1
|
Carbone F, Després JP, Ioannidis JPA, Neeland IJ, Garruti G, Busetto L, Liberale L, Ministrini S, Vilahur G, Schindler TH, Macedo MP, Di Ciaula A, Krawczyk M, Geier A, Baffy G, Faienza MF, Farella I, Santoro N, Frühbeck G, Yárnoz-Esquiroz P, Gómez-Ambrosi J, Chávez-Manzanera E, Vázquez-Velázquez V, Oppert JM, Kiortsis DN, Sbraccia P, Zoccali C, Portincasa P, Montecucco F. Bridging the gap in obesity research: A consensus statement from the European Society for Clinical Investigation. Eur J Clin Invest 2025:e70059. [PMID: 40371883 DOI: 10.1111/eci.70059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 04/12/2025] [Indexed: 05/16/2025]
Abstract
BACKGROUND Most forms of obesity are associated with chronic diseases that remain a global public health challenge. AIMS Despite significant advancements in understanding its pathophysiology, effective management of obesity is hindered by the persistence of knowledge gaps in epidemiology, phenotypic heterogeneity and policy implementation. MATERIALS AND METHODS This consensus statement by the European Society for Clinical Investigation identifies eight critical areas requiring urgent attention. Key gaps include insufficient long-term data on obesity trends, the inadequacy of body mass index (BMI) as a sole diagnostic measure, and insufficient recognition of phenotypic diversity in obesity-related cardiometabolic risks. Moreover, the socio-economic drivers of obesity and its transition across phenotypes remain poorly understood. RESULTS The syndemic nature of obesity, exacerbated by globalization and environmental changes, necessitates a holistic approach integrating global frameworks and community-level interventions. This statement advocates for leveraging emerging technologies, such as artificial intelligence, to refine predictive models and address phenotypic variability. It underscores the importance of collaborative efforts among scientists, policymakers, and stakeholders to create tailored interventions and enduring policies. DISCUSSION The consensus highlights the need for harmonizing anthropometric and biochemical markers, fostering inclusive public health narratives and combating stigma associated with obesity. By addressing these gaps, this initiative aims to advance research, improve prevention strategies and optimize care delivery for people living with obesity. CONCLUSION This collaborative effort marks a decisive step towards mitigating the obesity epidemic and its profound impact on global health systems. Ultimately, obesity should be considered as being largely the consequence of a socio-economic model not compatible with optimal human health.
Collapse
Affiliation(s)
- Federico Carbone
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Genoa, Italy
| | - Jean-Pierre Després
- Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Québec, Québec, Canada
- VITAM - Centre de Recherche en santé Durable, Centre intégré Universitaire de santé et de Services Sociaux de la Capitale-Nationale, Québec, Québec, Canada
| | - John P A Ioannidis
- Department of Medicine, Stanford Cardiovascular Institute, and Meta-Research Innovation Center at Stanford (METRICS), Stanford University, Stanford, California, USA
- Department of Epidemiology and Population Health, Stanford Cardiovascular Institute, and Meta-Research Innovation Center at Stanford (METRICS), Stanford University, Stanford, California, USA
- Department of Biomedical Science, Stanford Cardiovascular Institute, and Meta-Research Innovation Center at Stanford (METRICS), Stanford University, Stanford, California, USA
| | - Ian J Neeland
- Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Cardiovascular Disease, Harrington Heart and Vascular Institute, Cleveland, Ohio, USA
| | - Gabriella Garruti
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro", Bari, Italy
| | - Luca Busetto
- Department of Medicine, University of Padua, Padua, Italy
| | - Luca Liberale
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Genoa, Italy
| | - Stefano Ministrini
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
- Cardiology Department, Luzerner Kantonspital, Lucerne, Switzerland
| | - Gemma Vilahur
- Research Institute, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, IIB-Sant Pau, Barcelona, Spain
- CiberCV, Institute Carlos III, Madrid, Spain
| | - Thomas H Schindler
- Washington University in St. Louis, Mallinckrodt Institute of Radiology, Division of Nuclear Medicine, Cardiovascular Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Maria Paula Macedo
- APDP - Diabetes Portugal, Education and Research Center, Lisbon, Portugal
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS | FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Agostino Di Ciaula
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro", Bari, Italy
| | - Marcin Krawczyk
- Department of Gastroenterology, Hepatology and Transplant Medicine, Medical Faculty, University of Duisburg-Essen, Essen, Germany
- Laboratory of Metabolic Liver Diseases, Department of General, Transplant and Liver Surgery, Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Andreas Geier
- Interdisciplinary Amyloidosis Center of Northern Bavaria, University Hospital of Würzburg, Würzburg, Germany
- Department of Internal Medicine II, Hepatology, University Hospital of Würzburg, Würzburg, Germany
| | - Gyorgy Baffy
- Department of Medicine, VA Boston Healthcare System, Harvard Medical School, Boston, Massachusetts, USA
| | - Maria Felicia Faienza
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro", Bari, Italy
| | - Ilaria Farella
- Department of Medicine and Surgery, LUM University, Casamassima, Italy
| | - Nicola Santoro
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Medicine and Health Sciences, "V. Tiberio" University of Molise, Campobasso, Italy
| | - Gema Frühbeck
- Department of Endocrinology and Nutrition, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- IdiSNA (Instituto de Investigación en la Salud de Navarra), Pamplona, Spain
- CIBERObn (CIBER Fisiopatología de la Obesidad y Nutrición), Instituto de Salud Carlos III, Madrid, Spain
| | - Patricia Yárnoz-Esquiroz
- Department of Endocrinology and Nutrition, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- IdiSNA (Instituto de Investigación en la Salud de Navarra), Pamplona, Spain
- CIBERObn (CIBER Fisiopatología de la Obesidad y Nutrición), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Gómez-Ambrosi
- Department of Endocrinology and Nutrition, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- IdiSNA (Instituto de Investigación en la Salud de Navarra), Pamplona, Spain
- CIBERObn (CIBER Fisiopatología de la Obesidad y Nutrición), Instituto de Salud Carlos III, Madrid, Spain
| | - Emma Chávez-Manzanera
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | | - Jean-Michel Oppert
- Department of Nutrition, Pitié-Salpêtrière Hospital (AP-HP), Human Nutrition Research Center Ile-de-France (CRNH IdF), Sorbonne University, Paris, France
| | - Dimitrios N Kiortsis
- Atherothrombosis Research Centre, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - Paolo Sbraccia
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Carmine Zoccali
- Renal Research Institute, New York, New York, USA
- Institute of Molecular Biology and Genetics (Biogem), Ariano Irpino, Italy
- Associazione Ipertensione Nefrologia Trapianto Renale (IPNET), c/o Nefrologia, Grande Ospedale Metropolitano, Reggio Calabria, Italy
| | - Piero Portincasa
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro", Bari, Italy
| | - Fabrizio Montecucco
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Genoa, Italy
| |
Collapse
|
2
|
Makassy D, Williams K, Karwi QG. The Evolving Role of Macrophage Metabolic Reprogramming in Obesity. Can J Cardiol 2025:S0828-282X(25)00320-4. [PMID: 40311669 DOI: 10.1016/j.cjca.2025.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/17/2025] [Accepted: 04/21/2025] [Indexed: 05/03/2025] Open
Abstract
Recent research has extensively explored the critical role of energy metabolism in shaping the inflammatory response and polarization of macrophages in obesity. This rapidly growing field emphasizes the need to understand the connection between metabolic processes that support macrophage polarization in obesity. Although most published research in this area has focused on glucose and fatty acids, how the flux through other metabolic pathways (such as ketone and amino acid oxidation) in macrophages is altered in obesity is not well defined. This review summarizes the main alterations in uptake, storage, and oxidation of oxidative substrates (glucose, fatty acids, ketone bodies, and amino acids) in macrophages and how these alterations are linked to macrophage polarization and contribution to augmented inflammatory markers in obesity. The review also discusses how oxidative substrates could modulate macrophage energy metabolism and inflammatory responses via feeding into other nonoxidative pathways (such as the pentose phosphate pathway, triacylglycerol synthesis/accumulation), via acting as signalling molecules, or via mediating post-translational modifications (such as O-GlcNAcylation or β-hydroxybutyrylation). The review also identifies several critical unanswered questions regarding the characteristics (functional and metabolic) of macrophages from different origins (adipose tissue, skeletal muscle, bone marrow) in obesity and how these characteristics contribute to early vs late phases of obesity. We also identified a number of new therapeutic targets that could be evaluated in future investigations. Targeting macrophage metabolism in obesity is an exciting and active area of research with significant potential to help identify new treatments to limit the detrimental effects of inflammation in obesity.
Collapse
Affiliation(s)
- Dorcus Makassy
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, Saint John's, Newfoundland and Labrador, Canada
| | - Kyra Williams
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, Saint John's, Newfoundland and Labrador, Canada
| | - Qutuba G Karwi
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, Saint John's, Newfoundland and Labrador, Canada.
| |
Collapse
|
3
|
Zhou H, Gizlenci M, Xiao Y, Martin F, Nakamori K, Zicari EM, Sato Y, Tullius SG. Obesity-associated Inflammation and Alloimmunity. Transplantation 2025; 109:588-596. [PMID: 39192462 PMCID: PMC11868468 DOI: 10.1097/tp.0000000000005183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Obesity is a worldwide health problem with a rapidly rising incidence. In organ transplantation, increasing numbers of patients with obesity accumulate on waiting lists and undergo surgery. Obesity is in general conceptualized as a chronic inflammatory disease, potentially impacting alloimmune response and graft function. Here, we summarize our current understanding of cellular and molecular mechanisms that control obesity-associated adipose tissue inflammation and provide insights into mechanisms affecting transplant outcomes, emphasizing on the beneficial effects of weight loss on alloimmune responses.
Collapse
Affiliation(s)
- Hao Zhou
- Division of Transplant Surgery & Transplant Surgery Research Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, United States
| | - Merih Gizlenci
- Division of Transplant Surgery & Transplant Surgery Research Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, United States
- Department of General, Visceral, Cancer and Transplant Surgery, University Hospital of Cologne, Cologne, Germany
| | - Yao Xiao
- Division of Transplant Surgery & Transplant Surgery Research Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, United States
| | - Friederike Martin
- Division of Transplant Surgery & Transplant Surgery Research Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, United States
- Department of Surgery, CVK/CCM, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Keita Nakamori
- Division of Transplant Surgery & Transplant Surgery Research Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, United States
- Department of Urology, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
| | - Elizabeth M. Zicari
- Division of Transplant Surgery & Transplant Surgery Research Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, United States
- Faculté de Pharmacie, Université Paris Cité, Paris, France
| | - Yuko Sato
- Division of Transplant Surgery & Transplant Surgery Research Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, United States
| | - Stefan G. Tullius
- Division of Transplant Surgery & Transplant Surgery Research Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, United States
| |
Collapse
|
4
|
Ho KT, Chu FY, Lin YK, Chin HH, Yang SC, Yang CP, Chang YH. Interleukin-4 ameliorates macrophage lipid stress through promoting cholesterol efflux and lipid homeostasis. Cytokine 2025; 188:156869. [PMID: 39954486 DOI: 10.1016/j.cyto.2025.156869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/23/2024] [Accepted: 01/13/2025] [Indexed: 02/17/2025]
Abstract
Over-nutrition and lipid metabolic abnormalities are correlated with obesity and type 2 diabetes mellitus (T2DM). Individuals with long-term hyperglycemia and dyslipidemia are susceptible to life-threatening complications such as atherosclerosis. Excess amounts of modified low density lipoprotein (mLDL) attract circulating monocytes to resident at arterial wall and differentiate into pro-inflammatory M1 macrophages. M1 cells uptake mLDL through scavenger receptors-mediated endocytosis, leading to increased lipids influx, cholesterol accumulation and foam cell formation. Besides, macrophages are attracted and infiltrated into the hypertrophic adipose tissue to mediate microenvironmental lipid metabolism. Our previous studies demonstrate that anti-inflammatory interleukin-4 (IL-4) regulates lipid metabolism by inhibiting lipid accumulation and promoting lipolysis of mature adipocytes. The effects of IL-4-polarized M2 macrophages on 3T3-L1 adipogenesis and macrophage-adipocyte interaction were explored in the present study. Our results showed lipid deposits and lipid droplets (LDs)-anchored perilipin of adipocytes cultured in IL-4-polarized M2-conditioned medium (M2-CM) were decreased, while adipogenesis-driving transcription factors and critical lipid metabolic enzymes remained unaffected. It indicates that M2-secreted mediators down-regulate lipid deposits and LDs formation in late adipogenic phase rather than interfering early programming phase and lipid synthesis machinery. In addition, IL-4 reduced intracellular lipid loads by up-regulating cholesterol efflux ATP-binding cassette transporter A1 (ABCA1) and ABCG1 despite cholesterol influx CD36 was also elevated. Accordingly, IL-4 shows beneficial effects to prevent atherosclerosis via promoting catabolism of the internalized lipids and cholesterol efflux, thus efficiently reduces lipid overload and foam cell formation. These findings illustrate novel roles and protective function of IL-4 to reduce the risk of atherosclerosis incidence by efficiently promoting macrophage cholesterol efflux and lipid homeostasis.
Collapse
Affiliation(s)
- Kuo-Ting Ho
- Center for Precision Medicine, Yi-He Hospital, Quanzhou, Fujian Province, PR China; HI. Q Biomedical Laboratory, Takyun Industrial Park, Quanzhou, Fujian Province, PR China
| | - Fang-Yeh Chu
- Department of Clinical Pathology, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan; Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320, Taiwan; Department of Medical Laboratory Science and Biotechnology, Yuanpei University 300, Taiwan; School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei 110, Taiwan
| | - Yi-Kai Lin
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Ho-Hsun Chin
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 402, Taiwan; Laboratory Accreditation Department II, Taiwan Accreditation Foundation, Hsinchu, Taiwan
| | - Shun-Chun Yang
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 402, Taiwan; Department of Clinical Pathology, Min-Sheng General Hospital, Taoyuan 320, Taiwan
| | - Ching-Ping Yang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yih-Hsin Chang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan.
| |
Collapse
|
5
|
Wong A, Sun Q, Latif II, Karwi QG. Macrophage energy metabolism in cardiometabolic disease. Mol Cell Biochem 2025; 480:1763-1783. [PMID: 39198360 PMCID: PMC11842501 DOI: 10.1007/s11010-024-05099-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
In a rapidly expanding body of literature, the major role of energy metabolism in determining the response and polarization status of macrophages has been examined, and it is currently a very active area of research. The metabolic flux through different metabolic pathways in the macrophage is interconnected and complex and could influence the polarization of macrophages. Earlier studies suggested glucose flux through cytosolic glycolysis is a prerequisite to trigger the pro-inflammatory phenotypes of macrophages while proposing that fatty acid oxidation is essential to support anti-inflammatory responses by macrophages. However, recent studies have shown that this understanding is oversimplified and that the metabolic control of macrophage polarization is highly complex and not fully defined yet. In this review, we systematically reviewed and summarized the literature regarding the role of energy metabolism in controlling macrophage activity and how that might be altered in cardiometabolic diseases, namely heart failure, obesity, and diabetes. We critically appraised the experimental studies and methodologies in the published studies. We also highlighted the challenging concepts in macrophage metabolism and identified several research questions yet to be addressed in future investigations.
Collapse
Affiliation(s)
- Angela Wong
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, A1B 3V6, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Qiuyu Sun
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, A1B 3V6, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Ismail I Latif
- Department of Microbiology, College of Medicine, University of Diyala, Baqubaa, Diyala, Iraq
| | - Qutuba G Karwi
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, A1B 3V6, Canada.
| |
Collapse
|
6
|
Jang JH, Sung JH, Huh JY. Diverse Functions of Macrophages in Obesity and Metabolic Dysfunction-Associated Steatotic Liver Disease: Bridging Inflammation and Metabolism. Immune Netw 2025; 25:e12. [PMID: 40078789 PMCID: PMC11896663 DOI: 10.4110/in.2025.25.e12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/12/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
Macrophages play crucial roles in immune response and tissue homeostasis, with their functions becoming increasingly complex in obesity-mediated metabolic disorders. This review explores the extensive range of macrophage activities within adipose and liver tissues, emphasizing their contribution to the pathogenesis and progression of obesity and its related metabolic dysfunction-associated steatotic liver disease (MASLD). In the context of obesity, macrophages respond adaptively to lipid overloads and inflammatory cues in adipose tissue, profoundly influencing insulin resistance and metabolic homeostasis. Concurrently, their role in the liver extends to moderating inflammation and orchestrating fibrotic responses, integral to the development of MASLD. Highlighting the spectrum of macrophage phenotypes across these metabolic landscapes, we summarize their diverse roles in linking inflammatory processes with metabolic functions. This review advocates for a deeper understanding of macrophage subsets in metabolic tissues, proposing targeted research to harness their therapeutic potential in mitigating MASLD and other metabolic disorders.
Collapse
Affiliation(s)
- Jun Hee Jang
- Department of Life Science, Sogang University, Seoul 04107, Korea
- Center for Nano Materials, Sogang University, Seoul 04107, Korea
| | - Jin Hyun Sung
- Department of Life Science, Sogang University, Seoul 04107, Korea
- Center for Nano Materials, Sogang University, Seoul 04107, Korea
| | - Jin Young Huh
- Department of Life Science, Sogang University, Seoul 04107, Korea
- Center for Nano Materials, Sogang University, Seoul 04107, Korea
| |
Collapse
|
7
|
Phuong NQ, Bilal M, Nawaz A, Anh LD, Memoona, Aslam MR, Khalid S, Kado T, Watanabe Y, Nishimura A, Igarashi Y, Okabe K, Hirabayashi K, Yamamoto S, Nakagawa T, Mori H, Usui I, Fujisaka S, Hayashi R, Tobe K. Role of transforming growth factor-β1 in regulating adipocyte progenitors. Sci Rep 2025; 15:941. [PMID: 39824986 PMCID: PMC11748614 DOI: 10.1038/s41598-024-81917-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/29/2024] [Indexed: 01/20/2025] Open
Abstract
Adipose tissue (AT) metabolism involves coordinating various cells and cellular processes to regulate energy storage, release, and overall metabolic homeostasis. Therein, macrophage and its cytokine are important in controlling tissue homeostasis. Among cytokines, the role of transforming growth factor-β1 (Tgf-β1), a cytokine abundantly expressed in CD206+ M2-like macrophage and correlated with the expansion of AT and fibrosis, in AT metabolism, remains unknown. We used CD206CreERT2; Tgf-β1f/f mouse model in which the Tgf-β1 gene was conditionally deleted in CD206+ M2-like macrophages followed by tamoxifen administration, to investigate the role of the Tgf-β1 gene in glucose and insulin metabolism. Our data demonstrated that lack of CD206+ M2-like macrophages derived Tgf-β1 gene improved glucose metabolism and insulin sensitivity by enhancing adipogenesis via hyperplasia. The Tgf-β1 gene, specifically from CD206+ M2-like macrophages, deletion stimulated APs' proliferation and differentiation, leading to the generation of smaller mature adipocytes, therefore enhancing insulin sensitivity and improving glucose metabolism under normal chow conditions. Our study brings a new perspective that Tgf-β1 gene deletion specific from CD206+ M2-like macrophage promotes adipocyte hyperplasia, improving glucose homeostasis and insulin sensitivity in the lean state.
Collapse
Affiliation(s)
- Nguyen Quynh Phuong
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
- Clinical Oncology, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Muhammad Bilal
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
- Research Center for Pre-Disease Science, Faculty of Education and Research Promotion, University of Toyama, Toyama, 930-0194, Japan.
- Advanced Postdoctoral Fellowships of the Japan Diabetes Society (JDS), Tokyo, Japan.
| | - Allah Nawaz
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Le Duc Anh
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Memoona
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Muhammad Rahil Aslam
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Sana Khalid
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Tomonobu Kado
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Yoshiyuki Watanabe
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Ayumi Nishimura
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
- Faculty of Education and Research Promotion, University of Toyama, Toyama, 930-0194, Japan
| | - Yoshiko Igarashi
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
- JSPS Research Fellowship for Young Scientist Japan, Tokyo, Japan
| | - Keisuke Okabe
- Toyama University Hospital, Center for Clinical and Translational Research, Toyama, Japan
| | - Kenichi Hirabayashi
- Department of Diagnostic Pathology, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Seiji Yamamoto
- Department of Pathology, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Takashi Nakagawa
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Hisashi Mori
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Isao Usui
- Department of Endocrinology and Metabolism, Dokkyo Medical University, Tochigi, Japan
| | - Shiho Fujisaka
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Ryuji Hayashi
- Clinical Oncology, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Kazuyuki Tobe
- Research Center for Pre-Disease Science, Faculty of Education and Research Promotion, University of Toyama, Toyama, 930-0194, Japan.
- Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan.
| |
Collapse
|
8
|
Thorp EB, Filipp M. Contributions of Inflammation to Cardiometabolic Heart Failure with Preserved Ejection Fraction. ANNUAL REVIEW OF PATHOLOGY 2025; 20:143-167. [PMID: 39357068 DOI: 10.1146/annurev-pathmechdis-111523-023405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
The most common form of heart failure is heart failure with preserved ejection fraction (HFpEF). While heterogeneous in origin, the most common form of HFpEF is the cardiometabolic manifestation. Obesity and aging promote systemic inflammation that appears integral to cardiometabolic HFpEF pathophysiology. Accumulation of immune cells within the heart, fueled by an altered metabolome, contribute to cardiac inflammation and fibrosis. In spite of this, broad anti-inflammatory therapy has not shown significant benefit in patient outcomes. Thus, understanding of the nuances to metabolic and age-related inflammation during HFpEF is paramount for more targeted interventions. Here, we review clinical evidence of inflammation in the context of HFpEF and summarize our mechanistic understanding of immunometabolic inflammation, highlighting pathways of therapeutic potential along the way.
Collapse
Affiliation(s)
- Edward B Thorp
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; ,
| | - Mallory Filipp
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; ,
| |
Collapse
|
9
|
Zhang J, Lu E, Deng L, Zhu Y, Lu X, Li X, Li F, Yan Y, Han JY, Li Y, Zhang Y. Immunological roles for resistin and related adipokines in obesity-associated tumors. Int Immunopharmacol 2024; 142:112911. [PMID: 39232363 DOI: 10.1016/j.intimp.2024.112911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024]
Abstract
Rationale Obesity is an independent risk factor for the occurrence and development of tumors. Obesity is influenced by signaling of adipokines, which are secreted factors from adipocytes and resident immune cells within adipose tissues that mediate lipid metabolism. More recently, adipokines have been implicated in chronic inflammation as well as in tumor formation and growth. Among them, resistin has received increasing attention in research related to the growth and expansion of solid tumors and hematological cancers through various signaling pathways. Objective and findings We reviewed the physiological, biochemical, and immune functions of adipose tissue, with a focus on the structure and expression of resistin and adipokines within multiple adipose cell types, their signaling pathways and putative effects on tumor cells, as well as their in vivo regulation. Current evidence indicates that adipokines such as resistin act as pro-inflammatory factors to stimulate immune cells which, in turn, promotes tumor angiogenesis, connective tissue proliferation, and matrix fibrosis. Concurrently, in states of metabolic dysfunction and lipotoxicity in obese individuals, the numbers and functions of immune cells are compromised, leading to an immunosuppressive environment that fosters tumor cell survival and weak cancer immune monitoring. Conclusion Adipokines such as resistin are important to the development of obesity-related tumors. Clarifying the roles for obesity-related factors in immune regulation and tumor progression may lead to the discovery of novel anti-tumor strategies for targeting obesity factors such as resistin to limit tumor growth and manage obesity, or both.
Collapse
Affiliation(s)
- Jingxin Zhang
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Enting Lu
- Department of Gynecology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Lei Deng
- Department of Gynecology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yaoxuan Zhu
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Xiaoqing Lu
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Xinyuan Li
- School of Nursing, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Fangmei Li
- Department of Gynecology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yan Yan
- Department of Gynecology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Jing-Yan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yin Li
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China.
| | - Yi Zhang
- Department of Gynecology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
10
|
Burzava AL, Zuber A, Hayles A, Morel J, Bright R, Wood J, Palms D, Barker D, Brown T, Vasilev K. Platelet interaction and performance of antibacterial bioinspired nanostructures passivated with human plasma. Mater Today Bio 2024; 29:101236. [PMID: 39399241 PMCID: PMC11467677 DOI: 10.1016/j.mtbio.2024.101236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/02/2024] [Accepted: 09/07/2024] [Indexed: 10/15/2024] Open
Abstract
The ever-increasing ageing of the world population is demanding superior orthopedic devices. Issues such as implant infection, poor osseointegration, or chronic inflammation remain problematic to the lifespan and long-term efficacy of implants. Fabrication of materials with bioinspired nanostructures is one emerging antibacterial strategy to prevent implant infection, however their interactions with blood components, and whether they retain their bactericidal properties in an environment displaying a complex protein corona, remains largely unexplored. In the present study, titanium alloy, commercially pure and plasma-sprayed titania were hydrothermally etched, passivated with human native plasma to develop a protein corona, and then incubated with either Staphylococcus aureus, Pseudomonas aeruginosa or human platelets. Surface analysis was first used to characterize the topography, chemical composition or crystallinity of each material. Fluorescence staining and SEM were performed to evaluate the nanostructure bactericidal properties, as well as to study platelet attachment and morphology. Composition of platelet supernatant was studied using ELISA and flow cytometry. Overall, our study showed that the bioinspired nanostructured surfaces displayed both impressive antibacterial properties in a complex environment, and a superior blood biocompatibility profile in terms of platelet activation (particularly for titanium alloy). Additionally, the amount of pro-inflammatory cytokines released by platelets was found to be no different to that found in native plasma (background levels) and, in some cases, presented a more pro-healing profile with an increased secretion of factors such as TGF-β, PDGF-BB or BMP-2. The nanostructured surfaces performed equally, or better, than hydroxyapatite-coated titanium which is one of the current gold standards in orthopedics. Although further in vivo studies are required to validate these results, such bioinspired nanostructured surfaces certainly show promise to be safely applied to medical device surfaces used in orthopedics and other areas.
Collapse
Affiliation(s)
- Anouck L.S. Burzava
- STEM, University of South Australia, Mawson Lakes, South Australia, 5095, Australia
- Laboratoire Softmat, Université de Toulouse, CNRS, UMR 5623, Université Toulouse III – Paul Sabatier, 31062, Toulouse, France
| | - Agnieszka Zuber
- STEM, University of South Australia, Mawson Lakes, South Australia, 5095, Australia
| | - Andrew Hayles
- STEM, University of South Australia, Mawson Lakes, South Australia, 5095, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, 5042, South Australia, Australia
| | - James Morel
- School of Chemical Engineering, UNSW Sydney, New South Wales, 2052, Australia
| | - Richard Bright
- STEM, University of South Australia, Mawson Lakes, South Australia, 5095, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, 5042, South Australia, Australia
| | - Jonathan Wood
- STEM, University of South Australia, Mawson Lakes, South Australia, 5095, Australia
| | - Dennis Palms
- STEM, University of South Australia, Mawson Lakes, South Australia, 5095, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, 5042, South Australia, Australia
| | - Dan Barker
- Corin Australia, Pymble, New South Wales, 2073, Australia
| | - Toby Brown
- Corin Australia, Pymble, New South Wales, 2073, Australia
| | - Krasimir Vasilev
- STEM, University of South Australia, Mawson Lakes, South Australia, 5095, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, 5042, South Australia, Australia
| |
Collapse
|
11
|
Lee S, Kim HK. α-Tocopherol and γ-tocopherol decrease inflammatory response and insulin resistance during the interaction of adipocytes and macrophages. Nutr Res Pract 2024; 18:761-773. [PMID: 39651320 PMCID: PMC11621430 DOI: 10.4162/nrp.2024.18.6.761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/10/2024] [Accepted: 08/08/2024] [Indexed: 12/11/2024] Open
Abstract
BACKGROUND/OBJECTIVES The infiltration of macrophages into adipose tissue mediates chronic inflammation that is associated with insulin resistance in obesity. Although vitamin E is beneficial against insulin resistance, its impact on adipose tissue inflammation has not been elucidated. This study aims to investigate the effects of α-tocopherol and γ-tocopherol, major vitamin E isoforms, on the interaction between macrophages and adipocytes with regard to obesity-induced inflammation and insulin resistance. MATERIALS/METHODS Hypertrophied 3T3-L1 adipocytes were cocultured with RAW 264.7 macrophages and treated with α-tocopherol or γ-tocopherol at 12.5, 25, and 50 µM. The inflammatory cytokines (monocyte chemoattractant protein-1, tumor necrosis factor-α, and interleukin-6) and free fatty acid (FFA) release were measured by assay kits, and nuclear factor-kappaB (NF-κB) and c-Jun NH2 terminal kinase (JNK) signals were evaluated by immunoblotting. Glucose uptake was measured with a fluorescent glucose derivative. RESULTS Treatment with α-tocopherol and γ-tocopherol restrained the coculture-induced increase in cytokines and FFA release. γ-Tocopherol exhibited greater suppression of inflammatory cytokines at 12.5 and 25 µM (P < 0.001). Both tocopherols inhibited NF-κB activation by limiting translocation of NF-κB (p65) to the nucleus, with γ-tocopherol showing a stronger effect compared to α-tocopherol. α-Tocopherol inhibited JNK phosphorylation at 50 μM, whereas γ-tocopherol did not. Furthermore, coculture with macrophages impaired glucose uptake in response to insulin, but both tocopherols restored insulin responsiveness (P < 0.01). CONCLUSION α-Tocopherol and γ-tocopherol effectively mitigate inflammation induced by adipocyte-macrophage interaction, thereby ameliorating coculture-induced insulin resistance. These findings suggest the therapeutic potential of tocopherols in managing obesity-related metabolic dysfunction.
Collapse
Affiliation(s)
- Sella Lee
- Department of Food Science and Nutrition, The Catholic University of Korea, Bucheon 14662, Korea
| | - Hye-Kyeong Kim
- Department of Food Science and Nutrition, The Catholic University of Korea, Bucheon 14662, Korea
| |
Collapse
|
12
|
Wang M, Min M, Duan H, Mai J, Liu X. The role of macrophage and adipocyte mitochondrial dysfunction in the pathogenesis of obesity. Front Immunol 2024; 15:1481312. [PMID: 39582861 PMCID: PMC11581950 DOI: 10.3389/fimmu.2024.1481312] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/23/2024] [Indexed: 11/26/2024] Open
Abstract
Obesity has emerged as a prominent global public health concern, leading to the development of numerous metabolic disorders such as cardiovascular diseases, type-2 diabetes mellitus (T2DM), sleep apnea and several system diseases. It is widely recognized that obesity is characterized by a state of inflammation, with immune cells-particularly macrophages-playing a significant role in its pathogenesis through the production of inflammatory cytokines and activation of corresponding pathways. In addition to their immune functions, macrophages have also been implicated in lipogenesis. Additionally, the mitochondrial disorders existed in macrophages commonly, leading to decreased heat production. Meantime, adipocytes have mitochondrial dysfunction and damage which affect thermogenesis and insulin resistance. Therefore, enhancing our comprehension of the role of macrophages and mitochondrial dysfunction in both macrophages and adipose tissue will facilitate the identification of potential therapeutic targets for addressing this condition.
Collapse
Affiliation(s)
- Min Wang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Min Min
- Outpatient Department, The Air Force Hospital of Western Theater, PLA, Chengdu, Sichuan, China
| | - Haojie Duan
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Jia Mai
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Xiaojuan Liu
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| |
Collapse
|
13
|
Ho QV, Young MJ. Mineralocorticoid receptors, macrophages and new mechanisms for cardiovascular disease. Mol Cell Endocrinol 2024; 593:112340. [PMID: 39134137 DOI: 10.1016/j.mce.2024.112340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Affiliation(s)
- Quoc Viet Ho
- Cardiovascular Endocrinology Laboratory, Baker Heart and Diabetes Institute, Australia
| | - Morag J Young
- Cardiovascular Endocrinology Laboratory, Baker Heart and Diabetes Institute, Australia; Department of Cardiometabolic Health, University of Melbourne, Victoria, Australia.
| |
Collapse
|
14
|
Petit M, Weber-Delacroix E, Lanthiez F, Barthélémy S, Guillou N, Firpion M, Bonduelle O, Hume DA, Combadière C, Boissonnas A. Visualizing the spatial organization of monocytes, interstitial macrophages, and tissue-specific macrophages in situ. Cell Rep 2024; 43:114847. [PMID: 39395172 DOI: 10.1016/j.celrep.2024.114847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/03/2024] [Accepted: 09/23/2024] [Indexed: 10/14/2024] Open
Abstract
Tissue-resident mononuclear phagocytes (MPs) are an abundant cell population whose localization in situ reflects their identity. To enable assessment of their heterogeneity, we developed the red/green/blue (RGB)-Mac mouse based upon combinations of Cx3cr1 and Csf1r reporter transgenes, providing a complete visualization of their spatial organization in situ. 3D-multi-photon imaging for spatial mapping and spectral cytometry employing the three markers in combination distinguished tissue-associated monocytes, tissue-specific macrophages, and three subsets of connective-tissue-associated MPs, including CCR2+ monocyte-derived cell, CX3CR1+, and FOLR2+ interstitial subsets, associated with distinct sub-anatomic territories. These populations were selectively reduced by blockade of CSF1, CSF2, CCR2, and CX3CR1 and efficiently reconstitute their spatial distribution after transient myelo-ablation, suggesting an autonomous regulatory environment. Our findings emphasize the organization of the MP compartment at the sub-anatomic level under steady-state conditions, thereby providing a holistic understanding of their relative heterogeneity across different tissues.
Collapse
Affiliation(s)
- Maxime Petit
- Sorbonne Université ́, Inserm U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Eléonore Weber-Delacroix
- Sorbonne Université ́, Inserm U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - François Lanthiez
- Sorbonne Université ́, Inserm U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Sandrine Barthélémy
- Sorbonne Université ́, Inserm U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Noëlline Guillou
- Sorbonne Université ́, Inserm U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Marina Firpion
- Sorbonne Université ́, Inserm U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Olivia Bonduelle
- Sorbonne Université ́, Inserm U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - David A Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Christophe Combadière
- Sorbonne Université ́, Inserm U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Alexandre Boissonnas
- Sorbonne Université ́, Inserm U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France.
| |
Collapse
|
15
|
Mohaghegh N, Ahari A, Buttles C, Davani S, Hoang H, Huang Q, Huang Y, Hosseinpour B, Abbasgholizadeh R, Cottingham AL, Farhadi N, Akbari M, Kang H, Khademhosseini A, Jucaud V, Pearson RM, Hassani Najafabadi A. Simvastatin-Loaded Polymeric Nanoparticles: Targeting Inflammatory Macrophages for Local Adipose Tissue Browning in Obesity Treatment. ACS NANO 2024; 18:27764-27781. [PMID: 39342648 DOI: 10.1021/acsnano.4c10742] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Obesity is defined as chronic, low-grade inflammation within specific tissues. Given the escalating prevalence of obesity among individuals of all ages, obesity has reached epidemic proportions, posing an important public health challenge. Despite significant advancements in treating obesity, conventional approaches remain largely ineffective or involve severe side effects, thus underscoring the pressing need to explore and develop treatment approaches. Targeted and local immunomodulation using nanoparticles (NPs) can influence fat production and utilization processes. Statins, known for their anti-inflammatory properties, show the potential for mitigating obesity-related inflammation. A localized delivery option offers several advantages over oral and parenteral delivery methods. Here, we developed simvastatin (Sim) encapsulated within PLGA NPs (Sim-NP) for localized delivery of Sim to adipose tissues (ATs) for immunomodulation to treat obesity. In vitro experiments revealed the strong anti-inflammatory effects of Sim-NPs, which resulted in enhanced modulation of macrophage (MΦ) polarization and induction of AT browning. We then extended our investigation to an in vivo mouse model of high-fat-diet (HFD)-induced obesity. Sim-NP administration led to the controlled release of Sim within AT, directly impacting MΦ activity and inducing AT browning while inducing weight loss. Our findings demonstrated that Sim-NP administration effectively inhibited the progression of obesity-related inflammation, controlled white fat production, and enhanced AT modulation. These results highlight the potential of Sim-NP as a potent nanotherapy for treating obesity by modulating the immune system.
Collapse
Affiliation(s)
- Neda Mohaghegh
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Amir Ahari
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
- Department of Surgery, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Claire Buttles
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana 47405, United States
| | - Saya Davani
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
- Department of Neurobiology, Physiology, and Behavior, University of California Davis, Briggs Hall, Davis, California 95616, United States
| | - Hanna Hoang
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90024, United States
| | - Qiang Huang
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Yixuan Huang
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Bahareh Hosseinpour
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Reza Abbasgholizadeh
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Andrea L Cottingham
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Neda Farhadi
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Mohsen Akbari
- Department of Mechanical Engineering, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
- Biotechnology Center, Silesian University of Technology, Gliwice 44-100, Poland
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Ryan M Pearson
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | | |
Collapse
|
16
|
Lin C, Chen Y, Ge Y, Niu H, Zhang X, Jiang F, Wu C. A Bibliometric and Knowledge-Map Analysis of Macrophage Polarization in Insulin Resistance From 1999 to 2023. Immun Inflamm Dis 2024; 12:e70048. [PMID: 39465505 PMCID: PMC11513609 DOI: 10.1002/iid3.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/14/2024] [Accepted: 10/08/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Despite numerous studies confirming the association between insulin resistance (IR) and macrophage polarization, there is a lack of bibliometric analysis in this area. Therefore, our objective is to conduct a comprehensive analysis of published literature and identify potential future research trends using bibliometrics. METHOD Publications on the topic of macrophage polarization in IR were gathered from the Web of Science Core Collection database (WoSCC) spanning the years 1999-2023. Bibliometric analysis and visualization were conducted using VOSviewers, CiteSpace, the R package "bibliometrix" and Tableau Public. RESULT A total of 3435 articles published between 1999 and 2023 were included in the analysis. These articles originated from 75 countries, with the United States and China leading in contributions. The top five research institutions are the University of California, San Diego, Harvard University, the University of Michigan, Shanghai Jiao Tong University, and Huazhong University of Science and Technology. In this research domain, Diabetes is the most frequently published journal, and the Journal of Clinical Investigation is the most co-cited. Among the 19,398 authors contributing to these publications, Lumeng CN. not only authored the most papers but also received the highest number of co-citations. "Insulin resistance" emerges as a primary keyword in the analysis of emerging research hotspots. CONCLUSION For the first time, bibliometric methods have been employed to conduct a comprehensive summary of papers relevant to macrophage polarization in IR. This study aims to identify the current research direction and future research hotspots, offering valuable guidance and insights for scholars in the field.
Collapse
Affiliation(s)
- Chuning Lin
- Department of Rehabilitation MedicineThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu ProvinceChina
| | - Yuan Chen
- Department of Rehabilitation MedicineThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu ProvinceChina
| | - Yao Ge
- Department of Rehabilitation MedicineThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu ProvinceChina
| | - Huimin Niu
- Department of Rehabilitation MedicineThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu ProvinceChina
| | - Xinyi Zhang
- Department of Rehabilitation MedicineThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu ProvinceChina
| | - Feng Jiang
- Department of NeonatologyObstetrics and Gynecology Hospital of Fudan UniversityShanghaiJiangsu ProvinceChina
| | - Chuyan Wu
- Department of Rehabilitation MedicineThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu ProvinceChina
| |
Collapse
|
17
|
Qiu L, Ren Y, Li J, Li M, Li W, Qin L, Ning C, Zhang J, Gao F. Association of systemic immune inflammatory index with obesity and abdominal obesity: A cross-sectional study from NHANES. Nutr Metab Cardiovasc Dis 2024; 34:2409-2419. [PMID: 39069464 DOI: 10.1016/j.numecd.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND AND AIM Our aim was to explore the potential relationship between SII and obesity, as well as abdominal obesity. METHODS AND RESULTS We utilized a weighted multivariable logistic regression model to investigate the relationship between SII and obesity, as well as abdominal obesity. Generalized additive models were employed to test for non-linear associations. Subsequently, we constructed a two-piecewise linear regression model and conducted a recursive algorithm to calculate inflection points. Additionally, subgroup analyses and interaction tests were performed. A total of 7,880 U.S. adult participants from NHANES 2011-2018 were recruited for this study. In the regression model adjusted for all confounding variables, the odds ratios (95% confidence intervals) for the association between SII/100 and obesity, as well as abdominal obesity, were 1.03 (1.01, 1.06) and 1.04 (1.01, 1.08) respectively. There was a non-linear and reverse U-shaped association between SII/100 and obesity, as well as abdominal obesity, with inflection points at 7.32 and 9.98 respectively. Significant positive correlations were observed before the inflection points, while significant negative correlations were found after the inflection points. There was a statistically significant interaction in the analysis of age, hypertension, and diabetes. Moreover, a notable interaction is observed between SII/100 and abdominal obesity within non-Hispanic Asian populations. CONCLUSIONS In adults from the United States, there is a positive correlation between SII and the high risk of obesity, as well as abdominal obesity. Further large-scale prospective studies are needed to analyze the role of SII in obesity and abdominal obesity.
Collapse
Affiliation(s)
- Linjie Qiu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yan Ren
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jixin Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Meijie Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenjie Li
- Shanxi University of Chinese Medicine, Shanxi, China
| | - Lingli Qin
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chunhui Ning
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jin Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Feng Gao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
18
|
Soedono S, Julietta V, Nawaz H, Cho KW. Dynamic Roles and Expanding Diversity of Adipose Tissue Macrophages in Obesity. J Obes Metab Syndr 2024; 33:193-212. [PMID: 39324219 PMCID: PMC11443328 DOI: 10.7570/jomes24030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 09/27/2024] Open
Abstract
Adipose tissue macrophages (ATMs) are key regulators of adipose tissue (AT) inflammation and insulin resistance in obesity, and the traditional M1/M2 characterization of ATMs is inadequate for capturing their diversity in obese conditions. Single-cell transcriptomic profiling has revealed heterogeneity among ATMs that goes beyond the old paradigm and identified new subsets with unique functions. Furthermore, explorations of their developmental origins suggest that multiple differentiation pathways contribute to ATM variety. These advances raise concerns about how to define ATM functions, how they are regulated, and how they orchestrate changes in AT. This review provides an overview of the current understanding of ATMs and their updated categorization in both mice and humans during obesity. Additionally, diverse ATM functions and contributions in the context of obesity are discussed. Finally, potential strategies for targeting ATM functions as therapeutic interventions for obesity-induced metabolic diseases are addressed.
Collapse
Affiliation(s)
- Shindy Soedono
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Korea
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Korea
| | - Vivi Julietta
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Korea
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Korea
| | - Hadia Nawaz
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Korea
| | - Kae Won Cho
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Korea
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Korea
| |
Collapse
|
19
|
Hernandez-Torres F, Matias-Valiente L, Alzas-Gomez V, Aranega AE. Macrophages in the Context of Muscle Regeneration and Duchenne Muscular Dystrophy. Int J Mol Sci 2024; 25:10393. [PMID: 39408722 PMCID: PMC11477283 DOI: 10.3390/ijms251910393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Macrophages are essential to muscle regeneration, as they regulate inflammation, carry out phagocytosis, and facilitate tissue repair. These cells exhibit phenotypic switching from pro-inflammatory (M1) to anti-inflammatory (M2) states during muscle repair, influencing myoblast proliferation, differentiation, and myofiber formation. In Duchenne Muscular Dystrophy (DMD), asynchronous muscle injuries disrupt the normal temporal stages of regeneration, leading to fibrosis and failed regeneration. Altered macrophage activity is associated with DMD progression and physiopathology. Gaining insight into the intricate relationship between macrophages and muscle cells is crucial for creating effective therapies aimed at treating this muscle disorder. This review explores the dynamic functions of macrophages in muscle regeneration and their implications in DMD.
Collapse
Affiliation(s)
- Francisco Hernandez-Torres
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, 18016 Granada, Spain;
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain; (L.M.-V.); (V.A.-G.)
| | - Lidia Matias-Valiente
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain; (L.M.-V.); (V.A.-G.)
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, 23071 Jaen, Spain
| | - Virginia Alzas-Gomez
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain; (L.M.-V.); (V.A.-G.)
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, 23071 Jaen, Spain
| | - Amelia Eva Aranega
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain; (L.M.-V.); (V.A.-G.)
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, 23071 Jaen, Spain
| |
Collapse
|
20
|
Onoi Y, Matsumoto T, Anjiki K, Hayashi S, Nakano N, Kuroda Y, Tsubosaka M, Kamenaga T, Ikuta K, Tachibana S, Suda Y, Wada K, Maeda T, Saitoh A, Hiranaka T, Sobajima S, Iwaguro H, Matsushita T, Kuroda R. Human uncultured adipose-derived stromal vascular fraction shows therapeutic potential against osteoarthritis in immunodeficient rats via direct effects of transplanted M2 macrophages. Stem Cell Res Ther 2024; 15:325. [PMID: 39334434 PMCID: PMC11438128 DOI: 10.1186/s13287-024-03946-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND The uncultured adipose-derived stromal vascular fraction (SVF), consisting of adipose-derived stromal cells (ADSCs), M2 macrophages (M2Φ) and others, has shown therapeutic potential against osteoarthritis (OA), however, the mechanisms underlying its therapeutic effects remain unclear. Therefore, this study investigated the effects of the SVF on OA in a human-immunodeficient rat xenotransplantation model. METHODS OA model was induced in the knees of female immunodeficient rats by destabilization of the medial meniscus. Immediately after the surgery, human SVF (1 × 105), ADSCs (1 × 104), or phosphate buffered saline as a control group were transplanted into the knees. At 4 and 8 weeks postoperatively, OA progression and synovitis were analyzed by macroscopic and histological analyses, and the expression of collagen II, SOX9, MMP-13, ADAMTS-5, F4/80, CD86 (M1), CD163 (M2), and human nuclear antigen (hNA) were evaluated immunohistochemically. In vitro, flow cytometry was performed to collect CD163-positive cells as M2Φ from the SVF. Chondrocyte pellets (1 × 105) were co-cultured with SVF (1 × 105), M2Φ (1 × 104), and ADSCs (1 × 104) or alone as a control group, and the pellet size was compared. TGF-β, IL-10 and MMP-13 concentrations in the medium were evaluated using enzyme-linked immunosorbent assay. RESULTS In comparison with the control and ADSC groups, the SVF group showed significantly slower OA progression and less synovitis with higher expression of collagen II and SOX9, lower expression of MMP-13 and ADAMTS-5, and lower F4/80 and M1/M2 ratio in the synovium. Only the SVF group showed partial expression of hNA-, CD163-, and F4/80-positive cells in the rat synovium. In vitro, the SVF, M2Φ, ADSC and control groups, in that order, showed larger pellet sizes, higher TGF-β and IL-10, and lower MMP-13 concentrations. CONCLUSIONS The M2Φ in the transplanted SVF directly affected recipient tissue, enhancing the secretion of growth factors and chondrocyte-protecting cytokines, and partially improving chondrocytes and joint homeostasis. These findings indicate that the SVF is as an effective option for regenerative therapy for OA, with mechanisms different from those of ADSCs.
Collapse
Affiliation(s)
- Yuma Onoi
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Tomoyuki Matsumoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Kensuke Anjiki
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Shinya Hayashi
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Naoki Nakano
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Yuichi Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Masanori Tsubosaka
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Tomoyuki Kamenaga
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Kemmei Ikuta
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Shotaro Tachibana
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Yoshihito Suda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Kensuke Wada
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Takuma Maeda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Akira Saitoh
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Takafumi Hiranaka
- Department of Orthopaedic Surgery and Joint Surgery Center, Takatsuki General Hospital, Osaka, Japan
| | - Satoshi Sobajima
- Department of Orthopaedic Surgery, Sobajima Clinic, Osaka, Japan
| | - Hideki Iwaguro
- Department of Orthopaedic Surgery, Sobajima Clinic, Osaka, Japan
| | - Takehiko Matsushita
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| |
Collapse
|
21
|
Liu X, Tang Y, Luo Y, Gao Y, He L. Role and mechanism of specialized pro-resolving mediators in obesity-associated insulin resistance. Lipids Health Dis 2024; 23:234. [PMID: 39080624 PMCID: PMC11290132 DOI: 10.1186/s12944-024-02207-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/07/2024] [Indexed: 08/02/2024] Open
Abstract
With the changing times, obesity has become a characteristic epidemic in the context of the current era. Insulin resistance (IR) is most commonly caused by obesity, and IR is a common basis of the pathogenesis of many diseases such as cardiovascular disease, nonalcoholic fatty liver disease, and type 2 diabetes, which seriously threaten human life, as well as health. A major pathogenetic mechanism of obesity-associated IR has been found to be chronic low-grade inflammation in adipose tissue. Specialized pro-resolving mediators (SPMs) are novel lipid mediators that both function as "stop signals" for inflammatory reaction and promote inflammation to subside. In this article, we summarize the pathogenesis of obesity-associated IR and its treatments and outline the classification and biosynthesis of SPMs and their mechanisms and roles in the treatment of obesity-associated IR in order to explore the potential of SPMs for treating metabolic diseases linked with obesity-associated IR.
Collapse
Affiliation(s)
- Xinru Liu
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Tang
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuanyuan Luo
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yongxiang Gao
- College of International Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Lisha He
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
22
|
DeBari MK, Johnston EK, Scott JV, Ilzuka E, Sun W, Webster-Wood VA, Abbott RD. A Preliminary Study on Factors That Drive Patient Variability in Human Subcutaneous Adipose Tissues. Cells 2024; 13:1240. [PMID: 39120271 PMCID: PMC11311805 DOI: 10.3390/cells13151240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024] Open
Abstract
Adipose tissue is a dynamic regulatory organ that has profound effects on the overall health of patients. Unfortunately, inconsistencies in human adipose tissues are extensive and multifactorial, including large variability in cellular sizes, lipid content, inflammation, extracellular matrix components, mechanics, and cytokines secreted. Given the high human variability, and since much of what is known about adipose tissue is from animal models, we sought to establish correlations and patterns between biological, mechanical, and epidemiological properties of human adipose tissues. To do this, twenty-six independent variables were cataloged for twenty patients, which included patient demographics and factors that drive health, obesity, and fibrosis. A factorial analysis for mixed data (FAMD) was used to analyze patterns in the dataset (with BMI > 25), and a correlation matrix was used to identify interactions between quantitative variables. Vascular endothelial growth factor A (VEGFA) and actin alpha 2, smooth muscle (ACTA2) gene expression were the highest loadings in the first two dimensions of the FAMD. The number of adipocytes was also a key driver of patient-related differences, where a decrease in the density of adipocytes was associated with aging. Aging was also correlated with a decrease in overall lipid percentage of subcutaneous tissue, with lipid deposition being favored extracellularly, an increase in transforming growth factor-β1 (TGFβ1), and an increase in M1 macrophage polarization. An important finding was that self-identified race contributed to variance between patients in this study, where Black patients had significantly lower gene expression levels of TGFβ1 and ACTA2. This finding supports the urgent need to account for patient ancestry in biomedical research to develop better therapeutic strategies for all patients. Another important finding was that TGFβ induced factor homeobox 1 (TGIF1), an understudied signaling molecule, which is highly correlated with leptin signaling, was correlated with metabolic inflammation. Furthermore, this study draws attention to what we define as "extracellular lipid droplets", which were consistently found in collagen-rich regions of the obese adipose tissues evaluated here. Reduced levels of TGIF1 were correlated with higher numbers of extracellular lipid droplets and an inability to suppress fibrotic changes in adipose tissue. Finally, this study indicated that M1 and M2 macrophage markers were correlated with each other and leptin in patients with a BMI > 25. This finding supports growing evidence that macrophage polarization in obesity involves a complex, interconnecting network system rather than a full switch in activation patterns from M2 to M1 with increasing body mass. Overall, this study reinforces key findings in animal studies and identifies important areas for future research, where human and animal studies are divergent. Understanding key drivers of human patient variability is required to unravel the complex metabolic health of unique patients.
Collapse
Affiliation(s)
- Megan K. DeBari
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; (M.K.D.); (E.K.J.); (J.V.S.); (E.I.); (V.A.W.-W.)
| | - Elizabeth K. Johnston
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; (M.K.D.); (E.K.J.); (J.V.S.); (E.I.); (V.A.W.-W.)
| | - Jacqueline V. Scott
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; (M.K.D.); (E.K.J.); (J.V.S.); (E.I.); (V.A.W.-W.)
| | - Erica Ilzuka
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; (M.K.D.); (E.K.J.); (J.V.S.); (E.I.); (V.A.W.-W.)
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA;
| | - Wenhuan Sun
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA;
| | - Victoria A. Webster-Wood
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; (M.K.D.); (E.K.J.); (J.V.S.); (E.I.); (V.A.W.-W.)
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA;
| | - Rosalyn D. Abbott
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; (M.K.D.); (E.K.J.); (J.V.S.); (E.I.); (V.A.W.-W.)
| |
Collapse
|
23
|
Vo N, Zhang Q, Sung HK. From fasting to fat reshaping: exploring the molecular pathways of intermittent fasting-induced adipose tissue remodeling. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2024; 27:13062. [PMID: 39104461 PMCID: PMC11298356 DOI: 10.3389/jpps.2024.13062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/05/2024] [Indexed: 08/07/2024]
Abstract
Obesity, characterised by excessive fat accumulation, is a complex chronic condition that results from dysfunctional adipose tissue expansion due to prolonged calorie surplus. This leads to rapid adipocyte enlargement that exceeds the support capacity of the surrounding neurovascular network, resulting in increased hypoxia, inflammation, and insulin resistance. Intermittent fasting (IF), a dietary regimen that cycles between periods of fasting and eating, has emerged as an effective strategy to combat obesity and improve metabolic homeostasis by promoting healthy adipose tissue remodeling. However, the precise molecular and cellular mechanisms behind the metabolic improvements and remodeling of white adipose tissue (WAT) driven by IF remain elusive. This review aims to summarise and discuss the relationship between IF and adipose tissue remodeling and explore the potential mechanisms through which IF induces alterations in WAT. This includes several key structural changes, including angiogenesis and sympathetic innervation of WAT. We will also discuss the involvement of key signalling pathways, such as PI3K, SIRT, mTOR, and AMPK, which potentially play a crucial role in IF-mediated metabolic adaptations.
Collapse
Affiliation(s)
- Nathaniel Vo
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Qiwei Zhang
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Hoon-Ki Sung
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
24
|
Habanjar O, Nehme R, Goncalves-Mendes N, Cueff G, Blavignac C, Aoun J, Decombat C, Auxenfans C, Diab-Assaf M, Caldefie-Chézet F, Delort L. The obese inflammatory microenvironment may promote breast DCIS progression. Front Immunol 2024; 15:1384354. [PMID: 39072314 PMCID: PMC11272476 DOI: 10.3389/fimmu.2024.1384354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/20/2024] [Indexed: 07/30/2024] Open
Abstract
Introduction Ductal carcinoma in situ (DCIS), characterized by a proliferation of neoplastic cells confined within the mammary ducts, is distinctly isolated from the surrounding stroma by an almost uninterrupted layer of myoepithelial cells (MECs) and by the basement membrane. Heightened interactions within the adipose microenvironment, particularly in obese patients, may play a key role in the transition from DCIS to invasive ductal carcinoma (IDC), which is attracting growing interest in scientific research. Adipose tissue undergoes metabolic changes in obesity, impacting adipokine secretion and promoting chronic inflammation. This study aimed to assess the interactions between DCIS, including in situ cancer cells and MECs, and the various components of its inflammatory adipose microenvironment (adipocytes and macrophages). Methods To this end, a 3D co-culture model was developed using bicellular bi-fluorescent DCIS-like tumoroids, adipose cells, and macrophages to investigate the influence of the inflammatory adipose microenvironment on DCIS progression. Results The 3D co-culture model demonstrated an inhibition of the expression of genes involved in apoptosis (BAX, BAG1, BCL2, CASP3, CASP8, and CASP9), and an increase in genes related to cell survival (TP53, JUN, and TGFB1), inflammation (TNF-α, PTGS2, IL-6R), invasion and metastasis (TIMP1 and MMP-9) in cancer cells of the tumoroids under inflammatory conditions versus a non-inflammatory microenvironment. On the contrary, it confirmed the compromised functionality of MECs, resulting in the loss of their protective effects against cancer cells. Adipocytes from obese women showed a significant increase in the expression of all studied myofibroblast-associated genes (myoCAFs), such as FAP and α-SMA. In contrast, adipocytes from normal-weight women expressed markers of inflammatory fibroblast phenotypes (iCAF) characterized by a significant increase in the expression of LIF and inflammatory cytokines such as TNF-α, IL-1β, IL-8, and CXCL-10. These changes also influenced macrophage polarization, leading to a pro-inflammatory M1 phenotype. In contrast, myoCAF-associated adipocytes, and the cancer-promoting microenvironment polarized macrophages towards an M2 phenotype, characterized by high CD163 receptor expression and IL-10 and TGF-β secretion. Discussion Reciprocal interactions between the tumoroid and its microenvironment, particularly in obesity, led to transcriptomic changes in adipocytes and macrophages, may participate in breast cancer progression while disrupting the integrity of the MEC layer. These results underlined the importance of adipose tissue in cancer progression.
Collapse
Affiliation(s)
- Ola Habanjar
- Université Clermont-Auvergne, INRAE, UNH, Clermont-Ferrand, France
| | - Rawan Nehme
- Université Clermont-Auvergne, INRAE, UNH, Clermont-Ferrand, France
| | | | - Gwendal Cueff
- Université Clermont-Auvergne, INRAE, UNH, Clermont-Ferrand, France
| | - Christelle Blavignac
- Université Clermont-Auvergne, Centre d’Imagerie Cellulaire Santé (CCIS), Clermont-Ferrand, France
| | - Jessy Aoun
- Université Clermont-Auvergne, INRAE, UNH, Clermont-Ferrand, France
| | | | - Céline Auxenfans
- Banque de tissus et de cellules, Hôpital Edouard-Herriot, Lyon, France
| | - Mona Diab-Assaf
- Equipe Tumorigénèse Moléculaire et Pharmacologie Anticancéreuse, Faculté des Sciences II, Université libanaise Fanar, Beirut, Lebanon
| | | | - Laetitia Delort
- Université Clermont-Auvergne, INRAE, UNH, Clermont-Ferrand, France
| |
Collapse
|
25
|
Dahdah N, Tercero-Alcázar C, Malagón MM, Garcia-Roves PM, Guzmán-Ruiz R. Interrelation of adipose tissue macrophages and fibrosis in obesity. Biochem Pharmacol 2024; 225:116324. [PMID: 38815633 DOI: 10.1016/j.bcp.2024.116324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/06/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Obesity is characterized by adipose tissue expansion, extracellular matrix remodelling and unresolved inflammation that contribute to insulin resistance and fibrosis. Adipose tissue macrophages represent the most abundant class of immune cells in adipose tissue inflammation and could be key mediators of adipocyte dysfunction and fibrosis in obesity. Although macrophage activation states are classically defined by the M1/M2 polarization nomenclature, novel studies have revealed a more complex range of macrophage phenotypes in response to external condition or the surrounding microenvironment. Here, we discuss the plasticity of adipose tissue macrophages (ATMs) in response to their microenvironment in obesity, with special focus on macrophage infiltration and polarization, and their contribution to adipose tissue fibrosis. A better understanding of the role of ATMs as regulators of adipose tissue remodelling may provide novel therapeutic strategies against obesity and associated metabolic diseases.
Collapse
Affiliation(s)
- Norma Dahdah
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Carmen Tercero-Alcázar
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María M Malagón
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Cell Biology, Physiology and Immunology, IMIBIC, Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain
| | - Pablo Miguel Garcia-Roves
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Rocío Guzmán-Ruiz
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Cell Biology, Physiology and Immunology, IMIBIC, Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain.
| |
Collapse
|
26
|
Shantaram D, Hoyd R, Blaszczak AM, Antwi L, Jalilvand A, Wright VP, Liu J, Smith AJ, Bradley D, Lafuse W, Liu Y, Williams NF, Snyder O, Wheeler C, Needleman B, Brethauer S, Noria S, Renton D, Perry KA, Nagareddy P, Wozniak D, Mahajan S, Rana PSJB, Pietrzak M, Schlesinger LS, Spakowicz DJ, Hsueh WA. Obesity-associated microbiomes instigate visceral adipose tissue inflammation by recruitment of distinct neutrophils. Nat Commun 2024; 15:5434. [PMID: 38937454 PMCID: PMC11211470 DOI: 10.1038/s41467-024-48935-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/17/2024] [Indexed: 06/29/2024] Open
Abstract
Neutrophils are increasingly implicated in chronic inflammation and metabolic disorders. Here, we show that visceral adipose tissue (VAT) from individuals with obesity contains more neutrophils than in those without obesity and is associated with a distinct bacterial community. Exploring the mechanism, we gavaged microbiome-depleted mice with stool from patients with and without obesity during high-fat or normal diet administration. Only mice receiving high-fat diet and stool from subjects with obesity show enrichment of VAT neutrophils, suggesting donor microbiome and recipient diet determine VAT neutrophilia. A rise in pro-inflammatory CD4+ Th1 cells and a drop in immunoregulatory T cells in VAT only follows if there is a transient spike in neutrophils. Human VAT neutrophils exhibit a distinct gene expression pattern that is found in different human tissues, including tumors. VAT neutrophils and bacteria may be a novel therapeutic target for treating inflammatory-driven complications of obesity, including insulin resistance and colon cancer.
Collapse
Affiliation(s)
- Dharti Shantaram
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, Wexner Medical Center at The Ohio State University, Columbus, OH, 43210, USA
| | - Rebecca Hoyd
- Pelotonia Institute for Immuno-Oncology at The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, 43210, USA
| | - Alecia M Blaszczak
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, Wexner Medical Center at The Ohio State University, Columbus, OH, 43210, USA
| | - Linda Antwi
- Pelotonia Institute for Immuno-Oncology at The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, 43210, USA
| | - Anahita Jalilvand
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, Wexner Medical Center at The Ohio State University, Columbus, OH, 43210, USA
| | - Valerie P Wright
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, Wexner Medical Center at The Ohio State University, Columbus, OH, 43210, USA
| | - Joey Liu
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, Wexner Medical Center at The Ohio State University, Columbus, OH, 43210, USA
| | - Alan J Smith
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, Wexner Medical Center at The Ohio State University, Columbus, OH, 43210, USA
| | - David Bradley
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, Wexner Medical Center at The Ohio State University, Columbus, OH, 43210, USA
| | - William Lafuse
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, USA
| | - YunZhou Liu
- Pelotonia Institute for Immuno-Oncology at The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, 43210, USA
| | - Nyelia F Williams
- Pelotonia Institute for Immuno-Oncology at The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, 43210, USA
| | - Owen Snyder
- Pelotonia Institute for Immuno-Oncology at The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, 43210, USA
| | - Caroline Wheeler
- Pelotonia Institute for Immuno-Oncology at The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, 43210, USA
| | - Bradley Needleman
- Center for Minimally Invasive Surgery, Department of General Surgery, The Ohio State University, Columbus, OH, 43210, USA
| | - Stacy Brethauer
- Center for Minimally Invasive Surgery, Department of General Surgery, The Ohio State University, Columbus, OH, 43210, USA
| | - Sabrena Noria
- Center for Minimally Invasive Surgery, Department of General Surgery, The Ohio State University, Columbus, OH, 43210, USA
| | - David Renton
- Center for Minimally Invasive Surgery, Department of General Surgery, The Ohio State University, Columbus, OH, 43210, USA
| | - Kyle A Perry
- Center for Minimally Invasive Surgery, Department of General Surgery, The Ohio State University, Columbus, OH, 43210, USA
| | - Prabha Nagareddy
- Department of Internal Medicine, Cardiovascular Section University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK, 73117, USA
| | - Daniel Wozniak
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, USA
| | - Sahil Mahajan
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, USA
| | - Pranav S J B Rana
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, USA
| | - Maciej Pietrzak
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, 43210, USA
| | - Larry S Schlesinger
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Daniel J Spakowicz
- Pelotonia Institute for Immuno-Oncology at The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, 43210, USA.
| | - Willa A Hsueh
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, Wexner Medical Center at The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
27
|
Guan J, Abudouaini H, Lin K, Yang K. Emerging insights into the role of IL-1 inhibitors and colchicine for inflammation control in type 2 diabetes. Diabetol Metab Syndr 2024; 16:140. [PMID: 38918878 PMCID: PMC11197348 DOI: 10.1186/s13098-024-01369-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/30/2024] [Indexed: 06/27/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM), a prevalent chronic metabolic disorder, is closely linked to persistent low-grade inflammation, significantly contributing to its development and progression. This review provides a comprehensive examination of the inflammatory mechanisms underlying T2DM, focusing on the role of the NLRP3 inflammasome and interleukin-1β (IL-1β) in mediating inflammatory responses. We discuss the therapeutic potential of IL-1 inhibitors and colchicine, highlighting their mechanisms in inhibiting the NLRP3 inflammasome and reducing IL-1β production. Recent studies indicate that these agents could effectively mitigate inflammation, offering promising avenues for the prevention and management of T2DM. By exploring the intricate connections between metabolic disturbances and chronic inflammation, this review underscores the need for novel anti-inflammatory strategies to address T2DM and its complications.
Collapse
Affiliation(s)
- Jianbin Guan
- Honghui-Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Haimiti Abudouaini
- Honghui-Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Kaiyuan Lin
- Honghui-Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China.
| | - Kaitan Yang
- Honghui-Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China.
- Truma Rehabilitation Department, Honghui-Hospital,Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China.
| |
Collapse
|
28
|
Yang Z, Chen F, Zhang Y, Ou M, Tan P, Xu X, Li Q, Zhou S. Therapeutic targeting of white adipose tissue metabolic dysfunction in obesity: mechanisms and opportunities. MedComm (Beijing) 2024; 5:e560. [PMID: 38812572 PMCID: PMC11134193 DOI: 10.1002/mco2.560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 04/09/2024] [Accepted: 04/14/2024] [Indexed: 05/31/2024] Open
Abstract
White adipose tissue is not only a highly heterogeneous organ containing various cells, such as adipocytes, adipose stem and progenitor cells, and immune cells, but also an endocrine organ that is highly important for regulating metabolic and immune homeostasis. In individuals with obesity, dynamic cellular changes in adipose tissue result in phenotypic switching and adipose tissue dysfunction, including pathological expansion, WAT fibrosis, immune cell infiltration, endoplasmic reticulum stress, and ectopic lipid accumulation, ultimately leading to chronic low-grade inflammation and insulin resistance. Recently, many distinct subpopulations of adipose tissue have been identified, providing new insights into the potential mechanisms of adipose dysfunction in individuals with obesity. Therefore, targeting white adipose tissue as a therapeutic agent for treating obesity and obesity-related metabolic diseases is of great scientific interest. Here, we provide an overview of white adipose tissue remodeling in individuals with obesity including cellular changes and discuss the underlying regulatory mechanisms of white adipose tissue metabolic dysfunction. Currently, various studies have uncovered promising targets and strategies for obesity treatment. We also outline the potential therapeutic signaling pathways of targeting adipose tissue and summarize existing therapeutic strategies for antiobesity treatment including pharmacological approaches, lifestyle interventions, and novel therapies.
Collapse
Affiliation(s)
- Zi‐Han Yang
- Department of Plastic and Burn SurgeryWest China Hospital of Sichuan UniversityChengduChina
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Fang‐Zhou Chen
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yi‐Xiang Zhang
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Min‐Yi Ou
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Poh‐Ching Tan
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xue‐Wen Xu
- Department of Plastic and Burn SurgeryWest China Hospital of Sichuan UniversityChengduChina
| | - Qing‐Feng Li
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shuang‐Bai Zhou
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
29
|
Zhang Y, Zhang B, Sun X. The molecular mechanism of macrophage-adipocyte crosstalk in maintaining energy homeostasis. Front Immunol 2024; 15:1378202. [PMID: 38650945 PMCID: PMC11033412 DOI: 10.3389/fimmu.2024.1378202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
Interactions between macrophages and adipocytes in adipose tissue are critical for the regulation of energy metabolism and obesity. Macrophage polarization induced by cold or other stimulations can drive metabolic reprogramming of adipocytes, browning, and thermogenesis. Accordingly, investigating the roles of macrophages and adipocytes in the maintenance of energy homeostasis is critical for the development of novel therapeutic approaches specifically targeting macrophages in metabolic disorders such as obesity. Current review outlines macrophage polarization not only regulates the release of central nervous system and inflammatory factors, but controls mitochondrial function, and other factor that induce metabolic reprogramming of adipocytes and maintain energy homeostasis. We also emphasized on how the adipocytes conversely motivate the polarization of macrophage. Exploring the interactions between adipocytes and macrophages may provide new therapeutic strategies for the management of obesity-related metabolic diseases.
Collapse
Affiliation(s)
- Yudie Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Bin Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
30
|
Kado T, Nishimura A, Tobe K. History and future perspectives of adipose tissue macrophage biology. Front Pharmacol 2024; 15:1373182. [PMID: 38562458 PMCID: PMC10982364 DOI: 10.3389/fphar.2024.1373182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Macrophages contribute to adipose tissue homeostasis; however, they are also thought to be responsible for insulin resistance in obesity. Macrophages, which were oversimplified in past methodologies, have become rather difficult to understand comprehensively as recent developments in research methodology have revealed their diversity. This review highlights recent studies on adipose tissue macrophages, identifies controversial issues that need to be resolved and proposes a scenario for further development of adipose tissue macrophage biology.
Collapse
Affiliation(s)
| | | | - Kazuyuki Tobe
- First Department of Internal Medicine, Graduate School of Medicine and Pharmaceutical Science, University of Toyama, Toyama, Japan
| |
Collapse
|
31
|
Giovenzana A, Bezzecchi E, Bichisecchi A, Cardellini S, Ragogna F, Pedica F, Invernizzi F, Di Filippo L, Tomajer V, Aleotti F, Scotti GM, Socci C, Cesana G, Olmi S, Morelli MJ, Falconi M, Giustina A, Bonini C, Piemonti L, Ruggiero E, Petrelli A. Fat-to-blood recirculation of partially dysfunctional PD-1 +CD4 Tconv cells is associated with dysglycemia in human obesity. iScience 2024; 27:109032. [PMID: 38380252 PMCID: PMC10877684 DOI: 10.1016/j.isci.2024.109032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/03/2024] [Accepted: 01/23/2024] [Indexed: 02/22/2024] Open
Abstract
Obesity is characterized by the accumulation of T cells in insulin-sensitive tissues, including the visceral adipose tissue (VAT), that can interfere with the insulin signaling pathway eventually leading to insulin resistance (IR) and type 2 diabetes. Here, we found that PD-1+CD4 conventional T (Tconv) cells, endowed with a transcriptomic and functional profile of partially dysfunctional cells, are diminished in VAT of obese patients with dysglycemia (OB-Dys), without a concomitant increase in apoptosis. These cells showed enhanced capacity to recirculate into the bloodstream and had a non-restricted TCRβ repertoire divergent from that of normoglycemic obese and lean individuals. PD-1+CD4 Tconv were reduced in the circulation of OB-Dys, exhibited an altered migration potential, and were detected in the liver of patients with non-alcoholic steatohepatitis. The findings suggest a potential role for partially dysfunctional PD-1+CD4 Tconv cells as inter-organ mediators of IR in obese patients with dysglycemic.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Stefano Olmi
- San Marco Hospital GSD, Zingonia, Bergamo, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | | | - Massimo Falconi
- IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Andrea Giustina
- IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Chiara Bonini
- IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Lorenzo Piemonti
- IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | | | | |
Collapse
|
32
|
Wang H, Ülgen M, Trajkovski M. Importance of temperature on immuno-metabolic regulation and cancer progression. FEBS J 2024; 291:832-845. [PMID: 36152006 DOI: 10.1111/febs.16632] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/01/2022] [Accepted: 09/20/2022] [Indexed: 11/29/2022]
Abstract
Cancer immunotherapies emerge as promising strategies for restricting tumour growth. The tumour microenvironment (TME) has a major impact on the anti-tumour immune response and on the efficacy of the immunotherapies. Recent studies have linked changes in the ambient temperature with particular immuno-metabolic reprogramming and anti-cancer immune response in laboratory animals. Here, we describe the energetic balance of the organism during change in temperature, and link this to the immune alterations that could be of relevance for cancer, as well as for other human diseases. We highlight the contribution of the gut microbiota in modifying this interaction. We describe the overall metabolic response and underlying mechanisms of tumourigenesis in mouse models at varying ambient temperatures and shed light on their potential importance in developing therapeutics against cancer.
Collapse
Affiliation(s)
- Haiping Wang
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Centre Medical Universitaire (CMU), University of Geneva, Geneva, Switzerland
- Faculty of Medicine, Diabetes Center, University of Geneva, Geneva, Switzerland
| | - Melis Ülgen
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Centre Medical Universitaire (CMU), University of Geneva, Geneva, Switzerland
- Faculty of Medicine, Diabetes Center, University of Geneva, Geneva, Switzerland
| | - Mirko Trajkovski
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Centre Medical Universitaire (CMU), University of Geneva, Geneva, Switzerland
- Faculty of Medicine, Diabetes Center, University of Geneva, Geneva, Switzerland
| |
Collapse
|
33
|
Ackermann J, Arndt L, Fröba J, Lindhorst A, Glaß M, Kirstein M, Hobusch C, Wunderlich FT, Braune J, Gericke M. IL-6 signaling drives self-renewal and alternative activation of adipose tissue macrophages. Front Immunol 2024; 15:1201439. [PMID: 38482013 PMCID: PMC10933059 DOI: 10.3389/fimmu.2024.1201439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 02/13/2024] [Indexed: 03/20/2024] Open
Abstract
Introduction Obesity is associated with chronic low-grade inflammation of adipose tissue (AT) and an increase of AT macrophages (ATMs) that is linked to the onset of type 2 diabetes. We have recently shown that neutralization of interleukin (IL)-6 in obese AT organ cultures inhibits proliferation of ATMs, which occurs preferentially in alternatively activated macrophage phenotype. Methods In this study, we investigated AT biology and the metabolic phenotype of mice with myeloid cell-specific IL-6Rα deficiency (Il6ra Δmyel) after normal chow and 20 weeks of high-fat diet focusing on AT inflammation, ATM polarization and proliferation. Using organotypical AT culture and bone marrow derived macrophages (BMDMs) of IL-4Rα knockout mice (Il4ra -/-) we studied IL-6 signaling. Results Obese Il6ra Δmyel mice exhibited no differences in insulin sensitivity or histological markers of AT inflammation. Notably, we found a reduction of ATMs expressing the mannose receptor 1 (CD206), as well as a decrease of the proliferation marker Ki67 in ATMs of Il6ra Δmyel mice. Importantly, organotypical AT culture and BMDM data of Il4ra -/- mice revealed that IL-6 mediates a shift towards the M2 phenotype independent from the IL-6/IL-4Rα axis. Discussion Our results demonstrate IL-4Rα-independent anti-inflammatory effects of IL-6 on macrophages and the ability of IL-6 to maintain proliferation rates in obese AT.
Collapse
Affiliation(s)
- Jan Ackermann
- Institute of Anatomy, Leipzig University, Leipzig, Germany
- Institute of Anatomy and Cell Biology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Lilli Arndt
- Institute of Anatomy, Leipzig University, Leipzig, Germany
- Institute of Anatomy and Cell Biology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Janine Fröba
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | | | - Markus Glaß
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Center, Halle (Saale), Germany
| | - Michaela Kirstein
- Institute of Anatomy and Cell Biology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | | | - F Thomas Wunderlich
- Max-Planck-Institute for Metabolism Research, Research Group for Obesity and Cancer, Cologne, Germany
| | - Julia Braune
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | - Martin Gericke
- Institute of Anatomy, Leipzig University, Leipzig, Germany
- Institute of Anatomy and Cell Biology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
34
|
Campanari DD, Cipriano UG, Fraga-Silva TFDC, Ramalho LNZ, Ovidio PP, Jordão Júnior AA, Bonato VLD, Ferriolli E. Effect of Dietary Supplementation with Omega-3 Fatty Acid on the Generation of Regulatory T Lymphocytes and on Antioxidant Parameters and Markers of Oxidative Stress in the Liver Tissue of IL-10 Knockout Mice. Nutrients 2024; 16:634. [PMID: 38474762 DOI: 10.3390/nu16050634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/05/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
INTRODUCTION chronic low-grade inflammation, or inflammaging, emerges as a crucial element in the aging process and is associated with cardiovascular and neurological diseases, sarcopenia, and malnutrition. Evidence suggests that omega-3 fatty acids present a potential therapeutic agent in the prevention and treatment of inflammatory diseases, mitigating oxidative stress, and improving muscle mass, attributes that are particularly relevant in the context of aging. The objective of the present study was to evaluate the effectiveness of supplementation with omega-3 fish oil in improving the immune response and oxidative stress in knockout mice for interleukin IL-10 (IL-10-/-). MATERIAL AND METHODS female C57BL/6 wild-type (WT) and interleukin IL-10 knockout (IL-10-/-) mice were fed during 90 days with a standard diet (control groups), or they were fed/supplemented with 10% of the omega-3 polyunsaturated fatty acid diet (omega-3 groups). Muscle, liver, intestinal, and mesenteric lymph node tissue were collected for analysis. RESULTS the IL-10-/-+O3 group showed greater weight gain compared to the WT+O3 (p = 0.001) group. The IL-10-/-+O3 group exhibited a higher frequency of regulatory T cells than the IL-10-/- group (p = 0.001). It was found that animals in the IL-10-/-+O3 group had lower levels of steatosis when compared to the IL-10-/- group (p = 0.017). There was even greater vitamin E activity in the WT group compared to the IL-10-/-+O3 group (p = 0.001) and WT+O3 compared to IL-10-/-+O3 (p = 0.002), and when analyzing the marker of oxidative stress, MDA, an increase in lipid peroxidation was found in the IL-10-/-+O3 group when compared to the IL-10-/- group (p = 0.03). Muscle tissue histology showed decreased muscle fibers in the IL-10-/-+O3, IL-10-/-, and WT+O3 groups. CONCLUSION the findings show a decrease in inflammation, an increase in oxidative stress markers, and a decrease in antioxidant markers in the IL-10-/-+O3 group, suggesting that supplementation with omega-3 fish oil might be a potential intervention for inflammaging that characterizes the aging process and age-related diseases.
Collapse
Affiliation(s)
- Daniela Dalpubel Campanari
- Postgraduate Program in Clinical Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Sao Paulo, Brazil
| | - Ualter Guilherme Cipriano
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Sao Paulo, Brazil
| | - Thais Fernanda de Campos Fraga-Silva
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Sao Paulo, Brazil
- Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio 57072-900, Alagoas, Brazil
| | - Leandra Náira Zambelli Ramalho
- Department of Pathology and Legal Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Sao Paulo, Brazil
| | - Paula Payão Ovidio
- Department of Health Sciences, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Sao Paulo, Brazil
| | - Alceu Afonso Jordão Júnior
- Department of Health Sciences, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Sao Paulo, Brazil
| | - Vânia Luiza Deperon Bonato
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Sao Paulo, Brazil
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Sao Paulo, Brazil
| | - Eduardo Ferriolli
- Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Sao Paulo, Brazil
| |
Collapse
|
35
|
Vujičić M, Broderick I, Salmantabar P, Perian C, Nilsson J, Sihlbom Wallem C, Wernstedt Asterholm I. A macrophage-collagen fragment axis mediates subcutaneous adipose tissue remodeling in mice. Proc Natl Acad Sci U S A 2024; 121:e2313185121. [PMID: 38300872 PMCID: PMC10861897 DOI: 10.1073/pnas.2313185121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/19/2023] [Indexed: 02/03/2024] Open
Abstract
Efficient removal of fibrillar collagen is essential for adaptive subcutaneous adipose tissue (SAT) expansion that protects against ectopic lipid deposition during weight gain. Here, we used mice to further define the mechanism for this collagenolytic process. We show that loss of collagen type-1 (CT1) and increased CT1-fragment levels in expanding SAT are associated with proliferation of resident M2-like macrophages that display increased CD206-mediated engagement in collagen endocytosis compared to chow-fed controls. Blockage of CD206 during acute high-fat diet-induced weight gain leads to SAT CT1-fragment accumulation associated with elevated inflammation and fibrosis markers. Moreover, these SAT macrophages' engagement in collagen endocytosis is diminished in obesity associated with elevated levels collagen fragments that are too short to assemble into triple helices. We show that such short fragments provoke M2-macrophage proliferation and fibroinflammatory changes in fibroblasts. In conclusion, our data delineate the importance of a macrophage-collagen fragment axis in physiological SAT expansion. Therapeutic targeting of this process may be a means to prevent pathological adipose tissue remodeling, which in turn may reduce the risk for obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Milica Vujičić
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg405 30, Sweden
| | - Isabella Broderick
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg405 30, Sweden
| | - Pegah Salmantabar
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg405 30, Sweden
| | - Charlène Perian
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg405 30, Sweden
| | - Jonas Nilsson
- Proteomics Core Facility, The Sahlgrenska Academy at University of Gothenburg, Gothenburg405 30, Sweden
| | - Carina Sihlbom Wallem
- Proteomics Core Facility, The Sahlgrenska Academy at University of Gothenburg, Gothenburg405 30, Sweden
| | - Ingrid Wernstedt Asterholm
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg405 30, Sweden
| |
Collapse
|
36
|
Xu W, Lai S, Zhao J, Wei S, Fang X, Liu Y, Rong X, Guo J. The blockade of the TGF-β pathway alleviates abnormal glucose and lipid metabolism of lipodystrophy not obesity. Pharmacol Res Perspect 2024; 12:e1160. [PMID: 38174807 PMCID: PMC10765454 DOI: 10.1002/prp2.1160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/21/2023] [Indexed: 01/05/2024] Open
Abstract
TGF-β is thought to be involved in the physiological functions of early organ development and pathological changes in substantial organ fibrosis, while studies around adipose tissue function and systemic disorders of glucolipid metabolism are still scarce. In this investigation, two animal models, aP2-SREBP-1c mice and ob/ob mice, were used. TGF-β pathway showed up-regulated in the inguinal white adipose tissue (iWAT) of the two models. SB431542, a TGF-β inhibitor, successfully increased inguinal white adipocyte size by more than 1.5 times and decreased the weight of Peripheral organs including liver, Spleen and Kidney to 73.05%/62.18%/73.23% of pre-administration weights. The iWAT showed elevated expression of GLUTs and lipases, followed by a recovery of circulation GLU, TG, NEFA, and GLYCEROL to the wild-type levels in aP2-SREBP-1c mice. In contrast, TGF-β inhibition did not have similar effects on that of ob/ob mice. In vitro, TGF-β blocker treated mature adipocytes had considerably higher levels of glycerol and triglycerides than the control group, whereas GLUTs and lipases expression levels were unchanged. These findings show that inhibiting the abnormally upregulated TGF-β pathway will only restore iWAT expansion and ameliorate the global metabolic malfunction of glucose and lipids in lipodystrophy, not obesity.
Collapse
Affiliation(s)
- Wen‐Dong Xu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western MedicineGuangdong Pharmaceutical UniversityGuangzhouChina
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of ChinaGuangdong Pharmaceutical UniversityGuangzhouChina
- Institute of Chinese MedicineGuangdong Pharmaceutical UniversityGuangzhouChina
- Guangdong TCM Key Laboratory for Metabolic DiseasesGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Shui‐Zheng Lai
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western MedicineGuangdong Pharmaceutical UniversityGuangzhouChina
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of ChinaGuangdong Pharmaceutical UniversityGuangzhouChina
- Institute of Chinese MedicineGuangdong Pharmaceutical UniversityGuangzhouChina
- Guangdong TCM Key Laboratory for Metabolic DiseasesGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Jia Zhao
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western MedicineGuangdong Pharmaceutical UniversityGuangzhouChina
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of ChinaGuangdong Pharmaceutical UniversityGuangzhouChina
- Institute of Chinese MedicineGuangdong Pharmaceutical UniversityGuangzhouChina
- Guangdong TCM Key Laboratory for Metabolic DiseasesGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Shi‐Jie Wei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western MedicineGuangdong Pharmaceutical UniversityGuangzhouChina
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of ChinaGuangdong Pharmaceutical UniversityGuangzhouChina
- Institute of Chinese MedicineGuangdong Pharmaceutical UniversityGuangzhouChina
- Guangdong TCM Key Laboratory for Metabolic DiseasesGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Xue‐Ying Fang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western MedicineGuangdong Pharmaceutical UniversityGuangzhouChina
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of ChinaGuangdong Pharmaceutical UniversityGuangzhouChina
- Institute of Chinese MedicineGuangdong Pharmaceutical UniversityGuangzhouChina
- Guangdong TCM Key Laboratory for Metabolic DiseasesGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Yi‐Yi Liu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western MedicineGuangdong Pharmaceutical UniversityGuangzhouChina
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of ChinaGuangdong Pharmaceutical UniversityGuangzhouChina
- Institute of Chinese MedicineGuangdong Pharmaceutical UniversityGuangzhouChina
- Guangdong TCM Key Laboratory for Metabolic DiseasesGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Xiang‐Lu Rong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western MedicineGuangdong Pharmaceutical UniversityGuangzhouChina
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of ChinaGuangdong Pharmaceutical UniversityGuangzhouChina
- Institute of Chinese MedicineGuangdong Pharmaceutical UniversityGuangzhouChina
- Guangdong TCM Key Laboratory for Metabolic DiseasesGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western MedicineGuangdong Pharmaceutical UniversityGuangzhouChina
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of ChinaGuangdong Pharmaceutical UniversityGuangzhouChina
- Institute of Chinese MedicineGuangdong Pharmaceutical UniversityGuangzhouChina
- Guangdong TCM Key Laboratory for Metabolic DiseasesGuangdong Pharmaceutical UniversityGuangzhouChina
| |
Collapse
|
37
|
Asadipour M, Ataollahi M, Shams K, Ali-Hassanzadeh M, Martinuzzi E, Kalantar K. ADIPOPHILIN PEPTIDE (ADPH 129-137) IS NOT A TARGET ANTIGEN FOR CD8 + T-CELLS IN PATIENTS WITH OBESITY. ACTA ENDOCRINOLOGICA (BUCHAREST, ROMANIA : 2005) 2024; 20:21-26. [PMID: 39372296 PMCID: PMC11449246 DOI: 10.4183/aeb.2024.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Context In obesity, the infiltration of leukocytes into adipose tissue seems to play a key role in the development of inflammation and insulin resistance. Over-expression of adipophilin (ADPH) in adipose tissue, a protein which regulates lipid droplet structure and formation, has been reported in some studies. Objective To investigate the role of ADPH 129-137 as a target for CD8+ T-cells in PBMCs of patients with obesity. Subjects and Methods PBMCs were obtained from 9 non-diabetic obese patients and 11 healthy subjects expressing the HLA-A0201 molecule. The ELISPOT assay used to monitor the presence of IFN-γ producing CD8+ T-cells against a HLA class I-restricted epitope derived from Adipophilin (ADPH 129-137) and two control peptides: Flu MP58-66 and Melan-A27-35. Results The outcomes showed no significant difference between patient group and healthy donors in response to ADPH 129-137. Conclusion These results demonstrated that ADPH 129-137 peptide possibly does not act as an autoantigen in patients with obesity.
Collapse
Affiliation(s)
- M. Asadipour
- Shiraz University of Medical Sciences, School of Medicine, Department of Immunology, Shiraz
| | - M.R. Ataollahi
- Fasa University of Medical Sciences, School of Medicine, Department of Immunology, Fasa
| | - K. Shams
- Shiraz University of Medical Sciences, School of Medicine, Department of Immunology, Shiraz
| | - M. Ali-Hassanzadeh
- Jiroft University of Medical Sciences, School of Medicine, Department of Immunology, Jiroft, Iran
| | - E. Martinuzzi
- Système Immunitaire, Cerveau et Nerfs Périphériques, Institute de Pharmacologie Moléculaire et Cellulaire (IPMC) CNRS, Valbonne, France
| | - K. Kalantar
- Shiraz University of Medical Sciences, School of Medicine, Department of Immunology, Shiraz
- Shiraz University of Medical Sciences, Autoimmune Diseases Research Center, Shiraz, Iran
| |
Collapse
|
38
|
Gao F, Litchfield B, Wu H. Adipose tissue lymphocytes and obesity. THE JOURNAL OF CARDIOVASCULAR AGING 2024; 4:5. [PMID: 38455510 PMCID: PMC10919906 DOI: 10.20517/jca.2023.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Obesity is associated with chronic inflammation in adipose tissue (AT), mainly evidenced by infiltration and phenotypic changes of various types of immune cells. Macrophages are the major innate immune cells and represent the predominant immune cell population within AT. Lymphocytes, including T cells and B cells, are adaptive immune cells and constitute another important immune cell population in AT. In obesity, CD8+ effector memory T cells, CD4+ Th1 cells, and B2 cells are increased in AT and promote AT inflammation, while regulatory T cells and Th2 cells, which usually function as immune regulatory or type 2 inflammatory cells, are reduced in AT. Immune cells may regulate the metabolism of adipocytes and other cells through various mechanisms, contributing to the development of metabolic diseases, including insulin resistance and type 2 diabetes. Efforts targeting immune cells and inflammation to prevent and treat obesity-linked metabolic disease have been explored, but have not yielded significant success in clinical studies. This review provides a concise overview of the changes in lymphocyte populations within AT and their potential role in AT inflammation and the regulation of metabolic functions in the context of obesity.
Collapse
Affiliation(s)
- Feng Gao
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Huaizhu Wu
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
39
|
Engin A. Reappraisal of Adipose Tissue Inflammation in Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:297-327. [PMID: 39287856 DOI: 10.1007/978-3-031-63657-8_10] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Chronic low-grade inflammation is a central component in the pathogenesis of obesity-related expansion of adipose tissue and complications in other metabolic tissues. Five different signaling pathways are defined as dominant determinants of adipose tissue inflammation: These are increased circulating endotoxin due to dysregulation in the microbiota-gut-brain axis, systemic oxidative stress, macrophage accumulation, and adipocyte death. Finally, the nucleotide-binding and oligomerization domain (NOD) leucine-rich repeat family pyrin domain-containing 3 (NLRP3) inflammasome pathway is noted to be a key regulator of metabolic inflammation. The NLRP3 inflammasome and associated metabolic inflammation play an important role in the relationships among fatty acids and obesity. Several highly active molecules, including primarily leptin, resistin, adiponectin, visfatin, and classical cytokines, are abundantly released from adipocytes. The most important cytokines that are released by inflammatory cells infiltrating obese adipose tissue are tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6), monocyte chemoattractant protein 1 (MCP-1) (CCL-2), and IL-1. All these molecules mentioned above act on immune cells, causing local and then general inflammation. Three metabolic pathways are noteworthy in the development of adipose tissue inflammation: toll-like receptor 4 (TLR4)/phosphatidylinositol-3'-kinase (PI3K)/Protein kinase B (Akt) signaling pathway, endoplasmic reticulum (ER) stress-derived unfolded protein response (UPR), and inhibitor of nuclear factor kappa-B kinase beta (IKKβ)-nuclear factor kappa B (NF-κB) pathway. In fact, adipose tissue inflammation is an adaptive response that contributes to a visceral depot barrier that effectively filters gut-derived endotoxin. Excessive fatty acid release worsens adipose tissue inflammation and contributes to insulin resistance. However, suppression of adipose inflammation in obesity with anti-inflammatory drugs is not a rational solution and paradoxically promotes insulin resistance, despite beneficial effects on weight gain. Inflammatory pathways in adipocytes are indeed indispensable for maintaining systemic insulin sensitivity. Cannabinoid type 1 receptor (CB1R) is important in obesity-induced pro-inflammatory response; however, blockade of CB1R, contrary to anti-inflammatory drugs, breaks the links between insulin resistance and adipose tissue inflammation. Obesity, however, could be decreased by improving leptin signaling, white adipose tissue browning, gut microbiota interactions, and alleviating inflammation. Furthermore, capsaicin synthesized by chilies is thought to be a new and promising therapeutic option in obesity, as it prevents metabolic endotoxemia and systemic chronic low-grade inflammation caused by high-fat diet.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
40
|
Engin AB. Message Transmission Between Adipocyte and Macrophage in Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:273-295. [PMID: 39287855 DOI: 10.1007/978-3-031-63657-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Obesity is characterized by the chronic low-grade activation of the innate immune system. In this respect, macrophage-elicited metabolic inflammation and adipocyte-macrophage interaction have primary importance in obesity. Large quantity of macrophages is accumulated by different mechanisms in obese adipose tissue. Hypertrophic adipocyte-derived chemotactic monocyte chemoattractant protein-1 (MCP-1)/C-C chemokine receptor 2 (CCR2) pathway promotes more macrophage accumulation into the obese adipose tissue. However, obesity-induced changes in adipose tissue macrophage density are mainly dependent on increases in the triple-positive cluster of differentiation (CD)11b+ F4/80+ CD11c+ adipose tissue macrophage subpopulation. As epigenetic regulators, microRNAs (miRNAs) are one of the most important mediators of obesity. miRNAs are expressed by adipocytes as well as macrophages and regulate inflammation with the expression of target genes. A paracrine loop involving free fatty acids and tumor necrosis factor-alpha (TNF-α) between adipocytes and macrophages establishes a vicious cycle that aggravates inflammatory changes in the adipose tissue. Adipocyte-specific caspase-1 and production of interleukin-1beta (IL-1β) by macrophages; both adipocyte and macrophage induction by toll-like receptor-4 (TLR4) through nuclear factor-kappaB (NF-κB) activation; free fatty acid-induced and TLR-mediated activation of c-Jun N-terminal kinase (JNK)-related pro-inflammatory pathways in CD11c+ immune cells; are effective in mutual message transmission between adipocyte and macrophage and in the development of adipose tissue inflammation. Thus, the metabolic status of adipocytes and their released exosomes are important determinants of macrophage inflammatory output. However, old adipocytes are removed by macrophages through trogocytosis or sending an "eat me" signal. As a single miRNA can be able to regulate a variety of target genes and signaling pathways, reciprocal transfer of miRNAs between adipocytes and macrophages via miRNA-loaded exosomes reorganizes the different stages of obesity. Changes in the expression of circulating miRNAs because of obesity progression or anti-obesity treatment indicate that miRNAs could be used as potential biomarkers. Therefore, it is believed that targeting macrophage-associated miRNAs with anti-obesity miRNA-loaded nano-carriers may be successful in the attenuation of both obesity and adipose tissue inflammation in clinical practice. Moreover, miRNA-containing exosomes and transferable mitochondria between the adipocyte and macrophage are investigated as new therapeutic targets for obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Hipodrom, Ankara, Turkey.
| |
Collapse
|
41
|
Engin A. Lipid Storage, Lipolysis, and Lipotoxicity in Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:97-129. [PMID: 39287850 DOI: 10.1007/978-3-031-63657-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The ratio of free fatty acid (FFA) turnover decreases significantly with the expansion of white adipose tissue. Adipose tissue and dietary saturated fatty acid levels significantly correlate with an increase in fat cell size and number. The G0/G1 switch gene 2 increases lipid content in adipocytes and promotes adipocyte hypertrophy through the restriction of triglyceride (triacylglycerol: TAG) turnover. Hypoxia in obese adipose tissue due to hypertrophic adipocytes results in excess deposition of extracellular matrix (ECM) components. Cluster of differentiation (CD) 44, as the main receptor of the extracellular matrix component regulates cell-cell and cell-matrix interactions including diet-induced insulin resistance. Excess TAGs, sterols, and sterol esters are surrounded by the phospholipid monolayer surface and form lipid droplets (LDs). Once LDs are formed, they grow up because of the excessive amount of intracellular FFA stored and reach a final size. The ratio of FFA turnover/lipolysis decreases significantly with increases in the degree of obesity. Dysfunctional adipose tissue is unable to expand further to store excess dietary lipids, increased fluxes of plasma FFAs lead to ectopic fatty acid deposition and lipotoxicity. Reduced neo-adipogenesis and dysfunctional lipid-overloaded adipocytes are hallmarks of hypertrophic obesity linked to insulin resistance. Obesity-associated adipocyte death exhibits feature of necrosis-like programmed cell death. Adipocyte death is a prerequisite for the transition from hypertrophic to hyperplastic obesity. Increased adipocyte number in obesity has life-long effects on white adipose tissue mass. The positive correlation between the adipose tissue volume and magnetic resonance imaging proton density fat fraction estimation is used for characterization of the obesity phenotype, as well as the risk stratification and selection of appropriate treatment strategies. In obese patients with type 2 diabetes, visceral adipocytes exposed to chronic/intermittent hyperglycemia develop a new microRNAs' (miRNAs') expression pattern. Visceral preadipocytes memorize the effect of hyperglycemia via changes in miRNAs' expression profile and contribute to the progression of diabetic phenotype. Nonsteroidal anti-inflammatory drugs, metformin, and statins can be beneficial in treating the local or systemic consequences of white adipose tissue inflammation. Rapamycin inhibits leptin-induced LD formation. Collectively, in this chapter, the concept of adipose tissue remodeling in response to adipocyte death or adipogenesis, and the complexity of LD interactions with the other cellular organelles are reviewed. Furthermore, clinical perspective of fat cell turnover in obesity is also debated.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
42
|
Liu W, Liu T, Zhao Q, Ma J, Jiang J, Shi H. Adipose Tissue-Derived Extracellular Vesicles: A Promising Biomarker and Therapeutic Strategy for Metabolic Disorders. Stem Cells Int 2023; 2023:9517826. [PMID: 38169960 PMCID: PMC10761228 DOI: 10.1155/2023/9517826] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/23/2023] [Accepted: 11/25/2023] [Indexed: 01/05/2024] Open
Abstract
Adipose tissue plays an important role in systemic energy metabolism, and its dysfunction can lead to severe metabolic disorders. Various cells in adipose tissue communicate with each other to maintain metabolic homeostasis. Extracellular vesicles (EVs) are recognized as novel medium for remote intercellular communication by transferring various bioactive molecules from parental cells to distant target cells. Increasing evidence suggests that the endocrine functions of adipose tissue and even the metabolic homeostasis are largely affected by different cell-derived EVs, such as insulin signaling, lipolysis, and metabolically triggered inflammation regulations. Here, we provide an overview focused on the role of EVs released by different cell types of adipose tissue in metabolic diseases and their possible molecular mechanisms and highlight the potential applications of EVs as biomarkers and therapeutic targets. Moreover, the current EVs-based therapeutic strategies have also been discussed. This trial is registered with NCT05475418.
Collapse
Affiliation(s)
- Wenhui Liu
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou 215600, Jiangsu, China
- Zhenjiang Key Laboratory of High Technology Research on sEVs Foundation and Transformation Application, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Tianyan Liu
- Center of Laboratory Medicine, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou 215600, Jiangsu, China
| | - Qingyu Zhao
- Department of Nephrology, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou 215600, Jiangsu, China
| | - Junqiu Ma
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou 215600, Jiangsu, China
- Center of Laboratory Medicine, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou 215600, Jiangsu, China
| | - Jiajia Jiang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou 215600, Jiangsu, China
- Center of Laboratory Medicine, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou 215600, Jiangsu, China
| | - Hui Shi
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou 215600, Jiangsu, China
- Zhenjiang Key Laboratory of High Technology Research on sEVs Foundation and Transformation Application, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| |
Collapse
|
43
|
Sabaratnam R, Hansen DR, Svenningsen P. White adipose tissue mitochondrial bioenergetics in metabolic diseases. Rev Endocr Metab Disord 2023; 24:1121-1133. [PMID: 37558853 DOI: 10.1007/s11154-023-09827-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/19/2023] [Indexed: 08/11/2023]
Abstract
White adipose tissue (WAT) is an important endocrine organ that regulates systemic energy metabolism. In metabolically unhealthy obesity, adipocytes become dysfunctional through hypertrophic mechanisms associated with a reduced endocrine function, reduced mitochondrial function, but increased inflammation, fibrosis, and extracellular remodelling. A pathologic WAT remodelling promotes systemic lipotoxicity characterized by fat accumulation in tissues such as muscle and liver, leading to systemic insulin resistance and type 2 diabetes. Several lines of evidence from human and animal studies suggest a link between unhealthy obesity and adipocyte mitochondrial dysfunction, and interventions that improve mitochondrial function may reduce the risk of obesity-associated diseases. This review discusses the importance of mitochondrial function and metabolism in human adipocyte biology and intercellular communication mechanisms within WAT. Moreover, a selected interventional approach for better adipocyte mitochondrial metabolism in humans is reviewed. A greater understanding of mitochondrial bioenergetics in WAT might provide novel therapeutic opportunities to prevent or restore dysfunctional adipose tissue in obesity-associated diseases.
Collapse
Affiliation(s)
- Rugivan Sabaratnam
- Department of Clinical Research, University of Southern Denmark, Odense C, DK-5000, Denmark.
- Steno Diabetes Center Odense, Odense University Hospital, Odense C, DK-5000, Denmark.
- Department of Molecular Medicine, Cardiovascular and Renal Research, University of Southern Denmark, J. B. Winsløws Vej 21,3, Odense C, DK-5000, Denmark.
| | - Didde Riisager Hansen
- Steno Diabetes Center Odense, Odense University Hospital, Odense C, DK-5000, Denmark
- Department of Molecular Medicine, Cardiovascular and Renal Research, University of Southern Denmark, J. B. Winsløws Vej 21,3, Odense C, DK-5000, Denmark
| | - Per Svenningsen
- Department of Molecular Medicine, Cardiovascular and Renal Research, University of Southern Denmark, J. B. Winsløws Vej 21,3, Odense C, DK-5000, Denmark.
| |
Collapse
|
44
|
Zhao Q, Wu J, Ding Y, Pang Y, Jiang C. Gut microbiota, immunity, and bile acid metabolism: decoding metabolic disease interactions. LIFE METABOLISM 2023; 2:load032. [PMID: 39872860 PMCID: PMC11749371 DOI: 10.1093/lifemeta/load032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 01/03/2025]
Abstract
In recent decades, the global prevalence of metabolic syndrome has surged, posing a significant public health challenge. Metabolic disorders, encompassing diabetes, obesity, nonalcoholic fatty liver disease, and polycystic ovarian syndrome, have been linked to alterations in the gut microbiota. Nonetheless, the connection between gut microbiota and host metabolic diseases warrants further investigation. In this review, we delve into the associations between various metabolic disorders and the gut microbiota, focusing on immune responses and bile acid (BA) metabolism. Notably, T helper cells, innate lymphoid cells, macrophages, and dendritic cells have been shown to modulate host metabolism through interactions with intestinal microorganisms and the release of cytokines. Furthermore, secondary BA metabolites, derived from the microbiota, are involved in the pathogenesis of metabolic diseases via the farnesoid X receptor and Takeda G protein-coupled receptor 5. By covering both aspects of this immune system-microorganism axis, we present a comprehensive overview of the roles played by the gut microbiota, microbiota-derived BA metabolites, and immune responses in metabolic diseases, as well as the interplay between these systems.
Collapse
Affiliation(s)
- Qixiang Zhao
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Jiayu Wu
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yong Ding
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yanli Pang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
| | - Changtao Jiang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
45
|
Al Khathlan N. Association of inflammatory cytokines with obesity and pulmonary function testing. PLoS One 2023; 18:e0294592. [PMID: 37992066 PMCID: PMC10664933 DOI: 10.1371/journal.pone.0294592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/03/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND The World Health Organization (WHO) reported that the prevalence of obesity in the Kingdom of Saudi Arabia (KSA) is 33.7% (women 39.5% and men 29.5%), respectively. The effects of obesity on airway inflammation and respiratory mechanics as well as the function of adipose tissue has a key role in the development of various lung diseases. Therefore, this study aimed to compare the level of cytokines between obese (BMI ≥ 30) and non-obese participants and to assess their association with BMI, airways inflammation and pulmonary function. METHOD One-hundred and seven non-smoking students (18-25 years of age) were recruited using convenience sampling technique for comparative cross-sectional study. Of them, 80 students were eligible and included in the analysis; 54 were non-obese (BMI<30) and 26 were obese (BMI ≥ 30). All the participants underwent anthropometric measurements, fractional exhaled nitric oxide (FeNO) measurement, spirometry and cytokines measurement (IL-6, IL-1β, GM-CSF, IL-7, IL-8 and IL-10). Measurements were compared between obese and non-obese groups. Then a correlation test was made between pro- and anti-inflammatory cytokines with BMI, pulmonary function test finding and FeNO. RESULTS The prevalence of obesity was 32.5% in the study population. Levels of pro-inflammatory cytokine IL-6 levels was significantly higher in obese than non-obese participants (p = 0.044). The level of FeNO log was significantly higher in obese participants than non-obese (p = 0.002). The pro-inflammatory cytokine IL-6 showed positive correlation with BMI while GMCSF showed negative correlation with FVC (p<0.05). CONCLUSION The levels of pro-inflammatory cytokine IL-6 was found to be significantly higher in obese participants than non-obese participants. Furthermore, it showed positive correlation with BMI whereas pro-inflammatory cytokine GMCSF showed negative correlation with FVC.
Collapse
Affiliation(s)
- Noor Al Khathlan
- Department of Respiratory Care, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
46
|
Redruello-Romero A, Benitez-Cantos MS, Lopez-Perez D, García-Rubio J, Tamayo F, Pérez-Bartivas D, Moreno-SanJuan S, Ruiz-Palmero I, Puentes-Pardo JD, Vilchez JR, López-Nevot MÁ, García F, Cano C, León J, Carazo Á. Human adipose tissue as a major reservoir of cytomegalovirus-reactive T cells. Front Immunol 2023; 14:1303724. [PMID: 38053998 PMCID: PMC10694288 DOI: 10.3389/fimmu.2023.1303724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/01/2023] [Indexed: 12/07/2023] Open
Abstract
Introduction Cytomegalovirus (CMV) is a common herpesvirus with a high prevalence worldwide. After the acute infection phase, CMV can remain latent in several tissues. CD8 T cells in the lungs and salivary glands mainly control its reactivation control. White adipose tissue (WAT) contains a significant population of memory T cells reactive to viral antigens, but CMV specificity has mainly been studied in mouse WAT. Therefore, we obtained blood, omental WAT (oWAT), subcutaneous WAT (sWAT), and liver samples from 11 obese donors to characterize the human WAT adaptive immune landscape from a phenotypic and immune receptor specificity perspective. Methods We performed high-throughput sequencing of the T cell receptor (TCR) locus to analyze tissue and blood TCR repertoires of the 11 donors. The presence of TCRs specific to CMV epitopes was tested through ELISpot assays. Moreover, phenotypic characterization of T cells was carried out through flow cytometry. Results High-throughput sequencing analyses revealed that tissue TCR repertoires in oWAT, sWAT, and liver samples were less diverse and dominated by hyperexpanded clones when compared to blood samples. Additionally, we predicted the presence of TCRs specific to viral epitopes, particularly from CMV, which was confirmed by ELISpot assays. Remarkably, we found that oWAT has a higher proportion of CMV-reactive T cells than blood or sWAT. Finally, flow cytometry analyses indicated that most WAT-infiltrated lymphocytes were tissue-resident effector memory CD8 T cells. Discussion Overall, these findings postulate human oWAT as a major reservoir of CMV-specific T cells, presumably for latent viral reactivation control. This study enhances our understanding of the adaptive immune response in human WAT and highlights its potential role in antiviral defense.
Collapse
Affiliation(s)
| | - Maria S. Benitez-Cantos
- Research Unit, Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, Granada, Spain
- GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, Granada, Spain
| | - David Lopez-Perez
- Research Unit, Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
- Department of Pharmacology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | | | | | - Daniel Pérez-Bartivas
- Research Unit, Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
| | - Sara Moreno-SanJuan
- Research Unit, Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
- Cytometry and Microscopy Research Service, Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
| | - Isabel Ruiz-Palmero
- Research Unit, Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
| | - Jose D. Puentes-Pardo
- Research Unit, Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
- Department of Pharmacology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Jose R. Vilchez
- Research Unit, Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
- Clinical Analyses and Immunology Unit, Virgen de las Nieves University Hospital, Granada, Spain
| | - Miguel Á. López-Nevot
- Research Unit, Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, Granada, Spain
- Clinical Analyses and Immunology Unit, Virgen de las Nieves University Hospital, Granada, Spain
| | - Federico García
- Research Unit, Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
- Clinical Microbiology Unit, San Cecilio University Hospital, Granada, Spain
- Centro de Investigación Biomédica en Red (CIBER) of Infectious Diseases, Health Institute Carlos III, Madrid, Spain
| | - Carlos Cano
- Department of Computer Science and Artificial Intelligence, University of Granada, Granada, Spain
| | - Josefa León
- Research Unit, Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
- Digestive Unit, San Cecilio University Hospital, Granada, Spain
| | - Ángel Carazo
- Research Unit, Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
- Clinical Microbiology Unit, San Cecilio University Hospital, Granada, Spain
| |
Collapse
|
47
|
Hu Y, Chakarov S. Eosinophils in obesity and obesity-associated disorders. DISCOVERY IMMUNOLOGY 2023; 2:kyad022. [PMID: 38567054 PMCID: PMC10917198 DOI: 10.1093/discim/kyad022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/18/2023] [Accepted: 11/10/2023] [Indexed: 04/04/2024]
Abstract
Despite the rising prevalence and costs for the society, obesity etiology, and its precise cellular and molecular mechanisms are still insufficiently understood. The excessive accumulation of fat by adipocytes plays a key role in obesity progression and has many repercussions on total body physiology. In recent years the immune system as a gatekeeper of adipose tissue homeostasis has been evidenced and has become a focal point of research. Herein we focus on eosinophils, an important component of type 2 immunity, assuming fundamental, yet ill-defined, roles in the genesis, and progression of obesity and related metabolic disorders. We summarize eosinophilopoiesis and eosinophils recruitment into adipose tissue and discuss how the adipose tissue environments shape their function and vice versa. Finally, we also detail how obesity transforms the local eosinophil niche. Understanding eosinophil crosstalk with the diverse cell types within the adipose tissue environment will allow us to framework the therapeutic potential of eosinophils in obesity.
Collapse
Affiliation(s)
- Yanan Hu
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, 280 South Chongqing Road, Shanghai, China
| | - Svetoslav Chakarov
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, 280 South Chongqing Road, Shanghai, China
| |
Collapse
|
48
|
Song W, Wang T, Cui X, Li L, Chen B, Li Y, Yue T. Lactobacillus coryniformis subsp. torquens T3 alleviates non-alcoholic fatty liver disease via reconstruction of the gut microbiota and redox system. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6814-6825. [PMID: 37300818 DOI: 10.1002/jsfa.12774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/26/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND A high-fat diet (HFD) that induces obesity has become the most common type of diet worldwide, leading to serious global health issues. Obesity is associated with an increased risk of non-alcoholic fatty liver disease (NAFLD). Probiotic supplements have been shown to help alleviate obesity. The present study aimed to investigate the mechanism by which Lactobacillus coryniformis supsp. torquens T3 (T3L) alleviated NAFLD induced by HFD via reconstruction of the gut microbiota and redox system. RESULTS The results showed that, compared with the HFD group, T3L inhibited obesity and relieved fat accumulation in the liver of mice with NAFLD. In addition, T3L inhibited liver inflammation and oxidative stress injury in NAFLD mice by regulating the lipopolysaccharide (LPS) inflammatory pathway in the liver. Furthermore, T3L changed the composition of the intestinal flora, reduced the abundance of harmful bacteria in the intestinal tract, enhanced the mechanical function of the intestinal barrier, and increased the short-chain fatty acid contents, thus inhibiting the secondary metabolite LPS, which directly causes liver damage through the portal vein. CONCLUSION In summary, T3L ameliorated NAFLD induced by obesity through the liver-gut axis pathway, thus reducing oxidative stress and liver injury. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wei Song
- College of Food Science and Technology, Northwest University, Xi'an, China
- Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an, china
- Research Center of Food Safety Risk Assessment and Control, Xi'an, China
| | - Tianyi Wang
- Department of Food Science and Engineering, Harbin Institute of Technology, Harbin, China
| | - Xiaole Cui
- College of Food Science and Technology, Northwest University, Xi'an, China
- Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an, china
- Research Center of Food Safety Risk Assessment and Control, Xi'an, China
| | - Lingling Li
- College of Food Science and Technology, Northwest University, Xi'an, China
- Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an, china
- Research Center of Food Safety Risk Assessment and Control, Xi'an, China
| | - Bing Chen
- College of Food Science and Technology, Northwest University, Xi'an, China
- Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an, china
- Research Center of Food Safety Risk Assessment and Control, Xi'an, China
| | - Yanjie Li
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences and Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Tianli Yue
- College of Food Science and Technology, Northwest University, Xi'an, China
- Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an, china
- Research Center of Food Safety Risk Assessment and Control, Xi'an, China
| |
Collapse
|
49
|
Liu J, Xie Z, Fu J, Yu M, Wang T, Qi C, Liu P, Hui X, Wang D, Ding L, Zhang Q, Xie T, Xiao X. Quantitative profiling and diagnostic potential of one-carbon and central metabolism pools in MODY2 and T1DM. Diabetol Metab Syndr 2023; 15:206. [PMID: 37875989 PMCID: PMC10594937 DOI: 10.1186/s13098-023-01175-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/27/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND Maturity-onset diabetes of the young type 2 (MODY2) is a rare genetic disorder characterized as mild fasting hyperglycemia with low risk of vascular complications caused by glucokinase gene mutation. This study aims to investigate metabolites alteration associated with MODY2, exploring possible mechanism underlying characteristic clinical manifestations and low cardiovascular risks of MODY2 and providing serum metabolite biomarkers to facilitating MODY2 diagnosis. METHODS Fasting serum samples from MODY2, type 1 diabetes (T1DM) and healthy individuals were collected. By using targeted metabolomics via liquid chromatography-tandem mass spectrometry platform, we quantified the metabolites involved in tricarboxylic acid (TCA) cycle and one-carbon metabolism. RESULTS Metabolomic profiling revealed significant difference of intermediates from central metabolism cycle, methionine cycle and several amino acids between MODY2 and T1DM groups. Among these, serum citrate, α-ketoglutaric acid, serine, glycine, glutamine and homocysteine were significantly elevated in MODY2 patients compared with T1DM patients; and compared with healthy subjects, malate and methionine levels were significantly increased in the two groups of diabetic patients. The correlation analysis with clinical indexes showed that α- ketoglutarate, serine, glycine, and glutamine were negatively correlated with blood glucose indicators including fasting blood glucose, HbA1c, and GA, while citrate was positively correlated with C-peptide. And homocysteine displayed positive correlation with HDL and negative with C-reactive protein, which shed light on the mechanism of mild symptoms and low risk of cardiovascular complications in MODY2 patients. A panel of 4 metabolites differentiated MODY2 from T1DM with AUC of 0.924, and a combination of clinical indices and metabolite also gained good diagnostic value with AUC 0.948. CONCLUSION In this research, we characterized the metabolite profiles of TCA cycle and one-carbon metabolism in MODY2 and T1DM and identified promising diagnostic biomarkers for MODY2. This study may provide novel insights into the pathogenesis and clinical manifestations of MODY2.
Collapse
Affiliation(s)
- Jieying Liu
- China Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Wangfujing Street, Dongcheng District, Beijing, 100730, P. R. China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Ziyan Xie
- China Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Wangfujing Street, Dongcheng District, Beijing, 100730, P. R. China
| | - Junling Fu
- China Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Wangfujing Street, Dongcheng District, Beijing, 100730, P. R. China
- Department of Endocrinology, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Miao Yu
- China Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Wangfujing Street, Dongcheng District, Beijing, 100730, P. R. China
| | - Tong Wang
- Department of Endocrinology, The 305 Hospital of People's Liberation Army of China, Beijing, 100017, China
| | - Cuijuan Qi
- Department of Endocrinology, Hebei General Hospital, Hebei, 050051, China
| | - Peng Liu
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Xiangyi Hui
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Dongmei Wang
- China Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Wangfujing Street, Dongcheng District, Beijing, 100730, P. R. China
| | - Lu Ding
- China Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Wangfujing Street, Dongcheng District, Beijing, 100730, P. R. China
| | - Qian Zhang
- China Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Wangfujing Street, Dongcheng District, Beijing, 100730, P. R. China
| | - Ting Xie
- China Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Wangfujing Street, Dongcheng District, Beijing, 100730, P. R. China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Xinhua Xiao
- China Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Wangfujing Street, Dongcheng District, Beijing, 100730, P. R. China.
| |
Collapse
|
50
|
Stansbury CM, Dotson GA, Pugh H, Rehemtulla A, Rajapakse I, Muir LA. A lipid-associated macrophage lineage rewires the spatial landscape of adipose tissue in early obesity. JCI Insight 2023; 8:e171701. [PMID: 37651193 PMCID: PMC10619435 DOI: 10.1172/jci.insight.171701] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/29/2023] [Indexed: 09/02/2023] Open
Abstract
Adipose tissue macrophage (ATM) infiltration is associated with adipose tissue dysfunction and insulin resistance in mice and humans. Recent single-cell data highlight increased ATM heterogeneity in obesity but do not provide a spatial context for ATM phenotype dynamics. We integrated single-cell RNA-Seq, spatial transcriptomics, and imaging of murine adipose tissue in a time course study of diet-induced obesity. Overall, proinflammatory immune cells were predominant in early obesity, whereas nonresident antiinflammatory ATMs predominated in chronic obesity. A subset of these antiinflammatory ATMs were transcriptomically intermediate between monocytes and mature lipid-associated macrophages (LAMs) and were consistent with a LAM precursor (pre-LAM). Pre-LAMs were spatially associated with early obesity crown-like structures (CLSs), which indicate adipose tissue dysfunction. Spatial data showed colocalization of ligand-receptor transcripts related to lipid signaling among monocytes, pre-LAMs, and LAMs, including Apoe, Lrp1, Lpl, and App. Pre-LAM expression of these ligands in early obesity suggested signaling to LAMs in the CLS microenvironment. Our results refine understanding of ATM diversity and provide insight into the dynamics of the LAM lineage during development of metabolic disease.
Collapse
Affiliation(s)
- Cooper M. Stansbury
- Department of Computational Medicine and Bioinformatics
- The Michigan Institute for Computational Discovery and Engineering
| | | | - Harrison Pugh
- Department of Computational Medicine and Bioinformatics
| | | | - Indika Rajapakse
- Department of Computational Medicine and Bioinformatics
- Department of Mathematics, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|