1
|
Wahab O, Baker LA. Spiers Memorial Lecture: New horizons in nanoelectrochemistry. Faraday Discuss 2025; 257:9-28. [PMID: 39484676 DOI: 10.1039/d4fd00159a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
This introductory lecture prefaces the 2024 New Horizons in Nanoelectrochemistry Faraday Discussion. A broad view of the previous Discussions related to nanoelectrochemistry is taken. Big ideas or concepts discussed at these previous meetings are identified, along with specific examples in each area. Closing comments aimed at a high level and related to where we are today and what is needed to continue to drive nanoelectrochemistry towards the horizon are considered.
Collapse
Affiliation(s)
- Oluwasegun Wahab
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA.
| | - Lane A Baker
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
2
|
Góes VCD, Brandão-Bezerra L, Neves RH, Oliveira AVD, Machado-Silva JR. Impact of acute schistosomiasis mansoni and concurrent type 1 diabetes on pancreatic architecture in mice. Exp Parasitol 2024; 268:108885. [PMID: 39725378 DOI: 10.1016/j.exppara.2024.108885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/13/2024] [Accepted: 12/24/2024] [Indexed: 12/28/2024]
Abstract
It is not well understood how type 1 diabetes (T1D) and concomitant acute schistosomiasis mansoni affect pancreatic architecture. Male Swiss mice were administered streptozotocin (single 100 mg/kg i.p.) and thirty days later infected with 80 Schistosoma mansoni cercariae. Mice were divided into groups (n = 5): A (healthy control), B (infected), C (uninfected diabetic), and D (diabetic + infected) and euthanized at week 9 post-infection. Blood glucose levels, biometry, stereology, and pancreatic histology were evaluated. Groups C and D showed hyperglycemia (>200 mg/dL). Group B had a higher (+79%) pancreatic mass than A. The endocrine pancreas showed fewer islets of Langerhans (-62%; -50%) and a smaller islet area (-36%; -30%) in C and D, respectively, compared to A. Group D had a smaller (-37%) islet area than B. The volume density of the islets was reduced (-33%) in group C compared to A. Within the exocrine pancreas, the volume density of the pancreatic parenchyma was reduced in groups B (-29%) and D (-26%), and increased in C (+15%) compared to A. Group D was reduced (-35%) compared to C. Group D showed generalized pancreatitis, including disrupted tissue with multiple nuclei of destroyed acinar cells and lost connective tissue and acinar cells with a paucity of zymogen granules. Pancreatic stellate cells were found around areas of distorted architecture. Paired adult worms were found within the pancreatic vessels. In conclusion, concomitant T1D and schistosomiasis mansoni promote extensive exocrine and endocrine changes in the pancreas, whereas pancreatic involvement begins in acute schistosomiasis.
Collapse
Affiliation(s)
- Vanessa Coelho de Góes
- Romero Lascasas Porto Laboratory of Helminthology, Department of Microbiology, Immunology and Parasitology, Medical Sciences College (FCM), Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| | - Luciana Brandão-Bezerra
- Romero Lascasas Porto Laboratory of Helminthology, Department of Microbiology, Immunology and Parasitology, Medical Sciences College (FCM), Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| | - Renata Heisler Neves
- Romero Lascasas Porto Laboratory of Helminthology, Department of Microbiology, Immunology and Parasitology, Medical Sciences College (FCM), Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil.
| | - Albanita Viana de Oliveira
- Department of Pathology and Laboratories, Medical Sciences College (FCM), Rio de Janeiro State University, Brazil
| | - José Roberto Machado-Silva
- Romero Lascasas Porto Laboratory of Helminthology, Department of Microbiology, Immunology and Parasitology, Medical Sciences College (FCM), Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Joglekar MV, Kaur S, Pociot F, Hardikar AA. Prediction of progression to type 1 diabetes with dynamic biomarkers and risk scores. Lancet Diabetes Endocrinol 2024; 12:483-492. [PMID: 38797187 DOI: 10.1016/s2213-8587(24)00103-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 05/29/2024]
Abstract
Identifying biomarkers of functional β-cell loss is an important step in the risk stratification of type 1 diabetes. Genetic risk scores (GRS), generated by profiling an array of single nucleotide polymorphisms, are a widely used type 1 diabetes risk-prediction tool. Type 1 diabetes screening studies have relied on a combination of biochemical (autoantibody) and GRS screening methodologies for identifying individuals at high-risk of type 1 diabetes. A limitation of these screening tools is that the presence of autoantibodies marks the initiation of β-cell loss, and is therefore not the best biomarker of progression to early-stage type 1 diabetes. GRS, on the other hand, represents a static biomarker offering a single risk score over an individual's lifetime. In this Personal View, we explore the challenges and opportunities of static and dynamic biomarkers in the prediction of progression to type 1 diabetes. We discuss future directions wherein newer dynamic risk scores could be used to predict type 1 diabetes risk, assess the efficacy of new and emerging drugs to retard, or prevent type 1 diabetes, and possibly replace or further enhance the predictive ability offered by static biomarkers, such as GRS.
Collapse
Affiliation(s)
- Mugdha V Joglekar
- School of Medicine, Western Sydney University, Sydney, NSW, Australia
| | | | - Flemming Pociot
- Steno Diabetes Center Copenhagen, Herlev, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| | | |
Collapse
|
4
|
Atkinson MA, Mirmira RG. The pathogenic "symphony" in type 1 diabetes: A disorder of the immune system, β cells, and exocrine pancreas. Cell Metab 2023; 35:1500-1518. [PMID: 37478842 PMCID: PMC10529265 DOI: 10.1016/j.cmet.2023.06.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/23/2023]
Abstract
Type 1 diabetes (T1D) is widely considered to result from the autoimmune destruction of insulin-producing β cells. This concept has been a central tenet for decades of attempts seeking to decipher the disorder's pathogenesis and prevent/reverse the disease. Recently, this and many other disease-related notions have come under increasing question, particularly given knowledge gained from analyses of human T1D pancreas. Perhaps most crucial are findings suggesting that a collective of cellular constituents-immune, endocrine, and exocrine in origin-mechanistically coalesce to facilitate T1D. This review considers these emerging concepts, from basic science to clinical research, and identifies several key remaining knowledge voids.
Collapse
Affiliation(s)
- Mark A Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA.
| | - Raghavendra G Mirmira
- Departments of Medicine and Pediatrics, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
5
|
Nakaishi L, Sugden SG, Merlo G. Primary Care at the Intersection of Lifestyle Interventions and Unhealthy Substance Use. Am J Lifestyle Med 2023; 17:494-501. [PMID: 37426739 PMCID: PMC10328212 DOI: 10.1177/15598276221111047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023] Open
Abstract
Primary care physicians are well-positioned to integrate lifestyle interventions into the management of patients with unhealthy substance use, who may also have mental and physical chronic health comorbidities. However, the COVID-19 pandemic exacerbated the U.S.'s poor state of health, revealing that its current approach to chronic disease management is neither effective nor sustainable. Today's full spectrum comprehensive care model requires an expanded toolkit. Lifestyle interventions broaden current treatment approaches and may enhance Addiction Medicine care. Primary care providers have the potential to have the greatest impact on unhealthy substance use care because they are experts in chronic disease management and their frontline accessibility minimizes healthcare barriers. Individuals with unhealthy substance use are at an increased risk of chronic physical conditions. Incorporating lifestyle interventions with unhealthy substance use care at every level of medicine, from medical school through practice, normalizes both as part of the standard care of medicine and will drive evidence-based best practices to support patients through prevention, treatment, and reversal of chronic diseases.
Collapse
Affiliation(s)
- Lindsay Nakaishi
- Family Medicine, University of Pittsburgh Medical Center St. Margaret, Pittsburgh, PA, USA (LN); Huntsman Mental Health Institute, Spencer Fox Eccles University of Utah School of Medicine, Salt Lake City, UT, USA (SS); and Psychiatry, NYU Grossman School of Medicine, Rory Meyers College of Nursing, New York University, New York, NY, USA (GM)
| | - Steven G Sugden
- Family Medicine, University of Pittsburgh Medical Center St. Margaret, Pittsburgh, PA, USA (LN); Huntsman Mental Health Institute, Spencer Fox Eccles University of Utah School of Medicine, Salt Lake City, UT, USA (SS); and Psychiatry, NYU Grossman School of Medicine, Rory Meyers College of Nursing, New York University, New York, NY, USA (GM)
| | - Gia Merlo
- Family Medicine, University of Pittsburgh Medical Center St. Margaret, Pittsburgh, PA, USA (LN); Huntsman Mental Health Institute, Spencer Fox Eccles University of Utah School of Medicine, Salt Lake City, UT, USA (SS); and Psychiatry, NYU Grossman School of Medicine, Rory Meyers College of Nursing, New York University, New York, NY, USA (GM)
| |
Collapse
|
6
|
Wang Y, Li MH, Wen XH, Liu MY, Lu YW, Gu Y, Zeng G, Zhao XF, Liu BH, Ji XM, Lu HL. Study of an Ultrasensitive Label-Free Electrochemiluminescent Immunosensor Fabricated with a Composite Electrode for Detecting the Glutamate Decarboxylase Antibody. ACS Sens 2023. [PMID: 37364058 DOI: 10.1021/acssensors.3c00575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Antibody testing for the glutamic acid decarboxylase 65 antibody (GADA) is widely used as a golden standard for autoimmune diabetes diagnosis, while current methods for antibody testing are not sensitive enough for clinical usage. Here, a label-free electrochemiluminescent (ECL) immunosensor for detecting GADA in autoimmune diabetes is fabricated and investigated. In the designed immunosensor, a composite film including the multiwalled carbon nanotubes (MWCNTs), zinc oxide (ZnO), and Au nanoparticles (AuNPs) was prepared through nanofabrication processes to improve the performance of sensor. The MWCNTs, which can provide a larger specific surface area, ZnO as a good photocatalytic material, and AuNPs that can enhance the ECL signal of luminol and immobilize the GAD65 antigen were applied to prefunctionalize indium tin oxide (ITO) glass based on a nanofabrication process. The GADA concentration was detected using the ECL immunosensor after incubating with GAD65 antigen-coated prefunctionalized ITO glass. After a direct immunoreaction, it is found that the degree of decreased ECL intensity has a good linear regression toward the logarithm of the GADA concentration in the range of 0.01 to 50 ng mL-1 with a detection limit down to 10 pg mL-1. Human serum samples positive or negative for GADA all nicely fell in the expected area. The fabricated immunosensor with excellent sensitivity, specificity, and stability has potential capability for clinical usage in GADA detection.
Collapse
Affiliation(s)
- Yang Wang
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Mei-Hang Li
- Department of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Xiao-Hong Wen
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Meng-Yang Liu
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Yan-Wei Lu
- Department of Chemistry, State Key Lab of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Yang Gu
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Guang Zeng
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Xue-Feng Zhao
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Bao-Hong Liu
- Department of Chemistry, State Key Lab of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Xin-Ming Ji
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Hong-Liang Lu
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China
| |
Collapse
|
7
|
Jordan S, Bromley R, Damase-Michel C, Given J, Komninou S, Loane M, Marfell N, Dolk H. Breastfeeding, pregnancy, medicines, neurodevelopment, and population databases: the information desert. Int Breastfeed J 2022; 17:55. [PMID: 35915474 PMCID: PMC9343220 DOI: 10.1186/s13006-022-00494-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The pharmacoepidemiology of the long-term benefits and harms of medicines in pregnancy and breastfeeding has received little attention. The impact of maternal medicines on children is increasingly recognised as a source of avoidable harm. The focus of attention has expanded from congenital anomalies to include less visible, but equally important, outcomes, including cognition, neurodevelopmental disorders, educational performance, and childhood ill-health. Breastfeeding, whether as a source of medicine exposure, a mitigator of adverse effects or as an outcome, has been all but ignored in pharmacoepidemiology and pharmacovigilance: a significant 'blind spot'. WHOLE-POPULATION DATA ON BREASTFEEDING WHY WE NEED THEM: Optimal child development and maternal health necessitate breastfeeding, yet little information exists to guide families regarding the safety of medicine use during lactation. Breastfeeding initiation or success may be altered by medicine use, and breastfeeding may obscure the true relationship between medicine exposure during pregnancy and developmental outcomes. Absent or poorly standardised recording of breastfeeding in most population databases hampers analysis and understanding of the complex relationships between medicine, pregnancy, breastfeeding and infant and maternal health. The purpose of this paper is to present the arguments for breastfeeding to be included alongside medicine use and neurodevelopmental outcomes in whole-population database investigations of the harms and benefits of medicines during pregnancy, the puerperium and postnatal period. We review: 1) the current situation, 2) how these complexities might be accommodated in pharmacoepidemiological models, using antidepressants and antiepileptics as examples; 3) the challenges in obtaining comprehensive data. CONCLUSIONS The scarcity of whole-population data and the complexities of the inter-relationships between breastfeeding, medicines, co-exposures and infant outcomes are significant barriers to full characterisation of the benefits and harms of medicines during pregnancy and breastfeeding. This makes it difficult to answer the questions: 'is it safe to breastfeed whilst taking this medicine', and 'will this medicine interfere with breastfeeding and/ or infants' development'?
Collapse
Affiliation(s)
- Sue Jordan
- Faculty of Medicine, Health and Life Science, Swansea University, Swansea, Wales, UK.
| | - Rebecca Bromley
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Royal Manchester Children's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Christine Damase-Michel
- Faculté de Médecine, Center for Epidemiology and Research in POPulation Health (CERPOP), Université Toulouse III, CHU Toulouse INSERM, Pharmacologie Médicale, Toulouse, France
| | - Joanne Given
- Faculty Life & Health Sciences, University of Ulster, Co Antrim, Newtownabbey, N Ireland, UK
| | - Sophia Komninou
- Faculty of Medicine, Health and Life Science, Swansea University, Swansea, Wales, UK
| | - Maria Loane
- Faculty Life & Health Sciences, University of Ulster, Co Antrim, Newtownabbey, N Ireland, UK
| | - Naomi Marfell
- Faculty of Medicine, Health and Life Science, Swansea University, Swansea, Wales, UK
| | - Helen Dolk
- Faculty Life & Health Sciences, University of Ulster, Co Antrim, Newtownabbey, N Ireland, UK
| |
Collapse
|
8
|
Samassa F, Mallone R. Self-antigens, benign autoimmunity and type 1 diabetes: a beta-cell and T-cell perspective. Curr Opin Endocrinol Diabetes Obes 2022; 29:370-378. [PMID: 35777965 DOI: 10.1097/med.0000000000000735] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW Recent work using immunopeptidomics and deconvolution of the antigenic reactivity of islet-infiltrating CD8+ T cells has expanded our knowledge about the autoimmune target epitopes of type 1 diabetes. The stem-like properties of autoimmune CD8+ T cells have also been described. We here propose a possible link between these findings. RECENT FINDINGS Weak major histocompatibility complex (MHC)-binding epitopes list among the major targets of human islet-infiltrating CD8+ T cells, likely resulting in low peptide-MHC presentation that delivers weak T-cell receptor (TCR) signals, especially in the face of low-affinity autoimmune TCRs. These weak TCR signals may favor the maintenance of the partially differentiated stem-like phenotype recently described for islet-reactive CD8+ T cells in the blood and pancreatic lymph nodes. These weak TCR signals may also be physiological, reflecting the need for self-peptide-MHC contacts to maintain homeostatic T-cell survival and proliferation. These features may underlie the universal state of benign autoimmunity that we recently described, which is characterized by islet-reactive, naïve-like CD8+ T cells circulating in all individuals. SUMMARY These observations provide novel challenges and opportunities to develop circulating T-cell biomarkers for autoimmune staging. Therapeutic halting of islet autoimmunity may require targeting of stem-like T cells to blunt their self-regeneration.
Collapse
Affiliation(s)
| | - Roberto Mallone
- Institut Cochin, Université Paris Cité, CNRS, INSERM
- Assistance Publique Hôpitaux de Paris, Service de Diabétologie et Immunologie Clinique, Cochin Hospital, Paris, France
| |
Collapse
|
9
|
Zhang L, Jonscher KR, Zhang Z, Xiong Y, Mueller RS, Friedman JE, Pan C. Islet autoantibody seroconversion in type-1 diabetes is associated with metagenome-assembled genomes in infant gut microbiomes. Nat Commun 2022; 13:3551. [PMID: 35729161 PMCID: PMC9213500 DOI: 10.1038/s41467-022-31227-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 06/09/2022] [Indexed: 12/13/2022] Open
Abstract
The immune system of some genetically susceptible children can be triggered by certain environmental factors to produce islet autoantibodies (IA) against pancreatic β cells, which greatly increases their risk for Type-1 diabetes. An environmental factor under active investigation is the gut microbiome due to its important role in immune system education. Here, we study gut metagenomes that are de-novo-assembled in 887 at-risk children in the Environmental Determinants of Diabetes in the Young (TEDDY) project. Our results reveal a small set of core protein families, present in >50% of the subjects, which account for 64% of the sequencing reads. Time-series binning generates 21,536 high-quality metagenome-assembled genomes (MAGs) from 883 species, including 176 species that hitherto have no MAG representation in previous comprehensive human microbiome surveys. IA seroconversion is positively associated with 2373 MAGs and negatively with 1549 MAGs. Comparative genomics analysis identifies lipopolysaccharides biosynthesis in Bacteroides MAGs and sulfate reduction in Anaerostipes MAGs as functional signatures of MAGs with positive IA-association. The functional signatures in the MAGs with negative IA-association include carbohydrate degradation in lactic acid bacteria MAGs and nitrate reduction in Escherichia MAGs. Overall, our results show a distinct set of gut microorganisms associated with IA seroconversion and uncovered the functional genomics signatures of these IA-associated microorganisms.
Collapse
Affiliation(s)
- Li Zhang
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Karen R Jonscher
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Zuyuan Zhang
- School of Computer Science, University of Oklahoma, Norman, OK, USA
| | - Yi Xiong
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Ryan S Mueller
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
| | - Jacob E Friedman
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Chongle Pan
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA. .,Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA. .,School of Computer Science, University of Oklahoma, Norman, OK, USA.
| |
Collapse
|
10
|
Association of cumulative early medical factors with autism and autistic symptoms in a population-based twin sample. Transl Psychiatry 2022; 12:73. [PMID: 35194015 PMCID: PMC8863884 DOI: 10.1038/s41398-022-01833-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 12/03/2022] Open
Abstract
Although highly heritable, environment also contributes to the etiology of autism spectrum disorder (ASD), with several specific environmental factors previously suggested. A registry-linked population-based twin cohort of 15,701 pairs (586 individuals with an ASD diagnosis), was established within the Child and Adolescent Twin Study in Sweden. Participants were evaluated for autistic symptoms at age 9 using the Autism-Tics, ADHD and other Comorbidities parental interview. A series of binary cut-offs indicated whether participants scored over various ASD symptom percentiles. Three early medical factors previously associated with ASD, beyond familial confounding (low birth weight, congenital malformations and perinatal hypoxia), were summed up creating an individual cumulative exposure load. A series of unconditional logistic regressions between all individuals and conditional regressions within twin pairs were performed for each outcome and exposure level. Between all individuals increasing cumulative early exposure loads were associated with increasing risk of ASD diagnosis (OR 3.33 (95%CI 1.79-6.20) for three exposures) and autistic symptoms (ranging from OR 2.12 (1.57-2.86) for three exposures at the 55th symptom percentile cut-off to OR 3.39 (2.2-5.24) at the 95th). Within twin pairs, the association between three exposures and an ASD diagnosis remained similar, but not statistically significant (OR 2.39 (0.62-9.24)). Having a higher load of early cumulative exposure was consistently associated with autistic symptoms after adjusting for familial confounding and sex (OR 3.45 (1.66-7.15) to OR 7.36 (1.99-27.18)). This study gives support to the cumulative stress hypothesis of ASD, and the dimensional model regarding environmental exposures, after adjustment for familial confounding.
Collapse
|
11
|
Popp SK, Vecchio F, Brown DJ, Fukuda R, Suzuki Y, Takeda Y, Wakamatsu R, Sarma MA, Garrett J, Giovenzana A, Bosi E, Lafferty AR, Brown KJ, Gardiner EE, Coupland LA, Thomas HE, Chong BH, Parish CR, Battaglia M, Petrelli A, Simeonovic CJ. Circulating platelet-neutrophil aggregates characterize the development of type 1 diabetes in humans and NOD mice. JCI Insight 2022; 7:153993. [PMID: 35076023 PMCID: PMC8855805 DOI: 10.1172/jci.insight.153993] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/01/2021] [Indexed: 12/19/2022] Open
Abstract
Platelet-neutrophil aggregates (PNAs) facilitate neutrophil activation and migration and could underpin the recruitment of neutrophils to the pancreas during type 1 diabetes (T1D) pathogenesis. PNAs, measured by flow cytometry, were significantly elevated in the circulation of autoantibody-positive (Aab+) children and new-onset T1D children, as well as in pre-T1D (at 4 weeks and 10–12 weeks) and T1D-onset NOD mice, compared with relevant controls, and PNAs were characterized by activated P-selectin+ platelets. PNAs were similarly increased in pre-T1D and T1D-onset NOD isolated islets/insulitis, and immunofluorescence staining revealed increased islet-associated neutrophil extracellular trap (NET) products (myeloperoxidase [MPO] and citrullinated histones [CitH3]) in NOD pancreata. In vitro, cell-free histones and NETs induced islet cell damage, which was prevented by the small polyanionic drug methyl cellobiose sulfate (mCBS) that binds to histones and neutralizes their pathological effects. Elevated circulating PNAs could, therefore, act as an innate immune and pathogenic biomarker of T1D autoimmunity. Platelet hyperreactivity within PNAs appears to represent a previously unrecognized hematological abnormality that precedes T1D onset. In summary, PNAs could contribute to the pathogenesis of T1D and potentially function as a pre-T1D diagnostic.
Collapse
Affiliation(s)
- Sarah K. Popp
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University (ANU), Canberra, Australia
| | - Federica Vecchio
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Debra J. Brown
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University (ANU), Canberra, Australia
| | - Riho Fukuda
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University (ANU), Canberra, Australia
- Tokyo Medical and Dental University, Bunkyo City, Tokyo, Japan
| | - Yuri Suzuki
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University (ANU), Canberra, Australia
- Tokyo Medical and Dental University, Bunkyo City, Tokyo, Japan
| | - Yuma Takeda
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University (ANU), Canberra, Australia
- Tokyo Medical and Dental University, Bunkyo City, Tokyo, Japan
| | - Rikako Wakamatsu
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University (ANU), Canberra, Australia
- Tokyo Medical and Dental University, Bunkyo City, Tokyo, Japan
| | - Mahalakshmi A. Sarma
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University (ANU), Canberra, Australia
| | - Jessica Garrett
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University (ANU), Canberra, Australia
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, ANU, Canberra, Australia
| | - Anna Giovenzana
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Emanuele Bosi
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
- San Raffaele Vita Salute University, Milan, Italy
| | - Antony R.A. Lafferty
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University (ANU), Canberra, Australia
- Department of Pediatrics, The Canberra Hospital, Canberra, Australia
| | - Karen J. Brown
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University (ANU), Canberra, Australia
- Department of Pediatrics, The Canberra Hospital, Canberra, Australia
| | - Elizabeth E. Gardiner
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, ANU, Canberra, Australia
| | - Lucy A. Coupland
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, ANU, Canberra, Australia
| | - Helen E. Thomas
- St. Vincent’s Institute of Medical Research, Melbourne, Australia
| | - Beng H. Chong
- Hematology Research Unit, St. George and Sutherland Clinical School, University of New South Wales, Sydney, Australia
| | - Christopher R. Parish
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, ANU, Canberra, Australia
| | - Manuela Battaglia
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Alessandra Petrelli
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Charmaine J. Simeonovic
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University (ANU), Canberra, Australia
| |
Collapse
|
12
|
Tsvetkov N, Zayed A. Searching beyond the streetlight: Neonicotinoid exposure alters the neurogenomic state of worker honey bees. Ecol Evol 2021; 11:18733-18742. [PMID: 35003705 PMCID: PMC8717355 DOI: 10.1002/ece3.8480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 12/13/2022] Open
Abstract
Neonicotinoid insecticides have been implicated in honey bee declines, with many studies showing that sublethal exposure impacts bee behaviors such as foraging, learning, and memory. Despite the large number of ecotoxicological studies carried out to date, most focus on a handful of worker phenotypes leading to a "streetlight effect" where the a priori choice of phenotypes to measure may influence the results and conclusions arising from the studies. This bias can be overcome with the use of toxicological transcriptomics, where changes in gene expression can provide a more objective view of how pesticides alter animal traits. Here, we used RNA sequencing to examine the changes in neurogenomic states of nurse and forager honey bees that were naturally exposed to neonicotinoids in the field and artificially exposed to neonicotinoids in a controlled experiment. We found that neonicotinoid exposure influenced the neurogenomic state of foragers and nurses in different ways; foragers experienced shifts in expression of genes involved in cognition and development, while nurses experienced shifts in expression of genes involved in metabolism. Our study suggests that neonicotinoids influence nurse and forager bees in a different manner. We also found no to minimal overlap in the differentially expressed genes in our study and in previously published studies, which might help reconcile the seemingly contradictory results often reported in the neonicotinoid literature.
Collapse
Affiliation(s)
| | - Amro Zayed
- Department of BiologyYork UniversityTorontoONCanada
| |
Collapse
|
13
|
Nel I, Beaudoin L, Gouda Z, Rousseau C, Soulard P, Rouland M, Bertrand L, Boitard C, Larger E, Lehuen A. MAIT cell alterations in adults with recent-onset and long-term type 1 diabetes. Diabetologia 2021; 64:2306-2321. [PMID: 34350463 PMCID: PMC8336671 DOI: 10.1007/s00125-021-05527-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/27/2021] [Indexed: 11/03/2022]
Abstract
AIMS/HYPOTHESIS Mucosal-associated invariant T (MAIT) cells are innate-like T lymphocytes expressing an αβ T cell antigen receptor that recognises the MHC-related 1 molecule. MAIT cells are altered in children at risk for and with type 1 diabetes, and mouse model studies have shown MAIT cell involvement in type 1 diabetes development. Since several studies support heterogeneity in type 1 diabetes physiopathology according to the age of individuals, we investigated whether MAIT cells were altered in adults with type 1 diabetes. METHODS MAIT cell frequency, phenotype and function were analysed by flow cytometry, using fresh peripheral blood from 21 adults with recent-onset type 1 diabetes (2-14 days after disease onset) and 47 adults with long-term disease (>2 years after diagnosis) compared with 55 healthy blood donors. We also separately analysed 17 women with long-term type 1 diabetes and an associated autoimmune disease, compared with 30 healthy women and 27 women with long-term type 1 diabetes. RESULTS MAIT cells from adults with recent-onset type 1 diabetes, compared with healthy adult donors, harboured a strongly activated phenotype indicated by an elevated CD25+ MAIT cell frequency. In adults with long-term type 1 diabetes, MAIT cells displayed an activated and exhausted phenotype characterised by high CD25 and programmed cell death 1 (PD1) expression and a decreased production of proinflammatory cytokines, IL-2, IFN-γ and TNF-α. Even though MAIT cells from these patients showed upregulated IL-17 and IL-4 production, the polyfunctionality of MAIT cells was decreased (median 4.8 vs 13.14% of MAIT cells, p < 0.001) and the frequency of MAIT cells producing none of the effector molecules analysed increased (median 34.40 vs 19.30% of MAIT cells, p < 0.01). Several MAIT cell variables correlated with HbA1c level and more particularly in patients with recent-onset type 1 diabetes. In women with long-term type 1 diabetes, MAIT cell alterations were more pronounced in those with an associated autoimmune disease than in those without another autoimmune disease. In women with long-term type 1 diabetes and an associated autoimmune disease, there was an increase in CD69 expression and a decrease in the survival B-cell lymphoma 2 (BCL-2) (p < 0.05) and CD127 (IL-7R) (p < 0.01) marker expression compared with women without a concomitant autoimmune disorder. Concerning effector molecules, TNF-α and granzyme B production by MAIT cells was decreased. CONCLUSIONS/INTERPRETATION Alterations in MAIT cell frequency, phenotype and function were more pronounced in adults with long-term type 1 diabetes compared with adults with recent-onset type 1 diabetes. There were several correlations between MAIT cell variables and clinical characteristics. Moreover, the presence of another autoimmune disease in women with long-term type 1 diabetes further exacerbated MAIT cell alterations. Our results suggest that MAIT cell alterations in adults with type 1 diabetes could be associated with two aspects of the disease: impaired glucose homeostasis; and autoimmunity.
Collapse
Affiliation(s)
- Isabelle Nel
- Institut Cochin, Inserm, CNRS, Laboratory of Excellence Inflamex, Université de Paris, Paris, France
| | - Lucie Beaudoin
- Institut Cochin, Inserm, CNRS, Laboratory of Excellence Inflamex, Université de Paris, Paris, France
| | - Zouriatou Gouda
- Institut Cochin, Inserm, CNRS, Laboratory of Excellence Inflamex, Université de Paris, Paris, France
| | - Camille Rousseau
- Institut Cochin, Inserm, CNRS, Laboratory of Excellence Inflamex, Université de Paris, Paris, France
| | - Pauline Soulard
- Institut Cochin, Inserm, CNRS, Laboratory of Excellence Inflamex, Université de Paris, Paris, France
| | - Matthieu Rouland
- Institut Cochin, Inserm, CNRS, Laboratory of Excellence Inflamex, Université de Paris, Paris, France
| | - Léo Bertrand
- Institut Cochin, Inserm, CNRS, Laboratory of Excellence Inflamex, Université de Paris, Paris, France
| | - Christian Boitard
- Institut Cochin, Inserm, CNRS, Laboratory of Excellence Inflamex, Université de Paris, Paris, France
- Diabetology Department, Cochin Hospital, AP-HP Centre - Université de Paris, Paris, France
| | - Etienne Larger
- Institut Cochin, Inserm, CNRS, Laboratory of Excellence Inflamex, Université de Paris, Paris, France
- Diabetology Department, Cochin Hospital, AP-HP Centre - Université de Paris, Paris, France
| | - Agnès Lehuen
- Institut Cochin, Inserm, CNRS, Laboratory of Excellence Inflamex, Université de Paris, Paris, France.
| |
Collapse
|
14
|
Fukui T, Fukase A, Sasamori H, Ohara M, Mori Y, Terasaki M, Hiromura M, Kushima H, Kobayashi T, Yamagishi SI. Association between insulin-like growth factor 1 and pancreatic volume in type 1 and type 2 diabetes: cross-sectional study of a Japanese population. Growth Horm IGF Res 2021; 59:101396. [PMID: 34029841 DOI: 10.1016/j.ghir.2021.101396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/06/2021] [Accepted: 05/03/2021] [Indexed: 11/17/2022]
Abstract
AIMS/HYPOTHESIS Although IGF-1 is known to promote organ growth, including exocrine pancreas, the association between plasma IGF-1 levels and pancreatic size remains unclear in diabetic patients. METHODS This cross-sectional study was designed to investigate the correlations among pancreatic volume (PV) based on computed tomography, IGF-1 levels, age- and sex-adjusted IGF-1 levels (IGF-1 Z-score), and C-peptide levels in patients with type 1 diabetes (T1D) (n = 51) and type 2 diabetes (T2D) (n = 104) in a Japanese population. RESULTS PV was significantly correlated with body weight (BW) in both types of diabetes. PV adjusted for BW (PV/BW), IGF-1 Z-score and C-peptide levels were significantly lower in patients with T1D than T2D. There was a significant positive correlation between C-peptide levels and PV/BW in both subtypes of diabetes. IGF-1 Z-scores were significantly correlated with PV/BW in patients with T1D (r = 0.37, P = 0.007), but not T2D. Although IGF-1 Z-scores were not correlated with age, age of disease onset, disease duration, HbA1c, or C-peptide levels in both types of diabetes, a multivariable liner regression analysis revealed that IGF-1 Z-score and C-peptide levels were independent correlates of PV/BW in T1D patients, while C-peptide levels were a sole correlate in T2D. CONCLUSIONS/INTERPRETATION Decreased IGF-1 levels might be one causal factor for smaller pancreas in patients with T1D.
Collapse
Affiliation(s)
- Tomoyasu Fukui
- Department of Medicine, Division of Diabetes, Metabolism and Endocrinology, Showa University School of Medicine, Tokyo, Japan.
| | - Ayako Fukase
- Department of Medicine, Division of Diabetes, Metabolism and Endocrinology, Showa University School of Medicine, Tokyo, Japan
| | - Hiroto Sasamori
- Department of Medicine, Division of Diabetes, Metabolism and Endocrinology, Showa University School of Medicine, Tokyo, Japan; Toshiba Corporation, Tokyo, Japan
| | - Makoto Ohara
- Department of Medicine, Division of Diabetes, Metabolism and Endocrinology, Showa University School of Medicine, Tokyo, Japan
| | - Yusaku Mori
- Department of Medicine, Division of Diabetes, Metabolism and Endocrinology, Showa University School of Medicine, Tokyo, Japan
| | - Michishige Terasaki
- Department of Medicine, Division of Diabetes, Metabolism and Endocrinology, Showa University School of Medicine, Tokyo, Japan
| | - Munenori Hiromura
- Department of Medicine, Division of Diabetes, Metabolism and Endocrinology, Showa University School of Medicine, Tokyo, Japan
| | - Hideki Kushima
- Department of Medicine, Division of Diabetes, Metabolism and Endocrinology, Showa University School of Medicine, Tokyo, Japan
| | - Tetsuro Kobayashi
- Division of Immunology and Molecular Medicine, Okinaka Memorial Institute for Medical Research, Tokyo, Japan
| | - Sho-Ichi Yamagishi
- Department of Medicine, Division of Diabetes, Metabolism and Endocrinology, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
15
|
Phillips BE, Garciafigueroa Y, Engman C, Liu W, Wang Y, Lakomy RJ, Meng WS, Trucco M, Giannoukakis N. Arrest in the Progression of Type 1 Diabetes at the Mid-Stage of Insulitic Autoimmunity Using an Autoantigen-Decorated All- trans Retinoic Acid and Transforming Growth Factor Beta-1 Single Microparticle Formulation. Front Immunol 2021; 12:586220. [PMID: 33763059 PMCID: PMC7982719 DOI: 10.3389/fimmu.2021.586220] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/15/2021] [Indexed: 12/17/2022] Open
Abstract
Type 1 diabetes (T1D) is a disorder of impaired glucoregulation due to lymphocyte-driven pancreatic autoimmunity. Mobilizing dendritic cells (DC) in vivo to acquire tolerogenic activity is an attractive therapeutic approach as it results in multiple and overlapping immunosuppressive mechanisms. Delivery of agents that can achieve this, in the form of micro/nanoparticles, has successfully prevented a number of autoimmune conditions in vivo. Most of these formulations, however, do not establish multiple layers of immunoregulation. all-trans retinoic acid (RA) together with transforming growth factor beta 1 (TGFβ1), in contrast, has been shown to promote such mechanisms. When delivered in separate nanoparticle vehicles, they successfully prevent the progression of early-onset T1D autoimmunity in vivo. Herein, we show that the approach can be simplified into a single microparticle formulation of RA + TGFβ1 with surface decoration with the T1D-relevant insulin autoantigen. We show that the onset of hyperglycemia is prevented when administered into non-obese diabetic mice that are at the mid-stage of active islet-selective autoimmunity. Unexpectedly, the preventive effects do not seem to be mediated by increased numbers of regulatory T-lymphocytes inside the pancreatic lymph nodes, at least following acute administration of microparticles. Instead, we observed a mild increase in the frequency of regulatory B-lymphocytes inside the mesenteric lymph nodes. These data suggest additional and potentially-novel mechanisms that RA and TGFβ1 could be modulating to prevent progression of mid-stage autoimmunity to overt T1D. Our data further strengthen the rationale to develop RA+TGFβ1-based micro/nanoparticle “vaccines” as possible treatments of pre-symptomatic and new-onset T1D autoimmunity.
Collapse
Affiliation(s)
- Brett E Phillips
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, United States
| | - Yesica Garciafigueroa
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, United States
| | - Carl Engman
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, United States
| | - Wen Liu
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, United States.,Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Yiwei Wang
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Robert J Lakomy
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, United States
| | - Wilson S Meng
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Massimo Trucco
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, United States
| | - Nick Giannoukakis
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, United States
| |
Collapse
|
16
|
Whaley P, Edwards SW, Kraft A, Nyhan K, Shapiro A, Watford S, Wattam S, Wolffe T, Angrish M. Knowledge Organization Systems for Systematic Chemical Assessments. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:125001. [PMID: 33356525 PMCID: PMC7759237 DOI: 10.1289/ehp6994] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Although the implementation of systematic review and evidence mapping methods stands to improve the transparency and accuracy of chemical assessments, they also accentuate the challenges that assessors face in ensuring they have located and included all the evidence that is relevant to evaluating the potential health effects an exposure might be causing. This challenge of information retrieval can be characterized in terms of "semantic" and "conceptual" factors that render chemical assessments vulnerable to the streetlight effect. OBJECTIVES This commentary presents how controlled vocabularies, thesauruses, and ontologies contribute to overcoming the streetlight effect in information retrieval, making up the key components of Knowledge Organization Systems (KOSs) that enable more systematic access to assessment-relevant information than is currently achievable. The concept of Adverse Outcome Pathways is used to illustrate what a general KOS for use in chemical assessment could look like. DISCUSSION Ontologies are an underexploited element of effective knowledge organization in the environmental health sciences. Agreeing on and implementing ontologies in chemical assessment is a complex but tractable process with four fundamental steps. Successful implementation of ontologies would not only make currently fragmented information about health risks from chemical exposures vastly more accessible, it could ultimately enable computational methods for chemical assessment that can take advantage of the full richness of data described in natural language in primary studies. https://doi.org/10.1289/EHP6994.
Collapse
Affiliation(s)
- Paul Whaley
- Evidence Based Toxicology Collaboration, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Stephen W. Edwards
- GenOmics, Bioinformatics, and Translational Research Center, RTI International, Research Triangle Park, North Carolina, USA
| | - Andrew Kraft
- Chemical Pollutant Assessment Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency (U.S. EPA), Washington, DC, USA
| | - Kate Nyhan
- Environmental Health Sciences, Yale School of Public Health and Harvey Cushing/John Hay Whitney Medical Library, Yale University, New Haven, Connecticut, USA
| | - Andrew Shapiro
- Chemical Pollutant Assessment Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency (U.S. EPA), Washington, DC, USA
| | - Sean Watford
- National Center for Computational Toxicology, U.S. EPA, Durham, North Carolina, USA
| | - Steve Wattam
- WAP Academy Consultancy Ltd, Thirsk, Yorkshire, UK
| | - Taylor Wolffe
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Michelle Angrish
- Chemical Pollutant Assessment Division, Center for Public Health and Environmental Assessment, U.S. EPA, Durham, North Carolina, USA
| |
Collapse
|
17
|
Hind D, Drabble SJ, Arden MA, Mandefield L, Waterhouse S, Maguire C, Cantrill H, Robinson L, Beever D, Scott A, Keating S, Hutchings M, Bradley J, Nightingale J, Allenby MI, Dewar J, Whelan P, Ainsworth J, Walters SJ, Wildman MJ, O'Cathain A. Feasibility study for supporting medication adherence for adults with cystic fibrosis: mixed-methods process evaluation. BMJ Open 2020; 10:e039089. [PMID: 33109661 PMCID: PMC7592300 DOI: 10.1136/bmjopen-2020-039089] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/27/2020] [Accepted: 09/29/2020] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES To undertake a process evaluation of an adherence support intervention for people with cystic fibrosis (PWCF), to assess its feasibility and acceptability. SETTING Two UK cystic fibrosis (CF) units. PARTICIPANTS Fourteen adult PWCF; three professionals delivering adherence support ('interventionists'); five multi-disciplinary CF team members. INTERVENTIONS Nebuliser with data recording and transfer capability, linked to a software platform, and strategies to support adherence to nebulised treatments facilitated by interventionists over 5 months (± 1 month). PRIMARY AND SECONDARY MEASURES Feasibility and acceptability of the intervention, assessed through semistructured interviews, questionnaires, fidelity assessments and click analytics. RESULTS Interventionists were complimentary about the intervention and training. Key barriers to intervention feasibility and acceptability were identified. Interventionists had difficulty finding clinic space and time in normal working hours to conduct review visits. As a result, fewer than expected intervention visits were conducted and interviews indicated this may explain low adherence in some intervention arm participants. Adherence levels appeared to be >100% for some patients, due to inaccurate prescription data, particularly in patients with complex treatment regimens. Flatlines in adherence data at the start of the study were linked to device connectivity problems. Content and delivery quality fidelity were 100% and 60%-92%, respectively, indicating that interventionists needed to focus more on intervention 'active ingredients' during sessions. CONCLUSIONS The process evaluation led to 14 key changes to intervention procedures to overcome barriers to intervention success. With the identified changes, it is feasible and acceptable to support medication adherence with this intervention. TRIAL REGISTRATION NUMBER ISRCTN13076797; Results.
Collapse
Affiliation(s)
- Daniel Hind
- Clincal Trials Research Unit, University of Sheffield, Sheffield, UK
| | - Sarah J Drabble
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Madelynne A Arden
- Centre for Behavioural Science and Applied Psychology, Sheffield Hallam University, Sheffield, UK
| | | | - Simon Waterhouse
- Clincal Trials Research Unit, University of Sheffield, Sheffield, UK
| | - Chin Maguire
- Clincal Trials Research Unit, University of Sheffield, Sheffield, UK
| | - Hannah Cantrill
- Clincal Trials Research Unit, University of Sheffield, Sheffield, UK
| | - Louisa Robinson
- Clincal Trials Research Unit, University of Sheffield, Sheffield, UK
| | - Daniel Beever
- Clincal Trials Research Unit, University of Sheffield, Sheffield, UK
| | - Alex Scott
- Clincal Trials Research Unit, University of Sheffield, Sheffield, UK
| | - Sam Keating
- Clincal Trials Research Unit, University of Sheffield, Sheffield, UK
| | - Marlene Hutchings
- Sheffield Adult Cystic Fibrosis Unit, Sheffield Teaching Hospitals NHS Foundation Trust, Northern General Hospital, Sheffield, Sheffield, UK
| | - Judy Bradley
- Wellcome-Wolfson Institute For Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Julia Nightingale
- Wessex Adult Cystic Fibrosis Service, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Mark I Allenby
- Wessex Adult Cystic Fibrosis Service, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Jane Dewar
- Wolfson Cystic Fibrosis Centre, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Pauline Whelan
- Health eResearch Centre - Division of Imaging, Informatics and Data Sciences, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - John Ainsworth
- Health eResearch Centre - Division of Imaging, Informatics and Data Sciences, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Stephen J Walters
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Martin J Wildman
- School of Health and Related Research, University of Sheffield, Sheffield, UK
- Sheffield Adult Cystic Fibrosis Unit, Sheffield Teaching Hospitals NHS Foundation Trust, Northern General Hospital, Sheffield, Sheffield, UK
| | - Alicia O'Cathain
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| |
Collapse
|
18
|
Jaffe R, Karkabi B, Goldenberg I, Shlomo N, Vorobeichik D, Zafrir B, Shiran A, Adawi S, Iakobishvili Z, Beigel R, Rubinshtein R, Flugelman MY. Avoidance of Coronary Angiography in High-Risk Patients With Acute Coronary Syndromes: The ACSIS Registry Findings. CARDIOVASCULAR REVASCULARIZATION MEDICINE 2020; 21:1230-1236. [DOI: 10.1016/j.carrev.2019.12.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 12/01/2019] [Accepted: 12/16/2019] [Indexed: 12/20/2022]
|
19
|
Enteroviruses and T1D: Is It the Virus, the Genes or Both which Cause T1D. Microorganisms 2020; 8:microorganisms8071017. [PMID: 32650582 PMCID: PMC7409303 DOI: 10.3390/microorganisms8071017] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023] Open
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disorder that results from the selective destruction of insulin-producing β-cells in the pancreas. Up to now, the mechanisms triggering the initiation and progression of the disease are, in their complexity, not fully understood and imply the disruption of several tolerance networks. Viral infection is one of the environmental factors triggering diabetes, which is initially based on the observation that the disease’s incidence follows a periodic pattern within the population. Moreover, the strong correlation of genetic susceptibility is a prerequisite for enteroviral infection associated islet autoimmunity. Epidemiological data and clinical findings indicate enteroviral infections, mainly of the coxsackie B virus family, as potential pathogenic mechanisms to trigger the autoimmune reaction towards β-cells, resulting in the boost of inflammation following β-cell destruction and the onset of T1D. This review discusses previously identified virus-associated genetics and pathways of β-cell destruction. Is it the virus itself which leads to β-cell destruction and T1D progression? Or is it genetic, so that the virus may activate auto-immunity and β-cell destruction only in genetically predisposed individuals?
Collapse
|
20
|
Leete P, Oram RA, McDonald TJ, Shields BM, Ziller C, Hattersley AT, Richardson SJ, Morgan NG. Studies of insulin and proinsulin in pancreas and serum support the existence of aetiopathological endotypes of type 1 diabetes associated with age at diagnosis. Diabetologia 2020; 63:1258-1267. [PMID: 32172310 PMCID: PMC7228905 DOI: 10.1007/s00125-020-05115-6] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/03/2020] [Indexed: 12/31/2022]
Abstract
AIMS/HYPOTHESIS It is unclear whether type 1 diabetes is a single disease or if endotypes exist. Our aim was to use a unique collection of pancreas samples recovered soon after disease onset to resolve this issue. METHODS Immunohistological analysis was used to determine the distribution of proinsulin and insulin in the islets of pancreas samples recovered soon after type 1 diabetes onset (<2 years) from young people diagnosed at age <7 years, 7-12 years and ≥13 years. The patterns were correlated with the insulitis profiles in the inflamed islets of the same groups of individuals. C-peptide levels and the proinsulin:C-peptide ratio were measured in the circulation of a cohort of living patients with longer duration of disease but who were diagnosed in these same age ranges. RESULTS Distinct patterns of proinsulin localisation were seen in the islets of people with recent-onset type 1 diabetes, which differed markedly between children diagnosed at <7 years and those diagnosed at ≥13 years. Proinsulin processing was aberrant in most residual insulin-containing islets of the younger group but this was much less evident in the group ≥13 years (p < 0.0001). Among all individuals (including children in the middle [7-12 years] range) aberrant proinsulin processing correlated with the assigned immune cell profiles defined by analysis of the lymphocyte composition of islet infiltrates. C-peptide levels were much lower in individuals diagnosed at <7 years than in those diagnosed at ≥13 years (median <3 pmol/l, IQR <3 to <3 vs 34.5 pmol/l, IQR <3-151; p < 0.0001), while the median proinsulin:C-peptide ratio was increased in those with age of onset <7 years compared with people diagnosed aged ≥13 years (0.18, IQR 0.10-0.31) vs 0.01, IQR 0.009-0.10 pmol/l; p < 0.0001). CONCLUSIONS/INTERPRETATION Among those with type 1 diabetes diagnosed under the age of 30 years, there are histologically distinct endotypes that correlate with age at diagnosis. Recognition of such differences should inform the design of future immunotherapeutic interventions designed to arrest disease progression.
Collapse
Affiliation(s)
- Pia Leete
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, RILD Building, Barrack Road, Exeter, EX2 5DW, UK.
| | - Richard A Oram
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, RILD Building, Barrack Road, Exeter, EX2 5DW, UK
| | - Timothy J McDonald
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, RILD Building, Barrack Road, Exeter, EX2 5DW, UK
| | - Beverley M Shields
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, RILD Building, Barrack Road, Exeter, EX2 5DW, UK
| | - Clemens Ziller
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, RILD Building, Barrack Road, Exeter, EX2 5DW, UK
| | - Andrew T Hattersley
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, RILD Building, Barrack Road, Exeter, EX2 5DW, UK
| | - Sarah J Richardson
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, RILD Building, Barrack Road, Exeter, EX2 5DW, UK
| | - Noel G Morgan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, RILD Building, Barrack Road, Exeter, EX2 5DW, UK.
| |
Collapse
|
21
|
Shapiro MR, Wasserfall CH, McGrail SM, Posgai AL, Bacher R, Muir A, Haller MJ, Schatz DA, Wesley JD, von Herrath M, Hagopian WA, Speake C, Atkinson MA, Brusko TM. Insulin-Like Growth Factor Dysregulation Both Preceding and Following Type 1 Diabetes Diagnosis. Diabetes 2020; 69:413-423. [PMID: 31826866 PMCID: PMC7034187 DOI: 10.2337/db19-0942] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/04/2019] [Indexed: 12/19/2022]
Abstract
Insulin-like growth factors (IGFs), specifically IGF1 and IGF2, promote glucose metabolism, with their availability regulated by IGF-binding proteins (IGFBPs). We hypothesized that IGF1 and IGF2 levels, or their bioavailability, are reduced during type 1 diabetes development. Total serum IGF1, IGF2, and IGFBP1-7 levels were measured in an age-matched, cross-sectional cohort at varying stages of progression to type 1 diabetes. IGF1 and IGF2 levels were significantly lower in autoantibody (AAb)+ compared with AAb- relatives of subjects with type 1 diabetes. Most high-affinity IGFBPs were unchanged in individuals with pre-type 1 diabetes, suggesting that total IGF levels may reflect bioactivity. We also measured serum IGFs from a cohort of fasted subjects with type 1 diabetes. IGF1 levels significantly decreased with disease duration, in parallel with declining β-cell function. Additionally, plasma IGF levels were assessed in an AAb+ cohort monthly for a year. IGF1 and IGF2 showed longitudinal stability in single AAb+ subjects, but IGF1 levels decreased over time in subjects with multiple AAb and those who progressed to type 1 diabetes, particularly postdiagnosis. In sum, IGFs are dysregulated both before and after the clinical diagnosis of type 1 diabetes and may serve as novel biomarkers to improve disease prediction.
Collapse
Affiliation(s)
- Melanie R Shapiro
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL
| | - Clive H Wasserfall
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL
| | - Sean M McGrail
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL
| | - Amanda L Posgai
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL
| | - Rhonda Bacher
- Department of Biostatistics, University of Florida, Gainesville, FL
| | - Andrew Muir
- Department of Pediatrics, Emory University, Atlanta, GA
| | - Michael J Haller
- Department of Pediatrics, University of Florida Diabetes Institute, Gainesville, FL
| | - Desmond A Schatz
- Department of Pediatrics, University of Florida Diabetes Institute, Gainesville, FL
| | | | | | | | - Cate Speake
- Benaroya Research Institute at Virginia Mason, Seattle, WA
| | - Mark A Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL
- Department of Pediatrics, University of Florida Diabetes Institute, Gainesville, FL
| | - Todd M Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL
| |
Collapse
|
22
|
Haynes WA, Haddon DJ, Diep VK, Khatri A, Bongen E, Yiu G, Balboni I, Bolen CR, Mao R, Utz PJ, Khatri P. Integrated, multicohort analysis reveals unified signature of systemic lupus erythematosus. JCI Insight 2020; 5:122312. [PMID: 31971918 DOI: 10.1172/jci.insight.122312] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 01/17/2020] [Indexed: 12/27/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease that follows an unpredictable disease course and affects multiple organs and tissues. We performed an integrated, multicohort analysis of 7,471 transcriptomic profiles from 40 independent studies to identify robust gene expression changes associated with SLE. We identified a 93-gene signature (SLE MetaSignature) that is differentially expressed in the blood of patients with SLE compared with healthy volunteers; distinguishes SLE from other autoimmune, inflammatory, and infectious diseases; and persists across diverse tissues and cell types. The SLE MetaSignature correlated significantly with disease activity and other clinical measures of inflammation. We prospectively validated the SLE MetaSignature in an independent cohort of pediatric patients with SLE using a microfluidic quantitative PCR (qPCR) array. We found that 14 of the 93 genes in the SLE MetaSignature were independent of IFN-induced and neutrophil-related transcriptional profiles that have previously been associated with SLE. Pathway analysis revealed dysregulation associated with nucleic acid biosynthesis and immunometabolism in SLE. We further refined a neutropoiesis signature and identified underappreciated transcripts related to immune cells and oxidative stress. In our multicohort, transcriptomic analysis has uncovered underappreciated genes and pathways associated with SLE pathogenesis, with the potential to advance clinical diagnosis, biomarker development, and targeted therapeutics for SLE.
Collapse
Affiliation(s)
- Winston A Haynes
- Institute for Immunity, Transplantation and Infection.,Division of Biomedical Informatics Research
| | - D James Haddon
- Institute for Immunity, Transplantation and Infection.,Division of Immunology and Rheumatology, Department of Medicine, and
| | - Vivian K Diep
- Institute for Immunity, Transplantation and Infection.,Division of Immunology and Rheumatology, Department of Medicine, and
| | - Avani Khatri
- Institute for Immunity, Transplantation and Infection.,Division of Immunology and Rheumatology, Department of Medicine, and
| | - Erika Bongen
- Institute for Immunity, Transplantation and Infection.,Division of Immunology and Rheumatology, Department of Medicine, and
| | - Gloria Yiu
- Institute for Immunity, Transplantation and Infection.,Division of Immunology and Rheumatology, Department of Medicine, and
| | - Imelda Balboni
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | | | - Rong Mao
- Institute for Immunity, Transplantation and Infection.,Division of Immunology and Rheumatology, Department of Medicine, and
| | - Paul J Utz
- Institute for Immunity, Transplantation and Infection.,Division of Immunology and Rheumatology, Department of Medicine, and
| | - Purvesh Khatri
- Institute for Immunity, Transplantation and Infection.,Division of Biomedical Informatics Research
| |
Collapse
|
23
|
Stabler CL, Li Y, Stewart JM, Keselowsky BG. Engineering immunomodulatory biomaterials for type 1 diabetes. NATURE REVIEWS. MATERIALS 2019; 4:429-450. [PMID: 32617176 PMCID: PMC7332200 DOI: 10.1038/s41578-019-0112-5] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
A cure for type 1 diabetes (T1D) would help millions of people worldwide, but remains elusive thus far. Tolerogenic vaccines and beta cell replacement therapy are complementary therapies that seek to address aberrant T1D autoimmune attack and subsequent beta cell loss. However, both approaches require some form of systematic immunosuppression, imparting risks to the patient. Biomaterials-based tools enable localized and targeted immunomodulation, and biomaterial properties can be designed and combined with immunomodulatory agents to locally instruct specific immune responses. In this Review, we discuss immunomodulatory biomaterial platforms for the development of T1D tolerogenic vaccines and beta cell replacement devices. We investigate nano- and microparticles for the delivery of tolerogenic agents and autoantigens, and as artificial antigen presenting cells, and highlight how bulk biomaterials can be used to provide immune tolerance. We examine biomaterials for drug delivery and as immunoisolation devices for cell therapy and islet transplantation, and explore synergies with other fields for the development of new T1D treatment strategies.
Collapse
Affiliation(s)
- CL Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
- Interdisciplinary Graduate Program in Biomedical Sciences, University of Florida, Gainesville, FL, USA
- University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Y Li
- Interdisciplinary Graduate Program in Biomedical Sciences, University of Florida, Gainesville, FL, USA
| | - JM Stewart
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - BG Keselowsky
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
- Interdisciplinary Graduate Program in Biomedical Sciences, University of Florida, Gainesville, FL, USA
- University of Florida Diabetes Institute, Gainesville, FL, USA
| |
Collapse
|
24
|
Alexandre-Heymann L, Mallone R, Boitard C, Scharfmann R, Larger E. Structure and function of the exocrine pancreas in patients with type 1 diabetes. Rev Endocr Metab Disord 2019; 20:129-149. [PMID: 31077020 DOI: 10.1007/s11154-019-09501-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the last 10 years, several studies have shown that the pancreas of patients with type 1 diabetes (T1D), and even of subjects at risk for T1D, was smaller than the pancreas from healthy subjects. This arose the question of the relationships between the endocrine and exocrine parts of the pancreas in T1D pathogenesis. Our review underlines that histological anomalies of the exocrine pancreas are common in patients with T1D: intralobular and interacinar fibrosis, acinar atrophy, fatty infiltration, leucocytic infiltration, and pancreatic arteriosclerosis are all frequent observations. Moreover, 25% to 75% of adult patients with T1D present with pancreatic exocrine dysfunction. Our review summarizes the putative causal factors for these structural and functional anomalies, including: 1/ alterations of insulin, glucagon, somatostatin and pancreatic polypeptide secretion, 2/ global pancreatic inflammation 3/ autoimmunity targeting the exocrine pancreas, 4/ vascular and neural abnormalities, and 5/ the putative involvement of pancreatic stellate cells. These observations have also given rise to new theories on T1D: the primary event of T1D pathogenesis could be non-specific, e.g bacterial or viral or chemical, resulting in global pancreatic inflammation, which in turn could cause beta-cell predominant destruction by the immune system. Finally, this review emphasizes that it is advisable to evaluate pancreatic exocrine function in patients with T1D presenting with gastro-intestinal complaints, as a clinical trial has shown that pancreatic enzymes replacement therapy can reduce the frequency of hypoglycemia and thus might improve quality of life in subjects with T1D and exocrine failure.
Collapse
Affiliation(s)
- Laure Alexandre-Heymann
- Service de Diabétologie, Hôpital Cochin, 123 boulevard de Port-Royal, 75014, Paris, France
- Département Hospitalo Universitaire, INSERM U 1016, Université Paris Descartes, Paris, France
| | - Roberto Mallone
- Service de Diabétologie, Hôpital Cochin, 123 boulevard de Port-Royal, 75014, Paris, France
- Département Hospitalo Universitaire, INSERM U 1016, Université Paris Descartes, Paris, France
| | - Christian Boitard
- Service de Diabétologie, Hôpital Cochin, 123 boulevard de Port-Royal, 75014, Paris, France
- Département Hospitalo Universitaire, INSERM U 1016, Université Paris Descartes, Paris, France
| | - Raphaël Scharfmann
- Service de Diabétologie, Hôpital Cochin, 123 boulevard de Port-Royal, 75014, Paris, France
- Département Hospitalo Universitaire, INSERM U 1016, Université Paris Descartes, Paris, France
| | - Etienne Larger
- Service de Diabétologie, Hôpital Cochin, 123 boulevard de Port-Royal, 75014, Paris, France.
- Département Hospitalo Universitaire, INSERM U 1016, Université Paris Descartes, Paris, France.
| |
Collapse
|
25
|
Probiotics and Prebiotics for the Amelioration of Type 1 Diabetes: Present and Future Perspectives. Microorganisms 2019; 7:microorganisms7030067. [PMID: 30832381 PMCID: PMC6463158 DOI: 10.3390/microorganisms7030067] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/19/2019] [Accepted: 02/25/2019] [Indexed: 12/18/2022] Open
Abstract
Type 1-diabetes (T1D) is an autoimmune disease characterized by immune-mediated destruction of pancreatic beta (β)-cells. Genetic and environmental interactions play an important role in immune system malfunction by priming an aggressive adaptive immune response against β-cells. The microbes inhabiting the human intestine closely interact with the enteric mucosal immune system. Gut microbiota colonization and immune system maturation occur in parallel during early years of life; hence, perturbations in the gut microbiota can impair the functions of immune cells and vice-versa. Abnormal gut microbiota perturbations (dysbiosis) are often detected in T1D subjects, particularly those diagnosed as multiple-autoantibody-positive as a result of an aggressive and adverse immunoresponse. The pathogenesis of T1D involves activation of self-reactive T-cells, resulting in the destruction of β-cells by CD8⁺ T-lymphocytes. It is also becoming clear that gut microbes interact closely with T-cells. The amelioration of gut dysbiosis using specific probiotics and prebiotics has been found to be associated with decline in the autoimmune response (with diminished inflammation) and gut integrity (through increased expression of tight-junction proteins in the intestinal epithelium). This review discusses the potential interactions between gut microbiota and immune mechanisms that are involved in the progression of T1D and contemplates the potential effects and prospects of gut microbiota modulators, including probiotic and prebiotic interventions, in the amelioration of T1D pathology, in both human and animal models.
Collapse
|
26
|
Evans WJ, Hellerstein M, Orwoll E, Cummings S, Cawthon PM. D 3 -Creatine dilution and the importance of accuracy in the assessment of skeletal muscle mass. J Cachexia Sarcopenia Muscle 2019; 10:14-21. [PMID: 30900400 PMCID: PMC6438329 DOI: 10.1002/jcsm.12390] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 12/31/2022] Open
Abstract
Sarcopenia has been described as the age-associated decrease in skeletal muscle mass. However, virtually every study of sarcopenia has measured lean body mass (LBM) or fat free mass (FFM) rather than muscle mass, specifically. In a number of published sarcopenia studies, LBM or FFM is referred to as muscle mass, leading to an incorrect assumption that measuring LBM or FFM is an accurate measure of muscle mass. As a result, the data on the effects of changes in LBM or FFM in older populations on outcomes such as functional capacity, disability, and risk of injurious falls have been inconsistent resulting in the conclusion that muscle mass is only weakly related to these outcomes. We review and describe the assumptions for the most commonly used measurements of body composition. Dual-energy X-ray absorptiometry (DXA) has become an increasingly common tool for the assessment of LBM or FFM and appendicular lean mass as a surrogate, but inaccurate, measurement of muscle mass. Other previously used methods (total body water, bioelectric impedance, and imaging) also have significant limitations. D3 -Creatine (D3 -Cr) dilution provides a direct and accurate measurement of creatine pool size and skeletal muscle mass. In a recent study in older men (MrOS cohort), D3 -Cr muscle mass was associated with functional capacity and risk of injurious falls and disability, while assessments of LBM or appendicular lean mass by DXA were only weakly or not associated with these outcomes. Inaccurate measurements of muscle mass by DXA and other methods have led to inconsistent results and potentially erroneous conclusions about the importance of skeletal muscle mass in health and disease. The assessment of skeletal muscle mass using the D3 -Cr dilution method in prospective cohort studies may reveal sarcopenia as a powerful risk factor for late life disability and chronic disease.
Collapse
Affiliation(s)
- William J Evans
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, USA
| | - Marc Hellerstein
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, USA
| | - Eric Orwoll
- Department of Medicine, Oregon Health and Science University, Portland, USA
| | - Steve Cummings
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Peggy M Cawthon
- California Pacific Medical Center, Research Institute, University of San Francisco, USA
| |
Collapse
|
27
|
Leslie KA, Russell MA, Taniguchi K, Richardson SJ, Morgan NG. The transcription factor STAT6 plays a critical role in promoting beta cell viability and is depleted in islets of individuals with type 1 diabetes. Diabetologia 2019; 62:87-98. [PMID: 30338340 PMCID: PMC6290857 DOI: 10.1007/s00125-018-4750-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/14/2018] [Indexed: 12/17/2022]
Abstract
AIMS/HYPOTHESIS In type 1 diabetes, selective beta cell loss occurs within the inflamed milieu of insulitic islets. This milieu is generated via the enhanced secretion of proinflammatory cytokines and by the loss of anti-inflammatory molecules such as IL-4 and IL-13. While the actions of proinflammatory cytokines have been well-studied in beta cells, the effects of their anti-inflammatory counterparts have received relatively little attention and we have addressed this. METHODS Clonal beta cells, isolated human islets and pancreas sections from control individuals and those with type 1 diabetes were employed. Gene expression was measured using targeted gene arrays and by quantitative RT-PCR. Protein expression was monitored in cell extracts by western blotting and in tissue sections by immunocytochemistry. Target proteins were knocked down selectively with interference RNA. RESULTS Cytoprotection achieved with IL-4 and IL-13 is mediated by the early activation of signal transducer and activator of transcription 6 (STAT6) in beta cells, leading to the upregulation of anti-apoptotic proteins, including myeloid leukaemia-1 (MCL-1) and B cell lymphoma-extra large (BCLXL). We also report the induction of signal regulatory protein-α (SIRPα), and find that knockdown of SIRPα is associated with reduced beta cell viability. These anti-apoptotic proteins and their attendant cytoprotective effects are lost following siRNA-mediated knockdown of STAT6 in beta cells. Importantly, analysis of human pancreas sections revealed that STAT6 is markedly depleted in the beta cells of individuals with type 1 diabetes, implying the loss of cytoprotective responses. CONCLUSIONS/INTERPRETATION Selective loss of STAT6 may contribute to beta cell demise during the progression of type 1 diabetes.
Collapse
Affiliation(s)
- Kaiyven A Leslie
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, RILD Building (Level 4), Barrack Road, Exeter, EX2 5DW, UK
| | - Mark A Russell
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, RILD Building (Level 4), Barrack Road, Exeter, EX2 5DW, UK.
| | - Kazuto Taniguchi
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, RILD Building (Level 4), Barrack Road, Exeter, EX2 5DW, UK
| | - Sarah J Richardson
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, RILD Building (Level 4), Barrack Road, Exeter, EX2 5DW, UK
| | - Noel G Morgan
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, RILD Building (Level 4), Barrack Road, Exeter, EX2 5DW, UK.
| |
Collapse
|
28
|
Vecchio F, Lo Buono N, Stabilini A, Nigi L, Dufort MJ, Geyer S, Rancoita PM, Cugnata F, Mandelli A, Valle A, Leete P, Mancarella F, Linsley PS, Krogvold L, Herold KC, Elding Larsson H, Richardson SJ, Morgan NG, Dahl-Jørgensen K, Sebastiani G, Dotta F, Bosi E, Battaglia M. Abnormal neutrophil signature in the blood and pancreas of presymptomatic and symptomatic type 1 diabetes. JCI Insight 2018; 3:122146. [PMID: 30232284 DOI: 10.1172/jci.insight.122146] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/03/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Neutrophils and their inflammatory mediators are key pathogenic components in multiple autoimmune diseases, while their role in human type 1 diabetes (T1D), a disease that progresses sequentially through identifiable stages prior to the clinical onset, is not well understood. We previously reported that the number of circulating neutrophils is reduced in patients with T1D and in presymptomatic at-risk subjects. The aim of the present work was to identify possible changes in circulating and pancreas-residing neutrophils throughout the disease course to better elucidate neutrophil involvement in human T1D. METHODS Data collected from 389 subjects at risk of developing T1D, and enrolled in 4 distinct studies performed by TrialNet, were analyzed with comprehensive statistical approaches to determine whether the number of circulating neutrophils correlates with pancreas function. To obtain a broad analysis of pancreas-infiltrating neutrophils throughout all disease stages, pancreas sections collected worldwide from 4 different cohorts (i.e., nPOD, DiViD, Siena, and Exeter) were analyzed by immunohistochemistry and immunofluorescence. Finally, circulating neutrophils were purified from unrelated nondiabetic subjects and donors at various T1D stages and their transcriptomic signature was determined by RNA sequencing. RESULTS Here, we show that the decline in β cell function is greatest in individuals with the lowest peripheral neutrophil numbers. Neutrophils infiltrate the pancreas prior to the onset of symptoms and they continue to do so as the disease progresses. Of interest, a fraction of these pancreas-infiltrating neutrophils also extrudes neutrophil extracellular traps (NETs), suggesting a tissue-specific pathogenic role. Whole-transcriptome analysis of purified blood neutrophils revealed a unique molecular signature that is distinguished by an overabundance of IFN-associated genes; despite being healthy, said signature is already present in T1D-autoantibody-negative at-risk subjects. CONCLUSIONS These results reveal an unexpected abnormality in neutrophil disposition both in the circulation and in the pancreas of presymptomatic and symptomatic T1D subjects, implying that targeting neutrophils might represent a previously unrecognized therapeutic modality. FUNDING Juvenile Diabetes Research Foundation (JDRF), NIH, Diabetes UK.
Collapse
Affiliation(s)
- Federica Vecchio
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Nicola Lo Buono
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Angela Stabilini
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Nigi
- Diabetes Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, and Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Matthew J Dufort
- Systems Immunology Division, Benaroya Research Institute, Seattle, Washington, USA
| | - Susan Geyer
- University of South Florida, TNCC, Tampa, Florida, USA
| | - Paola Maria Rancoita
- Centre of Statistics for Biomedical Sciences (CUSSB), Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Cugnata
- Centre of Statistics for Biomedical Sciences (CUSSB), Vita-Salute San Raffaele University, Milan, Italy
| | - Alessandra Mandelli
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Valle
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Pia Leete
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, RILD Building Barrack Road, Exeter, Devon, United Kingdom
| | - Francesca Mancarella
- Diabetes Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, and Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Peter S Linsley
- Systems Immunology Division, Benaroya Research Institute, Seattle, Washington, USA
| | - Lars Krogvold
- Pediatric Department, Oslo University Hospital HF, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Kevan C Herold
- Departments of Immunobiology and Internal Medicine, Yale University, New Haven, Connecticut, USA
| | - Helena Elding Larsson
- Department of Clinical Sciences, Lund University/CRC, Skane University Hospital SUS, Malmo, Sweden
| | - Sarah J Richardson
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, RILD Building Barrack Road, Exeter, Devon, United Kingdom
| | - Noel G Morgan
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, RILD Building Barrack Road, Exeter, Devon, United Kingdom
| | - Knut Dahl-Jørgensen
- Pediatric Department, Oslo University Hospital HF, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Guido Sebastiani
- Diabetes Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, and Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Francesco Dotta
- Diabetes Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, and Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Emanuele Bosi
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy, and the Department of Internal Medicine, IRCCS San Raffaele Hospital, Milan, Italy.,TrialNet Clinical Center, IRCCS San Raffaele Hospital, Milan, Italy
| | | | | | - Manuela Battaglia
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy.,TrialNet Clinical Center, IRCCS San Raffaele Hospital, Milan, Italy
| |
Collapse
|
29
|
Simeonovic CJ, Popp SK, Starrs LM, Brown DJ, Ziolkowski AF, Ludwig B, Bornstein SR, Wilson JD, Pugliese A, Kay TWH, Thomas HE, Loudovaris T, Choong FJ, Freeman C, Parish CR. Loss of intra-islet heparan sulfate is a highly sensitive marker of type 1 diabetes progression in humans. PLoS One 2018; 13:e0191360. [PMID: 29415062 PMCID: PMC5802856 DOI: 10.1371/journal.pone.0191360] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/03/2018] [Indexed: 12/20/2022] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease in which insulin-producing beta cells in pancreatic islets are progressively destroyed. Clinical trials of immunotherapies in recently diagnosed T1D patients have only transiently and partially impacted the disease course, suggesting that other approaches are required. Our previous studies have demonstrated that heparan sulfate (HS), a glycosaminoglycan conventionally expressed in extracellular matrix, is present at high levels inside normal mouse beta cells. Intracellular HS was shown to be critical for beta cell survival and protection from oxidative damage. T1D development in Non-Obese Diabetic (NOD) mice correlated with loss of islet HS and was prevented by inhibiting HS degradation by the endoglycosidase, heparanase. In this study we investigated the distribution of HS and heparan sulfate proteoglycan (HSPG) core proteins in normal human islets, a role for HS in human beta cell viability and the clinical relevance of intra-islet HS and HSPG levels, compared to insulin, in human T1D. In normal human islets, HS (identified by 10E4 mAb) co-localized with insulin but not glucagon and correlated with the HSPG core proteins for collagen type XVIII (Col18) and syndecan-1 (Sdc1). Insulin-positive islets of T1D pancreases showed significant loss of HS, Col18 and Sdc1 and heparanase was strongly expressed by islet-infiltrating leukocytes. Human beta cells cultured with HS mimetics showed significantly improved survival and protection against hydrogen peroxide-induced death, suggesting that loss of HS could contribute to beta cell death in T1D. We conclude that HS depletion in beta cells, possibly due to heparanase produced by insulitis leukocytes, may function as an important mechanism in the pathogenesis of human T1D. Our findings raise the possibility that intervention therapy with dual activity HS replacers/heparanase inhibitors could help to protect the residual beta cell mass in patients recently diagnosed with T1D.
Collapse
Affiliation(s)
- Charmaine J. Simeonovic
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
- * E-mail:
| | - Sarah K. Popp
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Lora M. Starrs
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Debra J. Brown
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Andrew F. Ziolkowski
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Barbara Ludwig
- Department of Internal Medicine III, Carl Gustav Carus Medical School, Technical University of Dresden, Dresden, Germany
| | - Stefan R. Bornstein
- Department of Internal Medicine III, Carl Gustav Carus Medical School, Technical University of Dresden, Dresden, Germany
| | - J. Dennis Wilson
- Department of Endocrinology, The Canberra Hospital, Woden, Australian Capital Territory, Australia
| | - Alberto Pugliese
- Diabetes Research Institute, Departments of Medicine, Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Thomas W. H. Kay
- St Vincent’s Institute of Medical Research, Fitzroy, Melbourne, Victoria, Australia
| | - Helen E. Thomas
- St Vincent’s Institute of Medical Research, Fitzroy, Melbourne, Victoria, Australia
| | - Thomas Loudovaris
- St Vincent’s Institute of Medical Research, Fitzroy, Melbourne, Victoria, Australia
| | - Fui Jiun Choong
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Craig Freeman
- Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Christopher R. Parish
- Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
30
|
Duncan S, Annunziato RA, Dunphy C, LaPointe Rudow D, Shneider BL, Shemesh E. A systematic review of immunosuppressant adherence interventions in transplant recipients: Decoding the streetlight effect. Pediatr Transplant 2018; 22:10.1111/petr.13086. [PMID: 29218760 PMCID: PMC5811374 DOI: 10.1111/petr.13086] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/23/2017] [Indexed: 12/23/2022]
Abstract
Non-adherence to immunosuppressant medications is an important risk factor for graft dysfunction. To evaluate the effectiveness of adherence-enhancing interventions, we reviewed adherence intervention studies in solid organ transplant recipients (all ages). Using the following databases: PsycINFO, PubMed, Scopus, and ScienceDirect, we identified 41 eligible studies. Only three non-randomized trials showed a possible positive effect on objective indicators of transplant outcomes (such as rejection, liver enzyme levels, kidney function). None of the 21 RCTs showed an improvement in transplant outcomes. Three studies showed a higher rate of adverse events in the intervention group as compared with controls, although this may be related to ascertainment bias. Improvement in adherence as measured indirectly (eg, with electronic monitoring devices) was not aligned with effects on transplant outcomes. We conclude that adherence interventions, to date, have largely been ineffective in improving transplant outcomes. To improve this track record, intervention efforts may wish to concentrate on non-adherent patients (rather than use convenience sampling, which excludes many of the patients who need the intervention), use direct measures of adherence to guide the interventions, and employ strategies that are intensive and yet engaging enough to ensure that non-adherent patients are able to participate.
Collapse
Affiliation(s)
- S Duncan
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, Kravis Children's Hospital, New York, NY, USA
- Department of Psychology, Fordham University, Bronx, NY, USA
| | - R A Annunziato
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, Kravis Children's Hospital, New York, NY, USA
- Department of Psychology, Fordham University, Bronx, NY, USA
| | - C Dunphy
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, Kravis Children's Hospital, New York, NY, USA
- Department of Psychology, Fordham University, Bronx, NY, USA
| | - D LaPointe Rudow
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, Kravis Children's Hospital, New York, NY, USA
| | - B L Shneider
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - E Shemesh
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, Kravis Children's Hospital, New York, NY, USA
| |
Collapse
|
31
|
Haynes WA, Tomczak A, Khatri P. Gene annotation bias impedes biomedical research. Sci Rep 2018; 8:1362. [PMID: 29358745 PMCID: PMC5778030 DOI: 10.1038/s41598-018-19333-x] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/28/2017] [Indexed: 12/21/2022] Open
Abstract
We found tremendous inequality across gene and protein annotation resources. We observed that this bias leads biomedical researchers to focus on richly annotated genes instead of those with the strongest molecular data. We advocate that researchers reduce these biases by pursuing data-driven hypotheses.
Collapse
Affiliation(s)
- Winston A Haynes
- Stanford Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, California, USA
- Stanford Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, California, USA
- Biomedical Informatics Training Program, Stanford University, Stanford, California, USA
| | - Aurelie Tomczak
- Stanford Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, California, USA
- Stanford Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, California, USA
| | - Purvesh Khatri
- Stanford Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, California, USA.
- Stanford Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, California, USA.
| |
Collapse
|
32
|
Valitsky M, Hoffman A, Unterman T, Bar-Tana J. Insulin sensitizer prevents and ameliorates experimental type 1 diabetes. Am J Physiol Endocrinol Metab 2017; 313:E672-E680. [PMID: 28270441 DOI: 10.1152/ajpendo.00329.2016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 02/27/2017] [Accepted: 03/01/2017] [Indexed: 01/12/2023]
Abstract
Insulin-dependent type-1 diabetes (T1D) is driven by autoimmune β-cell failure, whereas systemic resistance to insulin is considered the hallmark of insulin-independent type-2 diabetes (T2D). In contrast to this canonical dichotomy, insulin resistance appears to precede the overt diabetic stage of T1D and predict its progression, implying that insulin sensitizers may change the course of T1D. However, previous attempts to ameliorate T1D in animal models or patients by insulin sensitizers have largely failed. Sensitization to insulin by MEthyl-substituted long-chain DICArboxylic acid (MEDICA) analogs in T2D animal models surpasses that of current insulin sensitizers, thus prompting our interest in probing MEDICA in the T1D context. MEDICA efficacy in modulating the course of T1D was verified in streptozotocin (STZ) diabetic rats and autoimmune nonobese diabetic (NOD) mice. MEDICA treatment normalizes overt diabetes in STZ diabetic rats when added on to subtherapeutic insulin, and prevents/delays autoimmune T1D in NOD mice. MEDICA treatment does not improve β-cell insulin content or insulitis score, but its efficacy is accounted for by pronounced total body sensitization to insulin. In conclusion, potent insulin sensitizers may counteract genetic predisposition to autoimmune T1D and amplify subtherapeutic insulin into an effective therapeutic measure for the treatment of overt T1D.
Collapse
Affiliation(s)
- Michael Valitsky
- Department of Human Nutrition and Metabolism, Hebrew University Medical School, Jerusalem, Israel
| | - Amnon Hoffman
- Institute for Drug Research, Hebrew University Faculty of Medicine, Jerusalem, Israel; and
| | - Terry Unterman
- Section of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago College of Medicine, Chicago, Illinois
| | - Jacob Bar-Tana
- Department of Human Nutrition and Metabolism, Hebrew University Medical School, Jerusalem, Israel;
| |
Collapse
|
33
|
Battaglia M, Anderson MS, Buckner JH, Geyer SM, Gottlieb PA, Kay TWH, Lernmark Å, Muller S, Pugliese A, Roep BO, Greenbaum CJ, Peakman M. Understanding and preventing type 1 diabetes through the unique working model of TrialNet. Diabetologia 2017; 60:2139-2147. [PMID: 28770323 PMCID: PMC5838353 DOI: 10.1007/s00125-017-4384-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/09/2017] [Indexed: 12/11/2022]
Abstract
Type 1 diabetes is an autoimmune disease arising from the destruction of pancreatic insulin-producing beta cells. The disease represents a continuum, progressing sequentially at variable rates through identifiable stages prior to the onset of symptoms, through diagnosis and into the critical periods that follow, culminating in a variable depth of beta cell depletion. The ability to identify the very earliest of these presymptomatic stages has provided a setting in which prevention strategies can be trialled, as well as furnishing an unprecedented opportunity to study disease evolution, including intrinsic and extrinsic initiators and drivers. This niche opportunity is occupied by Type 1 Diabetes TrialNet, an international consortium of clinical trial centres that leads the field in intervention and prevention studies, accompanied by deep longitudinal bio-sampling. In this review, we focus on discoveries arising from this unique bioresource, comprising more than 70,000 samples, and outline the processes and science that have led to new biomarkers and mechanistic insights, as well as identifying new challenges and opportunities. We conclude that via integration of clinical trials and mechanistic studies, drawing in clinicians and scientists and developing partnership with industry, TrialNet embodies an enviable and unique working model for understanding a disease that to date has no cure and for designing new therapeutic approaches.
Collapse
Affiliation(s)
- Manuela Battaglia
- Diabetes Research Institute (DRI), IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy.
| | - Mark S Anderson
- Diabetes Center, University of California, San Francisco, CA, USA
| | - Jane H Buckner
- Translational Research Program, Benaroya Research Institute, Seattle, WA, USA
| | - Susan M Geyer
- Health Informatics Institute, University of South Florida, Tampa, FL, USA
| | - Peter A Gottlieb
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Thomas W H Kay
- St Vincent's Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, VIC, Australia
| | - Åke Lernmark
- Lund University/CRC, Department of Clinical Sciences, Skane University Hospital, Malmö, Sweden
| | - Sarah Muller
- Health Informatics Institute, University of South Florida, Tampa, FL, USA
| | - Alberto Pugliese
- Diabetes Research Institute, Department of Medicine, Division of Diabetes Endocrinology and Metabolism, Department of Microbiology and Immunology, Leonard Miller School of Medicine University of Miami, Miami, FL, USA
| | - Bart O Roep
- Department of Diabetes Immunology, Diabetes & Metabolism Research Institute, Beckman Research Institute at the City of Hope, Duarte, CA, USA
- Department of Immunohaematology & Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Mark Peakman
- Department of Immunobiology, Faculty of Life Sciences & Medicine, King's College London, London, SE1 9RT, UK.
- National Institute for Health Research Biomedical Research Centre at Guy's and St Thomas' Hospital Foundation Trust and King's College London, London, UK.
- Institute of Diabetes, Endocrinology and Obesity, King's Health Partners, London, UK.
| |
Collapse
|
34
|
Danilova IG, Bulavintceva TS, Gette IF, Medvedeva SY, Emelyanov VV, Abidov MT. Partial recovery from alloxan-induced diabetes by sodium phthalhydrazide in rats. Biomed Pharmacother 2017; 95:103-110. [DOI: 10.1016/j.biopha.2017.07.117] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 07/24/2017] [Accepted: 07/24/2017] [Indexed: 02/06/2023] Open
|
35
|
Kumar S, Patial V, Soni S, Sharma S, Pratap K, Kumar D, Padwad Y. Picrorhiza kurroa Enhances β-Cell Mass Proliferation and Insulin Secretion in Streptozotocin Evoked β-Cell Damage in Rats. Front Pharmacol 2017; 8:537. [PMID: 28878669 PMCID: PMC5572391 DOI: 10.3389/fphar.2017.00537] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/02/2017] [Indexed: 12/26/2022] Open
Abstract
Autoimmune destruction of insulin producing pancreatic β-cells leads to insulin insufficiency and hyperglycemia in type 1 diabetes mellitus. Regeneration of β-cells is one of the proposed treatment for type 1 diabetes and insulin insufficiency. Picrorhiza kurroa is a medicinal herb and is traditionally being used for the treatment of various diseases. Previous studies reported the hypoglycemic potential of P. kurroa. However, its potential role in β-cell induction in insulin secretion have not been fully investigated. Here, we characterized the hydro alcoholic extract of P. kurroa rhizome (PKRE) and further studied its β-cell regeneration and induction of insulin secretion potential in streptozotocin (STZ) induced diabetic rats as well as in insulin producing Rin5f cells. 1H-NMR revealed the presence of more than thirty metabolites including picroside I and II in PKRE. Further, we found that PKRE treatment (100 and 200 mg/kg dose for 30 days) significantly (p ≤ 0.05) protected the pancreatic β-cells against streptozotocin (STZ) evoked damage and inhibited the glucagon receptor expression (Gcgr) in hepatic and renal tissues. It significantly (p ≤ 0.05) enhanced the insulin expression and aids in proliferation of insulin producing Rin5f cells with elevated insulin secretion. Furthermore it significantly (p ≤ 0.05) increased insulin mediated glucose uptake in 3T3L1 and L6 cells. On the contrary, in diabetic rats, PKRE significantly (p ≤ 0.05) decreased high blood glucose and restored the normal levels of serum biochemicals. Altogether, our results showed that PKRE displayed β-cell regeneration with enhanced insulin production and antihyperglycemic effects. PKRE also improves hepatic and renal functions against oxidative damage.
Collapse
Affiliation(s)
- Shiv Kumar
- Pharmacology and Toxicology Lab, Food and Nutraceuticals Division, CSIR-Institute of Himalayan Bioresource TechnologyPalampur, India
- Academy of Scientific and Innovative ResearchNew Delhi, India
| | - Vikram Patial
- Pharmacology and Toxicology Lab, Food and Nutraceuticals Division, CSIR-Institute of Himalayan Bioresource TechnologyPalampur, India
- Academy of Scientific and Innovative ResearchNew Delhi, India
| | - Sourabh Soni
- Pharmacology and Toxicology Lab, Food and Nutraceuticals Division, CSIR-Institute of Himalayan Bioresource TechnologyPalampur, India
- Academy of Scientific and Innovative ResearchNew Delhi, India
| | - Supriya Sharma
- Pharmacology and Toxicology Lab, Food and Nutraceuticals Division, CSIR-Institute of Himalayan Bioresource TechnologyPalampur, India
- Academy of Scientific and Innovative ResearchNew Delhi, India
| | - Kunal Pratap
- Pharmacology and Toxicology Lab, Food and Nutraceuticals Division, CSIR-Institute of Himalayan Bioresource TechnologyPalampur, India
| | - Dinesh Kumar
- Academy of Scientific and Innovative ResearchNew Delhi, India
- Natural Product Chemistry and Process Development Division, CSIR-Institute of Himalayan Bioresource TechnologyPalampur, India
| | - Yogendra Padwad
- Pharmacology and Toxicology Lab, Food and Nutraceuticals Division, CSIR-Institute of Himalayan Bioresource TechnologyPalampur, India
- Academy of Scientific and Innovative ResearchNew Delhi, India
| |
Collapse
|
36
|
Lundberg M, Lindqvist A, Wierup N, Krogvold L, Dahl-Jørgensen K, Skog O. The density of parasympathetic axons is reduced in the exocrine pancreas of individuals recently diagnosed with type 1 diabetes. PLoS One 2017. [PMID: 28628651 PMCID: PMC5476281 DOI: 10.1371/journal.pone.0179911] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
To elucidate the etiology of type 1 diabetes, the affected pancreas needs to be thoroughly characterized. Pancreatic innervation has been suggested to be involved in the pathology of the disease and a reduction of sympathetic innervation of the islets was recently reported. In the present study, we hypothesized that parasympathetic innervation would be altered in the type 1 diabetes pancreas. Human pancreatic specimens were obtained from a unique cohort of individuals with recent onset or long standing type 1 diabetes. Density of parasympathetic axons was assessed by immunofluorescence and morphometry. Our main finding was a reduced density of parasympathetic axons in the exocrine, but not endocrine compartment of the pancreas in individuals with recent onset type 1 diabetes. The reduced density of parasympathetic axons in the exocrine compartment could have functional implications, e.g. be related to the exocrine insufficiency reported in type 1 diabetes patients. Further studies are needed to understand whether reduced parasympathetic innervation is a cause or consequence of type 1 diabetes.
Collapse
Affiliation(s)
- Marcus Lundberg
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- * E-mail:
| | | | - Nils Wierup
- Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Lars Krogvold
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Knut Dahl-Jørgensen
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Oskar Skog
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
37
|
Meyer NJ, Calfee CS. Novel translational approaches to the search for precision therapies for acute respiratory distress syndrome. THE LANCET. RESPIRATORY MEDICINE 2017; 5:512-523. [PMID: 28664850 PMCID: PMC7103930 DOI: 10.1016/s2213-2600(17)30187-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/30/2017] [Accepted: 04/06/2017] [Indexed: 02/07/2023]
Abstract
In the 50 years since acute respiratory distress syndrome (ARDS) was first described, substantial progress has been made in identifying the risk factors for and the pathogenic contributors to the syndrome and in characterising the protein expression patterns in plasma and bronchoalveolar lavage fluid from patients with ARDS. Despite this effort, however, pharmacological options for ARDS remain scarce. Frequently cited reasons for this absence of specific drug therapies include the heterogeneity of patients with ARDS, the potential for a differential response to drugs, and the possibility that the wrong targets have been studied. Advances in applied biomolecular technology and bioinformatics have enabled breakthroughs for other complex traits, such as cardiovascular disease or asthma, particularly when a precision medicine paradigm, wherein a biomarker or gene expression pattern indicates a patient's likelihood of responding to a treatment, has been pursued. In this Review, we consider the biological and analytical techniques that could facilitate a precision medicine approach for ARDS.
Collapse
Affiliation(s)
- Nuala J Meyer
- Division of Pulmonary, Allergy, and Critical Care Medicine and Center for Translational Lung Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Carolyn S Calfee
- Department of Medicine and Department of Anesthesia, University of California, San Francisco, CA, USA.
| |
Collapse
|
38
|
Lundberg M, Seiron P, Ingvast S, Korsgren O, Skog O. Re-addressing the 2013 consensus guidelines for the diagnosis of insulitis in human type 1 diabetes: is change necessary? Reply to Campbell-Thompson ML, Atkinson MA, Butler AE et al [letter]. Diabetologia 2017; 60:756-757. [PMID: 28111711 DOI: 10.1007/s00125-017-4212-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 01/06/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Marcus Lundberg
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory C11, Clinical Immunology, Uppsala University, Dag Hammarskjölds väg 20, 751 85, Uppsala, Sweden.
| | - Peter Seiron
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory C11, Clinical Immunology, Uppsala University, Dag Hammarskjölds väg 20, 751 85, Uppsala, Sweden
| | - Sofie Ingvast
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory C11, Clinical Immunology, Uppsala University, Dag Hammarskjölds väg 20, 751 85, Uppsala, Sweden
| | - Olle Korsgren
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory C11, Clinical Immunology, Uppsala University, Dag Hammarskjölds väg 20, 751 85, Uppsala, Sweden
| | - Oskar Skog
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory C11, Clinical Immunology, Uppsala University, Dag Hammarskjölds väg 20, 751 85, Uppsala, Sweden
| |
Collapse
|
39
|
Echovirus 6 Infects Human Exocrine and Endocrine Pancreatic Cells and Induces Pro-Inflammatory Innate Immune Response. Viruses 2017; 9:v9020025. [PMID: 28146100 PMCID: PMC5332944 DOI: 10.3390/v9020025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/16/2017] [Indexed: 12/22/2022] Open
Abstract
Human enteroviruses (HEV), especially coxsackievirus serotype B (CVB) and echovirus (E), have been associated with diseases of both the exocrine and endocrine pancreas, but so far evidence on HEV infection in human pancreas has been reported only in islets and ductal cells. This study aimed to investigate the capability of echovirus strains to infect human exocrine and endocrine pancreatic cells. Infection of explanted human islets and exocrine cells with seven field strains of E6 caused cytopathic effect, virus titer increase and production of HEV protein VP1 in both cell types. Virus particles were found in islets and acinar cells infected with E6. No cytopathic effect or infectious progeny production was observed in exocrine cells exposed to the beta cell-tropic strains of E16 and E30. Endocrine cells responded to E6, E16 and E30 by upregulating the transcription of interferon-induced with helicase C domain 1 (IF1H1), 2′-5′-oligoadenylate synthetase 1 (OAS1), interferon-β (IFN-β), chemokine (C–X–C motif) ligand 10 (CXCL10) and chemokine (C–C motif) ligand 5 (CCL5). Echovirus 6, but not E16 or E30, led to increased transcription of these genes in exocrine cells. These data demonstrate for the first time that human exocrine cells represent a target for E6 infection and suggest that certain HEV serotypes can replicate in human pancreatic exocrine cells, while the pancreatic endocrine cells are permissive to a wider range of HEV.
Collapse
|
40
|
Pierret A, Maeght JL, Clément C, Montoroi JP, Hartmann C, Gonkhamdee S. Understanding deep roots and their functions in ecosystems: an advocacy for more unconventional research. ANNALS OF BOTANY 2016; 118:621-635. [PMID: 27390351 PMCID: PMC5055635 DOI: 10.1093/aob/mcw130] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 05/12/2016] [Indexed: 05/04/2023]
Abstract
Background Deep roots are a common trait among a wide range of plant species and biomes, and are pivotal to the very existence of ecosystem services such as pedogenesis, groundwater and streamflow regulation, soil carbon sequestration and moisture content in the lower troposphere. Notwithstanding the growing realization of the functional significance of deep roots across disciplines such as soil science, agronomy, hydrology, ecophysiology or climatology, research efforts allocated to the study of deep roots remain incommensurate with those devoted to shallow roots. This is due in part to the fact that, despite technological advances, observing and measuring deep roots remains challenging. Scope Here, other reasons that explain why there are still so many fundamental unresolved questions related to deep roots are discussed. These include the fact that a number of hypotheses and models that are widely considered as verified and sufficiently robust are only partly supported by data. Evidence has accumulated that deep rooting could be a more widespread and important trait among plants than usually considered based on the share of biomass that it represents. Examples that indicate that plant roots have different structures and play different roles with respect to major biochemical cycles depending on their position within the soil profile are also examined and discussed. Conclusions Current knowledge gaps are identified and new lines of research for improving our understanding of the processes that drive deep root growth and functioning are proposed. This ultimately leads to a reflection on an alternative paradigm that could be used in the future as a unifying framework to describe and analyse deep rooting. Despite the many hurdles that pave the way to a practical understanding of deep rooting functions, it is anticipated that, in the relatively near future, increased knowledge about the deep rooting traits of a variety of plants and crops will have direct and tangible influence on how we manage natural and cultivated ecosystems.
Collapse
Affiliation(s)
- Alain Pierret
- iEES-Paris (IRD-UPMC-CNRS-INRA-UDD-UPEC), Department of Agricultural Land Management, PO Box 5992, Vientiane, Lao PDR
- *For correspondence. E-mail
| | - Jean-Luc Maeght
- iEES-Paris (IRD-UPMC-CNRS-INRA-UDD-UPEC), Soils and Fertilisers Research Institute, Hanoi, Vietnam
| | - Corentin Clément
- International Water Management Institute (IWMI), PO Box 4199, Vientiane, Lao PDR
| | - Jean-Pierre Montoroi
- iEES-Paris (IRD-UPMC-CNRS-INRA-UDD-UPEC), 32, av. H. Varagnat, 93143 Bondy cedex, France
| | - Christian Hartmann
- iEES-Paris (IRD-UPMC-CNRS-INRA-UDD-UPEC), Department of Agricultural Land Management, PO Box 5992, Vientiane, Lao PDR
| | | |
Collapse
|
41
|
Abstract
The lack of reproducibility of preclinical experimentation has implications for sustaining trust in and ensuring the viability and funding of the academic research enterprise. Here I identify problematic behaviors and practices and suggest solutions to enhance reproducibility in translational research.
Collapse
Affiliation(s)
- Daniel J Drucker
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON M5G 1X5, Canada.
| |
Collapse
|
42
|
Leete P, Willcox A, Krogvold L, Dahl-Jørgensen K, Foulis AK, Richardson SJ, Morgan NG. Differential Insulitic Profiles Determine the Extent of β-Cell Destruction and the Age at Onset of Type 1 Diabetes. Diabetes 2016; 65:1362-9. [PMID: 26858360 DOI: 10.2337/db15-1615] [Citation(s) in RCA: 222] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/20/2016] [Indexed: 11/13/2022]
Abstract
Type 1 diabetes (T1D) results from a T cell-mediated destruction of pancreatic β-cells following the infiltration of leukocytes (including CD8(+), CD4(+), and CD20(+) cells) into and around pancreatic islets (insulitis). Recently, we reported that two distinct patterns of insulitis occur in patients with recent-onset T1D from the U.K. and that these differ principally in the proportion of infiltrating CD20(+) B cells (designated CD20Hi and CD20Lo, respectively). We have now extended this analysis to include patients from the Network for Pancreatic Organ Donors with Diabetes (U.S.) and Diabetes Virus Detection (DiViD) study (Norway) cohorts and confirm that the two profiles of insulitis occur more widely. Moreover, we show that patients can be directly stratified according to their insulitic profile and that those receiving a diagnosis before the age of 7 years always display the CD20Hi profile. By contrast, individuals who received a diagnosis beyond the age of 13 years are uniformly defined as CD20Lo. This implies that the two forms of insulitis are differentially aggressive and that patients with a CD20Hi profile lose their β-cells at a more rapid rate. In support of this, we also find that the proportion of residual insulin-containing islets (ICIs) increases in parallel with age at the onset of T1D. Importantly, those receiving a diagnosis in, or beyond, their teenage years retain ∼40% ICIs at diagnosis, implying that a functional deficit rather than an absolute β-cell loss may be causal for disease onset in these patients. We conclude that appropriate patient stratification will be critical for correct interpretation of the outcomes of intervention therapies targeted to islet-infiltrating immune cells in T1D.
Collapse
Affiliation(s)
- Pia Leete
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K
| | - Abby Willcox
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K
| | - Lars Krogvold
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Knut Dahl-Jørgensen
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Alan K Foulis
- Department of Pathology, National Health Service Greater Glasgow and Clyde, Southern General Hospital, Glasgow, U.K
| | - Sarah J Richardson
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K.
| | - Noel G Morgan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K.
| |
Collapse
|
43
|
Gomez-Tourino I, Arif S, Eichmann M, Peakman M. T cells in type 1 diabetes: Instructors, regulators and effectors: A comprehensive review. J Autoimmun 2016; 66:7-16. [DOI: 10.1016/j.jaut.2015.08.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 08/20/2015] [Indexed: 12/16/2022]
|
44
|
Campbell-Thompson ML, Kaddis JS, Wasserfall C, Haller MJ, Pugliese A, Schatz DA, Shuster JJ, Atkinson MA. The influence of type 1 diabetes on pancreatic weight. Diabetologia 2016; 59:217-221. [PMID: 26358584 PMCID: PMC4670792 DOI: 10.1007/s00125-015-3752-z] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/18/2015] [Indexed: 12/17/2022]
Abstract
AIMS/HYPOTHESIS Previous studies of pancreases obtained at autopsy or by radiography note reduced pancreas weight (PW) and size, respectively, in type 1 diabetes; this finding is widely considered to be the result of chronic insulinopenia. This literature is, however, limited with respect to the influence of age, sex, anthropometric factors and disease duration on these observations. Moreover, data are sparse for young children, a group of particular interest for type 1 diabetes. We hypothesised that the pancreas-to-body weight ratio would normalise confounding inter-subject factors, thereby permitting better characterisation of PW in type 1 diabetes. METHODS Transplant-grade pancreases were recovered from 216 organ donors with type 1 diabetes (n = 90), type 2 diabetes (n = 40) and no diabetes (n = 86). Whole-organ and head, body and tail weights were determined. The relative PW (RPW; PW [g] / body weight [kg]) was calculated and tested for normalisation of potential differences due to age, sex and BMI. RESULTS PW significantly correlated with body weight in control donors (R (2) = 0.76, p < 0.001) while RPW (1.03 ± 0.36, mean ± SD) did not significantly differ across ages (0-58 years). Donors with type 1 diabetes (0.57 ± 0.18, p < 0.001), but not those with type 2 diabetes (0.93 ± 0.30), had significantly lower RPW. The relative weights of each pancreatic region from donors with type 1 diabetes were significantly smaller than those of regions from control donors and donors with type 2 diabetes (p < 0.001). Perhaps most interestingly, the RPW was not significantly associated with duration of type 1 diabetes or type 2 diabetes. CONCLUSIONS/INTERPRETATION RPW allows for comparisons across a wide range of donor ages by eliminating confounding variables. These data validate an interesting feature of the type 1 diabetes pancreas and underscore the need for additional studies to identify the mechanistic basis for this finding, including those beyond the chronic loss of endogenous insulin secretion.
Collapse
Affiliation(s)
- Martha L Campbell-Thompson
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, POB 100275, 1395 Center Drive, Gainesville, FL, 32610, USA
| | - John S Kaddis
- Department of Information Sciences, City of Hope, Duarte, CA, USA
| | - Clive Wasserfall
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, POB 100275, 1395 Center Drive, Gainesville, FL, 32610, USA
| | - Michael J Haller
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Alberto Pugliese
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Desmond A Schatz
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Jonathan J Shuster
- Department of Health Outcomes and Policy, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Mark A Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, POB 100275, 1395 Center Drive, Gainesville, FL, 32610, USA.
| |
Collapse
|
45
|
von Herrath MG, Korsgren O, Atkinson MA. Factors impeding the discovery of an intervention-based treatment for type 1 diabetes. Clin Exp Immunol 2016; 183:1-7. [PMID: 25989477 PMCID: PMC4687509 DOI: 10.1111/cei.12656] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2015] [Indexed: 12/31/2022] Open
Abstract
Type 1 diabetes (T1D) is one of the most common and severe chronic diseases affecting both children and adults. The aetiology of the disease remains unknown, and thus far no 'true' cure for those affected is available. Indeed, exogenous insulin replacement therapy to manage glucose metabolism to the best degree possible remains the current standard of care. However, despite a recent array of truly impressive improvements designed to enhance disease management (e.g. insulin analogues, continuous glucose monitoring, insulin pumps), it is still difficult for the vast majority of patients to reach recommended target HbA1C levels (< 7.0%). As a result of suboptimal disease management, far too many patients with T1D have an increased risk for disease-associated complications such as nephropathy, neuropathy and retinopathy, as well as hypoglycaemia. New treatment modalities are therefore needed urgently to bring a 'true' cure (disease prevention/disease reversal) to patients with T1D. Here we consider issues that collectively pose a major stumbling block in T1D research with respect to identifying a means to prevent and/or cure the disease. We begin this Perspective by discussing new insights emanating from studies of the pancreas in human T1D; findings which may, at least in part, explain why previous interventions seeking disease prevention/reversal have yielded insufficient benefit. We then turn to suggestions that could optimise the outcome of future clinical trials. Finally, we direct attention to recommendations for the global T1D research community; messages we deem to have the potential to improve our chances of finding the elusive T1D 'cure'.
Collapse
Affiliation(s)
- M. G. von Herrath
- Type 1 Diabetes Center, La Jolla Institute for Allergy and ImmunologyLa JollaCAUSA
- Novo Nordisk Diabetes Research and Development CenterSeattleWAUSA
| | - O. Korsgren
- Department of Clinical ImmunologyUniversity HospitalUppsalaSweden
| | - M. A. Atkinson
- Departments of Pathology and PediatricsUniversity of FloridaGainesvilleFLUSA
| |
Collapse
|
46
|
Wilkin T, Greene S, McCrimmon R. Testing the accelerator hypothesis: a new approach to type 1 diabetes prevention (adAPT 1). Diabetes Obes Metab 2016; 18:3-5. [PMID: 26511442 DOI: 10.1111/dom.12599] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 10/18/2015] [Accepted: 10/24/2015] [Indexed: 12/30/2022]
Affiliation(s)
- T Wilkin
- Institute of Heath Research, University of Exeter Medical School, Exeter, UK
| | - S Greene
- Department of Child and Adolescent Health, University of Dundee, Dundee, UK
| | - R McCrimmon
- Department of Cardiovascular and Diabetes Medicine, University of Dundee, Dundee, UK
| |
Collapse
|
47
|
Modulation of Autoimmune T-Cell Memory by Stem Cell Educator Therapy: Phase 1/2 Clinical Trial. EBioMedicine 2015; 2:2024-36. [PMID: 26844283 PMCID: PMC4703710 DOI: 10.1016/j.ebiom.2015.11.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 10/29/2015] [Accepted: 11/03/2015] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) is a T cell-mediated autoimmune disease that causes a deficit of pancreatic islet β cells. The complexities of overcoming autoimmunity in T1D have contributed to the challenges the research community faces when devising successful treatments with conventional immune therapies. Overcoming autoimmune T cell memory represents one of the key hurdles. METHODS In this open-label, phase 1/phase 2 study, Caucasian T1D patients (N = 15) received two treatments with the Stem Cell Educator (SCE) therapy, an approach that uses human multipotent cord blood-derived multipotent stem cells (CB-SCs). SCE therapy involves a closed-loop system that briefly treats the patient's lymphocytes with CB-SCs in vitro and returns the "educated" lymphocytes (but not the CB-SCs) into the patient's blood circulation. This study is registered with ClinicalTrials.gov, NCT01350219. FINDINGS Clinical data demonstrated that SCE therapy was well tolerated in all subjects. The percentage of naïve CD4(+) T cells was significantly increased at 26 weeks and maintained through the final follow-up at 56 weeks. The percentage of CD4(+) central memory T cells (TCM) was markedly and constantly increased at 18 weeks. Both CD4(+) effector memory T cells (TEM) and CD8(+) TEM cells were considerably decreased at 18 weeks and 26 weeks respectively. Additional clinical data demonstrated the modulation of C-C chemokine receptor 7 (CCR7) expressions on naïve T, TCM, and TEM cells. Following two treatments with SCE therapy, islet β-cell function was improved and maintained in individuals with residual β-cell function, but not in those without residual β-cell function. INTERPRETATION Current clinical data demonstrated the safety and efficacy of SCE therapy in immune modulation. SCE therapy provides lasting reversal of autoimmune memory that could improve islet β-cell function in Caucasian subjects. FUNDING Obra Social "La Caixa", Instituto de Salud Carlos III, Red de Investigación Renal, European Union FEDER Funds, Principado de Asturias, FICYT, and Hackensack University Medical Center Foundation.
Collapse
Key Words
- AIRE, autoimmune regulator
- Autoimmunity
- CB-SCs, human cord blood-derived multipotent stem cells
- CCR7, C–C chemokine receptor 7
- Cord blood stem cell
- HLA, human leukocyte antigen
- HbA1C, glycated hemoglobin
- IL, interleukin
- Immune modulation
- M2, muscarinic acetylcholine receptor 2
- MLR, mixed leukocyte reactions
- MNC, mononuclear cells
- Memory T cells
- OGTT, oral glucose tolerance test
- PBMC, peripheral blood mononuclear cells
- R, responder
- S, stimulator
- SCE, Stem Cell Educator
- T1D, type 1 diabetes
- TCM, central memory T cells
- TCR, T-cell receptor
- TEM, effector memory T cells
- TGF-β1, transforming growth factor-β1
- Th, helper T cell
- Tregs, regulatory T cells
- Type 1 diabetes
Collapse
|
48
|
Campbell-Thompson M. Organ donor specimens: What can they tell us about type 1 diabetes? Pediatr Diabetes 2015; 16:320-30. [PMID: 25998576 PMCID: PMC4718555 DOI: 10.1111/pedi.12286] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 04/04/2015] [Accepted: 05/01/2015] [Indexed: 12/16/2022] Open
Abstract
Type 1 diabetes (T1D) is a chronic disease resulting from the destruction of pancreatic beta cells, due to a poorly understood combination of genetic, environmental, and immune factors. The JDRF Network for Pancreatic Organ donors with Diabetes (nPOD) program recovers transplantation quality pancreas from organ donors throughout the USA. In addition to recovery of donors with T1D, non-diabetic donors include those with islet autoantibodies. Donors with type 2 diabetes and other conditions are also recovered to aid investigations directed at the full spectrum of pathophysiological mechanisms affecting beta cells. One central processing laboratory conducts standardized procedures for sample processing, storage, and distribution, intended for current and future cutting edge investigations. Baseline histology characterizations are performed on the pancreatic samples, with images of the staining results provided though whole-slide digital scans. Uniquely, these high-grade biospecimens are provided without expense to investigators, working worldwide, seeking methods for disease prevention and reversal strategies. Collaborative working groups are highly encouraged, bringing together multiple investigators with different expertise to foster collaborations in several areas of critical need. This mini-review will provide some key histopathological findings emanating from the nPOD collection, including the heterogeneity of beta cell loss and islet inflammation (insulitis), beta cell mass, insulin-producing beta cells in chronic T1D, and pancreas weight reductions at disease onset. Analysis of variations in histopathology observed from these organ donors could provide for mechanistic differences related to etiological agents and serve an important function in terms of identifying the heterogeneity of T1D.
Collapse
Affiliation(s)
- Martha Campbell-Thompson
- The Department of Pathology, Immunology, and Laboratory Medicine, The University of Florida, College of Medicine, Gainesville, FL, USA
| |
Collapse
|
49
|
Affiliation(s)
- Åke Lernmark
- Department of Clinical Sciences, Lund University/Clinical Research Centre, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|