1
|
Dalle S, Abderrahmani A. Receptors and Signaling Pathways Controlling Beta-Cell Function and Survival as Targets for Anti-Diabetic Therapeutic Strategies. Cells 2024; 13:1244. [PMID: 39120275 PMCID: PMC11311556 DOI: 10.3390/cells13151244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 08/10/2024] Open
Abstract
Preserving the function and survival of pancreatic beta-cells, in order to achieve long-term glycemic control and prevent complications, is an essential feature for an innovative drug to have clinical value in the treatment of diabetes. Innovative research is developing therapeutic strategies to prevent pathogenic mechanisms and protect beta-cells from the deleterious effects of inflammation and/or chronic hyperglycemia over time. A better understanding of receptors and signaling pathways, and of how they interact with each other in beta-cells, remains crucial and is a prerequisite for any strategy to develop therapeutic tools aimed at modulating beta-cell function and/or mass. Here, we present a comprehensive review of our knowledge on membrane and intracellular receptors and signaling pathways as targets of interest to protect beta-cells from dysfunction and apoptotic death, which opens or could open the way to the development of innovative therapies for diabetes.
Collapse
Affiliation(s)
- Stéphane Dalle
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), 34094 Montpellier, France
| | - Amar Abderrahmani
- Université Lille, Centre National de la Recherche Scientifique (CNRS), Centrale Lille, Université Polytechnique Hauts-de-France, UMR 8520, IEMN, F59000 Lille, France
| |
Collapse
|
2
|
Gong R, Greenbaum J, Lin X, Du Y, Su KJ, Gong Y, Shen J, Deng HW. Identification of potential genetic causal variants for obesity-related traits using statistical fine mapping. Mol Genet Genomics 2023; 298:1309-1319. [PMID: 37498361 PMCID: PMC11829812 DOI: 10.1007/s00438-023-02055-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/14/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Obesity is highly influenced by heritability and variant effects. While previous genome-wide association studies (GWASs) have successfully identified numerous genetic loci associated with obesity-related traits [body mass index (BMI) and waist-to-hip ratio (WHR)], most causal variants remain unidentified. The high degree of linkage disequilibrium (LD) throughout the genome makes it extremely difficult to distinguish the GWAS-associated SNPs that exert a true biological effect. OBJECTIVE This study was to identify the potential causal variants having a biological effect on obesity-related traits. METHODS We used Probabilistic Annotation INTegratOR, a Bayesian fine-mapping method, which incorporated genetic association data (GWAS summary statistics), LD structure, and functional annotations to calculate a posterior probability of causality for SNPs across all loci of interest. Moreover, we performed gene expression analysis using the available public transcriptomic data to validate the corresponding genes of the potential causal SNPs partially. RESULTS We identified 96 SNPs for BMI and 43 SNPs for WHR with a high posterior probability of causality (> 99%), including 49 BMI SNPs and 24 WHR SNPs which did not reach genome-wide significance in the original GWAS. Finally, we partially validated some genes corresponding to the potential causal SNPs. CONCLUSION Using a statistical fine-mapping approach, we identified a set of potential causal variants to be prioritized for future functional validation and also detected some novel trait-associated variants. These results provided novel insight into our understanding of the genetics of obesity and also demonstrated that fine mapping may improve upon the results identified by the original GWASs.
Collapse
Affiliation(s)
- Rui Gong
- Endocrinology Cadre Ward, Gansu Provincial Hospital, Lanzhou, 730000, Gansu, China
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
- The 3rd Affiliated Hospital of Southern Medical University, Guangdong, 510000, Guangzhou, China
| | - Jonathan Greenbaum
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Xu Lin
- Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde), Foshan, 528000, China
| | - Yan Du
- School of Nursing, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Kuan-Jui Su
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Yun Gong
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Jie Shen
- Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde), Foshan, 528000, China
| | - Hong-Wen Deng
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
3
|
Raugh A, Jing Y, Bettini ML, Bettini M. The amphiregulin/EGFR axis has limited contribution in controlling autoimmune diabetes. Sci Rep 2023; 13:18653. [PMID: 37903947 PMCID: PMC10616065 DOI: 10.1038/s41598-023-45738-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/23/2023] [Indexed: 11/01/2023] Open
Abstract
Conventional immunosuppressive functions of CD4+Foxp3+ regulatory T cells (Tregs) in type 1 diabetes (T1D) pathogenesis have been well described, but whether Tregs have additional non-immunological functions supporting tissue homeostasis in pancreatic islets is unknown. Within the last decade novel tissue repair functions have been ascribed to Tregs. One function is production of the epidermal growth factor receptor (EGFR) ligand, amphiregulin, which promotes tissue repair in response to inflammatory or mechanical tissue injury. However, whether such pathways are engaged during autoimmune diabetes and promote tissue repair is undetermined. Previously, we observed that upregulation of amphiregulin at the transcriptional level was associated with functional Treg populations in the non-obese diabetic (NOD) mouse model of T1D. From this we postulated that amphiregulin promoted islet tissue repair and slowed the progression of diabetes in NOD mice. Here, we report that islet-infiltrating Tregs have increased capacity to produce amphiregulin, and that both Tregs and beta cells express EGFR. Moreover, we show that amphiregulin can directly modulate mediators of endoplasmic reticulum stress in beta cells. Despite this, NOD amphiregulin deficient mice showed no acceleration of spontaneous autoimmune diabetes. Taken together, the data suggest that the ability for amphiregulin to affect the progression of autoimmune diabetes is limited.
Collapse
Affiliation(s)
- Arielle Raugh
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pathology, University of Utah, Salt Lake City, UT, 84112, USA
| | - Yi Jing
- Microbiology and Immunology Graduate Program, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pathology, University of Utah, Salt Lake City, UT, 84112, USA
| | - Matthew L Bettini
- Department of Pathology, University of Utah, Salt Lake City, UT, 84112, USA
| | - Maria Bettini
- Department of Pathology, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
4
|
Sionov RV, Ahdut-HaCohen R. A Supportive Role of Mesenchymal Stem Cells on Insulin-Producing Langerhans Islets with a Specific Emphasis on The Secretome. Biomedicines 2023; 11:2558. [PMID: 37761001 PMCID: PMC10527322 DOI: 10.3390/biomedicines11092558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Type 1 Diabetes (T1D) is a chronic autoimmune disease characterized by a gradual destruction of insulin-producing β-cells in the endocrine pancreas due to innate and specific immune responses, leading to impaired glucose homeostasis. T1D patients usually require regular insulin injections after meals to maintain normal serum glucose levels. In severe cases, pancreas or Langerhans islet transplantation can assist in reaching a sufficient β-mass to normalize glucose homeostasis. The latter procedure is limited because of low donor availability, high islet loss, and immune rejection. There is still a need to develop new technologies to improve islet survival and implantation and to keep the islets functional. Mesenchymal stem cells (MSCs) are multipotent non-hematopoietic progenitor cells with high plasticity that can support human pancreatic islet function both in vitro and in vivo and islet co-transplantation with MSCs is more effective than islet transplantation alone in attenuating diabetes progression. The beneficial effect of MSCs on islet function is due to a combined effect on angiogenesis, suppression of immune responses, and secretion of growth factors essential for islet survival and function. In this review, various aspects of MSCs related to islet function and diabetes are described.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Institute of Biomedical and Oral Research (IBOR), Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Ronit Ahdut-HaCohen
- Department of Medical Neurobiology, Institute of Medical Research, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel;
- Department of Science, The David Yellin Academic College of Education, Jerusalem 9103501, Israel
| |
Collapse
|
5
|
Chen YC, Lutkewitte AJ, Basavarajappa HD, Fueger PT. Glucolipotoxic Stress-Induced Mig6 Desensitizes EGFR Signaling and Promotes Pancreatic Beta Cell Death. Metabolites 2023; 13:627. [PMID: 37233668 PMCID: PMC10222246 DOI: 10.3390/metabo13050627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 05/27/2023] Open
Abstract
A loss of functional beta cell mass is a final etiological event in the development of frank type 2 diabetes (T2D). To preserve or expand beta cells and therefore treat/prevent T2D, growth factors have been considered therapeutically but have largely failed to achieve robust clinical success. The molecular mechanisms preventing the activation of mitogenic signaling pathways from maintaining functional beta cell mass during the development of T2D remain unknown. We speculated that endogenous negative effectors of mitogenic signaling cascades impede beta cell survival/expansion. Thus, we tested the hypothesis that a stress-inducible epidermal growth factor receptor (EGFR) inhibitor, mitogen-inducible gene 6 (Mig6), regulates beta cell fate in a T2D milieu. To this end, we determined that: (1) glucolipotoxicity (GLT) induces Mig6, thereby blunting EGFR signaling cascades, and (2) Mig6 mediates molecular events regulating beta cell survival/death. We discovered that GLT impairs EGFR activation, and Mig6 is elevated in human islets from T2D donors as well as GLT-treated rodent islets and 832/13 INS-1 beta cells. Mig6 is essential for GLT-induced EGFR desensitization, as Mig6 suppression rescued the GLT-impaired EGFR and ERK1/2 activation. Further, Mig6 mediated EGFR but not insulin-like growth factor-1 receptor nor hepatocyte growth factor receptor activity in beta cells. Finally, we identified that elevated Mig6 augmented beta cell apoptosis, as Mig6 suppression reduced apoptosis during GLT. In conclusion, we established that T2D and GLT induce Mig6 in beta cells; the elevated Mig6 desensitizes EGFR signaling and induces beta cell death, suggesting Mig6 could be a novel therapeutic target for T2D.
Collapse
Affiliation(s)
- Yi-Chun Chen
- Department of Pediatrics and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Andrew J. Lutkewitte
- Department of Pediatrics and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Halesha D. Basavarajappa
- Department of Molecular and Cellular Endocrinology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Patrick T. Fueger
- Department of Pediatrics and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Molecular and Cellular Endocrinology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
6
|
Basavarajappa HD, Irimia JM, Bauer BM, Fueger PT. The Adaptor Protein NumbL Is Involved in the Control of Glucolipotoxicity-Induced Pancreatic Beta Cell Apoptosis. Int J Mol Sci 2023; 24:ijms24043308. [PMID: 36834720 PMCID: PMC9959170 DOI: 10.3390/ijms24043308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Avoiding the loss of functional beta cell mass is critical for preventing or treating diabetes. Currently, the molecular mechanisms underlying beta cell death are partially understood, and there is a need to identify new targets for developing novel therapeutics to treat diabetes. Previously, our group established that Mig6, an inhibitor of EGF signaling, mediates beta cell death under diabetogenic conditions. The objective here was to clarify the mechanisms linking diabetogenic stimuli to beta cell death by investigating Mig6-interacting proteins. Using co-immunoprecipitation and mass spectrometry, we evaluated the binding partners of Mig6 under both normal glucose (NG) and glucolipotoxic (GLT) conditions in beta cells. We identified that Mig6 interacted dynamically with NumbL, whereas Mig6 associated with NumbL under NG, and this interaction was disrupted under GLT conditions. Further, we demonstrated that the siRNA-mediated suppression of NumbL expression in beta cells prevented apoptosis under GLT conditions by blocking the activation of NF-κB signaling. Using co-immunoprecipitation experiments, we observed that NumbL's interactions with TRAF6, a key component of NFκB signaling, were increased under GLT conditions. The interactions among Mig6, NumbL, and TRAF6 were dynamic and context-dependent. We proposed a model wherein these interactions activated pro-apoptotic NF-κB signaling while blocking pro-survival EGF signaling under diabetogenic conditions, leading to beta cell apoptosis. These findings indicated that NumbL should be further investigated as a candidate anti-diabetic therapeutic target.
Collapse
Affiliation(s)
- Halesha D. Basavarajappa
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Jose M. Irimia
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
- Comprehensive Metabolic Phenotyping Core, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Brandon M. Bauer
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Patrick T. Fueger
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
- Comprehensive Metabolic Phenotyping Core, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
- Correspondence: ; Tel.: +1-626-218-0620
| |
Collapse
|
7
|
Celen C, Chuang JC, Shen S, Li L, Maggiore G, Jia Y, Luo X, Moore A, Wang Y, Otto JE, Collings CK, Wang Z, Sun X, Nassour I, Park J, Ghaben A, Wang T, Wang SC, Scherer PE, Kadoch C, Zhu H. Arid1a loss potentiates pancreatic β-cell regeneration through activation of EGF signaling. Cell Rep 2022; 41:111581. [DOI: 10.1016/j.celrep.2022.111581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/18/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
|
8
|
Bosi E, Marselli L, Suleiman M, Tesi M, De Luca C, Del Guerra S, Cnop M, Eizirik D, Marchetti P. A single-cell human islet interactome atlas identifies disrupted autocrine and paracrine communications in type 2 diabetes. NAR Genom Bioinform 2022; 4:lqac084. [DOI: 10.1093/nargab/lqac084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 10/04/2022] [Accepted: 10/29/2022] [Indexed: 11/19/2022] Open
Abstract
Abstract
A sensible control of hormone secretion from pancreatic islets requires concerted inter-cellular communications, but a comprehensive picture of the whole islet interactome is presently missing. Single-cell transcriptomics allows to overcome this and we used here a single-cell dataset from type 2 diabetic (T2D) and non-diabetic (ND) donors to leverage islet interaction networks. The single-cell dataset contains 3046 cells classified in 7 cell types. The interactions across cell types in T2D and ND were obtained and resulting networks analysed to identify high-centrality genes and altered interactions in T2D. The T2D interactome displayed a higher number of interactions (10 787) than ND (9707); 1289 interactions involved beta cells (1147 in ND). High-centrality genes included EGFR, FGFR1 and FGFR2, important for cell survival and proliferation. In conclusion, this analysis represents the first in silico model of the human islet interactome, enabling the identification of signatures potentially relevant for T2D pathophysiology.
Collapse
Affiliation(s)
- Emanuele Bosi
- Department of Experimental and Clinical Medicine, Pancreatic islets laboratory, University of Pisa , Pisa , Italy
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa , Genoa , Italy
| | - Lorella Marselli
- Department of Experimental and Clinical Medicine, Pancreatic islets laboratory, University of Pisa , Pisa , Italy
| | - Mara Suleiman
- Department of Experimental and Clinical Medicine, Pancreatic islets laboratory, University of Pisa , Pisa , Italy
| | - Marta Tesi
- Department of Experimental and Clinical Medicine, Pancreatic islets laboratory, University of Pisa , Pisa , Italy
| | - Carmela De Luca
- Department of Experimental and Clinical Medicine, Pancreatic islets laboratory, University of Pisa , Pisa , Italy
| | - Silvia Del Guerra
- Department of Experimental and Clinical Medicine, Pancreatic islets laboratory, University of Pisa , Pisa , Italy
| | - Miriam Cnop
- ULB Center for Diabetes Research , Université Libre de Bruxelles, Brussels , Belgium
- Division of Endocrinology, Erasmus Hospital , Université Libre de Bruxelles, Brussels , Belgium
| | - Decio L Eizirik
- ULB Center for Diabetes Research , Université Libre de Bruxelles, Brussels , Belgium
| | - Piero Marchetti
- Department of Experimental and Clinical Medicine, Pancreatic islets laboratory, University of Pisa , Pisa , Italy
| |
Collapse
|
9
|
Kim JM, Joung KH, Lee JC, Choung S, Kang SM, Kim HJ, Ku BJ. Soluble LRIG2 is a potential biomarker for type 2 diabetes mellitus. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1612. [PMID: 34926656 PMCID: PMC8640903 DOI: 10.21037/atm-21-3272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/12/2021] [Indexed: 12/22/2022]
Abstract
Background Early diagnosis and treatment of type 2 diabetes can delay the onset of microvascular and macrovascular complications. Therefore, the identification of a novel biomarker for diagnosing diabetes is necessary. In the present study, the role of serum soluble leucine-rich repeats and immunoglobulin like domains 2 (sLRIG2) was investigated as a diagnostic biomarker of type 2 diabetes. Methods A total of 240 subjects with newly diagnosed type 2 diabetes (n=80), prediabetes (n=80), or normal glucose tolerance (NGT; n=80) were included in this study. The fasting serum sLRIG2 level was measured using a quantitative sandwich enzyme immunoassay technique with an enzyme-linked immunosorbent assay (ELISA). Serum sLRIG2 levels were compared among the three groups, and the associations of serum sLRIG2 levels with clinical variables were investigated. Results Serum sLRIG2 levels were significantly higher in subjects with type 2 diabetes (16.7±8.0 ng/mL) than in subjects without diabetes (NGT group: 12.3±5.3 ng/mL, P<0.001; prediabetes group: 13.2±5.8 ng/mL, P=0.002). Glycosylated hemoglobin (HbA1c: r=0.378, P<0.001) and blood glucose (fasting: r=0.421, P<0.001; 2-hour postprandial: r=0.433, P<0.001) correlated more strongly with sLRIG2 than any other clinical variables. Conclusions The serum sLRIG2 levels correlated with glucose parameters; thus, sLRIG2 might be a novel diagnostic biomarker for type 2 diabetes.
Collapse
Affiliation(s)
- Ji Min Kim
- Department of Endocrinology, Chungnam National University Sejong Hospital, Sejong, Republic of Korea.,Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Kyong Hye Joung
- Department of Endocrinology, Chungnam National University Sejong Hospital, Sejong, Republic of Korea.,Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Jun Choul Lee
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Sorim Choung
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Seon Mee Kang
- Department of Internal Medicine, Busan Paik Hospital, College of Medicine, Inje University, Busan, South Korea
| | - Hyun Jin Kim
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Bon Jeong Ku
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Republic of Korea.,Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| |
Collapse
|
10
|
A multidimensional functional fitness score has a stronger association with type 2 diabetes than obesity parameters in cross sectional data. PLoS One 2021; 16:e0245093. [PMID: 33544739 PMCID: PMC7864668 DOI: 10.1371/journal.pone.0245093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/22/2020] [Indexed: 11/19/2022] Open
Abstract
Objectives We examine here the association of multidimensional functional fitness with type 2 diabetes mellitus (T2DM) as compared to anthropometric indices of obesity such as body mass index (BMI) and waist to hip ratio (WHR) in a sample of Indian population. Research design and method We analysed retrospective data of 663 volunteer participants (285 males and 378 females between age 28 and 84), from an exercise clinic in which every participant was required to undergo a health related physical fitness (HRPF) assessment consisting of 15 different tasks examining 8 different aspects of functional fitness. Results The odds of being diabetic in the highest quartile of BMI were not significantly higher than that in the lowest quartile in either of the sexes. The odds of being a diabetic in the highest WHR quartile were significantly greater than the lowest quartile in females (OR = 4.54 (1.95, 10.61) as well as in males (OR = 3.81 (1.75, 8.3). In both sexes the odds of being a diabetic were significantly greater in the lowest quartile of HRPF score than the highest (males OR = 10.52 (4.21, 26.13); females OR = 10.50 (3.53, 31.35)). After removing confounding, the predictive power of HRPF was significantly greater than that of WHR. HRPF was negatively correlated with WHR, however for individuals that had contradicting HRPF and WHR based predictions, HRPF was the stronger predictor of T2DM. Conclusion The association of multidimensional functional fitness score with type 2 diabetes was significantly stronger than obesity parameters in a cross sectional self-selected sample from an Indian city.
Collapse
|
11
|
Khatri R, Mazurek S, Petry SF, Linn T. Mesenchymal stem cells promote pancreatic β-cell regeneration through downregulation of FoxO1 pathway. Stem Cell Res Ther 2020; 11:497. [PMID: 33239104 PMCID: PMC7687794 DOI: 10.1186/s13287-020-02007-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 11/02/2020] [Indexed: 12/22/2022] Open
Abstract
Background Mesenchymal stem cells (MSC) are non-haematopoietic, fibroblast-like multipotent stromal cells. In the injured pancreas, these cells are assumed to secrete growth factors and immunomodulatory molecules, which facilitate the regeneration of pre-existing β-cells. However, when MSC are delivered intravenously, their majority is entrapped in the lungs and does not reach the pancreas. Therefore, the aim of this investigation was to compare the regenerative support of hTERT-MSC (human telomerase reverse transcriptase mesenchymal stem cells) via intrapancreatic (IPR) and intravenous route (IVR). Methods hTERT-MSC were administered by IPR and IVR to 50% pancreatectomized NMRI nude mice. After eight days, blood glucose level, body weight, and residual pancreatic weight were measured. Proliferating pancreatic β-cells were labelled and identified with bromodeoxyuridine (BrdU) in vivo. The number of residual islets and the frequency of proliferating β-cells were compared in different groups with sequential pancreatic sections. The pancreatic insulin content was evaluated by enzyme-linked immunosorbent assay (ELISA) and the presence of hTERT-MSC with human Alu sequence. Murine gene expression of growth factors, β-cell specific molecules and proinflammatory cytokines were inspected by real-time polymerase chain reaction (RT-PCR) and Western blot. Results This study evaluated the regenerative potential of the murine pancreas post-hTERT-MSC administration through the intrapancreatic (IPR) and intravenous route (IVR). Both routes of hTERT-MSC transplantation (IVR and IPR) increased the incorporation of BrdU by pancreatic β-cells compared to control. MSC induced epidermal growth factor (EGF) expression and inhibited proinflammatory cytokines (IFN-γ and TNF-α). FOXA2 and PDX-1 characteristics for pancreatic progenitor cells were activated via AKT/ PDX-1/ FoxO1 signalling pathway. Conclusion The infusion of hTERT-MSC after partial pancreatectomy (Px) through the IVR and IPR facilitated the proliferation of autochthonous pancreatic β-cells and provided evidence for a regenerative influence of MSC on the endocrine pancreas. Moderate benefit of IPR over IVR was observed which could be a new treatment option for preventing diabetes mellitus after pancreas surgery. Supplementary information The online version contains supplementary material available at at 10.1186/s13287-020-02007-9.
Collapse
Affiliation(s)
- Rahul Khatri
- Third Medical Department, Clinical Research Lab, Justus Liebig University Giessen, Giessen, Germany
| | - Sybille Mazurek
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| | | | - Thomas Linn
- Third Medical Department, Clinical Research Lab, Justus Liebig University Giessen, Giessen, Germany. .,Clinical Research Unit, Centre of Internal Medicine, Friedrichstrasse. 20/ Aulweg 123, 35392, Giessen, Germany.
| |
Collapse
|
12
|
Cubillos-Angulo JM, Vinhaes CL, Fukutani ER, Albuquerque VVS, Queiroz ATL, Andrade BB, Fukutani KF. In silico transcriptional analysis of mRNA and miRNA reveals unique biosignatures that characterizes different types of diabetes. PLoS One 2020; 15:e0239061. [PMID: 32956382 PMCID: PMC7505453 DOI: 10.1371/journal.pone.0239061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 08/28/2020] [Indexed: 12/19/2022] Open
Abstract
Diabetes (DM) has a significant impact on public health. We performed an in silico study of paired datasets of messenger RNA (mRNA) micro-RNA (miRNA) transcripts to delineate potential biosignatures that could distinguish prediabetes (pre-DM), type-1DM (T1DM) and type-2DM (T2DM). Two publicly available datasets containing expression values of mRNA and miRNA obtained from individuals diagnosed with pre-DM, T1DM or T2DM, and normoglycemic controls (NC), were analyzed using systems biology approaches to define combined signatures to distinguish different clinical groups. The mRNA profile of both pre-DM and T2DM was hallmarked by several differentially expressed genes (DEGs) compared to NC. Nevertheless, T1DM was characterized by an overall low number of DEGs. The miRNA signature profiles were composed of a substantially lower number of differentially expressed targets. Gene enrichment analysis revealed several inflammatory pathways in T2DM and fewer in pre-DM, but with shared findings such as Tuberculosis. The integration of mRNA and miRNA datasets improved the identification and discriminated the group composed by pre-DM and T2DM patients from that constituted by normoglycemic and T1DM individuals. The integrated transcriptomic analysis of mRNA and miRNA expression revealed a unique biosignature able to characterize different types of DM.
Collapse
Affiliation(s)
- Juan M. Cubillos-Angulo
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Brazil
- Curso de Medicina, Faculdade de Tecnologia e Ciências (FTC), Salvador, Brazil
| | - Caian L. Vinhaes
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Curso de Medicina, Faculdade de Tecnologia e Ciências (FTC), Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
| | | | | | - Artur T. L. Queiroz
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
- * E-mail: (BBA); (ATLQ); (KFF)
| | - Bruno B. Andrade
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Brazil
- Curso de Medicina, Faculdade de Tecnologia e Ciências (FTC), Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
- Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador, Brazil
- Universidade Salvador (UNIFACS), Laureate Universities, Salvador, Brazil
- * E-mail: (BBA); (ATLQ); (KFF)
| | - Kiyoshi F. Fukutani
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Curso de Medicina, Faculdade de Tecnologia e Ciências (FTC), Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
- * E-mail: (BBA); (ATLQ); (KFF)
| |
Collapse
|
13
|
Yang L, Zhu Y, Kong D, Gong J, Yu W, Liang Y, Nie Y, Teng CB. EGF suppresses the expression of miR-124a in pancreatic β cell lines via ETS2 activation through the MEK and PI3K signaling pathways. Int J Biol Sci 2019; 15:2561-2575. [PMID: 31754329 PMCID: PMC6854373 DOI: 10.7150/ijbs.34985] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 08/11/2019] [Indexed: 12/11/2022] Open
Abstract
Diabetes mellitus is characterized by pancreatic β cell dysfunction. Previous studies have indicated that epidermal growth factor (EGF) and microRNA-124a (miR-124a) play opposite roles in insulin biosynthesis and secretion by beta cells. However, the underlying mechanisms remain poorly understood. In the present study, we demonstrated that EGF could inhibit miR-124a expression in beta cell lines through downstream signaling pathways, including mitogen-activated protein kinase kinase (MEK) and phosphatidylinositol 3-kinase (PI3K) cascades. Further, the transcription factor ETS2, a member of the ETS (E26 transformation-specific) family, was identified to be responsible for the EGF-mediated suppression of miR-124a expression, which was dependent on ETS2 phosphorylation at threonine 72. Activation of ETS2 decreased miR-124a promoter transcriptional activity through the putative conserved binding sites AGGAANA/TN in three miR-124a promoters located in different chromosomes. Of note, ETS2 played a positive role in regulating beta cell function-related genes, including miR-124a targets, Forkhead box a2 (FOXA2) and Neurogenic differentiation 1 (NEUROD1), which may have partly been through the inhibition of miR-124 expression. Knockdown and overexpression of ETS2 led to the prevention and promotion of insulin biosynthesis respectively, while barely affecting the secretion ability. These results suggest that EGF may induce the activation of ETS2 to inhibit miR-124a expression to maintain proper beta cell functions and that ETS2, as a novel regulator of insulin production, is a potential therapeutic target for diabetes mellitus treatment.
Collapse
Affiliation(s)
- Lin Yang
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yuansen Zhu
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Delin Kong
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Jiawei Gong
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Wen Yu
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yang Liang
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yuzhe Nie
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Chun-Bo Teng
- College of Life Science, Northeast Forestry University, Harbin, China
| |
Collapse
|
14
|
Banerjee RR. Piecing together the puzzle of pancreatic islet adaptation in pregnancy. Ann N Y Acad Sci 2019; 1411:120-139. [PMID: 29377199 DOI: 10.1111/nyas.13552] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/18/2017] [Accepted: 10/24/2017] [Indexed: 12/20/2022]
Abstract
Pregnancy places acute demands on maternal physiology, including profound changes in glucose homeostasis. Gestation is characterized by an increase in insulin resistance, counterbalanced by an adaptive increase in pancreatic β cell production of insulin. Failure of normal adaptive responses of the islet to increased maternal and fetal demands manifests as gestational diabetes mellitus (GDM). The gestational changes and rapid reversal of islet adaptations following parturition are at least partly driven by an anticipatory program rather than post-factum compensatory adaptations. Here, I provide a comprehensive review of the cellular and molecular mechanisms underlying normal islet adaptation during pregnancy and how dysregulation may lead to GDM. Emerging areas of interest and understudied areas worthy of closer examination in the future are highlighted.
Collapse
Affiliation(s)
- Ronadip R Banerjee
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, and the Comprehensive Diabetes Center, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| |
Collapse
|
15
|
Pancreas organogenesis: The interplay between surrounding microenvironment(s) and epithelium-intrinsic factors. Curr Top Dev Biol 2019; 132:221-256. [DOI: 10.1016/bs.ctdb.2018.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Oakie A, Wang R. β-Cell Receptor Tyrosine Kinases in Controlling Insulin Secretion and Exocytotic Machinery: c-Kit and Insulin Receptor. Endocrinology 2018; 159:3813-3821. [PMID: 30239687 PMCID: PMC6202852 DOI: 10.1210/en.2018-00716] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 09/13/2018] [Indexed: 12/25/2022]
Abstract
Insulin secretion from pancreatic β-cells is initiated through channel-mediated depolarization, cytoskeletal remodeling, and vesicle tethering at the cell membrane, all of which can be regulated through cell surface receptors. Receptor tyrosine kinases (RTKs) promote β-cell development and postnatal signaling to improve β-cell mass and function, yet their activation has also been shown to initiate exocytotic events in β-cells. This review examines the role of RTK signaling in insulin secretion, with a focus on RTKs c-Kit and insulin receptor (IR). Pathways that control insulin release and the potential interplay between c-Kit and IR signaling are discussed, along with clinical implications of RTK therapy on insulin secretion.
Collapse
Affiliation(s)
- Amanda Oakie
- Children’s Health Research Institute, Victoria Research Laboratories, London, Ontario, Canada
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario, Canada
| | - Rennian Wang
- Children’s Health Research Institute, Victoria Research Laboratories, London, Ontario, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
- Department of Medicine, University of Western Ontario, London, Ontario, Canada
- Correspondence: Rennian Wang, MD, PhD, Victoria Research Laboratories, Room A5-140, 800 Commissioners Road East, London, Ontario N6C 2V5, Canada. E-mail:
| |
Collapse
|
17
|
Kim JM, Choung S, Joung KH, Lee JH, Kim HJ, Ku BJ. Serum Soluble Epidermal Growth Factor Receptor Level Increase in Patients Newly Diagnosed with Type 2 Diabetes Mellitus. Diabetes Metab J 2018; 42:343-347. [PMID: 29885103 PMCID: PMC6107357 DOI: 10.4093/dmj.2017.0082] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/02/2018] [Indexed: 11/08/2022] Open
Abstract
We analyzed circulating soluble epidermal growth factor receptor (sEGFR) levels in humans. Serum sEGFR levels were higher in subjects with newly diagnosed type 2 diabetes mellitus compared with controls. Serum sEGFR was positively correlated with glycosylated hemoglobin and serum glucose and negatively correlated with serum insulin and C-peptide levels.
Collapse
Affiliation(s)
- Ji Min Kim
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Sorim Choung
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Korea
| | - Kyong Hye Joung
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Ju Hee Lee
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Hyun Jin Kim
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Bon Jeong Ku
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea.
| |
Collapse
|
18
|
Kyohara M, Shirakawa J, Okuyama T, Kimura A, Togashi Y, Tajima K, Hirano H, Terauchi Y. Serum Quantitative Proteomic Analysis Reveals Soluble EGFR To Be a Marker of Insulin Resistance in Male Mice and Humans. Endocrinology 2017; 158:4152-4164. [PMID: 29028997 DOI: 10.1210/en.2017-00339] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 09/29/2017] [Indexed: 12/22/2022]
Abstract
To identify circulating factors as candidates involved in type 2 diabetes mellitus (T2DM), we conducted two different quantitative proteomic analyses: (1) db/db mouse sera were compared with db/+ mouse sera obtained at 4, 8, 12, and 24 weeks of age, and (2) db/db mouse sera from animals treated with liraglutide were compared with sera from animals without liraglutide treatment. Twenty proteins were differentially expressed in db/db mouse sera in the first experiment and eight proteins were differentially expressed in db/db mouse sera after liraglutide treatment in the second experiment. Soluble epidermal growth factor receptor (sEGFR) was identified as a common factor, and its protein level was significantly affected in both experiments. An enzyme-linked immunosorbent assay confirmed that the relatively low serum sEGFR levels in db/db mice were restored by liraglutide treatment. The serum sEGFR levels were elevated in diabetic mice with impaired insulin secretion and decreased in high-fat diet-fed mice and ob/ob mice. The serum sEGFR levels increased after the administration of a dual inhibitor of IGF-1/insulin receptor or streptozotocin. In humans with normal glucose tolerance or T2DM, the serum sEGFR levels were correlated with the fasting blood glucose, fasting serum insulin, homeostatic model assessment of insulin resistance, HbA1c, total cholesterol, low-density lipoprotein cholesterol, and triglycerides levels. These findings suggest that sEGFR might be a biomarker for evaluating insulin resistance or a therapeutic target of liraglutide.
Collapse
Affiliation(s)
- Mayu Kyohara
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Japan
| | - Jun Shirakawa
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Japan
| | - Tomoko Okuyama
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Japan
| | - Ayuko Kimura
- Advanced Medical Research Center, Yokohama City University, Japan
| | - Yu Togashi
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Japan
| | - Kazuki Tajima
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Japan
| | - Hisashi Hirano
- Advanced Medical Research Center, Yokohama City University, Japan
| | - Yasuo Terauchi
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Japan
| |
Collapse
|
19
|
GLP-1/Exendin-4 induces β-cell proliferation via the epidermal growth factor receptor. Sci Rep 2017; 7:9100. [PMID: 28831150 PMCID: PMC5567347 DOI: 10.1038/s41598-017-09898-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/31/2017] [Indexed: 01/21/2023] Open
Abstract
Exendin-4 is a long acting glucagon-like peptide 1 (GLP-1) analogue that is an agonist for the GLP-1 receptor, a G-protein coupled receptor (GPCR). Exendin-4 is used to clinically improve glucose tolerance in diabetic patients due to its ability to enhance insulin secretion. In rodents, and possibly in humans, exendin-4 can stimulate β-cell proliferation. The exact mechanism of action to induce β-cell proliferation is not well understood. Here, using a β-cell specific epidermal growth factor receptor (EGFR) null mouse, we show that exendin-4 induced an increase in proliferation and β-cell mass through EGFR. Thus, our study sheds light on the role of EGFR signaling in the effects of exendin-4 on the control of blood glucose metabolism and β-cell mass.
Collapse
|
20
|
Vidwans HB, Watve MG. How much variance in insulin resistance is explained by obesity? JOURNAL OF INSULIN RESISTANCE 2017. [DOI: 10.4102/jir.v2i1.22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background: Obesity is believed to be the major cause of insulin resistance, although many other obesity-independent signals are shown to affect insulin sensitivity.Aim: We address the degree to which variation in insulin resistance is explained by morphometric and biochemical measures of obesity.Methods: PubMed and Google Scholar were searched for epidemiological studies published between 1994 and 2015 that report correlations between at least one measure of obesity and that of insulin resistance.Results: A total of 63 studies satisfied inclusion criteria. Frequency distribution of coefficients of determination between morphometric measures of obesity and insulin resistance was skewed with the mode being less than 10%, class and median being 17.3%. Plasma leptin concentration, but not plasma non-esterified fatty acid level, was better correlated with insulin resistance, the median variance explained being 33.29%. Morphometric measures alone had a median variance explained of 16%. Ethnicity explained part of the variance across studies with the correlation being significantly poorer in Asians.Conclusion: The extremely limited predictive power of morphometric and biochemical measures of obesity suggests that more research needs to focus on the obesity-independent signals that affect insulin sensitivity as well as leptin expression.
Collapse
|
21
|
Kumar A, Jeya Sundara Sharmila D, Singh S. SVMRFE based approach for prediction of most discriminatory gene target for type II diabetes. GENOMICS DATA 2017; 12:28-37. [PMID: 28275550 PMCID: PMC5331150 DOI: 10.1016/j.gdata.2017.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/07/2017] [Accepted: 02/15/2017] [Indexed: 12/22/2022]
Abstract
Type II diabetes is a chronic condition that affects the way our body metabolizes sugar. The body's important source of fuel is now becoming a chronic disease all over the world. It is now very necessary to identify the new potential targets for the drugs which not only control the disease but also can treat it. Support vector machines are the classifier which has a potential to make a classification of the discriminatory genes and non-discriminatory genes. SVMRFE a modification of SVM ranks the genes based on their discriminatory power and eliminate the genes which are not involved in causing the disease. A gene regulatory network has been formed with the top ranked coding genes to identify their role in causing diabetes. To further validate the results pathway study was performed to identify the involvement of the coding genes in type II diabetes. The genes obtained from this study showed a significant involvement in causing the disease, which may be used as a potential drug target.
Collapse
Affiliation(s)
- Atul Kumar
- Department of Biotechnology and Health Sciences, Karunya University, Coimbatore, Tamil Nadu, India
| | - D Jeya Sundara Sharmila
- Department of Nanosciences and Technology, Tamil Nadu Agriculture University, Coimbatore, Tamil Nadu, India
| | - Sachidanand Singh
- Department of Biotechnology and Health Sciences, Karunya University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
22
|
Song Z, Fusco J, Zimmerman R, Fischbach S, Chen C, Ricks DM, Prasadan K, Shiota C, Xiao X, Gittes GK. Epidermal Growth Factor Receptor Signaling Regulates β Cell Proliferation in Adult Mice. J Biol Chem 2016; 291:22630-22637. [PMID: 27587395 PMCID: PMC5077199 DOI: 10.1074/jbc.m116.747840] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/29/2016] [Indexed: 12/20/2022] Open
Abstract
A thorough understanding of the signaling pathways involved in the regulation of β cell proliferation is an important initial step in restoring β cell mass in the diabetic patient. Here, we show that epidermal growth factor receptor 1 (EGFR) was significantly up-regulated in the islets of C57BL/6 mice after 50% partial pancreatectomy (PPx), a model for workload-induced β cell proliferation. Specific deletion of EGFR in the β cells of adult mice impaired β cell proliferation at baseline and after 50% PPx, suggesting that the EGFR signaling pathway plays an essential role in adult β cell proliferation. Further analyses showed that β cell-specific depletion of EGFR resulted in impaired expression of cyclin D1 and impaired suppression of p27 after PPx, both of which enhance β cell proliferation. These data highlight the importance of EGFR signaling and its downstream signaling cascade in postnatal β cell growth.
Collapse
Affiliation(s)
- Zewen Song
- From the Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
- Department of Oncology, the Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha 410013, China, and
| | - Joseph Fusco
- From the Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Ray Zimmerman
- From the Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Shane Fischbach
- From the Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Congde Chen
- From the Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
- Department of Pediatric Surgery, the Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325000, China
| | - David Matthew Ricks
- From the Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Krishna Prasadan
- From the Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Chiyo Shiota
- From the Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Xiangwei Xiao
- From the Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224,
| | - George K Gittes
- From the Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224,
| |
Collapse
|
23
|
Baeyens L, Hindi S, Sorenson RL, German MS. β-Cell adaptation in pregnancy. Diabetes Obes Metab 2016; 18 Suppl 1:63-70. [PMID: 27615133 PMCID: PMC5384851 DOI: 10.1111/dom.12716] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/09/2016] [Indexed: 12/15/2022]
Abstract
Pregnancy in placental mammals places unique demands on the insulin-producing β-cells in the pancreatic islets of Langerhans. The pancreas anticipates the increase in insulin resistance that occurs late in pregnancy by increasing β-cell numbers and function earlier in pregnancy. In rodents, this β-cell expansion depends on secreted placental lactogens that signal through the prolactin receptor. Then at the end of pregnancy, the β-cell population contracts back to its pre-pregnancy size. In the current review, we focus on how glucose metabolism changes during pregnancy, how β-cells anticipate these changes through their response to lactogens and what molecular mechanisms guide the adaptive compensation. In addition, we summarize current knowledge of β-cell adaptation during human pregnancy and what happens when adaptation fails and gestational diabetes ensues. A better understanding of human β-cell adaptation to pregnancy would benefit efforts to predict, prevent and treat gestational diabetes.
Collapse
Affiliation(s)
- L Baeyens
- Diabetes Center, University of California San Francisco, San Francisco
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California San Francisco, San Francisco
| | - S Hindi
- Diabetes Center, University of California San Francisco, San Francisco
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California San Francisco, San Francisco
- Department of Medicine, University of California San Francisco, San Francisco
| | - R L Sorenson
- Department of Genetics, Cell Biology and Development, University of Minnesota Medical School, Minneapolis
| | - M S German
- Diabetes Center, University of California San Francisco, San Francisco.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California San Francisco, San Francisco.
- Department of Medicine, University of California San Francisco, San Francisco.
| |
Collapse
|
24
|
Chen J, Zeng F, Forrester SJ, Eguchi S, Zhang MZ, Harris RC. Expression and Function of the Epidermal Growth Factor Receptor in Physiology and Disease. Physiol Rev 2016; 96:1025-1069. [DOI: 10.1152/physrev.00030.2015] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) is the prototypical member of a family of membrane-associated intrinsic tyrosine kinase receptors, the ErbB family. EGFR is activated by multiple ligands, including EGF, transforming growth factor (TGF)-α, HB-EGF, betacellulin, amphiregulin, epiregulin, and epigen. EGFR is expressed in multiple organs and plays important roles in proliferation, survival, and differentiation in both development and normal physiology, as well as in pathophysiological conditions. In addition, EGFR transactivation underlies some important biologic consequences in response to many G protein-coupled receptor (GPCR) agonists. Aberrant EGFR activation is a significant factor in development and progression of multiple cancers, which has led to development of mechanism-based therapies with specific receptor antibodies and tyrosine kinase inhibitors. This review highlights the current knowledge about mechanisms and roles of EGFR in physiology and disease.
Collapse
Affiliation(s)
- Jianchun Chen
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Fenghua Zeng
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Steven J. Forrester
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Satoru Eguchi
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Ming-Zhi Zhang
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Raymond C. Harris
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
25
|
Salinas YD, Wang L, DeWan AT. Multiethnic genome-wide association study identifies ethnic-specific associations with body mass index in Hispanics and African Americans. BMC Genet 2016; 17:78. [PMID: 27296613 PMCID: PMC4907283 DOI: 10.1186/s12863-016-0387-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 06/01/2016] [Indexed: 01/03/2023] Open
Abstract
Background Genome-wide association studies of obesity have typically assumed fixed genetic effects across ethnicities, rarely attempting to thoroughly compare and contrast findings across various ethnic groups. Therefore, our study aimed to identify novel genetic associations with body mass index (BMI), a common measure of obesity, and explore their cross-ethnic generalizability in a multiethnic population. To that end, we conducted ethnic-specific genome-wide association analyses among 1235 Hispanic, 706 Asian, 1549 African American, and 2395 European American subjects from the Multi-ethnic Study of Atherosclerosis (MESA). We compared findings across ethnicities and investigated single-nucleotide polymorphisms (SNPs) with suggestive BMI-association p-values among 3379 Hispanic and 6871 African American subjects from the Women’s Health Initiative (WHI). Results We identified a genome-wide significant association in MESA Hispanics—rs12253976 in KLF6 (beta = 5.792 kg/m2 per-allele, 95 % confidence interval (CI): 3.885, 7.698; p = 3.43 × 10−9)—and suggestive SNPs with p < 5 × 10−6 in MESA Hispanics, European Americans and African Americans that display ethnic-specific effects on BMI. Of these suggestive SNPs, Hispanic SNP rs12255372 and African American SNP rs6435678 had the most evidence of replication in WHI. rs12255372 (in TCF7L2) was associated with lower BMI in both MESA (beta = −1.111 kg/m2, 95 % CI: −1.578, −0.645; p = 3.33 × 10−6) and WHI Hispanics (beta = −0.304 kg/m2, 95 % CI: −0.613, 0.006; p = 0.054). This TCF7L2 intronic region contains several SNPs (rs7901695, rs4506565, rs4132670, and rs12243326) with low p-values (p < 10−3) in MESA and betas of similar magnitude and direction in MESA and WHI, but only rs12243326 is in strong linkage disequilibrium with rs12255372 in our Hispanic populations, suggesting independent signals in this region. rs6435678 (in ERBB4) was associated with greater BMI in both MESA (beta = 1.104 kg/m2, 95 % CI: 0.643, 1.564; p = 2.85 × 10−6) and WHI African Americans (beta = 0.219 kg/m2, 95 % CI: −0.021, 0.460; p = 0.074). Conclusions Two BMI-association signals are present in the TCF7L2 intronic region of Hispanics, one of which is tagged by rs12255372. ERBB4 rs6435678 is a novel BMI-association signal in African Americans. Overall, our data suggest that ethnic-specific associations are involved in the genetic determination of BMI. Ethnic-specificity has potential implications for the development of gene-based therapies for obesity. Electronic supplementary material The online version of this article (doi:10.1186/s12863-016-0387-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yasmmyn D Salinas
- Department of Chronic Disease Epidemiology, Yale School of Public Health, 60 College Street, New Haven, CT, 06520, USA
| | - Leyao Wang
- Department of Chronic Disease Epidemiology, Yale School of Public Health, 60 College Street, New Haven, CT, 06520, USA
| | - Andrew T DeWan
- Department of Chronic Disease Epidemiology, Yale School of Public Health, 60 College Street, New Haven, CT, 06520, USA.
| |
Collapse
|
26
|
Tsuchiya H, Sakata N, Yoshimatsu G, Fukase M, Aoki T, Ishida M, Katayose Y, Egawa S, Unno M. Extracellular Matrix and Growth Factors Improve the Efficacy of Intramuscular Islet Transplantation. PLoS One 2015; 10:e0140910. [PMID: 26473955 PMCID: PMC4608691 DOI: 10.1371/journal.pone.0140910] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/01/2015] [Indexed: 12/24/2022] Open
Abstract
Background The efficacy of intramuscular islet transplantation is poor despite being technically simple, safe, and associated with reduced rates of severe complications. We evaluated the efficacy of combined treatment with extracellular matrix (ECM) and growth factors in intramuscular islet transplantation. Methods Male BALB/C mice were used for the in vitro and transplantation studies. The following three groups were evaluated: islets without treatment (islets-only group), islets embedded in ECM with growth factors (Matrigel group), and islets embedded in ECM without growth factors [growth factor-reduced (GFR) Matrigel group]. The viability and insulin-releasing function of islets cultured for 96 h were significantly improved in Matrigel and GFR Matrigel groups compared with the islets-only group. Results Blood glucose and serum insulin levels immediately following transplantation were significantly improved in the Matrigel and GFR Matrigel groups and remained significantly improved in the Matrigel group at postoperative day (POD) 28. On histological examination, significantly decreased numbers of TdT-mediated deoxyuridine triphosphate-biotin nick end labeling-positive islet cells and significantly increased numbers of Ki67-positive cells were observed in the Matrigel and GFR Matrigel groups at POD 3. Peri-islet revascularization was most prominent in the Matrigel group at POD 14. Conclusions The efficacy of intramuscular islet transplantation was improved by combination treatment with ECM and growth factors through the inhibition of apoptosis, increased proliferation of islet cells, and promotion of revascularization.
Collapse
Affiliation(s)
| | - Naoaki Sakata
- Department of Surgery, Tohoku University, Sendai, Japan
- * E-mail:
| | | | | | - Takeshi Aoki
- Department of Surgery, Tohoku University, Sendai, Japan
| | | | - Yu Katayose
- Department of Surgery, Tohoku University, Sendai, Japan
- Division of Integrated Surgery and Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shinichi Egawa
- Division of International Cooperation for Disaster Mediscine, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | - Michiaki Unno
- Department of Surgery, Tohoku University, Sendai, Japan
| |
Collapse
|
27
|
Song I, Patel O, Himpe E, Muller CJF, Bouwens L. Beta Cell Mass Restoration in Alloxan-Diabetic Mice Treated with EGF and Gastrin. PLoS One 2015; 10:e0140148. [PMID: 26452142 PMCID: PMC4599944 DOI: 10.1371/journal.pone.0140148] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 09/21/2015] [Indexed: 01/19/2023] Open
Abstract
One week of treatment with EGF and gastrin (EGF/G) was shown to restore normoglycemia and to induce islet regeneration in mice treated with the diabetogenic agent alloxan. The mechanisms underlying this regeneration are not fully understood. We performed genetic lineage tracing experiments to evaluate the contribution of beta cell neogenesis in this model. One day after alloxan administration, mice received EGF/G treatment for one week. The treatment could not prevent the initial alloxan-induced beta cell mass destruction, however it did reverse glycemia to control levels within one day, suggesting improved peripheral glucose uptake. In vitro experiments with C2C12 cell line showed that EGF could stimulate glucose uptake with an efficacy comparable to that of insulin. Subsequently, EGF/G treatment stimulated a 3-fold increase in beta cell mass, which was partially driven by neogenesis and beta cell proliferation as assessed by beta cell lineage tracing and BrdU-labeling experiments, respectively. Acinar cell lineage tracing failed to show an important contribution of acinar cells to the newly formed beta cells. No appearance of transitional cells co-expressing insulin and glucagon, a hallmark for alpha-to-beta cell conversion, was found, suggesting that alpha cells did not significantly contribute to the regeneration. An important fraction of the beta cells significantly lost insulin positivity after alloxan administration, which was restored to normal after one week of EGF/G treatment. Alloxan-only mice showed more pronounced beta cell neogenesis and proliferation, even though beta cell mass remained significantly depleted, suggesting ongoing beta cell death in that group. After one week, macrophage infiltration was significantly reduced in EGF/G-treated group compared to the alloxan-only group. Our results suggest that EGF/G-induced beta cell regeneration in alloxan-diabetic mice is driven by beta cell neogenesis, proliferation and recovery of insulin. The glucose-lowering effect of the treatment might play an important role in the regeneration process.
Collapse
Affiliation(s)
- Imane Song
- Cell Differentiation Lab, Vrije Universiteit Brussel (Brussels Free University), Brussels, Belgium
- * E-mail:
| | - Oelfah Patel
- Diabetes Discovery Platform, South African Medical Research Council, Tygerberg, South Africa
| | - Eddy Himpe
- Cell Differentiation Lab, Vrije Universiteit Brussel (Brussels Free University), Brussels, Belgium
| | - Christo J. F. Muller
- Diabetes Discovery Platform, South African Medical Research Council, Tygerberg, South Africa
| | - Luc Bouwens
- Cell Differentiation Lab, Vrije Universiteit Brussel (Brussels Free University), Brussels, Belgium
| |
Collapse
|
28
|
Early-onset diabetic E1-DN mice develop albuminuria and glomerular injury typical of diabetic nephropathy. BIOMED RESEARCH INTERNATIONAL 2015; 2015:102969. [PMID: 26000279 PMCID: PMC4426768 DOI: 10.1155/2015/102969] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/26/2014] [Accepted: 09/29/2014] [Indexed: 11/18/2022]
Abstract
The transgenic E1-DN mice express a kinase-negative epidermal growth factor receptor in their pancreatic islets and are diabetic from two weeks of age due to impaired postnatal growth of β-cell mass. Here, we characterize the development of hyperglycaemia-induced renal injury in the E1-DN mice. Homozygous mice showed increased albumin excretion rate (AER) at the age of 10 weeks; the albuminuria increased over time and correlated with blood glucose. Morphometric analysis of PAS-stained histological sections and electron microscopy images revealed mesangial expansion in homozygous E1-DN mice, and glomerular sclerosis was observed in the most hyperglycaemic mice. The albuminuric homozygous mice developed also other structural changes in the glomeruli, including thickening of the glomerular basement membrane and widening of podocyte foot processes that are typical for diabetic nephropathy. Increased apoptosis of podocytes was identified as one mechanism contributing to glomerular injury. In addition, nephrin expression was reduced in the podocytes of albuminuric homozygous E1-DN mice. Tubular changes included altered epithelial cell morphology and increased proliferation. In conclusion, hyperglycaemic E1-DN mice develop albuminuria and glomerular and tubular injury typical of human diabetic nephropathy and can serve as a new model to study the mechanisms leading to the development of diabetic nephropathy.
Collapse
|
29
|
Hölper S, Nolte H, Bober E, Braun T, Krüger M. Dissection of metabolic pathways in the Db/Db mouse model by integrative proteome and acetylome analysis. MOLECULAR BIOSYSTEMS 2015; 11:908-22. [DOI: 10.1039/c4mb00490f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
An in vivo SILAC-based quantitative proteomics approach to analyse protein abundances and acetylation levels under diabetic conditions.
Collapse
Affiliation(s)
- Soraya Hölper
- Max Planck Institute for Heart and Lung Research
- 61231 Bad Nauheim
- Germany
| | - Hendrik Nolte
- Max Planck Institute for Heart and Lung Research
- 61231 Bad Nauheim
- Germany
| | - Eva Bober
- Max Planck Institute for Heart and Lung Research
- 61231 Bad Nauheim
- Germany
| | - Thomas Braun
- Max Planck Institute for Heart and Lung Research
- 61231 Bad Nauheim
- Germany
| | - Marcus Krüger
- Max Planck Institute for Heart and Lung Research
- 61231 Bad Nauheim
- Germany
| |
Collapse
|
30
|
Dynamics of mRNA and polysomal abundance in early 3T3-L1 adipogenesis. BMC Genomics 2014; 15:381. [PMID: 24886538 PMCID: PMC4039748 DOI: 10.1186/1471-2164-15-381] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 05/07/2014] [Indexed: 12/31/2022] Open
Abstract
Background Adipogenesis is a complex process, in which immature pre-adipocytes change morphology, micro-anatomy and physiology to become mature adipocytes. These store and accumulate fat and release diverse hormones. Massive changes in protein content and protein composition of the transforming cell take place within a short time-frame. In a previous study we analyzed changes in the abundance of free and polysomal, i.e. ribosome bound, RNAs in the first hours of adipogenesis in the murine cell line 3T3-L1. Here we analyze changes of mRNA levels and their potential contribution to the changing protein pool by determination of mRNA levels and ribosome binding to mRNAs in 3T3-L1 cells stimulated for adipogenesis. We grouped mRNA species into categories with respect to up- or down-regulated transcription and translation and analyzed the groups regarding specific functionalities based on Gene Ontology (GO). Results A shift towards up-regulation of gene expression in early adipogenesis was detected. Genes up-regulated at the transcriptional (TC:up) and translational (TL:up) level (TC:up/TL:up) are very likely involved in control and logistics of translation. Many of them are known to contain a TOP motif. In the TC:up/TL:unchanged group we detected most of the metal binding proteins and metal transporters. In the TC:unchanged/TL:up group several factors of the olfactory receptor family were identified, while in TC:unchanged/TL:down methylation and repair genes are represented. In the TC:down/TL:up group we detected many signaling factors. The TC:down/TL:unchanged group mainly consists of regulatory factors. Conclusions Within the first hours of adipogenesis, changes in transcriptional and translational regulation take place. Notably, genes with a specific biological or molecular function tend to cluster in groups according to their transcriptional and translational regulation. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-381) contains supplementary material, which is available to authorized users.
Collapse
|
31
|
Hakonen E, Ustinov J, Eizirik DL, Sariola H, Miettinen PJ, Otonkoski T. In vivo activation of the PI3K-Akt pathway in mouse beta cells by the EGFR mutation L858R protects against diabetes. Diabetologia 2014; 57:970-9. [PMID: 24493201 DOI: 10.1007/s00125-014-3175-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 01/06/2014] [Indexed: 12/31/2022]
Abstract
AIMS/HYPOTHESIS EGF receptor (EGFR) signalling is required for normal beta cell development and postnatal beta cell proliferation. We tested whether beta cell proliferation can be triggered by EGFR activation at any age and whether this can protect beta cells against apoptosis induced by diabetogenic insults in a mouse model. METHODS We generated transgenic mice with doxycycline-inducible expression of constitutively active EGFR (L858R) (CA-EGFR) under the insulin promoter. Mice were given doxycycline at various ages for different time periods, and beta cell proliferation and mass were analysed. Mice were also challenged with streptozotocin and isolated islets exposed to cytokines. RESULTS Expression of EGFR (L858R) led to increased phosphorylation of EGFR and Akt in pancreatic islets. CA-EGFR expression during pancreatic development (embryonic day [E]12.5 to postnatal day [P]1) increased beta cell proliferation and mass in newborn mice. However, CA-EGFR expression in adult mice did not affect beta cell mass. Expression of the transgene improved glycaemia and markedly inhibited beta cell apoptosis after a single high dose, as well as after multiple low doses of streptozotocin. In vitro mechanistic studies showed that CA-EGFR protected isolated islets from cytokine-mediated beta cell death, possibly by repressing the proapoptotic protein BCL2-like 11 (BIM). CONCLUSIONS/INTERPRETATION Our findings show that the expression of CA-EGFR in the developing, but not in the adult pancreas stimulates beta cell replication and leads to increased beta cell mass. Importantly, CA-EGFR protects beta cells against streptozotocin- and cytokine-induced death.
Collapse
Affiliation(s)
- Elina Hakonen
- Research Programs Unit, Molecular Neurology, Biomedicum Stem Cell Center, University of Helsinki, Biomedicum Helsinki, PO Box 63 (Haartmaninkatu 8), 00014, Helsinki, Finland,
| | | | | | | | | | | |
Collapse
|
32
|
Lindahl M, Danilova T, Palm E, Lindholm P, Võikar V, Hakonen E, Ustinov J, Andressoo JO, Harvey BK, Otonkoski T, Rossi J, Saarma M. MANF is indispensable for the proliferation and survival of pancreatic β cells. Cell Rep 2014; 7:366-375. [PMID: 24726366 DOI: 10.1016/j.celrep.2014.03.023] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 02/12/2014] [Accepted: 03/07/2014] [Indexed: 12/30/2022] Open
Abstract
All forms of diabetes mellitus (DM) are characterized by the loss of functional pancreatic β cell mass, leading to insufficient insulin secretion. Thus, identification of novel approaches to protect and restore β cells is essential for the development of DM therapies. Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an endoplasmic reticulum (ER)-stress-inducible protein, but its physiological role in mammals has remained obscure. We generated MANF-deficient mice that strikingly develop severe diabetes due to progressive postnatal reduction of β cell mass, caused by decreased proliferation and increased apoptosis. Additionally, we show that lack of MANF in vivo in mouse leads to chronic unfolded protein response (UPR) activation in pancreatic islets. Importantly, MANF protein enhanced β cell proliferation in vitro and overexpression of MANF in the pancreas of diabetic mice enhanced β cell regeneration. We demonstrate that MANF specifically promotes β cell proliferation and survival, thereby constituting a therapeutic candidate for β cell protection and regeneration.
Collapse
Affiliation(s)
- Maria Lindahl
- Institute of Biotechnology, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland.
| | - Tatiana Danilova
- Institute of Biotechnology, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland
| | - Erik Palm
- Institute of Biotechnology, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland
| | - Päivi Lindholm
- Institute of Biotechnology, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland
| | - Vootele Võikar
- Neuroscience Center, University of Helsinki, Viikinkaari 4, 00014 Helsinki, Finland
| | - Elina Hakonen
- Research Program for Molecular Neurology and Biomedicum Stem Cell Center, University of Helsinki, Haartmaninkatu 8, 00014 Helsinki, Finland
| | - Jarkko Ustinov
- Research Program for Molecular Neurology and Biomedicum Stem Cell Center, University of Helsinki, Haartmaninkatu 8, 00014 Helsinki, Finland
| | - Jaan-Olle Andressoo
- Institute of Biotechnology, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland
| | - Brandon K Harvey
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Timo Otonkoski
- Research Program for Molecular Neurology and Biomedicum Stem Cell Center, University of Helsinki, Haartmaninkatu 8, 00014 Helsinki, Finland; Children's Hospital, Helsinki University Central Hospital, Haartmaninkatu 8, 00014 Helsinki, Finland
| | - Jari Rossi
- Institute of Biomedicine, Anatomy, University of Helsinki, Haartmaninkatu 8, 00014 Helsinki, Finland
| | - Mart Saarma
- Institute of Biotechnology, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland
| |
Collapse
|
33
|
Hakonen E, Ustinov J, Palgi J, Miettinen PJ, Otonkoski T. EGFR signaling promotes β-cell proliferation and survivin expression during pregnancy. PLoS One 2014; 9:e93651. [PMID: 24695557 PMCID: PMC3973552 DOI: 10.1371/journal.pone.0093651] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 03/08/2014] [Indexed: 02/06/2023] Open
Abstract
Placental lactogen (PL) induced serotonergic signaling is essential for gestational β-cell mass expansion. We have previously shown that intact Epidermal growth factor –receptor (EGFR) function is a crucial component of this pathway. We now explored more specifically the link between EGFR and pregnancy-induced β-cell mass compensation. Islets were isolated from wild-type and β-cell-specific EGFR-dominant negative mice (E1-DN), stimulated with PL and analyzed for β-cell proliferation and expression of genes involved in gestational β-cell growth. β-cell mass dynamics were analyzed both with traditional morphometrical methods and three-dimensional optical projection tomography (OPT) of whole-mount insulin-stained pancreata. Insulin-positive volume analyzed with OPT increased 1.4-fold at gestational day 18.5 (GD18.5) when compared to non-pregnant mice. Number of islets peaked by GD13.5 (680 vs 1134 islets per pancreas, non-pregnant vs. GD13.5). PL stimulated beta cell proliferation in the wild-type islets, whereas the proliferative response was absent in the E1-DN mouse islets. Serotonin synthesizing enzymes were upregulated similarly in both the wild-type and E1-DN mice. However, while survivin (Birc5) mRNA was upregulated 5.5-fold during pregnancy in the wild-type islets, no change was seen in the E1-DN pregnant islets. PL induced survivin expression also in isolated islets and this was blocked by EGFR inhibitor gefitinib, mTOR inhibitor rapamycin and MEK inhibitor PD0325901. Our 3D-volumetric analysis of β-cell mass expansion during murine pregnancy revealed that islet number increases during pregnancy. In addition, our results suggest that EGFR signaling is required for lactogen-induced survivin expression via MAPK and mTOR pathways.
Collapse
Affiliation(s)
- Elina Hakonen
- Research Programs Unit, Molecular Neurology, Biomedicum Stem Cell Center, University of Helsinki, Helsinki, Finland
- * E-mail:
| | - Jarkko Ustinov
- Research Programs Unit, Molecular Neurology, Biomedicum Stem Cell Center, University of Helsinki, Helsinki, Finland
| | - Jaan Palgi
- Research Programs Unit, Molecular Neurology, Biomedicum Stem Cell Center, University of Helsinki, Helsinki, Finland
| | - Päivi J. Miettinen
- Research Programs Unit, Molecular Neurology, Biomedicum Stem Cell Center, University of Helsinki, Helsinki, Finland
- Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Timo Otonkoski
- Research Programs Unit, Molecular Neurology, Biomedicum Stem Cell Center, University of Helsinki, Helsinki, Finland
- Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| |
Collapse
|
34
|
Xiao X, Gaffar I, Guo P, Wiersch J, Fischbach S, Peirish L, Song Z, El-Gohary Y, Prasadan K, Shiota C, Gittes GK. M2 macrophages promote beta-cell proliferation by up-regulation of SMAD7. Proc Natl Acad Sci U S A 2014; 111:E1211-E1220. [PMID: 24639504 PMCID: PMC3977272 DOI: 10.1073/pnas.1321347111] [Citation(s) in RCA: 234] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Determination of signaling pathways that regulate beta-cell replication is critical for beta-cell therapy. Here, we show that blocking pancreatic macrophage infiltration after pancreatic duct ligation (PDL) completely inhibits beta-cell proliferation. The TGFβ superfamily signaling inhibitor SMAD7 was significantly up-regulated in beta cells after PDL. Beta cells failed to proliferate in response to PDL in beta-cell-specific SMAD7 mutant mice. Forced expression of SMAD7 in beta cells by itself was sufficient to promote beta-cell proliferation in vivo. M2, rather than M1 macrophages, seem to be the inducers of SMAD7-mediated beta-cell proliferation. M2 macrophages not only release TGFβ1 to directly induce up-regulation of SMAD7 in beta cells but also release EGF to activate EGF receptor signaling that inhibits TGFβ1-activated SMAD2 nuclear translocation, resulting in TGFβ signaling inhibition. SMAD7 promotes beta-cell proliferation by increasing CyclinD1 and CyclinD2, and by inducing nuclear exclusion of p27. Our study thus reveals a molecular pathway to potentially increase beta-cell mass through enhanced SMAD7 activity induced by extracellular stimuli.
Collapse
Affiliation(s)
| | | | | | - John Wiersch
- Division of Pediatric Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224
| | - Shane Fischbach
- Division of Pediatric Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224
| | - Lauren Peirish
- Division of Pediatric Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224
| | - Zewen Song
- Division of Pediatric Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224
| | - Yousef El-Gohary
- Division of Pediatric Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224
| | - Krishna Prasadan
- Division of Pediatric Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224
| | - Chiyo Shiota
- Division of Pediatric Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224
| | - George K. Gittes
- Division of Pediatric Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224
| |
Collapse
|
35
|
Bernal-Mizrachi E, Kulkarni RN, Scott DK, Mauvais-Jarvis F, Stewart AF, Garcia-Ocaña A. Human β-cell proliferation and intracellular signaling part 2: still driving in the dark without a road map. Diabetes 2014; 63:819-31. [PMID: 24556859 PMCID: PMC3931400 DOI: 10.2337/db13-1146] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Enhancing β-cell proliferation is a major goal for type 1 and type 2 diabetes research. Unraveling the network of β-cell intracellular signaling pathways that promote β-cell replication can provide the tools to address this important task. In a previous Perspectives in Diabetes article, we discussed what was known regarding several important intracellular signaling pathways in rodent β-cells, including the insulin receptor substrate/phosphatidylinositol-3 kinase/Akt (IRS-PI3K-Akt) pathways, glycogen synthase kinase-3 (GSK3) and mammalian target of rapamycin (mTOR) S6 kinase pathways, protein kinase Cζ (PKCζ) pathways, and their downstream cell-cycle molecular targets, and contrasted that ample knowledge to the small amount of complementary data on human β-cell intracellular signaling pathways. In this Perspectives, we summarize additional important information on signaling pathways activated by nutrients, such as glucose; growth factors, such as epidermal growth factor, platelet-derived growth factor, and Wnt; and hormones, such as leptin, estrogen, and progesterone, that are linked to rodent and human β-cell proliferation. With these two Perspectives, we attempt to construct a brief summary of knowledge for β-cell researchers on mitogenic signaling pathways and to emphasize how little is known regarding intracellular events linked to human β-cell replication. This is a critical aspect in the long-term goal of expanding human β-cells for the prevention and/or cure of type 1 and type 2 diabetes.
Collapse
Affiliation(s)
- Ernesto Bernal-Mizrachi
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, and U.S. Department of Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI
- Corresponding authors: Ernesto Bernal-Mizrachi, , and Adolfo Garcia-Ocaña,
| | - Rohit N. Kulkarni
- Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center, Harvard Medical School, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Donald K. Scott
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Franck Mauvais-Jarvis
- Division of Endocrinology and Metabolism, Tulane University School of Medicine and Health Sciences Center, New Orleans, LA
| | - Andrew F. Stewart
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Adolfo Garcia-Ocaña
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Corresponding authors: Ernesto Bernal-Mizrachi, , and Adolfo Garcia-Ocaña,
| |
Collapse
|
36
|
South JCM, Blackburn E, Brown IR, Gullick WJ. The neuregulin system of ligands and their receptors in rat islets of langerhans. Endocrinology 2013; 154:2385-92. [PMID: 23610133 DOI: 10.1210/en.2012-2133] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Islet cell growth and function are affected by ligands from the epidermal growth factor (EGF) family. We describe here the expression, regional distribution, and effect on growth and secretion of insulin of a subset of these, the neuregulin (NRG) family. The expression of NRG1α, NRG1β, NRG2α, NRG2β, NRG3, and NRG4 in rat islets was determined using immunohistochemical and double immunofluorescent staining. We also report the expression of the 4 receptors and the remaining 7 ligands using immunohistochemistry. The NRG1α splice variant was expressed in β-cells and the NRG1β variant mainly in α-cells. NRG3 was also predominantly present in α-cells. Most of the members of the EGF family of ligands were also expressed, with Epigen being present at the highest levels. The rat islet-derived cell line CRI-G1 was used to study the effect of addition of EGF, NRG1β, NRG3, and NRG4 on cell growth and insulin secretion. Synthetic refolded NRG3 strongly stimulated the growth of the CRI-G1 cells, and NRG4 gave the greatest stimulation of insulin release. Different members of the NRG family are therefore potentially potent stimuli for islet cell growth and insulin release and differ in expression in α- and β-cells.
Collapse
Affiliation(s)
- Jack C M South
- Cancer Biology Laboratory, School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, United Kingdom
| | | | | | | |
Collapse
|
37
|
He X, Fuller C, Song Y, Meng Q, Zhang B, Yang X, Li H. Sherlock: detecting gene-disease associations by matching patterns of expression QTL and GWAS. Am J Hum Genet 2013; 92:667-80. [PMID: 23643380 PMCID: PMC3644637 DOI: 10.1016/j.ajhg.2013.03.022] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 03/07/2013] [Accepted: 03/25/2013] [Indexed: 12/26/2022] Open
Abstract
Genetic mapping of complex diseases to date depends on variations inside or close to the genes that perturb their activities. A strong body of evidence suggests that changes in gene expression play a key role in complex diseases and that numerous loci perturb gene expression in trans. The information in trans variants, however, has largely been ignored in the current analysis paradigm. Here we present a statistical framework for genetic mapping by utilizing collective information in both cis and trans variants. We reason that for a disease-associated gene, any genetic variation that perturbs its expression is also likely to influence the disease risk. Thus, the expression quantitative trait loci (eQTL) of the gene, which constitute a unique "genetic signature," should overlap significantly with the set of loci associated with the disease. We translate this idea into a computational algorithm (named Sherlock) to search for gene-disease associations from GWASs, taking advantage of independent eQTL data. Application of this strategy to Crohn disease and type 2 diabetes predicts a number of genes with possible disease roles, including several predictions supported by solid experimental evidence. Importantly, predicted genes are often implicated by multiple trans eQTL with moderate associations. These genes are far from any GWAS association signals and thus cannot be identified from the GWAS alone. Our approach allows analysis of association data from a new perspective and is applicable to any complex phenotype. It is readily generalizable to molecular traits other than gene expression, such as metabolites, noncoding RNAs, and epigenetic modifications.
Collapse
Affiliation(s)
- Xin He
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA 94143, USA
- Lane Center of Computational Biology, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Chris K. Fuller
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA 94143, USA
| | - Yi Song
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA 94143, USA
| | - Qingying Meng
- Department of Integrative Biology and Physiology, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Hao Li
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
38
|
Suzuki T, Dai P, Hatakeyama T, Harada Y, Tanaka H, Yoshimura N, Takamatsu T. TGF-β Signaling Regulates Pancreatic β-Cell Proliferation through Control of Cell Cycle Regulator p27 Expression. Acta Histochem Cytochem 2013; 46:51-8. [PMID: 23720603 PMCID: PMC3661777 DOI: 10.1267/ahc.12035] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 01/31/2013] [Indexed: 02/06/2023] Open
Abstract
Proliferation of pancreatic β-cells is an important mechanism underlying β-cell mass adaptation to metabolic demands. Increasing β-cell mass by regeneration may ameliorate or correct both type 1 and type 2 diabetes, which both result from inadequate production of insulin by β-cells of the pancreatic islet. Transforming growth factor β (TGF-β) signaling is essential for fetal development and growth of pancreatic islets. In this study, we exposed HIT-T15, a clonal pancreatic β-cell line, to TGF-β signaling. We found that inhibition of TGF-β signaling promotes proliferation of the cells significantly, while TGF-β signaling stimulation inhibits proliferation of the cells remarkably. We confirmed that this proliferative regulation by TGF-β signaling is due to the changed expression of the cell cycle regulator p27. Furthermore, we demonstrated that there is no observed effect on transcriptional activity of p27 by TGF-β signaling. Our data show that TGF-β signaling mediates the cell-cycle progression of pancreatic β-cells by regulating the nuclear localization of CDK inhibitor, p27. Inhibition of TGF-β signaling reduces the nuclear accumulation of p27, and as a result this inhibition promotes proliferation of β-cells.
Collapse
Affiliation(s)
- Tomoyuki Suzuki
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine
- Department of Transplantation and Regenerative Surgery, Kyoto Prefectural University of Medicine
| | - Ping Dai
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine
| | - Tomoya Hatakeyama
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine
- Division of Digestive Surgery, Department of Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
| | - Yoshinori Harada
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine
| | - Hideo Tanaka
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine
| | - Norio Yoshimura
- Department of Transplantation and Regenerative Surgery, Kyoto Prefectural University of Medicine
| | - Tetsuro Takamatsu
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine
| |
Collapse
|
39
|
Kim GH, Park EC, Yun SH, Hong Y, Lee DG, Shin EY, Jung J, Kim YH, Lee KB, Jang IS, Lee ZW, Chung YH, Choi JS, Cheong C, Kim S, Kim SI. Proteomic and bioinformatic analysis of membrane proteome in type 2 diabetic mouse liver. Proteomics 2013; 13:1164-79. [PMID: 23349036 DOI: 10.1002/pmic.201200210] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 12/27/2012] [Accepted: 01/07/2013] [Indexed: 12/16/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is the most prevalent and serious metabolic disease affecting people worldwide. T2DM results from insulin resistance of the liver, muscle, and adipose tissue. In this study, we used proteomic and bioinformatic methodologies to identify novel hepatic membrane proteins that are related to the development of hepatic insulin resistance, steatosis, and T2DM. Using FT-ICR MS, we identified 95 significantly differentially expressed proteins in the membrane fraction of normal and T2DM db/db mouse liver. These proteins are primarily involved in energy metabolism pathways, molecular transport, and cellular signaling, and many of them have not previously been reported in diabetic studies. Bioinformatic analysis revealed that 16 proteins may be related to the regulation of insulin signaling in the liver. In addition, six proteins are associated with energy stress-induced, nine proteins with inflammatory stress-induced, and 14 proteins with endoplasmic reticulum stress-induced hepatic insulin resistance. Moreover, we identified 19 proteins that may regulate hepatic insulin resistance in a c-Jun amino-terminal kinase-dependent manner. In addition, three proteins, 14-3-3 protein beta (YWHAB), Slc2a4 (GLUT4), and Dlg4 (PSD-95), are discovered by comprehensive bioinformatic analysis, which have correlations with several proteins identified by proteomics approach. The newly identified proteins in T2DM should provide additional insight into the development and pathophysiology of hepatic steatosis and insulin resistance, and they may serve as useful diagnostic markers and/or therapeutic targets for these diseases.
Collapse
Affiliation(s)
- Gun-Hwa Kim
- Division of Life Science, Korea Basic Science Institute, Daejeon, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kim J, Lee T, Kim TH, Lee KT, Kim H. An integrated approach of comparative genomics and heritability analysis of pig and human on obesity trait: evidence for candidate genes on human chromosome 2. BMC Genomics 2012; 13:711. [PMID: 23253381 PMCID: PMC3562524 DOI: 10.1186/1471-2164-13-711] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 12/04/2012] [Indexed: 12/22/2022] Open
Abstract
Background Traditional candidate gene approach has been widely used for the study of complex diseases including obesity. However, this approach is largely limited by its dependence on existing knowledge of presumed biology of the phenotype under investigation. Our combined strategy of comparative genomics and chromosomal heritability estimate analysis of obesity traits, subscapular skinfold thickness and back-fat thickness in Korean cohorts and pig (Sus scrofa), may overcome the limitations of candidate gene analysis and allow us to better understand genetic predisposition to human obesity. Results We found common genes including FTO, the fat mass and obesity associated gene, identified from significant SNPs by association studies of each trait. These common genes were related to blood pressure and arterial stiffness (P = 1.65E-05) and type 2 diabetes (P = 0.00578). Through the estimation of variance of genetic component (heritability) for each chromosome by SNPs, we observed a significant positive correlation (r = 0.479) between genetic contributions of human and pig to obesity traits. Furthermore, we noted that human chromosome 2 (syntenic to pig chromosomes 3 and 15) was most important in explaining the phenotypic variance for obesity. Conclusions Obesity genetics still awaits further discovery. Navigating syntenic regions suggests obesity candidate genes on chromosome 2 that are previously known to be associated with obesity-related diseases: MRPL33, PARD3B, ERBB4, STK39, and ZNF385B.
Collapse
Affiliation(s)
- Jaemin Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
41
|
Sugiyama C, Yamamoto M, Kotani T, Kikkawa F, Murata Y, Hayashi Y. Fertility and pregnancy-associated ß-cell proliferation in mice deficient in proglucagon-derived peptides. PLoS One 2012; 7:e43745. [PMID: 22928026 PMCID: PMC3426535 DOI: 10.1371/journal.pone.0043745] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 07/23/2012] [Indexed: 12/15/2022] Open
Abstract
Proglucagon, which is encoded by the glucagon gene (Gcg), is the precursor of several peptide hormones, including glucagon and glucagon-like peptide 1 (GLP-1). Whereas glucagon stimulates hepatic glycogenolysis and gluconeogenesis, GLP-1 stimulates insulin secretion to lower blood glucose and also supports ß-cell proliferation and protection from apoptotic stimuli. Pregnancy is a strong inducer of change in islet function, however the roles of proglucagon-derived peptides in pregnancy are only partially understood. In the present study, we analyzed fertility and pregnancy-associated changes in homozygous glucagon-green fluorescent protein (gfp) knock-in mice (Gcggfp/gfp), which lack all the peptides derived from proglucagon. Female Gcggfp/gfp mice could deliver and raise Gcggfp/gfp pups to weaning and Gcggfp/gfp pups from Gcggfp/gfp dams were viable and fertile. Pregnancy induced ß-cell proliferation in Gcggfp/gfp mice as well as in control mice. However, serum insulin levels in pregnant Gcggfp/gfp females were lower than those in control pregnant females under ad libitum feeding, and blood glucose levels in pregnant Gcggfp/gfp females were higher after gestational day 12. Gcggfp/gfp females showed a decreased pregnancy rate and smaller litter size. The rate of successful breeding was significantly lower in Gcggfp/gfp females and was not improved by experience of breeding. Taken together, proglucagon-derived peptides are not required for pregnancy-associated ß-cell proliferation, however, are required for regulation of blood glucose levels and normal reproductive capacity. Gcggfp/gfp mice may serve as a novel model to analyze the effect of mild hyperglycemia during late gestational periods.
Collapse
Affiliation(s)
- Chisato Sugiyama
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Michiyo Yamamoto
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Tomomi Kotani
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Fumitaka Kikkawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshiharu Murata
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Yoshitaka Hayashi
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- * E-mail:
| |
Collapse
|
42
|
Signaling pathways regulating murine pancreatic development. Semin Cell Dev Biol 2012; 23:663-72. [DOI: 10.1016/j.semcdb.2012.06.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 06/13/2012] [Indexed: 12/24/2022]
|
43
|
Neuronal Cbl controls biosynthesis of insulin-like peptides in Drosophila melanogaster. Mol Cell Biol 2012; 32:3610-23. [PMID: 22778134 DOI: 10.1128/mcb.00592-12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Cbl family proteins function as both E3 ubiquitin ligases and adaptor proteins to regulate various cellular signaling events, including the insulin/insulin-like growth factor 1 (IGF1) and epidermal growth factor (EGF) pathways. These pathways play essential roles in growth, development, metabolism, and survival. Here we show that in Drosophila melanogaster, Drosophila Cbl (dCbl) regulates longevity and carbohydrate metabolism through downregulating the production of Drosophila insulin-like peptides (dILPs) in the brain. We found that dCbl was highly expressed in the brain and knockdown of the expression of dCbl specifically in neurons by RNA interference increased sensitivity to oxidative stress or starvation, decreased carbohydrate levels, and shortened life span. Insulin-producing neuron-specific knockdown of dCbl resulted in similar phenotypes. dCbl deficiency in either the brain or insulin-producing cells upregulated the expression of dilp genes, resulting in elevated activation of the dILP pathway, including phosphorylation of Drosophila Akt and Drosophila extracellular signal-regulated kinase (dERK). Genetic interaction analyses revealed that blocking Drosophila epidermal growth factor receptor (dEGFR)-dERK signaling in pan-neurons or insulin-producing cells by overexpressing a dominant-negative form of dEGFR abolished the effect of dCbl deficiency on the upregulation of dilp genes. Furthermore, knockdown of c-Cbl in INS-1 cells, a rat β-cell line, also increased insulin biosynthesis and glucose-stimulated secretion in an ERK-dependent manner. Collectively, these results suggest that neuronal dCbl regulates life span, stress responses, and metabolism by suppressing dILP production and the EGFR-ERK pathway mediates the dCbl action. Cbl suppression of insulin biosynthesis is evolutionarily conserved, raising the possibility that Cbl may similarly exert its physiological actions through regulating insulin production in β cells.
Collapse
|
44
|
Bell GI, Meschino MT, Hughes-Large JM, Broughton HC, Xenocostas A, Hess DA. Combinatorial human progenitor cell transplantation optimizes islet regeneration through secretion of paracrine factors. Stem Cells Dev 2012; 21:1863-76. [PMID: 22309189 DOI: 10.1089/scd.2011.0634] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Transplanted human bone marrow (BM) and umbilical cord blood (UCB) progenitor cells activate islet-regenerative or revascularization programs depending on the progenitor subtypes administered. Using purification of multiple progenitor subtypes based on a conserved stem cell function, high aldehyde dehydrogenase (ALDH) activity (ALDH(hi)), we have recently shown that transplantation of BM-derived ALDH(hi) progenitors improved systemic hyperglycemia and augmented insulin secretion by increasing islet-associated proliferation and vascularization, without increasing islet number. Conversely, transplantation of culture-expanded multipotent-stromal cells (MSCs) derived from BM ALDH(hi) cells augmented total beta cell mass via formation of beta cell clusters associated with the ductal epithelium, without sustained islet vascularization. To identify paracrine effectors produced by islet-regenerative MSCs, culture-expanded BM ALDH(hi) MSCs were transplanted into streptozotocin-treated nonobese diabetic/severe combine immune deficient (SCID) mice and segregated into islet-regenerative versus nonregenerative cohorts based on hyperglycemia reduction, and subsequently compared for differential production of mRNA and secreted proteins. Regenerative MSCs showed increased expression of matrix metalloproteases, epidermal growth factor receptor (EGFR)-activating ligands, and downstream effectors of Wnt signaling. Regenerative MSC supernatant also contained increased levels of pro-angiogenic versus pro-inflammatory cytokines, and augmented the expansion of ductal epithelial but not beta cells in vitro. Conversely, co-culture with UCB ALDH(hi) cells induced beta cell but not ductal epithelial cell proliferation. Sequential transplantation of MSCs followed by UCB ALDH(hi) cells improved hyperglycemia and glucose tolerance by increasing beta cell mass associated with the ductal epithelium and by augmenting intra-islet capillary densities. Thus, combinatorial human progenitor cell transplantation stimulated both islet-regenerative and revascularization programs. Understanding the progenitor-specific pathways that modulate islet-regenerative and revascularization processes may provide new approaches for diabetes therapy.
Collapse
Affiliation(s)
- Gillian I Bell
- Program in Regenerative Medicine, Vascular Biology Group, Department of Physiology and Pharmacology, Krembil Centre for Stem Cell Biology, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
45
|
Gorboulev V, Schürmann A, Vallon V, Kipp H, Jaschke A, Klessen D, Friedrich A, Scherneck S, Rieg T, Cunard R, Veyhl-Wichmann M, Srinivasan A, Balen D, Breljak D, Rexhepaj R, Parker HE, Gribble FM, Reimann F, Lang F, Wiese S, Sabolic I, Sendtner M, Koepsell H. Na(+)-D-glucose cotransporter SGLT1 is pivotal for intestinal glucose absorption and glucose-dependent incretin secretion. Diabetes 2012; 61:187-96. [PMID: 22124465 PMCID: PMC3237647 DOI: 10.2337/db11-1029] [Citation(s) in RCA: 542] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 10/19/2011] [Indexed: 12/15/2022]
Abstract
To clarify the physiological role of Na(+)-D-glucose cotransporter SGLT1 in small intestine and kidney, Sglt1(-/-) mice were generated and characterized phenotypically. After gavage of d-glucose, small intestinal glucose absorption across the brush-border membrane (BBM) via SGLT1 and GLUT2 were analyzed. Glucose-induced secretion of insulinotropic hormone (GIP) and glucagon-like peptide 1 (GLP-1) in wild-type and Sglt1(-/-) mice were compared. The impact of SGLT1 on renal glucose handling was investigated by micropuncture studies. It was observed that Sglt1(-/-) mice developed a glucose-galactose malabsorption syndrome but thrive normally when fed a glucose-galactose-free diet. In wild-type mice, passage of D-glucose across the intestinal BBM was predominantly mediated by SGLT1, independent the glucose load. High glucose concentrations increased the amounts of SGLT1 and GLUT2 in the BBM, and SGLT1 was required for upregulation of GLUT2. SGLT1 was located in luminal membranes of cells immunopositive for GIP and GLP-1, and Sglt1(-/-) mice exhibited reduced glucose-triggered GIP and GLP-1 levels. In the kidney, SGLT1 reabsorbed ∼3% of the filtered glucose under normoglycemic conditions. The data indicate that SGLT1 is 1) pivotal for intestinal mass absorption of d-glucose, 2) triggers the glucose-induced secretion of GIP and GLP-1, and 3) triggers the upregulation of GLUT2.
Collapse
Affiliation(s)
- Valentin Gorboulev
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Germany
| | - Volker Vallon
- Departments of Medicine and Pharmacology, University of California, San Diego, La Jolla, and Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Helmut Kipp
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Alexander Jaschke
- Department of Experimental Diabetology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Germany
| | - Dirk Klessen
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Alexandra Friedrich
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Stephan Scherneck
- Department of Experimental Diabetology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Germany
| | - Timo Rieg
- Departments of Medicine and Pharmacology, University of California, San Diego, La Jolla, and Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Robyn Cunard
- Departments of Medicine and Pharmacology, University of California, San Diego, La Jolla, and Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Maike Veyhl-Wichmann
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Aruna Srinivasan
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Daniela Balen
- Molecular Toxicology, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Davorka Breljak
- Molecular Toxicology, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Rexhep Rexhepaj
- Department of Physiology I, University of Tübingen, Tübingen, Germany
| | - Helen E. Parker
- Cambridge Institute for Medical Research, Addenbrooke’s Hospital, Cambridge, U.K
| | - Fiona M. Gribble
- Cambridge Institute for Medical Research, Addenbrooke’s Hospital, Cambridge, U.K
| | - Frank Reimann
- Cambridge Institute for Medical Research, Addenbrooke’s Hospital, Cambridge, U.K
| | - Florian Lang
- Department of Physiology I, University of Tübingen, Tübingen, Germany
| | - Stefan Wiese
- Department of Cell Morphology and Molecular Neurobiology, University of Bochum, Bochum, Germany
| | - Ivan Sabolic
- Molecular Toxicology, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Michael Sendtner
- Clinical Neurobiology, University of Würzburg, Würzburg, Germany
| | - Hermann Koepsell
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
46
|
Hanley SC, Assouline-Thomas B, Makhlin J, Rosenberg L. Epidermal growth factor induces adult human islet cell dedifferentiation. J Endocrinol 2011; 211:231-9. [PMID: 21933872 DOI: 10.1530/joe-11-0213] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Given the inherent therapeutic potential of the morphogenetic plasticity of adult human islets, the identification of factors controlling their cellular differentiation is of interest. The epidermal growth factor (EGF) family has been identified previously in the context of pancreatic organogenesis. We examined the role of EGF in an in vitro model whereby adult human islets are embedded in a collagen gel and dedifferentiated into duct-like epithelial structures (DLS). We demonstrated that DLS formation was EGF dependent, while residual DLS formation in the absence of added EGF was abrogated by EGF receptor inhibitor treatment. With respect to signaling, EGF administration led to an increase in c-Jun NH2-terminal kinase (JNK) phosphorylation early in DLS formation and in AKT and extracellular signal-regulated kinase (ERK) phosphorylation late in the process of DLS formation, concomitant with the increased proliferation of dedifferentiated cells. In the absence of EGF, these phosphorylation changes are not seen and the typical increase in DLS epithelial cell proliferation seen after 10 days in culture is attenuated. Thus, in our model, EGF is necessary for islet cell dedifferentiation, playing an important role in both the onset of DLS formation (through JNK) and in the proliferation of these dedifferentiated cells (through AKT and ERK).
Collapse
Affiliation(s)
- Stephen C Hanley
- Department of Surgery, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
47
|
PDGF signalling controls age-dependent proliferation in pancreatic β-cells. Nature 2011; 478:349-55. [PMID: 21993628 DOI: 10.1038/nature10502] [Citation(s) in RCA: 228] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 08/24/2011] [Indexed: 12/29/2022]
Abstract
Determining the signalling pathways that direct tissue expansion is a principal goal of regenerative biology. Vigorous pancreatic β-cell replication in juvenile mice and humans declines with age, and elucidating the basis for this decay may reveal strategies for inducing β-cell expansion, a long-sought goal for diabetes therapy. Here we show that platelet-derived growth factor receptor (Pdgfr) signalling controls age-dependent β-cell proliferation in mouse and human pancreatic islets. With age, declining β-cell Pdgfr levels were accompanied by reductions in β-cell enhancer of zeste homologue 2 (Ezh2) levels and β-cell replication. Conditional inactivation of the Pdgfra gene in β-cells accelerated these changes, preventing mouse neonatal β-cell expansion and adult β-cell regeneration. Targeted human PDGFR-α activation in mouse β-cells stimulated Erk1/2 phosphorylation, leading to Ezh2-dependent expansion of adult β-cells. Adult human islets lack PDGF signalling competence, but exposure of juvenile human islets to PDGF-AA stimulated β-cell proliferation. The discovery of a conserved pathway controlling age-dependent β-cell proliferation indicates new strategies for β-cell expansion.
Collapse
|
48
|
Hang Y, Stein R. MafA and MafB activity in pancreatic β cells. Trends Endocrinol Metab 2011; 22:364-73. [PMID: 21719305 PMCID: PMC3189696 DOI: 10.1016/j.tem.2011.05.003] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 05/03/2011] [Accepted: 05/18/2011] [Indexed: 12/11/2022]
Abstract
Analyses in mouse models have revealed crucial roles for MafA (musculoaponeurotic fibrosarcoma oncogene family A) and MafB in islet β cells, with MafB being required during development and MafA in adults. These two closely related transcription factors regulate many genes essential for glucose sensing and insulin secretion in a cooperative and sequential manner. Significantly, the switch from MafB to MafA expression also appears to be vital for functional maturation of β cells produced by human embryonic stem (hES) cell differentiation. This review summarizes the discovery, distribution, and function of MafA and MafB in rodent pancreatic β cells, and describes some key questions regarding their importance to β cells.
Collapse
Affiliation(s)
| | - Roland Stein
- Correspondence: 723 Light Hall, 2215 Garland Ave Nashville, TN 37232 Phone: 615-322-7026 Facsimile: 615-322-7236
| |
Collapse
|
49
|
Hakonen E, Ustinov J, Mathijs I, Palgi J, Bouwens L, Miettinen PJ, Otonkoski T. Epidermal growth factor (EGF)-receptor signalling is needed for murine beta cell mass expansion in response to high-fat diet and pregnancy but not after pancreatic duct ligation. Diabetologia 2011; 54:1735-43. [PMID: 21509441 DOI: 10.1007/s00125-011-2153-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 03/21/2011] [Indexed: 01/09/2023]
Abstract
AIMS/HYPOTHESIS Epidermal growth factor receptor (EGFR) signalling is essential for the proper fetal development of pancreatic islets and in the postnatal formation of an adequate beta cell mass. In this study we investigated the role of EGFR signalling in the physiological states of beta cell mass expansion in adults during metabolic syndrome and pregnancy, as well as in regeneration after pancreatic duct ligation. METHODS Heterozygous Pdx1-EGFR-dominant-negative (E1-DN) mice, which have a kinase-negative EGFR under the Pdx1 promoter, and wild-type mice were both subjected to a high-fat diet, pregnancy and pancreatic duct ligation. RESULTS The beta cell mass of wild-type mice fed the high-fat diet increased by 70% and the mice remained normoglycaemic; the E1-DN mice became diabetic and failed to show any compensatory beta cell mass expansion. Similarly, pregnant wild-type mice had four times more proliferating beta cells and a 75% increase in beta cell mass at mid-gestation, in contrast to the pregnant E1-DN mice, which did not show any significant beta cell compensation and were hyperglycaemic in an intraperitoneal glucose tolerance test. However, after pancreatic duct ligation, both the wild-type and E1-DN mice showed similar expression of Ngn3 (also known as Neurog3) and beta cell proliferation increased to a similar level in the ligated part of pancreas. CONCLUSIONS/INTERPRETATIONS EGFR signalling is essential in beta cell mass expansion during a high-fat diet and pregnancy where replication is the primary mechanism for compensatory beta cell mass expansion. In contrast, EGFR signalling appears not to be crucial to increased beta cell proliferation after pancreatic duct ligation.
Collapse
Affiliation(s)
- E Hakonen
- Research Programs Unit, Molecular Neurology, Biomedicum Stem Cell Centre, University of Helsinki, PO Box 63, (Haartmaninkatu 8), 00014 Helsinki, Finland.
| | | | | | | | | | | | | |
Collapse
|
50
|
Menon R, Farina C. Shared molecular and functional frameworks among five complex human disorders: a comparative study on interactomes linked to susceptibility genes. PLoS One 2011; 6:e18660. [PMID: 21533026 PMCID: PMC3080867 DOI: 10.1371/journal.pone.0018660] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 03/08/2011] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Genome-wide association studies (gwas) are invaluable in revealing the common variants predisposing to complex human diseases. Yet, until now, the large volumes of data generated from such analyses have not been explored extensively enough to identify the molecular and functional framework hosting the susceptibility genes. METHODOLOGY/PRINCIPAL FINDINGS We investigated the relationships among five neurodegenerative and/or autoimmune complex human diseases (Parkinson's disease--Park, Alzheimer's disease--Alz, multiple sclerosis--MS, rheumatoid arthritis--RA and Type 1 diabetes--T1D) by characterising the interactomes linked to their gwas-genes. An initial study on the MS interactome indicated that several genes predisposing to the other autoimmune or neurodegenerative disorders may come into contact with it, suggesting that susceptibility to distinct diseases may converge towards common molecular and biological networks. In order to test this hypothesis, we performed pathway enrichment analyses on each disease interactome independently. Several issues related to immune function and growth factor signalling pathways appeared in all autoimmune diseases, and, surprisingly, in Alzheimer's disease. Furthermore, the paired analyses of disease interactomes revealed significant molecular and functional relatedness among autoimmune diseases, and, unexpectedly, between T1D and Alz. CONCLUSIONS/SIGNIFICANCE The systems biology approach highlighted several known pathogenic processes, indicating that changes in these functions might be driven or sustained by the framework linked to genetic susceptibility. Moreover, the comparative analyses among the five genetic interactomes revealed unexpected genetic relationships, which await further biological validation. Overall, this study outlines the potential of systems biology to uncover links between genetics and pathogenesis of complex human disorders.
Collapse
Affiliation(s)
- Ramesh Menon
- Neuroimmunology and Neuromuscular Disorders Unit, Foundation IRCCS Neurological Institute Carlo Besta, Milan, Italy
- Institute of Experimental Neurology (INSpe), San Raffaele Scientific Institute, Milan, Italy
| | - Cinthia Farina
- Neuroimmunology and Neuromuscular Disorders Unit, Foundation IRCCS Neurological Institute Carlo Besta, Milan, Italy
- Institute of Experimental Neurology (INSpe), San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|