)
- Hazem Emam
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Eman Ahmed
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Mohamed Abdel-Daim
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| |
Collapse
|
45
|
Theoretical Insights into Imidazolidine Oxidation of Imidacloprid by Cytochrome P450 3A4. J Mol Graph Model 2018; 80:173-181. [DOI: 10.1016/j.jmgm.2018.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 01/09/2018] [Accepted: 01/10/2018] [Indexed: 12/18/2022]
|
46
|
Han W, Tian Y, Shen X. Human exposure to neonicotinoid insecticides and the evaluation of their potential toxicity: An overview. CHEMOSPHERE 2018; 192:59-65. [PMID: 29100122 DOI: 10.1016/j.chemosphere.2017.10.149] [Citation(s) in RCA: 280] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 10/25/2017] [Accepted: 10/26/2017] [Indexed: 05/25/2023]
Abstract
Neonicotinoid insecticides have become the fastest growing class of insecticides over the past few decades. The insecticidal activity of neonicotinoids is attributed to their agonist action on nicotinic acetylcholine receptors (nAChRs). Because of the special selective action on nAChRs in central nervous system of insects, and versatility in application methods, neonicotinoids are used to protect crops and pets from insect attacks globally. Although neonicotinoids are considered low toxicity to mammals and humans in comparison with traditional insecticides, more and more studies show exposure to neonicotinoids pose potential risk to mammals and even humans. In recent years, neonicotinoids and their metabolites have been successfully detected in various human biological samples. Meanwhile, many studies have focused on the health effects of neonicotinoids on humans. Our aims here are to review studies on human neonicotinoid exposure levels, health effect, evaluation of potential toxicity and to suggest possible directions for future research.
Collapse
Affiliation(s)
- Wenchao Han
- MOE and Shanghai Key Laboratory of Children's Environment Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Tian
- MOE and Shanghai Key Laboratory of Children's Environment Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xiaoming Shen
- MOE and Shanghai Key Laboratory of Children's Environment Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
47
|
Wang X, Anadón A, Wu Q, Qiao F, Ares I, Martínez-Larrañaga MR, Yuan Z, Martínez MA. Mechanism of Neonicotinoid Toxicity: Impact on Oxidative Stress and Metabolism. Annu Rev Pharmacol Toxicol 2017; 58:471-507. [PMID: 28968193 DOI: 10.1146/annurev-pharmtox-010617-052429] [Citation(s) in RCA: 199] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Thousands of tons of neonicotinoids are widely used around the world as broad-spectrum systemic insecticides and veterinary drugs. Researchers originally thought that neonicotinoids exhibited low mammalian toxicity. However, following their widespread use, it became increasingly evident that neonicotinoids could have various toxic effects on vertebrates and invertebrates. The primary focus of this review is to summarize the research progress associated with oxidative stress as a plausible mechanism for neonicotinoid-induced toxicity as well as neonicotinoid metabolism. This review summarizes the research conducted over the past decade into the production of reactive oxygen species, reactive nitrogen species, and oxidative stress as aresult of neonicotinoid treatments, along with their correlation with the toxicity and metabolism of neonicotinoids. The metabolism of neonicotinoids and protection of various compounds against neonicotinoid-induced toxicity based on their antioxidative effects is also discussed. This review sheds new light on the critical roles of oxidative stress in neonicotinoid-induced toxicity to nontarget species.
Collapse
Affiliation(s)
- Xu Wang
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain; .,National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China;
| | - Arturo Anadón
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou 434025, China.,Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Králové, Hradec Králové 50003, Czech Republic
| | - Fang Qiao
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Irma Ares
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - María-Rosa Martínez-Larrañaga
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; .,MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei 430070, China
| | - María-Aránzazu Martínez
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| |
Collapse
|
48
|
Khalil SR, Awad A, Mohammed HH, Nassan MA. Imidacloprid insecticide exposure induces stress and disrupts glucose homeostasis in male rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 55:165-174. [PMID: 28850943 DOI: 10.1016/j.etap.2017.08.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/08/2017] [Accepted: 08/17/2017] [Indexed: 05/07/2023]
Abstract
In the present study, we evaluated the stress response in adult rats who were administered imidacloprid (IMI) orally in two doses (0.5 and 1.0mg/kg bw for 60days). It led to an alteration in the levels of cortisone and catecholamines and induced behavioral deficits, particularly in the animals exposed to the dose of 1.0mg/kg. IMI was further analyzed for the effect on glucose homeostasis in developing and adult rats at a dose of 1.0mg/kg bw where it elicited a hyperglycemic effect. Moreover, we observed an alteration in the mRNA levels of glucose transporters. Histopathological and immunohistochemical data displayed structural perturbations in pancreatic tissue with a decline in the expression of insulin and GLUT4, particularly in the developing rats. Collectively, IMI treatment resulted in stress represented by behavioral and biochemical changes, particularly at a dose of 1.0mg/kg bw. Moreover, IMI perturbed the glucose regulation through hyperglycemic activity in both developing and adult rats, an observation clearly evident in the developing rats.
Collapse
Affiliation(s)
- Samah R Khalil
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt.
| | - Ashraf Awad
- Animal Wealth Development Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Hesham H Mohammed
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed Abdo Nassan
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
49
|
Sun Q, Qi W, Xiao X, Yang SH, Kim D, Yoon KS, Clark JM, Park Y. Imidacloprid Promotes High Fat Diet-Induced Adiposity in Female C57BL/6J Mice and Enhances Adipogenesis in 3T3-L1 Adipocytes via the AMPKα-Mediated Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:6572-6581. [PMID: 28704996 PMCID: PMC5576855 DOI: 10.1021/acs.jafc.7b02584] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Imidacloprid, a neonicotinoid insecticide, was previously reported to enhance adipogenesis and resulted in insulin resistance in cell culture models. It was also reported to promote high fat diet-induced obesity and insulin resistance in male C57BL/6J mice. Thus, the goal of the present study was to determine the effects of imidacloprid and dietary fat interaction on the development of adiposity and insulin resistance in female C57BL/6J mice. Mice were fed with a low (4% w/w) or high fat (20% w/w) diet containing imidacloprid (0.06, 0.6, or 6 mg/kg bw/day) for 12 weeks. Mice fed with imidacloprid (0.6 mg/kg bw/day) significantly enhanced high fat diet-induced weight gain and adiposity. Treatment with imidacloprid significantly increased serum insulin levels with high fat diet without effects on other markers of glucose homeostasis. AMPKα activation was significantly inhibited by 0.6 and 6 mg imidacloprid/kg bw/day in white adipose tissue. Moreover, AMPKα activation with 5-aminoimidazole-4-carboxamide ribonucleotide abolished the effects of imidacloprid (10 μM) on enhanced adipogenesis in 3T3-L1 adipocytes. N-Acetyl cysteine also partially reversed the effects of imidacloprid on reduced phosphorylation of protein kinase B (AKT) in C2C12 myotubes. These results indicate that imidacloprid may potentiate high fat diet-induced adiposity in female C57BL/6J mice and enhance adipogenesis in 3T3-L1 adipocytes via the AMPKα-mediated pathway. Imidacloprid might also influence glucose homeostasis partially by inducing cellular oxidative stress in C2C12 myotubes.
Collapse
Affiliation(s)
- Quancai Sun
- Department
of Food Science, Department of Mathematics and Statistics, and Department of Veterinary and Animal
Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Weipeng Qi
- Department
of Food Science, Department of Mathematics and Statistics, and Department of Veterinary and Animal
Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Xiao Xiao
- Department
of Food Science, Department of Mathematics and Statistics, and Department of Veterinary and Animal
Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Szu-Hao Yang
- Department
of Food Science, Department of Mathematics and Statistics, and Department of Veterinary and Animal
Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Daeyoung Kim
- Department
of Food Science, Department of Mathematics and Statistics, and Department of Veterinary and Animal
Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Kyong Sup Yoon
- Department
of Biological Sciences and Environmental Sciences Program, Southern Illinois University, Edwardsville, Illinois 62026, United States
| | - John M. Clark
- Department
of Food Science, Department of Mathematics and Statistics, and Department of Veterinary and Animal
Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Yeonhwa Park
- Department
of Food Science, Department of Mathematics and Statistics, and Department of Veterinary and Animal
Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Tel: (413) 545-1018; e-mail:
| |
Collapse
|
50
|
Shukla S, Jhamtani RC, Dahiya MS, Agarwal R. Oxidative injury caused by individual and combined exposure of neonicotinoid, organophosphate and herbicide in zebrafish. Toxicol Rep 2017; 4:240-244. [PMID: 28959645 PMCID: PMC5615116 DOI: 10.1016/j.toxrep.2017.05.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/03/2017] [Accepted: 05/14/2017] [Indexed: 11/26/2022] Open
Abstract
Mixture toxicity emerged as greatest challenges in environmental toxicology. Combined (CMD) group shows maximum alterations (even at half dose). Individual exposure shows selected target organ toxicity. Combined exposure develops toxic manifestations in all three examined tissues.
The greatest challenge in environmental toxicology is to understand the effects of mixture toxicity as environmental pollutants co-exist and exhibit combined effects. Thus, it is necessary to evaluate the mixture toxicity associated with two or more co-existing compounds. Pesticides are widely used to control pest, they are ubiquitous in nature and present in all environmental components. Pesticide residue can be detected in almost all components of environment and food samples. Imidacloprid (IMD) (neonicotinoid), dichlorvos (DIC) (organophosphate) and atrazine (ATZ) are three widely used pesticides for commercial uses. Present work includes the assessment of effects of individual exposure of IMD (27.5 mg/L), DIC (15 mg/L), and ATZ (03 mg/L) and in combination of three (CMD) (13.75 + 7.5 + 1.5 mg/L IMD, DIC & ATZ, respectively) in terms of LPO, GSH content and antioxidant enzymes activities (superoxide dismutase, catalase and glutathione peroxidase) in zebrafish (Danio rerio), exposed for 24 h. CMD group exhibits highest lipid peroxidation than other individually exposed groups. Similarly, the activities of antioxidant enzymes were highest in CMD group with reduced GSH content. Results indicate that exposure to mixture of pesticides develops synergistic effects which were more toxic in compare to individual exposure and also produce toxicity in all examined tissues rather than selective organ toxicity.
Collapse
Affiliation(s)
- Saurabh Shukla
- Laboratory of Analytical & Molecular Toxicology (Forensic Chemistry & Toxicology Laboratory), Institute of Forensic Science, Gujarat Forensic Sciences University, Sector 09, Gandhinagar, 382007, Gujarat, India
| | - Reena C Jhamtani
- Laboratory of Analytical & Molecular Toxicology (Forensic Chemistry & Toxicology Laboratory), Institute of Forensic Science, Gujarat Forensic Sciences University, Sector 09, Gandhinagar, 382007, Gujarat, India
| | - M S Dahiya
- Institute of Forensic Science, Gujarat Forensic Sciences University, Sector 09, Gandhinagar, 382007, Gujarat, India
| | - Rakhi Agarwal
- Laboratory of Analytical & Molecular Toxicology (Forensic Chemistry & Toxicology Laboratory), Institute of Forensic Science, Gujarat Forensic Sciences University, Sector 09, Gandhinagar, 382007, Gujarat, India
| |
Collapse
|