1
|
Yan X, Chen W, Song X, Ma Y, Wang H, Yang T, Liang Y, Zeng H. Environmental concentrations of N-nitrosodiethylamine (NDEA) disturb the Ca 2 + and K + homeostasis in the gills and epidermis of mosquitofish (Gambusia affinis). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 294:118067. [PMID: 40147174 DOI: 10.1016/j.ecoenv.2025.118067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/04/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025]
Abstract
N-nitrosodiethylamine (NDEA), a nitrogenous disinfection by-product, is notorious for its ubiquitous presence in the environment and its carcinogenic properties. However, its impact on ion homeostasis in aquatic organisms remains underexplored. In the present study, we investigated the effects of NDEA on ion homeostasis in mosquitofish exposed to varying concentrations for 30 days. Calcium and potassium fluxes were monitored using noninvasive micro-test technology (NMT), and ATPase activities and gene expressions related to ion transport and immune responses were assessed. Principal component analysis was conducted to identify the organs most sensitive to different NDEA exposure levels. The results revealed that NDEA exposure inhibited transport enzyme activities and affected the expression of ion transport- and immune-related genes. Among all tested tissues, the gills exhibited the highest overall sensitivity (0.443) to NDEA exposure, underscoring their essential functions in ion transport and calcium regulation. These findings underscore the critical role of ion homeostasis in NDEA-induced toxicity and highlight the importance of understanding tissue-specific responses in assessing the ecological risks posed by N-nitrosamines in aquatic environments.
Collapse
Affiliation(s)
- Xiaoyu Yan
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541006, China
| | - Wenwen Chen
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
| | - Xiaohong Song
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China.
| | - Yun Ma
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541006, China
| | - Haiqin Wang
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541006, China
| | - Tao Yang
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541006, China
| | - Yanpeng Liang
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
| | - Honghu Zeng
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China; Key Laboratory of Carbon Emission and Pollutant Collaborative Control, Guilin University of Technology, Guilin 541006, China.
| |
Collapse
|
2
|
Yang M, Mandal K, Södergren M, Dumral Ö, Winroth L, Tengholm A. Real-time detection of somatostatin release from single islets reveals hypersecretion in type 2 diabetes. Acta Physiol (Oxf) 2025; 241:e14268. [PMID: 39803760 PMCID: PMC11726413 DOI: 10.1111/apha.14268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/01/2024] [Accepted: 01/01/2025] [Indexed: 01/16/2025]
Abstract
AIM Somatostatin from pancreatic δ-cells is a paracrine regulator of insulin and glucagon secretion, but the release kinetics and whether secretion is altered in diabetes is unclear. This study aimed to improve understanding of somatostatin secretion by developing a tool for real-time detection of somatostatin release from individual pancreatic islets. METHODS Reporter cells responding to somatostatin with cytoplasmic Ca2+ concentration ([Ca2+]i) changes were generated by co-expressing somatostatin receptor SSTR2, the G-protein Gα15 and a fluorescent Ca2+ sensor in HeLa cells. RESULTS Somatostatin induced dose-dependent [Ca2+]i increases in reporter cells with half-maximal and maximal effects at 1.6 ± 0.4 and ~30 nM, respectively. Mouse and human islets induced reporter cell [Ca2+]i elevations that were inhibited by the SSTR2 antagonist CYN154806. Depolarization of islets by high K+, KATP channel blockade or increasing the glucose concentration from 3 to 11 mM evoked concomitant elevations of [Ca2+]i in islets and reporter cells. Exposure of islets to glucagon, GLP-1 and ghrelin also triggered reporter cell [Ca2+]i responses, whereas little effect was obtained by islet exposure to insulin, glutamate, GABA and urocortin-3. Islets from type 2 diabetic human donors induced higher reporter cell [Ca2+]i responses at 11 mM and after K+ depolarization compared with non-diabetic islets, although fewer δ-cells were identified by immunostaining. CONCLUSION Type 2 diabetes is associated with hypersecretion of somatostatin, which has implications for paracrine regulation of insulin and glucagon secretion. The new reporter cell assay for real-time detection of single-islet somatostatin release holds promise for further studies of somatostatin secretion in islet physiology and pathophysiology.
Collapse
Affiliation(s)
- Mingyu Yang
- Department of Medical Cell BiologyUppsala UniversityUppsalaSweden
| | - Kousik Mandal
- Department of Medical Cell BiologyUppsala UniversityUppsalaSweden
| | - Moa Södergren
- Department of Medical Cell BiologyUppsala UniversityUppsalaSweden
| | - Özge Dumral
- Department of Medical Cell BiologyUppsala UniversityUppsalaSweden
| | - Lena Winroth
- Department of Medical Cell BiologyUppsala UniversityUppsalaSweden
| | - Anders Tengholm
- Department of Medical Cell BiologyUppsala UniversityUppsalaSweden
| |
Collapse
|
3
|
Knuth ER, Foster HR, Jin E, Ekstrand MH, Knudsen JG, Merrins MJ. Leucine Suppresses α-Cell cAMP and Glucagon Secretion via a Combination of Cell-Intrinsic and Islet Paracrine Signaling. Diabetes 2024; 73:1426-1439. [PMID: 38870025 PMCID: PMC11333377 DOI: 10.2337/db23-1013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
Glucagon is critical for the maintenance of blood glucose, however nutrient regulation of pancreatic α-cells remains poorly understood. Here, we identified a role of leucine, a well-known β-cell fuel, in the α-cell-intrinsic regulation of glucagon release. In islet perifusion assays, physiologic concentrations of leucine strongly inhibited alanine- and arginine-stimulated glucagon secretion from human and mouse islets under hypoglycemic conditions. Mechanistically, leucine dose-dependently reduced α-cell cAMP, independently of Ca2+, ATP/ADP, or fatty acid oxidation. Leucine also reduced α-cell cAMP in islets treated with somatostatin receptor 2 antagonists or diazoxide, compounds that limit paracrine signaling from β/δ-cells. Studies in dispersed mouse islets confirmed an α-cell-intrinsic effect. The inhibitory effect of leucine on cAMP was mimicked by glucose, α-ketoisocaproate, succinate, and the glutamate dehydrogenase activator BCH and blocked by cyanide, indicating a mechanism dependent on mitochondrial metabolism. Glucose dose-dependently reduced the impact of leucine on α-cell cAMP, indicating an overlap in function; however, leucine was still effective at suppressing glucagon secretion in the presence of elevated glucose, amino acids, and the incretin GIP. Taken together, these findings show that leucine plays an intrinsic role in limiting the α-cell secretory tone across the physiologic range of glucose levels, complementing the inhibitory paracrine actions of β/δ-cells. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Emily R. Knuth
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, WI
| | - Hannah R. Foster
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, WI
| | - Erli Jin
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, WI
| | - Maia H. Ekstrand
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jakob G. Knudsen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Matthew J. Merrins
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, WI
- William S. Middleton Memorial Veterans Hospital, Madison, WI
| |
Collapse
|
4
|
Kong C, Castro DC, Lee J, Piston DW. The role of mu-opioid receptors in pancreatic islet alpha cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593899. [PMID: 38798528 PMCID: PMC11118541 DOI: 10.1101/2024.05.13.593899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
30% of people in the United States have diabetes or pre-diabetes. Many of these individuals will develop diabetic neuropathy as a comorbidity, which is often treated with exogenous opioids like morphine, oxycodone, or tramadol. Although these opioids are effective analgesics, growing evidence indicates that they may directly impact the endocrine pancreas function in human and preclinical models. One common feature of these exogenous opioid ligands is their preference for the mu opioid receptor (MOPR), so we aimed to determine if endogenous MOPRs directly regulate pancreatic islet metabolism and hormone secretion. We show that pharmacological antagonism of MOPRs enhances glucagon secretion, but not insulin secretion, from human islets under high glucose conditions. This increased secretion is accompanied by increased cAMP signaling. mRNA expression of MOPRs is enriched in human islet α-cells, but downregulated in T2D islet donors, suggesting a link between metabolism and MOPR expression. Conditional genetic knockout of MOPRs in murine α-cells increases glucagon secretion in high glucose conditions without increasing glucagon content. Consistent with downregulation of MOPRs during metabolic disease, conditional MOPR knockout mice treated with a high fat diet show impaired glucose tolerance, increased glucagon secretion, increased insulin content, and increased islet size. Finally, we show that MOPR-mediated changes in glucagon secretion are driven, in part, by KATP channel activity. Together, these results demonstrate a direct mechanism of action for endogenous opioid regulation of endocrine pancreas.
Collapse
Affiliation(s)
- Chen Kong
- Department of Cell Biology & Physiology, Washington University School of Medicine, St Louis, Missouri, 63110, USA
| | - Daniel C. Castro
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Missouri, 63110, USA
| | - Jeongmin Lee
- Department of Cell Biology & Physiology, Washington University School of Medicine, St Louis, Missouri, 63110, USA
| | - David W. Piston
- Department of Cell Biology & Physiology, Washington University School of Medicine, St Louis, Missouri, 63110, USA
| |
Collapse
|
5
|
Knuth ER, Foster HR, Jin E, Merrins MJ. Leucine suppresses glucagon secretion from pancreatic islets by directly modulating α-cell cAMP. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.31.551113. [PMID: 37577685 PMCID: PMC10418066 DOI: 10.1101/2023.07.31.551113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Objective Pancreatic islets are nutrient sensors that regulate organismal blood glucose homeostasis. Glucagon release from the pancreatic α-cell is important under fasted, fed, and hypoglycemic conditions, yet metabolic regulation of α-cells remains poorly understood. Here, we identified a previously unexplored role for physiological levels of leucine, which is classically regarded as a β-cell fuel, in the intrinsic regulation of α-cell glucagon release. Methods GcgCreERT:CAMPER and GcgCreERT:GCaMP6s mice were generated to perform dynamic, high-throughput functional measurements of α-cell cAMP and Ca2+ within the intact islet. Islet perifusion assays were used for simultaneous, time-resolved measurements of glucagon and insulin release from mouse and human islets. The effects of leucine were compared with glucose and the mitochondrial fuels 2-aminobicyclo(2,2,1)heptane-2-carboxylic acid (BCH, non-metabolized leucine analog that activates glutamate dehydrogenase), α-ketoisocaproate (KIC, leucine metabolite), and methyl-succinate (complex II fuel). CYN154806 (Sstr2 antagonist), diazoxide (KATP activator, which prevents Ca2+-dependent exocytosis from α, β, and δ-cells), and dispersed α-cells were used to inhibit islet paracrine signaling and identify α-cell intrinsic effects. Results Mimicking the effect of glucose, leucine strongly suppressed amino acid-stimulated glucagon secretion. Mechanistically, leucine dose-dependently reduced α-cell cAMP at physiological concentrations, with an IC50 of 57, 440, and 1162 μM at 2, 6, and 10 mM glucose, without affecting α-cell Ca2+. Leucine also reduced α-cell cAMP in islets treated with Sstr2 antagonist or diazoxide, as well as dispersed α-cells, indicating an α-cell intrinsic effect. The effect of leucine was matched by KIC and the glutamate dehydrogenase activator BCH, but not methyl-succinate, indicating a dependence on mitochondrial anaplerosis. Glucose, which stimulates anaplerosis via pyruvate carboxylase, had the same suppressive effect on α-cell cAMP but with lower potency. Similarly to mouse islets, leucine suppressed glucagon secretion from human islets under hypoglycemic conditions. Conclusions These findings highlight an important role for physiological levels of leucine in the metabolic regulation of α-cell cAMP and glucagon secretion. Leucine functions primarily through an α-cell intrinsic effect that is dependent on glutamate dehydrogenase, in addition to the well-established α-cell regulation by β/δ-cell paracrine signaling. Our results suggest that mitochondrial anaplerosis-cataplerosis facilitates the glucagonostatic effect of both leucine and glucose, which cooperatively suppress α-cell tone by reducing cAMP.
Collapse
Affiliation(s)
- Emily R. Knuth
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Hannah R. Foster
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Erli Jin
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Matthew J. Merrins
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| |
Collapse
|
6
|
Hamilton A, Eliasson L, Knudsen JG. Amino acids and the changing face of the α-cell. Peptides 2023; 166:171039. [PMID: 37295651 DOI: 10.1016/j.peptides.2023.171039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
Glucagon has long been defined by its glucogenic action and as a result α-cells have been characterised based largely on their interaction with glucose. Recent findings have challenged this preconception, bringing to the fore the significant role glucagon plays in amino acid breakdown and underlining the importance of amino acids in glucagon secretion. The challenge that remains is defining the mechanism that underlie these effects - understanding which amino acids are most important, how they act on the α-cell and how their actions integrate with other fuels such as glucose and fatty acids. This review will describe the current relationship between amino acids and glucagon and how we can use this knowledge to redefine the α-cell.
Collapse
Affiliation(s)
- Alexander Hamilton
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Denmark; Department of Clinical Sciences in Malmö, Islet Cell Exocytosis, Lund University Diabetes Centre, Lund University, Malmö, Sweden.
| | - Lena Eliasson
- Department of Clinical Sciences in Malmö, Islet Cell Exocytosis, Lund University Diabetes Centre, Lund University, Malmö, Sweden.
| | - Jakob G Knudsen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Denmark.
| |
Collapse
|
7
|
Doliba NM, Rozo AV, Roman J, Qin W, Traum D, Gao L, Liu J, Manduchi E, Liu C, Golson ML, Vahedi G, Naji A, Matschinsky FM, Atkinson MA, Powers AC, Brissova M, Kaestner KH, Stoffers DA. α Cell dysfunction in islets from nondiabetic, glutamic acid decarboxylase autoantibody-positive individuals. J Clin Invest 2022; 132:156243. [PMID: 35642629 PMCID: PMC9151702 DOI: 10.1172/jci156243] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 04/14/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUNDMultiple islet autoantibodies (AAbs) predict the development of type 1 diabetes (T1D) and hyperglycemia within 10 years. By contrast, T1D develops in only approximately 15% of individuals who are positive for single AAbs (generally against glutamic acid decarboxylase [GADA]); hence, the single GADA+ state may represent an early stage of T1D.METHODSHere, we functionally, histologically, and molecularly phenotyped human islets from nondiabetic GADA+ and T1D donors.RESULTSSimilar to the few remaining β cells in the T1D islets, GADA+ donor islets demonstrated a preserved insulin secretory response. By contrast, α cell glucagon secretion was dysregulated in both GADA+ and T1D islets, with impaired glucose suppression of glucagon secretion. Single-cell RNA-Seq of GADA+ α cells revealed distinct abnormalities in glycolysis and oxidative phosphorylation pathways and a marked downregulation of cAMP-dependent protein kinase inhibitor β (PKIB), providing a molecular basis for the loss of glucose suppression and the increased effect of 3-isobutyl-1-methylxanthine (IBMX) observed in GADA+ donor islets.CONCLUSIONWe found that α cell dysfunction was present during the early stages of islet autoimmunity at a time when β cell mass was still normal, raising important questions about the role of early α cell dysfunction in the progression of T1D.FUNDINGThis work was supported by grants from the NIH (3UC4DK112217-01S1, U01DK123594-02, UC4DK112217, UC4DK112232, U01DK123716, and P30 DK019525) and the Vanderbilt Diabetes Research and Training Center (DK20593).
Collapse
Affiliation(s)
- Nicolai M. Doliba
- Department of Biochemistry and Biophysics,,Institute for Diabetes, Obesity, and Metabolism
| | - Andrea V. Rozo
- Institute for Diabetes, Obesity, and Metabolism,,Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine
| | | | - Wei Qin
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine
| | | | | | | | | | - Chengyang Liu
- Institute for Diabetes, Obesity, and Metabolism,,Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Maria L. Golson
- Institute for Diabetes, Obesity, and Metabolism,,Department of Genetics, and
| | - Golnaz Vahedi
- Institute for Diabetes, Obesity, and Metabolism,,Department of Genetics, and
| | - Ali Naji
- Institute for Diabetes, Obesity, and Metabolism,,Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Franz M. Matschinsky
- Department of Biochemistry and Biophysics,,Institute for Diabetes, Obesity, and Metabolism
| | - Mark A. Atkinson
- Departments of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA.,Department of Pediatrics, University of Florida Diabetes Institute, College of Medicine, Gainesville, Florida, USA
| | - Alvin C. Powers
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA.,VA Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Marcela Brissova
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Klaus H. Kaestner
- Institute for Diabetes, Obesity, and Metabolism,,Department of Genetics, and
| | - Doris A. Stoffers
- Institute for Diabetes, Obesity, and Metabolism,,Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine
| | | |
Collapse
|
8
|
Singh B, Khattab F, Gilon P. Glucose inhibits glucagon secretion by decreasing [Ca2+]c and by reducing the efficacy of Ca2+ on exocytosis via somatostatin-dependent and independent mechanisms. Mol Metab 2022; 61:101495. [PMID: 35421610 PMCID: PMC9065434 DOI: 10.1016/j.molmet.2022.101495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/15/2022] [Accepted: 04/04/2022] [Indexed: 11/15/2022] Open
Abstract
Objective Methods Results Conclusions Glucose modulates [Ca2+]c in α-cells within islets but not in dispersed α-cells. In α-cells within islets, it decreases [Ca2+]c independently of their KATP channels. It decreases α-cell [Ca2+]c partly via somatostatin. All glucose-induced [Ca2+]c changes trigger parallel changes in glucagon release. Glucose also decreases the efficacy of Ca2+ on exocytosis (attenuating pathway).
Collapse
Affiliation(s)
- Bilal Singh
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pôle d'Endocrinologie, Diabète et Nutrition, Brussels, Belgium
| | - Firas Khattab
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pôle d'Endocrinologie, Diabète et Nutrition, Brussels, Belgium
| | - Patrick Gilon
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pôle d'Endocrinologie, Diabète et Nutrition, Brussels, Belgium.
| |
Collapse
|
9
|
Andersen DB, Holst JJ. Peptides in the regulation of glucagon secretion. Peptides 2022; 148:170683. [PMID: 34748791 DOI: 10.1016/j.peptides.2021.170683] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/21/2021] [Accepted: 11/02/2021] [Indexed: 02/06/2023]
Abstract
Glucose homeostasis is maintained by the glucoregulatory hormones, glucagon, insulin and somatostatin, secreted from the islets of Langerhans. Glucagon is the body's most important anti-hypoglycemic hormone, mobilizing glucose from glycogen stores in the liver in response to fasting, thus maintaining plasma glucose levels within healthy limits. Glucagon secretion is regulated by both circulating nutrients, hormones and neuronal inputs. Hormones that may regulate glucagon secretion include locally produced insulin and somatostatin, but also urocortin-3, amylin and pancreatic polypeptide, and from outside the pancreas glucagon-like peptide-1 and 2, peptide tyrosine tyrosine and oxyntomodulin, glucose-dependent insulinotropic polypeptide, neurotensin and ghrelin, as well as the hypothalamic hormones arginine-vasopressin and oxytocin, and calcitonin from the thyroid. Each of these hormones have distinct effects, ranging from regulating blood glucose, to regulating appetite, stomach emptying rate and intestinal motility, which makes them interesting targets for treating metabolic diseases. Awareness regarding the potential effects of the hormones on glucagon secretion is important since secretory abnormalities could manifest as hyperglycemia or even lethal hypoglycemia. Here, we review the effects of each individual hormone on glucagon secretion, their interplay, and how treatments aimed at modulating the plasma levels of these hormones may also influence glucagon secretion and glycemic control.
Collapse
Affiliation(s)
- Daniel B Andersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Panum Institute, Blegdamsvej 3B, 2200, Copenhagen N, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Panum Institute, Blegdamsvej 3B, 2200, Copenhagen N, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
10
|
Göbl C, Morettini M, Salvatori B, Alsalim W, Kahleova H, Ahrén B, Tura A. Temporal Patterns of Glucagon and Its Relationships with Glucose and Insulin following Ingestion of Different Classes of Macronutrients. Nutrients 2022; 14:nu14020376. [PMID: 35057557 PMCID: PMC8780023 DOI: 10.3390/nu14020376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 01/27/2023] Open
Abstract
Background: glucagon secretion and inhibition should be mainly determined by glucose and insulin levels, but the relative relevance of each factor is not clarified, especially following ingestion of different macronutrients. We aimed to investigate the associations between plasma glucagon, glucose, and insulin after ingestion of single macronutrients or mixed-meal. Methods: thirty-six participants underwent four metabolic tests, based on administration of glucose, protein, fat, or mixed-meal. Glucagon, glucose, insulin, and C-peptide were measured at fasting and for 300 min following food ingestion. We analyzed relationships between time samples of glucagon, glucose, and insulin in each individual, as well as between suprabasal area-under-the-curve of the same variables (ΔAUCGLUCA, ΔAUCGLU, ΔAUCINS) over the whole participants’ cohort. Results: in individuals, time samples of glucagon and glucose were related in only 26 cases (18 direct, 8 inverse relationships), whereas relationship with insulin was more frequent (60 and 5, p < 0.0001). The frequency of significant relationships was different among tests, especially for direct relationships (p ≤ 0.006). In the whole cohort, ΔAUCGLUCA was weakly related to ΔAUCGLU (p ≤ 0.02), but not to ΔAUCINS, though basal insulin secretion emerged as possible covariate. Conclusions: glucose and insulin are not general and exclusive determinants of glucagon secretion/inhibition after mixed-meal or macronutrients ingestion.
Collapse
Affiliation(s)
- Christian Göbl
- Department of Obstetrics and Gynaecology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Micaela Morettini
- Department of Information Engineering, Università Politecnica delle Marche, 60131 Ancona, Italy;
| | | | - Wathik Alsalim
- Department of Clinical Sciences, Faculty of Medicine, Lund University, 22184 Lund, Sweden; (W.A.); (B.A.)
| | - Hana Kahleova
- Physicians Committee for Responsible Medicine, Washington, DC 20016, USA;
| | - Bo Ahrén
- Department of Clinical Sciences, Faculty of Medicine, Lund University, 22184 Lund, Sweden; (W.A.); (B.A.)
| | - Andrea Tura
- CNR Institute of Neuroscience, 35127 Padova, Italy;
- Correspondence: ; Tel.: +39-049-829-5786
| |
Collapse
|
11
|
Miranda C, Begum M, Vergari E, Briant LJB. Gap junction coupling and islet delta-cell function in health and disease. Peptides 2022; 147:170704. [PMID: 34826505 DOI: 10.1016/j.peptides.2021.170704] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/12/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022]
Abstract
The pancreatic islets contain beta-cells and alpha-cells, which are responsible for secreting two principal gluco-regulatory hormones; insulin and glucagon, respectively. However, they also contain delta-cells, a relatively sparse cell type that secretes somatostatin (SST). These cells have a complex morphology allowing them to establish an extensive communication network throughout the islet, despite their scarcity. Delta-cells are electrically excitable cells, and SST secretion is released in a glucose- and KATP-dependent manner. SST hyperpolarises the alpha-cell membrane and suppresses exocytosis. In this way, islet SST potently inhibits glucagon release. Recent studies investigating the activity of delta-cells have revealed they are electrically coupled to beta-cells via gap junctions, suggesting the delta-cell is more than just a paracrine inhibitor. In this Review, we summarize delta-cell morphology, function, and the role of SST signalling for regulating islet hormonal output. A distinguishing feature of this Review is that we attempt to use the discovery of this gap junction pathway, together with what is already known about delta-cells, to reframe the role of these cells in both health and disease. In particular, we argue that the discovery of gap junction communication between delta-cells and beta-cells provides new insights into the contribution of delta-cells to the islet hormonal defects observed in both type 1 and type 2 diabetes. This reappraisal of the delta-cell is important as it may offer novel insights into how the physiology of this cell can be utilised to restore islet function in diabetes.
Collapse
Affiliation(s)
- Caroline Miranda
- Institute of Neuroscience and Physiology, Metabolic Research Unit, University of Göteborg, 405 30, Göteborg, Sweden
| | - Manisha Begum
- Institute of Neuroscience and Physiology, Metabolic Research Unit, University of Göteborg, 405 30, Göteborg, Sweden; University of Skӧvde, Department of Infection Biology, Högskolevägen 1, 541 28, Skövde, Sweden
| | - Elisa Vergari
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, OX4 7LE, Oxford, UK
| | - Linford J B Briant
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, OX4 7LE, Oxford, UK; Department of Computer Science, University of Oxford, OX1 3QD, Oxford, UK.
| |
Collapse
|
12
|
Mourad NI, Xhema D, Gianello P. In vitro assessment of pancreatic hormone secretion from isolated porcine islets. Front Endocrinol (Lausanne) 2022; 13:935060. [PMID: 36034433 PMCID: PMC9402940 DOI: 10.3389/fendo.2022.935060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/25/2022] [Indexed: 11/26/2022] Open
Abstract
The potential use of porcine islets for transplantation in humans has triggered interest in understanding porcine islet physiology. However, the number of studies dedicated to this topic has remained limited, as most islet physiologists prefer to use the less time-consuming rodent model or the more clinically relevant human islet. An often-overlooked aspect of pig islet physiology is its alpha cell activity and regulation of its glucagon secretion. In vitro islet perifusion is a reliable method to study the dynamics of hormone secretion in response to different stimuli. We thus used this method to quantify and study glucagon secretion from pig islets. Pancreatic islets were isolated from 20 neonatal (14 to 21-day old) and 5 adult (>2 years) pigs and cultured in appropriate media. Islet perifusion experiments were performed 8 to 10 days post-isolation for neonatal islets and 1 to 2 days post-isolation for adult islets. Insulin and glucagon were quantified in perifusion effluent fractions as well as in islet extracts by RIA. Increasing glucose concentration from 1 mM to 15 mM markedly inhibited glucagon secretion independently of animal age. Interestingly, the effect of high glucose was more drastic on glucagon secretion compared to its effect on insulin secretion. In vivo, glucose injection during IVGTT initiated a quick (2-10 minutes) 3-fold decrease of plasmatic glucagon whereas the increase of plasmatic insulin took 20 minutes to become significant. These results suggest that regulation of glucagon secretion significantly contributes to glucose homeostasis in pigs and might compensate for the mild changes in insulin secretion in response to changes in glucose concentration.
Collapse
|
13
|
Singh B, Khattab F, Chae H, Desmet L, Herrera PL, Gilon P. K ATP channel blockers control glucagon secretion by distinct mechanisms: A direct stimulation of α-cells involving a [Ca 2+] c rise and an indirect inhibition mediated by somatostatin. Mol Metab 2021; 53:101268. [PMID: 34118477 PMCID: PMC8274344 DOI: 10.1016/j.molmet.2021.101268] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/10/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
Objective Glucagon is secreted by pancreatic α-cells in response to hypoglycemia and its hyperglycemic effect helps to restore normal blood glucose. Insulin and somatostatin (SST) secretions from β- and δ-cells, respectively, are stimulated by glucose by mechanisms involving an inhibition of their ATP-sensitive K+ (KATP) channels, leading to an increase in [Ca2+]c that triggers exocytosis. Drugs that close KATP channels, such as sulfonylureas, are used to stimulate insulin release in type 2 diabetic patients. α-cells also express KATP channels. However, the mechanisms by which sulfonylureas control glucagon secretion are still largely debated and were addressed in the present study. In particular, we studied the effects of KATP channel blockers on α-cell [Ca2+]c and glucagon secretion in the presence of a low (1 mM) or a high (15 mM) glucose concentration and evaluated the role of SST in these effects. Methods Using a transgenic mouse model expressing the Ca2+-sensitive fluorescent protein, GCaMP6f, specifically in α-cells, we measured [Ca2+]c in α-cells either dispersed or within whole islets (by confocal microscopy). By measuring [Ca2+]c in α-cells within islets and glucagon secretion using the same perifusion protocols, we tested whether glucagon secretion correlated with changes in [Ca2+]c in response to sulfonylureas. We studied the role of SST in the effects of sulfonylureas using multiple approaches including genetic ablation of SST, or application of SST-14 and SST receptor antagonists. Results Application of the sulfonylureas, tolbutamide, or gliclazide, to a medium containing 1 mM or 15 mM glucose increased [Ca2+]c in α-cells by a direct effect as in β-cells. At low glucose, sulfonylureas inhibited glucagon secretion of islets despite the rise in α-cell [Ca2+]c that they triggered. This glucagonostatic effect was indirect and attributed to SST because, in the islets of SST-knockout mice, sulfonylureas induced a stimulation of glucagon secretion which correlated with an increase in α-cell [Ca2+]c. Experiments with exogenous SST-14 and SST receptor antagonists indicated that the glucagonostatic effect of sulfonylureas mainly resulted from an inhibition of the efficacy of cytosolic Ca2+ on exocytosis. Although SST-14 was also able to inhibit glucagon secretion by decreasing α-cell [Ca2+]c, no decrease in [Ca2+]c occurred during sulfonylurea application because it was largely counterbalanced by the direct stimulatory effect of these drugs on α-cell [Ca2+]c. At high glucose, i.e., in conditions where glucagon release was already low, sulfonylureas stimulated glucagon secretion because their direct stimulatory effect on α-cells exceeded the indirect effect by SST. Our results also indicated that, unexpectedly, SST-14 poorly decreased the efficacy of Ca2+ on exocytosis in β-cells. Conclusions Sulfonylureas exert two opposite actions on α-cells: a direct stimulation as in β-cells and an indirect inhibition by SST. This suggests that any alteration of SST paracrine influence, as described in diabetes, will modify the effect of sulfonylureas on glucagon release. In addition, we suggest that δ-cells inhibit α-cells more efficiently than β-cells. KATP channel blockers control glucagon secretion by two mechanisms. The first one is the direct stimulation of α-cell by a [Ca2+]c rise, as in β-cells. The second one is an indirect inhibition mediated by δ-cells releasing somatostatin. Somatostatin mainly reduces the efficacy of Ca2+ on exocytosis in α-cells. Somatostatin more potently inhibits glucagon than insulin secretion.
Collapse
Affiliation(s)
- Bilal Singh
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pôle d'Endocrinologie, Diabète et Nutrition, Brussels, Belgium
| | - Firas Khattab
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pôle d'Endocrinologie, Diabète et Nutrition, Brussels, Belgium
| | - Heeyoung Chae
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pôle d'Endocrinologie, Diabète et Nutrition, Brussels, Belgium
| | - Lieven Desmet
- Université Catholique de Louvain, SMCS, Louvain Institute of Data Analysis and Modeling in economics and statistics, Louvain-la-Neuve, Belgium
| | - Pedro L Herrera
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Patrick Gilon
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pôle d'Endocrinologie, Diabète et Nutrition, Brussels, Belgium.
| |
Collapse
|
14
|
Viloria K, Hewison M, Hodson DJ. Vitamin D binding protein/GC-globulin: a novel regulator of alpha cell function and glucagon secretion. J Physiol 2021; 600:1119-1133. [PMID: 33719063 DOI: 10.1113/jp280890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/05/2021] [Indexed: 12/24/2022] Open
Abstract
The contribution of glucagon to type 1 and type 2 diabetes has long been known, but the underlying defects in alpha cell function are not well-described. During both disease states, alpha cells respond inappropriately to stimuli, leading to dysregulated glucagon secretion, impaired glucose tolerance and hypoglycaemia. The mechanisms involved in this dysfunction are complex, but possibly include changes in alpha cell glucose-sensing, alpha cell de-differentiation, paracrine feedback, as well as alpha cell mass. However, the molecular underpinnings of alpha cell failure are still poorly understood. Recent transcriptomic analyses have identified vitamin D binding protein (DBP), encoded by GC/Gc, as an alpha cell signature gene. DBP is highly localized to the liver and alpha cells and is virtually absent from other tissues and cell types under non-pathological conditions. While the vitamin D transportation role of DBP is well characterized in the liver and circulation, its function in alpha cells remains more enigmatic. Recent work reveals that loss of DBP leads to smaller and hyperplastic alpha cells, which secrete less glucagon in response to low glucose concentration, despite vitamin D sufficiency. Alpha cells lacking DBP display impaired Ca2+ fluxes and Na+ conductance, as well as changes in glucagon granule distribution. Underlying these defects is an increase in the ratio of cytoskeletal F-actin to G-actin, highlighting a novel intracellular actin scavenging role for DBP in islets.
Collapse
Affiliation(s)
- Katrina Viloria
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, B15 2TT, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, B15 2TT, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK
| | - Martin Hewison
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, B15 2TT, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, B15 2TT, UK
| | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, B15 2TT, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, B15 2TT, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK
| |
Collapse
|
15
|
Früh E, Elgert C, Eggert F, Scherneck S, Rustenbeck I. Glucagonotropic and Glucagonostatic Effects of KATP Channel Closure and Potassium Depolarization. Endocrinology 2021; 162:5892293. [PMID: 32790843 DOI: 10.1210/endocr/bqaa136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/05/2020] [Indexed: 02/08/2023]
Abstract
The role of depolarization in the inverse glucose-dependence of glucagon secretion was investigated by comparing the effects of KATP channel block and of high potassium. The secretion of glucagon and insulin by perifused mouse islets was simultaneously measured. Lowering glucose raised glucagon secretion before it decreased insulin secretion, suggesting an alpha cell-intrinsic signal recognition. Raising glucose affected glucagon and insulin secretion at the same time. However, depolarization by tolbutamide, gliclazide, or 15 mM KCl increased insulin secretion before the glucagon secretion receded. In contrast to the robust depolarizing effect of arginine and KCl (15 and 40 mM) on single alpha cells, tolbutamide was of variable efficacy. Only when applied before other depolarizing agents had tolbutamide a consistent depolarizing effect and regularly increased the cytosolic Ca2+ concentration. When tested on inside-out patches tolbutamide was as effective on alpha cells as on beta cells. In the presence of 1 µM clonidine, to separate insulinotropic from glucagonotropic effects, both 500 µM tolbutamide and 30 µM gliclazide increased glucagon secretion significantly, but transiently. The additional presence of 15 or 40 mM KCl in contrast led to a marked and lasting increase of the glucagon secretion. The glucagon secretion by SUR1 knockout islets was not increased by tolbutamide, whereas 40 mM KCl was of unchanged efficiency. In conclusion a strong and sustained depolarization is compatible with a marked and lasting glucagon secretion. KATP channel closure in alpha cells is less readily achieved than in beta cells, which may explain the moderate and transient glucagonotropic effect.
Collapse
Affiliation(s)
- Eike Früh
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, Braunschweig, Germany
| | - Christin Elgert
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, Braunschweig, Germany
| | - Frank Eggert
- Institute of Psychology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Stephan Scherneck
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, Braunschweig, Germany
| | - Ingo Rustenbeck
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
16
|
Zhang Q, Dou H, Rorsman P. 'Resistance is futile?' - paradoxical inhibitory effects of K ATP channel closure in glucagon-secreting α-cells. J Physiol 2020; 598:4765-4780. [PMID: 32716554 PMCID: PMC7689873 DOI: 10.1113/jp279775] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022] Open
Abstract
By secreting insulin and glucagon, the β- and α-cells of the pancreatic islets play a central role in the regulation of systemic metabolism. Both cells are equipped with ATP-regulated potassium (KATP ) channels that are regulated by the intracellular ATP/ADP ratio. In β-cells, KATP channels are active at low (non-insulin-releasing) glucose concentrations. An increase in glucose leads to KATP channel closure, membrane depolarization and electrical activity that culminates in elevation of [Ca2+ ]i and initiation of exocytosis of the insulin-containing secretory granules. The α-cells are also equipped with KATP channels but they are under strong tonic inhibition at low glucose, explaining why α-cells are electrically active under hypoglycaemic conditions and generate large Na+ - and Ca2+ -dependent action potentials. Closure of residual KATP channel activity leads to membrane depolarization and an increase in action potential firing but this stimulation of electrical activity is associated with inhibition rather than acceleration of glucagon secretion. This paradox arises because membrane depolarization reduces the amplitude of the action potentials by voltage-dependent inactivation of the Na+ channels involved in action potential generation. Exocytosis in α-cells is tightly linked to the opening of voltage-gated P/Q-type Ca2+ channels, the activation of which is steeply voltage-dependent. Accordingly, the inhibitory effect of the reduced action potential amplitude exceeds the stimulatory effect resulting from the increased action potential frequency. These observations highlight a previously unrecognised role of the action potential amplitude as a key regulator of pancreatic islet hormone secretion.
Collapse
Affiliation(s)
- Quan Zhang
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Haiqiang Dou
- Metabolic Physiology Unit, Institute of Neuroscience and Physiology, University of Göteborg, PO Box 430, Göteborg, SE-405 30, Sweden
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK.,Metabolic Physiology Unit, Institute of Neuroscience and Physiology, University of Göteborg, PO Box 430, Göteborg, SE-405 30, Sweden
| |
Collapse
|
17
|
Zaborska KE, Dadi PK, Dickerson MT, Nakhe AY, Thorson AS, Schaub CM, Graff SM, Stanley JE, Kondapavuluru RS, Denton JS, Jacobson DA. Lactate activation of α-cell K ATP channels inhibits glucagon secretion by hyperpolarizing the membrane potential and reducing Ca 2+ entry. Mol Metab 2020; 42:101056. [PMID: 32736089 PMCID: PMC7479281 DOI: 10.1016/j.molmet.2020.101056] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/17/2020] [Accepted: 07/24/2020] [Indexed: 12/20/2022] Open
Abstract
Objective Elevations in pancreatic α-cell intracellular Ca2+ ([Ca2+]i) lead to glucagon (GCG) secretion. Although glucose inhibits GCG secretion, how lactate and pyruvate control α-cell Ca2+ handling is unknown. Lactate enters cells through monocarboxylate transporters (MCTs) and is also produced during glycolysis by lactate dehydrogenase A (LDHA), an enzyme expressed in α-cells. As lactate activates ATP-sensitive K+ (KATP) channels in cardiomyocytes, lactate may also modulate α-cell KATP. Therefore, this study investigated how lactate signaling controls α-cell Ca2+ handling and GCG secretion. Methods Mouse and human islets were used in combination with confocal microscopy, electrophysiology, GCG immunoassays, and fluorescent thallium flux assays to assess α-cell Ca2+ handling, Vm, KATP currents, and GCG secretion. Results Lactate-inhibited mouse (75 ± 25%) and human (47 ± 9%) α-cell [Ca2+]i fluctuations only under low-glucose conditions (1 mM) but had no effect on β- or δ-cells [Ca2+]i. Glyburide inhibition of KATP channels restored α-cell [Ca2+]i fluctuations in the presence of lactate. Lactate transport into α-cells via MCTs hyperpolarized mouse (14 ± 1 mV) and human (12 ± 1 mV) α-cell Vm and activated KATP channels. Interestingly, pyruvate showed a similar KATP activation profile and α-cell [Ca2+]i inhibition as lactate. Lactate-induced inhibition of α-cell [Ca2+]i influx resulted in reduced GCG secretion in mouse (62 ± 6%) and human (43 ± 13%) islets. Conclusions These data demonstrate for the first time that lactate entry into α-cells through MCTs results in KATP activation, Vm hyperpolarization, reduced [Ca2+]i, and inhibition of GCG secretion. Thus, taken together, these data indicate that lactate either within α-cells and/or elevated in serum could serve as important modulators of α-cell function. Lactate reduces islet α-cell Ca2+ entry under low glucose conditions. Lactate does not alter β- or δ-cell Ca2+ handling under low glucose conditions. Lactate enters islet α-cells through monocarboxylate transporters. Lactate hyperpolarizes islet α-cell membrane potential by activating KATP channels. Lactate reduces mouse and human islet glucagon secretion.
Collapse
Affiliation(s)
- Karolina E Zaborska
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Prasanna K Dadi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Matthew T Dickerson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Arya Y Nakhe
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Ariel S Thorson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Charles M Schaub
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Sarah M Graff
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Jade E Stanley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Roy S Kondapavuluru
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Jerod S Denton
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - David A Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
18
|
Xu SFS, Andersen DB, Izarzugaza JMG, Kuhre RE, Holst JJ. In the rat pancreas, somatostatin tonically inhibits glucagon secretion and is required for glucose-induced inhibition of glucagon secretion. Acta Physiol (Oxf) 2020; 229:e13464. [PMID: 32145704 DOI: 10.1111/apha.13464] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 12/20/2022]
Abstract
AIM It is debated whether the inhibition of glucagon secretion by glucose results from direct effects of glucose on the α-cell (intrinsic regulation) or by paracrine effects exerted by beta- or delta-cell products. METHODS To study this in a more physiological model than isolated islets, we perfused isolated rat pancreases and measured glucagon, insulin and somatostatin secretion in response to graded increases in perfusate glucose concentration (from 3.5 to 4, 5, 6, 7, 8, 10, 12 mmol/L) as well as glucagon responses to blockage/activation of insulin/GABA/somatostatin signalling with or without addition of glucose. RESULTS Glucagon secretion was reduced by about 50% (compared to baseline secretion at 3.5 mmol/L) within minutes after increasing glucose from 4 to 5 mmol/L (P < .01, n = 13). Insulin secretion was increased minimally, but significantly, compared to baseline (3.5 mmol/L) at 4 mmol/L, whereas somatostatin secretion was not significantly increased from baseline until 7 mmol/L. Hereafter secretion of both increased gradually up to 12 mmol/L glucose. Neither recombinant insulin (1 µmol/L), GABA (300 µmol/L) or the insulin-receptor antagonist S961 (at 1 µmol/L) affected basal (3.5 mmol/L) or glucose-induced (5.0 mmol/L) attenuation of glucagon secretion (n = 7-8). Somatostatin-14 attenuated glucagon secretion by ~ 95%, and blockage of somatostatin-receptor (SSTR)-2 or combined blockage of SSTR-2, -3 and -5 by specific antagonists increased glucagon output (at 3.5 mmol/L glucose) and prevented glucose-induced (from 3.5 to 5.0 mmol/L) suppression of secretion. CONCLUSION Somatostatin is a powerful and tonic inhibitor of glucagon secretion from the rat pancreas and is required for glucose to inhibit glucagon secretion.
Collapse
Affiliation(s)
- Stella F. S. Xu
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Daniel B. Andersen
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | | | - Rune E. Kuhre
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Jens J. Holst
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| |
Collapse
|
19
|
Reduced somatostatin signalling leads to hypersecretion of glucagon in mice fed a high-fat diet. Mol Metab 2020; 40:101021. [PMID: 32446876 PMCID: PMC7322681 DOI: 10.1016/j.molmet.2020.101021] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 11/29/2022] Open
Abstract
Objectives Elevated plasma glucagon is an early symptom of diabetes, occurring in subjects with impaired glucose regulation. Here, we explored alpha-cell function in female mice fed a high-fat diet (HFD). Methods Female mice expressing the Ca2+ indicator GCaMP3 specifically in alpha-cells were fed a high-fat or control (CTL) diet. We then conducted in vivo phenotyping of these mice, as well as experiments on isolated (ex vivo) islets and in the in situ perfused pancreas. Results In HFD-fed mice, fed plasma glucagon levels were increased and glucagon secretion from isolated islets and in the perfused mouse pancreas was also elevated. In mice fed a CTL diet, increasing glucose reduced intracellular Ca2+ ([Ca2+]i) oscillation frequency and amplitude. This effect was also observed in HFD mice; however, both the frequency and amplitude of the [Ca2+]i oscillations were higher than those in CTL alpha-cells. Given that alpha-cells are under strong paracrine control from neighbouring somatostatin-secreting delta-cells, we hypothesised that this elevation of alpha-cell output was due to a lack of somatostatin (SST) secretion. Indeed, SST secretion in isolated islets from HFD-fed mice was reduced but exogenous SST also failed to suppress glucagon secretion and [Ca2+]i activity from HFD alpha-cells, in contrast to observations in CTL mice. Conclusions These findings suggest that reduced delta-cell function, combined with intrinsic changes in alpha-cells including sensitivity to somatostatin, accounts for the hyperglucagonaemia in mice fed a HFD. HFD feeding causes hyperglucagonaemia in vivo. Glucagon is inadequately suppressed by glucose in HFD-fed mice. Alpha-cell [Ca2+]i oscillations and glucagon output are elevated ex vivo in response to HFD feeding. SST secretion from HFD islets is reduced. Alpha-cells from HFD-fed mice become ‘resistant’ to SST.
Collapse
|
20
|
Yu Q, Lai BK, Ahooghalandari P, Helander A, Gylfe E, Gilon P, Tengholm A. γ-Hydroxybutyrate does not mediate glucose inhibition of glucagon secretion. J Biol Chem 2020; 295:5419-5426. [PMID: 32156704 PMCID: PMC7170508 DOI: 10.1074/jbc.ra119.009577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 03/09/2020] [Indexed: 11/26/2022] Open
Abstract
Hypersecretion of glucagon from pancreatic α-cells strongly contributes to diabetic hyperglycemia. Moreover, failure of α-cells to increase glucagon secretion in response to falling blood glucose concentrations compromises the defense against hypoglycemia, a common complication in diabetes therapy. However, the mechanisms underlying glucose regulation of glucagon secretion are poorly understood and likely involve both α-cell-intrinsic and intraislet paracrine signaling. Among paracrine factors, glucose-stimulated release of the GABA metabolite γ-hydroxybutyric acid (GHB) from pancreatic β-cells might mediate glucose suppression of glucagon release via GHB receptors on α-cells. However, the direct effects of GHB on α-cell signaling and glucagon release have not been investigated. Here, we found that GHB (4-10 μm) lacked effects on the cytoplasmic concentrations of the secretion-regulating messengers Ca2+ and cAMP in mouse α-cells. Glucagon secretion from perifused mouse islets was also unaffected by GHB at both 1 and 7 mm glucose. The GHB receptor agonist 3-chloropropanoic acid and the antagonist NCS-382 had no effects on glucagon secretion and did not affect stimulation of secretion induced by a drop in glucose from 7 to 1 mm Inhibition of endogenous GHB formation with the GABA transaminase inhibitor vigabatrin also failed to influence glucagon secretion at 1 mm glucose and did not prevent the suppressive effect of 7 mm glucose. In human islets, GHB tended to stimulate glucagon secretion at 1 mm glucose, an effect mimicked by 3-chloropropanoic acid. We conclude that GHB does not mediate the inhibitory effect of glucose on glucagon secretion.
Collapse
Affiliation(s)
- Qian Yu
- Department of Medical Cell Biology, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Bao Khanh Lai
- Université Catholique de Louvain, Institute of Experimental and Clinical Research, Pole of Endocrinology, Diabetes and Nutrition, 1200 Brussels, Belgium
| | | | - Anders Helander
- Department of Laboratory Medicine, Karolinska Institutet, and Clinical Pharmacology and Clinical Chemistry, Karolinska University Laboratory, SE-141 86 Stockholm, Sweden
| | - Erik Gylfe
- Department of Medical Cell Biology, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Patrick Gilon
- Université Catholique de Louvain, Institute of Experimental and Clinical Research, Pole of Endocrinology, Diabetes and Nutrition, 1200 Brussels, Belgium
| | - Anders Tengholm
- Department of Medical Cell Biology, Uppsala University, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
21
|
Grubelnik V, Zmazek J, Markovič R, Gosak M, Marhl M. Modelling of energy-driven switch for glucagon and insulin secretion. J Theor Biol 2020; 493:110213. [PMID: 32109481 DOI: 10.1016/j.jtbi.2020.110213] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 12/14/2022]
Abstract
We present a mathematical model of the energy-driven metabolic switch for glucagon and insulin secretion from pancreatic alpha and beta cells, respectively. The energy status related to hormone secretion is studied for various glucose concentrations. Additionally, the physiological response is studied with regards to the presence of other metabolites, particularly the free-fatty acids. At low glucose, the ATP production in alpha cells is high due to free-fatty acids oxidation in mitochondria, which enables glucagon secretion. When the glucose concentration is elevated above the threshold value, the glucagon secretion is switched off due to the contribution of glycolytic ATP production, representing an "anaerobic switch". On the other hand, during hypoglycemia, the ATP production in beta cells is low, reflecting a "waiting state" for glucose as the main metabolite. When glucose is elevated above the threshold value, the oxidative fate of glucose in mitochondria is the main source of energy required for effective insulin secretion, i.e. the "aerobic switch". Our results show the importance of well-regulated and fine-tuned energetic processes in pancreatic alpha and beta cells required for efficient hormone secretion and hence effective blood glucose regulation. These energetic processes have to be appropriately switched on and off based on the sensing of different metabolites by alpha and beta cells. Our computational results indicate that disturbances in cell energetics (e.g. mitochondrial dysfunction), and dysfunctional metabolite sensing and distribution throughout the cell might be related to pathologies such as metabolic syndrome and diabetes.
Collapse
Affiliation(s)
- Vladimir Grubelnik
- Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor SI-2000, Slovenia
| | - Jan Zmazek
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor SI-2000, Slovenia
| | - Rene Markovič
- Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor SI-2000, Slovenia; Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor SI-2000, Slovenia
| | - Marko Gosak
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor SI-2000, Slovenia; Faculty of Medicine, University of Maribor, Maribor SI-2000, Slovenia
| | - Marko Marhl
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor SI-2000, Slovenia; Faculty of Medicine, University of Maribor, Maribor SI-2000, Slovenia; Faculty of Education, University of Maribor, Maribor SI-2000, Slovenia.
| |
Collapse
|
22
|
Gilon P. The Role of α-Cells in Islet Function and Glucose Homeostasis in Health and Type 2 Diabetes. J Mol Biol 2020; 432:1367-1394. [PMID: 31954131 DOI: 10.1016/j.jmb.2020.01.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/23/2019] [Accepted: 01/06/2020] [Indexed: 01/09/2023]
Abstract
Pancreatic α-cells are the major source of glucagon, a hormone that counteracts the hypoglycemic action of insulin and strongly contributes to the correction of acute hypoglycemia. The mechanisms by which glucose controls glucagon secretion are hotly debated, and it is still unclear to what extent this control results from a direct action of glucose on α-cells or is indirectly mediated by β- and/or δ-cells. Besides its hyperglycemic action, glucagon has many other effects, in particular on lipid and amino acid metabolism. Counterintuitively, glucagon seems also required for an optimal insulin secretion in response to glucose by acting on its cognate receptor and, even more importantly, on GLP-1 receptors. Patients with diabetes mellitus display two main alterations of glucagon secretion: a relative hyperglucagonemia that aggravates hyperglycemia, and an impaired glucagon response to hypoglycemia. Under metabolic stress states, such as diabetes, pancreatic α-cells also secrete GLP-1, a glucose-lowering hormone, whereas the gut can produce glucagon. The contribution of extrapancreatic glucagon to the abnormal glucose homeostasis is unclear. Here, I review the possible mechanisms of control of glucagon secretion and the role of α-cells on islet function in healthy state. I discuss the possible causes of the abnormal glucagonemia in diabetes, with particular emphasis on type 2 diabetes, and I briefly comment the current antidiabetic therapies affecting α-cells.
Collapse
Affiliation(s)
- Patrick Gilon
- Université Catholique de Louvain, Institute of Experimental and Clinical Research, Pole of Endocrinology, Diabetes and Nutrition, Avenue Hippocrate 55 (B1.55.06), Brussels, B-1200, Belgium.
| |
Collapse
|
23
|
Grubelnik V, Markovič R, Lipovšek S, Leitinger G, Gosak M, Dolenšek J, Valladolid-Acebes I, Berggren PO, Stožer A, Perc M, Marhl M. Modelling of dysregulated glucagon secretion in type 2 diabetes by considering mitochondrial alterations in pancreatic α-cells. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191171. [PMID: 32218947 PMCID: PMC7029933 DOI: 10.1098/rsos.191171] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/16/2019] [Indexed: 05/15/2023]
Abstract
Type 2 diabetes mellitus (T2DM) has been associated with insulin resistance and the failure of β-cells to produce and secrete enough insulin as the disease progresses. However, clinical treatments based solely on insulin secretion and action have had limited success. The focus is therefore shifting towards α-cells, in particular to the dysregulated secretion of glucagon. Our qualitative electron-microscopy-based observations gave an indication that mitochondria in α-cells are altered in Western-diet-induced T2DM. In particular, α-cells extracted from mouse pancreatic tissue showed a lower density of mitochondria, a less expressed matrix and a lower number of cristae. These deformities in mitochondrial ultrastructure imply a decreased efficiency in mitochondrial ATP production, which prompted us to theoretically explore and clarify one of the most challenging problems associated with T2DM, namely the lack of glucagon secretion in hypoglycaemia and its oversecretion at high blood glucose concentrations. To this purpose, we constructed a novel computational model that links α-cell metabolism with their electrical activity and glucagon secretion. Our results show that defective mitochondrial metabolism in α-cells can account for dysregulated glucagon secretion in T2DM, thus improving our understanding of T2DM pathophysiology and indicating possibilities for new clinical treatments.
Collapse
Affiliation(s)
- Vladimir Grubelnik
- Faculty of Electrical Engineering and Computer Science, University of Maribor, 2000 Maribor, Slovenia
| | - Rene Markovič
- Faculty of Electrical Engineering and Computer Science, University of Maribor, 2000 Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia
| | - Saška Lipovšek
- Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
- Faculty of Chemistry and Chemical Engineering, University of Maribor, 2000 Maribor, Slovenia
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Gerd Leitinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Marko Gosak
- Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| | - Jurij Dolenšek
- Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| | - Ismael Valladolid-Acebes
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital L1, 171 76 Stockholm, Sweden
| | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital L1, 171 76 Stockholm, Sweden
| | - Andraž Stožer
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| | - Matjaž Perc
- Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Complexity Science Hub Vienna, 1080 Vienna, Austria
- Authors for correspondence: Matjač Perc e-mail:
| | - Marko Marhl
- Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
- Faculty of Education, University of Maribor, 2000 Maribor, Slovenia
- Authors for correspondence: Marko Marhl e-mail:
| |
Collapse
|
24
|
Grubelnik V, Markovič R, Lipovšek S, Leitinger G, Gosak M, Dolenšek J, Valladolid-Acebes I, Berggren PO, Stožer A, Perc M, Marhl M. Modelling of dysregulated glucagon secretion in type 2 diabetes by considering mitochondrial alterations in pancreatic α-cells. ROYAL SOCIETY OPEN SCIENCE 2020. [PMID: 32218947 DOI: 10.5061/dryad.9n2k1vk] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Type 2 diabetes mellitus (T2DM) has been associated with insulin resistance and the failure of β-cells to produce and secrete enough insulin as the disease progresses. However, clinical treatments based solely on insulin secretion and action have had limited success. The focus is therefore shifting towards α-cells, in particular to the dysregulated secretion of glucagon. Our qualitative electron-microscopy-based observations gave an indication that mitochondria in α-cells are altered in Western-diet-induced T2DM. In particular, α-cells extracted from mouse pancreatic tissue showed a lower density of mitochondria, a less expressed matrix and a lower number of cristae. These deformities in mitochondrial ultrastructure imply a decreased efficiency in mitochondrial ATP production, which prompted us to theoretically explore and clarify one of the most challenging problems associated with T2DM, namely the lack of glucagon secretion in hypoglycaemia and its oversecretion at high blood glucose concentrations. To this purpose, we constructed a novel computational model that links α-cell metabolism with their electrical activity and glucagon secretion. Our results show that defective mitochondrial metabolism in α-cells can account for dysregulated glucagon secretion in T2DM, thus improving our understanding of T2DM pathophysiology and indicating possibilities for new clinical treatments.
Collapse
Affiliation(s)
- Vladimir Grubelnik
- Faculty of Electrical Engineering and Computer Science, University of Maribor, 2000 Maribor, Slovenia
| | - Rene Markovič
- Faculty of Electrical Engineering and Computer Science, University of Maribor, 2000 Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia
| | - Saška Lipovšek
- Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
- Faculty of Chemistry and Chemical Engineering, University of Maribor, 2000 Maribor, Slovenia
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Gerd Leitinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Marko Gosak
- Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| | - Jurij Dolenšek
- Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| | - Ismael Valladolid-Acebes
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital L1, 171 76 Stockholm, Sweden
| | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital L1, 171 76 Stockholm, Sweden
| | - Andraž Stožer
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| | - Matjaž Perc
- Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Complexity Science Hub Vienna, 1080 Vienna, Austria
| | - Marko Marhl
- Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
- Faculty of Education, University of Maribor, 2000 Maribor, Slovenia
| |
Collapse
|
25
|
Noguchi GM, Huising MO. Integrating the inputs that shape pancreatic islet hormone release. Nat Metab 2019; 1:1189-1201. [PMID: 32694675 PMCID: PMC7378277 DOI: 10.1038/s42255-019-0148-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 11/07/2019] [Indexed: 02/06/2023]
Abstract
The pancreatic islet is a complex mini organ composed of a variety of endocrine cells and their support cells, which together tightly control blood glucose homeostasis. Changes in glucose concentration are commonly regarded as the chief signal controlling insulin-secreting beta cells, glucagon-secreting alpha cells and somatostatin-secreting delta cells. However, each of these cell types is highly responsive to a multitude of endocrine, paracrine, nutritional and neural inputs, which collectively shape the final endocrine output of the islet. Here, we review the principal inputs for each islet-cell type and the physiological circumstances in which these signals arise, through the prism of the insights generated by the transcriptomes of each of the major endocrine-cell types. A comprehensive integration of the factors that influence blood glucose homeostasis is essential to successfully improve therapeutic strategies for better diabetes management.
Collapse
Affiliation(s)
- Glyn M Noguchi
- Department of Neurobiology, Physiology & Behavior, College of Biological Sciences, University of California, Davis, Davis, CA, USA
| | - Mark O Huising
- Department of Neurobiology, Physiology & Behavior, College of Biological Sciences, University of California, Davis, Davis, CA, USA.
- Department of Physiology & Membrane Biology, School of Medicine, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
26
|
Liu W, Kin T, Ho S, Dorrell C, Campbell SR, Luo P, Chen X. Abnormal regulation of glucagon secretion by human islet alpha cells in the absence of beta cells. EBioMedicine 2019; 50:306-316. [PMID: 31780397 PMCID: PMC6921359 DOI: 10.1016/j.ebiom.2019.11.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The understanding of the regulation of glucagon secretion by pancreatic islet α-cells remains elusive. We aimed to develop an in vitro model for investigating the function of human α-cells under direct influence of glucose and other potential regulators. METHODS Highly purified human α-cells from islets of deceased donors were re-aggregated in the presence or absence of β-cells in culture, evaluated for glucagon secretion under various treatment conditions, and compared to that of intact human islets and non-sorted islet cell aggregates. FINDINGS The pure human α-cell aggregates maintained proper glucagon secretion capability at low concentrations of glucose, but failed to respond to changes in ambient glucose concentration. Addition of purified β-cells, but not the secreted factors from β-cells at low or high concentrations of glucose, partly restored the responsiveness of α-cells to glucose with regulated glucagon secretion. The EphA stimulator ephrinA5-fc failed to mimic the inhibitory effect of β-cells on glucagon secretion. Glibenclamide inhibited glucagon secretion from islets and the α- and β-mixed cell-aggregates, but not from the α-cell-only aggregates, at 2.0 mM glucose. INTERPRETATION This study validated the use of isolated and then re-aggregated human islet cells for investigating α-cell function and paracrine regulation, and demonstrated the importance of cell-to-cell contact between α- and β-cells on glucagon secretion. Loss of proper β- and α-cell physical interaction in islets likely contributes to the dysregulated glucagon secretion in diabetic patients. Re-aggregated select combinations of human islet cells provide unique platforms for studying islet cell function and regulation.
Collapse
Affiliation(s)
- Wei Liu
- Department of Nephropathy, The Second Hospital of Jilin University, 218 Ziquiang Street, Nanguan District, Changchun, Jilin 130041, China; Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Tatsuya Kin
- Clinical Islet Laboratory, University of Alberta, Edmonton, Alberta, Canada
| | - Siuhong Ho
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Craig Dorrell
- Oregon Stem Cell Center, Oregon Health & Science University, Portland, OR, USA
| | - Sean R Campbell
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Ping Luo
- Department of Nephropathy, The Second Hospital of Jilin University, 218 Ziquiang Street, Nanguan District, Changchun, Jilin 130041, China.
| | - Xiaojuan Chen
- Columbia Center for Translational Immunology, Department of Surgery, Columbia University Medical Center, 650 West 168th Street, BB1701, New York, NY 10032, USA.
| |
Collapse
|
27
|
Stern JH, Smith GI, Chen S, Unger RH, Klein S, Scherer PE. Obesity dysregulates fasting-induced changes in glucagon secretion. J Endocrinol 2019; 243:149-160. [PMID: 31454790 PMCID: PMC6994388 DOI: 10.1530/joe-19-0201] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 08/27/2019] [Indexed: 01/06/2023]
Abstract
Hyperglucagonemia, a hallmark in obesity and insulin resistance promotes hepatic glucose output, exacerbating hyperglycemia and thus predisposing to the development type 2 diabetes. As such, glucagon signaling is a key target for new therapeutics to manage insulin resistance. We evaluated glucagon homeostasis in lean and obese mice and people. In lean mice, fasting for 24 h caused a rise in glucagon. In contrast, a decrease in serum glucagon compared to baseline was observed in diet-induced obese mice between 8 and 24 h of fasting. Fasting decreased serum insulin in both lean and obese mice. Accordingly, the glucagon:insulin ratio was unaffected by fasting in obese mice but increased in lean mice. Re-feeding (2 h) restored hyperglucagonemia in obese mice. Pancreatic perfusion studies confirm that fasting (16 h) decreases pancreatic glucagon secretion in obese mice. Consistent with our findings in the mouse, a mixed meal increased serum glucagon and insulin concentrations in obese humans, both of which decreased with time after a meal. Consequently, fasting and re-feeding less robustly affected glucagon:insulin ratios in obese compared to lean participants. The glucoregulatory disturbance in obesity may be driven by inappropriate regulation of glucagon by fasting and a static glucagon:insulin ratio.
Collapse
Affiliation(s)
- Jennifer H. Stern
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Gordon I. Smith
- Center for Human Nutrition, Washington University School of Medicine, Saint Louis, MO
| | - Shiuwei Chen
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Roger H. Unger
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Samuel Klein
- Center for Human Nutrition, Washington University School of Medicine, Saint Louis, MO
| | - Philipp E. Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX
- Correspondence: , Telephone: (214) 648-8715, Fax: (214) 648-8720
| |
Collapse
|
28
|
Montefusco F, Cortese G, Pedersen MG. Heterogeneous alpha-cell population modeling of glucose-induced inhibition of electrical activity. J Theor Biol 2019; 485:110036. [PMID: 31585105 DOI: 10.1016/j.jtbi.2019.110036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/12/2019] [Accepted: 09/28/2019] [Indexed: 12/22/2022]
Abstract
Glucagon release from the pancreatic alpha-cells is regulated by glucose, but the underlying mechanisms are far from understood. It is known that the alpha-cell population is very heterogeneous, but - compared to the insulin-secreting beta-cells - the consequences of this cell-to-cell variation are much less studied. Since the alpha-cells are not electrically coupled, large differences in the single cell responses are to be expected, and this variation may contribute to the confusion regarding the mechanisms of glucose-induced suppression of glucagon release. Using mathematical modeling of alpha-cells with realistic cell-to-cell parameter variation based on recent experimental results, we show that the simulated alpha-cells exhibit great diversity in their electrophysiological behavior. To robustly reproduce experimental recordings from alpha-cell exposed to a rise in glucose levels, we must assume that both intrinsic mechanisms and paracrine signals contribute to glucose-induced changes in electrical activity. Our simulations suggest that the sum of different electrophysiological responses due to alpha-cell heterogeneity is involved in glucose-suppressed glucagon secretion, and that more than one mechanism contribute to control the alpha-cell populations' behavior. Finally, we apply regression analysis to our synthetic alpha-cell population to infer which membrane currents influence electrical activity in alpha-cells at different glucose levels. The results from such statistical modeling suggest possible disturbances underlying defect regulation of alpha-cell electrical behavior in diabetics. Thus, although alpha-cells appear to be inherently complex and heterogeneous as reflected in published data, realistic modeling of the alpha-cells at the population level provides insight into the mechanisms of glucagon release.
Collapse
Affiliation(s)
| | - Giuliana Cortese
- Department of Statistical Sciences, University of Padova, Padova, Italy
| | - Morten G Pedersen
- Department of Information Engineering, University of Padova, Padova, Italy; Department of Mathematics "Tullio Levi-Civita", University of Padova, Padova, Italy; Padova Neuroscience Center, University of Padova, Padova, Italy.
| |
Collapse
|
29
|
Denwood G, Tarasov A, Salehi A, Vergari E, Ramracheya R, Takahashi H, Nikolaev VO, Seino S, Gribble F, Reimann F, Rorsman P, Zhang Q. Glucose stimulates somatostatin secretion in pancreatic δ-cells by cAMP-dependent intracellular Ca 2+ release. J Gen Physiol 2019; 151:1094-1115. [PMID: 31358556 PMCID: PMC6719402 DOI: 10.1085/jgp.201912351] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/11/2019] [Accepted: 07/09/2019] [Indexed: 12/12/2022] Open
Abstract
Somatostatin secretion from pancreatic islet δ-cells is stimulated by elevated glucose levels, but the underlying mechanisms have only partially been elucidated. Here we show that glucose-induced somatostatin secretion (GISS) involves both membrane potential-dependent and -independent pathways. Although glucose-induced electrical activity triggers somatostatin release, the sugar also stimulates GISS via a cAMP-dependent stimulation of CICR and exocytosis of somatostatin. The latter effect is more quantitatively important and in mouse islets depolarized by 70 mM extracellular K+ , increasing glucose from 1 mM to 20 mM produced an ∼3.5-fold stimulation of somatostatin secretion, an effect that was mimicked by the application of the adenylyl cyclase activator forskolin. Inhibiting cAMP-dependent pathways with PKI or ESI-05, which inhibit PKA and exchange protein directly activated by cAMP 2 (Epac2), respectively, reduced glucose/forskolin-induced somatostatin secretion. Ryanodine produced a similar effect that was not additive to that of the PKA or Epac2 inhibitors. Intracellular application of cAMP produced a concentration-dependent stimulation of somatostatin exocytosis and elevation of cytoplasmic Ca2+ ([Ca2+]i). Both effects were inhibited by ESI-05 and thapsigargin (an inhibitor of SERCA). By contrast, inhibition of PKA suppressed δ-cell exocytosis without affecting [Ca2+]i Simultaneous recordings of electrical activity and [Ca2+]i in δ-cells expressing the genetically encoded Ca2+ indicator GCaMP3 revealed that the majority of glucose-induced [Ca2+]i spikes did not correlate with δ-cell electrical activity but instead reflected Ca2+ release from the ER. These spontaneous [Ca2+]i spikes are resistant to PKI but sensitive to ESI-05 or thapsigargin. We propose that cAMP links an increase in plasma glucose to stimulation of somatostatin secretion by promoting CICR, thus evoking exocytosis of somatostatin-containing secretory vesicles in the δ-cell.
Collapse
Affiliation(s)
- Geoffrey Denwood
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
| | - Andrei Tarasov
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| | - Albert Salehi
- Institute of Neuroscience and Physiology, Department of Physiology, Metabolic Research Unit, University of Goteborg, Göteborg, Sweden
| | - Elisa Vergari
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
| | - Reshma Ramracheya
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
| | - Harumi Takahashi
- Division of Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Susumo Seino
- Division of Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Fiona Gribble
- Institute of Metabolic Science, University of Cambridge, Addenbrook's Hospital, Cambridge, UK
| | - Frank Reimann
- Institute of Metabolic Science, University of Cambridge, Addenbrook's Hospital, Cambridge, UK
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
- Institute of Neuroscience and Physiology, Department of Physiology, Metabolic Research Unit, University of Goteborg, Göteborg, Sweden
| | - Quan Zhang
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
| |
Collapse
|
30
|
Yu Q, Shuai H, Ahooghalandari P, Gylfe E, Tengholm A. Glucose controls glucagon secretion by directly modulating cAMP in alpha cells. Diabetologia 2019; 62:1212-1224. [PMID: 30953108 PMCID: PMC6560012 DOI: 10.1007/s00125-019-4857-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/22/2019] [Indexed: 01/18/2023]
Abstract
AIMS/HYPOTHESIS Glucagon is critical for normal glucose homeostasis and aberrant secretion of the hormone aggravates dysregulated glucose control in diabetes. However, the mechanisms by which glucose controls glucagon secretion from pancreatic alpha cells remain elusive. The aim of this study was to investigate the role of the intracellular messenger cAMP in alpha-cell-intrinsic glucose regulation of glucagon release. METHODS Subplasmalemmal cAMP and Ca2+ concentrations were recorded in isolated and islet-located alpha cells using fluorescent reporters and total internal reflection microscopy. Glucagon secretion from mouse islets was measured using ELISA. RESULTS Glucose induced Ca2+-independent alterations of the subplasmalemmal cAMP concentration in alpha cells that correlated with changes in glucagon release. Glucose-lowering-induced stimulation of glucagon secretion thus corresponded to an elevation in cAMP that was independent of paracrine signalling from insulin or somatostatin. Imposed cAMP elevations stimulated glucagon secretion and abolished inhibition by glucose elevation, while protein kinase A inhibition mimicked glucose suppression of glucagon release. CONCLUSIONS/INTERPRETATION Glucose concentrations in the hypoglycaemic range control glucagon secretion by directly modulating the cAMP concentration in alpha cells independently of paracrine influences. These findings define a novel mechanism for glucose regulation of glucagon release that underlies recovery from hypoglycaemia and may be disturbed in diabetes.
Collapse
Affiliation(s)
- Qian Yu
- Department of Medical Cell Biology, Biomedical Centre, Uppsala University, Box 571, SE-751 23, Uppsala, Sweden
| | - Hongyan Shuai
- Department of Medical Cell Biology, Biomedical Centre, Uppsala University, Box 571, SE-751 23, Uppsala, Sweden
| | - Parvin Ahooghalandari
- Department of Medical Cell Biology, Biomedical Centre, Uppsala University, Box 571, SE-751 23, Uppsala, Sweden
| | - Erik Gylfe
- Department of Medical Cell Biology, Biomedical Centre, Uppsala University, Box 571, SE-751 23, Uppsala, Sweden
| | - Anders Tengholm
- Department of Medical Cell Biology, Biomedical Centre, Uppsala University, Box 571, SE-751 23, Uppsala, Sweden.
| |
Collapse
|
31
|
Ojha A, Ojha U, Mohammed R, Chandrashekar A, Ojha H. Current perspective on the role of insulin and glucagon in the pathogenesis and treatment of type 2 diabetes mellitus. Clin Pharmacol 2019; 11:57-65. [PMID: 31191043 PMCID: PMC6515536 DOI: 10.2147/cpaa.s202614] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/28/2019] [Indexed: 01/17/2023] Open
Abstract
According to the World Health Organization, 422 million adults worldwide live with diabetes mellitus (DM), a significant portion of whom have type 2 diabetes. The discovery of insulin as a key regulator of glucose metabolism has revolutionized our understanding of DM and provided several therapeutic avenues. Most studies have so far predominantly focused on the role of insulin in type 2 diabetes. However, the balance between insulin and glucagon is essential in ensuring glucose homeostasis. In this review, we begin by evaluating the principal differences between insulin and glucagon with regard to their mechanism and control of their secretion. Next, we discuss their mode of action and effects on metabolism. We further explore how the two hormones impact the natural history of type 2 diabetes. Finally, we outline how current and emerging pharmacological agents attempt to exploit the properties of insulin and glucagon to benefit patients with type 2 diabetes.
Collapse
Affiliation(s)
- Ashutosh Ojha
- Shobhaben Pratapbhai Patel School Of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Utkarsh Ojha
- Faculty of Medicine, Imperial College London, London, UK
| | - Raihan Mohammed
- Department of Medicine, University of Cambridge, Cambridge, UK
| | | | - Harsh Ojha
- Department of Life Sciences, University of Warwick, Coventry, UK
| |
Collapse
|
32
|
Zhu L, Dattaroy D, Pham J, Wang L, Barella LF, Cui Y, Wilkins KJ, Roth BL, Hochgeschwender U, Matschinsky FM, Kaestner KH, Doliba NM, Wess J. Intra-islet glucagon signaling is critical for maintaining glucose homeostasis. JCI Insight 2019; 5:127994. [PMID: 31012868 DOI: 10.1172/jci.insight.127994] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Glucagon, a hormone released from pancreatic alpha-cells, plays a key role in maintaining proper glucose homeostasis and has been implicated in the pathophysiology of diabetes. In vitro studies suggest that intra-islet glucagon can modulate the function of pancreatic beta-cells. However, because of the lack of suitable experimental tools, the in vivo physiological role of this intra-islet cross-talk has remained elusive. To address this issue, we generated a novel mouse model that selectively expressed an inhibitory designer G protein-coupled receptor (Gi DREADD) in α-cells only. Drug-induced activation of this inhibitory designer receptor almost completely shut off glucagon secretion in vivo, resulting in significantly impaired insulin secretion, hyperglycemia, and glucose intolerance. Additional studies with mouse and human islets indicated that intra-islet glucagon stimulates insulin release primarily by activating β-cell GLP-1 receptors. These new findings strongly suggest that intra-islet glucagon signaling is essential for maintaining proper glucose homeostasis in vivo. Our work may pave the way toward the development of novel classes of antidiabetic drugs that act by modulating intra-islet cross-talk between α- and β-cells.
Collapse
Affiliation(s)
- Lu Zhu
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| | - Diptadip Dattaroy
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| | - Jonathan Pham
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| | - Lingdi Wang
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung and Blood Institute, Bethesda, Maryland, USA
| | - Luiz F Barella
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| | - Yinghong Cui
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| | - Kenneth J Wilkins
- Biostatistics Program, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Ute Hochgeschwender
- Neuroscience Program and College of Medicine, Central Michigan University, Mt. Pleasant, Michigan, USA
| | - Franz M Matschinsky
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Klaus H Kaestner
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nicolai M Doliba
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| |
Collapse
|
33
|
Dickerson MT, Dadi PK, Altman MK, Verlage KR, Thorson AS, Jordan KL, Vierra NC, Amarnath G, Jacobson DA. Glucose-mediated inhibition of calcium-activated potassium channels limits α-cell calcium influx and glucagon secretion. Am J Physiol Endocrinol Metab 2019; 316:E646-E659. [PMID: 30694690 PMCID: PMC6482666 DOI: 10.1152/ajpendo.00342.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pancreatic α-cells exhibit oscillations in cytosolic Ca2+ (Ca2+c), which control pulsatile glucagon (GCG) secretion. However, the mechanisms that modulate α-cell Ca2+c oscillations have not been elucidated. As β-cell Ca2+c oscillations are regulated in part by Ca2+-activated K+ (Kslow) currents, this work investigated the role of Kslow in α-cell Ca2+ handling and GCG secretion. α-Cells displayed Kslow currents that were dependent on Ca2+ influx through L- and P/Q-type voltage-dependent Ca2+ channels (VDCCs) as well as Ca2+ released from endoplasmic reticulum stores. α-Cell Kslow was decreased by small-conductance Ca2+-activated K+ (SK) channel inhibitors apamin and UCL 1684, large-conductance Ca2+-activated K+ (BK) channel inhibitor iberiotoxin (IbTx), and intermediate-conductance Ca2+-activated K+ (IK) channel inhibitor TRAM 34. Moreover, partial inhibition of α-cell Kslow with apamin depolarized membrane potential ( Vm) (3.8 ± 0.7 mV) and reduced action potential (AP) amplitude (10.4 ± 1.9 mV). Although apamin transiently increased Ca2+ influx into α-cells at low glucose (42.9 ± 10.6%), sustained SK (38.5 ± 10.4%) or BK channel inhibition (31.0 ± 11.7%) decreased α-cell Ca2+ influx. Total α-cell Ca2+c was similarly reduced (28.3 ± 11.1%) following prolonged treatment with high glucose, but it was not decreased further by SK or BK channel inhibition. Consistent with reduced α-cell Ca2+c following prolonged Kslow inhibition, apamin decreased GCG secretion from mouse (20.4 ± 4.2%) and human (27.7 ± 13.1%) islets at low glucose. These data demonstrate that Kslow activation provides a hyperpolarizing influence on α-cell Vm that sustains Ca2+ entry during hypoglycemic conditions, presumably by preventing voltage-dependent inactivation of P/Q-type VDCCs. Thus, when α-cell Ca2+c is elevated during secretagogue stimulation, Kslow activation helps to preserve GCG secretion.
Collapse
Affiliation(s)
- Matthew T Dickerson
- Department of Molecular Physiology and Biophysics, Vanderbilt University , Nashville, Tennessee
| | - Prasanna K Dadi
- Department of Molecular Physiology and Biophysics, Vanderbilt University , Nashville, Tennessee
| | - Molly K Altman
- Department of Molecular Physiology and Biophysics, Vanderbilt University , Nashville, Tennessee
| | - Kenneth R Verlage
- Department of Molecular Physiology and Biophysics, Vanderbilt University , Nashville, Tennessee
- School of Medicine, Texas Tech University Health Sciences Center , Lubbock, Texas
- Department of Urology, Oregon Health and Science University , Portland, Oregon
| | - Ariel S Thorson
- Department of Molecular Physiology and Biophysics, Vanderbilt University , Nashville, Tennessee
| | - Kelli L Jordan
- Department of Molecular Physiology and Biophysics, Vanderbilt University , Nashville, Tennessee
| | - Nicholas C Vierra
- Department of Molecular Physiology and Biophysics, Vanderbilt University , Nashville, Tennessee
- Department of Neurobiology, Physiology and Behavior University of California , Davis, California
| | - Gautami Amarnath
- Department of Molecular Physiology and Biophysics, Vanderbilt University , Nashville, Tennessee
- Experimental and Clinical Neurosciences, University of Regensburg , Regensburg , Germany
| | - David A Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University , Nashville, Tennessee
| |
Collapse
|
34
|
Soriano S, Castellano-Muñoz M, Rafacho A, Alonso-Magdalena P, Marroquí L, Ruiz-Pino A, Bru-Tarí E, Merino B, Irles E, Bello-Pérez M, Iborra P, Villar-Pazos S, Vettorazzi JF, Montanya E, Luque RM, Nadal Á, Quesada I. Cortistatin regulates glucose-induced electrical activity and insulin secretion in mouse pancreatic beta-cells. Mol Cell Endocrinol 2019; 479:123-132. [PMID: 30261212 DOI: 10.1016/j.mce.2018.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 09/05/2018] [Accepted: 09/22/2018] [Indexed: 12/17/2022]
Abstract
Although there is growing evidence that cortistatin regulates several functions in different tissues, its role in the endocrine pancreas is not totally known. Here, we aim to study the effect of cortistatin on pancreatic beta-cells and glucose-stimulated insulin secretion (GSIS). Exposure of isolated mouse islets to cortistatin inhibited GSIS. This effect was prevented using a somatostatin receptor antagonist. Additionally, cortistatin hyperpolarized the membrane potential and reduced glucose-induced action potentials in isolated pancreatic beta-cells. Cortistatin did not modify ATP-dependent K+ (KATP) channel activity. In contrast, cortistatin increased the activity of a small conductance channel with characteristics of G protein-coupled inwardly rectifying K+ (GIRK) channels. The cortistatin effects on membrane potential and GSIS were largely reduced in the presence of a GIRK channel antagonist and by down-regulation of GIRK2 with small interfering RNA. Thus, cortistatin acts as an inhibitory signal for glucose-induced electrical activity and insulin secretion in the mouse pancreatic beta-cell.
Collapse
Affiliation(s)
- Sergi Soriano
- Departament of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain.
| | - Manuel Castellano-Muñoz
- Institut of Bioengineering, Miguel Hernández University, Elche, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Alex Rafacho
- Department of Physiological Sciences, And Multicenter Graduate Program in Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Paloma Alonso-Magdalena
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain; Departamento de Biología Aplicada, Universidad Miguel Hernández, Elche, Spain
| | - Laura Marroquí
- Institut of Bioengineering, Miguel Hernández University, Elche, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Antonia Ruiz-Pino
- Institut of Bioengineering, Miguel Hernández University, Elche, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Eva Bru-Tarí
- Institut of Bioengineering, Miguel Hernández University, Elche, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Beatriz Merino
- Institut of Bioengineering, Miguel Hernández University, Elche, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Esperanza Irles
- Institut of Bioengineering, Miguel Hernández University, Elche, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | | | - Pau Iborra
- Institut of Bioengineering, Miguel Hernández University, Elche, Spain
| | - Sabrina Villar-Pazos
- Institut of Bioengineering, Miguel Hernández University, Elche, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Jean F Vettorazzi
- Department of Structural and Functional Biology, Institute of Biology, Campinas State University, Campinas, Brazil
| | - Eduard Montanya
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain; Bellvitge Hospital-IDIBELL, Barcelona, Spain; Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| | - Raúl M Luque
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain; Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain; Reina Sofía University Hospital (HURS), Córdoba, Spain; Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
| | - Ángel Nadal
- Institut of Bioengineering, Miguel Hernández University, Elche, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Iván Quesada
- Institut of Bioengineering, Miguel Hernández University, Elche, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain.
| |
Collapse
|
35
|
Bowman P, McDonald TJ, Knight BA, Flanagan SE, Leveridge M, Spaull SR, Shields BM, Hammersley S, Shepherd MH, Andrews RC, Patel KA, Hattersley AT. Patterns of postmeal insulin secretion in individuals with sulfonylurea-treated KCNJ11 neonatal diabetes show predominance of non-K ATP-channel pathways. BMJ Open Diabetes Res Care 2019; 7:e000721. [PMID: 31908791 PMCID: PMC6936449 DOI: 10.1136/bmjdrc-2019-000721] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/06/2019] [Accepted: 11/11/2019] [Indexed: 11/03/2022] Open
Abstract
OBJECTIVE Insulin secretion in sulfonylurea-treated KCNJ11 permanent neonatal diabetes mellitus (PNDM) is thought to be mediated predominantly through amplifying non-KATP-channel pathways such as incretins. Affected individuals report symptoms of postprandial hypoglycemia after eating protein/fat-rich foods. We aimed to assess the physiological response to carbohydrate and protein/fat in people with sulfonylurea-treated KCNJ11 PNDM. RESEARCH DESIGN AND METHODS 5 adults with sulfonylurea-treated KCNJ11 PNDM and five age, sex and body mass index-matched controls without diabetes had a high-carbohydrate and high-protein/fat meal on two separate mornings. Insulin(i) and glucose(g) were measured at baseline then regularly over 4 hours after the meal. Total area under the curve (tAUC) for insulin and glucose was calculated over 4 hours and compared between meals in controls and KCNJ11 cases. RESULTS In controls, glucose values after carbohydrate and protein/fat were similar (median glucose tAUC0-4h21.4 vs 19.7 mmol/L, p=0.08). In KCNJ11 cases glucose levels were higher after carbohydrate than after protein/fat (median glucose tAUC0-4h58.1 vs 31.3 mmol/L, p=0.04). These different glycemic responses reflected different patterns of insulin secretion: in controls, insulin secretion was greatly increased after carbohydrate versus protein/fat (median insulin tAUC0-4h727 vs 335 pmol/L, p=0.04), but in KCNJ11 cases insulin secretion was similar after carbohydrate and protein/fat (median insulin tAUC0-4h327 vs 378 pmol/L, p=0.50). CONCLUSIONS Individuals with sulfonylurea-treated KCNJ11 PNDM produce similar levels of insulin in response to both carbohydrate and protein/fat meals despite carbohydrate resulting in much higher glucose levels and protein/fat resulting in relatively low glucose levels. This suggests in an inability to modulate insulin secretion in response to glucose levels, consistent with a dependence on non-KATP pathways for insulin secretion. TRIAL REGISTRATION NUMBER NCT02921906.
Collapse
Affiliation(s)
- Pamela Bowman
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, Devon, UK
- Exeter NIHR Clinical Research Facility, Exeter, Devon, UK
- Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, UK
| | - Timothy J McDonald
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, Devon, UK
- Exeter NIHR Clinical Research Facility, Exeter, Devon, UK
- Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, UK
| | - Bridget A Knight
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, Devon, UK
- Exeter NIHR Clinical Research Facility, Exeter, Devon, UK
- Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, UK
| | - Sarah E Flanagan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, Devon, UK
| | - Maria Leveridge
- Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, UK
| | - Steve R Spaull
- Exeter NIHR Clinical Research Facility, Exeter, Devon, UK
| | - Beverley M Shields
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, Devon, UK
| | - Suzanne Hammersley
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, Devon, UK
- Exeter NIHR Clinical Research Facility, Exeter, Devon, UK
- Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, UK
| | - Maggie H Shepherd
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, Devon, UK
- Exeter NIHR Clinical Research Facility, Exeter, Devon, UK
- Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, UK
| | - Robert C Andrews
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, Devon, UK
- Exeter NIHR Clinical Research Facility, Exeter, Devon, UK
| | - Kashyap A Patel
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, Devon, UK
- Exeter NIHR Clinical Research Facility, Exeter, Devon, UK
- Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, UK
| | - Andrew T Hattersley
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, Devon, UK
- Exeter NIHR Clinical Research Facility, Exeter, Devon, UK
- Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, UK
| |
Collapse
|
36
|
Lai BK, Chae H, Gómez-Ruiz A, Cheng P, Gallo P, Antoine N, Beauloye C, Jonas JC, Seghers V, Seino S, Gilon P. Somatostatin Is Only Partly Required for the Glucagonostatic Effect of Glucose but Is Necessary for the Glucagonostatic Effect of K ATP Channel Blockers. Diabetes 2018; 67:2239-2253. [PMID: 30115649 DOI: 10.2337/db17-0880] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 08/03/2018] [Indexed: 11/13/2022]
Abstract
The mechanisms of control of glucagon secretion are largely debated. In particular, the paracrine role of somatostatin (SST) is unclear. We studied its role in the control of glucagon secretion by glucose and KATP channel blockers, using perifused islets and the in situ perfused pancreas. The involvement of SST was evaluated by comparing glucagon release of control tissue or tissue without paracrine influence of SST (pertussis toxin-treated islets, or islets or pancreas from Sst-/- mice). We show that removal of the paracrine influence of SST suppresses the ability of KATP channel blockers or KATP channel ablation to inhibit glucagon release, suggesting that in control islets, the glucagonostatic effect of KATP channel blockers/ablation is fully mediated by SST. By contrast, the glucagonostatic effect of glucose in control islets is mainly independent of SST for low glucose concentrations (0-7 mmol/L) but starts to involve SST for high concentrations of the sugar (15-30 mmol/L). This demonstrates that the glucagonostatic effect of glucose only partially depends on SST. Real-time quantitative PCR and pharmacological experiments indicate that the glucagonostatic effect of SST is mediated by two types of SST receptors, SSTR2 and SSTR3. These results suggest that alterations of the paracrine influence of SST will affect glucagon release.
Collapse
Affiliation(s)
- Bao-Khanh Lai
- Pôle d'Endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Heeyoung Chae
- Pôle d'Endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Ana Gómez-Ruiz
- Pôle d'Endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Panpan Cheng
- Pôle d'Endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Paola Gallo
- Pôle d'Endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Nancy Antoine
- Pôle d'Endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Christophe Beauloye
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Jean-Christophe Jonas
- Pôle d'Endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Victor Seghers
- Department of Pediatric Radiology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX
| | - Susumu Seino
- Division of Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Patrick Gilon
- Pôle d'Endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
37
|
Tarasov AI, Galvanovskis J, Rorsman O, Hamilton A, Vergari E, Johnson PRV, Reimann F, Ashcroft FM, Rorsman P. Monitoring real-time hormone release kinetics via high-content 3-D imaging of compensatory endocytosis. LAB ON A CHIP 2018; 18:2838-2848. [PMID: 30083680 PMCID: PMC6250124 DOI: 10.1039/c8lc00417j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/26/2018] [Indexed: 05/02/2023]
Abstract
High-content real-time imaging of hormone secretion in tissues or cell populations is a challenging task, which is unlikely to be resolved directly, despite immense translational value. We approach this problem indirectly, using compensatory endocytosis, a process that closely follows exocytosis in the cell, as a surrogate read-out for secretion. The tissue is immobilized in an open-air perifusion chamber and imaged using a two-photon microscope. A fluorescent polar tracer, perifused through the experimental circuit, gets trapped into the cells via endocytosis, and is quantified using a feature-detection algorithm. The signal of the tracer that accumulates into the endocytotic system reliably reflects stimulated exocytosis, which is demonstrated via co-imaging of the latter using existing reporters. A high signal-to-noise ratio and compatibility with multisensor imaging affords the real-time quantification of the secretion at the tissue/population level, whereas the cumulative nature of the signal allows imprinting of the "secretory history" within each cell. The technology works for several cell types, reflects disease progression and can be used for human tissue.
Collapse
Affiliation(s)
- Andrei I Tarasov
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, University of Oxford, Headington, OX3 7LE, Oxford, UK. and Oxford National Institute for Health Research, Biomedical Research Centre, Churchill Hospital, Oxford OX3 7LE, UK
| | - Juris Galvanovskis
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, University of Oxford, Headington, OX3 7LE, Oxford, UK.
| | - Olof Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, University of Oxford, Headington, OX3 7LE, Oxford, UK.
| | - Alexander Hamilton
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, University of Oxford, Headington, OX3 7LE, Oxford, UK.
| | - Elisa Vergari
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, University of Oxford, Headington, OX3 7LE, Oxford, UK.
| | - Paul R V Johnson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, University of Oxford, Headington, OX3 7LE, Oxford, UK.
| | - Frank Reimann
- Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0QQ UK
| | - Frances M Ashcroft
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks road, Oxford, OX1 3PT, UK
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, University of Oxford, Headington, OX3 7LE, Oxford, UK. and Oxford National Institute for Health Research, Biomedical Research Centre, Churchill Hospital, Oxford OX3 7LE, UK and Institute of Neuroscience of Physiology, Department of Physiology, Metabolic Research Unit, University of Göteborg, Box 430, SE-405 30 Göteborg, Sweden
| |
Collapse
|
38
|
Vierra NC, Dickerson MT, Jordan KL, Dadi PK, Katdare KA, Altman MK, Milian SC, Jacobson DA. TALK-1 reduces delta-cell endoplasmic reticulum and cytoplasmic calcium levels limiting somatostatin secretion. Mol Metab 2018; 9:84-97. [PMID: 29402588 PMCID: PMC5870147 DOI: 10.1016/j.molmet.2018.01.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 01/19/2018] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE Single-cell RNA sequencing studies have revealed that the type-2 diabetes associated two-pore domain K+ (K2P) channel TALK-1 is abundantly expressed in somatostatin-secreting δ-cells. However, a physiological role for TALK-1 in δ-cells remains unknown. We previously determined that in β-cells, K+ flux through endoplasmic reticulum (ER)-localized TALK-1 channels enhances ER Ca2+ leak, modulating Ca2+ handling and insulin secretion. As glucose amplification of islet somatostatin release relies on Ca2+-induced Ca2+ release (CICR) from the δ-cell ER, we investigated whether TALK-1 modulates δ-cell Ca2+ handling and somatostatin secretion. METHODS To define the functions of islet δ-cell TALK-1 channels, we generated control and TALK-1 channel-deficient (TALK-1 KO) mice expressing fluorescent reporters specifically in δ- and α-cells to facilitate cell type identification. Using immunofluorescence, patch clamp electrophysiology, Ca2+ imaging, and hormone secretion assays, we assessed how TALK-1 channel activity impacts δ- and α-cell function. RESULTS TALK-1 channels are expressed in both mouse and human δ-cells, where they modulate glucose-stimulated changes in cytosolic Ca2+ and somatostatin secretion. Measurement of cytosolic Ca2+ levels in response to membrane potential depolarization revealed enhanced CICR in TALK-1 KO δ-cells that could be abolished by depleting ER Ca2+ with sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) inhibitors. Consistent with elevated somatostatin inhibitory tone, we observed significantly reduced glucagon secretion and α-cell Ca2+ oscillations in TALK-1 KO islets, and found that blockade of α-cell somatostatin signaling with a somatostatin receptor 2 (SSTR2) antagonist restored glucagon secretion in TALK-1 KO islets. CONCLUSIONS These data indicate that TALK-1 reduces δ-cell cytosolic Ca2+ elevations and somatostatin release by limiting δ-cell CICR, modulating the intraislet paracrine signaling mechanisms that control glucagon secretion.
Collapse
Affiliation(s)
- Nicholas C Vierra
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Matthew T Dickerson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Kelli L Jordan
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Prasanna K Dadi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Ketaki A Katdare
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Molly K Altman
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Sarah C Milian
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - David A Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
39
|
Misunderstandings and controversies about the insulin-secreting properties of antidiabetic sulfonylureas. Biochimie 2017; 143:3-9. [DOI: 10.1016/j.biochi.2017.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/10/2017] [Indexed: 12/28/2022]
|
40
|
Kim M, Lee EJ, Shin HM, Jung HS, Kim TK, Kim TN, Kwon MJ, Lee SH, Rhee BD, Park JH. The effect of PPARγ agonist on SGLT2 and glucagon expressions in alpha cells under hyperglycemia. J Endocrinol Invest 2017; 40:1069-1076. [PMID: 28391584 DOI: 10.1007/s40618-017-0659-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/17/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND Although sodium glucose cotransporter 2 (SGLT2) inhibitors have many beneficial effects for type 2 diabetes, including decreased cardiovascular death, recent reports that they increased glucagon through SGLT2 inhibition raised some concern. Troglitazone, Peroxisome proliferator-activated receptor γ (PPAR-γ) agonist, was reported to increase SGLT2 in renal proximal tubule cells, but its role on pancreatic alpha cells have not been reported. We investigated the effect of troglitazone on SGLT2 expression in alpha cells and subsequent glucagon regulation in hyperglycemia. METHODS An Alpha TC1-6 cell line was cultured in control (5 mM) or hyperglycemia (HG, 15 mM) for 72 h. We applied troglitazone with or without PPARγ antagonist (GW9662 10 μM). To investigate the involvement of PI3K/Akt pathway, we applied troglitazone with or without Wortmanin. We measured sodium glucose transporter 2 (SGLT2) and glucagon (GCG) mRNA and protein expression. PPAR gamma, PI3K and Akt protein were also measured. RESULTS Exposure of alpha TC cells to HG for 72 h increased glucagon mRNA and protein expression. HG decreased SGLT2 mRNA and protein expression. Troglitazone significantly reversed HG-induced reduction of SGLT2 expression and increase of glucagon secretion. PPARγ antagonist (GW9662 10 μM) decreased the expression of SGLT2 and increased glucagon as HG did. Hyperglycemia increased PI3K and pAkt expression in alpha cells. Wortmanin (PI3K inhibitor, 1 μM) reversed HG-induced SGLT2 decrease and glucagon increase. Troglitazone treatment decreased PI3K and pAkt expression in HG. CONCLUSION In conclusion, PPARγ agonist, troglitazone improved glucose transport SGLT2 dysfunction and subsequent glucagon dysregulation in alpha cell under hyperglycemia. Those effects were through the involvement of PI3K/pAkt signaling pathway. This study may add one more reason for the ideal combination of PPARγ agonist and SGLT2 inhibitor in clinical practice.
Collapse
Affiliation(s)
- M Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Inje University, 875, Hauendae-ro, Hauendae-gu, Busan, 612-862, South Korea.
- Molecular Therapy Lab, Paik Institute for Clinical Research, Inje University, Busan, South Korea.
| | - E J Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Inje University, 875, Hauendae-ro, Hauendae-gu, Busan, 612-862, South Korea
| | - H M Shin
- Molecular Therapy Lab, Paik Institute for Clinical Research, Inje University, Busan, South Korea
| | - H S Jung
- Molecular Therapy Lab, Paik Institute for Clinical Research, Inje University, Busan, South Korea
| | - T K Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Inje University, 875, Hauendae-ro, Hauendae-gu, Busan, 612-862, South Korea
| | - T N Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Inje University, 875, Hauendae-ro, Hauendae-gu, Busan, 612-862, South Korea
| | - M J Kwon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Inje University, 875, Hauendae-ro, Hauendae-gu, Busan, 612-862, South Korea
| | - S H Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Inje University, 875, Hauendae-ro, Hauendae-gu, Busan, 612-862, South Korea
| | - B D Rhee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Inje University, 875, Hauendae-ro, Hauendae-gu, Busan, 612-862, South Korea
| | - J H Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Inje University, 875, Hauendae-ro, Hauendae-gu, Busan, 612-862, South Korea
- Molecular Therapy Lab, Paik Institute for Clinical Research, Inje University, Busan, South Korea
| |
Collapse
|
41
|
Tengholm A, Gylfe E. cAMP signalling in insulin and glucagon secretion. Diabetes Obes Metab 2017; 19 Suppl 1:42-53. [PMID: 28466587 DOI: 10.1111/dom.12993] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 01/24/2023]
Abstract
The "second messenger" archetype cAMP is one of the most important cellular signalling molecules with central functions including the regulation of insulin and glucagon secretion from the pancreatic β- and α-cells, respectively. cAMP is generally considered as an amplifier of insulin secretion triggered by Ca2+ elevation in the β-cells. Both messengers are also positive modulators of glucagon release from α-cells, but in this case cAMP may be the important regulator and Ca2+ have a more permissive role. The actions of cAMP are mediated by protein kinase A (PKA) and the guanine nucleotide exchange factor Epac. The present review focuses on how cAMP is regulated by nutrients, hormones and neural factors in β- and α-cells via adenylyl cyclase-catalysed generation and phosphodiesterase-mediated degradation. We will also discuss how PKA and Epac affect ion fluxes and the secretory machinery to transduce the stimulatory effects on insulin and glucagon secretion. Finally, we will briefly describe disturbances of the cAMP system associated with diabetes and how cAMP signalling can be targeted to normalize hypo- and hypersecretion of insulin and glucagon, respectively, in diabetic patients.
Collapse
Affiliation(s)
- Anders Tengholm
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Erik Gylfe
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
42
|
Briant LJB, Zhang Q, Vergari E, Kellard JA, Rodriguez B, Ashcroft FM, Rorsman P. Functional identification of islet cell types by electrophysiological fingerprinting. J R Soc Interface 2017; 14:20160999. [PMID: 28275121 PMCID: PMC5378133 DOI: 10.1098/rsif.2016.0999] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 02/15/2017] [Indexed: 01/18/2023] Open
Abstract
The α-, β- and δ-cells of the pancreatic islet exhibit different electrophysiological features. We used a large dataset of whole-cell patch-clamp recordings from cells in intact mouse islets (N = 288 recordings) to investigate whether it is possible to reliably identify cell type (α, β or δ) based on their electrophysiological characteristics. We quantified 15 electrophysiological variables in each recorded cell. Individually, none of the variables could reliably distinguish the cell types. We therefore constructed a logistic regression model that included all quantified variables, to determine whether they could together identify cell type. The model identified cell type with 94% accuracy. This model was applied to a dataset of cells recorded from hyperglycaemic βV59M mice; it correctly identified cell type in all cells and was able to distinguish cells that co-expressed insulin and glucagon. Based on this revised functional identification, we were able to improve conductance-based models of the electrical activity in α-cells and generate a model of δ-cell electrical activity. These new models could faithfully emulate α- and δ-cell electrical activity recorded experimentally.
Collapse
Affiliation(s)
- Linford J B Briant
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK
- Department of Computer Science, University of Oxford, Oxford OX1 3QD, UK
| | - Quan Zhang
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK
| | - Elisa Vergari
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK
| | - Joely A Kellard
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK
| | - Blanca Rodriguez
- Department of Computer Science, University of Oxford, Oxford OX1 3QD, UK
| | - Frances M Ashcroft
- Department of Physiology, Anatomy, and Genetics, University of Oxford, South Parks Road, Oxford OX1 3PT, UK
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK
- Metabolic Research, Department of Physiology, Institute of Neuroscience and Physiology, University of Göteborg, SE-405 30 Göteborg, Sweden
| |
Collapse
|
43
|
Dapagliflozin stimulates glucagon secretion at high glucose: experiments and mathematical simulations of human A-cells. Sci Rep 2016; 6:31214. [PMID: 27535321 PMCID: PMC4989223 DOI: 10.1038/srep31214] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 06/07/2016] [Indexed: 01/10/2023] Open
Abstract
Glucagon is one of the main regulators of blood glucose levels and dysfunctional stimulus secretion coupling in pancreatic A-cells is believed to be an important factor during development of diabetes. However, regulation of glucagon secretion is poorly understood. Recently it has been shown that Na+/glucose co-transporter (SGLT) inhibitors used for the treatment of diabetes increase glucagon levels in man. Here, we show experimentally that the SGLT2 inhibitor dapagliflozin increases glucagon secretion at high glucose levels both in human and mouse islets, but has little effect at low glucose concentrations. Because glucagon secretion is regulated by electrical activity we developed a mathematical model of A-cell electrical activity based on published data from human A-cells. With operating SGLT2, simulated glucose application leads to cell depolarization and inactivation of the voltage-gated ion channels carrying the action potential, and hence to reduce action potential height. According to our model, inhibition of SGLT2 reduces glucose-induced depolarization via electrical mechanisms. We suggest that blocking SGLTs partly relieves glucose suppression of glucagon secretion by allowing full-scale action potentials to develop. Based on our simulations we propose that SGLT2 is a glucose sensor and actively contributes to regulation of glucagon levels in humans which has clinical implications.
Collapse
|
44
|
Briant L, Salehi A, Vergari E, Zhang Q, Rorsman P. Glucagon secretion from pancreatic α-cells. Ups J Med Sci 2016; 121:113-9. [PMID: 27044683 PMCID: PMC4900066 DOI: 10.3109/03009734.2016.1156789] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 02/16/2016] [Indexed: 11/13/2022] Open
Abstract
Type 2 diabetes involves a ménage à trois of impaired glucose regulation of pancreatic hormone release: in addition to impaired glucose-induced insulin secretion, the release of the hyperglycaemic hormone glucagon becomes dysregulated; these last-mentioned defects exacerbate the metabolic consequences of hypoinsulinaemia and are compounded further by hypersecretion of somatostatin (which inhibits both insulin and glucagon secretion). Glucagon secretion has been proposed to be regulated by either intrinsic or paracrine mechanisms, but their relative significance and the conditions under which they operate are debated. Importantly, the paracrine and intrinsic modes of regulation are not mutually exclusive; they could operate in parallel to control glucagon secretion. Here we have applied mathematical modelling of α-cell electrical activity as a novel means of dissecting the processes that underlie metabolic regulation of glucagon secretion. Our analyses indicate that basal hypersecretion of somatostatin and/or increased activity of somatostatin receptors may explain the loss of adequate counter-regulation under hypoglycaemic conditions, as well as the physiologically inappropriate stimulation of glucagon secretion during hyperglycaemia seen in diabetic patients. We therefore advocate studying the interaction of the paracrine and intrinsic mechanisms; unifying these processes may give a more complete picture of the regulation of glucagon secretion from α-cells than studying the individual parts.
Collapse
Affiliation(s)
- Linford Briant
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK;
| | - Albert Salehi
- Metabolic Research, Department of Physiology, Institute of Neuroscience and Physiology, University of Göteborg, Göteborg, Sweden
| | - Elisa Vergari
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK;
| | - Quan Zhang
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK;
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK;
- Metabolic Research, Department of Physiology, Institute of Neuroscience and Physiology, University of Göteborg, Göteborg, Sweden
| |
Collapse
|
45
|
Gylfe E. Glucose control of glucagon secretion-'There's a brand-new gimmick every year'. Ups J Med Sci 2016; 121:120-32. [PMID: 27044660 PMCID: PMC4900067 DOI: 10.3109/03009734.2016.1154905] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 02/10/2016] [Accepted: 02/11/2016] [Indexed: 11/13/2022] Open
Abstract
Glucagon from the pancreatic α-cells is a major blood glucose-regulating hormone whose most important role is to prevent hypoglycaemia that can be life-threatening due to the brain's strong dependence on glucose as energy source. Lack of blood glucose-lowering insulin after malfunction or autoimmune destruction of the pancreatic β-cells is the recognized cause of diabetes, but recent evidence indicates that diabetic hyperglycaemia would not develop unless lack of insulin was accompanied by hypersecretion of glucagon. Glucagon release has therefore become an increasingly important target in diabetes management. Despite decades of research, an understanding of how glucagon secretion is regulated remains elusive, and fundamentally different mechanisms continue to be proposed. The autonomous nervous system is an important determinant of glucagon release, but it is clear that secretion is also directly regulated within the pancreatic islets. The present review focuses on pancreatic islet mechanisms involved in glucose regulation of glucagon release. It will be argued that α-cell-intrinsic processes are most important for regulation of glucagon release during recovery from hypoglycaemia and that paracrine inhibition by somatostatin from the δ-cells shapes pulsatile glucagon release in hyperglycaemia. The electrically coupled β-cells ultimately determine islet hormone pulsatility by releasing synchronizing factors that affect the α- and δ-cells.
Collapse
Affiliation(s)
- Erik Gylfe
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
46
|
Watts M, Ha J, Kimchi O, Sherman A. Paracrine regulation of glucagon secretion: the β/α/δ model. Am J Physiol Endocrinol Metab 2016; 310:E597-E611. [PMID: 26837808 PMCID: PMC4835945 DOI: 10.1152/ajpendo.00415.2015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 01/19/2016] [Indexed: 01/17/2023]
Abstract
The regulation of glucagon secretion in the pancreatic α-cell is not well understood. It has been proposed that glucose suppresses glucagon secretion either directly through an intrinsic mechanism within the α-cell or indirectly through an extrinsic mechanism. Previously, we described a mathematical model for isolated pancreatic α-cells and used it to investigate possible intrinsic mechanisms of regulating glucagon secretion. We demonstrated that glucose can suppress glucagon secretion through both ATP-dependent potassium channels (KATP) and a store-operated current (SOC). We have now developed an islet model that combines previously published mathematical models of α- and β-cells with a new model of δ-cells and use it to explore the effects of insulin and somatostatin on glucagon secretion. We show that the model can reproduce experimental observations that the inhibitory effect of glucose remains even when paracrine modulators are no longer acting on the α-cell. We demonstrate how paracrine interactions can either synchronize α- and δ-cells to produce pulsatile oscillations in glucagon and somatostatin secretion or fail to do so. The model can also account for the paradoxical observation that glucagon can be out of phase with insulin, whereas α-cell calcium is in phase with insulin. We conclude that both paracrine interactions and the α-cell's intrinsic mechanisms are needed to explain the response of glucagon secretion to glucose.
Collapse
Affiliation(s)
- Margaret Watts
- Laboratory of Biological Modeling, National Institutes of Health, Bethesda, Maryland; and
| | - Joon Ha
- Laboratory of Biological Modeling, National Institutes of Health, Bethesda, Maryland; and
| | - Ofer Kimchi
- Department of Physics, Princeton University, Princeton, New Jersey
| | - Arthur Sherman
- Laboratory of Biological Modeling, National Institutes of Health, Bethesda, Maryland; and
| |
Collapse
|
47
|
Dusaulcy R, Handgraaf S, Heddad-Masson M, Visentin F, Vesin C, Reimann F, Gribble F, Philippe J, Gosmain Y. α-Cell Dysfunctions and Molecular Alterations in Male Insulinopenic Diabetic Mice Are Not Completely Corrected by Insulin. Endocrinology 2016; 157:536-47. [PMID: 26696123 PMCID: PMC7228809 DOI: 10.1210/en.2015-1725] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Glucagon and α-cell dysfunction are critical in the development of hyperglycemia during diabetes both in humans and rodents. We hypothesized that α-cell dysfunction leading to dysregulated glucagon secretion in diabetes is due to both a lack of insulin and intrinsic defects. To characterize α-cell dysfunction in diabetes, we used glucagon-Venus transgenic male mice and induced insulinopenic hyperglycemia by streptozotocin administration leading to alterations of glucagon secretion. We investigated the in vivo impact of insulinopenic hyperglycemia on glucagon-producing cells using FACS-sorted α-cells from control and diabetic mice. We demonstrate that increased glucagonemia in diabetic mice is mainly due to increases of glucagon release and biosynthesis per cell compared with controls without changes in α-cell mass. We identified genes coding for proteins involved in glucagon biosynthesis and secretion, α-cell differentiation, and potential stress markers such as the glucagon, Arx, MafB, cMaf, Brain4, Foxa1, Foxa3, HNF4α, TCF7L2, Glut1, Sglt2, Cav2.1, Cav2.2, Nav1.7, Kir6.2/Sur1, Pten, IR, NeuroD1, GPR40, and Sumo1 genes, which were abnormally regulated in diabetic mice. Importantly, insulin treatment partially corrected α-cell function and expression of genes coding for proglucagon, or involved in glucagon secretion, glucose transport and insulin signaling but not those coding for cMAF, FOXA1, and α-cell differentiation markers as well as GPR40, NEUROD1, CAV2.1, and SUMO1. Our results indicate that insulinopenic diabetes induce marked α-cell dysfunction and molecular alteration, which are only partially corrected by in vivo insulin treatment.
Collapse
Affiliation(s)
- Rodolphe Dusaulcy
- Molecular Diabetes Laboratory, Division of Endocrinology-Diabetes-Hypertension and Nutrition, University Hospital/University of Geneva Medical School, Geneva, Switzerland
| | - Sandra Handgraaf
- Molecular Diabetes Laboratory, Division of Endocrinology-Diabetes-Hypertension and Nutrition, University Hospital/University of Geneva Medical School, Geneva, Switzerland
| | - Mounia Heddad-Masson
- Molecular Diabetes Laboratory, Division of Endocrinology-Diabetes-Hypertension and Nutrition, University Hospital/University of Geneva Medical School, Geneva, Switzerland
| | - Florian Visentin
- Molecular Diabetes Laboratory, Division of Endocrinology-Diabetes-Hypertension and Nutrition, University Hospital/University of Geneva Medical School, Geneva, Switzerland
| | - Christian Vesin
- Department of Cell Physiology and Metabolism, University of Geneva School of Medicine, 1211 Geneva, Switzerland
| | - Franck Reimann
- Cambridge Institute for Medical Research, Wellcome Trust/Medical Research Council Building, Addenbrooke’s Hospital, cambridge, U.K
| | - Fiona Gribble
- Cambridge Institute for Medical Research, Wellcome Trust/Medical Research Council Building, Addenbrooke’s Hospital, cambridge, U.K
| | - Jacques Philippe
- Molecular Diabetes Laboratory, Division of Endocrinology-Diabetes-Hypertension and Nutrition, University Hospital/University of Geneva Medical School, Geneva, Switzerland
| | - Yvan Gosmain
- Molecular Diabetes Laboratory, Division of Endocrinology-Diabetes-Hypertension and Nutrition, University Hospital/University of Geneva Medical School, Geneva, Switzerland
| |
Collapse
|
48
|
Abstract
PURPOSE OF REVIEW Autoimmune destruction of the β cells is considered the key abnormality in type 1 diabetes mellitus and insulin replacement the primary therapeutic strategy. However, a lack of insulin is accompanied by disturbances in glucagon release, which is excessive postprandially, but insufficient during hypoglycaemia. In addition, replacing insulin alone appears insufficient for adequate glucose control. This review focuses on the growing body of evidence that glucagon abnormalities contribute significantly to the pathophysiology of diabetes and on recent efforts to target the glucagon axis as adjunctive therapy to insulin replacement. RECENT FINDINGS This review discusses recent (since 2013) advances in abnormalities of glucagon regulation and their link to the pathophysiology of diabetes; new mechanisms of glucagon action and regulation; manipulation of glucagon in diabetes treatment; and analytical and systems biology tools to study glucagon regulation. SUMMARY Recent efforts 'resurrected' glucagon as a key hormone in the pathophysiology of diabetes. New studies target its abnormal regulation and action that is key for improving diabetes treatment. The progress is promising, but major questions remain, including unravelling the mechanism of loss of glucagon counterregulation in type 1 diabetes mellitus and how best to manipulate glucagon to achieve more efficient and safer glycaemic control.
Collapse
Affiliation(s)
- Leon S Farhy
- Division of Endocrinology and Metabolism, Department of Medicine and Center for Diabetes Technology, University of Virginia, Charlottesville, Virginia, USA
| | | |
Collapse
|
49
|
Sandoval DA, D'Alessio DA. Physiology of proglucagon peptides: role of glucagon and GLP-1 in health and disease. Physiol Rev 2015; 95:513-48. [PMID: 25834231 DOI: 10.1152/physrev.00013.2014] [Citation(s) in RCA: 342] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The preproglucagon gene (Gcg) is expressed by specific enteroendocrine cells (L-cells) of the intestinal mucosa, pancreatic islet α-cells, and a discrete set of neurons within the nucleus of the solitary tract. Gcg encodes multiple peptides including glucagon, glucagon-like peptide-1, glucagon-like peptide-2, oxyntomodulin, and glicentin. Of these, glucagon and GLP-1 have received the most attention because of important roles in glucose metabolism, involvement in diabetes and other disorders, and application to therapeutics. The generally accepted model is that GLP-1 improves glucose homeostasis indirectly via stimulation of nutrient-induced insulin release and by reducing glucagon secretion. Yet the body of literature surrounding GLP-1 physiology reveals an incompletely understood and complex system that includes peripheral and central GLP-1 actions to regulate energy and glucose homeostasis. On the other hand, glucagon is established principally as a counterregulatory hormone, increasing in response to physiological challenges that threaten adequate blood glucose levels and driving glucose production to restore euglycemia. However, there also exists a potential role for glucagon in regulating energy expenditure that has recently been suggested in pharmacological studies. It is also becoming apparent that there is cross-talk between the proglucagon derived-peptides, e.g., GLP-1 inhibits glucagon secretion, and some additive or synergistic pharmacological interaction between GLP-1 and glucagon, e.g., dual glucagon/GLP-1 agonists cause more weight loss than single agonists. In this review, we discuss the physiological functions of both glucagon and GLP-1 by comparing and contrasting how these peptides function, variably in concert and opposition, to regulate glucose and energy homeostasis.
Collapse
Affiliation(s)
- Darleen A Sandoval
- Division of Endocrinology and Metabolism, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - David A D'Alessio
- Division of Endocrinology and Metabolism, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
50
|
Bonner C, Kerr-Conte J, Gmyr V, Queniat G, Moerman E, Thévenet J, Beaucamps C, Delalleau N, Popescu I, Malaisse WJ, Sener A, Deprez B, Abderrahmani A, Staels B, Pattou F. Inhibition of the glucose transporter SGLT2 with dapagliflozin in pancreatic alpha cells triggers glucagon secretion. Nat Med 2015; 21:512-7. [PMID: 25894829 DOI: 10.1038/nm.3828] [Citation(s) in RCA: 471] [Impact Index Per Article: 47.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 02/19/2015] [Indexed: 12/11/2022]
Abstract
Type 2 diabetes (T2D) is characterized by chronic hyperglycemia resulting from a deficiency in insulin signaling, because of insulin resistance and/or defects in insulin secretion; it is also associated with increases in glucagon and endogenous glucose production (EGP). Gliflozins, including dapagliflozin, are a new class of approved oral antidiabetic agents that specifically inhibit sodium-glucose co-transporter 2 (SGLT2) function in the kidney, thus preventing renal glucose reabsorption and increasing glycosuria in diabetic individuals while reducing hyperglycemia. However, gliflozin treatment in subjects with T2D increases both plasma glucagon and EGP by unknown mechanisms. In spite of the rise in EGP, T2D patients treated with gliflozin have lower blood glucose levels than those receiving placebo, possibly because of increased glycosuria; however, the resulting increase in plasma glucagon levels represents a possible concerning side effect, especially in a patient population already affected by hyperglucagonemia. Here we demonstrate that SGLT2 is expressed in glucagon-secreting alpha cells of the pancreatic islets. We further found that expression of SLC5A2 (which encodes SGLT2) was lower and glucagon (GCG) gene expression was higher in islets from T2D individuals and in normal islets exposed to chronic hyperglycemia than in islets from non-diabetics. Moreover, hepatocyte nuclear factor 4-α (HNF4A) is specifically expressed in human alpha cells, in which it controls SLC5A2 expression, and its expression is downregulated by hyperglycemia. In addition, inhibition of either SLC5A2 via siRNA-induced gene silencing or SGLT2 via dapagliflozin treatment in human islets triggered glucagon secretion through KATP channel activation. Finally, we found that dapagliflozin treatment further promotes glucagon secretion and hepatic gluconeogenesis in healthy mice, thereby limiting the decrease of plasma glucose induced by fasting. Collectively, these results identify a heretofore unknown role of SGLT2 and designate dapagliflozin an alpha cell secretagogue.
Collapse
Affiliation(s)
- Caroline Bonner
- 1] European Genomic Institute for Diabetes, Lille, France. [2] INSERM UMR 1190, Lille, France. [3] Centre Hospitalier Régional Universitaire, Lille, France
| | - Julie Kerr-Conte
- 1] European Genomic Institute for Diabetes, Lille, France. [2] INSERM UMR 1190, Lille, France. [3] Centre Hospitalier Régional Universitaire, Lille, France. [4] Université de Lille, Lille, France
| | - Valéry Gmyr
- 1] European Genomic Institute for Diabetes, Lille, France. [2] INSERM UMR 1190, Lille, France. [3] Université de Lille, Lille, France
| | - Gurvan Queniat
- 1] European Genomic Institute for Diabetes, Lille, France. [2] INSERM UMR 1190, Lille, France. [3] Université de Lille, Lille, France
| | - Ericka Moerman
- 1] European Genomic Institute for Diabetes, Lille, France. [2] INSERM UMR 1190, Lille, France. [3] Université de Lille, Lille, France
| | - Julien Thévenet
- 1] European Genomic Institute for Diabetes, Lille, France. [2] INSERM UMR 1190, Lille, France. [3] Université de Lille, Lille, France
| | - Cédric Beaucamps
- 1] European Genomic Institute for Diabetes, Lille, France. [2] INSERM UMR 1190, Lille, France. [3] Centre Hospitalier Régional Universitaire, Lille, France
| | - Nathalie Delalleau
- 1] European Genomic Institute for Diabetes, Lille, France. [2] INSERM UMR 1190, Lille, France. [3] Université de Lille, Lille, France
| | - Iuliana Popescu
- Laboratory of Experimental Hormonology, Medical School, Université Libre de Bruxelles, Brussels, Belgium
| | - Willy J Malaisse
- Laboratory of Experimental Hormonology, Medical School, Université Libre de Bruxelles, Brussels, Belgium
| | - Abdullah Sener
- Laboratory of Experimental Hormonology, Medical School, Université Libre de Bruxelles, Brussels, Belgium
| | - Benoit Deprez
- 1] Université de Lille, Lille, France. [2] INSERM UMR 1177, Lille, France. [3] Institut Pasteur de Lille, Lille, France
| | - Amar Abderrahmani
- 1] European Genomic Institute for Diabetes, Lille, France. [2] Université de Lille, Lille, France. [3] CNRS UMR 8199, Lille, France
| | - Bart Staels
- 1] European Genomic Institute for Diabetes, Lille, France. [2] Université de Lille, Lille, France. [3] Institut Pasteur de Lille, Lille, France. [4] INSERM UMR 1011, Lille, France
| | - François Pattou
- 1] European Genomic Institute for Diabetes, Lille, France. [2] INSERM UMR 1190, Lille, France. [3] Centre Hospitalier Régional Universitaire, Lille, France. [4] Université de Lille, Lille, France
| |
Collapse
|