1
|
Mao J, Gan Y, Tan X, He Y, Jing Q, Shi Q. A Two-Sample Mendelian Randomization Study of Basophil Count and Risk of Gestational Diabetes Mellitus. Int J Womens Health 2025; 17:517-527. [PMID: 40028461 PMCID: PMC11872098 DOI: 10.2147/ijwh.s500632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 01/22/2025] [Indexed: 03/05/2025] Open
Abstract
Objective High basophil count levels are associated with an increased risk of gestational diabetes mellitus (GDM). We used two-sample Mendelian randomisation (MR) to explore a potential causal relationship. It also aims to offer genetic evidence supporting the link between basophil count and the development of gestational diabetes mellitus while addressing the potential issues of confounding and reverse causality commonly encountered in observational studies. Methods We utilized publically accessible summary information obtained from genome-wide association studies (GWAS) for conducting a two-sample Mendelian randomization (TSMR) study. The major analysis method employed was inverse variance weighted (IVW), whereas the other four methods, namely weighted median method, MR-Egger regression, simple model and weighted model, were used as supplemental analyses. We also investigated the relationship between GDM and basophil count in the opposite direction using directional validation of MR analysis. Furthermore, the R package "ClusterProfiler" to conduct an analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and Gene Ontology (GO) terms was used. Additionally, with the help of the STRING database, we have constructed a network of protein-protein interactions (PPIs). Results The Inverse Variance Weighted (IVW) method revealed a significant causal association between basophil count and gestational diabetes mellitus (OR, 0.84; 95% CI; 0.74-0.96; P, 0.01). A sensitivity analysis was performed to assess the reliability of the results, indicating no indication of pleiotropy or heterogeneity, hence strengthening the validity of the findings. The reverse causation of GDM predisposition on basophil counts was not supported by the results of the directional validation of the MR analysis. Conclusion The results of this study showed a causal relationship between high basophil counts and increased risk of GDM but did not support a causal relationship between genetic susceptibility to GDM and basophil counts.
Collapse
Affiliation(s)
- Jing Mao
- Affiliated Hospital of North Sichuan Medical College, Nanchong, People’s Republic of China
| | - Yanqiong Gan
- Affiliated Hospital of North Sichuan Medical College, Nanchong, People’s Republic of China
| | - Xinlin Tan
- Affiliated Hospital of North Sichuan Medical College, Nanchong, People’s Republic of China
| | - Yuhan He
- Affiliated Hospital of North Sichuan Medical College, Nanchong, People’s Republic of China
| | - Qiao Jing
- Affiliated Hospital of North Sichuan Medical College, Nanchong, People’s Republic of China
| | - Qi Shi
- Affiliated Hospital of North Sichuan Medical College, Nanchong, People’s Republic of China
| |
Collapse
|
2
|
Karampelias C, Liu KC, Tengholm A, Andersson O. Mechanistic insights and approaches for beta cell regeneration. Nat Chem Biol 2025:10.1038/s41589-024-01822-y. [PMID: 39881214 DOI: 10.1038/s41589-024-01822-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 12/09/2024] [Indexed: 01/31/2025]
Abstract
Diabetes is characterized by variable loss of insulin-producing beta cells, and new regenerative approaches to increasing the functional beta cell mass of patients hold promise for reversing disease progression. In this Review, we summarize recent chemical biology breakthroughs advancing our knowledge of beta cell regeneration. We present current chemical-based tools, sensors and mechanistic insights into pathways that can be targeted to enhance beta cell regeneration in model organisms. We group the pathways according to the cellular processes they affect, that is, proliferation, conversion of other mature cell types to beta cells and beta cell differentiation from progenitor-like populations. We also suggest assays for assessing the functionality of the regenerated beta cells. Although regeneration processes differ between animal models, such as zebrafish, mice and pigs, regenerative mechanisms identified in any one animal model may be translatable to humans. Overall, chemical biology-based approaches in beta cell regeneration give hope that specific molecular pathways can be targeted to enhance beta cell regeneration.
Collapse
Affiliation(s)
- Christos Karampelias
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany.
| | - Ka-Cheuk Liu
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Uppsala, Sweden
| | - Anders Tengholm
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Uppsala, Sweden
| | - Olov Andersson
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Uppsala, Sweden.
| |
Collapse
|
3
|
Elkoshi Z. TGF-β, IL-1β, IL-6 levels and TGF-β/Smad pathway reactivity regulate the link between allergic diseases, cancer risk, and metabolic dysregulations. Front Immunol 2024; 15:1371753. [PMID: 38629073 PMCID: PMC11019030 DOI: 10.3389/fimmu.2024.1371753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/15/2024] [Indexed: 04/19/2024] Open
Abstract
The risk of cancer is higher in patients with asthma compared to those with allergic rhinitis for many types of cancer, except for certain cancers where a contrasting pattern is observed. This study offers a potential explanation for these observations, proposing that the premalignant levels of circulating transforming growth factor-β (TGF-β), IL-1β, and IL-6 as well as the reactivity of the TGF-β/Smad signaling pathway at the specific cancer site, are crucial factors contributing to the observed disparities. Circulating TGF-β, IL- β and IL-6 levels also help clarify why asthma is positively associated with obesity, Type 2 diabetes, hypertension, and insulin resistance, whereas allergic rhinitis is negatively linked to these conditions. Furthermore, TGF-β/Smad pathway reactivity explains the dual impact of obesity, increasing the risk of certain types of cancer while offering protection against other types of cancer. It is suggested that the association of asthma with cancer and metabolic dysregulations is primarily linked to the subtype of neutrophilic asthma. A binary classification of TGF-β activity as either high (in the presence of IL-1β and IL-6) or low (in the presence or absence of IL-1β and IL-6) is proposed to differentiate between allergy patients prone to cancer and metabolic dysregulations and those less prone. Glycolysis and oxidative phosphorylation, the two major metabolic pathways utilized by cells for energy exploitation, potentially underlie this dichotomous classification by reprogramming metabolic pathways in immune cells.
Collapse
Affiliation(s)
- Zeev Elkoshi
- Research and Development Department, Taro Pharmaceutical Industries Ltd, Haifa, Israel
| |
Collapse
|
4
|
Ye L, Lv Y, Wu Q, Chen Y, Zhang X, Su Y. Chronic periodontitis induces the proliferation of pancreatic β-cells to cause hyperinsulinemia in a rat model. J Periodontal Res 2023; 58:1290-1299. [PMID: 37723987 DOI: 10.1111/jre.13185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 08/19/2023] [Accepted: 09/01/2023] [Indexed: 09/20/2023]
Abstract
BACKGROUND AND OBJECTIVE The purpose of this study was to determine if chronic periodontitis (CP) may induce hyperinsulinemia and may have the effect of on pancreatic β-cell proliferation in a rat model. MATERIALS AND METHODS Twelve male Sprague-Dawley rats were divided into two groups: the CP group and the control group (Con group). The following contents were evaluated: pathological changes in periodontal soft and hard tissues; serum lipopolysaccharide (LPS) level, serum fasting insulin (FINS) level, fasting blood glucose (FBG) level, and homeostasis model assessment (HOMA) β (HOMA-β) index; histopathological examination of islets; immunohistochemistry of insulin and p-Smad2 expression in islets; immunofluorescence of changes in the relative number of β-cells and the number of Ki67-positive β-cells. Western blotting was used to analyze p-Smad2/Smad2 levels. Results were analyzed by two independent samples t tests. RESULTS Increased serum LPS level, FINS level, and HOMA-β index were observed in the rats of the CP group; FBG level did not change significantly; histological assessments showed an enlarged islet area, increased insulin content, relatively increased β-cells, increased Ki67-positive β-cells, and decreased p-Smad2 expression in islets in the rats of the CP group. CONCLUSION Our study results link CP-induced hyperinsulinemia with changes in islets, such as islet hyperplasia and compensatory β-cell proliferation, by using a CP rat model.
Collapse
Affiliation(s)
- Leilei Ye
- Department of Periodontology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yingtao Lv
- Department of Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Qianqi Wu
- Stomatology Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Yiyan Chen
- Stomatology Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Xueyang Zhang
- Department of Periodontology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
- Stomatology Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Yuan Su
- Stomatology Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| |
Collapse
|
5
|
Kimani CN, Reuter H, Kotzé SH, Muller CJF. Regeneration of Pancreatic Beta Cells by Modulation of Molecular Targets Using Plant-Derived Compounds: Pharmacological Mechanisms and Clinical Potential. Curr Issues Mol Biol 2023; 45:6216-6245. [PMID: 37623211 PMCID: PMC10453321 DOI: 10.3390/cimb45080392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 08/26/2023] Open
Abstract
Type 2 diabetes (T2D) is characterized by pancreatic beta-cell dysfunction, increased cell death and loss of beta-cell mass despite chronic treatment. Consequently, there has been growing interest in developing beta cell-centered therapies. Beta-cell regeneration is mediated by augmented beta-cell proliferation, transdifferentiation of other islet cell types to functional beta-like cells or the reprograming of beta-cell progenitors into fully differentiated beta cells. This mediation is orchestrated by beta-cell differentiation transcription factors and the regulation of the cell cycle machinery. This review investigates the beta-cell regenerative potential of antidiabetic plant extracts and phytochemicals. Various preclinical studies, including in vitro, in vivo and ex vivo studies, are highlighted. Further, the potential regenerative mechanisms and the intra and extracellular mediators that are of significance are discussed. Also, the potential of phytochemicals to translate into regenerative therapies for T2D patients is highlighted, and some suggestions regarding future perspectives are made.
Collapse
Affiliation(s)
- Clare Njoki Kimani
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Cape Town 7505, South Africa;
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
| | - Helmuth Reuter
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
| | - Sanet Henriët Kotzé
- Division of Clinical Anatomy, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
- Division of Anatomy, Department of Biomedical Sciences, School of Veterinary Medicine, Ross University, Basseterre P.O. Box 334, Saint Kitts and Nevis
| | - Christo John Fredrick Muller
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Cape Town 7505, South Africa;
- Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch 7600, South Africa
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| |
Collapse
|
6
|
Cao R, Tian H, Zhang Y, Liu G, Xu H, Rao G, Tian Y, Fu X. Signaling pathways and intervention for therapy of type 2 diabetes mellitus. MedComm (Beijing) 2023; 4:e283. [PMID: 37303813 PMCID: PMC10248034 DOI: 10.1002/mco2.283] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 06/13/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) represents one of the fastest growing epidemic metabolic disorders worldwide and is a strong contributor for a broad range of comorbidities, including vascular, visual, neurological, kidney, and liver diseases. Moreover, recent data suggest a mutual interplay between T2DM and Corona Virus Disease 2019 (COVID-19). T2DM is characterized by insulin resistance (IR) and pancreatic β cell dysfunction. Pioneering discoveries throughout the past few decades have established notable links between signaling pathways and T2DM pathogenesis and therapy. Importantly, a number of signaling pathways substantially control the advancement of core pathological changes in T2DM, including IR and β cell dysfunction, as well as additional pathogenic disturbances. Accordingly, an improved understanding of these signaling pathways sheds light on tractable targets and strategies for developing and repurposing critical therapies to treat T2DM and its complications. In this review, we provide a brief overview of the history of T2DM and signaling pathways, and offer a systematic update on the role and mechanism of key signaling pathways underlying the onset, development, and progression of T2DM. In this content, we also summarize current therapeutic drugs/agents associated with signaling pathways for the treatment of T2DM and its complications, and discuss some implications and directions to the future of this field.
Collapse
Affiliation(s)
- Rong Cao
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Huimin Tian
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yu Zhang
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Geng Liu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Haixia Xu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Guocheng Rao
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yan Tian
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Xianghui Fu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
7
|
Chung JYF, Tang PMK, Chan MKK, Wang L, Huang XR, To KF, Ma RC, Lan HY. AANG Prevents Smad3-dependent Diabetic Nephropathy by Restoring Pancreatic β-Cell Development in db/db Mice. Int J Biol Sci 2022; 18:5489-5502. [PMID: 36147472 PMCID: PMC9461652 DOI: 10.7150/ijbs.72977] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/29/2022] [Indexed: 11/18/2022] Open
Abstract
Diabetic nephropathy (DN) is a major cause of end-stage kidney disease, where TGF-β1/Smad signaling plays an important role in the disease progression. Our previous studies demonstrated a combination of Traditional Chinese Medicine derived Smad7 agonist Asiatic Acid (AA) and Smad3 inhibitor Naringenin (NG), AANG, effectively suppressed the progression of renal fibrosis in vivo. However, its implication in type-2 diabetic nephropathy (T2DN) is still unexplored. Here, we detected progressive activation of Smad3 but reduction of Smad7 in db/db mice during T2DN development. Therefore, we optimized the dosage and the combination ratio of AANG to achieve a better rebalancing Smad3/Smad7 signaling for treatment of T2DN. Unexpectedly, preventive treatment with combined AANG from week 4 before the development of diabetes and T2DN effectively protected against the onset of T2DN. In contract, these inhibitory effects were lost when db/db mice received the late AANG treatment from 12-24 weeks. Surprisingly, preventive treatment with AANG ameliorated not only T2DN but also the primary disease type-2 diabetes (T2D) with relative normal levels of fasting blood glucose and HbA1c, and largely improving metabolic abnormalities especially on insulin insensitivity and glucose tolerance in db/db mice. Mechanistically, AANG effectively prevented both Smad3-mediated renal fibrosis and NF-κB-driven renal inflammation in the diabetic kidney in vivo and advanced glycation end-products (AGE) stimulated tubular epithelial mTEC cells in vitro. More importantly, we uncovered that preventive treatment with AANG effectively protected against diabetic-associated islet injury via restoring the β cell development in db/db mice. Taken together, we discovered that the early treatment with combined AANG can effectively protect against the development of T2D and T2DN via mechanism associated with protection against Smad3-depenedent islet injury.
Collapse
Affiliation(s)
- Jeff Yat-Fai Chung
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong.,Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong
| | - Patrick Ming-Kuen Tang
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong.,Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong
| | - Max Kam-Kwan Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong
| | - Li Wang
- Research Center for Integrated Chinese and Western Medicine, and Department of Cardiology, The Second Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiao-Ru Huang
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong.,Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong
| | - Ronald Cw Ma
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong.,Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| |
Collapse
|
8
|
Basile G, Qadir MMF, Mauvais-Jarvis F, Vetere A, Shoba V, Modell AE, Pastori RL, Russ HA, Wagner BK, Dominguez-Bendala J. Emerging diabetes therapies: Bringing back the β-cells. Mol Metab 2022; 60:101477. [PMID: 35331962 PMCID: PMC8987999 DOI: 10.1016/j.molmet.2022.101477] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Stem cell therapies are finally coming of age as a viable alternative to pancreatic islet transplantation for the treatment of insulin-dependent diabetes. Several clinical trials using human embryonic stem cell (hESC)-derived β-like cells are currently underway, with encouraging preliminary results. Remaining challenges notwithstanding, these strategies are widely expected to reduce our reliance on human isolated islets for transplantation procedures, making cell therapies available to millions of diabetic patients. At the same time, advances in our understanding of pancreatic cell plasticity and the molecular mechanisms behind β-cell replication and regeneration have spawned a multitude of translational efforts aimed at inducing β-cell replenishment in situ through pharmacological means, thus circumventing the need for transplantation. SCOPE OF REVIEW We discuss here the current state of the art in hESC transplantation, as well as the parallel quest to discover agents capable of either preserving the residual mass of β-cells or inducing their proliferation, transdifferentiation or differentiation from progenitor cells. MAJOR CONCLUSIONS Stem cell-based replacement therapies in the mold of islet transplantation are already around the corner, but a permanent cure for type 1 diabetes will likely require the endogenous regeneration of β-cells aided by interventions to restore the immune balance. The promise of current research avenues and a strong pipeline of clinical trials designed to tackle these challenges bode well for the realization of this goal.
Collapse
Affiliation(s)
- G Basile
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - M M F Qadir
- Tulane University School of Medicine, New Orleans, LA, USA; Southeast Louisiana Veterans Affairs Medical Center, New Orleans, LA, USA
| | - F Mauvais-Jarvis
- Tulane University School of Medicine, New Orleans, LA, USA; Southeast Louisiana Veterans Affairs Medical Center, New Orleans, LA, USA
| | - A Vetere
- Broad Institute, Cambridge, MA, USA
| | - V Shoba
- Broad Institute, Cambridge, MA, USA
| | | | - R L Pastori
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - H A Russ
- Barbara Davis Center for Diabetes, Colorado University Anschutz Medical Campus, Aurora, CO, USA.
| | | | - J Dominguez-Bendala
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
9
|
Accelerated Generation of Extra-Islet Insulin-Producing Cells in Diabetic Rats, Treated with Sodium Phthalhydrazide. Int J Mol Sci 2022; 23:ijms23084286. [PMID: 35457103 PMCID: PMC9044743 DOI: 10.3390/ijms23084286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/01/2022] [Accepted: 04/11/2022] [Indexed: 12/19/2022] Open
Abstract
β-cells dysfunction plays an important role in the pathogenesis of type 2 diabetes (T2D), partially may be compensated by the generation of extra-islet insulin-producing cells (IPCs) in pancreatic acini and ducts. Pdx1 expression and inflammatory level are suggested to be involved in the generation of extra-islet IPCs, but the exact reasons and mechanisms of it are unclear. Macrophages are key inflammatory mediators in T2D. We studied changes in mass and characteristics of extra-islet IPCs in rats with a streptozotocin-nicotinamide model of T2D and after i.m. administration of 20 daily doses of 2 mg/kg b.w. sodium aminophthalhydrazide (APH). Previously, we found that APH modulates macrophage production and increases the proliferative activity of pancreatic β-cells. Expressions of insulin and Pdx1, as well as F4/80 (macrophage marker), were detected at the protein level by immunohistochemistry analysis, the concentration of pro- and anti-inflammatory cytokines in blood and pancreas—by ELISA. Diabetic rats treated with APH showed an increasing mass of extra-islet IPCs and the content of insulin in them. The presence of Pdx1+ cells in the exocrine pancreas also increased. F4/80+ cell reduction was accompanied by increasing TGF-β1 content. Interestingly, during the development of diabetes, the mass of β-cells decreased faster than the mass of extra-islet IPCs, and extra-islet IPCs reacted to experimental T2D differently depending on their acinar or ductal location.
Collapse
|
10
|
Wang HL, Wang L, Zhao CY, Lan HY. Role of TGF-Beta Signaling in Beta Cell Proliferation and Function in Diabetes. Biomolecules 2022; 12:373. [PMID: 35327565 PMCID: PMC8945211 DOI: 10.3390/biom12030373] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 12/27/2022] Open
Abstract
Beta (β) cell dysfunction or loss is the common pathological feature in all types of diabetes mellitus (diabetes). Resolving the underlying mechanism may facilitate the treatment of diabetes by preserving the β cell population and function. It is known that TGF-β signaling plays diverse roles in β cell development, function, proliferation, apoptosis, and dedifferentiation. Inhibition of TGF-β signaling expands β cell lineage in the development. However, deletion of Tgfbr1 has no influence on insulin demand-induced but abolishes inflammation-induced β cell proliferation. Among canonical TGF-β signaling, Smad3 but not Smad2 is the predominant repressor of β cell proliferation in response to systemic insulin demand. Deletion of Smad3 simultaneously improves β cell function, apoptosis, and systemic insulin resistance with the consequence of eliminated overt diabetes in diabetic mouse models, revealing Smad3 as a key mediator and ideal therapeutic target for type-2 diabetes. However, Smad7 shows controversial effects on β cell proliferation and glucose homeostasis in animal studies. On the other hand, overexpression of Tgfb1 prevents β cells from autoimmune destruction without influence on β cell function. All these findings reveal the diverse regulatory roles of TGF-β signaling in β cell biology.
Collapse
Affiliation(s)
- Hong-Lian Wang
- Research Center for Integrative Medicine, The Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (H.-L.W.); (L.W.)
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li Wang
- Research Center for Integrative Medicine, The Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (H.-L.W.); (L.W.)
| | - Chang-Ying Zhao
- Department of Endocrinology, The Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou 646000, China;
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
- Guangdong Academy of Sciences, Guangdong Provincial People’s Hospital Joint Research Laboratory on Immunological and Genetic Kidney Diseases, The Chinese University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
11
|
Wang HL, Wei B, He HJ, Huang XR, Sheng JY, Chen XC, Wang L, Tan RZ, Li JC, Liu J, Yang SJ, Ma RCW, Lan HY. Smad3 deficiency improves islet-based therapy for diabetes and diabetic kidney injury by promoting β cell proliferation via the E2F3-dependent mechanism. Am J Cancer Res 2022; 12:379-395. [PMID: 34987651 PMCID: PMC8690916 DOI: 10.7150/thno.67034] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/29/2021] [Indexed: 12/15/2022] Open
Abstract
Rationale: Poor β cell proliferation is one of the detrimental factors hindering islet cell replacement therapy for patients with diabetes. Smad3 is an important transcriptional factor of TGF-β signaling and has been shown to promote diabetes by inhibiting β cell proliferation. Therefore, we hypothesize that Smad3-deficient islets may be a novel cell replacement therapy for diabetes. Methods: We examined this hypothesis in streptozocin-induced type-1 diabetic mice and type-2 diabetic db/db mice by transplanting Smad3 knockout (KO) and wild type (WT) islets under the renal capsule, respectively. The effects of Smad3KO versus WT islet replacement therapy on diabetes and diabetic kidney injury were examined. In addition, RNA-seq was applied to identify the downstream target gene underlying Smad3-regulated β cell proliferation in Smad3KO-db/db versus Smad3WT-db/db mouse islets. Results: Compared to Smad3WT islet therapy, treatment with Smad3KO islets produced a much better therapeutic effect on both type-1 and type-2 diabetes by significantly lowering serum levels of blood glucose and HbA1c and protected against diabetic kidney injuries by preventing an increase in serum creatinine and the development of proteinuria, mesangial matrix expansion, and fibrosis. These were associated with a significant increase in grafted β cell proliferation and blood insulin levels, resulting in improved glucose intolerance. Mechanistically, RNA-seq revealed that compared with Smad3WT-db/db mouse islets, deletion of Smad3 from db/db mouse islets markedly upregulated E2F3, a pivotal regulator of cell cycle G1/S entry. Further studies found that Smad3 could bind to the promoter of E2F3, and thus inhibit β cell proliferation via an E2F3-dependent mechanism as silencing E2F3 abrogated the proliferative effect on Smad3KO β cells. Conclusion: Smad3-deficient islet replacement therapy can significantly improve both type-1 and type-2 diabetes and protect against diabetic kidney injury, which is mediated by a novel mechanism of E2F3-dependent β cell proliferation.
Collapse
|
12
|
Cai Z, Liu F, Yang Y, Li D, Hu S, Song L, Yu S, Li T, Liu B, Luo H, Zhang W, Zhou Z, Zhang J. GRB10 regulates β cell mass by inhibiting β cell proliferation and stimulating β cell dedifferentiation. J Genet Genomics 2021; 49:208-216. [PMID: 34861413 DOI: 10.1016/j.jgg.2021.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/07/2021] [Accepted: 11/15/2021] [Indexed: 12/14/2022]
Abstract
Decreased functional β-cell mass is the hallmark of diabetes, but the cause of this metabolic defect remains elusive. Here, we show that the expression levels of the growth factor receptor-bound protein 10 (GRB10), a negative regulator of insulin and mTORC1 signaling, are markedly induced in islets of diabetic mice and high glucose-treated insulinoma cell line INS-1cells. β-cell-specific knockout of Grb10 in mice increased β-cell mass and improved β-cell function. Grb10-deficient β-cells exhibit enhanced mTORC1 signaling and reduced β-cell dedifferentiation, which could be blocked by rapamycin. On the contrary, Grb10 overexpression induced β-cell dedifferentiation in MIN6 cells. Our study identifies GRB10 as a critical regulator of β-cell dedifferentiation and β-cell mass, which exerts its effect by inhibiting mTORC1 signaling.
Collapse
Affiliation(s)
- Zixin Cai
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Fen Liu
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yan Yang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Dandan Li
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Shanbiao Hu
- Department of Urological Organ Transplantation, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Lei Song
- Department of Urological Organ Transplantation, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Shaojie Yu
- Department of Urological Organ Transplantation, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Ting Li
- Department of Liver Organ Transplantation, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Bilian Liu
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Hairong Luo
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Weiping Zhang
- Department of Pathophysiology, Naval Medical University, Shanghai 200433, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jingjing Zhang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
13
|
Saleh M, Mohamed NA, Sehrawat A, Zhang T, Thomas M, Wang Y, Kalsi R, Molitoris J, Prasadan K, Gittes GK. β-cell Smad2 null mice have improved β-cell function and are protected from diet-induced hyperglycemia. J Biol Chem 2021; 297:101235. [PMID: 34582892 PMCID: PMC8605249 DOI: 10.1016/j.jbc.2021.101235] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 11/25/2022] Open
Abstract
Understanding signaling pathways that regulate pancreatic β-cell function to produce, store, and release insulin, as well as pathways that control β-cell proliferation, is vital to find new treatments for diabetes mellitus. Transforming growth factor-beta (TGF-β) signaling is involved in a broad range of β-cell functions. The canonical TGF-β signaling pathway functions through intracellular smads, including smad2 and smad3, to regulate cell development, proliferation, differentiation, and function in many organs. Here, we demonstrate the role of TGF-β/smad2 signaling in regulating mature β-cell proliferation and function using β-cell-specific smad2 null mutant mice. β-cell-specific smad2-deficient mice exhibited improved glucose clearance as demonstrated by glucose tolerance testing, enhanced in vivo and ex vivo glucose-stimulated insulin secretion, and increased β-cell mass and proliferation. Furthermore, when these mice were fed a high-fat diet to induce hyperglycemia, they again showed improved glucose tolerance, insulin secretion, and insulin sensitivity. In addition, ex vivo analysis of smad2-deficient islets showed that they displayed increased glucose-stimulated insulin secretion and upregulation of genes involved in insulin synthesis and insulin secretion. Thus, we conclude that smad2 could represent an attractive therapeutic target for type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Mohamed Saleh
- Division of Pediatric Surgery, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA; Division of Pediatric Endocrinology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Nada A Mohamed
- Division of Pediatric Surgery, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anuradha Sehrawat
- Division of Pediatric Surgery, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ting Zhang
- Division of Pediatric Surgery, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Madison Thomas
- Division of Pediatric Surgery, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yan Wang
- Division of Pediatric Surgery, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ranjeet Kalsi
- Division of Pediatric Surgery, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Justin Molitoris
- Division of Pediatric Surgery, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Krishna Prasadan
- Division of Pediatric Surgery, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - George K Gittes
- Division of Pediatric Surgery, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
14
|
Wang P, Karakose E, Choleva L, Kumar K, DeVita RJ, Garcia-Ocaña A, Stewart AF. Human Beta Cell Regenerative Drug Therapy for Diabetes: Past Achievements and Future Challenges. Front Endocrinol (Lausanne) 2021; 12:671946. [PMID: 34335466 PMCID: PMC8322843 DOI: 10.3389/fendo.2021.671946] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/10/2021] [Indexed: 01/02/2023] Open
Abstract
A quantitative deficiency of normally functioning insulin-producing pancreatic beta cells is a major contributor to all common forms of diabetes. This is the underlying premise for attempts to replace beta cells in people with diabetes by pancreas transplantation, pancreatic islet transplantation, and transplantation of beta cells or pancreatic islets derived from human stem cells. While progress is rapid and impressive in the beta cell replacement field, these approaches are expensive, and for transplant approaches, limited by donor organ availability. For these reasons, beta cell replacement will not likely become available to the hundreds of millions of people around the world with diabetes. Since the large majority of people with diabetes have some residual beta cells in their pancreata, an alternate approach to reversing diabetes would be developing pharmacologic approaches to induce these residual beta cells to regenerate and expand in a way that also permits normal function. Unfortunately, despite the broad availability of multiple classes of diabetes drugs in the current diabetes armamentarium, none has the ability to induce regeneration or expansion of human beta cells. Development of such drugs would be transformative for diabetes care around the world. This picture has begun to change. Over the past half-decade, a novel class of beta cell regenerative small molecules has emerged: the DYRK1A inhibitors. Their emergence has tremendous potential, but many areas of uncertainty and challenge remain. In this review, we summarize the accomplishments in the world of beta cell regenerative drug development and summarize areas in which most experts would agree. We also outline and summarize areas of disagreement or lack of unanimity, of controversy in the field, of obstacles to beta cell regeneration, and of challenges that will need to be overcome in order to establish human beta cell regenerative drug therapeutics as a clinically viable class of diabetes drugs.
Collapse
Affiliation(s)
- Peng Wang
- The Diabetes Obesity Metabolism Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Esra Karakose
- The Diabetes Obesity Metabolism Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Lauryn Choleva
- The Division of Pediatric Endocrinology, The Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kunal Kumar
- The Drug Discovery Institute, The Department of Pharmacological Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Robert J. DeVita
- The Drug Discovery Institute, The Department of Pharmacological Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Adolfo Garcia-Ocaña
- The Diabetes Obesity Metabolism Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Andrew F. Stewart
- The Diabetes Obesity Metabolism Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
15
|
β-Cell pre-mir-21 induces dysfunction and loss of cellular identity by targeting transforming growth factor beta 2 (Tgfb2) and Smad family member 2 (Smad2) mRNAs. Mol Metab 2021; 53:101289. [PMID: 34246804 PMCID: PMC8361274 DOI: 10.1016/j.molmet.2021.101289] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE β-cell microRNA-21 (miR-21) is increased by islet inflammatory stress but it decreases glucose-stimulated insulin secretion (GSIS). Thus, we sought to define the effects of miR-21 on β-cell function using in vitro and in vivo systems. METHODS We developed a tetracycline-on system of pre-miR-21 induction in clonal β-cells and human islets, along with transgenic zebrafish and mouse models of β-cell-specific pre-miR-21 overexpression. RESULTS β-cell miR-21 induction markedly reduced GSIS and led to reductions in transcription factors associated with β-cell identity and increased markers of dedifferentiation, which led us to hypothesize that miR-21 induces β-cell dysfunction by loss of cell identity. In silico analysis identified transforming growth factor-beta 2 (Tgfb2) and Smad family member 2 (Smad2) mRNAs as predicted miR-21 targets associated with the maintenance of β-cell identity. Tgfb2 and Smad2 were confirmed as direct miR-21 targets through RT-PCR, immunoblot, pulldown, and luciferase assays. In vivo zebrafish and mouse models exhibited glucose intolerance, decreased peak GSIS, decreased expression of β-cell identity markers, increased insulin and glucagon co-staining cells, and reduced Tgfb2 and Smad2 expression. CONCLUSIONS These findings implicate miR-21-mediated reduction of mRNAs specifying β-cell identity as a contributor to β-cell dysfunction by the loss of cellular differentiation.
Collapse
|
16
|
Kumar K, Suebsuwong C, Wang P, Garcia-Ocana A, Stewart AF, DeVita RJ. DYRK1A Inhibitors as Potential Therapeutics for β-Cell Regeneration for Diabetes. J Med Chem 2021; 64:2901-2922. [PMID: 33682417 DOI: 10.1021/acs.jmedchem.0c02050] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
According to the World Health Organization (WHO), 422 million people are suffering from diabetes worldwide. Current diabetes therapies are focused on optimizing blood glucose control to prevent long-term diabetes complications. Unfortunately, current therapies have failed to achieve glycemic targets in the majority of people with diabetes. In this context, regeneration of functional insulin-producing human β-cells in people with diabetes through the use of DYRK1A inhibitor drugs has recently received special attention. Several small molecule DYRK1A inhibitors have been identified that induce human β-cell proliferation in vitro and in vivo. Furthermore, DYRK1A inhibitors have also been shown to synergize β-cell proliferation with other classes of drugs, such as TGFβ inhibitors and GLP-1 receptor agonists. In this perspective, we review the status of DYRK1A as a therapeutic target for β-cell proliferation and provide perspectives on technical and scientific challenges for future translational development.
Collapse
Affiliation(s)
- Kunal Kumar
- Drug Discovery Institute and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Chalada Suebsuwong
- Drug Discovery Institute and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Peng Wang
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Adolfo Garcia-Ocana
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Andrew F Stewart
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Robert J DeVita
- Drug Discovery Institute and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
17
|
Shi J, Zhang YQ, Hao DD, Fu SH, Meng JL. Key regulatory genes and signaling pathways involved in islet culture: a bioinformatic analysis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2021; 14:292-303. [PMID: 33564361 PMCID: PMC7868784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
Type 1 diabetes (T1D) is characterized by non-ideal mass and low survival rate of islets. Therefore, it is necessary to find intrinsic factors that prolong the survival of islets. This study aimed to track out hub genes and pathways in the process of islet culture by bioinformatic analysis. We downloaded the gene expression microarray of GSE42591 from the Gene Expression Omnibus (GEO). Aberrant Differentially methylated genes (DMGs) were obtained using the GEO2R tool. Gene ontology (GO) analysis and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway enrichment analyses were performed on selected genes by using the Database for Annotation Visualization and Integrated Discovery (DAVID). A protein-protein interaction (PPI) network was constructed with the Retrieval of Interacting Genes (STRING) and visualized in Cytoscape 3.7.2. A total of 434 genes were overexpressed and 114 genes underexpressed in fresh to cultured 4 h tissue. KEGG pathway enrichment analyses revealed the TGF-beta signaling pathway, MAPK signaling pathway, or VEGF signaling pathway. The genes FN1, MKI67, IGF1, MAPK14, COL1A1 might be involved in islet culture. In general, this work scrutinized islet culture-relevant knowledge and provided insight into the regulation and mediation of islet survival.
Collapse
Affiliation(s)
- Jing Shi
- Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region (Hospital. C.T.)No. 20, Xi Mian Qiao Heng Jie, Wuhou District, Chengdu 610041, Sichuan Province, China
| | - Yong-Qun Zhang
- Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region (Hospital. C.T.)No. 20, Xi Mian Qiao Heng Jie, Wuhou District, Chengdu 610041, Sichuan Province, China
| | - Dou-Dou Hao
- Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region (Hospital. C.T.)No. 20, Xi Mian Qiao Heng Jie, Wuhou District, Chengdu 610041, Sichuan Province, China
| | - Su-Hong Fu
- Lab of Natural Medicine of West China Hospital of West China Medical School of Sichuan UniversityNo. 88, South Keyuan Road, Chengdu High-Tech Zone, Chengdu 610041, Sichuan Province, China
| | - Jin-Li Meng
- Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region (Hospital. C.T.)No. 20, Xi Mian Qiao Heng Jie, Wuhou District, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
18
|
Sheng J, Wang L, Tang PMK, Wang HL, Li JC, Xu BH, Xue VW, Tan RZ, Jin N, Chan TF, Huang XR, Ma RCW, Lan HY. Smad3 deficiency promotes beta cell proliferation and function in db/db mice via restoring Pax6 expression. Theranostics 2021; 11:2845-2859. [PMID: 33456576 PMCID: PMC7806493 DOI: 10.7150/thno.51857] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/11/2020] [Indexed: 12/18/2022] Open
Abstract
Rationale: Transforming Growth Factor-beta (TGF-β) /Smad3 signaling has been shown to play important roles in fibrotic and inflammatory diseases, but its role in beta cell function and type 2 diabetes is unknown. Methods: The role of Smad3 in beta cell function under type 2 diabetes condition was investigated by genetically deleting Smad3 from db/db mice. Phenotypic changes of pancreatic islets and beta cell function were compared between Smad3 knockout db/db (Smad3KO-db/db) mice and Smad3 wild-type db/db (Smad3WT-db/db) mice, and other littermate controls. Islet-specific RNA-sequencing was performed to identify Smad3-dependent differentially expressed genes associated with type 2 diabetes. In vitro beta cell proliferation assay and insulin secretion assay were carried out to validate the mechanism by which Smad3 regulates beta cell proliferation and function. Results: The results showed that Smad3 deficiency completely protected against diabetes-associated beta cell loss and dysfunction in db/db mice. By islet-specific RNA-sequencing, we identified 8160 Smad3-dependent differentially expressed genes associated with type 2 diabetes, where Smad3 deficiency markedly prevented the down-regulation of those genes. Mechanistically, Smad3 deficiency preserved the expression of beta cell development mediator Pax6 in islet, thereby enhancing beta cell proliferation and function in db/db mice in vivo and in Min6 cells in vitro. Conclusions: Taken together, we discovered a pathogenic role of Smad3 in beta cell loss and dysfunction via targeting the protective Pax6. Thus, Smad3 may represent as a novel therapeutic target for type 2 diabetes prevention and treatment.
Collapse
|
19
|
Brown ML, Schneyer A. A Decade Later: Revisiting the TGFβ Family's Role in Diabetes. Trends Endocrinol Metab 2021; 32:36-47. [PMID: 33261990 DOI: 10.1016/j.tem.2020.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/16/2022]
Abstract
In 2010, we published a review summarizing the role of the transforming growth factor-beta (TGFβ) family of proteins in diabetes. At that time there were still many outstanding questions that needed to be answered. In this updated review, we revisit the topic and provide new evidence that supports findings from previous studies included in the 2010 review and adds to the knowledge base with new findings and information. The most substantial contributions in the past 10 years have been in the areas of human data, the investigation of TGFβ family members other than activin [e.g., bone morphogenetic proteins (BMPs), growth and differentiation factor 11 (GDF11), nodal], and the expansion of β-cell number through various mechanisms including transdifferentiation, which was previously believed to not be possible.
Collapse
Affiliation(s)
| | - Alan Schneyer
- Fairbanks Pharmaceuticals, Inc., Springfield, MA 01199, USA
| |
Collapse
|
20
|
Good Cop, Bad Cop: The Opposing Effects of Macrophage Activation State on Maintaining or Damaging Functional β-Cell Mass. Metabolites 2020; 10:metabo10120485. [PMID: 33256225 PMCID: PMC7761161 DOI: 10.3390/metabo10120485] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/18/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022] Open
Abstract
Loss of functional β-cell mass is a hallmark of Type 1 and Type 2 Diabetes. Macrophages play an integral role in the maintenance or destruction of pancreatic β-cells. The effect of the macrophage β-cell interaction is dependent on the activation state of the macrophage. Macrophages can be activated across a spectrum, from pro-inflammatory to anti-inflammatory and tissue remodeling. The factors secreted by these differentially activated macrophages and their effect on β-cells define the effect on functional β-cell mass. In this review, the spectrum of macrophage activation is discussed, as are the positive and negative effects on β-cell survival, expansion, and function as well as the defined factors released from macrophages that impinge on functional β-cell mass.
Collapse
|
21
|
Pahlavanneshan S, Behmanesh M, Oropeza D, Furuyama K, Tahamtani Y, Basiri M, Herrera PL, Baharvand H. Combined inhibition of menin-MLL interaction and TGF-β signaling induces replication of human pancreatic beta cells. Eur J Cell Biol 2020; 99:151094. [PMID: 32646642 DOI: 10.1016/j.ejcb.2020.151094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/04/2020] [Accepted: 05/25/2020] [Indexed: 12/22/2022] Open
Abstract
Both type 1 and type 2 diabetes are associated with hyperglycemia and loss of functional beta cell mass. Inducing proliferation of preexisting beta cells is an approach to increase the numbers of beta cells. In this study, we examined a panel of selected small molecules for their proliferation-inducing effects on human pancreatic beta cells. Our results demonstrated that a small molecule inhibitor of the menin-MLL interaction (MI-2) and small molecule inhibitors of TGF-β signaling (SB431542, LY2157299, or LY364947) synergistically increased ex vivo replication of human beta cells. We showed that this increased proliferation did not affect insulin production, as a pivotal indication of beta cell function. We further provided evidence which suggested that menin-MLL and TGF-β inhibition cooperated through downregulation of cell cycle inhibitors CDKN1A, CDKN1B, and CDKN2C. Our findings might provide a new option for extending the pharmacological repertoire for induction of beta cell proliferation as a potential therapeutic approach for diabetes.
Collapse
Affiliation(s)
- Saghar Pahlavanneshan
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehrdad Behmanesh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Daniel Oropeza
- Department of Genetic Medicine and Development, iGE3 and Centre Facultaire du Diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Kenichiro Furuyama
- Department of Genetic Medicine and Development, iGE3 and Centre Facultaire du Diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Yaser Tahamtani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Diabetes, Obesity, and Metabolism, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Mohsen Basiri
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Pedro L Herrera
- Department of Genetic Medicine and Development, iGE3 and Centre Facultaire du Diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, University of Science and Culture, Tehran, Iran.
| |
Collapse
|
22
|
Protection from β-cell apoptosis by inhibition of TGF-β/Smad3 signaling. Cell Death Dis 2020; 11:184. [PMID: 32170115 PMCID: PMC7070087 DOI: 10.1038/s41419-020-2365-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 12/18/2022]
Abstract
Prevailing insulin resistance and the resultant hyperglycemia elicits a compensatory response from pancreatic islet beta cells (β-cells) that involves increases in β-cell function and β-cell mass. However, the sustained metabolic stress eventually leads to β-cell failure characterized by severe β-cell dysfunction and progressive loss of β-cell mass. Whereas, β-cell dysfunction is relatively well understood at the mechanistic level, the avenues leading to loss of β-cell mass are less clear with reduced proliferation, dedifferentiation, and apoptosis all potential mechanisms. Butler and colleagues documented increased β-cell apoptosis in pancreas from lean and obese human Type 2 diabetes (T2D) subjects, with no changes in rates of β-cell replication or neogenesis, strongly suggesting a role for apoptosis in β-cell failure. Here, we describe a permissive role for TGF-β/Smad3 in β-cell apoptosis. Human islets undergoing β-cell apoptosis release increased levels of TGF-β1 ligand and phosphorylation levels of TGF-β's chief transcription factor, Smad3, are increased in human T2D islets suggestive of an autocrine role for TGF-β/Smad3 signaling in β-cell apoptosis. Smad3 phosphorylation is similarly increased in diabetic mouse islets undergoing β-cell apoptosis. In mice, β-cell-specific activation of Smad3 promotes apoptosis and loss of β-cell mass in association with β-cell dysfunction, glucose intolerance, and diabetes. In contrast, inactive Smad3 protects from apoptosis and preserves β-cell mass while improving β-cell function and glucose tolerance. At the molecular level, Smad3 associates with Foxo1 to propagate TGF-β-dependent β-cell apoptosis. Indeed, genetic or pharmacologic inhibition of TGF-β/Smad3 signals or knocking down Foxo1 protects from β-cell apoptosis. These findings reveal the importance of TGF-β/Smad3 in promoting β-cell apoptosis and demonstrate the therapeutic potential of TGF-β/Smad3 antagonism to restore β-cell mass lost in diabetes.
Collapse
|
23
|
Sehrawat A, Shiota C, Mohamed N, DiNicola J, Saleh M, Kalsi R, Zhang T, Wang Y, Prasadan K, Gittes GK. SMAD7 enhances adult β-cell proliferation without significantly affecting β-cell function in mice. J Biol Chem 2020; 295:4858-4869. [PMID: 32122971 DOI: 10.1074/jbc.ra119.011011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 02/18/2020] [Indexed: 12/19/2022] Open
Abstract
The interplay between the transforming growth factor β (TGF-β) signaling proteins, SMAD family member 2 (SMAD2) and 3 (SMAD3), and the TGF-β-inhibiting SMAD, SMAD7, seems to play a vital role in proper pancreatic endocrine development and also in normal β-cell function in adult pancreatic islets. Here, we generated conditional SMAD7 knockout mice by crossing insulin1Cre mice with SMAD7fx/fx mice. We also created a β cell-specific SMAD7-overexpressing mouse line by crossing insulin1Dre mice with HPRT-SMAD7/RosaGFP mice. We analyzed β-cell function in adult islets when SMAD7 was either absent or overexpressed in β cells. Loss of SMAD7 in β cells inhibited proliferation, and SMAD7 overexpression enhanced cell proliferation. However, alterations in basic glucose homeostasis were not detectable following either SMAD7 deletion or overexpression in β cells. Our results show that both the absence and overexpression of SMAD7 affect TGF-β signaling and modulates β-cell proliferation but does not appear to alter β-cell function. Reversible SMAD7 overexpression may represent an attractive therapeutic option to enhance β-cell proliferation without negative effects on β-cell function.
Collapse
Affiliation(s)
- Anuradha Sehrawat
- Department of Pediatric Surgery, Children's Hospital of University of Pittsburgh, Pittsburgh, Pennsylvania 15224
| | - Chiyo Shiota
- Department of Pediatric Surgery, Children's Hospital of University of Pittsburgh, Pittsburgh, Pennsylvania 15224
| | - Nada Mohamed
- Department of Pediatric Surgery, Children's Hospital of University of Pittsburgh, Pittsburgh, Pennsylvania 15224
| | - Julia DiNicola
- Department of Pediatric Surgery, Children's Hospital of University of Pittsburgh, Pittsburgh, Pennsylvania 15224
| | - Mohamed Saleh
- Department of Pediatric Surgery, Children's Hospital of University of Pittsburgh, Pittsburgh, Pennsylvania 15224
| | - Ranjeet Kalsi
- Department of Pediatric Surgery, Children's Hospital of University of Pittsburgh, Pittsburgh, Pennsylvania 15224
| | - Ting Zhang
- Department of Pediatric Surgery, Children's Hospital of University of Pittsburgh, Pittsburgh, Pennsylvania 15224
| | - Yan Wang
- Department of Pediatric Surgery, Children's Hospital of University of Pittsburgh, Pittsburgh, Pennsylvania 15224
| | - Krishna Prasadan
- Department of Pediatric Surgery, Children's Hospital of University of Pittsburgh, Pittsburgh, Pennsylvania 15224
| | - George K Gittes
- Department of Pediatric Surgery, Children's Hospital of University of Pittsburgh, Pittsburgh, Pennsylvania 15224
| |
Collapse
|
24
|
Chen C, Shiota C, Agostinelli G, Ridley D, Jiang Y, Ma J, Prasadan K, Xiao X, Gittes GK. Evidence of a developmental origin for β-cell heterogeneity using a dual lineage-tracing technology. Development 2019; 146:dev164913. [PMID: 31160417 PMCID: PMC6633602 DOI: 10.1242/dev.164913] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/23/2019] [Indexed: 12/24/2022]
Abstract
The Cre/loxP system has been used extensively in mouse models with a limitation of one lineage at a time. Differences in function and other properties among populations of adult β-cells is termed β-cell heterogeneity, which was recently associated with diabetic phenotypes. Nevertheless, the presence of a developmentally derived β-cell heterogeneity is unclear. Here, we have developed a novel dual lineage-tracing technology, using a combination of two recombinase systems, Dre/RoxP and Cre/LoxP, to independently trace green fluorescent Pdx1-lineage cells and red fluorescent Ptf1a-lineage cells in the developing and adult mouse pancreas. We detected a few Pdx1+/Ptf1a- lineage cells in addition to the vast majority of Pdx1+/Ptf1a+ lineage cells in the pancreas. Moreover, Pdx1+/Ptf1a+ lineage β-cells had fewer Ki-67+ proliferating β-cells, and expressed higher mRNA levels of insulin, Glut2, Pdx1, MafA and Nkx6.1, but lower CCND1 and CDK4 levels, compared with Pdx1+/Ptf1a- lineage β-cells. Furthermore, more TSQ-high, SSC-high cells were detected in the Pdx1+Ptf1a+ lineage population than in the Pdx1+Ptf1a- lineage population. Together, these data suggest that differential activation of Ptf1a in the developing pancreas may correlate with this β-cell heterogeneity.
Collapse
Affiliation(s)
- Congde Chen
- Department of Pediatric Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Chiyo Shiota
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Guy Agostinelli
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Daniel Ridley
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Yinan Jiang
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Jie Ma
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Krishna Prasadan
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Xiangwei Xiao
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - George K Gittes
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| |
Collapse
|
25
|
Wang P, Karakose E, Liu H, Swartz E, Ackeifi C, Zlatanic V, Wilson J, González BJ, Bender A, Takane KK, Ye L, Harb G, Pagliuca F, Homann D, Egli D, Argmann C, Scott DK, Garcia-Ocaña A, Stewart AF. Combined Inhibition of DYRK1A, SMAD, and Trithorax Pathways Synergizes to Induce Robust Replication in Adult Human Beta Cells. Cell Metab 2019; 29:638-652.e5. [PMID: 30581122 PMCID: PMC6402958 DOI: 10.1016/j.cmet.2018.12.005] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 08/03/2018] [Accepted: 11/30/2018] [Indexed: 01/13/2023]
Abstract
Small-molecule inhibitors of dual-specificity tyrosine-regulated kinase 1A (DYRK1A) induce human beta cells to proliferate, generating a labeling index of 1.5%-3%. Here, we demonstrate that combined pharmacologic inhibition of DYRK1A and transforming growth factor beta superfamily (TGFβSF)/SMAD signaling generates remarkable further synergistic increases in human beta cell proliferation (average labeling index, 5%-8%, and as high as 15%-18%), and increases in both mouse and human beta cell numbers. This synergy reflects activation of cyclins and cdks by DYRK1A inhibition, accompanied by simultaneous reductions in key cell-cycle inhibitors (CDKN1C and CDKN1A). The latter results from interference with the basal Trithorax- and SMAD-mediated transactivation of CDKN1C and CDKN1A. Notably, combined DYRK1A and TGFβ inhibition allows preservation of beta cell differentiated function. These beneficial effects extend from normal human beta cells and stem cell-derived human beta cells to those from people with type 2 diabetes, and occur both in vitro and in vivo.
Collapse
Affiliation(s)
- Peng Wang
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Esra Karakose
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hongtao Liu
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ethan Swartz
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Courtney Ackeifi
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Viktor Zlatanic
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jessica Wilson
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bryan J González
- Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA
| | - Aaron Bender
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Karen K Takane
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lillian Ye
- Semma Therapeutics, Cambridge, MA 02142, USA
| | - George Harb
- Semma Therapeutics, Cambridge, MA 02142, USA
| | | | - Dirk Homann
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dieter Egli
- Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA
| | - Carmen Argmann
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Donald K Scott
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adolfo Garcia-Ocaña
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrew F Stewart
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
26
|
Yang S, Chen X, Yang M, Zhao X, Chen Y, Zhao H, Liu C, Shen C. The variant at TGFBRAP1 is significantly associated with type 2 diabetes mellitus and affects diabetes-related miRNA expression. J Cell Mol Med 2019; 23:83-92. [PMID: 30461200 PMCID: PMC6307842 DOI: 10.1111/jcmm.13885] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 08/06/2018] [Indexed: 01/09/2023] Open
Abstract
While the transforming growth factor-β1 (TGF-β1) regulates the growth and proliferation of pancreatic β-cells, its receptors trigger the activation of Smad network and subsequently induce the insulin resistance. A case-control was conducted to evaluate the associations of the polymorphisms of TGF-β1 receptor-associated protein 1 (TGFBRAP1) and TGF-β1 receptor 2 (TGFBR2) with type 2 diabetes mellitus (T2DM), and its genetic effects on diabetes-related miRNA expression. miRNA microarray chip was used to screen T2DM-related miRNA and 15 differential expressed miRNAs were further validated in 75 T2DM and 75 normal glucose tolerance (NGT). The variation of rs2241797 (T/C) at TGFBRAP1 showed significant association with T2DM in case-control study, and the OR (95% CI) of dominant model for cumulative effects was 1.204 (1.060-1.370), Bonferroni corrected P < 0.05. Significant differences in the fast glucose and HOMA-β indices were observed amongst the genotypes of rs2241797. The expression of has-miR-30b-5p and has-miR-93-5p was linearly increased across TT, TC, and CC genotypes of rs2241797 in NGT, Ptrend values were 0.024 and 0.016, respectively. Our findings suggest that genetic polymorphisms of TGFBRAP1 may contribute to the genetic susceptibility of T2DM by mediating diabetes-related miRNA expression.
Collapse
Affiliation(s)
- Song Yang
- Department of CardiologyAffiliated Yixing People's Hospital of Jiangsu UniversityPeople's Hospital of Yixing CityYixingChina
| | - Xiaotian Chen
- Department of EpidemiologySchool of Public HealthNanjing Medical UniversityNanjingChina
| | - Mengyao Yang
- Department of Clinical EpidemiologyGeriatric Hospital of Nanjing Medical UniversityJiangsu Province Geriatric InstituteNanjingChina
| | - Xianghai Zhao
- Department of CardiologyAffiliated Yixing People's Hospital of Jiangsu UniversityPeople's Hospital of Yixing CityYixingChina
| | - Yanchun Chen
- Department of CardiologyAffiliated Yixing People's Hospital of Jiangsu UniversityPeople's Hospital of Yixing CityYixingChina
| | - Hailong Zhao
- Division of Communicable Disease ControlHuai's Centre for Disease Control and PreventionHuaianChina
| | - Chunlan Liu
- Department of EpidemiologySchool of Public HealthNanjing Medical UniversityNanjingChina
| | - Chong Shen
- Department of EpidemiologySchool of Public HealthNanjing Medical UniversityNanjingChina
- Department of Clinical EpidemiologyGeriatric Hospital of Nanjing Medical UniversityJiangsu Province Geriatric InstituteNanjingChina
| |
Collapse
|
27
|
Jiang Y, Fischbach S, Xiao X. The Role of the TGFβ Receptor Signaling Pathway in Adult Beta Cell Proliferation. Int J Mol Sci 2018; 19:3136. [PMID: 30322036 PMCID: PMC6212884 DOI: 10.3390/ijms19103136] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 12/19/2022] Open
Abstract
Diabetes is a global epidemic and affects millions of individuals in the United States. Devising novel treatments for diabetes continues to be a great medical challenge. Postnatal beta cell growth or compensation is largely attributed to beta cell proliferation, which declines continuously with age. To boost beta cell proliferation to regenerate an adequate functional mass, there is a need to understand the signaling pathways that regulate beta cell proliferation for creating practical strategies to promote the process. Transforming growth factor β (TGFβ) belongs to a signaling superfamily that governs pancreatic development and the regeneration of beta cells after pancreatic diseases. TGFβ exerts its functions by activation of downstream Smad proteins and through its crosstalk with other pathways. Accumulating data demonstrate that the TGFβ receptor signaling pathway also participates in the control of beta cell proliferation. This review details the role of the TGFβ receptor signaling pathway in beta cell proliferation physiologically and in the pathogenesis of diabetes.
Collapse
Affiliation(s)
- Yinan Jiang
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 4401 Penn Ave, Pittsburgh, PA 15224, USA.
| | - Shane Fischbach
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 4401 Penn Ave, Pittsburgh, PA 15224, USA.
- The Warren Alpert Medical School of Brown University, 222 Richmond Street, Providence, RI 02903, USA.
| | - Xiangwei Xiao
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 4401 Penn Ave, Pittsburgh, PA 15224, USA.
| |
Collapse
|
28
|
Jiang WJ, Peng YC, Yang KM. Cellular signaling pathways regulating β-cell proliferation as a promising therapeutic target in the treatment of diabetes. Exp Ther Med 2018; 16:3275-3285. [PMID: 30233674 PMCID: PMC6143874 DOI: 10.3892/etm.2018.6603] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 07/27/2018] [Indexed: 12/30/2022] Open
Abstract
It is established that a decrease in β-cell number and deficiency in the function of existing β-cells contribute to type 1 and type 2 diabetes mellitus. Therefore, a major focus of current research is to identify novel methods of improving the number and function of β-cells, so as to prevent and/or postpone the development of diabetes mellitus and potentially reverse diabetes mellitus. Based on prior knowledge of the above-mentioned causes, promising therapeutic approaches may include direct transplantation of islets, implantation and subsequent induced differentiation of progenitors/stem cells to β-cells, replication of pre-existing β-cells, or activation of endogenous β-cell progenitors. More recently, with regards to cell replacement and regenerative treatment for diabetes patients, the identification of cellular signaling pathways with related genes or corresponding proteins involved in diabetes has become a topic of interest. However, the majority of pathways and molecules associated with β-cells remain unresolved, and the specialized functions of known pathways remain unclear, particularly in humans. The current article has evaluated the progress of research on pivotal cellular signaling pathways involved with β-cell proliferation and survival, and their validity for therapeutic adult β-cell regeneration in diabetes. More efforts are required to elucidate the cellular events involved in human β-cell proliferation in terms of the underlying mechanisms and functions.
Collapse
Affiliation(s)
- Wen-Juan Jiang
- Institute of Anatomy, Basic Medical College of Dali University, Dali, Yunnan 671000, P.R. China
| | - Yun-Chuan Peng
- Institute of Anatomy, Basic Medical College of Dali University, Dali, Yunnan 671000, P.R. China
| | - Kai-Ming Yang
- Institute of Anatomy, Basic Medical College of Dali University, Dali, Yunnan 671000, P.R. China
| |
Collapse
|
29
|
Karakose E, Ackeifi C, Wang P, Stewart AF. Advances in drug discovery for human beta cell regeneration. Diabetologia 2018; 61:1693-1699. [PMID: 29770834 PMCID: PMC6239977 DOI: 10.1007/s00125-018-4639-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/05/2018] [Indexed: 12/15/2022]
Abstract
The numbers of insulin-secreting pancreatic beta cells are reduced in people with type 1 and type 2 diabetes. Driving beta cell regeneration in the pancreases of people with diabetes would be an attractive approach to reversing diabetes. While adult human beta cells have long been believed to be terminally differentiated and, therefore, irreversibly quiescent, it has become clear over recent years that this is not true. More specifically, both candidate and unbiased high-throughput screen approaches have revealed several classes of molecules that are clearly able to induce human beta cell proliferation. Here, we review recent approaches and accomplishments in human beta cell regenerative drug discovery. We also list the challenges that this rapidly moving field must confront to translate beta cell regenerative therapy from the laboratory to the clinic.
Collapse
Affiliation(s)
- Esra Karakose
- The Diabetes, Obesity and Metabolism Institute, The Icahn School of Medicine at Mount Sinai, Atran 5, Box 1152, 1 Gustave L. Levy Place, New York, NY, 10029, USA
| | - Courtney Ackeifi
- The Diabetes, Obesity and Metabolism Institute, The Icahn School of Medicine at Mount Sinai, Atran 5, Box 1152, 1 Gustave L. Levy Place, New York, NY, 10029, USA
| | - Peng Wang
- The Diabetes, Obesity and Metabolism Institute, The Icahn School of Medicine at Mount Sinai, Atran 5, Box 1152, 1 Gustave L. Levy Place, New York, NY, 10029, USA
| | - Andrew F Stewart
- The Diabetes, Obesity and Metabolism Institute, The Icahn School of Medicine at Mount Sinai, Atran 5, Box 1152, 1 Gustave L. Levy Place, New York, NY, 10029, USA.
| |
Collapse
|
30
|
Wu X, Li Z, Chen K, Yin P, Zheng L, Sun S, Chen X. Egr-1 transactivates WNT5A gene expression to inhibit glucose-induced β-cell proliferation. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2018; 1861:S1874-9399(18)30218-9. [PMID: 30025875 DOI: 10.1016/j.bbagrm.2018.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/10/2018] [Accepted: 07/13/2018] [Indexed: 02/07/2023]
Abstract
Selective β-cell loss is a characteristic of type 2 diabetes mellitus (T2DM). Inhibition of glucose-stimulated β-cell proliferation is one of the in vivo results of the lipotoxicity of saturated fatty acids (SFAs). However, the mechanism by which lipotoxicity inhibits β-cell proliferation is still unclear. In this study, we found palmitate, a saturated fatty acid, inhibited the β-cell proliferation induced by high glucose through the induction of Wnt5a expression in vitro and in vivo. We also found that Wnt5a was both sufficient and necessary for inhibition of β-cell proliferation. Additionally, Egr-1, but not NF-κB, FOXO1, Smad2, Smad3, SP1 or SP3 mediated the expression of Wnt5a. Deletion and site-directed mutagenesis of the WNT5A promoter revealed that activation of WNT5A gene transcription depends primarily on a putative Egr-binding sequence between nucleotides -52 to -44, upstream of the transcription start site. Furthermore, Egr-1 bound directly to this sequence in response to palmitate treatment, both in vitro and in vivo. Moreover, after mice islets were treated with Egr inhibitors, the expression of Wnt5a decreased significantly and the glucose-induced β-cell proliferation inhibited by palmitate was resumed. These findings establish Wnt5a as an Egr-1 target gene in β-cells, uncovering a novel Egr-1/Wnt5a pathway by which saturated free fatty acids block glucose-induced β-cell proliferation. Our study lends support for the potential of Egr-1 inhibitors or Wnt5a antibodies as therapeutics for the treatment of T2DM.
Collapse
Affiliation(s)
- XingEr Wu
- The Molecular Diagnostic Center, Zhongshan City People's Hospital, Zhongshan 528403, Guangdong, China; Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - ZeHong Li
- Guzhen Sub-bureau, Zhongshan Public Security Bureau, Zhongshan 528400, Guangdong, China
| | - Kang Chen
- Zhongshan City People's Hospital, Zhongshan 528403, Guangdong, China
| | - PeiHong Yin
- Zhongshan City People's Hospital, Zhongshan 528403, Guangdong, China
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China.
| | - ShiJun Sun
- The Molecular Diagnostic Center, Zhongshan City People's Hospital, Zhongshan 528403, Guangdong, China.
| | - XiaoYu Chen
- The Eighth Affiliated Hospital of Sun Yat-Sen University, Futian, 518000 Shenzhen, China.
| |
Collapse
|
31
|
Simons ZB, Morgan RC, Rose L, Nelson JB, Tersey SA, Mirmira RG. Hypoglycemia in a Patient With a Polyhormonal Pancreatic Neuroendocrine Tumor With Evidence of Endocrine Progenitors. J Endocr Soc 2018; 2:172-177. [PMID: 29568813 PMCID: PMC5841169 DOI: 10.1210/js.2017-00409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 01/11/2018] [Indexed: 11/19/2022] Open
Abstract
A 55-year-old woman with a large polyhormonal neuroendocrine tumor with unusual pathology is described. The patient presented with intermittent neuroglycopenic symptoms between more protracted asymptomatic periods occurring over the preceding 4 years. During a diagnostic 72-hour inpatient fast, she exhibited hypoglycemia at 70 hours after initiation. On computed tomography scan, a 6-cm mass was identified at the pancreatic head. The patient underwent a pylorus-preserving pancreaticoduodenectomy, and pathology was positive for cells staining for pancreatic polypeptide, insulin, and occasional double hormone (insulin plus pancreatic polypeptide)-positive cells. In addition, the tumor exhibited broad staining for ALDH1A3, a new marker of endocrine progenitors. This case serves to highlight the clinical and pathologic variability of insulin-producing tumors and raises the potential for cells in these tumors to exhibit hormone interconversion and progenitor-like states.
Collapse
Affiliation(s)
- Zachary B Simons
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Rachel C Morgan
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Laurel Rose
- Department of Pathology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Jennifer B Nelson
- Department of Pediatrics and the Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Sarah A Tersey
- Department of Pediatrics and the Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Raghavendra G Mirmira
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202.,Department of Pediatrics and the Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana 46202
| |
Collapse
|
32
|
Rodnoi P, Rajkumar M, Moin ASM, Georgia SK, Butler AE, Dhawan S. Neuropeptide Y expression marks partially differentiated β cells in mice and humans. JCI Insight 2017; 2:94005. [PMID: 28614797 DOI: 10.1172/jci.insight.94005] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/10/2017] [Indexed: 12/27/2022] Open
Abstract
β Cells are formed in embryonic life by differentiation of endocrine progenitors and expand by replication during neonatal life, followed by transition into functional maturity. In this study, we addressed the potential contribution of neuropeptide Y (NPY) in pancreatic β cell development and maturation. We show that NPY expression is restricted from the progenitor populations during pancreatic development and marks functionally immature β cells in fetal and neonatal mice and humans. NPY expression is epigenetically downregulated in β cells upon maturation. Neonatal β cells that express NPY are more replicative, and knockdown of NPY expression in neonatal mouse islets reduces replication and enhances insulin secretion in response to high glucose. These data show that NPY expression likely promotes replication and contributes to impaired glucose responsiveness in neonatal β cells. We show that NPY expression reemerges in β cells in mice fed with high-fat diet as well as in diabetes in mice and humans, establishing a potential new mechanism to explain impaired β cell maturity in diabetes. Together, these studies highlight the contribution of NPY in the regulation of β cell differentiation and have potential applications for β cell supplementation for diabetes therapy.
Collapse
Affiliation(s)
- Pope Rodnoi
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Mohan Rajkumar
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Abu Saleh Md Moin
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Senta K Georgia
- Children's Hospital Los Angeles (CHLA), Keck School of Medicine, University of Southern California (USC), Los Angeles, California, USA
| | - Alexandra E Butler
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Sangeeta Dhawan
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| |
Collapse
|
33
|
Abstract
Inhibitory Smads (I-Smads) have conserved carboxy-terminal MH2 domains but highly divergent amino-terminal regions when compared with receptor-regulated Smads (R-Smads) and common-partner Smads (co-Smads). Smad6 preferentially inhibits Smad signaling initiated by the bone morphogenetic protein (BMP) type I receptors ALK-3 and ALK-6, whereas Smad7 inhibits both transforming growth factor β (TGF-β)- and BMP-induced Smad signaling. I-Smads also regulate some non-Smad signaling pathways. Here, we discuss the vertebrate I-Smads, their roles as inhibitors of Smad activation and regulators of receptor stability, as scaffolds for non-Smad signaling, and their possible roles in the nucleus. We also discuss the posttranslational modification of I-Smads, including phosphorylation, ubiquitylation, acetylation, and methylation.
Collapse
Affiliation(s)
- Keiji Miyazawa
- Department of Biochemistry, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
34
|
Abstract
Inhibitory Smads (I-Smads) have conserved carboxy-terminal MH2 domains but highly divergent amino-terminal regions when compared with receptor-regulated Smads (R-Smads) and common-partner Smads (co-Smads). Smad6 preferentially inhibits Smad signaling initiated by the bone morphogenetic protein (BMP) type I receptors ALK-3 and ALK-6, whereas Smad7 inhibits both transforming growth factor β (TGF-β)- and BMP-induced Smad signaling. I-Smads also regulate some non-Smad signaling pathways. Here, we discuss the vertebrate I-Smads, their roles as inhibitors of Smad activation and regulators of receptor stability, as scaffolds for non-Smad signaling, and their possible roles in the nucleus. We also discuss the posttranslational modification of I-Smads, including phosphorylation, ubiquitylation, acetylation, and methylation.
Collapse
Affiliation(s)
- Keiji Miyazawa
- Department of Biochemistry, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
35
|
Xiao X, Chen C, Guo P, Zhang T, Fischbach S, Fusco J, Shiota C, Prasadan K, Dong H, Gittes GK. Forkhead Box Protein 1 (FoxO1) Inhibits Accelerated β Cell Aging in Pancreas-specific SMAD7 Mutant Mice. J Biol Chem 2017; 292:3456-3465. [PMID: 28057752 PMCID: PMC5336177 DOI: 10.1074/jbc.m116.770032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/04/2017] [Indexed: 12/25/2022] Open
Abstract
The mechanisms underlying the effects of exocrine dysfunction on the development of diabetes remain largely unknown. Here we show that pancreatic depletion of SMAD7 resulted in age-dependent increases in β cell dysfunction with accelerated glucose intolerance, followed by overt diabetes. The accelerated β cell dysfunction and loss of proliferation capacity, two features of β cell aging, appeared to be non-cell-autonomous, secondary to the adjacent exocrine failure as a "bystander effect." Increased Forkhead box protein 1 (FoxO1) acetylation and nuclear retention was followed by progressive FoxO1 loss in β cells that marked the onset of diabetes. Moreover, forced FoxO1 expression in β cells prevented β cell dysfunction and loss in this model. Thus, we present a model of accelerated β cell aging that may be useful for studying the mechanisms underlying β cell failure in diabetes. Moreover, we provide evidence highlighting a critical role of FoxO1 in maintaining β cell identity in the context of SMAD7 failure.
Collapse
Affiliation(s)
| | - Congde Chen
- Divisions of Pediatric Surgery; Department of Pediatric Surgery, Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325000, China
| | - Ping Guo
- Divisions of Pediatric Surgery; Department of Orthopedic Surgery, University of Texas Health Sciences Center, Houston, Texas 77054
| | - Ting Zhang
- Immunogenetics, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | | | | | | | | | - Henry Dong
- Immunogenetics, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | | |
Collapse
|
36
|
Song Z, Fusco J, Zimmerman R, Fischbach S, Chen C, Ricks DM, Prasadan K, Shiota C, Xiao X, Gittes GK. Epidermal Growth Factor Receptor Signaling Regulates β Cell Proliferation in Adult Mice. J Biol Chem 2016; 291:22630-22637. [PMID: 27587395 PMCID: PMC5077199 DOI: 10.1074/jbc.m116.747840] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/29/2016] [Indexed: 12/20/2022] Open
Abstract
A thorough understanding of the signaling pathways involved in the regulation of β cell proliferation is an important initial step in restoring β cell mass in the diabetic patient. Here, we show that epidermal growth factor receptor 1 (EGFR) was significantly up-regulated in the islets of C57BL/6 mice after 50% partial pancreatectomy (PPx), a model for workload-induced β cell proliferation. Specific deletion of EGFR in the β cells of adult mice impaired β cell proliferation at baseline and after 50% PPx, suggesting that the EGFR signaling pathway plays an essential role in adult β cell proliferation. Further analyses showed that β cell-specific depletion of EGFR resulted in impaired expression of cyclin D1 and impaired suppression of p27 after PPx, both of which enhance β cell proliferation. These data highlight the importance of EGFR signaling and its downstream signaling cascade in postnatal β cell growth.
Collapse
Affiliation(s)
- Zewen Song
- From the Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
- Department of Oncology, the Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha 410013, China, and
| | - Joseph Fusco
- From the Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Ray Zimmerman
- From the Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Shane Fischbach
- From the Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Congde Chen
- From the Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
- Department of Pediatric Surgery, the Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325000, China
| | - David Matthew Ricks
- From the Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Krishna Prasadan
- From the Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Chiyo Shiota
- From the Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Xiangwei Xiao
- From the Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224,
| | - George K Gittes
- From the Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224,
| |
Collapse
|
37
|
Prasadan K, Shiota C, Xiangwei X, Ricks D, Fusco J, Gittes G. A synopsis of factors regulating beta cell development and beta cell mass. Cell Mol Life Sci 2016; 73:3623-37. [PMID: 27105622 PMCID: PMC5002366 DOI: 10.1007/s00018-016-2231-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/24/2016] [Accepted: 04/14/2016] [Indexed: 12/29/2022]
Abstract
The insulin-secreting beta cells in the endocrine pancreas regulate blood glucose levels, and loss of functional beta cells leads to insulin deficiency, hyperglycemia (high blood glucose) and diabetes mellitus. Current treatment strategies for type-1 (autoimmune) diabetes are islet transplantation, which has significant risks and limitations, or normalization of blood glucose with insulin injections, which is clearly not ideal. The type-1 patients can lack insulin counter-regulatory mechanism; therefore, hypoglycemia is a potential risk. Hence, a cell-based therapy offers a better alternative for the treatment of diabetes. Past research was focused on attempting to generate replacement beta cells from stem cells; however, recently there has been an increasing interest in identifying mechanisms that will lead to the conversion of pre-existing differentiated endocrine cells into beta cells. The goal of this review is to provide an overview of several of the key factors that regulate new beta cell formation (neogenesis) and beta cell proliferation.
Collapse
Affiliation(s)
- Krishna Prasadan
- Rangos Research Center, Children's Hospital of University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Chiyo Shiota
- Rangos Research Center, Children's Hospital of University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Xiao Xiangwei
- Rangos Research Center, Children's Hospital of University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - David Ricks
- Rangos Research Center, Children's Hospital of University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Joseph Fusco
- Rangos Research Center, Children's Hospital of University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - George Gittes
- Rangos Research Center, Children's Hospital of University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA.
| |
Collapse
|
38
|
Dhawan S, Dirice E, Kulkarni RN, Bhushan A. Inhibition of TGF-β Signaling Promotes Human Pancreatic β-Cell Replication. Diabetes 2016; 65:1208-18. [PMID: 26936960 PMCID: PMC4839200 DOI: 10.2337/db15-1331] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 02/22/2016] [Indexed: 12/19/2022]
Abstract
Diabetes is associated with loss of functional pancreatic β-cells, and restoration of β-cells is a major goal for regenerative therapies. Endogenous regeneration of β-cells via β-cell replication has the potential to restore cellular mass; however, pharmacological agents that promote regeneration or expansion of endogenous β-cells have been elusive. The regenerative capacity of β-cells declines rapidly with age, due to accumulation of p16(INK4a), resulting in limited capacity for adult endocrine pancreas regeneration. Here, we show that transforming growth factor-β (TGF-β) signaling via Smad3 integrates with the trithorax complex to activate and maintain Ink4a expression to prevent β-cell replication. Importantly, inhibition of TGF-β signaling can result in repression of the Ink4a/Arf locus, resulting in increased β-cell replication in adult mice. Furthermore, small molecule inhibitors of the TGF-β pathway promote β-cell replication in human islets transplanted into NOD-scid IL-2Rg(null) mice. These data reveal a novel role for TGF-β signaling in the regulation of the Ink4a/Arf locus and highlight the potential of using small molecule inhibitors of TGF-β signaling to promote human β-cell replication.
Collapse
MESH Headings
- Animals
- Benzamides/pharmacology
- Cell Proliferation/drug effects
- Cells, Cultured
- Cyclin-Dependent Kinase Inhibitor p16/agonists
- Cyclin-Dependent Kinase Inhibitor p16/antagonists & inhibitors
- Cyclin-Dependent Kinase Inhibitor p16/genetics
- Cyclin-Dependent Kinase Inhibitor p16/metabolism
- Dioxoles/pharmacology
- Female
- Gene Expression Regulation/drug effects
- Humans
- Insulin/metabolism
- Insulin Secretion
- Insulin-Secreting Cells/cytology
- Insulin-Secreting Cells/drug effects
- Insulin-Secreting Cells/metabolism
- Insulin-Secreting Cells/physiology
- Islets of Langerhans Transplantation/physiology
- Male
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, SCID
- Mice, Transgenic
- Receptors, Transforming Growth Factor beta/agonists
- Receptors, Transforming Growth Factor beta/antagonists & inhibitors
- Receptors, Transforming Growth Factor beta/metabolism
- Regeneration/drug effects
- Signal Transduction/drug effects
- Smad3 Protein/metabolism
- Tissue Banks
- Transforming Growth Factor beta1/antagonists & inhibitors
- Transforming Growth Factor beta1/metabolism
- Transplantation, Heterologous
- Transplantation, Heterotopic
Collapse
Affiliation(s)
- Sangeeta Dhawan
- Division of Endocrinology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Ercument Dirice
- Islet Cell and Regenerative Biology, Joslin Diabetes Center and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Rohit N Kulkarni
- Islet Cell and Regenerative Biology, Joslin Diabetes Center and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Anil Bhushan
- Diabetes Center, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
39
|
Beamish CA, Strutt BJ, Arany EJ, Hill DJ. Insulin-positive, Glut2-low cells present within mouse pancreas exhibit lineage plasticity and are enriched within extra-islet endocrine cell clusters. Islets 2016; 8:65-82. [PMID: 27010375 PMCID: PMC4987018 DOI: 10.1080/19382014.2016.1162367] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 02/25/2016] [Accepted: 03/01/2016] [Indexed: 01/01/2023] Open
Abstract
Regeneration of insulin-producing β-cells from resident pancreas progenitors requires an understanding of both progenitor identity and lineage plasticity. One model suggested that a rare β-cell sub-population within islets demonstrated multi-lineage plasticity. We hypothesized that β-cells from young mice (postnatal day 7, P7) exhibit such plasticity and used a model of islet dedifferentiation toward a ductal epithelial-cell phenotype to test this theory. RIPCre;Z/AP(+/+) mice were used to lineage trace the fate of β-cells during dedifferentiation culture by a human placental alkaline phosphatase (HPAP) reporter. There was a significant loss of HPAP-expressing β-cells in culture, but remaining HPAP(+) cells lost insulin expression while gaining expression of the epithelial duct cell marker cytokeratin-19 (Ck19). Flow cytometry and recovery of β-cell subpopulations from whole pancreas vs. islets suggest that the HPAP(+)Ck19(+) cells had derived from insulin-positive, glucose-transporter-2-low (Ins(+)Glut2(LO)) cells, representing 3.5% of all insulin-expressing cells. The majority of these cells were found outside of islets within clusters of <5 β-cells. These insulin(+)Glut2(LO) cells demonstrated a greater proliferation rate in vivo and in vitro as compared to insulin(+)Glut2(+) cells at P7, were retained into adulthood, and a subset differentiated into endocrine, ductal, and neural lineages, illustrating substantial plasticity. Results were confirmed using RIPCre;ROSA- eYFP mice. Quantitative PCR data indicated these cells possess an immature β-cell phenotype. These Ins(+)Glut2(LO) cells may represent a resident population of cells capable of forming new, functional β-cells, and which may be potentially exploited for regenerative therapies in the future.
Collapse
Affiliation(s)
- Christine A. Beamish
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
- Children's Health Research Institute, London, ON, Canada
- Lawson Health Research Institute, St Joseph Health Care, London, ON, Canada
| | - Brenda J. Strutt
- Department of Medicine, Western University, London, ON, Canada
- Lawson Health Research Institute, St Joseph Health Care, London, ON, Canada
| | - Edith J. Arany
- Department of Medicine, Western University, London, ON, Canada
- Department of Pathology, Western University, London, ON, Canada
- Children's Health Research Institute, London, ON, Canada
- Lawson Health Research Institute, St Joseph Health Care, London, ON, Canada
| | - David J. Hill
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
- Department of Medicine, Western University, London, ON, Canada
- Children's Health Research Institute, London, ON, Canada
- Lawson Health Research Institute, St Joseph Health Care, London, ON, Canada
| |
Collapse
|
40
|
Imai Y, Dobrian AD, Morris MA, Taylor-Fishwick DA, Nadler JL. Lipids and immunoinflammatory pathways of beta cell destruction. Diabetologia 2016; 59:673-8. [PMID: 26868492 PMCID: PMC4779407 DOI: 10.1007/s00125-016-3890-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 12/30/2015] [Indexed: 12/18/2022]
Abstract
Islet inflammation contributes to beta cell demise in both type 1 and type 2 diabetes. 12-Lipoxygenase (12-LO, gene expressed as ALOX12 in humans and 12-Lo in rodents in this manuscript) produces proinflammatory metabolites such as 12(S)-hydroxyeicosatetraenoic acids through dioxygenation of polyunsaturated fatty acids. 12-LO was first implicated in diabetes when the increase in 12-Lo expression and 12(S)-hydroxyeicosatetraenoic acid was noted in rodent models of diabetes. Subsequently, germline 12-Lo (-/-) was shown to prevent the development of hyperglycemia in mouse models of type 1 diabetes and in high-fat fed mice. More recently, beta cell-specific 12-Lo (-/-) was shown to protect mice against hyperglycaemia after streptozotocin and a high-fat diet. In humans, 12-LO expression is increased in pancreatic islets of autoantibody-positive, type 1 diabetic and type 2 diabetic organ donors. Interestingly, the high expression of ALOX12 is associated with the alteration in first-phase glucose-stimulated insulin secretion in human type 2 diabetic islets. To further clarify the role of islet 12-LO in diabetes and to validate 12-LO as a therapeutic target of diabetes, we have studied selective pharmacological inhibitors for 12-LO. The compounds we have identified show promise: they protect beta cell lines and human islets from apoptosis and preserve insulin secretion when challenged by proinflammatory cytokine mixture. Currently studies are underway to test the compounds in mouse models of diabetes. This review summarises a presentation given at the 'Islet inflammation in type 2 diabetes' symposium at the 2015 annual meeting of the EASD. It is accompanied two other mini-reviews on topics from this symposium (by Simone Baltrusch, DOI: 10.1007/s00125-016-3891-x and Marc Donath, DOI: 10.1007/s00125-016-3873-z ) and a commentary by the Session Chair, Piero Marchetti (DOI: 10.1007/s00125-016-3875-x ).
Collapse
Affiliation(s)
- Yumi Imai
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA, 23507, USA.
| | - Anca D Dobrian
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Margaret A Morris
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA, 23507, USA
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, USA
| | - David A Taylor-Fishwick
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Jerry L Nadler
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA, 23507, USA.
| |
Collapse
|
41
|
Xiao X, Fischbach S, Song Z, Gaffar I, Zimmerman R, Wiersch J, Prasadan K, Shiota C, Guo P, Ramachandran S, Witkowski P, Gittes GK. Transient Suppression of TGFβ Receptor Signaling Facilitates Human Islet Transplantation. Endocrinology 2016; 157:1348-1356. [PMID: 26872091 PMCID: PMC4816736 DOI: 10.1210/en.2015-1986] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/09/2016] [Indexed: 11/19/2022]
Abstract
Although islet transplantation is an effective treatment for severe diabetes, its broad application is greatly limited due to a shortage of donor islets. Suppression of TGFβ receptor signaling in β-cells has been shown to increase β-cell proliferation in mice, but has not been rigorously examined in humans. Here, treatment of human islets with a TGFβ receptor I inhibitor, SB-431542 (SB), significantly improved C-peptide secretion by β-cells, and significantly increased β-cell number by increasing β-cell proliferation. In addition, SB increased cell-cycle activators and decreased cell-cycle suppressors in human β-cells. Transplantation of SB-treated human islets into diabetic immune-deficient mice resulted in significant improvement in blood glucose control, significantly higher serum and graft insulin content, and significantly greater increases in β-cell proliferation in the graft, compared with controls. Thus, our data suggest that transient suppression of TGFβ receptor signaling may improve the outcome of human islet transplantation, seemingly through increasing β-cell number and function.
Collapse
Affiliation(s)
| | | | | | | | - Ray Zimmerman
- Division of Pediatric Surgery (X.X., S.F., Z.S., I.G., R.Z., J.W., K.P., C.S., P.G., G.K.G.), Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Department of General Surgery (Z.S.), The Third Xiangya Hospital of Central S University, Changsha 410013, China; and Department of Surgery (S.R., P.W.), University of Chicago, Chicago, Illinois 60637
| | - John Wiersch
- Division of Pediatric Surgery (X.X., S.F., Z.S., I.G., R.Z., J.W., K.P., C.S., P.G., G.K.G.), Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Department of General Surgery (Z.S.), The Third Xiangya Hospital of Central S University, Changsha 410013, China; and Department of Surgery (S.R., P.W.), University of Chicago, Chicago, Illinois 60637
| | - Krishna Prasadan
- Division of Pediatric Surgery (X.X., S.F., Z.S., I.G., R.Z., J.W., K.P., C.S., P.G., G.K.G.), Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Department of General Surgery (Z.S.), The Third Xiangya Hospital of Central S University, Changsha 410013, China; and Department of Surgery (S.R., P.W.), University of Chicago, Chicago, Illinois 60637
| | - Chiyo Shiota
- Division of Pediatric Surgery (X.X., S.F., Z.S., I.G., R.Z., J.W., K.P., C.S., P.G., G.K.G.), Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Department of General Surgery (Z.S.), The Third Xiangya Hospital of Central S University, Changsha 410013, China; and Department of Surgery (S.R., P.W.), University of Chicago, Chicago, Illinois 60637
| | - Ping Guo
- Division of Pediatric Surgery (X.X., S.F., Z.S., I.G., R.Z., J.W., K.P., C.S., P.G., G.K.G.), Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Department of General Surgery (Z.S.), The Third Xiangya Hospital of Central S University, Changsha 410013, China; and Department of Surgery (S.R., P.W.), University of Chicago, Chicago, Illinois 60637
| | - Sabarinathan Ramachandran
- Division of Pediatric Surgery (X.X., S.F., Z.S., I.G., R.Z., J.W., K.P., C.S., P.G., G.K.G.), Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Department of General Surgery (Z.S.), The Third Xiangya Hospital of Central S University, Changsha 410013, China; and Department of Surgery (S.R., P.W.), University of Chicago, Chicago, Illinois 60637
| | - Piotr Witkowski
- Division of Pediatric Surgery (X.X., S.F., Z.S., I.G., R.Z., J.W., K.P., C.S., P.G., G.K.G.), Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Department of General Surgery (Z.S.), The Third Xiangya Hospital of Central S University, Changsha 410013, China; and Department of Surgery (S.R., P.W.), University of Chicago, Chicago, Illinois 60637
| | - George K. Gittes
- Division of Pediatric Surgery (X.X., S.F., Z.S., I.G., R.Z., J.W., K.P., C.S., P.G., G.K.G.), Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Department of General Surgery (Z.S.), The Third Xiangya Hospital of Central S University, Changsha 410013, China; and Department of Surgery (S.R., P.W.), University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
42
|
Hu W, Zhang Y, Wang L, Lau CW, Xu J, Luo JY, Gou L, Yao X, Chen ZY, Ma RCW, Tian XY, Huang Y. Bone Morphogenic Protein 4-Smad–Induced Upregulation of Platelet-Derived Growth Factor AA Impairs Endothelial Function. Arterioscler Thromb Vasc Biol 2016; 36:553-60. [DOI: 10.1161/atvbaha.115.306302] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 01/04/2016] [Indexed: 01/29/2023]
Abstract
Objective—
Bone morphogenic protein 4 (BMP4) is an important mediator of endothelial dysfunction in cardio-metabolic diseases, whereas platelet-derived growth factors (PDGFs) are major angiogenic and proinflammatory mediator, although the functional link between these 2 factors is unknown. The present study investigated whether PDGF mediates BMP4-induced endothelial dysfunction in diabetes mellitus.
Approach and Results—
We generated Ad-Bmp4 to overexpress Bmp4 and Ad-Pdgfa-shRNA to knockdown Pdgfa in mice through tail intravenous injection. SMAD4-shRNA lentivirus, SMAD1-shRNA, and SMAD5 shRNA adenovirus were used for knockdown in human and mouse endothelial cells. We found that PDGF-AA impaired endothelium-dependent vasodilation in aortas and mesenteric resistance arteries. BMP4 upregulated PDGF-AA in human and mouse endothelial cells, which was abolished by BMP4 antagonist noggin or knockdown of SMAD1/5 or SMAD4. BMP4-impared relaxation in mouse aorta was also ameliorated by PDGF-AA neutralizing antibody. Tail injection of Ad-Pdgfa-shRNA ameliorates endothelial dysfunction induced by Bmp4 overexpression (Ad-Bmp4) in vivo. Serum PDGF-AA was elevated in both diabetic patients and diabetic
db/db
mice compared with nondiabetic controls. Pdgfa-shRNA or Bmp4-shRNA adenovirus reduced serum PDGF-AA concentration in
db/db
mice. PDGF-AA neutralizing antibody or tail injection with Pdgfa-shRNA adenovirus improved endothelial function in aortas and mesenteric resistance arteries from
db/db
mice. The effect of PDGF-AA on endothelial function in mouse aorta was also inhibited by Ad-Pdgfra-shRNA to inhibit PDGFRα.
Conclusions—
The present study provides novel evidences to show that PDGF-AA impairs endothelium-dependent vasodilation and PDGF-AA mediates BMP4-induced adverse effect on endothelial cell function through SMAD1/5- and SMAD4-dependent mechanisms. Inhibition of PGDF-AA ameliorates vascular dysfunction in diabetic mice.
Collapse
Affiliation(s)
- Weining Hu
- From the Shenzhen Research Institute, School of Biomedical Sciences, Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences (W.H., Y.Z., L.W., C.W.L., J.X., J.-Y.L., L.G., X.Y., X.Y.T., Y.H), the School of Life Science (Z.-Y.C.), Department of Medicine and Therapeutics, the Prince of Wales Hospital, Hong Kong; and Institute of Diabetes and Obesity (R.C.W.M), Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yang Zhang
- From the Shenzhen Research Institute, School of Biomedical Sciences, Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences (W.H., Y.Z., L.W., C.W.L., J.X., J.-Y.L., L.G., X.Y., X.Y.T., Y.H), the School of Life Science (Z.-Y.C.), Department of Medicine and Therapeutics, the Prince of Wales Hospital, Hong Kong; and Institute of Diabetes and Obesity (R.C.W.M), Chinese University of Hong Kong, Hong Kong SAR, China
| | - Li Wang
- From the Shenzhen Research Institute, School of Biomedical Sciences, Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences (W.H., Y.Z., L.W., C.W.L., J.X., J.-Y.L., L.G., X.Y., X.Y.T., Y.H), the School of Life Science (Z.-Y.C.), Department of Medicine and Therapeutics, the Prince of Wales Hospital, Hong Kong; and Institute of Diabetes and Obesity (R.C.W.M), Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chi Wai Lau
- From the Shenzhen Research Institute, School of Biomedical Sciences, Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences (W.H., Y.Z., L.W., C.W.L., J.X., J.-Y.L., L.G., X.Y., X.Y.T., Y.H), the School of Life Science (Z.-Y.C.), Department of Medicine and Therapeutics, the Prince of Wales Hospital, Hong Kong; and Institute of Diabetes and Obesity (R.C.W.M), Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jian Xu
- From the Shenzhen Research Institute, School of Biomedical Sciences, Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences (W.H., Y.Z., L.W., C.W.L., J.X., J.-Y.L., L.G., X.Y., X.Y.T., Y.H), the School of Life Science (Z.-Y.C.), Department of Medicine and Therapeutics, the Prince of Wales Hospital, Hong Kong; and Institute of Diabetes and Obesity (R.C.W.M), Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jiang-Yun Luo
- From the Shenzhen Research Institute, School of Biomedical Sciences, Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences (W.H., Y.Z., L.W., C.W.L., J.X., J.-Y.L., L.G., X.Y., X.Y.T., Y.H), the School of Life Science (Z.-Y.C.), Department of Medicine and Therapeutics, the Prince of Wales Hospital, Hong Kong; and Institute of Diabetes and Obesity (R.C.W.M), Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lingshan Gou
- From the Shenzhen Research Institute, School of Biomedical Sciences, Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences (W.H., Y.Z., L.W., C.W.L., J.X., J.-Y.L., L.G., X.Y., X.Y.T., Y.H), the School of Life Science (Z.-Y.C.), Department of Medicine and Therapeutics, the Prince of Wales Hospital, Hong Kong; and Institute of Diabetes and Obesity (R.C.W.M), Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiaoqiang Yao
- From the Shenzhen Research Institute, School of Biomedical Sciences, Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences (W.H., Y.Z., L.W., C.W.L., J.X., J.-Y.L., L.G., X.Y., X.Y.T., Y.H), the School of Life Science (Z.-Y.C.), Department of Medicine and Therapeutics, the Prince of Wales Hospital, Hong Kong; and Institute of Diabetes and Obesity (R.C.W.M), Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zhen-Yu Chen
- From the Shenzhen Research Institute, School of Biomedical Sciences, Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences (W.H., Y.Z., L.W., C.W.L., J.X., J.-Y.L., L.G., X.Y., X.Y.T., Y.H), the School of Life Science (Z.-Y.C.), Department of Medicine and Therapeutics, the Prince of Wales Hospital, Hong Kong; and Institute of Diabetes and Obesity (R.C.W.M), Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ronald Ching Wan Ma
- From the Shenzhen Research Institute, School of Biomedical Sciences, Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences (W.H., Y.Z., L.W., C.W.L., J.X., J.-Y.L., L.G., X.Y., X.Y.T., Y.H), the School of Life Science (Z.-Y.C.), Department of Medicine and Therapeutics, the Prince of Wales Hospital, Hong Kong; and Institute of Diabetes and Obesity (R.C.W.M), Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiao Yu Tian
- From the Shenzhen Research Institute, School of Biomedical Sciences, Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences (W.H., Y.Z., L.W., C.W.L., J.X., J.-Y.L., L.G., X.Y., X.Y.T., Y.H), the School of Life Science (Z.-Y.C.), Department of Medicine and Therapeutics, the Prince of Wales Hospital, Hong Kong; and Institute of Diabetes and Obesity (R.C.W.M), Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yu Huang
- From the Shenzhen Research Institute, School of Biomedical Sciences, Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences (W.H., Y.Z., L.W., C.W.L., J.X., J.-Y.L., L.G., X.Y., X.Y.T., Y.H), the School of Life Science (Z.-Y.C.), Department of Medicine and Therapeutics, the Prince of Wales Hospital, Hong Kong; and Institute of Diabetes and Obesity (R.C.W.M), Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
43
|
Therapeutic efficacy of differentiated versus undifferentiated mesenchymal stem cells in experimental type I diabetes in rat. Biochem Biophys Rep 2016; 5:468-475. [PMID: 28955854 PMCID: PMC5600460 DOI: 10.1016/j.bbrep.2016.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 01/25/2016] [Accepted: 02/01/2016] [Indexed: 12/11/2022] Open
Abstract
Selective MSCs differentiation protocol into pancreatic beta cells was conducted in the present study using exendin-4 and TGF-beta. Differentiated and undifferentiated MSCs were assessed in experimental type I diabetes in rats. Ninety female white albino rats were included in the study and divided equally (n=15/group) into 6 groups: healthy control, healthy control rats received acellular tissue culture medium, diabetic rats, diabetic rats received acellular tissue culture medium, diabetic rats received undifferentiated MSCs and diabetic rats received differentiated MSCs. Therapeutic efficacy of undifferentiated versus differentiated MSCs was evaluated via assessment of quantitative gene expressions of insulin1, insulin 2, Smad-2, Smad-3, PDX-1, PAX-4, neuroD. Blood glucose and insulin hormone levels were also assessed. Results showed that quantitative gene expressions of all studied genes showed significant decrease in diabetic rat groups. Use of undifferentiated and differentiated MSCs led to a significant elevation of expression levels of all genes with more superior effect with differentiated MSCs except smad-2 gene. As regards insulin hormone levels, use of either undifferentiated or differentiated MSCs led to a significant elevation of its levels with more therapeutic effect with differentiated MSCs. Blood glucose levels were significantly decreased with both undifferentiated and differentiated MSCs in comparison to diabetic groups but its levels were normalized 2 months after injection of differentiated MSCs. In conclusion, use of undifferentiated or differentiated MSCs exhibited significant therapeutic potentials in experimental type I diabetes in rats with more significant therapeutic effect with the use of differentiated MSCs. Differentiated MSCs exhibited significant therapeutic potentials in type I diabetes. TGF-beta1 and exendin-4 enhance MSCs differentiation into pancreatic beta cells. Pancreatic lineage is evaluated by gene expressions of insulin-1, insulin-2. Pancreatic differentiation is evaluated by expressions of PDX-1, PAX-4 and NeuroD. Differentiated MSCs have more therapeutic potentials than undifferentiated MSCs.
Collapse
|
44
|
Gittes GK. Multiple roles for TGFβ receptor type II in regulating the pancreatic response in acute pancreatitis. J Pathol 2016; 238:603-5. [DOI: 10.1002/path.4676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 11/24/2015] [Indexed: 12/18/2022]
Affiliation(s)
- George K Gittes
- Children's Hospital of Pittsburgh and the Division of Pediatric Surgery; University of Pittsburgh School of Medicine; Pittsburgh PA USA
| |
Collapse
|
45
|
Yu K, Fischbach S, Xiao X. Beta Cell Regeneration in Adult Mice: Controversy Over the Involvement of Stem Cells. Curr Stem Cell Res Ther 2016; 11:542-546. [PMID: 25429702 PMCID: PMC5078597 DOI: 10.2174/1574888x10666141126113110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 10/17/2014] [Accepted: 11/24/2014] [Indexed: 01/06/2023]
Abstract
Islet transplantation is an effective therapy for severe diabetes. Nevertheless, the short supply of donor pancreases constitutes a formidable obstacle to its extensive clinical application. This shortage heightens the need for alternative sources of insulin-producing beta cells. Since mature beta cells have a very slow proliferation rate, which further declines with age, great efforts have been made to identify beta cell progenitors in the adult pancreas. However, the question whether facultative beta cell progenitors indeed exist in the adult pancreas remains largely unresolved. In the current review, we discuss the problems in past studies and review the milestone studies and recent publications.
Collapse
Affiliation(s)
- Ke Yu
- Beijing Key Laboratory of Diabetes Prevention and Care, Department of Endocrinology, Lu He Hospital, Capital Medical University, Beijing, China
| | - Shane Fischbach
- Division of Pediatric Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh,USA
- Division of Biology and Medicine, Brown University, Providence,USA
| | - Xiangwei Xiao
- Division of Pediatric Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh,USA
| |
Collapse
|
46
|
Grabliauskaite K, Saponara E, Reding T, Bombardo M, Seleznik GM, Malagola E, Zabel A, Faso C, Sonda S, Graf R. Inactivation of TGFβ receptor II signalling in pancreatic epithelial cells promotes acinar cell proliferation, acinar-to-ductal metaplasia and fibrosis during pancreatitis. J Pathol 2015; 238:434-45. [PMID: 26510396 DOI: 10.1002/path.4666] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 09/28/2015] [Accepted: 10/20/2015] [Indexed: 12/14/2022]
Abstract
Determining signalling pathways that regulate pancreatic regeneration following pancreatitis is critical for implementing therapeutic interventions. In this study we elucidated the molecular mechanisms underlying the effects of transforming growth factor-β (TGFβ) in pancreatic epithelial cells during tissue regeneration. To this end, we conditionally inactivated TGFβ receptor II (TGFβ-RII) using a Cre-LoxP system under the control of pancreas transcription factor 1a (PTF1a) promoter, specific for the pancreatic epithelium, and evaluated the molecular and cellular changes in a mouse model of cerulein-induced pancreatitis. We show that TGFβ-RII signalling does not mediate the initial acinar cell damage observed at the onset of pancreatitis. However, TGFβ-RII signalling not only restricts acinar cell replication during the regenerative phase of the disease but also limits ADM formation in vivo and in vitro in a cell-autonomous manner. Analyses of molecular mechanisms underlying the observed phenotype revealed that TGFβ-RII signalling stimulates the expression of cyclin-dependent kinase inhibitors and intersects with the EGFR signalling axis. Finally, TGFβ-RII ablation in epithelial cells resulted in increased infiltration of inflammatory cells in the early phases of pancreatitis and increased activation of pancreatic stellate cells in the later stages of pancreatitis, thus highlighting a TGFβ-based crosstalk between epithelial and stromal cells regulating the development of pancreatic inflammation and fibrosis. Collectively, our data not only contribute to clarifying the cellular processes governing pancreatic tissue regeneration, but also emphasize the conserved role of TGFβ as a tumour suppressor, both in the regenerative process following pancreatitis and in the initial phases of pancreatic cancer.
Collapse
Affiliation(s)
- Kamile Grabliauskaite
- Swiss Hepato-Pancreato-Biliary Centre, Department of Visceral and Transplantation Surgery, University Hospital, Zurich, and Zurich Centre for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland
| | - Enrica Saponara
- Swiss Hepato-Pancreato-Biliary Centre, Department of Visceral and Transplantation Surgery, University Hospital, Zurich, and Zurich Centre for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland
| | - Theresia Reding
- Swiss Hepato-Pancreato-Biliary Centre, Department of Visceral and Transplantation Surgery, University Hospital, Zurich, and Zurich Centre for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland
| | - Marta Bombardo
- Swiss Hepato-Pancreato-Biliary Centre, Department of Visceral and Transplantation Surgery, University Hospital, Zurich, and Zurich Centre for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland
| | - Gitta M Seleznik
- Swiss Hepato-Pancreato-Biliary Centre, Department of Visceral and Transplantation Surgery, University Hospital, Zurich, and Zurich Centre for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland
| | - Ermanno Malagola
- Swiss Hepato-Pancreato-Biliary Centre, Department of Visceral and Transplantation Surgery, University Hospital, Zurich, and Zurich Centre for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland
| | - Anja Zabel
- Swiss Hepato-Pancreato-Biliary Centre, Department of Visceral and Transplantation Surgery, University Hospital, Zurich, and Zurich Centre for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland
| | - Carmen Faso
- Institute of Parasitology, University of Zurich, Switzerland
| | - Sabrina Sonda
- Swiss Hepato-Pancreato-Biliary Centre, Department of Visceral and Transplantation Surgery, University Hospital, Zurich, and Zurich Centre for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland
| | - Rolf Graf
- Swiss Hepato-Pancreato-Biliary Centre, Department of Visceral and Transplantation Surgery, University Hospital, Zurich, and Zurich Centre for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland
| |
Collapse
|
47
|
Zhang W, Yu Z, Deng F. The role of noggin in regulation of high glucose-induced apoptosis and insulin secretion in INS-1 rat beta cells. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2015; 18:1137-42. [PMID: 26949503 PMCID: PMC4764117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVES The purpose of this study was to investigate the effects of Noggin on high glucose-induced apoptosis and insulin secretion in pancreatic beta cells. MATERIALS AND METHODS Different concentrations of glucose were used to examine their effects on INS-1 rat beta cells in vitro. When specific siRNA targeting Noggin and recombinant Noggin were added, apoptosis and insulin secretion were measured, respectively to determine their effects in INS-1 cells. RESULTS Glucose stimulated the expression of Noggin in a dose-dependent manner. Knockdown of Noggin further increased apoptosis and reduced insulin secretion when INS-1 cells were exposed to high glucose. Conversely, administration of recombinant Noggin significantly reduced apoptotic cell number, and promoted insulin secretion. Finally, treatment with inhibitor of Smad phosphorylation exerted similar effects on cell apoptosis and insulin production to Noggin administration in glucose-treated INS-1 cells. CONCLUSION Our findings indicate that Noggin inhibits apoptosis and promotes insulin secretion in pancreatic beta cells through the inhibition of Smad signaling. Gene therapy of delivering Noggin may facilitate the treatment for patients with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Endocrinology, the Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, China, 161000
| | - Zhanjiang Yu
- Department of General Surgery, the Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, China, 161000
| | - Fengchun Deng
- Department of Anatomy, Qiqihar Medical University, Qiqihar, Heilongjiang, China, 161006,Corresponding author: Fengchun Deng. Department of Anatomy, Qiqihar Medical University, Qiqihar, Heilongjiang, China, 161006,
| |
Collapse
|
48
|
Kaddis JS, Pugliese A, Atkinson MA. A run on the biobank: what have we learned about type 1 diabetes from the nPOD tissue repository? Curr Opin Endocrinol Diabetes Obes 2015; 22:290-5. [PMID: 26087339 DOI: 10.1097/med.0000000000000171] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW Since the inaugural year of its biobank in 2007, the Network for Pancreatic Organ Donors with Diabetes program has provided 70 370 human samples to 127 investigators worldwide for projects focused on the pathogenesis of type 1 diabetes (T1D). The purpose of this review was to highlight major advances in our understanding of T1D using works that contain original data from experiments utilizing biospecimens provided by the Network for Pancreatic Organ Donors with Diabetes program. A total of 15 studies, published between 1 June 2013 and 31 December 2014, were selected using various search and filter strategies. RECENT FINDINGS The type and frequency of B and/or T-cell immune markers in both the endocrine and exocrine compartments vary in T1D. Enterovirus signals have been identified as having new proteins in the extracellular matrix around infiltrated islets. Novel genes within human islet cell types have been shown to play a role in immunity, infiltration, inflammation, disease progression, cell mass and function. Various cytokines and a complement degradation product have also been detected in the blood or surrounding pancreatic ducts/vasculature. SUMMARY These findings, from T1D donors across the disease spectrum, emphasize the notion that pathogenic heterogeneity is a hallmark of the disorder.
Collapse
Affiliation(s)
- John S Kaddis
- aDepartment of Information Sciences, City of Hope, Duarte, California bDiabetes Research Institute and Departments of Medicine, Microbiology and Immunology, University of Miami Miller School of Medicine, Miami cDepartments of Pathology and Pediatrics, University of Florida, Gainesville, Florida, USA
| | | | | |
Collapse
|
49
|
Andrzejewski D, Brown ML, Ungerleider N, Burnside A, Schneyer AL. Activins A and B Regulate Fate-Determining Gene Expression in Islet Cell Lines and Islet Cells From Male Mice. Endocrinology 2015; 156:2440-50. [PMID: 25961841 DOI: 10.1210/en.2015-1167] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TGFβ superfamily ligands, receptors, and second messengers, including activins A and B, have been identified in pancreatic islets and proposed to have important roles regulating development, proliferation, and function. We previously demonstrated that Fstl3 (an antagonist of activin activity) null mice have larger islets with β-cell hyperplasia and improved glucose tolerance and insulin sensitivity in the absence of altered β-cell proliferation. This suggested the hypothesis that increased activin signaling influences β-cell expansion by destabilizing the α-cell phenotype and promoting transdifferentiation to β-cells. We tested the first part of this hypothesis by treating α- and β-cell lines and sorted mouse islet cells with activin and related ligands. Treatment of the αTC1-6 α cell line with activins A or B suppressed critical α-cell gene expression, including Arx, glucagon, and MafB while also enhancing β-cell gene expression. In INS-1E β-cells, activin A treatment induced a significant increase in Pax4 (a fate determining β-cell gene) and insulin expression. In sorted primary islet cells, α-cell gene expression was again suppressed by activin treatment in α-cells, whereas Pax4 was enhanced in β-cells. Activin treatment in both cell lines and primary cells resulted in phosphorylated mothers against decapentaplegic-2 phosphorylation. Finally, treatment of αTC1-6 cells with activins A or B significantly inhibited proliferation. These results support the hypothesis that activin signaling destabilized the α-cell phenotype while promoting a β-cell fate. Moreover, these results support a model in which the β-cell expansion observed in Fstl3 null mice may be due, at least in part, to enhanced α- to β-cell transdifferentiation.
Collapse
Affiliation(s)
- Danielle Andrzejewski
- Departments of Veterinary and Animal Science (D.A., A.B., A.L.S.) and Nutrition (M.L.B.), and Molecular and Cellular Biology Graduate Program (N.U.), University of Massachusetts-Amherst, Amherst, Massachusetts 01003
| | - Melissa L Brown
- Departments of Veterinary and Animal Science (D.A., A.B., A.L.S.) and Nutrition (M.L.B.), and Molecular and Cellular Biology Graduate Program (N.U.), University of Massachusetts-Amherst, Amherst, Massachusetts 01003
| | - Nathan Ungerleider
- Departments of Veterinary and Animal Science (D.A., A.B., A.L.S.) and Nutrition (M.L.B.), and Molecular and Cellular Biology Graduate Program (N.U.), University of Massachusetts-Amherst, Amherst, Massachusetts 01003
| | - Amy Burnside
- Departments of Veterinary and Animal Science (D.A., A.B., A.L.S.) and Nutrition (M.L.B.), and Molecular and Cellular Biology Graduate Program (N.U.), University of Massachusetts-Amherst, Amherst, Massachusetts 01003
| | - Alan L Schneyer
- Departments of Veterinary and Animal Science (D.A., A.B., A.L.S.) and Nutrition (M.L.B.), and Molecular and Cellular Biology Graduate Program (N.U.), University of Massachusetts-Amherst, Amherst, Massachusetts 01003
| |
Collapse
|
50
|
Stewart AF, Hussain MA, García-Ocaña A, Vasavada RC, Bhushan A, Bernal-Mizrachi E, Kulkarni RN. Human β-cell proliferation and intracellular signaling: part 3. Diabetes 2015; 64:1872-85. [PMID: 25999530 PMCID: PMC4439562 DOI: 10.2337/db14-1843] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This is the third in a series of Perspectives on intracellular signaling pathways coupled to proliferation in pancreatic β-cells. We contrast the large knowledge base in rodent β-cells with the more limited human database. With the increasing incidence of type 1 diabetes and the recognition that type 2 diabetes is also due in part to a deficiency of functioning β-cells, there is great urgency to identify therapeutic approaches to expand human β-cell numbers. Therapeutic approaches might include stem cell differentiation, transdifferentiation, or expansion of cadaver islets or residual endogenous β-cells. In these Perspectives, we focus on β-cell proliferation. Past Perspectives reviewed fundamental cell cycle regulation and its upstream regulation by insulin/IGF signaling via phosphatidylinositol-3 kinase/mammalian target of rapamycin signaling, glucose, glycogen synthase kinase-3 and liver kinase B1, protein kinase Cζ, calcium-calcineurin-nuclear factor of activated T cells, epidermal growth factor/platelet-derived growth factor family members, Wnt/β-catenin, leptin, and estrogen and progesterone. Here, we emphasize Janus kinase/signal transducers and activators of transcription, Ras/Raf/extracellular signal-related kinase, cadherins and integrins, G-protein-coupled receptors, and transforming growth factor β signaling. We hope these three Perspectives will serve to introduce these pathways to new researchers and will encourage additional investigators to focus on understanding how to harness key intracellular signaling pathways for therapeutic human β-cell regeneration for diabetes.
Collapse
Affiliation(s)
- Andrew F Stewart
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Mehboob A Hussain
- Departments of Medicine and Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD
| | - Adolfo García-Ocaña
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Rupangi C Vasavada
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Anil Bhushan
- Diabetes Center, University of California, San Francisco, San Francisco, CA
| | - Ernesto Bernal-Mizrachi
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI, and VA Ann Arbor Healthcare System, Ann Arbor, MI
| | - Rohit N Kulkarni
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| |
Collapse
|