1
|
Preza S, Zheng B, Gao Z, Liu M, Biju A, Alvarez-Dominguez JR. DEC1 Regulates Human β Cell Functional Maturation and Circadian Rhythm. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.03.647023. [PMID: 40236051 PMCID: PMC11996484 DOI: 10.1101/2025.04.03.647023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Stem cell-derived islet (SC-islet) organoids offer hope for cell replacement therapy in diabetes, but their immature function remains a challenge. Mature islet function requires the β-cell circadian clock, yet how the clock regulates maturation is unclear. Here, we show that a circadian transcription factor specific to maturing SC-β cells, DEC1, regulates insulin responsiveness to glucose. SC-islet organoids form normally from DEC1 -ablated human pluripotent stem cells, but their insulin release capacity and glucose threshold fail to increase during in vitro culture and upon transplant. This deficit reflects downregulation of maturity-linked effectors of glucose utilization and insulin exocytosis, blunting glycolytic and oxidative metabolism, and is rescued by increasing metabolic flux. Moreover, DEC1 is needed to boost SC-islet maturity by synchronizing circadian glucose-responsive insulin secretion rhythms and clock machinery. Thus, DEC1 links circadian control to human β-cell maturation, highlighting its vitality to foster fully functional SC-islets.
Collapse
|
2
|
Fonseca PADS, Suarez-Vega A, Esteban-Blanco C, Marina H, Pelayo R, Gutiérrez-Gil B, Arranz JJ. Integration of epigenomic and genomic data to predict residual feed intake and the feed conversion ratio in dairy sheep via machine learning algorithms. BMC Genomics 2025; 26:313. [PMID: 40165084 PMCID: PMC11956460 DOI: 10.1186/s12864-025-11520-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/24/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Feed efficiency (FE) is an essential trait in livestock species because of the constant demand to increase the productivity and sustainability of livestock production systems. A better understanding of the biological mechanisms associated with FEs might help improve the estimation and selection of superior animals. In this work, differentially methylated regions (DMRs) were identified via genome-wide bisulfite sequencing (GWBS) by comparing the DNA methylation profiles of milk somatic cells from dairy ewes that were divergent in terms of residual feed intake. The DMRs were identified by comparing divergent groups for residual feed intake (RFI), the feed conversion ratio (FCR), and the consensus between both metrics (Cons). Additionally, the predictive performance of these DMRs and genetic variants mapped within these regions was evaluated via three machine learning (ML) models (xgboost, random forest (RF), and multilayer feedforward artificial neural network (deeplearning)). The average performance of each model was based on the root mean squared error (RMSE) and squared Spearman correlation (rho2). Finally, the best model for each scenario was selected on the basis of the highest ratio between rho2 and RMSE. RESULTS In total, 12,257, 9,328, and 6,723 genes were annotated for DMRs detected in the RFI, FCR, and Cons groups, respectively. These genes are associated with important pathways for regulating FE in dairy sheep, such as protein digestion and absorption, hormone synthesis and secretion, control of energy availability, cellular signaling, and feed behavior pathways. With respect to the ML predictions, the smallest mean RMSE (0.17) was obtained using RF, which was used to predict RFI. The highest mean rho2 (0.20) was obtained when the RFI was predicted via the mean methylation within the DMRs identified, the consensus groups were compared, and the genetic variants mapped within these DMRs were included. The best overall models were obtained for the prediction of RFI using the DMRs obtained in the comparison of RFI groups (RMSE = 0.10, rho2 = 0.86) using xgboost and the DMRs plus the genetic variants identified via the Cons groups (RMSE = 0.07, rho2 = 0.62) using RF. CONCLUSIONS The results provide new insights into the biological mechanisms associated with FE and the control of these processes through epigenetic mechanisms. Additionally, the potential use of epigenetic information as a biomarker for the prediction of FE can be suggested based on the obtained results.
Collapse
Affiliation(s)
| | - Aroa Suarez-Vega
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana, Leon, 24007, Spain
| | - Cristina Esteban-Blanco
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana, Leon, 24007, Spain
| | - Héctor Marina
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana, Leon, 24007, Spain
| | - Rocío Pelayo
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana, Leon, 24007, Spain
| | - Beatriz Gutiérrez-Gil
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana, Leon, 24007, Spain
| | - Juan-José Arranz
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana, Leon, 24007, Spain.
| |
Collapse
|
3
|
Sevilla-González M, Smith K, Wang N, Jensen AE, Litkowski EM, Kim H, DiCorpo DA, Hsu S, Cui J, Liu CT, Yu C, McNeil JJ, Lacaze P, Westerman KE, Chang KM, Tsao PS, Phillips LS, Goodarzi MO, Sladek R, Rotter JI, Dupuis J, Florez JC, Merino J, Meigs JB, Zhou JJ, Raghavan S, Udler MS, Manning AK. Heterogeneous effects of genetic variants and traits associated with fasting insulin on cardiometabolic outcomes. Nat Commun 2025; 16:2569. [PMID: 40089507 PMCID: PMC11910595 DOI: 10.1038/s41467-025-57452-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 02/21/2025] [Indexed: 03/17/2025] Open
Abstract
Elevated fasting insulin levels (FI), indicative of altered insulin secretion and sensitivity, may precede type 2 diabetes (T2D) and cardiovascular disease onset. In this study, we group FI-associated genetic variants based on their genetic and phenotypic similarities and identify seven clusters with distinct mechanisms contributing to elevated FI levels. Clusters fall into two types: "non-diabetogenic hyperinsulinemia," where clusters are not associated with increased T2D risk, and "diabetogenic hyperinsulinemia," where T2D associations are driven by body fat distribution, liver function, circulating lipids, or inflammation. In over 1.1 million multi-ancestry individuals, we demonstrated that diabetogenic hyperinsulinemia cluster-specific polygenic scores exhibit varying risks for cardiovascular conditions, including coronary artery disease, myocardial infarction (MI), and stroke. Notably, the visceral adiposity cluster shows sex-specific effects for MI risk in males without T2D. This study underscores processes that decouple elevated FI levels from T2D and cardiovascular risk, offering new avenues for investigating process-specific pathways of disease.
Collapse
Affiliation(s)
- Magdalena Sevilla-González
- Clinical and Translational Epidemiology Unit, Mongan Institute, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Programs in Metabolism and Medical & Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Kirk Smith
- Programs in Metabolism and Medical & Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Ningyuan Wang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Aubrey E Jensen
- Phoenix Veterans Affairs Medical Center, Phoenix, AZ, 85012, USA
- Department of Biostatistics, UCLA Fielding School of Public Health, Los Angeles, CA, 90095, USA
| | - Elizabeth M Litkowski
- Veterans Affairs Eastern Colorado Health Care System, Aurora, CO, 80045, USA
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Hyunkyung Kim
- Programs in Metabolism and Medical & Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Daniel A DiCorpo
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Sarah Hsu
- Programs in Metabolism and Medical & Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Jinrui Cui
- Division of Endocrinology, Diabetes, and Metabolism, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Chenglong Yu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - John J McNeil
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Paul Lacaze
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Kenneth E Westerman
- Clinical and Translational Epidemiology Unit, Mongan Institute, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Programs in Metabolism and Medical & Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Kyong-Mi Chang
- Corporal Michael J Crescenz VA Medical Center, Philadelphia, PA, 19104, USA
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Philip S Tsao
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Mark O Goodarzi
- Division of Endocrinology, Diabetes, and Metabolism, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Rob Sladek
- Department of Human Genetics and Department of Medicine, McGill University, Montréal, QC, Canada
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, QC, Canada
| | - Jose C Florez
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Programs in Metabolism and Medical & Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Jordi Merino
- Programs in Metabolism and Medical & Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - James B Meigs
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Programs in Metabolism and Medical & Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Jin J Zhou
- Phoenix Veterans Affairs Medical Center, Phoenix, AZ, 85012, USA
- Department of Biostatistics, UCLA Fielding School of Public Health, Los Angeles, CA, 90095, USA
| | - Sridharan Raghavan
- Veterans Affairs Eastern Colorado Health Care System, Aurora, CO, 80045, USA
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Miriam S Udler
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA.
- Programs in Metabolism and Medical & Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA.
| | - Alisa K Manning
- Clinical and Translational Epidemiology Unit, Mongan Institute, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA.
- Programs in Metabolism and Medical & Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| |
Collapse
|
4
|
Sokolowski EK, Kursawe R, Selvam V, Bhuiyan RM, Thibodeau A, Zhao C, Spracklen CN, Ucar D, Stitzel ML. Multi-omic human pancreatic islet endoplasmic reticulum and cytokine stress response mapping provides type 2 diabetes genetic insights. Cell Metab 2024; 36:2468-2488.e7. [PMID: 39383866 PMCID: PMC11798411 DOI: 10.1016/j.cmet.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/14/2024] [Accepted: 09/10/2024] [Indexed: 10/11/2024]
Abstract
Endoplasmic reticulum (ER) and inflammatory stress responses contribute to islet dysfunction in type 2 diabetes (T2D). Comprehensive genomic understanding of these human islet stress responses and whether T2D-associated genetic variants modulate them is lacking. Here, comparative transcriptome and epigenome analyses of human islets exposed ex vivo to these stressors revealed 30% of expressed genes and 14% of islet cis-regulatory elements (CREs) as stress responsive, modulated largely in an ER- or cytokine-specific fashion. T2D variants overlapped 86 stress-responsive CREs, including 21 induced by ER stress. We linked the rs6917676-T T2D risk allele to increased islet ER-stress-responsive CRE accessibility and allele-specific β cell nuclear factor binding. MAP3K5, the ER-stress-responsive putative rs6917676 T2D effector gene, promoted stress-induced β cell apoptosis. Supporting its pro-diabetogenic role, MAP3K5 expression correlated inversely with human islet β cell abundance and was elevated in T2D β cells. This study provides genome-wide insights into human islet stress responses and context-specific T2D variant effects.
Collapse
Affiliation(s)
- Eishani K Sokolowski
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06032, USA
| | - Romy Kursawe
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Vijay Selvam
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Redwan M Bhuiyan
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06032, USA
| | - Asa Thibodeau
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Chi Zhao
- Department of Biostatistics and Epidemiology, University of Massachusetts, Amherst, Amherst, MA 01003, USA
| | - Cassandra N Spracklen
- Department of Biostatistics and Epidemiology, University of Massachusetts, Amherst, Amherst, MA 01003, USA
| | - Duygu Ucar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06032, USA; Institute of Systems Genomics, University of Connecticut, Farmington, CT 06032, USA.
| | - Michael L Stitzel
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06032, USA; Institute of Systems Genomics, University of Connecticut, Farmington, CT 06032, USA.
| |
Collapse
|
5
|
Jan A, Mothana RA, Kaimori JY, Muhammad T, Khan M, Ali SS, Rahman N, Alanzi AR. Identification of genetic risk variants for Type-2 Diabetes mellitus in Pakistani Pashtun population: A case-control association study. Pak J Med Sci 2024; 40:2336-2343. [PMID: 39554687 PMCID: PMC11568737 DOI: 10.12669/pjms.40.10.10292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/02/2024] [Accepted: 09/18/2024] [Indexed: 11/19/2024] Open
Abstract
Background and Objective Pakistan, a South Asian developing country, is experiencing a rapid increase in number of diabetes cases. High prevalence ratio of diabetes in Pakistani population and lack of genetic research studies prompted us to design this study. This present study investigated Pakistani Pashtun population for (known and novel SNPs) and its possible correlation with Type-2 Diabetes Mellitus (T2DM). Methods This two stage (discovery & validation stage), case-control association study included one thousand individuals (Patients with T2DM=500 & controls=500) from eight districts of Khyber Pakhtunkhwa Pakistan. The study duration/period was from March 2018 to January 2020. In the first stage (the discovery stage) the target population was screened for known and novel T2DM-associated genetic markers. In the validation stage, identified variants were confirmed for T2DM association using MassARRAY genotyping and association analysis. Results Exome sequencing detected eleven known and four novel/new genetic markers in the study population. Novel variants were preferred over the known for follow-up analysis/validation. Among the identified variants strong associations were confirmed for the following variants; rs1781133/ANKRD65 (OR=2.10, 95%Cl=1.06-3.08, P=0.003) rs2274791/TTLL10 (OR=1.97, 95%Cl=1.36-2.62, P=0.025), rs71628928/RNF223 (OR=1.82, 95%Cl=0.97-1.92, P=0.041), and rs609805/SCNN1D (OR=2.21, 95%Cl=1.92-3.09, P=0.001) with T2DM; other reported variants showed no noticeable association (having P>0.05) with T2DM. Conclusion This study reports new genetic risk variants for T2DM in Pashtun population providing valuable insights into the genetic basis of T2DM in this group.
Collapse
Affiliation(s)
- Asif Jan
- Asif Jan, District Headquarter Hospital (DHQH) Charsadda, Charsadda 24430, Pakistan. Department of Pharmacy, University of Peshawar, Peshawar 25000, Pakistan
| | - Ramzi A. Mothana
- Ramzi A. Mothana, Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 1151, Saudi Arabia
| | - Jun-Ya Kaimori
- Jun-Ya Kaimori, Department of Nephrology, Osaka University Graduate School of Medicine, Suita, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan. Institute of Medical Science, University of Toronto, Toronto 43964, ON, Canada
| | - Tahir Muhammad
- Tahir Muhammad, Molecular Neuropsychiatry & Development (MiND) Lab, Campbell Family Mental Health, Research Institute, Centre for Addiction & Mental Health, Toronto 43964, ON, Canada
| | - Mehtab Khan
- Mehtab Khan, Department of Biology, Faculty of Science, University of Moncton, Canada
| | - Syed Shaukat Ali
- Syed Shaukat Ali, Department of Pharmacy, University of Malakand, Pakistan
| | - Naveed Rahman
- Naveed Rahman, Department of Pharmacy, University of Peshawar, Peshawar 25000, Pakistan
| | - Abdullah R. Alanzi
- Abdullah R. Alanzi, Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 1151, Saudi Arabia
| |
Collapse
|
6
|
Roza M, Eriksson ANM, Svanholm S, Berg C, Karlsson O. Pesticide-induced transgenerational alterations of genome-wide DNA methylation patterns in the pancreas of Xenopus tropicalis correlate with metabolic phenotypes. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135455. [PMID: 39154485 DOI: 10.1016/j.jhazmat.2024.135455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/23/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024]
Abstract
The unsustainable use of manmade chemicals poses significant threats to biodiversity and human health. Emerging evidence highlights the potential of certain chemicals to cause transgenerational impacts on metabolic health. Here, we investigate male transmitted epigenetic transgenerational effects of the anti-androgenic herbicide linuron in the pancreas of Xenopus tropicalis frogs, and their association with metabolic phenotypes. Reduced representation bisulfite sequencing (RRBS) was used to assess genome-wide DNA methylation patterns in the pancreas of adult male F2 generation ancestrally exposed to environmentally relevant linuron levels (44 ± 4.7 μg/L). We identified 1117 differentially methylated regions (DMRs) distributed across the X. tropicalis genome, revealing potential regulatory mechanisms underlying metabolic disturbances. DMRs were identified in genes crucial for pancreatic function, including calcium signalling (clstn2, cacna1d and cadps2), genes associated with type 2 diabetes (tcf7l2 and adcy5) and a biomarker for pancreatic ductal adenocarcinoma (plec). Correlation analysis revealed associations between DNA methylation levels in these genes and metabolic phenotypes, indicating epigenetic regulation of glucose metabolism. Moreover, differential methylation in genes related to histone modifications suggests alterations in the epigenetic machinery. These findings underscore the long-term consequences of environmental contamination on pancreatic function and raise concerns about the health risks associated with transgenerational effects of pesticides.
Collapse
Affiliation(s)
- Mauricio Roza
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | | | - Sofie Svanholm
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden
| | - Cecilia Berg
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden
| | - Oskar Karlsson
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
7
|
Brito Nunes C, Borges MC, Freathy RM, Lawlor DA, Qvigstad E, Evans DM, Moen GH. Understanding the Genetic Landscape of Gestational Diabetes: Insights into the Causes and Consequences of Elevated Glucose Levels in Pregnancy. Metabolites 2024; 14:508. [PMID: 39330515 PMCID: PMC11434570 DOI: 10.3390/metabo14090508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
Background/Objectives: During pregnancy, physiological changes in maternal circulating glucose levels and its metabolism are essential to meet maternal and fetal energy demands. Major changes in glucose metabolism occur throughout pregnancy and consist of higher insulin resistance and a compensatory increase in insulin secretion to maintain glucose homeostasis. For some women, this change is insufficient to maintain normoglycemia, leading to gestational diabetes mellitus (GDM), a condition characterized by maternal glucose intolerance and hyperglycaemia first diagnosed during the second or third trimester of pregnancy. GDM is diagnosed in approximately 14.0% of pregnancies globally, and it is often associated with short- and long-term adverse health outcomes in both mothers and offspring. Although recent studies have highlighted the role of genetic determinants in the development of GDM, research in this area is still lacking, hindering the development of prevention and treatment strategies. Methods: In this paper, we review recent advances in the understanding of genetic determinants of GDM and glycaemic traits during pregnancy. Results/Conclusions: Our review highlights the need for further collaborative efforts as well as larger and more diverse genotyped pregnancy cohorts to deepen our understanding of the genetic aetiology of GDM, address research gaps, and further improve diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Caroline Brito Nunes
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4067, Australia
| | - Maria Carolina Borges
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 1QU, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PS, UK
| | - Rachel M. Freathy
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter EX4 4PY, UK;
| | - Deborah A. Lawlor
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 1QU, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PS, UK
| | - Elisabeth Qvigstad
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | - David M. Evans
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4067, Australia
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 1QU, UK
- Frazer Institute, University of Queensland, Brisbane 4102, Australia
| | - Gunn-Helen Moen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4067, Australia
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
- Frazer Institute, University of Queensland, Brisbane 4102, Australia
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
8
|
Gheorghe AM, Ciobica ML, Nistor C, Gurzun MM, Sandulescu BA, Stanciu M, Popa FL, Carsote M. Inquiry of the Metabolic Traits in Relationship with Daily Magnesium Intake: Focus on Type 2 Diabetic Population. Clin Pract 2024; 14:1319-1347. [PMID: 39051301 PMCID: PMC11270223 DOI: 10.3390/clinpract14040107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024] Open
Abstract
Magnesium (Mg), an essential nutrient with a wide area of physiological roles, stands as a cofactor in over 600 enzymatic reactions involved in the synthesis of proteins and nucleic acids, DNA repair, neuromuscular functions, neuronal transmission, cardiac rhythm regulation, and the modulation of metabolic pathways, as well as acting as a natural blocker for the calcium channels. Our objective was to highlight the most recent clinical data with respect to daily Mg intake (DMI) and metabolic traits, particularly type 2 diabetes mellitus (DM). This was a PubMed-based review of the English-language medical papers across different key terms of search; the time frame was from January 2019 until April 2024. We included (clinically relevant) original studies and excluded cases reports, series, reviews, editorials, opinion, experimental studies, and non-human data as well as studies that did not specifically assessed DMI and only provided assays of serum Mg, studies on patients diagnosed with type 1 or secondary DM. A total of 30 studies were included and we organized the key findings into several sections as follows. Studies investigating DMI in relationship with the adherence to local recommendations in diabetic subjects (n = 2, one transversal and another retrospective cohort; N = 2823) found that most of them had lower DMI. Deficient DMI was correlated with the risk of developing/having DM across five studies (n = 5, one prospective and four of cross-sectional design; N = 47,166). An inverse correlation between DMI and DM prevalence was identified, but these data are presented amid a rather heterogeneous spectrum. Four novel studies (N = 7279) analysed the relationship between DMI and DM control according to various methods (HbA1c, fasting and postprandial glycaemia, and insulin); the association may be linear in diabetic subjects only at certain levels of DMI; additionally, the multifactorial influence on HBA1c should take into consideration this dietary determinant, as well, but there are no homogenous results. Three studies concerning DMI and diabetic complications (one cross-sectional, one prospective, and another case-control study) in terms of retinopathy (n = 1, N = 3794) and nephropathy (n = 2, N = 4805) suggested a lower DMI was associated with a higher risk of such complications. Additionally, two other studies (one prospective and one retrospective cohort) focused on mortality (N = 6744), which, taking only certain mortality indicators into consideration, might be decreased in the subgroups with a higher DMI. Seven studies (N = 30,610) analysed the perspective of DMI in the general population with the endpoint of different features amid glucose profile, particularly, insulin resistance. Concerning HOMA-IR, there were three confirmatory studies and one non-confirmatory, while fasting plasma glucose was highlighted as inversely correlated with a DMI (n = 1). The highest level of evidence regarding Mg supplementation effects on glucose metabolism stands on seven randomised controlled trials (N = 350). However, the sample size was reduced (from 14 to 86 individuals per study, either diabetic or pre-diabetic) and outcomes were rather discordant. These clinical aspects are essential from a multidisciplinary perspective and further trials are mandatory to address the current areas of discordant results.
Collapse
Affiliation(s)
- Ana-Maria Gheorghe
- PhD Doctoral School, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.-M.G.); (B.-A.S.)
- Department of Clinical Endocrinology V, “C.I. Parhon” National Institute of Endocrinology, 011863 Bucharest, Romania;
| | - Mihai-Lucian Ciobica
- Department of Internal Medicine and Gastroenterology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Internal Medicine I and Rheumatology, “Dr. Carol Davila” Central Military University Emergency Hospital, 010825 Bucharest, Romania
| | - Claudiu Nistor
- Department 4-Cardio-Thoracic Pathology, Thoracic Surgery II Discipline, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Thoracic Surgery Department, “Dr. Carol Davila” Central Military University Emergency Hospital, 010242 Bucharest, Romania
| | - Maria-Magdalena Gurzun
- Cardiology Discipline, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Laboratory of Non-Invasive Cardiovascular Exploration, “Dr. Carol Davila” Central Military University Emergency Hospital, 010242 Bucharest, Romania
| | - Bianca-Andreea Sandulescu
- PhD Doctoral School, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.-M.G.); (B.-A.S.)
- Department of Internal Medicine and Gastroenterology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Internal Medicine I and Rheumatology, “Dr. Carol Davila” Central Military University Emergency Hospital, 010825 Bucharest, Romania
| | - Mihaela Stanciu
- Department of Endocrinology, Faculty of Medicine, Lucian Blaga University of Sibiu, 550024 Sibiu, Romania;
| | - Florina Ligia Popa
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550024 Sibiu, Romania;
| | - Mara Carsote
- Department of Clinical Endocrinology V, “C.I. Parhon” National Institute of Endocrinology, 011863 Bucharest, Romania;
- Department of Endocrinology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
9
|
Adamson SE, Hughes JW. Paracrine Signaling by Pancreatic Islet Cilia. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2024; 35:100505. [PMID: 38524256 PMCID: PMC10956557 DOI: 10.1016/j.coemr.2024.100505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
The primary cilium is a sensory and signaling organelle present on most pancreatic islet endocrine cells, where it receives and interprets a wide range of intra-islet chemical cues including hormones, peptides, and neurotransmitters. The ciliary membrane possesses a molecular composition distinct from the plasma membrane, with enrichment of signaling mediators including G protein-coupled receptors (GPCRs), tyrosine kinase family receptors, membrane transporters and others. When activated, these membrane proteins interact with ion channels and adenylyl cyclases to trigger local Ca2+ and cAMP activity and transmit signals to the cell body. Here we review evidence supporting the emerging model in which primary cilia on pancreatic islet cells play a central role in the intra-islet communication network and discuss how changes in cilia-mediated paracrine function in islet cells might lead to diabetes.
Collapse
Affiliation(s)
- Samantha E Adamson
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Jing W Hughes
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
10
|
Nakhe AY, Dadi PK, Kim J, Dickerson MT, Behera S, Dobson JR, Shrestha S, Cartailler JP, Sampson L, Magnuson MA, Jacobson DA. The MODY-associated KCNK16 L114P mutation increases islet glucagon secretion and limits insulin secretion resulting in transient neonatal diabetes and glucose dyshomeostasis in adults. eLife 2024; 12:RP89967. [PMID: 38700926 PMCID: PMC11068355 DOI: 10.7554/elife.89967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024] Open
Abstract
The gain-of-function mutation in the TALK-1 K+ channel (p.L114P) is associated with maturity-onset diabetes of the young (MODY). TALK-1 is a key regulator of β-cell electrical activity and glucose-stimulated insulin secretion. The KCNK16 gene encoding TALK-1 is the most abundant and β-cell-restricted K+ channel transcript. To investigate the impact of KCNK16 L114P on glucose homeostasis and confirm its association with MODY, a mouse model containing the Kcnk16 L114P mutation was generated. Heterozygous and homozygous Kcnk16 L114P mice exhibit increased neonatal lethality in the C57BL/6J and the CD-1 (ICR) genetic background, respectively. Lethality is likely a result of severe hyperglycemia observed in the homozygous Kcnk16 L114P neonates due to lack of glucose-stimulated insulin secretion and can be reduced with insulin treatment. Kcnk16 L114P increased whole-cell β-cell K+ currents resulting in blunted glucose-stimulated Ca2+ entry and loss of glucose-induced Ca2+ oscillations. Thus, adult Kcnk16 L114P mice have reduced glucose-stimulated insulin secretion and plasma insulin levels, which significantly impairs glucose homeostasis. Taken together, this study shows that the MODY-associated Kcnk16 L114P mutation disrupts glucose homeostasis in adult mice resembling a MODY phenotype and causes neonatal lethality by inhibiting islet insulin secretion during development. These data suggest that TALK-1 is an islet-restricted target for the treatment for diabetes.
Collapse
Affiliation(s)
- Arya Y Nakhe
- Department of Molecular Physiology and Biophysics, Vanderbilt UniversityNashvilleUnited States
| | - Prasanna K Dadi
- Department of Molecular Physiology and Biophysics, Vanderbilt UniversityNashvilleUnited States
| | - Jinsun Kim
- Department of Molecular Physiology and Biophysics, Vanderbilt UniversityNashvilleUnited States
- Department of Chemistry, Vanderbilt UniversityNashvilleUnited States
| | - Matthew T Dickerson
- Department of Molecular Physiology and Biophysics, Vanderbilt UniversityNashvilleUnited States
| | - Soma Behera
- Department of Molecular Physiology and Biophysics, Vanderbilt UniversityNashvilleUnited States
| | - Jordyn R Dobson
- Department of Molecular Physiology and Biophysics, Vanderbilt UniversityNashvilleUnited States
| | - Shristi Shrestha
- Center for Stem Cell Biology, Vanderbilt UniversityNashvilleUnited States
| | | | - Leesa Sampson
- Center for Stem Cell Biology, Vanderbilt UniversityNashvilleUnited States
| | - Mark A Magnuson
- Department of Molecular Physiology and Biophysics, Vanderbilt UniversityNashvilleUnited States
- Center for Stem Cell Biology, Vanderbilt UniversityNashvilleUnited States
- Department of Cell and Developmental Biology, Vanderbilt UniversityNashvilleUnited States
| | - David A Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt UniversityNashvilleUnited States
| |
Collapse
|
11
|
Idevall-Hagren O, Incedal Nilsson C, Sanchez G. Keeping pace: the primary cilium as the conducting baton of the islet. Diabetologia 2024; 67:773-782. [PMID: 38353726 PMCID: PMC10955035 DOI: 10.1007/s00125-024-06096-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/03/2024] [Indexed: 03/21/2024]
Abstract
Primary cilia are rod-like sensory organelles that protrude from the surface of most mammalian cells, including the cells of the islet, and mounting evidence supports important roles of these structures in the regulation of beta cell function and insulin secretion. The sensory abilities of the cilium arise from local receptor activation that is coupled to intrinsic signal transduction, and ciliary signals can propagate into the cell and influence cell function. Here, we review recent advances and studies that provide insights into intra-islet cues that trigger primary cilia signalling; how second messenger signals are generated and propagated within cilia; and how ciliary signalling affects beta cell function. We also discuss the potential involvement of primary cilia and ciliary signalling in the development and progression of type 2 diabetes, identify gaps in our current understanding of islet cell cilia function and provide suggestions on how to further our understanding of this intriguing structure.
Collapse
Affiliation(s)
| | | | - Gonzalo Sanchez
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
12
|
Hu M, Kim I, Morán I, Peng W, Sun O, Bonnefond A, Khamis A, Bonàs-Guarch S, Froguel P, Rutter GA. Multiple genetic variants at the SLC30A8 locus affect local super-enhancer activity and influence pancreatic β-cell survival and function. FASEB J 2024; 38:e23610. [PMID: 38661000 PMCID: PMC11108099 DOI: 10.1096/fj.202301700rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/22/2024] [Accepted: 04/01/2024] [Indexed: 04/26/2024]
Abstract
Variants at the SLC30A8 locus are associated with type 2 diabetes (T2D) risk. The lead variant, rs13266634, encodes an amino acid change, Arg325Trp (R325W), at the C-terminus of the secretory granule-enriched zinc transporter, ZnT8. Although this protein-coding variant was previously thought to be the sole driver of T2D risk at this locus, recent studies have provided evidence for lowered expression of SLC30A8 mRNA in protective allele carriers. In the present study, we examined multiple variants that influence SLC30A8 allele-specific expression. Epigenomic mapping has previously identified an islet-selective enhancer cluster at the SLC30A8 locus, hosting multiple T2D risk and cASE associations, which is spatially associated with the SLC30A8 promoter and additional neighboring genes. Here, we show that deletion of variant-bearing enhancer regions using CRISPR-Cas9 in human-derived EndoC-βH3 cells lowers the expression of SLC30A8 and several neighboring genes and improves glucose-stimulated insulin secretion. While downregulation of SLC30A8 had no effect on beta cell survival, loss of UTP23, RAD21, or MED30 markedly reduced cell viability. Although eQTL or cASE analyses in human islets did not support the association between these additional genes and diabetes risk, the transcriptional regulator JQ1 lowered the expression of multiple genes at the SLC30A8 locus and enhanced stimulated insulin secretion.
Collapse
Affiliation(s)
- Ming Hu
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Innah Kim
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Ignasi Morán
- Life Sciences Department, Barcelona Supercomputing Center (BSC-CNS), 08034 Barcelona, Spain
| | - Weicong Peng
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Orien Sun
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Amélie Bonnefond
- Department of Metabolism, Digestion, and Reproduction, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
- Inserm U1283, CNRS UMR 8199, EGID, Institut Pasteur de Lille, F-59000, France
- University of Lille, Lille University Hospital, Lille, F-59000, France.France
| | - Amna Khamis
- Department of Metabolism, Digestion, and Reproduction, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
- Inserm U1283, CNRS UMR 8199, EGID, Institut Pasteur de Lille, F-59000, France
- University of Lille, Lille University Hospital, Lille, F-59000, France.France
| | - Sílvia Bonàs-Guarch
- Department of Metabolism, Digestion, and Reproduction, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
- Center for Genomic Regulation (CRG), C/ Dr. Aiguader, 88, PRBB Building, 08003 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Philippe Froguel
- Department of Metabolism, Digestion, and Reproduction, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
- Inserm U1283, CNRS UMR 8199, EGID, Institut Pasteur de Lille, F-59000, France
- University of Lille, Lille University Hospital, Lille, F-59000, France.France
| | - Guy A. Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
- Centre de Recherche du CHUM, Faculté de Médicine, Université de Montréal, Montréal, QC, Canada
- Lee Kong Chian Imperial Medical School, Nanyang Technological University, Singapore
| |
Collapse
|
13
|
Nakhe AY, Dadi PK, Kim J, Dickerson MT, Behera S, Dobson JR, Shrestha S, Cartailler JP, Sampson L, Magnuson MA, Jacobson DA. The MODY-associated KCNK16 L114P mutation increases islet glucagon secretion and limits insulin secretion resulting in transient neonatal diabetes and glucose dyshomeostasis in adults. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.20.545631. [PMID: 37546831 PMCID: PMC10401960 DOI: 10.1101/2023.06.20.545631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The gain-of-function mutation in the TALK-1 K + channel (p.L114P) is associated with maturity-onset diabetes of the young (MODY). TALK-1 is a key regulator of β-cell electrical activity and glucose-stimulated insulin secretion (GSIS). The KCNK16 gene encoding TALK-1, is the most abundant and β-cell-restricted K + channel transcript. To investigate the impact of KCNK16 L114P on glucose homeostasis and confirm its association with MODY, a mouse model containing the Kcnk16 L114P mutation was generated. Heterozygous and homozygous Kcnk16 L114P mice exhibit increased neonatal lethality in the C57BL/6J and the mixed C57BL/6J:CD-1(ICR) genetic background, respectively. Lethality is likely a result of severe hyperglycemia observed in the homozygous Kcnk16 L114P neonates due to lack of glucose-stimulated insulin secretion and can be reduced with insulin treatment. Kcnk16 L114P increased whole-cell β-cell K + currents resulting in blunted glucose-stimulated Ca 2+ entry and loss of glucose-induced Ca 2+ oscillations. Thus, adult Kcnk16 L114P mice have reduced glucose-stimulated insulin secretion and plasma insulin levels, which significantly impaired glucose homeostasis. Taken together, this study shows that the MODY-associated Kcnk16 L114P mutation disrupts glucose homeostasis in adult mice resembling a MODY phenotype and causes neonatal lethality by inhibiting islet hormone secretion during development. These data strongly suggest that TALK-1 is an islet-restricted target for the treatment of diabetes.
Collapse
|
14
|
Xue D, Narisu N, Taylor DL, Zhang M, Grenko C, Taylor HJ, Yan T, Tang X, Sinha N, Zhu J, Vandana JJ, Nok Chong AC, Lee A, Mansell EC, Swift AJ, Erdos MR, Zhong A, Bonnycastle LL, Zhou T, Chen S, Collins FS. Functional interrogation of twenty type 2 diabetes-associated genes using isogenic human embryonic stem cell-derived β-like cells. Cell Metab 2023; 35:1897-1914.e11. [PMID: 37858332 PMCID: PMC10841752 DOI: 10.1016/j.cmet.2023.09.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/26/2023] [Accepted: 09/28/2023] [Indexed: 10/21/2023]
Abstract
Genetic studies have identified numerous loci associated with type 2 diabetes (T2D), but the functional roles of many loci remain unexplored. Here, we engineered isogenic knockout human embryonic stem cell lines for 20 genes associated with T2D risk. We examined the impacts of each knockout on β cell differentiation, functions, and survival. We generated gene expression and chromatin accessibility profiles on β cells derived from each knockout line. Analyses of T2D-association signals overlapping HNF4A-dependent ATAC peaks identified a likely causal variant at the FAIM2 T2D-association signal. Additionally, the integrative association analyses identified four genes (CP, RNASE1, PCSK1N, and GSTA2) associated with insulin production, and two genes (TAGLN3 and DHRS2) associated with β cell sensitivity to lipotoxicity. Finally, we leveraged deep ATAC-seq read coverage to assess allele-specific imbalance at variants heterozygous in the parental line and identified a single likely functional variant at each of 23 T2D-association signals.
Collapse
Affiliation(s)
- Dongxiang Xue
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Center for Genomic Health, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Narisu Narisu
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - D Leland Taylor
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Meili Zhang
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Caleb Grenko
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Henry J Taylor
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA; Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, CB1 8RN Cambridge, UK
| | - Tingfen Yan
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xuming Tang
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Center for Genomic Health, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Neelam Sinha
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jiajun Zhu
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Center for Genomic Health, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - J Jeya Vandana
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Center for Genomic Health, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Tri-Institutional PhD Program in Chemical Biology, Weill Cornell Medicine, The Rockefeller University, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Angie Chi Nok Chong
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Center for Genomic Health, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Angela Lee
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Erin C Mansell
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amy J Swift
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael R Erdos
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aaron Zhong
- Stem Cell Research Facility, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Lori L Bonnycastle
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ting Zhou
- Stem Cell Research Facility, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Center for Genomic Health, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA.
| | - Francis S Collins
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
15
|
Hu M, Kim I, Morán I, Peng W, Sun O, Bonnefond A, Khamis A, Bonas-Guarch S, Froguel P, Rutter GA. Multiple genetic variants at the SLC30A8 locus affect local super-enhancer activity and influence pancreatic β-cell survival and function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.13.548906. [PMID: 37502937 PMCID: PMC10369998 DOI: 10.1101/2023.07.13.548906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Variants at the SLC30A8 locus are associated with type 2 diabetes (T2D) risk. The lead variant, rs13266634, encodes an amino acid change, Arg325Trp (R325W), at the C-terminus of the secretory granule-enriched zinc transporter, ZnT8. Although this protein-coding variant was previously thought to be the sole driver of T2D risk at this locus, recent studies have provided evidence for lowered expression of SLC30A8 mRNA in protective allele carriers. In the present study, combined allele-specific expression (cASE) analysis in human islets revealed multiple variants that influence SLC30A8 expression. Epigenomic mapping identified an islet-selective enhancer cluster at the SLC30A8 locus, hosting multiple T2D risk and cASE associations, which is spatially associated with the SLC30A8 promoter and additional neighbouring genes. Deletions of variant-bearing enhancer regions using CRISPR-Cas9 in human-derived EndoC-βH3 cells lowered the expression of SLC30A8 and several neighbouring genes, and improved insulin secretion. Whilst down-regulation of SLC30A8 had no effect on beta cell survival, loss of UTP23, RAD21 or MED30 markedly reduced cell viability. Although eQTL or cASE analyses in human islets did not support the association between these additional genes and diabetes risk, the transcriptional regulator JQ1 lowered the expression of multiple genes at the SLC30A8 locus and enhanced stimulated insulin secretion.
Collapse
Affiliation(s)
- Ming Hu
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Innah Kim
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Ignasi Morán
- Life Sciences Department, Barcelona Supercomputing Center (BSC-CNS), 08034 Barcelona, Spain
| | - Weicong Peng
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Orien Sun
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Amélie Bonnefond
- Department of Metabolism, Digestion, and Reproduction, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
- Inserm U1283, CNRS UMR 8199, EGID, Institut Pasteur de Lille, F-59000, France
- University of Lille, Lille University Hospital, Lille, F-59000, France.France
| | - Amna Khamis
- Department of Metabolism, Digestion, and Reproduction, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
- Inserm U1283, CNRS UMR 8199, EGID, Institut Pasteur de Lille, F-59000, France
- University of Lille, Lille University Hospital, Lille, F-59000, France.France
| | - Silvia Bonas-Guarch
- Department of Metabolism, Digestion, and Reproduction, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
- Center for Genomic Regulation (CRG), C/ Dr. Aiguader, 88, PRBB Building, 08003 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Philippe Froguel
- Department of Metabolism, Digestion, and Reproduction, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
- Inserm U1283, CNRS UMR 8199, EGID, Institut Pasteur de Lille, F-59000, France
- University of Lille, Lille University Hospital, Lille, F-59000, France.France
| | - Guy A. Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
- Centre de Recherche du CHUM, Faculté de Médicine, Université de Montréal, Montréal, QC, Canada
- Lee Kong Chian Imperial Medical School, Nanyang Technological University, Singapore
| |
Collapse
|
16
|
Manning A, Sevilla-González M, Smith K, Wang N, Jensen A, Litkowski E, Kim H, DiCorpo D, Westerman K, Cui J, Liu CT, Yu C, McNeil J, Lacaze P, Chang KM, Tsao P, Phillips L, Goodarzi M, Sladek R, Rotter J, Dupuis J, Florez J, Merino J, Meigs J, Zhou J, Raghavan S, Udler M. Heterogeneous effects on type 2 diabetes and cardiovascular outcomes of genetic variants and traits associated with fasting insulin. RESEARCH SQUARE 2023:rs.3.rs-3317661. [PMID: 37790568 PMCID: PMC10543499 DOI: 10.21203/rs.3.rs-3317661/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Hyperinsulinemia is a complex and heterogeneous phenotype that characterizes molecular alterations that precede the development of type 2 diabetes (T2D). It results from a complex combination of molecular processes, including insulin secretion and insulin sensitivity, that differ between individuals. To better understand the physiology of hyperinsulinemia and ultimately T2D, we implemented a genetic approach grouping fasting insulin (FI)-associated genetic variants based on their molecular and phenotypic similarities. We identified seven distinctive genetic clusters representing different physiologic mechanisms leading to rising FI levels, ranging from clusters of variants with effects on increased FI, but without increased risk of T2D (non-diabetogenic hyperinsulinemia), to clusters of variants that increase FI and T2D risk with demonstrated strong effects on body fat distribution, liver, lipid, and inflammatory processes (diabetogenic hyperinsulinemia). We generated cluster-specific polygenic scores in 1,104,258 individuals from five multi-ancestry cohorts to show that the clusters differed in associations with cardiometabolic traits. Among clusters characterized by non-diabetogenic hyperinsulinemia, there was both increased and decreased risk of coronary artery disease despite the non-increased risk of T2D. Similarly, the clusters characterized by diabetogenic hyperinsulinemia were associated with an increased risk of T2D, yet had differing risks of cardiovascular conditions, including coronary artery disease, myocardial infarction, and stroke. The strongest cluster-T2D associations were observed with the same direction of effect in non-Hispanic Black, Hispanic, non-Hispanic White, and non-Hispanic East Asian populations. These genetic clusters provide important insights into granular metabolic processes underlying the physiology of hyperinsulinemia, notably highlighting specific processes that decouple increasing FI levels from T2D and cardiovascular risk. Our findings suggest that increasing FI levels are not invariably associated with adverse cardiometabolic outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Kyong-Mi Chang
- The Corporal Michael J. Crescenz Veterans Affairs Medical Center and University of Pennsylvania Perelman School of Medicine
| | - Phil Tsao
- Stanford University School of Medicine
| | | | | | | | - Jerome Rotter
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center
| | | | | | | | - James Meigs
- Department of Medicine, Harvard Medical School
| | | | | | | |
Collapse
|
17
|
Torres JM, Sun H, Nylander V, Downes DJ, van de Bunt M, McCarthy MI, Hughes JR, Gloyn AL. Inferring causal genes at type 2 diabetes GWAS loci through chromosome interactions in islet cells. Wellcome Open Res 2023; 8:165. [PMID: 37736013 PMCID: PMC10509606 DOI: 10.12688/wellcomeopenres.18653.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2023] [Indexed: 09/23/2023] Open
Abstract
Background: Resolving causal genes for type 2 diabetes at loci implicated by genome-wide association studies (GWAS) requires integrating functional genomic data from relevant cell types. Chromatin features in endocrine cells of the pancreatic islet are particularly informative and recent studies leveraging chromosome conformation capture (3C) with Hi-C based methods have elucidated regulatory mechanisms in human islets. However, these genome-wide approaches are less sensitive and afford lower resolution than methods that target specific loci. Methods: To gauge the extent to which targeted 3C further resolves chromatin-mediated regulatory mechanisms at GWAS loci, we generated interaction profiles at 23 loci using next-generation (NG) capture-C in a human beta cell model (EndoC-βH1) and contrasted these maps with Hi-C maps in EndoC-βH1 cells and human islets and a promoter capture Hi-C map in human islets. Results: We found improvements in assay sensitivity of up to 33-fold and resolved ~3.6X more chromatin interactions. At a subset of 18 loci with 25 co-localised GWAS and eQTL signals, NG Capture-C interactions implicated effector transcripts at five additional genetic signals relative to promoter capture Hi-C through physical contact with gene promoters. Conclusions: High resolution chromatin interaction profiles at selectively targeted loci can complement genome- and promoter-wide maps.
Collapse
Affiliation(s)
- Jason M. Torres
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, England, OX3 7BN, UK
| | - Han Sun
- Department of Pediatrics, Division of Endocrinology and Diabetes, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Vibe Nylander
- Oxford Centre for Diabetes Endocrinology & Metabolism, University of Oxford, Oxford, England, OX3 7L3, UK
| | - Damien J. Downes
- Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9D2, UK
| | - Martijn van de Bunt
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, England, OX3 7BN, UK
- Oxford Centre for Diabetes Endocrinology & Metabolism, University of Oxford, Oxford, England, OX3 7L3, UK
- Present address: Cytoki Pharma ApS, Tuborg Boulevard 12, Hellerup, DK-2900, Denmark
| | - Mark I. McCarthy
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, England, OX3 7BN, UK
- Oxford Centre for Diabetes Endocrinology & Metabolism, University of Oxford, Oxford, England, OX3 7L3, UK
- Present address: OMNI Human Genetics, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Jim R. Hughes
- Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9D2, UK
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9D2, UK
| | - Anna L. Gloyn
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, England, OX3 7BN, UK
- Department of Pediatrics, Division of Endocrinology and Diabetes, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Oxford Centre for Diabetes Endocrinology & Metabolism, University of Oxford, Oxford, England, OX3 7L3, UK
| |
Collapse
|
18
|
Ramanadham S, Turk J, Bhatnagar S. Noncanonical Regulation of cAMP-Dependent Insulin Secretion and Its Implications in Type 2 Diabetes. Compr Physiol 2023; 13:5023-5049. [PMID: 37358504 PMCID: PMC10809800 DOI: 10.1002/cphy.c220031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Impaired glucose tolerance (IGT) and β-cell dysfunction in insulin resistance associated with obesity lead to type 2 diabetes (T2D). Glucose-stimulated insulin secretion (GSIS) from β-cells occurs via a canonical pathway that involves glucose metabolism, ATP generation, inactivation of K ATP channels, plasma membrane depolarization, and increases in cytosolic concentrations of [Ca 2+ ] c . However, optimal insulin secretion requires amplification of GSIS by increases in cyclic adenosine monophosphate (cAMP) signaling. The cAMP effectors protein kinase A (PKA) and exchange factor activated by cyclic-AMP (Epac) regulate membrane depolarization, gene expression, and trafficking and fusion of insulin granules to the plasma membrane for amplifying GSIS. The widely recognized lipid signaling generated within β-cells by the β-isoform of Ca 2+ -independent phospholipase A 2 enzyme (iPLA 2 β) participates in cAMP-stimulated insulin secretion (cSIS). Recent work has identified the role of a G-protein coupled receptor (GPCR) activated signaling by the complement 1q like-3 (C1ql3) secreted protein in inhibiting cSIS. In the IGT state, cSIS is attenuated, and the β-cell function is reduced. Interestingly, while β-cell-specific deletion of iPLA 2 β reduces cAMP-mediated amplification of GSIS, the loss of iPLA 2 β in macrophages (MØ) confers protection against the development of glucose intolerance associated with diet-induced obesity (DIO). In this article, we discuss canonical (glucose and cAMP) and novel noncanonical (iPLA 2 β and C1ql3) pathways and how they may affect β-cell (dys)function in the context of impaired glucose intolerance associated with obesity and T2D. In conclusion, we provide a perspective that in IGT states, targeting noncanonical pathways along with canonical pathways could be a more comprehensive approach for restoring β-cell function in T2D. © 2023 American Physiological Society. Compr Physiol 13:5023-5049, 2023.
Collapse
Affiliation(s)
- Sasanka Ramanadham
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Alabama, USA
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Alabama, USA
| | - John Turk
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sushant Bhatnagar
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Alabama, USA
- Department of Medicine, University of Alabama at Birmingham, Alabama, USA
| |
Collapse
|
19
|
Xu W, Qadir MMF, Nasteska D, Mota de Sa P, Gorvin CM, Blandino-Rosano M, Evans CR, Ho T, Potapenko E, Veluthakal R, Ashford FB, Bitsi S, Fan J, Bhondeley M, Song K, Sure VN, Sakamuri SSVP, Schiffer L, Beatty W, Wyatt R, Frigo DE, Liu X, Katakam PV, Arlt W, Buck J, Levin LR, Hu T, Kolls J, Burant CF, Tomas A, Merrins MJ, Thurmond DC, Bernal-Mizrachi E, Hodson DJ, Mauvais-Jarvis F. Architecture of androgen receptor pathways amplifying glucagon-like peptide-1 insulinotropic action in male pancreatic β cells. Cell Rep 2023; 42:112529. [PMID: 37200193 PMCID: PMC10312392 DOI: 10.1016/j.celrep.2023.112529] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 12/20/2022] [Accepted: 05/03/2023] [Indexed: 05/20/2023] Open
Abstract
Male mice lacking the androgen receptor (AR) in pancreatic β cells exhibit blunted glucose-stimulated insulin secretion (GSIS), leading to hyperglycemia. Testosterone activates an extranuclear AR in β cells to amplify glucagon-like peptide-1 (GLP-1) insulinotropic action. Here, we examined the architecture of AR targets that regulate GLP-1 insulinotropic action in male β cells. Testosterone cooperates with GLP-1 to enhance cAMP production at the plasma membrane and endosomes via: (1) increased mitochondrial production of CO2, activating the HCO3--sensitive soluble adenylate cyclase; and (2) increased Gαs recruitment to GLP-1 receptor and AR complexes, activating transmembrane adenylate cyclase. Additionally, testosterone enhances GSIS in human islets via a focal adhesion kinase/SRC/phosphatidylinositol 3-kinase/mammalian target of rapamycin complex 2 actin remodeling cascade. We describe the testosterone-stimulated AR interactome, transcriptome, proteome, and metabolome that contribute to these effects. This study identifies AR genomic and non-genomic actions that enhance GLP-1-stimulated insulin exocytosis in male β cells.
Collapse
Affiliation(s)
- Weiwei Xu
- Section of Endocrinology and Metabolism, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA; Southeast Louisiana Veterans Health Care System, New Orleans, LA 70119, USA
| | - M M Fahd Qadir
- Section of Endocrinology and Metabolism, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA; Southeast Louisiana Veterans Health Care System, New Orleans, LA 70119, USA; Tulane Center of Excellence in Sex-Based Biology & Medicine, New Orleans, LA 70112, USA
| | - Daniela Nasteska
- Institute of Metabolism and Systems Research and Centre for Membrane Proteins and Receptors, University of Birmingham, Birmingham B15 2TT, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, UK
| | - Paula Mota de Sa
- Section of Endocrinology and Metabolism, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA; Southeast Louisiana Veterans Health Care System, New Orleans, LA 70119, USA; Tulane Center of Excellence in Sex-Based Biology & Medicine, New Orleans, LA 70112, USA
| | - Caroline M Gorvin
- Institute of Metabolism and Systems Research and Centre for Membrane Proteins and Receptors, University of Birmingham, Birmingham B15 2TT, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, UK
| | - Manuel Blandino-Rosano
- Department of Internal Medicine, Division Endocrinology, Metabolism and Diabetes, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Charles R Evans
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Thuong Ho
- Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, University of Wisconsin-Madison, Madison, WI, USA
| | - Evgeniy Potapenko
- Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, University of Wisconsin-Madison, Madison, WI, USA
| | - Rajakrishnan Veluthakal
- Department of Molecular and Cellular Endocrinology, City of Hope Beckman Research Institute, Duarte, CA 91010, USA
| | - Fiona B Ashford
- Institute of Metabolism and Systems Research and Centre for Membrane Proteins and Receptors, University of Birmingham, Birmingham B15 2TT, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, UK
| | - Stavroula Bitsi
- Division of Diabetes, Endocrinology & Metabolism, Section of Cell Biology and Functional Genomics, Imperial College London, London SW7 2AZ, UK
| | - Jia Fan
- Center for Cellular and Molecular Diagnostics, Department of Molecular & Cellular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Manika Bhondeley
- Section of Endocrinology and Metabolism, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA; Southeast Louisiana Veterans Health Care System, New Orleans, LA 70119, USA; Tulane Center of Excellence in Sex-Based Biology & Medicine, New Orleans, LA 70112, USA
| | - Kejing Song
- Center for Translational Research in Infection and Inflammation, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Venkata N Sure
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Siva S V P Sakamuri
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Lina Schiffer
- Institute of Metabolism and Systems Research and Centre for Membrane Proteins and Receptors, University of Birmingham, Birmingham B15 2TT, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, UK
| | - Wandy Beatty
- Molecular Imaging Facility, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rachael Wyatt
- Institute of Metabolism and Systems Research and Centre for Membrane Proteins and Receptors, University of Birmingham, Birmingham B15 2TT, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, UK
| | - Daniel E Frigo
- Departments of Cancer Systems Imaging and Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Xiaowen Liu
- Division of Biomedical Informatics and Genomics, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Prasad V Katakam
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Wiebke Arlt
- Institute of Metabolism and Systems Research and Centre for Membrane Proteins and Receptors, University of Birmingham, Birmingham B15 2TT, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, UK; National Institute for Health Research Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham B15 2TH, UK
| | - Jochen Buck
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Lonny R Levin
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Tony Hu
- Center for Cellular and Molecular Diagnostics, Department of Molecular & Cellular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jay Kolls
- Center for Translational Research in Infection and Inflammation, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Charles F Burant
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alejandra Tomas
- Division of Diabetes, Endocrinology & Metabolism, Section of Cell Biology and Functional Genomics, Imperial College London, London SW7 2AZ, UK
| | - Matthew J Merrins
- Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, University of Wisconsin-Madison, Madison, WI, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Debbie C Thurmond
- Department of Molecular and Cellular Endocrinology, City of Hope Beckman Research Institute, Duarte, CA 91010, USA
| | - Ernesto Bernal-Mizrachi
- Department of Internal Medicine, Division Endocrinology, Metabolism and Diabetes, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - David J Hodson
- Institute of Metabolism and Systems Research and Centre for Membrane Proteins and Receptors, University of Birmingham, Birmingham B15 2TT, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, UK
| | - Franck Mauvais-Jarvis
- Section of Endocrinology and Metabolism, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA; Southeast Louisiana Veterans Health Care System, New Orleans, LA 70119, USA; Tulane Center of Excellence in Sex-Based Biology & Medicine, New Orleans, LA 70112, USA.
| |
Collapse
|
20
|
Gagnon E, Mitchell PL, Arsenault BJ. Body Fat Distribution, Fasting Insulin Levels, and Insulin Secretion: A Bidirectional Mendelian Randomization Study. J Clin Endocrinol Metab 2023; 108:1308-1317. [PMID: 36585897 DOI: 10.1210/clinem/dgac758] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/07/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023]
Abstract
CONTEXT Hyperinsulinemia and adiposity are associated with one another, but the directionality of this relation is debated. OBJECTIVE Here, we tested the direction of the causal effects of fasting insulin (FI) levels and body fat accumulation/distribution using 2-sample bidirectional Mendelian randomization (MR). METHODS We included summary statistics from large-scale genome-wide association studies for body mass index (BMI, n = 806 834), waist to hip ratio adjusted for BMI (WHRadjBMI, n = 694 649), abdominal subcutaneous, visceral and gluteofemoral adipose tissue (n = 38 965), FI levels (n = 98 210), pancreatic islets gene expression (n = 420), and hypothalamus gene expression (n = 155). We used inverse variance-weighted and robust MR methods that relied on statistically and biologically driven genetic instruments. RESULTS Both BMI and WHRadjBMI were positively associated with FI. Results were consistent across all robust MR methods and when variants mapped to the hypothalamus (presumably associated with food behavior) were included. In multivariable MR analyses, when waist circumference and BMI were mutually adjusted, the direct effect of waist circumference on FI was 2.43 times larger than the effect of BMI on FI. FI was not associated with adiposity. By contrast, using genetic instruments mapped to gene expression in pancreatic islets (presumably more specific to insulin secretion), insulin was positively associated with BMI and abdominal subcutaneous and gluteofemoral adipose tissue, but not with visceral adipose tissue. CONCLUSION Although these results will need to be supported by experimental investigations, results of this MR study suggest that abdominal adiposity may be a key determinant of circulating insulin levels. Alternatively, insulin secretion may promote peripheral adipose tissue accumulation.
Collapse
Affiliation(s)
- Eloi Gagnon
- Quebec Heart and Lung Institute, Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC G1V 4G5, Canada
| | - Patricia L Mitchell
- Quebec Heart and Lung Institute, Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC G1V 4G5, Canada
| | - Benoit J Arsenault
- Quebec Heart and Lung Institute, Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC G1V 4G5, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, QC G1V 5C3, Canada
| |
Collapse
|
21
|
Chung JY, Ma Y, Zhang D, Bickerton HH, Stokes E, Patel SB, Tse HM, Feduska J, Welner RS, Banerjee RR. Pancreatic islet cell type-specific transcriptomic changes during pregnancy and postpartum. iScience 2023; 26:106439. [PMID: 37020962 PMCID: PMC10068570 DOI: 10.1016/j.isci.2023.106439] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/11/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Pancreatic β-cell mass expands during pregnancy and regresses in the postpartum period in conjunction with dynamic metabolic demands on maternal glucose homeostasis. To understand transcriptional changes driving these adaptations in β-cells and other islet cell types, we performed single-cell RNA sequencing on islets from virgin, late gestation, and early postpartum mice. We identified transcriptional signatures unique to gestation and the postpartum in β-cells, including induction of the AP-1 transcription factor subunits and other genes involved in the immediate-early response (IEGs). In addition, we found pregnancy and postpartum-induced changes differed within each endocrine cell type, and in endothelial cells and antigen-presenting cells within islets. Together, our data reveal insights into cell type-specific transcriptional changes responsible for adaptations by islet cells to pregnancy and their resolution postpartum.
Collapse
Affiliation(s)
- Jin-Yong Chung
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Yongjie Ma
- Department of Pharmacology, the University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Dingguo Zhang
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Hayden H. Bickerton
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Eric Stokes
- Department of Pharmacology, University of Colorado Denver/Anschutz, Aurora, CO 80045, USA
| | - Sweta B. Patel
- Division of Hematology and Oncology, Department of Medicine, The University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Hubert M. Tse
- Department of Microbiology, the University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Joseph Feduska
- Department of Microbiology, the University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Rob S. Welner
- Division of Hematology and Oncology, Department of Medicine, The University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Ronadip R. Banerjee
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| |
Collapse
|
22
|
Ye XW, Liu MN, Wang X, Cheng SQ, Li CS, Bai YY, Yang LL, Wang XX, Wen J, Xu WJ, Zhang SY, Xu XF, Li XR. Exploring the common pathogenesis of Alzheimer's disease and type 2 diabetes mellitus via microarray data analysis. Front Aging Neurosci 2023; 15:1071391. [PMID: 36923118 PMCID: PMC10008874 DOI: 10.3389/fnagi.2023.1071391] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 02/03/2023] [Indexed: 03/01/2023] Open
Abstract
Background Alzheimer's Disease (AD) and Type 2 Diabetes Mellitus (DM) have an increased incidence in modern society. Although more and more evidence has supported that DM is prone to AD, the interrelational mechanisms remain fully elucidated. Purpose The primary purpose of this study is to explore the shared pathophysiological mechanisms of AD and DM. Methods Download the expression matrix of AD and DM from the Gene Expression Omnibus (GEO) database with sequence numbers GSE97760 and GSE95849, respectively. The common differentially expressed genes (DEGs) were identified by limma package analysis. Then we analyzed the six kinds of module analysis: gene functional annotation, protein-protein interaction (PPI) network, potential drug screening, immune cell infiltration, hub genes identification and validation, and prediction of transcription factors (TFs). Results The subsequent analyses included 339 common DEGs, and the importance of immunity, hormone, cytokines, neurotransmitters, and insulin in these diseases was underscored by functional analysis. In addition, serotonergic synapse, ovarian steroidogenesis, estrogen signaling pathway, and regulation of lipolysis are closely related to both. DEGs were input into the CMap database to screen small molecule compounds with the potential to reverse AD and DM pathological functions. L-690488, exemestane, and BMS-345541 ranked top three among the screened small molecule compounds. Finally, 10 essential hub genes were identified using cytoHubba, including PTGS2, RAB10, LRRK2, SOS1, EEA1, NF1, RAB14, ADCY5, RAPGEF3, and PRKACG. For the characteristic Aβ and Tau pathology of AD, RAPGEF3 was associated significantly positively with AD and NF1 significantly negatively with AD. In addition, we also found ADCY5 and NF1 significant correlations with DM phenotypes. Other datasets verified that NF1, RAB14, ADCY5, and RAPGEF3 could be used as key markers of DM complicated with AD. Meanwhile, the immune cell infiltration score reflects the different cellular immune microenvironments of the two diseases. Conclusion The common pathogenesis of AD and DM was revealed in our research. These common pathways and hub genes directions for further exploration of the pathogenesis or treatment of these two diseases.
Collapse
Affiliation(s)
- Xian-Wen Ye
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Meng-Nan Liu
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China.,School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xuan Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shui-Qing Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chun-Shuai Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yu-Ying Bai
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Lin-Lin Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xu-Xing Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jia Wen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wen-Juan Xu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shu-Yan Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xin-Fang Xu
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiang-Ri Li
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
23
|
Association of MARC1, ADCY5, and BCO1 Variants with the Lipid Profile, Suggests an Additive Effect for Hypertriglyceridemia in Mexican Adult Men. Int J Mol Sci 2022; 23:ijms231911815. [PMID: 36233117 PMCID: PMC9569691 DOI: 10.3390/ijms231911815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/22/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
Epidemiological studies have reported that the Mexican population is highly susceptible to dyslipidemia. The MARC1, ADCY5, and BCO1 genes have recently been involved in lipidic abnormalities. This study aimed to analyze the association of single nucleotide polymorphisms (SNPs) rs2642438, rs56371916, and rs6564851 on MARC1, ADCY5, and BCO1 genes, respectively, with the lipid profile in a cohort of Mexican adults. We included 1900 Mexican adults from the Health Workers Cohort Study. Demographic and clinical data were collected through a structured questionnaire and standardized procedures. Genotyping was performed using a predesigned TaqMan assay. A genetic risk score (GRS) was created on the basis of the three genetic variants. Associations analysis was estimated using linear and logistic regression. Our results showed that rs2642438-A and rs6564851-A alleles had a risk association for hypertriglyceridemia (OR = 1.57, p = 0.013; and OR = 1.33, p = 0.031, respectively), and rs56371916-C allele a trend for low HDL-c (OR = 1.27, p = 0.060) only in men. The GRS revealed a significant association for hypertriglyceridemia (OR = 2.23, p = 0.022). These findings provide evidence of an aggregate effect of the MARC1, ADCY5, and BCO1 variants on the risk of hypertriglyceridemia in Mexican men. This knowledge could represent a tool for identifying at-risk males who might benefit from early interventions and avoid secondary metabolic traits.
Collapse
|
24
|
Jian Q, Wu Y, Zhang F. Metabolomics in Diabetic Retinopathy: From Potential Biomarkers to Molecular Basis of Oxidative Stress. Cells 2022; 11:cells11193005. [PMID: 36230967 PMCID: PMC9563658 DOI: 10.3390/cells11193005] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/22/2022] [Indexed: 11/18/2022] Open
Abstract
Diabetic retinopathy (DR), the leading cause of blindness in working-age adults, is one of the most common complications of diabetes mellitus (DM) featured by metabolic disorders. With the global prevalence of diabetes, the incidence of DR is expected to increase. Prompt detection and the targeting of anti-oxidative stress intervention could effectively reduce visual impairment caused by DR. However, the diagnosis and treatment of DR is often delayed due to the absence of obvious signs of retina imaging. Research progress supports that metabolomics is a powerful tool to discover potential diagnostic biomarkers and therapeutic targets for the causes of oxidative stress through profiling metabolites in diseases, which provides great opportunities for DR with metabolic heterogeneity. Thus, this review summarizes the latest advances in metabolomics in DR, as well as potential diagnostic biomarkers, and predicts molecular targets through the integration of genome-wide association studies (GWAS) with metabolomics. Metabolomics provides potential biomarkers, molecular targets and therapeutic strategies for controlling the progress of DR, especially the interventions at early stages and precise treatments based on individual patient variations.
Collapse
Affiliation(s)
- Qizhi Jian
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
| | - Yingjie Wu
- Institute for Genome Engineered Animal Models of Human Diseases, National Center of Genetically Engineered Animal Models for International Research, Liaoning Provence Key Laboratory of Genome Engineered Animal Models, Dalian Medical University, Dalian 116000, China
- Shandong Provincial Hospital, School of Laboratory Animal & Shandong Laboratory Animal Center, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250021, China
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
- Correspondence: (Y.W.); (F.Z.)
| | - Fang Zhang
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
- Correspondence: (Y.W.); (F.Z.)
| |
Collapse
|
25
|
Guo H, Li T, Wen H. Identifying shared genetic loci between coronavirus disease 2019 and cardiovascular diseases based on cross-trait meta-analysis. Front Microbiol 2022; 13:993933. [PMID: 36187959 PMCID: PMC9520490 DOI: 10.3389/fmicb.2022.993933] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/24/2022] [Indexed: 12/15/2022] Open
Abstract
People with coronavirus disease 2019 (COVID-19) have different mortality or severity, and this clinical outcome is thought to be mainly attributed to comorbid cardiovascular diseases. However, genetic loci jointly influencing COVID-19 and cardiovascular disorders remain largely unknown. To identify shared genetic loci between COVID-19 and cardiac traits, we conducted a genome-wide cross-trait meta-analysis. Firstly, from eight cardiovascular disorders, we found positive genetic correlations between COVID-19 and coronary artery disease (CAD, Rg = 0.4075, P = 0.0031), type 2 diabetes (T2D, Rg = 0.2320, P = 0.0043), obesity (OBE, Rg = 0.3451, P = 0.0061), as well as hypertension (HTN, Rg = 0.233, P = 0.0026). Secondly, we detected 10 shared genetic loci between COVID-19 and CAD, 3 loci between COVID-19 and T2D, 5 loci between COVID-19 and OBE, and 21 loci between COVID-19 and HTN, respectively. These shared genetic loci were enriched in signaling pathways and secretion pathways. In addition, Mendelian randomization analysis revealed significant causal effect of COVID-19 on CAD, OBE and HTN. Our results have revealed the genetic architecture shared by COVID-19 and CVD, and will help to shed light on the molecular mechanisms underlying the associations between COVID-19 and cardiac traits.
Collapse
Affiliation(s)
- Hongping Guo
- School of Mathematics and Statistics, Hubei Normal University, Huangshi, China
- *Correspondence: Hongping Guo,
| | - Tong Li
- School of Mathematics and Statistics, Hubei Normal University, Huangshi, China
| | - Haiyang Wen
- School of Computational Science and Electronics, Hunan Institute of Engineering, Xiangtan, China
| |
Collapse
|
26
|
Liu Q, Tang B, Zhu Z, Kraft P, Deng Q, Stener-Victorin E, Jiang X. A genome-wide cross-trait analysis identifies shared loci and causal relationships of type 2 diabetes and glycaemic traits with polycystic ovary syndrome. Diabetologia 2022; 65:1483-1494. [PMID: 35771237 PMCID: PMC9345824 DOI: 10.1007/s00125-022-05746-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/06/2022] [Indexed: 12/20/2022]
Abstract
AIMS/HYPOTHESIS The link underlying abnormal glucose metabolism, type 2 diabetes and polycystic ovary syndrome (PCOS) that is independent of BMI remains unclear in observational studies. We aimed to clarify this association using a genome-wide cross-trait approach. METHODS Summary statistics from the hitherto largest genome-wide association studies conducted for type 2 diabetes, type 2 diabetes mellitus adjusted for BMI (T2DMadjBMI), fasting glucose, fasting insulin, 2h glucose after an oral glucose challenge (all adjusted for BMI), HbA1c and PCOS, all in populations of European ancestry, were used. We quantified overall and local genetic correlations, identified pleiotropic loci and expression-trait associations, and made causal inferences across traits. RESULTS A positive overall genetic correlation between type 2 diabetes and PCOS was observed, largely influenced by BMI (rg=0.31, p=1.63×10-8) but also independent of BMI (T2DMadjBMI-PCOS: rg=0.12, p=0.03). Sixteen pleiotropic loci affecting type 2 diabetes, glycaemic traits and PCOS were identified, suggesting mechanisms of association that are independent of BMI. Two shared expression-trait associations were found for type 2 diabetes/T2DMadjBMI and PCOS targeting tissues of the cardiovascular, exocrine/endocrine and digestive systems. A putative causal effect of fasting insulin adjusted for BMI and type 2 diabetes on PCOS was demonstrated. CONCLUSIONS/INTERPRETATION We found a genetic link underlying type 2 diabetes, glycaemic traits and PCOS, driven by both biological pleiotropy and causal mediation, some of which is independent of BMI. Our findings highlight the importance of controlling fasting insulin levels to mitigate the risk of PCOS, as well as screening for and long-term monitoring of type 2 diabetes in all women with PCOS, irrespective of BMI.
Collapse
Affiliation(s)
- Qianwen Liu
- Department of Clinical Neuroscience, Karolinska Institutet, Solna, Stockholm, Sweden
| | - Bowen Tang
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Solna, Stockholm, Sweden
| | - Zhaozhong Zhu
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Peter Kraft
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Qiaolin Deng
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Stockholm, Sweden
| | | | - Xia Jiang
- Department of Clinical Neuroscience, Karolinska Institutet, Solna, Stockholm, Sweden.
| |
Collapse
|
27
|
de Sousa Melo SR, Dos Santos LR, da Cunha Soares T, Cardoso BEP, da Silva Dias TM, Morais JBS, de Paiva Sousa M, de Sousa TGV, da Silva NC, da Silva LD, Cruz KJC, do Nascimento Marreiro D. Participation of Magnesium in the Secretion and Signaling Pathways of Insulin: an Updated Review. Biol Trace Elem Res 2022; 200:3545-3553. [PMID: 35666386 DOI: 10.1007/s12011-021-02966-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/11/2021] [Indexed: 11/02/2022]
Abstract
Several studies have demonstrated the participation of various minerals in mechanisms involving insulin. Magnesium, in particular, plays an important role in the secretion and action of this hormone. Therefore, this review aimed to examine the latest insights into the biochemical and molecular aspects of the participation of magnesium in insulin sensitivity. Magnesium plays a vital role in the activity of intracellular proteins involved in insulin secretion in β-pancreatic cells, such as glucokinase, ATPase, and protein kinase C. In addition, evidence suggests that this mineral participates directly in insulin sensitivity and signaling in peripheral tissues, acting in the phosphorylation of the receptor tyrosine kinase and the insulin receptor substrates 1, insulin receptor substrates 2, phosphatidylinositol 3-kinase, and protein kinase B, and indirectly by reducing oxidative stress and chronic low-grade inflammation, which also lead to insulin resistance. Thus, magnesium deficiency is associated with glucose intolerance, while magnesium supplementation stimulates insulin secretion in pancreatic cells and improves insulin sensitivity in peripheral tissues. However, studies must consider assess short- and long-term nutritional status of mineral before performing intervention, the relevance of the balance of other nutrients that influence hormone secretion and sensibility, and health status of the assessed population.
Collapse
Affiliation(s)
| | - Loanne Rocha Dos Santos
- Graduate Program in Food and Nutrition, Federal University of Piauí, Teresina (Piauí), Brasil
| | - Tamires da Cunha Soares
- Graduate Program in Food and Nutrition, Federal University of Piauí, Teresina (Piauí), Brasil
| | | | | | | | - Mickael de Paiva Sousa
- Graduate Program in Food and Nutrition, Federal University of Piauí, Teresina (Piauí), Brasil
| | | | | | | | - Kyria Jayanne Clímaco Cruz
- Department of Nutrition, Health Sciences Center, Federal University of Piauí, Rua Hugo Napoleão, 665, Ed. Palazzo Reale, Apto 2001, Jockey, CEP 64048-320, Teresina, Piauí, Brasil
| | - Dilina do Nascimento Marreiro
- Department of Nutrition, Health Sciences Center, Federal University of Piauí, Rua Hugo Napoleão, 665, Ed. Palazzo Reale, Apto 2001, Jockey, CEP 64048-320, Teresina, Piauí, Brasil.
| |
Collapse
|
28
|
Wei J, Wu Y, Zhang X, Sun J, Li J, Li J, Yang X, Qiao H. Type 2 diabetes is more closely associated with risk of colorectal cancer based on elevated DNA methylation levels of ADCY5. Oncol Lett 2022; 24:206. [PMID: 35720494 PMCID: PMC9178693 DOI: 10.3892/ol.2022.13327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/19/2022] [Indexed: 11/24/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) has an increased risk of cancer. In the present study, the relationship between T2DM and 13 types of cancer was analyzed and key methylation genes were searched. First, DNA methylation and mRNA expression were obtained data for T2DM and 13 types of cancer from The Cancer Genome Atlas and Gene Expression Omnibus. The t-test was used to screen the differentially methylated expression overlapping genes (DE-MGs) in T2DM and cancer on both methylation and expression levels. DE-MGs are weighted based on the methylation and projected into the human protein interaction network. The correlation between T2DM and each type of cancer was analyzed, and key genes were identified. The results showed that 293 DE-MGs were related to T2DM and 3307 were related to cancer. The network found that T2DM is more related to colorectal cancer (CRC) compare with the other 12 types of cancer. A total of 5 from 8 candidate genes were associated with CRC. A total of 28 clinical patients were used to validate these 5 genes. A CRC tissue sample was collected from each patient, as well as a paracancerous sample that served as a control. A total of 56 tissue samples were divided into 4 groups: control group, T2DM group, CRC group and T2DM with CRC group (combination group). Compared with the control group, the methylation level of adenylate cyclase 5 (ADCY5), neuregulin 1 and ELAV-like RNA-binding protein 4 in the combination group was significantly upregulated, and the mRNA level was significantly downregulated. Furthermore, based on the methylation level of ADCY5, the correlation coefficient between the combination group and the T2DM group was greater than that of the CRC group. In conclusion, T2DM is most likely to be associated with CRC among 13 common types of cancer based on methylation characteristics. An upregulated methylation of ADCY5 in T2DM may have a higher risk of CRC.
Collapse
Affiliation(s)
- Jiaxing Wei
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yanmeizhi Wu
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Xiaona Zhang
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Jingxue Sun
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Jian Li
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Jingjing Li
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Xu Yang
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Hong Qiao
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
29
|
Ni N, Fang X, Mullens DA, Cai JJ, Ivanov I, Bartholin L, Li Q. Transcriptomic Profiling of Gene Expression Associated with Granulosa Cell Tumor Development in a Mouse Model. Cancers (Basel) 2022; 14:2184. [PMID: 35565312 PMCID: PMC9105549 DOI: 10.3390/cancers14092184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/05/2022] [Accepted: 04/24/2022] [Indexed: 11/16/2022] Open
Abstract
Ovarian granulosa cell tumors (GCTs) are rare sex cord-stromal tumors, accounting for ~5% ovarian tumors. The etiology of GCTs remains poorly defined. Genetically engineered mouse models are potentially valuable for understanding the pathogenesis of GCTs. Mice harboring constitutively active TGFβ signaling (TGFBR1-CA) develop ovarian GCTs that phenocopy several hormonal and molecular characteristics of human GCTs. To determine molecular alterations in the ovary upon TGFβ signaling activation, we performed transcriptomic profiling of gene expression associated with GCT development using ovaries from 1-month-old TGFBR1-CA mice and age-matched controls. RNA-sequencing and bioinformatics analysis coupled with the validation of select target genes revealed dysregulations of multiple cellular events and signaling molecules/pathways. The differentially expressed genes are enriched not only for known GCT-related pathways and tumorigenic events but also for signaling events potentially mediated by neuroactive ligand-receptor interaction, relaxin signaling, insulin signaling, and complements in TGFBR1-CA ovaries. Additionally, a comparative analysis of our data in mice with genes dysregulated in human GCTs or granulosa cells overexpressing a mutant FOXL2, the genetic hallmark of adult GCTs, identified some common genes altered in both conditions. In summary, this study has revealed the molecular signature of ovarian GCTs in a mouse model that harbors the constitutive activation of TGFBR1. The findings may be further exploited to understand the pathogenesis of a class of poorly defined ovarian tumors.
Collapse
Affiliation(s)
- Nan Ni
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (N.N.); (X.F.); (J.J.C.)
| | - Xin Fang
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (N.N.); (X.F.); (J.J.C.)
| | - Destiny A. Mullens
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA; (D.A.M.); (I.I.)
| | - James J. Cai
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (N.N.); (X.F.); (J.J.C.)
| | - Ivan Ivanov
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA; (D.A.M.); (I.I.)
| | - Laurent Bartholin
- INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université Lyon 1, F-69000 Lyon, France;
- Centre Léon Bérard, F-69008 Lyon, France
| | - Qinglei Li
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (N.N.); (X.F.); (J.J.C.)
| |
Collapse
|
30
|
Ostrom KF, LaVigne JE, Brust TF, Seifert R, Dessauer CW, Watts VJ, Ostrom RS. Physiological roles of mammalian transmembrane adenylyl cyclase isoforms. Physiol Rev 2022; 102:815-857. [PMID: 34698552 PMCID: PMC8759965 DOI: 10.1152/physrev.00013.2021] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/20/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Adenylyl cyclases (ACs) catalyze the conversion of ATP to the ubiquitous second messenger cAMP. Mammals possess nine isoforms of transmembrane ACs, dubbed AC1-9, that serve as major effector enzymes of G protein-coupled receptors (GPCRs). The transmembrane ACs display varying expression patterns across tissues, giving the potential for them to have a wide array of physiological roles. Cells express multiple AC isoforms, implying that ACs have redundant functions. Furthermore, all transmembrane ACs are activated by Gαs, so it was long assumed that all ACs are activated by Gαs-coupled GPCRs. AC isoforms partition to different microdomains of the plasma membrane and form prearranged signaling complexes with specific GPCRs that contribute to cAMP signaling compartments. This compartmentation allows for a diversity of cellular and physiological responses by enabling unique signaling events to be triggered by different pools of cAMP. Isoform-specific pharmacological activators or inhibitors are lacking for most ACs, making knockdown and overexpression the primary tools for examining the physiological roles of a given isoform. Much progress has been made in understanding the physiological effects mediated through individual transmembrane ACs. GPCR-AC-cAMP signaling pathways play significant roles in regulating functions of every cell and tissue, so understanding each AC isoform's role holds potential for uncovering new approaches for treating a vast array of pathophysiological conditions.
Collapse
Affiliation(s)
| | - Justin E LaVigne
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Tarsis F Brust
- Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, Florida
| | - Roland Seifert
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| | - Carmen W Dessauer
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas
| | - Val J Watts
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
- Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana
| | - Rennolds S Ostrom
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California
| |
Collapse
|
31
|
Yang X, Li J, Zhao L, Chen Y, Cui Z, Xu T, Li X, Wu S, Zhang Y. Targeting adipocytic discoidin domain receptor 2 impedes fat gain while increasing bone mass. Cell Death Differ 2022; 29:737-749. [PMID: 34645939 PMCID: PMC8990016 DOI: 10.1038/s41418-021-00887-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 11/23/2022] Open
Abstract
Obesity is closely associated with low-bone-mass disorder. Discoidin domain receptor 2 (DDR2) plays essential roles in skeletal metabolism, and is probably involved in fat metabolism. To test the potential role of DDR2 in fat and fat-bone crosstalk, Ddr2 conditional knockout mice (Ddr2Adipo) were generated in which Ddr2 gene is exclusively deleted in adipocytes by Adipoq Cre. We found that Ddr2Adipo mice are protected from fat gain on high-fat diet, with significantly decreased adipocyte size. Ddr2Adipo mice exhibit significantly increased bone mass and mechanical properties, with enhanced osteoblastogenesis and osteoclastogenesis. Marrow adipocyte is diminished in the bone marrow of Ddr2Adipo mice, due to activation of lipolysis. Fatty acid in the bone marrow was reduced in Ddr2Adipo mice. RNA-Seq analysis identified adenylate cyclase 5 (Adcy5) as downstream molecule of Ddr2. Mechanically, adipocytic Ddr2 modulates Adcy5-cAMP-PKA signaling, and Ddr2 deficiency stimulates lipolysis and supplies fatty acid for oxidation in osteoblasts, leading to the enhanced osteoblast differentiation and bone mass. Treatment of Adcy5 specific inhibitor abolishes the increased bone mass gain in Ddr2Adipo mice. These observations establish, for the first time, that Ddr2 plays an essential role in the crosstalk between fat and bone. Targeting adipocytic Ddr2 may be a potential strategy for treating obesity and pathological bone loss simultaneously.
Collapse
Affiliation(s)
- Xiaoyu Yang
- grid.452438.c0000 0004 1760 8119Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China ,grid.452842.d0000 0004 8512 7544The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China ,grid.207374.50000 0001 2189 3846School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Jing Li
- grid.452438.c0000 0004 1760 8119Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Liting Zhao
- grid.452438.c0000 0004 1760 8119Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Yazhuo Chen
- grid.452438.c0000 0004 1760 8119Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Zhijun Cui
- grid.452438.c0000 0004 1760 8119Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China ,grid.47840.3f0000 0001 2181 7878Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA USA
| | - Taotao Xu
- grid.417400.60000 0004 1799 0055The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Xu Li
- grid.452438.c0000 0004 1760 8119Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Shufang Wu
- grid.452438.c0000 0004 1760 8119Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Yan Zhang
- grid.452438.c0000 0004 1760 8119Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| |
Collapse
|
32
|
Guérineau NC, Campos P, Le Tissier PR, Hodson DJ, Mollard P. Cell Networks in Endocrine/Neuroendocrine Gland Function. Compr Physiol 2022; 12:3371-3415. [PMID: 35578964 DOI: 10.1002/cphy.c210031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Reproduction, growth, stress, and metabolism are determined by endocrine/neuroendocrine systems that regulate circulating hormone concentrations. All these systems generate rhythms and changes in hormone pulsatility observed in a variety of pathophysiological states. Thus, the output of endocrine/neuroendocrine systems must be regulated within a narrow window of effective hormone concentrations but must also maintain a capacity for plasticity to respond to changing physiological demands. Remarkably most endocrinologists still have a "textbook" view of endocrine gland organization which has emanated from 20th century histological studies on thin 2D tissue sections. However, 21st -century technological advances, including in-depth 3D imaging of specific cell types have vastly changed our knowledge. We now know that various levels of multicellular organization can be found across different glands, that organizational motifs can vary between species and can be modified to enhance or decrease hormonal release. This article focuses on how the organization of cells regulates hormone output using three endocrine/neuroendocrine glands that present different levels of organization and complexity: the adrenal medulla, with a single neuroendocrine cell type; the anterior pituitary, with multiple intermingled cell types; and the pancreas with multiple intermingled cell types organized into distinct functional units. We give an overview of recent methodologies that allow the study of the different components within endocrine systems, particularly their temporal and spatial relationships. We believe the emerging findings about network organization, and its impact on hormone secretion, are crucial to understanding how homeostatic regulation of endocrine axes is carried out within endocrine organs themselves. © 2022 American Physiological Society. Compr Physiol 12:3371-3415, 2022.
Collapse
Affiliation(s)
| | - Pauline Campos
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - Paul R Le Tissier
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, Scotland, UK
| | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Edgbaston, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK.,COMPARE University of Birmingham and University of Nottingham Midlands, UK.,Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Patrice Mollard
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
33
|
San Martín A, Arce-Molina R, Aburto C, Baeza-Lehnert F, Barros LF, Contreras-Baeza Y, Pinilla A, Ruminot I, Rauseo D, Sandoval PY. Visualizing physiological parameters in cells and tissues using genetically encoded indicators for metabolites. Free Radic Biol Med 2022; 182:34-58. [PMID: 35183660 DOI: 10.1016/j.freeradbiomed.2022.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 02/07/2023]
Abstract
The study of metabolism is undergoing a renaissance. Since the year 2002, over 50 genetically-encoded fluorescent indicators (GEFIs) have been introduced, capable of monitoring metabolites with high spatial/temporal resolution using fluorescence microscopy. Indicators are fusion proteins that change their fluorescence upon binding a specific metabolite. There are indicators for sugars, monocarboxylates, Krebs cycle intermediates, amino acids, cofactors, and energy nucleotides. They permit monitoring relative levels, concentrations, and fluxes in living systems. At a minimum they report relative levels and, in some cases, absolute concentrations may be obtained by performing ad hoc calibration protocols. Proper data collection, processing, and interpretation are critical to take full advantage of these new tools. This review offers a survey of the metabolic indicators that have been validated in mammalian systems. Minimally invasive, these indicators have been instrumental for the purposes of confirmation, rebuttal and discovery. We envision that this powerful technology will foster metabolic physiology.
Collapse
Affiliation(s)
- A San Martín
- Centro de Estudios Científicos (CECs), Valdivia, Chile.
| | - R Arce-Molina
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| | - C Aburto
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | | | - L F Barros
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| | - Y Contreras-Baeza
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | - A Pinilla
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | - I Ruminot
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| | - D Rauseo
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | - P Y Sandoval
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| |
Collapse
|
34
|
Bartolomé A. Stem Cell-Derived β Cells: A Versatile Research Platform to Interrogate the Genetic Basis of β Cell Dysfunction. Int J Mol Sci 2022; 23:501. [PMID: 35008927 PMCID: PMC8745644 DOI: 10.3390/ijms23010501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic β cell dysfunction is a central component of diabetes progression. During the last decades, the genetic basis of several monogenic forms of diabetes has been recognized. Genome-wide association studies (GWAS) have also facilitated the identification of common genetic variants associated with an increased risk of diabetes. These studies highlight the importance of impaired β cell function in all forms of diabetes. However, how most of these risk variants confer disease risk, remains unanswered. Understanding the specific contribution of genetic variants and the precise role of their molecular effectors is the next step toward developing treatments that target β cell dysfunction in the era of personalized medicine. Protocols that allow derivation of β cells from pluripotent stem cells, represent a powerful research tool that allows modeling of human development and versatile experimental designs that can be used to shed some light on diabetes pathophysiology. This article reviews different models to study the genetic basis of β cell dysfunction, focusing on the recent advances made possible by stem cell applications in the field of diabetes research.
Collapse
Affiliation(s)
- Alberto Bartolomé
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, 28029 Madrid, Spain
| |
Collapse
|
35
|
Prasad RB, Kristensen K, Katsarou A, Shaat N. Association of single nucleotide polymorphisms with insulin secretion, insulin sensitivity, and diabetes in women with a history of gestational diabetes mellitus. BMC Med Genomics 2021; 14:274. [PMID: 34801028 PMCID: PMC8606068 DOI: 10.1186/s12920-021-01123-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 11/10/2021] [Indexed: 12/23/2022] Open
Abstract
Background This study investigated whether single nucleotide polymorphisms (SNPs) reported by previous genome-wide association studies (GWAS) to be associated with impaired insulin secretion, insulin resistance, and/or type 2 diabetes are associated with disposition index, the homeostasis model assessment of insulin resistance (HOMA-IR), and/or development of diabetes following a pregnancy complicated by gestational diabetes mellitus (GDM). Methods Seventy-two SNPs were genotyped in 374 women with previous GDM from Southern Sweden. An oral glucose tolerance test was performed 1–2 years postpartum, although data on the diagnosis of diabetes were accessible up to 5 years postpartum. HOMA-IR and disposition index were used to measure insulin resistance and secretion, respectively. Results The risk A-allele in the rs11708067 polymorphism of the adenylate cyclase 5 gene (ADCY5) was associated with decreased disposition index (beta = − 0.90, SE 0.38, p = 0.019). This polymorphism was an expression quantitative trait loci (eQTL) in islets for both ADCY5 and its antisense transcript. The risk C-allele in the rs2943641 polymorphism, near the insulin receptor substrate 1 gene (IRS1), showed a trend towards association with increased HOMA-IR (beta = 0.36, SE 0.18, p = 0.050), and the T-allele of the rs4607103 polymorphism, near the ADAM metallopeptidase with thrombospondin type 1 motif 9 gene (ADAMTS9), was associated with postpartum diabetes (OR = 2.12, SE 0.22, p = 0.00055). The genetic risk score (GRS) of the top four SNPs tested for association with the disposition index using equal weights was associated with the disposition index (beta = − 0.31, SE = 0.29, p = 0.00096). In addition, the GRS of the four SNPs studied for association with HOMA-IR using equal weights showed an association with HOMA-IR (beta = 1.13, SE = 0.48, p = 9.72874e−11). All analyses were adjusted for age, body mass index, and ethnicity. Conclusions This study demonstrated the genetic susceptibility of women with a history of GDM to impaired insulin secretion and sensitivity and, ultimately, to diabetes development.
Collapse
Affiliation(s)
- Rashmi B Prasad
- Genomics, Diabetes and Endocrinology, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Karl Kristensen
- Genomics, Diabetes and Endocrinology, Department of Clinical Sciences, Lund University, Malmö, Sweden.,Department of Obstetrics and Gynaecology, Skåne University Hospital, Malmö, Sweden
| | - Anastasia Katsarou
- Genomics, Diabetes and Endocrinology, Department of Clinical Sciences, Lund University, Malmö, Sweden.,Department of Endocrinology, Skåne University Hospital, 205 02, Malmö, Sweden
| | - Nael Shaat
- Genomics, Diabetes and Endocrinology, Department of Clinical Sciences, Lund University, Malmö, Sweden. .,Department of Endocrinology, Skåne University Hospital, 205 02, Malmö, Sweden.
| |
Collapse
|
36
|
Aguilera-Venegas IG, Mora-Peña JDS, Velazquez-Villafaña M, Gonzalez-Dominguez MI, Barbosa-Sabanero G, Gomez-Zapata HM, Lazo-de-la-Vega-Monroy ML. Association of diabetes-related variants in ADCY5 and CDKAL1 with neonatal insulin, C-peptide, and birth weight. Endocrine 2021; 74:318-331. [PMID: 34169461 DOI: 10.1007/s12020-021-02799-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 06/09/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND AND PURPOSE Neonates at the highest and lowest percentiles of birth weight present an increased risk of developing metabolic diseases in adult life. While environmental events in utero may play an important role in this association, some genetic variants are associated both with birth weight and type 2 diabetes mellitus (T2DM), suggesting a genetic link between intrauterine growth and metabolism in adult life. Variants rs11708067 in ADCY5 and rs7754840 in CDKAL1 are associated with low birth weight, risk of T2DM, and lower insulin secretion in adults. We aimed to investigate whether, besides birth weight, these polymorphisms were related to insulin secretion at birth. METHODS A cohort of 218 healthy term newborns from uncomplicated pregnancies were evaluated for anthropometric and biochemical variables. Cord blood insulin and C-peptide were analyzed by ELISA. Genotyping of rs11708067 in ADCY5 and rs7754840 in CDKAL1 was performed. RESULTS Newborns carrying the A allele of ADCY5 rs11708067 had lower cord blood insulin and C-peptide, even after adjusting by maternal glycemia, HbA1c, and pregestational BMI. Lower birth weight was found for AA-AG genotypes compared to GG, but no differences were seen in adjusted birth weight or z-score. Variant rs7754840 in CDKAL1 was not associated with birth weight, neonatal insulin, or C-peptide for any genotype or genetic model. CONCLUSIONS The variant rs11708067 in ADCY5 is associated with lower neonatal insulin and C-peptide concentrations. Our results suggest that the genetic influence on insulin secretion may be evident from birth, even in healthy newborns, independently of maternal glycemia and BMI.
Collapse
Affiliation(s)
| | | | | | - Martha-Isabel Gonzalez-Dominguez
- Universidad de la Cienega del Estado de Michoacan de Ocampo, Trayectoria de Ingenieria en Nanotecnologia, Sahuayo, Michoacan, Mexico
| | - Gloria Barbosa-Sabanero
- Medical Sciences Department, Health Sciences Division, University of Guanajuato, Guanajuato, Mexico
| | | | | |
Collapse
|
37
|
Zhang Y, Han C, Zhu W, Yang G, Peng X, Mehta S, Zhang J, Chen L, Liu Y. Glucagon Potentiates Insulin Secretion Via β-Cell GCGR at Physiological Concentrations of Glucose. Cells 2021; 10:cells10092495. [PMID: 34572144 PMCID: PMC8471175 DOI: 10.3390/cells10092495] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/21/2022] Open
Abstract
Incretin-potentiated glucose-stimulated insulin secretion (GSIS) is critical to maintaining euglycemia, of which GLP-1 receptor (GLP-1R) on β-cells plays an indispensable role. Recently, α-cell-derived glucagon but not intestine-derived GLP-1 has been proposed as the critical hormone that potentiates GSIS via GLP-1R. However, the function of glucagon receptors (GCGR) on β-cells remains elusive. Here, using GCGR or GLP-1R antagonists, in combination with glucagon, to treat single β-cells, α-β cell clusters and isolated islets, we found that glucagon potentiates insulin secretion via β-cell GCGR at physiological but not high concentrations of glucose. Furthermore, we transfected primary mouse β-cells with RAB-ICUE (a genetically encoded cAMP fluorescence indicator) to monitor cAMP level after glucose stimulation and GCGR activation. Using specific inhibitors of different adenylyl cyclase (AC) family members, we revealed that high glucose concentration or GCGR activation independently evoked cAMP elevation via AC5 in β-cells, thus high glucose stimulation bypassed GCGR in promoting insulin secretion. Additionally, we generated β-cell-specific GCGR knockout mice which glucose intolerance was more severe when fed a high-fat diet (HFD). We further found that β-cell GCGR activation promoted GSIS more than GLP-1R in HFD, indicating the critical role of GCGR in maintaining glucose homeostasis during nutrient overload.
Collapse
Affiliation(s)
- Yulin Zhang
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; (Y.Z.); (C.H.); (W.Z.); (G.Y.); (X.P.)
| | - Chengsheng Han
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; (Y.Z.); (C.H.); (W.Z.); (G.Y.); (X.P.)
| | - Wenzhen Zhu
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; (Y.Z.); (C.H.); (W.Z.); (G.Y.); (X.P.)
| | - Guoyi Yang
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; (Y.Z.); (C.H.); (W.Z.); (G.Y.); (X.P.)
| | - Xiaohong Peng
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; (Y.Z.); (C.H.); (W.Z.); (G.Y.); (X.P.)
| | - Sohum Mehta
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093-0702, USA; (S.M.); (J.Z.)
| | - Jin Zhang
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093-0702, USA; (S.M.); (J.Z.)
| | - Liangyi Chen
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; (Y.Z.); (C.H.); (W.Z.); (G.Y.); (X.P.)
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Beijing Academy of Artificial Intelligence, Beijing 100871, China
- Correspondence: (L.C.); (Y.L.)
| | - Yanmei Liu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
- Correspondence: (L.C.); (Y.L.)
| |
Collapse
|
38
|
Henquin JC. Non-glucose modulators of insulin secretion in healthy humans: (dis)similarities between islet and in vivo studies. Metabolism 2021; 122:154821. [PMID: 34174327 DOI: 10.1016/j.metabol.2021.154821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/10/2021] [Accepted: 06/18/2021] [Indexed: 12/17/2022]
Abstract
Optimal metabolic homeostasis requires precise temporal and quantitative control of insulin secretion. Both in vivo and in vitro studies have often focused on the regulation by glucose although many additional factors including other nutrients, neurotransmitters, hormones and drugs, modulate the secretory function of pancreatic β-cells. This review is based on the analysis of clinical investigations characterizing the effects of non-glucose modulators of insulin secretion in healthy subjects, and of experimental studies testing the same modulators in islets isolated from normal human donors. The aim was to determine whether the information gathered in vitro can reliably be translated to the in vivo situation. The comparison evidenced both convincing similarities and areas of discordance. The lack of coherence generally stems from the use of exceedingly high concentrations of test agents at too high or too low glucose concentrations in vitro, which casts doubts on the physiological relevance of a number of observations made in isolated islets. Future projects resorting to human islets should avoid extreme experimental conditions, such as oversized stimulations or inhibitions of β-cells, which are unlikely to throw light on normal insulin secretion and contribute to the elucidation of its defects.
Collapse
Affiliation(s)
- Jean-Claude Henquin
- Unit of Endocrinology and Metabolism, Faculty of Medicine, University of Louvain, Brussels, Belgium.
| |
Collapse
|
39
|
Wu CT, Hilgendorf KI, Bevacqua RJ, Hang Y, Demeter J, Kim SK, Jackson PK. Discovery of ciliary G protein-coupled receptors regulating pancreatic islet insulin and glucagon secretion. Genes Dev 2021; 35:1243-1255. [PMID: 34385262 PMCID: PMC8415323 DOI: 10.1101/gad.348261.121] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 07/02/2021] [Indexed: 01/17/2023]
Abstract
Multiple G protein-coupled receptors (GPCRs) are expressed in pancreatic islet cells, but the majority have unknown functions. We observed specific GPCRs localized to primary cilia, a prominent signaling organelle, in pancreatic α and β cells. Loss of cilia disrupts β-cell endocrine function, but the molecular drivers are unknown. Using functional expression, we identified multiple GPCRs localized to cilia in mouse and human islet α and β cells, including FFAR4, PTGER4, ADRB2, KISS1R, and P2RY14. Free fatty acid receptor 4 (FFAR4) and prostaglandin E receptor 4 (PTGER4) agonists stimulate ciliary cAMP signaling and promote glucagon and insulin secretion by α- and β-cell lines and by mouse and human islets. Transport of GPCRs to primary cilia requires TULP3, whose knockdown in primary human and mouse islets relocalized ciliary FFAR4 and PTGER4 and impaired regulated glucagon or insulin secretion, without affecting ciliary structure. Our findings provide index evidence that regulated hormone secretion by islet α and β cells is controlled by ciliary GPCRs providing new targets for diabetes.
Collapse
Affiliation(s)
- Chien-Ting Wu
- Baxter Laboratory, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Keren I Hilgendorf
- Baxter Laboratory, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | - Romina J Bevacqua
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Yan Hang
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Janos Demeter
- Baxter Laboratory, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Seung K Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Medicine, Stanford University, Stanford, California 94305, USA
| | - Peter K Jackson
- Baxter Laboratory, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Medicine, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
40
|
Pickford P, Lucey M, Rujan RM, McGlone ER, Bitsi S, Ashford FB, Corrêa IR, Hodson DJ, Tomas A, Deganutti G, Reynolds CA, Owen BM, Tan TM, Minnion J, Jones B, Bloom SR. Partial agonism improves the anti-hyperglycaemic efficacy of an oxyntomodulin-derived GLP-1R/GCGR co-agonist. Mol Metab 2021; 51:101242. [PMID: 33933675 PMCID: PMC8163982 DOI: 10.1016/j.molmet.2021.101242] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE Glucagon-like peptide-1 and glucagon receptor (GLP-1R/GCGR) co-agonism can maximise weight loss and improve glycaemic control in type 2 diabetes and obesity. In this study, we investigated the cellular and metabolic effects of modulating the balance between G protein and β-arrestin-2 recruitment at GLP-1R and GCGR using oxyntomodulin (OXM)-derived co-agonists. This strategy has been previously shown to improve the duration of action of GLP-1R mono-agonists by reducing target desensitisation and downregulation. METHODS Dipeptidyl dipeptidase-4 (DPP-4)-resistant OXM analogues were generated and assessed for a variety of cellular readouts. Molecular dynamic simulations were used to gain insights into the molecular interactions involved. In vivo studies were performed in mice to identify the effects on glucose homeostasis and weight loss. RESULTS Ligand-specific reductions in β-arrestin-2 recruitment were associated with slower GLP-1R internalisation and prolonged glucose-lowering action in vivo. The putative benefits of GCGR agonism were retained, with equivalent weight loss compared to the GLP-1R mono-agonist liraglutide despite a lesser degree of food intake suppression. The compounds tested showed only a minor degree of biased agonism between G protein and β-arrestin-2 recruitment at both receptors and were best classified as partial agonists for the two pathways measured. CONCLUSIONS Diminishing β-arrestin-2 recruitment may be an effective way to increase the therapeutic efficacy of GLP-1R/GCGR co-agonists. These benefits can be achieved by partial rather than biased agonism.
Collapse
Affiliation(s)
- Phil Pickford
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, W12 0NN, UK
| | - Maria Lucey
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, W12 0NN, UK
| | - Roxana-Maria Rujan
- Centre for Sport, Exercise, and Life Sciences, Faculty of Health and Life Sciences, Coventry University, Alison Gingell Building, CV1 5FB, UK
| | - Emma Rose McGlone
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, W12 0NN, UK
| | - Stavroula Bitsi
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, W12 0NN, UK
| | - Fiona B Ashford
- Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | | | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Alejandra Tomas
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, W12 0NN, UK
| | - Giuseppe Deganutti
- Centre for Sport, Exercise, and Life Sciences, Faculty of Health and Life Sciences, Coventry University, Alison Gingell Building, CV1 5FB, UK
| | - Christopher A Reynolds
- Centre for Sport, Exercise, and Life Sciences, Faculty of Health and Life Sciences, Coventry University, Alison Gingell Building, CV1 5FB, UK; School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Bryn M Owen
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, W12 0NN, UK
| | - Tricia M Tan
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, W12 0NN, UK
| | - James Minnion
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, W12 0NN, UK
| | - Ben Jones
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, W12 0NN, UK.
| | - Stephen R Bloom
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, W12 0NN, UK
| |
Collapse
|
41
|
Nasteska D, Cuozzo F, Viloria K, Johnson EM, Thakker A, Bany Bakar R, Westbrook RL, Barlow JP, Hoang M, Joseph JW, Lavery GG, Akerman I, Cantley J, Hodson L, Tennant DA, Hodson DJ. Prolyl-4-hydroxylase 3 maintains β cell glucose metabolism during fatty acid excess in mice. JCI Insight 2021; 6:e140288. [PMID: 34264866 PMCID: PMC8409982 DOI: 10.1172/jci.insight.140288] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/14/2021] [Indexed: 02/06/2023] Open
Abstract
The α-ketoglutarate–dependent dioxygenase, prolyl-4-hydroxylase 3 (PHD3), is an HIF target that uses molecular oxygen to hydroxylate peptidyl prolyl residues. Although PHD3 has been reported to influence cancer cell metabolism and liver insulin sensitivity, relatively little is known about the effects of this highly conserved enzyme in insulin-secreting β cells in vivo. Here, we show that the deletion of PHD3 specifically in β cells (βPHD3KO) was associated with impaired glucose homeostasis in mice fed a high-fat diet. In the early stages of dietary fat excess, βPHD3KO islets energetically rewired, leading to defects in the management of pyruvate fate and a shift from glycolysis to increased fatty acid oxidation (FAO). However, under more prolonged metabolic stress, this switch to preferential FAO in βPHD3KO islets was associated with impaired glucose-stimulated ATP/ADP rises, Ca2+ fluxes, and insulin secretion. Thus, PHD3 might be a pivotal component of the β cell glucose metabolism machinery in mice by suppressing the use of fatty acids as a primary fuel source during the early phases of metabolic stress.
Collapse
Affiliation(s)
- Daniela Nasteska
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, United Kingdom
| | - Federica Cuozzo
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, United Kingdom
| | - Katrina Viloria
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, United Kingdom
| | - Elspeth M Johnson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom.,NIHR Oxford Biomedical Research Centre, Churchill Hospital, Oxford, United Kingdom
| | - Alpesh Thakker
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom
| | - Rula Bany Bakar
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Rebecca L Westbrook
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom
| | - Jonathan P Barlow
- Mitochondrial Profiling Centre, School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Monica Hoang
- School of Pharmacy, University of Waterloo, Kitchener, Ontario, Canada
| | - Jamie W Joseph
- School of Pharmacy, University of Waterloo, Kitchener, Ontario, Canada
| | - Gareth G Lavery
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom
| | - Ildem Akerman
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom
| | - James Cantley
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,Division of Systems Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom.,NIHR Oxford Biomedical Research Centre, Churchill Hospital, Oxford, United Kingdom
| | - Daniel A Tennant
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom
| | - David J Hodson
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
42
|
Ustianowski P, Malinowski D, Kopytko P, Czerewaty M, Tarnowski M, Dziedziejko V, Safranow K, Pawlik A. ADCY5, CAPN10 and JAZF1 Gene Polymorphisms and Placental Expression in Women with Gestational Diabetes. Life (Basel) 2021; 11:life11080806. [PMID: 34440550 PMCID: PMC8399092 DOI: 10.3390/life11080806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 12/12/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is carbohydrate intolerance that occurs during pregnancy. This disease may lead to various maternal and neonatal complications; therefore, early diagnosis is very important. Because of the similarity in pathogenesis of type 2 diabetes and GDM, the genetic variants associated with type 2 diabetes are commonly investigated in GDM. The aim of the present study was to examine the associations between the polymorphisms in the ADCY5 (rs11708067, rs2877716), CAPN10 (rs2975760, rs3792267), and JAZF1 (rs864745) genes and GDM as well as to determine the expression of these genes in the placenta. This study included 272 pregnant women with GDM and 348 pregnant women with normal glucose tolerance. The diagnosis of GDM was based on a 75 g oral glucose tolerance test (OGTT) at 24–28 weeks gestation, according to International Association of Diabetes and Pregnancy Study Groups (IADPSG) criteria. There were no statistically significant differences in the distribution of the ADCY5 gene (rs11708067, rs2877716) and CAPN10 gene (rs2975760, rs3792267) polymorphisms between pregnant women with normal carbohydrate tolerance and pregnant women with GDM. We have shown a lower frequency of JAZF1 gene rs864745 C allele carriers among women with GDM CC + CT vs. TT (OR = 0.60, 95% CI = 0.41–0.87, p = 0.006), and C vs. T (OR = 0.75, 95% CI = 0.60–0.95, p = 0.014). In addition, ADCY5 and JAZF1 gene expression was statistically significantly increased in the placentas of women with GDM compared with that of healthy women. The expression of the CAPN10 gene did not differ significantly between women with and without GDM. Our results indicate increased expression of JAZF1 and ADCY5 genes in the placentas of women with GDM as well as a protective effect of the C allele of the JAZF1 rs864745 gene polymorphism on the development of GDM in pregnant women.
Collapse
Affiliation(s)
- Przemysław Ustianowski
- Department of Obstetrics and Gynecology, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Damian Malinowski
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Patrycja Kopytko
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (P.K.); (M.C.); (M.T.)
| | - Michał Czerewaty
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (P.K.); (M.C.); (M.T.)
| | - Maciej Tarnowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (P.K.); (M.C.); (M.T.)
| | - Violetta Dziedziejko
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, 70-111 Szczecin, Poland; (V.D.); (K.S.)
| | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, 70-111 Szczecin, Poland; (V.D.); (K.S.)
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (P.K.); (M.C.); (M.T.)
- Correspondence:
| |
Collapse
|
43
|
Acreman S, Zhang Q. Regulation of α-cell glucagon secretion: The role of second messengers. Chronic Dis Transl Med 2021; 8:7-18. [PMID: 35620162 PMCID: PMC9128566 DOI: 10.1016/j.cdtm.2021.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/15/2021] [Indexed: 11/30/2022] Open
Abstract
Glucagon is a potent glucose‐elevating hormone that is secreted by pancreatic α‐cells. While well‐controlled glucagon secretion plays an important role in maintaining systemic glucose homeostasis and preventing hypoglycaemia, it is increasingly apparent that defects in the regulation of glucagon secretion contribute to impaired counter‐regulation and hyperglycaemia in diabetes. It has therefore been proposed that pharmacological interventions targeting glucagon secretion/signalling can have great potential in improving glycaemic control of patients with diabetes. However, despite decades of research, a consensus on the precise mechanisms of glucose regulation of glucagon secretion is yet to be reached. Second messengers are a group of small intracellular molecules that relay extracellular signals to the intracellular signalling cascade, modulating cellular functions. There is a growing body of evidence that second messengers, such as cAMP and Ca2+, play critical roles in α‐cell glucose‐sensing and glucagon secretion. In this review, we discuss the impact of second messengers on α‐cell electrical activity, intracellular Ca2+ dynamics and cell exocytosis. We highlight the possibility that the interaction between different second messengers may play a key role in the glucose‐regulation of glucagon secretion.
Collapse
|
44
|
Sholokh A, Klussmann E. Local cyclic adenosine monophosphate signalling cascades-Roles and targets in chronic kidney disease. Acta Physiol (Oxf) 2021; 232:e13641. [PMID: 33660401 DOI: 10.1111/apha.13641] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/20/2022]
Abstract
The molecular mechanisms underlying chronic kidney disease (CKD) are poorly understood and treatment options are limited, a situation underpinning the need for elucidating the causative molecular mechanisms and for identifying innovative treatment options. It is emerging that cyclic 3',5'-adenosine monophosphate (cAMP) signalling occurs in defined cellular compartments within nanometre dimensions in processes whose dysregulation is associated with CKD. cAMP compartmentalization is tightly controlled by a specific set of proteins, including A-kinase anchoring proteins (AKAPs) and phosphodiesterases (PDEs). AKAPs such as AKAP18, AKAP220, AKAP-Lbc and STUB1, and PDE4 coordinate arginine-vasopressin (AVP)-induced water reabsorption by collecting duct principal cells. However, hyperactivation of the AVP system is associated with kidney damage and CKD. Podocyte injury involves aberrant AKAP signalling. cAMP signalling in immune cells can be local and slow the progression of inflammatory processes typical for CKD. A major risk factor of CKD is hypertension. cAMP directs the release of the blood pressure regulator, renin, from juxtaglomerular cells, and plays a role in Na+ reabsorption through ENaC, NKCC2 and NCC in the kidney. Mutations in the cAMP hydrolysing PDE3A that cause lowering of cAMP lead to hypertension. Another major risk factor of CKD is diabetes mellitus. AKAP18 and AKAP150 and several PDEs are involved in insulin release. Despite the increasing amount of data, an understanding of functions of compartmentalized cAMP signalling with relevance for CKD is fragmentary. Uncovering functions will improve the understanding of physiological processes and identification of disease-relevant aberrations may guide towards new therapeutic concepts for the treatment of CKD.
Collapse
Affiliation(s)
- Anastasiia Sholokh
- Max‐Delbrück‐Center for Molecular Medicine (MDC) Helmholtz Association Berlin Germany
| | - Enno Klussmann
- Max‐Delbrück‐Center for Molecular Medicine (MDC) Helmholtz Association Berlin Germany
- DZHK (German Centre for Cardiovascular Research) Berlin Germany
| |
Collapse
|
45
|
Dommel S, Hoffmann A, Berger C, Kern M, Klöting N, Kannt A, Blüher M. Effects of Whole-Body Adenylyl Cyclase 5 ( Adcy5) Deficiency on Systemic Insulin Sensitivity and Adipose Tissue. Int J Mol Sci 2021; 22:4353. [PMID: 33919448 PMCID: PMC8122634 DOI: 10.3390/ijms22094353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023] Open
Abstract
Genome-wide association studies have identified adenylyl cyclase type 5 (ADCY5) as candidate gene for diabetes-related quantitative traits and an increased risk of type 2 diabetes. Mice with a whole-body deletion of Adcy5 (Adcy5-/-) do not develop obesity, glucose intolerance and insulin resistance, have improved cardiac function and increased longevity. Here, we investigated Adcy5 knockout mice (Adcy5-/-) to test the hypothesis that changes in adipose tissue (AT) may contribute to the reported healthier phenotype. In contrast to previous reports, we found that deletion of Adcy5 did not confer any physiological or biochemical benefits. However, this unexpected finding allowed us to investigate the effects of Adcy5 depletion on AT independently of lower body weight and a metabolically healthier phenotype. Adcy5-/- mice exhibited an increased number of smaller adipocytes, lower mean adipocyte size and a distinct AT gene expression pattern with midline 1 (Mid1) as the most significantly downregulated gene compared to control mice. Our Adcy5-/- model challenges previously described beneficial effects of Adcy5 deficiency and suggests that targeting Adcy5 does not improve insulin sensitivity and may therefore limit the relevance of ADCY5 as potential drug target.
Collapse
Affiliation(s)
- Sebastian Dommel
- Medical Center, Medical Department III—Endocrinology, Nephrology, Rheumatology, University of Leipzig, 04103 Leipzig, Germany; (S.D.); (C.B.); (N.K.)
| | - Anne Hoffmann
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany; (A.H.); (M.K.)
| | - Claudia Berger
- Medical Center, Medical Department III—Endocrinology, Nephrology, Rheumatology, University of Leipzig, 04103 Leipzig, Germany; (S.D.); (C.B.); (N.K.)
| | - Matthias Kern
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany; (A.H.); (M.K.)
| | - Nora Klöting
- Medical Center, Medical Department III—Endocrinology, Nephrology, Rheumatology, University of Leipzig, 04103 Leipzig, Germany; (S.D.); (C.B.); (N.K.)
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany; (A.H.); (M.K.)
| | - Aimo Kannt
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt am Main, Germany;
- Experimental Pharmacology, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
- Sanofi Diabetes Research and Development, 60596 Frankfurt am Main, Germany
| | - Matthias Blüher
- Medical Center, Medical Department III—Endocrinology, Nephrology, Rheumatology, University of Leipzig, 04103 Leipzig, Germany; (S.D.); (C.B.); (N.K.)
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany; (A.H.); (M.K.)
| |
Collapse
|
46
|
Hughes AE, Hattersley AT, Flanagan SE, Freathy RM. Two decades since the fetal insulin hypothesis: what have we learned from genetics? Diabetologia 2021; 64:717-726. [PMID: 33569631 PMCID: PMC7940336 DOI: 10.1007/s00125-021-05386-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/25/2020] [Indexed: 12/16/2022]
Abstract
In 1998 the fetal insulin hypothesis proposed that lower birthweight and adult-onset type 2 diabetes are two phenotypes of the same genotype. Since then, advances in research investigating the role of genetics affecting insulin secretion and action have furthered knowledge of fetal insulin-mediated growth and the biology of type 2 diabetes. In this review, we discuss the historical research context from which the fetal insulin hypothesis originated and consider the position of the hypothesis in light of recent evidence. In summary, there is now ample evidence to support the idea that variants of certain genes which result in impaired pancreatic beta cell function and reduced insulin secretion contribute to both lower birthweight and higher type 2 diabetes risk in later life when inherited by the fetus. There is also evidence to support genetic links between type 2 diabetes secondary to reduced insulin action and lower birthweight but this applies only to loci implicated in body fat distribution and not those influencing insulin resistance via obesity or lipid metabolism by the liver. Finally, we also consider how advances in genetics are being used to explore alternative hypotheses, namely the role of the maternal intrauterine environment, in the relationship between lower birthweight and adult cardiometabolic disease.
Collapse
Affiliation(s)
- Alice E Hughes
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Andrew T Hattersley
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Sarah E Flanagan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Rachel M Freathy
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK.
| |
Collapse
|
47
|
Iafusco F, Maione G, Rosanio FM, Mozzillo E, Franzese A, Tinto N. Cystic Fibrosis-Related Diabetes (CFRD): Overview of Associated Genetic Factors. Diagnostics (Basel) 2021; 11:diagnostics11030572. [PMID: 33810109 PMCID: PMC8005125 DOI: 10.3390/diagnostics11030572] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 03/19/2021] [Indexed: 12/21/2022] Open
Abstract
Cystic fibrosis (CF) is the most common autosomal recessive disease in the Caucasian population and is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene that encodes for a chloride/bicarbonate channel expressed on the membrane of epithelial cells of the airways and of the intestine, as well as in cells with exocrine and endocrine functions. A common nonpulmonary complication of CF is cystic fibrosis-related diabetes (CFRD), a distinct form of diabetes due to insulin insufficiency or malfunction secondary to destruction/derangement of pancreatic betacells, as well as to other factors that affect their function. The prevalence of CFRD increases with age, and 40–50% of CF adults develop the disease. Several proposed hypotheses on how CFRD develops have emerged, including exocrine-driven fibrosis and destruction of the entire pancreas, as well as contrasting theories on the direct or indirect impact of CFTR mutation on islet function. Among contributors to the development of CFRD, in addition to CFTR genotype, there are other genetic factors related and not related to type 2 diabetes. This review presents an overview of the current understanding on genetic factors associated with glucose metabolism abnormalities in CF.
Collapse
Affiliation(s)
- Fernanda Iafusco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy; (F.I.); (G.M.)
- CEINGE Advanced Biotechnology, 80131 Naples, Italy
| | - Giovanna Maione
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy; (F.I.); (G.M.)
- CEINGE Advanced Biotechnology, 80131 Naples, Italy
| | - Francesco Maria Rosanio
- Regional Center of Pediatric Diabetology, Department of Translational Medical Sciences, Section of Pediatrics, University of Naples “Federico II”, 80131 Naples, Italy; (F.M.R.); (E.M.); (A.F.)
| | - Enza Mozzillo
- Regional Center of Pediatric Diabetology, Department of Translational Medical Sciences, Section of Pediatrics, University of Naples “Federico II”, 80131 Naples, Italy; (F.M.R.); (E.M.); (A.F.)
| | - Adriana Franzese
- Regional Center of Pediatric Diabetology, Department of Translational Medical Sciences, Section of Pediatrics, University of Naples “Federico II”, 80131 Naples, Italy; (F.M.R.); (E.M.); (A.F.)
| | - Nadia Tinto
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy; (F.I.); (G.M.)
- CEINGE Advanced Biotechnology, 80131 Naples, Italy
- Correspondence:
| |
Collapse
|
48
|
Sinnott-Armstrong N, Sousa IS, Laber S, Rendina-Ruedy E, Nitter Dankel SE, Ferreira T, Mellgren G, Karasik D, Rivas M, Pritchard J, Guntur AR, Cox RD, Lindgren CM, Hauner H, Sallari R, Rosen CJ, Hsu YH, Lander ES, Kiel DP, Claussnitzer M. A regulatory variant at 3q21.1 confers an increased pleiotropic risk for hyperglycemia and altered bone mineral density. Cell Metab 2021; 33:615-628.e13. [PMID: 33513366 PMCID: PMC7928941 DOI: 10.1016/j.cmet.2021.01.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 11/14/2019] [Accepted: 12/31/2020] [Indexed: 02/07/2023]
Abstract
Skeletal and glycemic traits have shared etiology, but the underlying genetic factors remain largely unknown. To identify genetic loci that may have pleiotropic effects, we studied Genome-wide association studies (GWASs) for bone mineral density and glycemic traits and identified a bivariate risk locus at 3q21. Using sequence and epigenetic modeling, we prioritized an adenylate cyclase 5 (ADCY5) intronic causal variant, rs56371916. This SNP changes the binding affinity of SREBP1 and leads to differential ADCY5 gene expression, altering the chromatin landscape from poised to repressed. These alterations result in bone- and type 2 diabetes-relevant cell-autonomous changes in lipid metabolism in osteoblasts and adipocytes. We validated our findings by directly manipulating the regulator SREBP1, the target gene ADCY5, and the variant rs56371916, which together imply a novel link between fatty acid oxidation and osteoblast differentiation. Our work, by systematic functional dissection of pleiotropic GWAS loci, represents a framework to uncover biological mechanisms affecting pleiotropic traits.
Collapse
Affiliation(s)
- Nasa Sinnott-Armstrong
- Metabolism Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Cell Circuits and Epigenomics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Stanford University, Stanford 94305 CA, USA
| | - Isabel S Sousa
- Metabolism Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Else Kröner-Fresenius-Center for Nutritional Medicine, School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Samantha Laber
- Metabolism Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Cell Circuits and Epigenomics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Big Data Institute, University of Oxford, Oxford, UK
| | - Elizabeth Rendina-Ruedy
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME 04074, USA
| | - Simon E Nitter Dankel
- University of Bergen, Bergen 5020, Norway; Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway; Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, 5021 Bergen, Norway
| | | | - Gunnar Mellgren
- University of Bergen, Bergen 5020, Norway; Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway; Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, 5021 Bergen, Norway
| | - David Karasik
- Institute for Aging Research, Hebrew SeniorLife and Harvard Medical School, Boston, MA 02131, USA; Faculty of Medicine of the Galilee, Bar-Ilan University, Safed, Israel
| | - Manuel Rivas
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | - Jonathan Pritchard
- Department of Genetics, Stanford University, Stanford 94305 CA, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Anyonya R Guntur
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME 04074, USA
| | - Roger D Cox
- Medical Research Council Harwell, Oxfordshire, UK
| | - Cecilia M Lindgren
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Big Data Institute, University of Oxford, Oxford, UK
| | - Hans Hauner
- Else Kröner-Fresenius-Center for Nutritional Medicine, School of Life Sciences, Technical University of Munich, Freising 85354, Germany; Institute of Nutritional Medicine, School of Medicine, Technical University of Munich, Freising 85354, Germany; Clinical Cooperation Group "Nutrigenomics and Type 2 Diabetes" of the German Center of Diabetes Research, Helmholtz Center Munich, Munich 85764, Germany
| | - Richard Sallari
- Metabolism Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Clifford J Rosen
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME 04074, USA
| | - Yi-Hsiang Hsu
- Institute for Aging Research, Hebrew SeniorLife and Harvard Medical School, Boston, MA 02131, USA; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02131, USA
| | - Eric S Lander
- Metabolism Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Cell Circuits and Epigenomics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Biology, MIT, Cambridge, MA 02142, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Douglas P Kiel
- Institute for Aging Research, Hebrew SeniorLife and Harvard Medical School, Boston, MA 02131, USA; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02131, USA
| | - Melina Claussnitzer
- Metabolism Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Cell Circuits and Epigenomics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02131, USA; University of Hohenheim, Institute of Nutritional Science, Stuttgart 70599, Germany.
| |
Collapse
|
49
|
Huang LO, Rauch A, Mazzaferro E, Preuss M, Carobbio S, Bayrak CS, Chami N, Wang Z, Schick UM, Yang N, Itan Y, Vidal-Puig A, den Hoed M, Mandrup S, Kilpeläinen TO, Loos RJF. Genome-wide discovery of genetic loci that uncouple excess adiposity from its comorbidities. Nat Metab 2021; 3:228-243. [PMID: 33619380 DOI: 10.1038/s42255-021-00346-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/14/2021] [Indexed: 01/31/2023]
Abstract
Obesity is a major risk factor for cardiometabolic diseases. Nevertheless, a substantial proportion of individuals with obesity do not suffer cardiometabolic comorbidities. The mechanisms that uncouple adiposity from its cardiometabolic complications are not fully understood. Here, we identify 62 loci of which the same allele is significantly associated with both higher adiposity and lower cardiometabolic risk. Functional analyses show that the 62 loci are enriched for genes expressed in adipose tissue, and for regulatory variants that influence nearby genes that affect adipocyte differentiation. Genes prioritized in each locus support a key role of fat distribution (FAM13A, IRS1 and PPARG) and adipocyte function (ALDH2, CCDC92, DNAH10, ESR1, FAM13A, MTOR, PIK3R1 and VEGFB). Several additional mechanisms are involved as well, such as insulin-glucose signalling (ADCY5, ARAP1, CREBBP, FAM13A, MTOR, PEPD, RAC1 and SH2B3), energy expenditure and fatty acid oxidation (IGF2BP2), browning of white adipose tissue (CSK, VEGFA, VEGFB and SLC22A3) and inflammation (SH2B3, DAGLB and ADCY9). Some of these genes may represent therapeutic targets to reduce cardiometabolic risk linked to excess adiposity.
Collapse
Affiliation(s)
- Lam O Huang
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Alexander Rauch
- Functional Genomics & Metabolism Research Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
- Molecular Endocrinology & Stem Cell Research Unit, Department of Endocrinology and Metabolism, Odense University Hospital and Steno Diabetes Center Odense and Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Eugenia Mazzaferro
- The Beijer Laboratory and Department of Immunology, Genetics and Pathology, Uppsala University and SciLifeLab, Uppsala, Sweden
| | - Michael Preuss
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York, NY, USA
| | - Stefania Carobbio
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Cigdem S Bayrak
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, NY, USA
| | - Nathalie Chami
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York, NY, USA
| | - Zhe Wang
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York, NY, USA
| | - Ursula M Schick
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, NY, USA
| | - Nancy Yang
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, NY, USA
| | - Yuval Itan
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, NY, USA
| | - Antonio Vidal-Puig
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
- University of Cambridge Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Marcel den Hoed
- The Beijer Laboratory and Department of Immunology, Genetics and Pathology, Uppsala University and SciLifeLab, Uppsala, Sweden
| | - Susanne Mandrup
- Functional Genomics & Metabolism Research Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Tuomas O Kilpeläinen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, NY, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, NY, USA.
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York, NY, USA.
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, NY, USA.
| |
Collapse
|
50
|
Nasteska D, Fine NHF, Ashford FB, Cuozzo F, Viloria K, Smith G, Dahir A, Dawson PWJ, Lai YC, Bastidas-Ponce A, Bakhti M, Rutter GA, Fiancette R, Nano R, Piemonti L, Lickert H, Zhou Q, Akerman I, Hodson DJ. PDX1 LOW MAFA LOW β-cells contribute to islet function and insulin release. Nat Commun 2021; 12:674. [PMID: 33514698 PMCID: PMC7846747 DOI: 10.1038/s41467-020-20632-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 12/01/2020] [Indexed: 12/25/2022] Open
Abstract
Transcriptionally mature and immature β-cells co-exist within the adult islet. How such diversity contributes to insulin release remains poorly understood. Here we show that subtle differences in β-cell maturity, defined using PDX1 and MAFA expression, contribute to islet operation. Functional mapping of rodent and human islets containing proportionally more PDX1HIGH and MAFAHIGH β-cells reveals defects in metabolism, ionic fluxes and insulin secretion. At the transcriptomic level, the presence of increased numbers of PDX1HIGH and MAFAHIGH β-cells leads to dysregulation of gene pathways involved in metabolic processes. Using a chemogenetic disruption strategy, differences in PDX1 and MAFA expression are shown to depend on islet Ca2+ signaling patterns. During metabolic stress, islet function can be restored by redressing the balance between PDX1 and MAFA levels across the β-cell population. Thus, preserving heterogeneity in PDX1 and MAFA expression, and more widely in β-cell maturity, might be important for the maintenance of islet function.
Collapse
Affiliation(s)
- Daniela Nasteska
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Nicholas H F Fine
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Fiona B Ashford
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Federica Cuozzo
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Katrina Viloria
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Gabrielle Smith
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Aisha Dahir
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Peter W J Dawson
- School of Sport, Exercise and Rehabilitation Science, University of Birmingham, Edgbaston, UK.,MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Edgbaston, UK
| | - Yu-Chiang Lai
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK.,School of Sport, Exercise and Rehabilitation Science, University of Birmingham, Edgbaston, UK.,MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Edgbaston, UK
| | - Aimée Bastidas-Ponce
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764, Neuherberg, Germany.,German Center for Diabetes Research (DZD), D-85764, Neuherberg, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764, Neuherberg, Germany.,Technical University of Munich, School of Medicine, Munich, Germany
| | - Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764, Neuherberg, Germany.,German Center for Diabetes Research (DZD), D-85764, Neuherberg, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764, Neuherberg, Germany
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology, and Metabolism, Department of Metabolism, Reproduction, and Digestion, Imperial College London, London, UK.,Lee Kong Chian School of Medicine, Nanyang Technological University, Nanyang, Singapore
| | - Remi Fiancette
- Institute of Immunology & Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Rita Nano
- San Raffaele Diabetes Research Institute, IRCCS Ospedale, San Raffaele, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Lorenzo Piemonti
- San Raffaele Diabetes Research Institute, IRCCS Ospedale, San Raffaele, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764, Neuherberg, Germany.,German Center for Diabetes Research (DZD), D-85764, Neuherberg, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764, Neuherberg, Germany.,Technical University of Munich, School of Medicine, Munich, Germany
| | - Qiao Zhou
- Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Ildem Akerman
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK. .,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK. .,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK.
| |
Collapse
|