1
|
De Nardi A, Marini G, Dorigatti I, Rosà R, Tamba M, Gelmini L, Prosperi A, Menegale F, Poletti P, Calzolari M, Pugliese A. Quantifying West Nile virus circulation in the avian host population in Northern Italy. Infect Dis Model 2025; 10:375-386. [PMID: 39816752 PMCID: PMC11729645 DOI: 10.1016/j.idm.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/31/2024] [Accepted: 12/12/2024] [Indexed: 01/18/2025] Open
Abstract
West Nile virus (WNV) is one of the most threatening mosquito-borne pathogens in Italy where hundreds of human cases were recorded during the last decade. Here, we estimated the WNV incidence in the avian population in the Emilia-Romagna region through a modelling framework which enabled us to eventually assess the fraction of birds that present anti-WNV antibodies at the end of each epidemiological season. We fitted an SIR model to ornithological data, consisting of 18,989 specimens belonging to Corvidae species collected between 2013 and 2022: every year from May to November birds are captured or shot and tested for WNV genome presence. We found that the incidence peaks between mid-July and late August, infected corvids seem on average 17% more likely to be captured with respect to susceptible ones and seroprevalence was estimated to be larger than other years at the end of 2018, consistent with the anomalous number of recorded human infections. Thanks to our modelling study we quantified WNV infection dynamics in the corvid community, which is still poorly investigated despite its importance for the virus circulation. To the best of our knowledge, this is among the first studies providing quantitative information on infection and immunity in the bird population, yielding new important insights on WNV transmission dynamics.
Collapse
Affiliation(s)
- Alex De Nardi
- Department of Mathematics, University of Trento, Trento, Italy
| | - Giovanni Marini
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, TN, Italy
- Epilab-JRU, FEM-FBK Joint Research Unit, Trento, Italy
| | - Ilaria Dorigatti
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Roberto Rosà
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, TN, Italy
- Center Agriculture Food Environment, University of Trento, San Michele all’Adige, TN, Italy
| | - Marco Tamba
- Istituto Zooprofilattico Sperimentale Della Lombardia e Dell’Emilia-Romagna “B. Ubertini”, Brescia, Italy
| | - Luca Gelmini
- Istituto Zooprofilattico Sperimentale Della Lombardia e Dell’Emilia-Romagna “B. Ubertini”, Brescia, Italy
| | - Alice Prosperi
- Istituto Zooprofilattico Sperimentale Della Lombardia e Dell’Emilia-Romagna “B. Ubertini”, Brescia, Italy
| | - Francesco Menegale
- Department of Mathematics, University of Trento, Trento, Italy
- Center for Health Emergencies, Fondazione Bruno Kessler, Trento, Italy
| | - Piero Poletti
- Epilab-JRU, FEM-FBK Joint Research Unit, Trento, Italy
- Center for Health Emergencies, Fondazione Bruno Kessler, Trento, Italy
| | - Mattia Calzolari
- Istituto Zooprofilattico Sperimentale Della Lombardia e Dell’Emilia-Romagna “B. Ubertini”, Brescia, Italy
| | - Andrea Pugliese
- Department of Mathematics, University of Trento, Trento, Italy
| |
Collapse
|
2
|
Romiti F, Scicluna MT, Censi F, Micarelli F, Puccica S, Carvelli A, Sala MG, Del Lesto I, Casini R, De Liberato C, Tofani S. Is it time to consider west Nile and Usutu viruses endemic in central Italy? Virus Res 2025; 355:199557. [PMID: 40081763 PMCID: PMC11957532 DOI: 10.1016/j.virusres.2025.199557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
West Nile (WNV) and Usutu (USUV) viruses co-circulated in a region of Central Italy (Lazio) in 2018, as evidenced by the detection of WNV in the nervous tissues of symptomatic horses and USUV in blood donors and mosquito pools. To assess whether these viruses were endemic in the region, we analysed: 1) diapausing Culex pipiens mosquitoes collected during the winter seasons 2022-2023 and 2023-2024, 2) Cx. pipiens mosquitoes collected during the adult activity period from April to November in 2022 and 2023 across 4 provinces, and 3) sera from 52 horses and tissues from 537 birds. Field-collected Cx. pipiens, including both diapausing and non-diapausing individuals, were tested in pools for WNV and USUV using real-time RT-PCR. Serum samples from horses were tested with two WNV ELISA assays, IgM and IgG, while bird tissues were tested for both viruses via real-time RT-PCR. A total of 18,834 Cx. pipiens females were collected, including 9,812 mosquitoes during the winter seasons and 9,022 during the adult activity periods. Mosquitoes were tested in 623 pools, with all pools of diapausing mosquitoes testing negative for both viruses and 12 pools of non-diapausing mosquitoes positive to USUV. The WNV IgG positivity of 7 horse sera, which were negative at the beginning of the study period, was not confirmed by the virus neutralization test. All tissue samples were negative for WNV and USUV. Since WNV and USUV were not detected in diapausing mosquitoes, there was no evidence of the two viruses endemicity in the study area.
Collapse
Affiliation(s)
- Federico Romiti
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana M. Aleandri, Via Appia Nuova 1411, 00178, Rome, Italy.
| | - Maria Teresa Scicluna
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana M. Aleandri, Via Appia Nuova 1411, 00178, Rome, Italy
| | - Francesco Censi
- ASL Latina, Sanità Animale e Igiene degli Allevamenti, Via Nettunense, 04011 Aprilia (LT), Italy
| | - Florindo Micarelli
- ASL Latina, Sanità Animale e Igiene degli Allevamenti, Via Nettunense, 04011 Aprilia (LT), Italy
| | - Silvia Puccica
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana M. Aleandri, Via Appia Nuova 1411, 00178, Rome, Italy
| | - Andrea Carvelli
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana M. Aleandri, Via Appia Nuova 1411, 00178, Rome, Italy
| | - Marcello Giovanni Sala
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana M. Aleandri, Via Appia Nuova 1411, 00178, Rome, Italy
| | - Irene Del Lesto
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana M. Aleandri, Via Appia Nuova 1411, 00178, Rome, Italy
| | - Riccardo Casini
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana M. Aleandri, Via Appia Nuova 1411, 00178, Rome, Italy
| | - Claudio De Liberato
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana M. Aleandri, Via Appia Nuova 1411, 00178, Rome, Italy
| | - Silvia Tofani
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana M. Aleandri, Via Appia Nuova 1411, 00178, Rome, Italy
| |
Collapse
|
3
|
Gobbo F, Chiarello G, Sgubin S, Toniolo F, Gradoni F, Danca LI, Carlin S, Capello K, De Conti G, Bortolami A, Varotto M, Favero L, Brichese M, Russo F, Mutinelli F, Vogiatzis S, Pacenti M, Barzon L, Montarsi F. Integrated One Health Surveillance of West Nile Virus and Usutu Virus in the Veneto Region, Northeastern Italy, from 2022 to 2023. Pathogens 2025; 14:227. [PMID: 40137712 PMCID: PMC11945005 DOI: 10.3390/pathogens14030227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/18/2025] [Accepted: 02/24/2025] [Indexed: 03/29/2025] Open
Abstract
West Nile virus (WNV) and Usutu virus (USUV) are neurotropic mosquito-borne orthoflaviviruses maintained in an enzootic cycle, in which birds are amplifying/reservoir hosts, while humans and equids are dead-end hosts. As northern Italy, especially the Veneto Region, is considered an endemic area for WNV and USUV circulation, a surveillance plan based on a One Health approach has been implemented since 2008. This work reports the results of entomological, veterinary and human surveillances for WNV and USUV in the Veneto Region in 2022 and 2023, through virological and/or serological examinations. In 2022, 531 human WNV infections were recorded, and 93,213 mosquitoes and 2193 birds were virologically tested, showing infection rates (IRs) of 4.85% and 8.30%, respectively. The surveillance effort in 2023 provided these results: 56 human WNV infections were confirmed, and 133,648 mosquitoes and 1812 birds were virologically tested, showing IRs of 1.78% and 4.69%, respectively. This work highlights the exceptional circulation of WNV in the Veneto Region, due to the new re-introduction of WNV lineage 1 and co-circulation with WNV lineage 2. This paper confirms the efficacy of integrated surveillance for early warning of viral circulation and gives new insights about avian hosts involved in the enzootic cycle of orthoflavivirus in the endemic region of Italy.
Collapse
Affiliation(s)
- Federica Gobbo
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Legnaro, Italy; (G.C.); (S.S.); (F.T.); (F.G.); (L.I.D.); (S.C.); (K.C.); (G.D.C.); (A.B.); (M.V.); (F.M.); (F.M.)
| | - Giulia Chiarello
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Legnaro, Italy; (G.C.); (S.S.); (F.T.); (F.G.); (L.I.D.); (S.C.); (K.C.); (G.D.C.); (A.B.); (M.V.); (F.M.); (F.M.)
| | - Sofia Sgubin
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Legnaro, Italy; (G.C.); (S.S.); (F.T.); (F.G.); (L.I.D.); (S.C.); (K.C.); (G.D.C.); (A.B.); (M.V.); (F.M.); (F.M.)
| | - Federica Toniolo
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Legnaro, Italy; (G.C.); (S.S.); (F.T.); (F.G.); (L.I.D.); (S.C.); (K.C.); (G.D.C.); (A.B.); (M.V.); (F.M.); (F.M.)
| | - Francesco Gradoni
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Legnaro, Italy; (G.C.); (S.S.); (F.T.); (F.G.); (L.I.D.); (S.C.); (K.C.); (G.D.C.); (A.B.); (M.V.); (F.M.); (F.M.)
| | - Lidia Iustina Danca
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Legnaro, Italy; (G.C.); (S.S.); (F.T.); (F.G.); (L.I.D.); (S.C.); (K.C.); (G.D.C.); (A.B.); (M.V.); (F.M.); (F.M.)
| | - Sara Carlin
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Legnaro, Italy; (G.C.); (S.S.); (F.T.); (F.G.); (L.I.D.); (S.C.); (K.C.); (G.D.C.); (A.B.); (M.V.); (F.M.); (F.M.)
| | - Katia Capello
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Legnaro, Italy; (G.C.); (S.S.); (F.T.); (F.G.); (L.I.D.); (S.C.); (K.C.); (G.D.C.); (A.B.); (M.V.); (F.M.); (F.M.)
| | - Giacomo De Conti
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Legnaro, Italy; (G.C.); (S.S.); (F.T.); (F.G.); (L.I.D.); (S.C.); (K.C.); (G.D.C.); (A.B.); (M.V.); (F.M.); (F.M.)
| | - Alessio Bortolami
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Legnaro, Italy; (G.C.); (S.S.); (F.T.); (F.G.); (L.I.D.); (S.C.); (K.C.); (G.D.C.); (A.B.); (M.V.); (F.M.); (F.M.)
| | - Maria Varotto
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Legnaro, Italy; (G.C.); (S.S.); (F.T.); (F.G.); (L.I.D.); (S.C.); (K.C.); (G.D.C.); (A.B.); (M.V.); (F.M.); (F.M.)
| | - Laura Favero
- Department of Prevention, Food Safety and Veterinary, Veneto Region, 30123 Venice, Italy; (L.F.); (M.B.); (F.R.)
| | - Michele Brichese
- Department of Prevention, Food Safety and Veterinary, Veneto Region, 30123 Venice, Italy; (L.F.); (M.B.); (F.R.)
| | - Francesca Russo
- Department of Prevention, Food Safety and Veterinary, Veneto Region, 30123 Venice, Italy; (L.F.); (M.B.); (F.R.)
| | - Franco Mutinelli
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Legnaro, Italy; (G.C.); (S.S.); (F.T.); (F.G.); (L.I.D.); (S.C.); (K.C.); (G.D.C.); (A.B.); (M.V.); (F.M.); (F.M.)
| | - Stefania Vogiatzis
- Department of Molecular Medicine, University of Padua, Via A. Gabelli 63, 35121 Padova, Italy; (S.V.); (M.P.); (L.B.)
| | - Monia Pacenti
- Department of Molecular Medicine, University of Padua, Via A. Gabelli 63, 35121 Padova, Italy; (S.V.); (M.P.); (L.B.)
| | - Luisa Barzon
- Department of Molecular Medicine, University of Padua, Via A. Gabelli 63, 35121 Padova, Italy; (S.V.); (M.P.); (L.B.)
| | - Fabrizio Montarsi
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Legnaro, Italy; (G.C.); (S.S.); (F.T.); (F.G.); (L.I.D.); (S.C.); (K.C.); (G.D.C.); (A.B.); (M.V.); (F.M.); (F.M.)
| |
Collapse
|
4
|
De Angelis L, Ancona A, Moirano G, Oradini-Alacreu A, Bella A, Fabiani M, Petrone D, Piervitali E, Perconti W, Fraschetti P, Settanta G, Del Manso M, Fotakis EA, Riccardo F, Rizzo C, Pezzotti P, Mateo-Urdiales A. Case-time series study on the short-term impact of meteorological factors on West Nile Virus incidence in Italy at the local administrative unit level, 2012 to 2021. ENVIRONMENTAL RESEARCH 2025; 264:120320. [PMID: 39521261 DOI: 10.1016/j.envres.2024.120320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/21/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION West Nile Virus (WNV) is a significant public health concern in southern Europe, with meteorological, climatic, and environmental factors playing a critical role in its transmission dynamics. This study aims to assess the short-term effects of meteorological variables on the incidence of WNV in five Italian regions in Northern Italy from 2012 to 2021. METHODS Linking epidemiological data from the national surveillance system and local meteorological data, we conducted a Case-Time Series analysis to examine the association between WNV incident cases and temperature, humidity, and precipitation recorded up to ten weeks before case occurrence at the local administrative unit level. We employed conditional quasi-Poisson regression and distributed lag non-linear models to explore delayed effects. RESULTS Our study analyzed 1110 autochthonous human cases of WNV. We found a positive association between WNV incidence and weekly mean temperature recorded between one to nine weeks before the diagnosis, with the highest effect at one week lag (IRR: 1.16; 95% CI 1.11-1.21). An increase in weekly precipitations between the sixth and ninth weeks before diagnosis was also positively associated with WNV incidence. Variations in minimum weekly humidity did not show a consistent impact. CONCLUSIONS Our findings underscore the influence of temperature and, to a lesser extent, precipitation on WNV incidence in Northern Italy, highlighting the potential of climatic data in developing early warning systems for WNV surveillance and public health interventions.
Collapse
Affiliation(s)
- Luigi De Angelis
- Department of Infectious Diseases, Istituto Superiore Di Sanità, Rome, Italy; Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.
| | - Angela Ancona
- Department of Infectious Diseases, Istituto Superiore Di Sanità, Rome, Italy; School of Public Health, Vita-Salute San Raffaele University, 20132, Milan, Italy
| | - Giovenale Moirano
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin, Turin, Italy; Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Aurea Oradini-Alacreu
- Department of Infectious Diseases, Istituto Superiore Di Sanità, Rome, Italy; School of Public Health, Vita-Salute San Raffaele University, 20132, Milan, Italy
| | - Antonino Bella
- Department of Infectious Diseases, Istituto Superiore Di Sanità, Rome, Italy
| | - Massimo Fabiani
- Department of Infectious Diseases, Istituto Superiore Di Sanità, Rome, Italy
| | - Daniele Petrone
- Department of Infectious Diseases, Istituto Superiore Di Sanità, Rome, Italy; Department of Statistics, Sapienza University of Rome, 00185, Rome, Italy
| | - Emanuela Piervitali
- Italian Institute for Environmental Protection and Research (ISPRA), Rome, Italy
| | - Walter Perconti
- Italian Institute for Environmental Protection and Research (ISPRA), Rome, Italy
| | - Piero Fraschetti
- Italian Institute for Environmental Protection and Research (ISPRA), Rome, Italy
| | - Giulio Settanta
- Italian Institute for Environmental Protection and Research (ISPRA), Rome, Italy
| | - Martina Del Manso
- Department of Infectious Diseases, Istituto Superiore Di Sanità, Rome, Italy
| | - Emmanouil Alexandros Fotakis
- Department of Infectious Diseases, Istituto Superiore Di Sanità, Rome, Italy; European Programme on Intervention Epidemiology Training (EPIET), European Centre for Disease Prevention and Control, Stockholm, Sweden
| | - Flavia Riccardo
- Department of Infectious Diseases, Istituto Superiore Di Sanità, Rome, Italy
| | - Caterina Rizzo
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Patrizio Pezzotti
- Department of Infectious Diseases, Istituto Superiore Di Sanità, Rome, Italy
| | | |
Collapse
|
5
|
Congiu I, Cugini E, Smedile D, Romiti F, Iurescia M, Donati V, De Liberato C, Battisti A. Evaluation of Protocols for DNA Extraction from Individual Culex pipiens to Assess Pyrethroid Resistance Using Genotyping Real-Time Polymerase Chain Reaction. Methods Protoc 2024; 7:106. [PMID: 39728626 DOI: 10.3390/mps7060106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
Culex pipiens is a major vector of pathogens, including West Nile and Usutu viruses, that poses a significant public health risk. Monitoring pyrethroid resistance in mosquito populations is essential for effective vector control. This study aims to evaluate four DNA extraction protocols-QIAsymphony, DNAzol® Direct reagent, PrepMan® Ultra Sample Preparation Reagent (USPR), and Chelex® 100-to identify an optimal method to extract DNA from individual Culex pipiens, as part of a high-throughput surveillance of pyrethroid resistance using Real-Time Genotyping PCR. The target is the L1014F mutation in the voltage-sensitive sodium channel (VSSC) gene, which confers knockdown (kdr) resistance to pyrethroids. Mosquitoes were collected from wintering and summer habitats in Lazio and Tuscany, Italy, and DNA was extracted using the four methods. The quality, quantity, extraction time, and cost of the DNA were compared among the various methods. The PrepMan® USPR protocol was the most efficient, providing high-quality DNA with a 260/280 purity ratio within the optimal range at the lowest cost and in a short time. This method also demonstrated the highest amplification success rate (77%) in subsequent real-time PCR assays, making it the preferred protocol for large-scale genotyping studies.
Collapse
Affiliation(s)
- Ilaria Congiu
- General Diagnostic Department, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", 00178 Rome, Italy
| | - Elisa Cugini
- General Diagnostic Department, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", 00178 Rome, Italy
| | - Daniele Smedile
- General Diagnostic Department, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", 00178 Rome, Italy
| | - Federico Romiti
- General Diagnostic Department, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", 00178 Rome, Italy
| | - Manuela Iurescia
- General Diagnostic Department, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", 00178 Rome, Italy
| | - Valentina Donati
- General Diagnostic Department, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", 00178 Rome, Italy
| | - Claudio De Liberato
- General Diagnostic Department, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", 00178 Rome, Italy
| | - Antonio Battisti
- General Diagnostic Department, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", 00178 Rome, Italy
| |
Collapse
|
6
|
Carrasco L, Utrilla MJ, Fuentes-Romero B, Fernandez-Novo A, Martin-Maldonado B. West Nile Virus: An Update Focusing on Southern Europe. Microorganisms 2024; 12:2623. [PMID: 39770826 PMCID: PMC11677777 DOI: 10.3390/microorganisms12122623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/04/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
West Nile Virus (WNV) is a zoonotic, vector-borne pathogen affecting humans and animals, particularly in Europe. The virus is primarily transmitted through mosquitoes that infect birds, which serve as the main reservoirs. Humans and horses are incidental hosts. This review focuses on the epidemiology of WNV in southern Europe, particularly its increasing prevalence. Methods included an extensive literature review and analysis of recent outbreaks. WNV is largely asymptomatic in humans, but a small percentage can develop West Nile neuroinvasive disease (WNND), leading to severe neurological symptoms and fatalities. Horses can also suffer from neurological complications, with high mortality rates. Climate change, migratory birds, and mosquito population dynamics contribute to the virus spread across Europe. Control efforts focus on vector management, and while vaccines are available for horses, none has been approved for humans. Surveillance, particularly of bird and mosquito populations, and further research into the virus molecular structure are crucial for understanding and mitigating future outbreaks.
Collapse
Affiliation(s)
- Lara Carrasco
- Department of Veterinary Medicine, Biomedical and Health Sciences School, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain; (M.J.U.); (B.F.-R.); (A.F.-N.); (B.M.-M.)
| | - Maria Jose Utrilla
- Department of Veterinary Medicine, Biomedical and Health Sciences School, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain; (M.J.U.); (B.F.-R.); (A.F.-N.); (B.M.-M.)
| | - Beatriz Fuentes-Romero
- Department of Veterinary Medicine, Biomedical and Health Sciences School, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain; (M.J.U.); (B.F.-R.); (A.F.-N.); (B.M.-M.)
- Veterinary Hospital, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain
| | - Aitor Fernandez-Novo
- Department of Veterinary Medicine, Biomedical and Health Sciences School, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain; (M.J.U.); (B.F.-R.); (A.F.-N.); (B.M.-M.)
| | - Barbara Martin-Maldonado
- Department of Veterinary Medicine, Biomedical and Health Sciences School, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain; (M.J.U.); (B.F.-R.); (A.F.-N.); (B.M.-M.)
| |
Collapse
|
7
|
Silverj A, Mencattelli G, Monaco F, Iapaolo F, Teodori L, Leone A, Polci A, Curini V, Di Domenico M, Secondini B, Di Lollo V, Ancora M, Di Gennaro A, Morelli D, Perrotta MG, Marini G, Rosà R, Segata N, Rota-Stabelli O, Rizzoli A, Savini G, West Nile Virus Working Group. Origin and evolution of West Nile virus lineage 1 in Italy. Epidemiol Infect 2024; 152:e150. [PMID: 39620707 PMCID: PMC11626449 DOI: 10.1017/s0950268824001420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 07/10/2024] [Accepted: 09/03/2024] [Indexed: 12/11/2024] Open
Abstract
West Nile virus (WNV) is a mosquito-borne pathogen that can infect humans, equids, and many bird species, posing a threat to their health. It consists of eight lineages, with Lineage 1 (L1) and Lineage 2 (L2) being the most prevalent and pathogenic. Italy is one of the hardest-hit European nations, with 330 neurological cases and 37 fatalities in humans in the 2021-2022 season, in which the L1 re-emerged after several years of low circulation. We assembled a database comprising all publicly available WNV genomes, along with 31 new Italian strains of WNV L1 sequenced in this study, to trace their evolutionary history using phylodynamics and phylogeography. Our analysis suggests that WNV L1 may have initially entered Italy from Northern Africa around 1985 and indicates a connection between European and Western Mediterranean countries, with two distinct strains circulating within Italy. Furthermore, we identified new genetic mutations that are typical of the Italian strains and that can be tested in future studies to assess their pathogenicity. Our research clarifies the dynamics of WNV L1 in Italy, provides a comprehensive dataset of genome sequences for future reference, and underscores the critical need for continuous and coordinated surveillance efforts between Europe and Africa.
Collapse
Affiliation(s)
- Andrea Silverj
- Centre Agriculture Food Environment, University of Trento, San Michele all’Adige, Trento, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
- Department CIBIO, University of Trento, Trento, Italy
| | - Giulia Mencattelli
- Centre Agriculture Food Environment, University of Trento, San Michele all’Adige, Trento, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - Federica Monaco
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - Federica Iapaolo
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - Liana Teodori
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - Alessandra Leone
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - Andrea Polci
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - Valentina Curini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - Marco Di Domenico
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - Barbara Secondini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - Valeria Di Lollo
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - Massimo Ancora
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - Annapia Di Gennaro
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - Daniela Morelli
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | | | - Giovanni Marini
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | - Roberto Rosà
- Centre Agriculture Food Environment, University of Trento, San Michele all’Adige, Trento, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy
| | - Omar Rota-Stabelli
- Centre Agriculture Food Environment, University of Trento, San Michele all’Adige, Trento, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
- Department CIBIO, University of Trento, Trento, Italy
| | - Annapaola Rizzoli
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Giovanni Savini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - West Nile Virus Working Group
- The members of the West Nile virus working group are listed in the group authorship list, located in supplementary materials
| |
Collapse
|
8
|
Grassi L, Drigo M, Zelená H, Pasotto D, Cassini R, Mondin A, Franzo G, Tucciarone CM, Ossola M, Vidorin E, Menandro ML. Wild ungulates as sentinels of flaviviruses and tick-borne zoonotic pathogen circulation: an Italian perspective. BMC Vet Res 2023; 19:155. [PMID: 37710273 PMCID: PMC10500747 DOI: 10.1186/s12917-023-03717-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND Vector-borne zoonotic diseases are a concerning issue in Europe. Lyme disease and tick-borne encephalitis virus (TBEV) have been reported in several countries with a large impact on public health; other emerging pathogens, such as Rickettsiales, and mosquito-borne flaviviruses have been increasingly reported. All these pathogens are linked to wild ungulates playing roles as tick feeders, spreaders, and sentinels for pathogen circulation. This study evaluated the prevalence of TBEV, Borrelia burgdorferi sensu lato, Rickettsia spp., Ehrlichia spp., and Coxiella spp. by biomolecular screening of blood samples and ticks collected from wild ungulates. Ungulates were also screened by ELISA and virus neutralization tests for flaviviral antibody detection. RESULTS A total of 274 blood samples were collected from several wild ungulate species, as well as 406 Ixodes ricinus, which were feeding on them. Blood samples tested positive for B. burgdorferi s.l. (1.1%; 0-2.3%) and Rickettsia spp. (1.1%; 0-2.3%) and showed an overall flaviviral seroprevalence of 30.6% (22.1-39.2%): 26.1% (17.9-34.3%) for TBEV, 3.6% (0.1-7.1%) for Usutu virus and 0.9% (0-2.7%) for West Nile virus. Ticks were pooled when possible and yielded 331 tick samples that tested positive for B. burgdorferi s.l. (8.8%; 5.8-11.8%), Rickettsia spp. (26.6%; 21.8-31.2%) and Neoehrlichia mikurensis (1.2%; 0-2.4%). TBEV and Coxiella spp. were not detected in either blood or tick samples. CONCLUSIONS This research highlighted a high prevalence of several tick-borne zoonotic pathogens and high seroprevalence for flaviviruses in both hilly and alpine areas. For the first time, an alpine chamois tested positive for anti-TBEV antibodies. Ungulate species are of particular interest due to their sentinel role in flavivirus circulation and their indirect role in tick-borne diseases and maintenance as Ixodes feeders and spreaders.
Collapse
Affiliation(s)
- Laura Grassi
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università, 16, Legnaro, PD 35020 Italy
| | - Michele Drigo
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università, 16, Legnaro, PD 35020 Italy
| | - Hana Zelená
- Department of Virology, Institute of Public Health, Ostrava, Czech Republic
| | - Daniela Pasotto
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università, 16, Legnaro, PD 35020 Italy
| | - Rudi Cassini
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università, 16, Legnaro, PD 35020 Italy
| | - Alessandra Mondin
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università, 16, Legnaro, PD 35020 Italy
| | - Giovanni Franzo
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università, 16, Legnaro, PD 35020 Italy
| | - Claudia Maria Tucciarone
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università, 16, Legnaro, PD 35020 Italy
| | - Martina Ossola
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università, 16, Legnaro, PD 35020 Italy
| | - Elena Vidorin
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università, 16, Legnaro, PD 35020 Italy
| | - Maria Luisa Menandro
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università, 16, Legnaro, PD 35020 Italy
| |
Collapse
|
9
|
Manzi S, Nelli L, Fortuna C, Severini F, Toma L, Di Luca M, Michelutti A, Bertola M, Gradoni F, Toniolo F, Sgubin S, Lista F, Pazienza M, Montarsi F, Pombi M. A modified BG-Sentinel trap equipped with FTA card as a novel tool for mosquito-borne disease surveillance: a field test for flavivirus detection. Sci Rep 2023; 13:12840. [PMID: 37553350 PMCID: PMC10409816 DOI: 10.1038/s41598-023-39857-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023] Open
Abstract
Early detection of pathogens in vectors is important in preventing the spread of arboviral diseases, providing a timely indicator of pathogen circulation before outbreaks occur. However, entomological surveillance may face logistical constraints, such as maintaining the cold chain, and resource limitations, such as the field and laboratory workload of mosquito processing. We propose an FTA card-based trapping system that aims to simplify both field and laboratory phases of arbovirus surveillance. We modified a BG-Sentinel trap to include a mosquito collection chamber and a sugar feeding source through an FTA card soaked in a long-lasting viscous solution of honey and hydroxy-cellulose hydrogel. The FTA card ensures environmental preservation of nucleic acids, allowing continuous collection and feeding activity of specimens for several days and reducing the effort required for viral detection. We tested the trap prototype during two field seasons (2019 and 2021) in North-eastern Italy and compared it to CDC-CO2 trapping applied in West Nile and Usutu virus regional surveillance. Collections by the BG-FTA approach detected high species diversity, including Culex pipiens, Aedes albopictus, Culex modestus, Anopheles maculipennis sensu lato and Ochlerotatus caspius. When used for two-days sampling, the BG-FTA trap performed equally to CDC also for the WNV-major vector Cx. pipiens. The FTA cards detected both WNV and USUV, confirming the reliability of this novel approach to detect viral circulation in infectious mosquitoes. We recommend this surveillance approach as a particularly useful alternative in multi-target surveillance, for sampling in remote areas and in contexts characterized by high mosquito densities and diversity.
Collapse
Affiliation(s)
- Sara Manzi
- Dipartimento di Sanità Pubblica e Malattie Infettive, Sapienza Università di Roma, Rome, Italy
| | - Luca Nelli
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Claudia Fortuna
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy
| | - Francesco Severini
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy
| | - Luciano Toma
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy
| | - M Di Luca
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy
| | - Alice Michelutti
- Istituto Zooprofilattico Sperimentale Delle Venezie, Legnaro, Italy
| | - Michela Bertola
- Istituto Zooprofilattico Sperimentale Delle Venezie, Legnaro, Italy
| | | | - Federica Toniolo
- Istituto Zooprofilattico Sperimentale Delle Venezie, Legnaro, Italy
| | - Sofia Sgubin
- Istituto Zooprofilattico Sperimentale Delle Venezie, Legnaro, Italy
| | - Florigio Lista
- Istituto di Scienze Biomediche Della Difesa, Rome, Italy
| | | | | | - Marco Pombi
- Dipartimento di Sanità Pubblica e Malattie Infettive, Sapienza Università di Roma, Rome, Italy.
| |
Collapse
|
10
|
Mohammed MN, Yasmin AR, Ramanoon SZ, Noraniza MA, Ooi PT, Ain-Najwa MY, Natasha JA, Nur-Fazila SH, Arshad SS, Mohammed HO. Serological and molecular surveillance of West Nile virus in domesticated mammals of peninsular Malaysia. Front Vet Sci 2023; 10:1126199. [PMID: 37456951 PMCID: PMC10343450 DOI: 10.3389/fvets.2023.1126199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
West Nile virus is a mosquito-borne neurotropic pathogen with a wide host range that constitutes a significant risk to public and animal health. There is limited information on WNV infection in domesticated mammals in Malaysia; however, current reports indicate infections in birds, macaques, bats and pigs from Malaysia. In this study, 203 serum samples from cattle, goats, and horses were tested for the presence of anti-WNV IgG using a competitive enzyme-linked immunosorbent assay (c-ELISA). Additionally, using one-step RT-PCR, nasopharyngeal swabs were analyzed for WNV RNA from all 203 animals in this study. The WNV seroprevalence was 32.53% (27/83) at 95% CI (0.2342-0.4319) in cattle, 48.27% (14/29) at 95% CI (0.3139-0.6557) in goats and 53.84% (49/91) at 95% CI (0.4366-0.6373) in horses. Cross-reactive JEV antibodies were detected in two cattle and 34 horses. None of the cattle or goats tested positive for WNV RT-PCR. Seven horses were positive for WNV RT-PCR, a molecular prevalence of 7.69% (7/91) at 95% CI (0.0353-0.1528). This is the first reported detection of WNV in domesticated mammals of Malaysia, a significant addition to the growing evidence that WNV is being transmitted from vectors to susceptible hosts in Malaysia.
Collapse
Affiliation(s)
- Mohammed Nma Mohammed
- Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Animal Production, School of Agriculture and Agricultural Technology, Federal University of Technology, Minna, Nigeria
| | - Abd Rahaman Yasmin
- Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
- Laboratory of Vaccines and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Siti Zubaidah Ramanoon
- Department of Farm and Exotic Animal Medicine and Surgery, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | - Mohd Adzahan Noraniza
- Department of Farm and Exotic Animal Medicine and Surgery, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | - Peck Toung Ooi
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | - Mohd Yuseri Ain-Najwa
- Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | - Jafar Ali Natasha
- Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | - Saulol Hamid Nur-Fazila
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | - Siti Suri Arshad
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | - Hussni Omar Mohammed
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| |
Collapse
|
11
|
Fesce E, Marini G, Rosà R, Lelli D, Cerioli MP, Chiari M, Farioli M, Ferrari N. Understanding West Nile virus transmission: Mathematical modelling to quantify the most critical parameters to predict infection dynamics. PLoS Negl Trop Dis 2023; 17:e0010252. [PMID: 37126524 PMCID: PMC10174579 DOI: 10.1371/journal.pntd.0010252] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/11/2023] [Accepted: 04/01/2023] [Indexed: 05/02/2023] Open
Abstract
West Nile disease is a vector-borne disease caused by West Nile virus (WNV), involving mosquitoes as vectors and birds as maintenance hosts. Humans and other mammals can be infected via mosquito bites, developing symptoms ranging from mild fever to severe neurological infection. Due to the worldwide spread of WNV, human infection risk is high in several countries. Nevertheless, there are still several knowledge gaps regarding WNV dynamics. Several aspects of transmission taking place between birds and mosquitoes, such as the length of the infectious period in birds or mosquito biting rates, are still not fully understood, and precise quantitative estimates are still lacking for the European species involved. This lack of knowledge affects the precision of parameter values when modelling the infection, consequently resulting in a potential impairment of the reliability of model simulations and predictions and in a lack of the overall understanding of WNV spread. Further investigations are thus needed to better understand these aspects, but field studies, especially those involving several wild species, such as in the case of WNV, can be challenging. Thus, it becomes crucial to identify which transmission processes most influence the dynamics of WNV. In the present work, we propose a sensitivity analysis to investigate which of the selected epidemiological parameters of WNV have the largest impact on the spread of the infection. Based on a mathematical model simulating WNV spread into the Lombardy region (northern Italy), the basic reproduction number of the infection was estimated and used to quantify infection spread into mosquitoes and birds. Then, we quantified how variations in four epidemiological parameters representing the duration of the infectious period in birds, the mosquito biting rate on birds, and the competence and susceptibility to infection of different bird species might affect WNV transmission. Our study highlights that knowledge gaps in WNV epidemiology affect the precision in several parameters. Although all investigated parameters affected the spread of WNV and the modelling precision, the duration of the infectious period in birds and mosquito biting rate are the most impactful, pointing out the need of focusing future studies on a better estimate of these parameters at first. In addition, our study suggests that a WNV outbreak is very likely to occur in all areas with suitable temperatures, highlighting the wide area where WNV represents a serious risk for public health.
Collapse
Affiliation(s)
- Elisa Fesce
- Department of Veterinary Medicine and Animal Science (DiVAS), Wildlife Health management & One Health Lab, Università degli Studi di Milano, Lodi (LO), Italy
| | - Giovanni Marini
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento (TN), Italy
| | - Roberto Rosà
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento (TN), Italy
- Center Agriculture Food Environment, University of Trento, San Michele all’Adige, Trento (TN), Italy
| | - Davide Lelli
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini” (IZSLER), Brescia (BS), Italy
| | - Monica Pierangela Cerioli
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini” (IZSLER), Brescia (BS), Italy
| | - Mario Chiari
- Regional Veterinary Authority of Lombardy, Direzione Generale Welfare, Milano (MI), Italy
| | - Marco Farioli
- Regional Veterinary Authority of Lombardy, Direzione Generale Welfare, Milano (MI), Italy
| | - Nicola Ferrari
- Department of Veterinary Medicine and Animal Science (DiVAS), Wildlife Health management & One Health Lab, Università degli Studi di Milano, Lodi (LO), Italy
- Centro di Ricerca Coordinata Epidemiologia e Sorveglianza Molecolare delle Infezioni, Università degli Studi di Milano, Milano (MI), Italy
| |
Collapse
|
12
|
L'Ambert G, Gendrot M, Briolant S, Nguyen A, Pages S, Bosio L, Palomo V, Gomez N, Benoit N, Savini H, Pradines B, Durand GA, Leparc-Goffart I, Grard G, Fontaine A. Analysis of trapped mosquito excreta as a noninvasive method to reveal biodiversity and arbovirus circulation. Mol Ecol Resour 2023; 23:410-423. [PMID: 36161270 PMCID: PMC10092573 DOI: 10.1111/1755-0998.13716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 09/02/2022] [Accepted: 09/16/2022] [Indexed: 01/04/2023]
Abstract
Emerging and endemic mosquito-borne viruses can be difficult to detect and monitor because they often cause asymptomatic infections in human or vertebrate animals or cause nonspecific febrile illness with a short recovery waiting period. Some of these pathogens circulate into complex cryptic cycles involving several animal species as reservoir or amplifying hosts. Detection of cases in vertebrate hosts can be complemented by entomological surveillance, but this method is not adapted to low infection rates in mosquito populations that typically occur in low or nonendemic areas. We identified West Nile virus circulation in Camargue, a wetland area in South of France, using a cost-effective xenomonitoring method based on the molecular detection of virus in excreta from trapped mosquitoes. We also succeeded at identifying the mosquito species community on several sampling sites, together with the vertebrate hosts on which they fed prior to being captured using amplicon-based metabarcoding on mosquito excreta without processing any mosquitoes. Mosquito excreta-based virus surveillance can complement standard surveillance methods because it is cost-effective and does not require personnel with a strong background in entomology. This strategy can also be used to noninvasively explore the ecological network underlying arbovirus circulation.
Collapse
Affiliation(s)
- Grégory L'Ambert
- Entente Interdépartementale Pour la Démoustication du Littoral Méditerranéen (EID Méditerranée), Montpellier, France
| | - Mathieu Gendrot
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées (IRBA), Marseille, France.,IRD, SSA, AP-HM, VITROME, Aix Marseille Univ, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Sébastien Briolant
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées (IRBA), Marseille, France.,IRD, SSA, AP-HM, VITROME, Aix Marseille Univ, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | | | - Sylvain Pages
- Entente Interdépartementale Pour la Démoustication du Littoral Méditerranéen (EID Méditerranée), Montpellier, France
| | - Laurent Bosio
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207), Marseille, France.,Centre National de Référence des Arbovirus, Institut de Recherche Biomédicale des Armées, Marseille, France
| | - Vincent Palomo
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207), Marseille, France.,Centre National de Référence des Arbovirus, Institut de Recherche Biomédicale des Armées, Marseille, France
| | - Nicolas Gomez
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées (IRBA), Marseille, France.,IRD, SSA, AP-HM, VITROME, Aix Marseille Univ, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Nicolas Benoit
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées (IRBA), Marseille, France.,IRD, SSA, AP-HM, VITROME, Aix Marseille Univ, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Hélène Savini
- IRD, SSA, AP-HM, VITROME, Aix Marseille Univ, Marseille, France.,Service des Maladies Infectieuses, Hôpital d'Instruction des Armées Laveran, Marseille, France
| | - Bruno Pradines
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées (IRBA), Marseille, France.,IRD, SSA, AP-HM, VITROME, Aix Marseille Univ, Marseille, France.,IHU Méditerranée Infection, Marseille, France.,Centre National de Référence du Paludisme, Marseille, France
| | - Guillaume André Durand
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207), Marseille, France.,Centre National de Référence des Arbovirus, Institut de Recherche Biomédicale des Armées, Marseille, France
| | - Isabelle Leparc-Goffart
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207), Marseille, France.,Centre National de Référence des Arbovirus, Institut de Recherche Biomédicale des Armées, Marseille, France
| | - Gilda Grard
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207), Marseille, France.,Centre National de Référence des Arbovirus, Institut de Recherche Biomédicale des Armées, Marseille, France
| | - Albin Fontaine
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées (IRBA), Marseille, France.,IRD, SSA, AP-HM, VITROME, Aix Marseille Univ, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| |
Collapse
|
13
|
Cioni G, Fedeli A, Bellandi G, Squillante R, Zuccotti M, Buffini G. Atypical presentation of West Nile encephalitis. ITALIAN JOURNAL OF MEDICINE 2023. [DOI: 10.4081/itjm.2022.1535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
West Nile virus (WNV) causes both sporadic infection and outbreaks that may be associated with severe neurologic involvement. The infection is transmitted to humans mainly by mosquito bites, and the virus is preserved in a cycle in which birds are the main host. The typical involvement of the central nervous system is completely indistinguishable from meningitis and encephalitis related to other pathogens.
In this report we described the atypical presentation of a WNV meningoencephalitis in a 81-y.o. female patient, showing psychiatric manifestations at the onset. Anamnestic information was essential to progress to the correct diagnosis. Targeted search for the causative agent of meningoencephalitis was perfected after learning that the patient lived in an area adjacent to a nature reserve.
Collapse
|
14
|
Mencattelli G, Silverj A, Iapaolo F, Ippoliti C, Teodori L, Di Gennaro A, Curini V, Candeloro L, Conte A, Polci A, Morelli D, Perrotta MG, Marini G, Rosà R, Monaco F, Segata N, Rizzoli A, Rota-Stabelli O, Savini G, West Nile Working Group. Epidemiological and Evolutionary Analysis of West Nile Virus Lineage 2 in Italy. Viruses 2022; 15:35. [PMID: 36680076 PMCID: PMC9866873 DOI: 10.3390/v15010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
West Nile virus (WNV) is a mosquito-borne virus potentially causing serious illness in humans and other animals. Since 2004, several studies have highlighted the progressive spread of WNV Lineage 2 (L2) in Europe, with Italy being one of the countries with the highest number of cases of West Nile disease reported. In this paper, we give an overview of the epidemiological and genetic features characterising the spread and evolution of WNV L2 in Italy, leveraging data obtained from national surveillance activities between 2011 and 2021, including 46 newly assembled genomes that were analysed under both phylogeographic and phylodynamic frameworks. In addition, to better understand the seasonal patterns of the virus, we used a machine learning model predicting areas at high-risk of WNV spread. Our results show a progressive increase in WNV L2 in Italy, clarifying the dynamics of interregional circulation, with no significant introductions from other countries in recent years. Moreover, the predicting model identified the presence of suitable conditions for the 2022 earlier and wider spread of WNV in Italy, underlining the importance of using quantitative models for early warning detection of WNV outbreaks. Taken together, these findings can be used as a reference to develop new strategies to mitigate the impact of the pathogen on human and other animal health in endemic areas and new regions.
Collapse
Affiliation(s)
- Giulia Mencattelli
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy
- Centre Agriculture Food Environment, University of Trento, 38010 San Michele all’Adige, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy
| | - Andrea Silverj
- Centre Agriculture Food Environment, University of Trento, 38010 San Michele all’Adige, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy
- Department CIBIO, University of Trento, 38123 Trento, Italy
| | - Federica Iapaolo
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy
| | - Carla Ippoliti
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy
| | - Liana Teodori
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy
| | - Annapia Di Gennaro
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy
| | - Valentina Curini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy
| | - Luca Candeloro
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy
| | - Annamaria Conte
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy
| | - Andrea Polci
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy
| | - Daniela Morelli
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy
| | | | - Giovanni Marini
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy
| | - Roberto Rosà
- Centre Agriculture Food Environment, University of Trento, 38010 San Michele all’Adige, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy
| | - Federica Monaco
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy
| | - Nicola Segata
- Department CIBIO, University of Trento, 38123 Trento, Italy
| | - Annapaola Rizzoli
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy
| | - Omar Rota-Stabelli
- Centre Agriculture Food Environment, University of Trento, 38010 San Michele all’Adige, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy
| | - Giovanni Savini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy
| | | |
Collapse
|
15
|
Cavalleri JV, Korbacska‐Kutasi O, Leblond A, Paillot R, Pusterla N, Steinmann E, Tomlinson J. European College of Equine Internal Medicine consensus statement on equine flaviviridae infections in Europe. Vet Med (Auckl) 2022; 36:1858-1871. [DOI: 10.1111/jvim.16581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/19/2022] [Indexed: 11/13/2022]
Affiliation(s)
- Jessika‐M. V. Cavalleri
- Clinical Unit of Equine Internal Medicine, Department for Companion Animals and Horses University of Veterinary Medicine Vienna Vienna Austria
| | - Orsolya Korbacska‐Kutasi
- Clinical Unit of Equine Internal Medicine, Department for Companion Animals and Horses University of Veterinary Medicine Vienna Vienna Austria
- Department for Animal Breeding, Nutrition and Laboratory Animal Science University of Veterinary Medicine Budapest Hungary
- Hungarian Academy of Sciences—Szent Istvan University (MTA‐SZIE) Large Animal Clinical Research Group Üllő Dóra major Hungary
| | - Agnès Leblond
- EPIA, UMR 0346, Epidemiologie des maladies animales et zoonotiques, INRAE, VetAgro Sup University of Lyon Marcy l'Etoile France
| | - Romain Paillot
- School of Equine and Veterinary Physiotherapy Writtle University College Chelmsford UK
| | - Nicola Pusterla
- Department of Medicine and Epidemiology, School of Veterinary Medicine University of California Davis California USA
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Faculty of Medicine Ruhr University Bochum Bochum Germany
| | - Joy Tomlinson
- Baker Institute for Animal Health Cornell University College of Veterinary Medicine Ithaca New York USA
| |
Collapse
|
16
|
Atama NC, Chestakova IV, de Bruin E, van den Berg TJ, Munger E, Reusken C, Oude Munnink BB, van der Jeugd H, van den Brand JM, Koopmans MP, Sikkema RS. Evaluation of the use of alternative sample types for mosquito-borne flavivirus surveillance: Using Usutu virus as a model. One Health 2022; 15:100456. [DOI: 10.1016/j.onehlt.2022.100456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/14/2022] [Accepted: 11/11/2022] [Indexed: 11/15/2022] Open
|
17
|
Ganzenberg S, Sieg M, Ziegler U, Pfeffer M, Vahlenkamp TW, Hörügel U, Groschup MH, Lohmann KL. Seroprevalence and Risk Factors for Equine West Nile Virus Infections in Eastern Germany, 2020. Viruses 2022; 14:v14061191. [PMID: 35746662 PMCID: PMC9229339 DOI: 10.3390/v14061191] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 11/16/2022] Open
Abstract
West Nile virus (WNV) infections were first detected in Germany in 2018, but information about WNV seroprevalence in horses is limited. The study’s overall goal was to gather information that would help veterinarians, horse owners, and veterinary-, and public health- authorities understand the spread of WNV in Germany and direct protective measures. For this purpose, WNV seroprevalence was determined in counties with and without previously registered WNV infections in horses, and risk factors for seropositivity were estimated. The cohort consisted of privately owned horses from nine counties in Eastern Germany. A total of 940 serum samples was tested by competitive panflavivirus ELISA (cELISA), and reactive samples were further tested by WNV IgM capture ELISA and confirmed by virus neutralization test (VNT). Information about potential risk factors was recorded by questionnaire and analyzed by logistic regression. A total of 106 serum samples showed antibodies against flaviviruses by cELISA, of which six tested positive for WNV IgM. The VNT verified a WNV infection for 54 samples (50.9%), while 35 sera neutralized tick-borne encephalitis virus (33.0%), and eight sera neutralized Usutu virus (7.5%). Hence, seroprevalence for WNV infection was 5.8% on average and was significantly higher in counties with previously registered infections (p = 0.005). The risk factor analysis showed breed type (pony), housing in counties with previously registered infections, housing type (24 h turn-out), and presence of outdoor shelter as the main significant risk factors for seropositivity. In conclusion, we estimated the extent of WNV infection in the resident horse population in Eastern Germany and showed that seroprevalence was higher in counties with previously registered equine WNV infections.
Collapse
Affiliation(s)
- Stefanie Ganzenberg
- Department for Horses, Faculty of Veterinary Medicine, Leipzig University, 04103 Leipzig, Germany;
| | - Michael Sieg
- Institute of Virology, Faculty of Veterinary Medicine, Leipzig University, 04103 Leipzig, Germany; (M.S.); (T.W.V.)
| | - Ute Ziegler
- Friedrich-Loeffler Institut (FLI), Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, 17493 Greifswald-Insel Riems, Germany; (U.Z.); (M.H.G.)
| | - Martin Pfeffer
- Institute of Animal Hygiene and Veterinary Public Health, Faculty of Veterinary Medicine, Leipzig University, 04103 Leipzig, Germany;
| | - Thomas W. Vahlenkamp
- Institute of Virology, Faculty of Veterinary Medicine, Leipzig University, 04103 Leipzig, Germany; (M.S.); (T.W.V.)
| | - Uwe Hörügel
- Animal Diseases Fund Saxony, Pferdegesundheitsdienst, 01099 Dresden, Germany;
| | - Martin H. Groschup
- Friedrich-Loeffler Institut (FLI), Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, 17493 Greifswald-Insel Riems, Germany; (U.Z.); (M.H.G.)
| | - Katharina L. Lohmann
- Department for Horses, Faculty of Veterinary Medicine, Leipzig University, 04103 Leipzig, Germany;
- Correspondence: ; Tel.: +49-341-97-38224
| |
Collapse
|
18
|
Assessment of the Costs Related to West Nile Virus Monitoring in Lombardy Region (Italy) between 2014 and 2018. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095541. [PMID: 35564939 PMCID: PMC9101130 DOI: 10.3390/ijerph19095541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 12/04/2022]
Abstract
In Italy, the West Nile Virus surveillance plan considers a multidisciplinary approach to identify the presence of the virus in the environment (entomological, ornithological, and equine surveillance) and to determine the risk of infections through potentially infected donors (blood and organ donors). The costs associated with the surveillance program for the Lombardy Region between 2014 and 2018 were estimated. The costs of the program were compared with a scenario in which the program was not implemented, requiring individual blood donation nucleic acid amplification tests (NAT) to detect the presence of WNV in human samples throughout the seasonal period of vector presence. Considering the five-year period, the application of the environmental/veterinary surveillance program allowed a reduction in costs incurred in the Lombardy Region of 7.7 million EUR. An integrated surveillance system, including birds, mosquito vectors, and dead-end hosts such as horses and humans, can prevent viral transmission to the human population, as well as anticipate the detection of WNV using NAT in blood and organ donors. The surveillance program within a One Health context has given the possibility to both document the expansion of the endemic area of WNV in northern Italy and avoid most of the NAT-related costs.
Collapse
|
19
|
Mencattelli G, Iapaolo F, Monaco F, Fusco G, de Martinis C, Portanti O, Di Gennaro A, Curini V, Polci A, Berjaoui S, Di Felice E, Rosà R, Rizzoli A, Savini G. West Nile Virus Lineage 1 in Italy: Newly Introduced or a Re-Occurrence of a Previously Circulating Strain? Viruses 2021; 14:v14010064. [PMID: 35062268 PMCID: PMC8780300 DOI: 10.3390/v14010064] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/18/2021] [Accepted: 12/28/2021] [Indexed: 12/13/2022] Open
Abstract
In Italy, West Nile virus (WNV) appeared for the first time in the Tuscany region in 1998. After 10 years of absence, it re-appeared in the areas surrounding the Po River delta, affecting eight provinces in three regions. Thereafter, WNV epidemics caused by genetically divergent isolates have been documented every year in the country. Since 2018, only WNV Lineage 2 has been reported in the Italian territory. In October 2020, WNV Lineage 1 (WNV-L1) re-emerged in Italy, in the Campania region. This is the first occurrence of WNV-L1 detection in the Italian territory since 2017. WNV was detected in the internal organs of a goshawk (Accipiter gentilis) and a kestrel (Falco tinnunculus). The RNA extracted in the goshawk tissue samples was sequenced, and a Bayesian phylogenetic analysis was performed by a maximum-likelihood tree. Genome analysis, conducted on the goshawk WNV complete genome sequence, indicates that the strain belongs to the WNV-L1 Western-Mediterranean (WMed) cluster. Moreover, a close phylogenetic similarity is observed between the goshawk strain, the 2008-2011 group of Italian sequences, and European strains belonging to the Wmed cluster. Our results evidence the possibility of both a new re-introduction or unnoticed silent circulation in Italy, and the strong importance of keeping the WNV surveillance system in the Italian territory active.
Collapse
Affiliation(s)
- Giulia Mencattelli
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (F.I.); (F.M.); (O.P.); (A.D.G.); (V.C.); (A.P.); (S.B.); (E.D.F.); (G.S.)
- Center Agriculture Food Environment, University of Trento, 38098 Trento, Italy;
- Fondazione Edmund Mach, San Michele all’Adige, 38098 Trento, Italy;
- Correspondence:
| | - Federica Iapaolo
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (F.I.); (F.M.); (O.P.); (A.D.G.); (V.C.); (A.P.); (S.B.); (E.D.F.); (G.S.)
| | - Federica Monaco
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (F.I.); (F.M.); (O.P.); (A.D.G.); (V.C.); (A.P.); (S.B.); (E.D.F.); (G.S.)
| | - Giovanna Fusco
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Napoli, Italy; (G.F.); (C.d.M.)
| | - Claudio de Martinis
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Napoli, Italy; (G.F.); (C.d.M.)
| | - Ottavio Portanti
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (F.I.); (F.M.); (O.P.); (A.D.G.); (V.C.); (A.P.); (S.B.); (E.D.F.); (G.S.)
| | - Annapia Di Gennaro
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (F.I.); (F.M.); (O.P.); (A.D.G.); (V.C.); (A.P.); (S.B.); (E.D.F.); (G.S.)
| | - Valentina Curini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (F.I.); (F.M.); (O.P.); (A.D.G.); (V.C.); (A.P.); (S.B.); (E.D.F.); (G.S.)
| | - Andrea Polci
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (F.I.); (F.M.); (O.P.); (A.D.G.); (V.C.); (A.P.); (S.B.); (E.D.F.); (G.S.)
| | - Shadia Berjaoui
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (F.I.); (F.M.); (O.P.); (A.D.G.); (V.C.); (A.P.); (S.B.); (E.D.F.); (G.S.)
| | - Elisabetta Di Felice
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (F.I.); (F.M.); (O.P.); (A.D.G.); (V.C.); (A.P.); (S.B.); (E.D.F.); (G.S.)
| | - Roberto Rosà
- Center Agriculture Food Environment, University of Trento, 38098 Trento, Italy;
| | | | - Giovanni Savini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (F.I.); (F.M.); (O.P.); (A.D.G.); (V.C.); (A.P.); (S.B.); (E.D.F.); (G.S.)
| |
Collapse
|
20
|
Macaluso G, Gucciardi F, Guercio A, Blanda V, La Russa F, Torina A, Mira F, Bella SD, Lastra A, Giacchino I, Castronovo C, Vitale G, Purpari G. First neuroinvasive human case of West Nile Disease in Southern Italy: Results of the 'One Health' approach. Vet Med Sci 2021; 7:2463-2472. [PMID: 34505400 PMCID: PMC8604128 DOI: 10.1002/vms3.591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Background West Nile Disease (WND) is a zoonotic mosquito‐borne infection involving viral pathogens, human and animal hosts, vectors and environment. Cooperation among medical, veterinary and entomological fields has been promoted by the Italian Public Health Authorities, and an integrated West Nile Virus (WNV) Surveillance Plan has been in force in Italy since 2016 to prevent the transmission risk of WND to humans through an early detection of viral circulation by animal and entomological surveillance. This managing model is unique in Europe. Objectives This survey aimed at presenting the ‘One Health’ approach applied in 2016 to the first autochthonous human case of West Nile Neuroinvasive Disease (WNND) in Sicily (Southern Italy). Methods Serological (anti‐WNV IgM and IgG ELISA, anti‐WNV neutralizing antibodies) and molecular tests were conducted on blood, liquor and urine of a 38‐year‐old man with encephalitis and meningitis. Overall, 2704 adult culicides from 160 mosquito catches were morphologically identified. Female mosquitoes were analysed in pools for WNV RNA detection. Serological (anti‐WNV IgM and IgG ELISA) and molecular analyses for WNV were carried out in 11 horses, 271 chickens and two dogs sampled in farms around the man's residence. Results and conclusions WNND was confirmed by serological analysis on patient's liquor and serum. Collected mosquito species included Culex pipiens (93.56%, CI95% 92.64%–94.49%), Aedes albopictus (5.25%, CI95% 4.41%–6.09%), Culex hortensis (0.59%, CI95% 0.30%–0.88%), Culiseta longiareolata (0.55%, CI95% 0.27%–0.83%) and Anopheles maculipennis s.l. (0.04%, CI95% –0.04% to 0.11%). Mosquito pools were negative for WNV RNA. Two dogs (100%) and two horses (18.18%, CI95% –4.61 to 40.97%) resulted positive for anti‐WNV specific antibodies. The ‘One Health’ approach allowed to report the first human neuroinvasive WND in Sicily and to confirm the local circulation of WNV in animals of the same area where the clinical case occurred, defining the autochthonous origin of the infection.
Collapse
Affiliation(s)
- Giusi Macaluso
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Palermo, Italy
| | - Francesca Gucciardi
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Palermo, Italy
| | - Annalisa Guercio
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Palermo, Italy
| | - Valeria Blanda
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Palermo, Italy
| | - Francesco La Russa
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Palermo, Italy
| | - Alessandra Torina
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Palermo, Italy
| | - Francesco Mira
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Palermo, Italy
| | - Santina Di Bella
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Palermo, Italy
| | - Antonio Lastra
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Palermo, Italy
| | - Ilenia Giacchino
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Palermo, Italy
| | - Calogero Castronovo
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Palermo, Italy
| | - Giustina Vitale
- U.O. Dipartimento Diagnostica Specialistica Patologie Diffusive, Regional Reference Center for diseases transmitted by arthropods, Azienda Ospedaliera Universitaria "P. Giaccone", Palermo, Italy
| | - Giuseppa Purpari
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Palermo, Italy
| |
Collapse
|
21
|
Marchi S, Montomoli E, Viviani S, Giannecchini S, Stincarelli MA, Lanave G, Camero M, Alessio C, Coluccio R, Trombetta CM. West Nile Virus Seroprevalence in the Italian Tuscany Region from 2016 to 2019. Pathogens 2021; 10:pathogens10070844. [PMID: 34357994 PMCID: PMC8308575 DOI: 10.3390/pathogens10070844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 11/16/2022] Open
Abstract
Although in humans West Nile virus is mainly the cause of mild or sub-clinical infections, in some cases a neuroinvasive disease may occur predominantly in the elderly. In Italy, several cases of West Nile virus infection are reported every year. Tuscany was the first Italian region where the virus was identified; however, to date only two cases of infection have been reported in humans. This study aimed at evaluating the prevalence of antibodies against West Nile virus in the area of Siena Province to estimate the recent circulation of the virus. Human serum samples collected in Siena between 2016 and 2019 were tested for the presence of antibodies against West Nile virus by ELISA. ELISA positive samples were further evaluated using immunofluorescence, micro neutralization, and plaque reduction neutralization assays. In total, 1.9% (95% CI 1.2–3.1) and 1.4% (95% CI 0.8–2.4) of samples collected in 2016–2017 were positive by ELISA and immunofluorescence assay, respectively. Neutralizing antibodies were found in 0.7% (95% CI 0.3–1.5) of samples. Additionally, 0.9% (95% CI 0.4–1.7) and 0.65% (95% CI 0.3–1.45) of samples collected in 2018–2019 were positive by ELISA and immunofluorescence assay, respectively. The prevalence of neutralizing antibodies was 0.5% (95% CI 0.2–1.3). Although no human cases of West Nile infection were reported in the area between 2016 and 2019 and virus prevalence in the area of Siena Province was as low as less than 1%, the active asymptomatic circulation confirms the potential concern of this emergent virus for human health.
Collapse
Affiliation(s)
- Serena Marchi
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (E.M.); (S.V.); (C.A.); (R.C.); (C.M.T.)
- Correspondence:
| | - Emanuele Montomoli
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (E.M.); (S.V.); (C.A.); (R.C.); (C.M.T.)
- VisMederi S.r.l., 53100 Siena, Italy
| | - Simonetta Viviani
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (E.M.); (S.V.); (C.A.); (R.C.); (C.M.T.)
| | - Simone Giannecchini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Firenze, Italy; (S.G.); (M.A.S.)
| | - Maria A. Stincarelli
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Firenze, Italy; (S.G.); (M.A.S.)
| | - Gianvito Lanave
- Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Italy; (G.L.); (M.C.)
| | - Michele Camero
- Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Italy; (G.L.); (M.C.)
| | - Caterina Alessio
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (E.M.); (S.V.); (C.A.); (R.C.); (C.M.T.)
| | - Rosa Coluccio
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (E.M.); (S.V.); (C.A.); (R.C.); (C.M.T.)
- VisMederi S.r.l., 53100 Siena, Italy
| | - Claudia Maria Trombetta
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (E.M.); (S.V.); (C.A.); (R.C.); (C.M.T.)
| |
Collapse
|
22
|
Scaramozzino P, Carvelli A, Bruni G, Cappiello G, Censi F, Magliano A, Manna G, Ricci I, Rombolà P, Romiti F, Rosone F, Sala MG, Scicluna MT, Vaglio S, De Liberato C. West Nile and Usutu viruses co-circulation in central Italy: outcomes of the 2018 integrated surveillance. Parasit Vectors 2021; 14:243. [PMID: 33962673 PMCID: PMC8103664 DOI: 10.1186/s13071-021-04736-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/21/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND West Nile (WNV) and Usutu (USUV) are emerging vector-borne zoonotic flaviviruses. They are antigenically very similar, sharing the same life cycle with birds as amplification host, Culicidae as vector, and man/horse as dead-end host. They can co-circulate in an overlapping geographic range. In Europe, surveillance plans annually detect several outbreaks. METHODS In Italy, a WNV/USUV surveillance plan is in place through passive and active surveillance. After a 2018 WNV outbreak, a reinforced integrated risk-based surveillance was performed in four municipalities through clinical and serological surveillance in horses, Culicidae catches, and testing on human blood-based products for transfusion. RESULTS Eight WNV cases in eight equine holdings were detected. Twenty-three mosquitoe catches were performed and 2367 specimens of Culex pipiens caught; 17 pools were USUV positive. A total of 8889 human blood donations were tested, and two asymptomatic donors were USUV positive. CONCLUSIONS Different surveillance components simultaneously detected WNV only in horses and USUV only in humans and mosquitoes. While in endemic areas (i.e. northern Italy) entomological surveillance is successfully used as an early detection warning, this method in central Italy seems ineffective. To achieve a high level of sensitivity, the entomological trapping effort should probably exceed a reasonable balance between cost and performance. Besides, WNV/USUV early detection can be addressed by horses and birds. Further research is needed to adapt the surveillance components in different epidemiological contexts.
Collapse
Affiliation(s)
- Paola Scaramozzino
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178, Roma, Italy
| | - Andrea Carvelli
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178, Roma, Italy.
| | - Gianpaolo Bruni
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178, Roma, Italy
| | | | - Francesco Censi
- Azienda Sanitaria Locale di Latina, Via Pier Luigi Nervi, Latina Fiori, 04100, Latina, Italy
| | - Adele Magliano
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178, Roma, Italy
| | - Giuseppe Manna
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178, Roma, Italy
| | - Ida Ricci
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178, Roma, Italy
| | - Pasquale Rombolà
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178, Roma, Italy
| | - Federico Romiti
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178, Roma, Italy
| | - Francesca Rosone
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178, Roma, Italy
| | - Marcello Giovanni Sala
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178, Roma, Italy
| | - Maria Teresa Scicluna
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178, Roma, Italy
| | - Stefania Vaglio
- Università degli Studi di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185, Roma, Italy
| | - Claudio De Liberato
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178, Roma, Italy
| |
Collapse
|
23
|
Michelutti A, Toniolo F, Bertola M, Grillini M, Simonato G, Ravagnan S, Montarsi F. Occurrence of Phlebotomine sand flies (Diptera: Psychodidae) in the northeastern plain of Italy. Parasit Vectors 2021; 14:164. [PMID: 33761950 PMCID: PMC7992963 DOI: 10.1186/s13071-021-04652-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/19/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Recent climate and environmental changes have resulted in the geographical expansion of Mediterranean Leishmania infantum vectors towards northern latitudes and higher altitudes in different European countries, including Italy, where new foci of canine leishmaniasis have been observed in the northern part of the country. Northern Italy is also an endemic area for mosquito-borne diseases. During entomological surveillance for West Nile virus, mosquitoes and other hematophagous insects were collected, including Phlebotomine sand flies. In this study, we report the results of Phlebotomine sand fly identification during the entomological surveillance conducted from 2017 to 2019. METHODS The northeastern plain of Italy was divided by a grid with a length of 15 km, and a CO2-CDC trap was placed in each geographical unit. The traps were placed ~ 15 km apart. For each sampling site, geographical coordinates were recorded. The traps were operated every two weeks, from May to November. Sand flies collected by CO2-CDC traps were identified by morphological and molecular analysis. RESULTS From 2017 to 2019, a total of 303 sand flies belonging to the species Phlebotomus perniciosus (n = 273), Sergentomyia minuta (n = 5), P. mascittii (n = 2) and P. perfiliewi (n = 2) were collected, along with 21 unidentified specimens. The trend for P. perniciosus collected during the entomological surveillance showed two peaks, one in July and a smaller one in September. Sand flies were collected at different altitudes, from -2 m above sea level (a.s.l.) to 145 m a.s.l. No correlation was observed between altitude and sand fly abundance. CONCLUSIONS Four Phlebotomine sand fly species are reported for the first time from the northeastern plain of Italy. Except for S. minuta, the sand fly species are competent vectors of Leishmania parasites and other arboviruses in the Mediterranean Basin. These findings demonstrate the ability of sand flies to colonize new environments previously considered unsuitable for these insects. Even though the density of the Phlebotomine sand fly population in the plain areas is consistently lower than that observed in hilly and low mountainous areas, the presence of these vectors could herald the onset of epidemic outbreaks of leishmaniasis and other arthropod-borne diseases in areas previously considered non-endemic.
Collapse
Affiliation(s)
- Alice Michelutti
- Laboratory of Parasitology, Micology and Medical Entomology, Istituto Zooprofilattico Sperimentale Delle Venezie, Legnaro (PD), Italy.
| | - Federica Toniolo
- Laboratory of Parasitology, Micology and Medical Entomology, Istituto Zooprofilattico Sperimentale Delle Venezie, Legnaro (PD), Italy
| | - Michela Bertola
- Laboratory of Parasitology, Micology and Medical Entomology, Istituto Zooprofilattico Sperimentale Delle Venezie, Legnaro (PD), Italy
| | - Marika Grillini
- Department of Animal Medicine, Production and Health, University of Padova, Legnaro (PD), Italy
| | - Giulia Simonato
- Department of Animal Medicine, Production and Health, University of Padova, Legnaro (PD), Italy
| | - Silvia Ravagnan
- Laboratory of Parasitology, Micology and Medical Entomology, Istituto Zooprofilattico Sperimentale Delle Venezie, Legnaro (PD), Italy
| | - Fabrizio Montarsi
- Laboratory of Parasitology, Micology and Medical Entomology, Istituto Zooprofilattico Sperimentale Delle Venezie, Legnaro (PD), Italy
| |
Collapse
|
24
|
Contrasted Epidemiological Patterns of West Nile Virus Lineages 1 and 2 Infections in France from 2015 to 2019. Pathogens 2020; 9:pathogens9110908. [PMID: 33143300 PMCID: PMC7692118 DOI: 10.3390/pathogens9110908] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023] Open
Abstract
Since 2015, annual West Nile virus (WNV) outbreaks of varying intensities have been reported in France. Recent intensification of enzootic WNV circulation was observed in the South of France with most horse cases detected in 2015 (n = 49), 2018 (n = 13), and 2019 (n = 13). A WNV lineage 1 strain was isolated from a horse suffering from West Nile neuro-invasive disease (WNND) during the 2015 episode in the Camargue area. A breaking point in WNV epidemiology was achieved in 2018, when WNV lineage 2 emerged in Southeastern areas. This virus most probably originated from WNV spread from Northern Italy and caused WNND in humans and the death of diurnal raptors. WNV lineage 2 emergence was associated with the most important human WNV epidemics identified so far in France (n = 26, including seven WNND cases and two infections in blood and organ donors). Two other major findings were the detection of WNV in areas with no or limited history of WNV circulation (Alpes-Maritimes in 2018, Corsica in 2018–2019, and Var in 2019) and distinct spatial distribution of human and horse WNV cases. These new data reinforce the necessity to enhance French WNV surveillance to better anticipate future WNV epidemics and epizootics and to improve the safety of blood and organ donations.
Collapse
|
25
|
Predicting WNV Circulation in Italy Using Earth Observation Data and Extreme Gradient Boosting Model. REMOTE SENSING 2020. [DOI: 10.3390/rs12183064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
West Nile Disease (WND) is one of the most spread zoonosis in Italy and Europe caused by a vector-borne virus. Its transmission cycle is well understood, with birds acting as the primary hosts and mosquito vectors transmitting the virus to other birds, while humans and horses are occasional dead-end hosts. Identifying suitable environmental conditions across large areas containing multiple species of potential hosts and vectors can be difficult. The recent and massive availability of Earth Observation data and the continuous development of innovative Machine Learning methods can contribute to automatically identify patterns in big datasets and to make highly accurate identification of areas at risk. In this paper, we investigated the West Nile Virus (WNV) circulation in relation to Land Surface Temperature, Normalized Difference Vegetation Index and Surface Soil Moisture collected during the 160 days before the infection took place, with the aim of evaluating the predictive capacity of lagged remotely sensed variables in the identification of areas at risk for WNV circulation. WNV detection in mosquitoes, birds and horses in 2017, 2018 and 2019, has been collected from the National Information System for Animal Disease Notification. An Extreme Gradient Boosting model was trained with data from 2017 and 2018 and tested for the 2019 epidemic, predicting the spatio-temporal WNV circulation two weeks in advance with an overall accuracy of 0.84. This work lays the basis for a future early warning system that could alert public authorities when climatic and environmental conditions become favourable to the onset and spread of WNV.
Collapse
|
26
|
Pathogenicity of West Nile Virus Lineage 1 to German Poultry. Vaccines (Basel) 2020; 8:vaccines8030507. [PMID: 32899581 PMCID: PMC7563189 DOI: 10.3390/vaccines8030507] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/27/2020] [Accepted: 09/02/2020] [Indexed: 12/17/2022] Open
Abstract
West Nile virus (WNV) is a mosquito-borne virus that originates from Africa and at present causes neurological disease in birds, horses, and humans all around the globe. As West Nile fever is an important zoonosis, the role of free-ranging domestic poultry as a source of infection for humans should be evaluated. This study examined the pathogenicity of an Italian WNV lineage 1 strain for domestic poultry (chickens, ducks, and geese) held in Germany. All three species were subcutaneously injected with WNV, and the most susceptible species was also inoculated via mosquito bite. All species developed various degrees of viremia, viral shedding (oropharyngeal and cloacal), virus accumulation, and pathomorphological lesions. Geese were most susceptible, displaying the highest viremia levels. The tested waterfowl, geese, and especially ducks proved to be ideal sentinel species for WNV due to their high antibody levels and relatively low blood viral loads. None of the three poultry species can function as a reservoir/amplifying host for WNV, as their viremia levels most likely do not suffice to infect feeding mosquitoes. Due to the recent appearance of WNV in Germany, future pathogenicity studies should also include local virus strains.
Collapse
|
27
|
Fornasiero D, Mazzucato M, Barbujani M, Montarsi F, Capelli G, Mulatti P. Inter-annual variability of the effects of intrinsic and extrinsic drivers affecting West Nile virus vector Culex pipiens population dynamics in northeastern Italy. Parasit Vectors 2020; 13:271. [PMID: 32471479 PMCID: PMC7260749 DOI: 10.1186/s13071-020-04143-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 05/21/2020] [Indexed: 11/10/2022] Open
Abstract
Background Vector-borne infectious diseases (VBDs) represent a major public health concern worldwide. Among VBDs, West Nile virus (WNV) showed an increasingly wider spread in temperate regions of Europe, including Italy. During the last decade, WNV outbreaks have been recurrently reported in mosquitoes, horses, wild birds, and humans, showing great variability in the temporal and spatial distribution pattern. Due to the complexity of the environment–host–vector–pathogen interaction and the incomplete understanding of the epidemiological pattern of the disease, WNV occurrences can be difficult to predict. The analyses of ecological drivers responsible for the earlier WNV reactivation and transmission are pivotal; in particular, variations in the vector population dynamics may represent a key point of the recent success of WNV and, more in general, of the VBDs. Methods We investigated the variations of Culex pipiens population abundance using environmental, climatic and trapping data obtained over nine years (2010 to 2018) through the WNV entomological surveillance programme implemented in northeastern Italy. An information theoretic approach (IT-AICc) and model-averaging algorithms were implemented to examine the relationship between the seasonal mosquito population growth rates and both intrinsic (e.g. intraspecific competition) and extrinsic (e.g. environmental and climatic variables) predictors, to identify the most significant combinations of variables outlining the Cx. pipiens population dynamics. Results Population abundance (proxy for intraspecific competition) and length of daylight were the predominant factors regulating the mosquito population dynamics; however, other drivers encompassing environmental and climatic variables also had a significant impact, although sometimes counterintuitive and not univocal. The analyses of the single-year datasets, and the comparison with the results obtained from the overall model (all data available from 2010 to 2018), highlighted remarkable differences in coefficients magnitude, sign and significance. These outcomes indicate that different combinations of factors might have distinctive, and sometimes divergent, effects on mosquito population dynamics. Conclusions A more realistic acquaintance of the intrinsic and extrinsic mechanisms of mosquito population fluctuations in relation to continuous changes in environmental and climatic conditions is paramount to properly reinforce VBDs risk-based surveillance activities, to plan targeted density control measures and to implement effective early detection programmes.![]()
Collapse
Affiliation(s)
- Diletta Fornasiero
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020, Legnaro, Padua, Italy.
| | - Matteo Mazzucato
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020, Legnaro, Padua, Italy
| | - Marco Barbujani
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020, Legnaro, Padua, Italy
| | - Fabrizio Montarsi
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020, Legnaro, Padua, Italy
| | - Gioia Capelli
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020, Legnaro, Padua, Italy
| | - Paolo Mulatti
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020, Legnaro, Padua, Italy
| |
Collapse
|
28
|
Calzolari M, Angelini P, Bolzoni L, Bonilauri P, Cagarelli R, Canziani S, Cereda D, Cerioli MP, Chiari M, Galletti G, Moirano G, Tamba M, Torri D, Trogu T, Albieri A, Bellini R, Lelli D. Enhanced West Nile Virus Circulation in the Emilia-Romagna and Lombardy Regions (Northern Italy) in 2018 Detected by Entomological Surveillance. Front Vet Sci 2020; 7:243. [PMID: 32432132 PMCID: PMC7214930 DOI: 10.3389/fvets.2020.00243] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 04/09/2020] [Indexed: 02/02/2023] Open
Abstract
With several human cases reported annually since 2008 and the unapparent risk of infection of blood donors, the West Nile virus (WNV) is emerging as an important health issue in Europe. Italy, as well as other European countries, experienced a recrudescence of the virus circulation in 2018, which led to an increased number of human cases. An integrated surveillance plan was activated in the Emilia-Romagna and Lombardy regions (Northern Italy) since 2008 in order to monitor the intensity and timing of WNV circulation. A fundamental part of this plan consists in entomological surveillance. In 2018, the surveillance plan made it possible to collect 385,293 mosquitoes in 163 stations in the two Regions. In total 269,147 Culex mosquitoes were grouped into 2,337 pools and tested for WNV, which was detected in 232 pools. Circulation started in the central part of the Emilia-Romagna region in the middle of June, about one month before the previous seasons. Circulation suddenly expanded to the rest of the region and reached the Lombardy region in the middle of July. WNV circulated more intensively in the eastern part of the surveyed area, as confirmed by the highest number of human cases. A relationship between the number of mosquitoes collected and the virus incidence emerged, but the data obtained highlighted that the probability of detecting the virus in a given site was less than expected with a higher number of collected mosquitoes. A significant relationship was observed between the temperature recorded one week before the sampling and the number of collected mosquitoes, as well as between the estimated number of WNV-positive mosquitoes and the temperature recorded two weeks before the sampling. The two weeks delay in the influence of temperature on the positive mosquitoes is in line with the time of the virus extrinsic incubation in the mosquito. This finding confirms that temperature is one of the principal drivers in WNV mosquito infection. The surveillance system demonstrated the ability to detect the virus circulation early, particularly in areas where circulation was more intense. This allowed evaluating the effect of mosquito abundance and weather factors on virus circulation.
Collapse
Affiliation(s)
- Mattia Calzolari
- Istituto Zooprofilattico Sperimentale Della Lombardia e Dell'Emilia-Romagna, B. Ubertini, Brescia, Italy
| | - Paola Angelini
- Regional Health Authority of Emilia-Romagna, Bologna, Italy
| | - Luca Bolzoni
- Istituto Zooprofilattico Sperimentale Della Lombardia e Dell'Emilia-Romagna, B. Ubertini, Brescia, Italy
| | - Paolo Bonilauri
- Istituto Zooprofilattico Sperimentale Della Lombardia e Dell'Emilia-Romagna, B. Ubertini, Brescia, Italy
| | | | - Sabrina Canziani
- Istituto Zooprofilattico Sperimentale Della Lombardia e Dell'Emilia-Romagna, B. Ubertini, Brescia, Italy
| | | | - Monica Pierangela Cerioli
- Istituto Zooprofilattico Sperimentale Della Lombardia e Dell'Emilia-Romagna, B. Ubertini, Brescia, Italy
| | - Mario Chiari
- Regional Health Authority of Lombardy, Milan, Italy
| | - Giorgio Galletti
- Istituto Zooprofilattico Sperimentale Della Lombardia e Dell'Emilia-Romagna, B. Ubertini, Brescia, Italy
| | - Giovenale Moirano
- Cancer Epidemiology Unit-CERMS, Department of Medical Sciences, University of Turin and CPO-Piemonte, Turin, Italy
| | - Marco Tamba
- Istituto Zooprofilattico Sperimentale Della Lombardia e Dell'Emilia-Romagna, B. Ubertini, Brescia, Italy
| | - Deborah Torri
- Istituto Zooprofilattico Sperimentale Della Lombardia e Dell'Emilia-Romagna, B. Ubertini, Brescia, Italy
| | - Tiziana Trogu
- Istituto Zooprofilattico Sperimentale Della Lombardia e Dell'Emilia-Romagna, B. Ubertini, Brescia, Italy
| | | | - Romeo Bellini
- Centro Agricoltura Ambiente "G. Nicoli", Crevalcore, Italy
| | - Davide Lelli
- Istituto Zooprofilattico Sperimentale Della Lombardia e Dell'Emilia-Romagna, B. Ubertini, Brescia, Italy
| |
Collapse
|
29
|
West Nile or Usutu Virus? A Three-Year Follow-Up of Humoral and Cellular Response in a Group of Asymptomatic Blood Donors. Viruses 2020; 12:v12020157. [PMID: 32013152 PMCID: PMC7077259 DOI: 10.3390/v12020157] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/17/2020] [Accepted: 01/26/2020] [Indexed: 11/23/2022] Open
Abstract
West Nile virus (WNV) and Usutu virus (USUV) are two related arboviruses (genus Flavivirus, family Flaviviridae), with birds as a reservoir and mosquitoes as transmitting vectors. In recent years, WNV epidemiology changed in many European countries with increased frequency of outbreaks posing the issue of virus transmission risks by blood transfusion. USUV emerged for the first time in birds of the Tuscany region (Italy) in 1996 and in 2001 in Austria. While WNV is responsible for both mild and neuroinvasive diseases, USUV infection is usually asymptomatic and neuroinvasive symptoms are rare. Since WNV and USUV co-circulate, the surveillance of WNV allows also the detection of USUV. Due to the great similarity in amino-acid sequence of major surface proteins of the two viruses, a high cross-reactivity can lead to misinterpretation of serological results. Here, we report the results obtained from 54 asymptomatic blood donors during a three-year follow-up showing an unexpected high positivity (46.3%) for USUV. The major obstacle encountered in the differential diagnosis between these two viruses was the high cross-reactivity found in neutralizing antibodies (NT Abs) and, in some cases, a long follow-up was mandatory for a correct diagnosis. Moreover, two new ELISpot assays were developed for a more rapid and specific differential diagnosis, especially in those cases in which NT Abs were not determinant. Using a combination of Enzyme-linked immunospot (ELISpot), molecular, and serological tests, we could identify 25 true positive WNV and 25 true positive USUV blood donors. Our data highlight the importance of raising awareness for increasing USUV infections in endemic countries involved in blood transfusion and organ donation.
Collapse
|
30
|
Viral Equine Encephalitis, a Growing Threat to the Horse Population in Europe? Viruses 2019; 12:v12010023. [PMID: 31878129 PMCID: PMC7019608 DOI: 10.3390/v12010023] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/15/2019] [Accepted: 12/17/2019] [Indexed: 12/20/2022] Open
Abstract
Neurological disorders represent an important sanitary and economic threat for the equine industry worldwide. Among nervous diseases, viral encephalitis is of growing concern, due to the emergence of arboviruses and to the high contagiosity of herpesvirus-infected horses. The nature, severity and duration of the clinical signs could be different depending on the etiological agent and its virulence. However, definite diagnosis generally requires the implementation of combinations of direct and/or indirect screening assays in specialized laboratories. The equine practitioner, involved in a mission of prevention and surveillance, plays an important role in the clinical diagnosis of viral encephalitis. The general management of the horse is essentially supportive, focused on controlling pain and inflammation within the central nervous system, preventing injuries and providing supportive care. Despite its high medical relevance and economic impact in the equine industry, vaccines are not always available and there is no specific antiviral therapy. In this review, the major virological, clinical and epidemiological features of the main neuropathogenic viruses inducing encephalitis in equids in Europe, including rabies virus (Rhabdoviridae), Equid herpesviruses (Herpesviridae), Borna disease virus (Bornaviridae) and West Nile virus (Flaviviridae), as well as exotic viruses, will be presented.
Collapse
|
31
|
Evolutionary Dynamics of the Lineage 2 West Nile Virus That Caused the Largest European Epidemic: Italy 2011-2018. Viruses 2019; 11:v11090814. [PMID: 31484295 PMCID: PMC6784286 DOI: 10.3390/v11090814] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 01/10/2023] Open
Abstract
Lineage 2 West Nile virus (WNV) caused a vast epidemic in Europe in 2018, with the highest incidence being recorded in Italy. To reconstruct the evolutionary dynamics and epidemiological history of the virus in Italy, 53 envelope gene and 26 complete genome sequences obtained from human and animal samples were characterised by means of next-generation sequencing. Phylogenetic analysis revealed two Italian strains originating between 2010 and 2012: clade A, which apparently became extinct in 2013–2014, and clade B, which was responsible for the 2018 epidemic. The mean genetic distances in clade B increased over time and with the distance between sampling locations. Bayesian birth-death and coalescent skyline plots of the clade B showed that the effective number of infections and the effective reproduction number (Re) increased between 2015 and 2018. Our data suggest that WNV-2 entered Italy in 2011 as a result of one or a few penetration events. Clade B differentiated mainly as a result of genetic drift and purifying selection, leading to the appearance of multiple locally circulating sub-clades for different times. Phylodynamic analysis showed a current expansion of the infection among reservoir birds and/or vectors.
Collapse
|
32
|
Amini M, Hanafi-Bojd AA, Asghari S, Chavshin AR. The Potential of West Nile Virus Transmission Regarding the Environmental Factors Using Geographic Information System (GIS), West Azerbaijan Province, Iran. J Arthropod Borne Dis 2019; 13:27-38. [PMID: 31346533 PMCID: PMC6643016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 12/04/2018] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND West Nile fever, as an expanding zoonotic disease, has been reported from different creatures involved in the disease from Iran. In addition to biological mosquito-associated factors, various elements such as their activities, distribution, behavior and vectorial capacity could be affected by environmental factors. We determined the distribution of West Nile virus (WNV) vectors, the environmental factors affecting WNV transmission and the high-risk areas across West Azerbaijan Province (Northwestern Iran), regarding the potential of WNV transmission using Geographical Information System (GIS). METHODS Mosquitoes' larvae and adults were collected from different habitats of the province in 2015 and identified using standard morphological keys. The data regarding the distribution of mosquitoes across the studied area were organized in ArcMap databases. Inverse Distance Weighted (IDW) interpolation analysis was conducted on the data of synoptic stations to find climatic variables in the collection sites of different mosquito species. Layers of transmission-related environmental factors were categorized and weighed based on their effects on disease transmission. RESULTS Overall, 2813 samples of different mosquito species from different regions of the province were collected and identified. According to the GIS analysis, areas in the northeastern province, which have lower altitudes and slopes with higher temperatures and more water bodies, were found to have better condition for the activity of mosquitoes (as high-risk areas: hot spots). CONCLUSION The precision of our results was proven to be in line with previous study results that identified high-risk areas, where WNV-infected vectors were captured from these same areas.
Collapse
Affiliation(s)
- Mojtaba Amini
- Department of Medical Entomology and Vector Control, School of Public Health, Urmia University of Medical Sciences, Urmia, Iran
| | - Ahmad Ali Hanafi-Bojd
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sayyad Asghari
- Department of Geography, School of Humanities, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Ali Reza Chavshin
- Department of Medical Entomology and Vector Control, School of Public Health, Urmia University of Medical Sciences, Urmia, Iran
- Social Determinants of Health Research Center, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
33
|
Hedell R, Andersson MG, Faverjon C, Marcillaud-Pitel C, Leblond A, Mostad P. Surveillance of animal diseases through implementation of a Bayesian spatio-temporal model: A simulation example with neurological syndromes in horses and West Nile Virus. Prev Vet Med 2019; 162:95-106. [PMID: 30621904 DOI: 10.1016/j.prevetmed.2018.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 08/10/2018] [Accepted: 11/24/2018] [Indexed: 11/25/2022]
Abstract
A potentially sensitive way to detect disease outbreaks is syndromic surveillance, i.e. monitoring the number of syndromes reported in the population of interest, comparing it to the baseline rate, and drawing conclusions about outbreaks using statistical methods. A decision maker may use the results to take disease control actions or to initiate enhanced epidemiological investigations. In addition to the total count of syndromes there are often additional pieces of information to consider when assessing the probability of an outbreak. This includes clustering of syndromes in space and time as well as historical data on the occurrence of syndromes, seasonality of the disease, etc. In this paper, we show how Bayesian theory for syndromic surveillance applies to the occurrence of neurological syndromes in horses in France. Neurological syndromes in horses may be connected e.g. to West Nile Virus (WNV), a zoonotic disease of growing concern for public health in Europe. A Bayesian method for spatio-temporal cluster detection of syndromes and for determining the probability of an outbreak is presented. It is shown how surveillance can be performed simultaneously for a specific class of diseases (WNV or diseases similar to WNV in terms of the information available to the system) and a non-specific class of diseases (not similar to WNV in terms of the information available to the system). We also discuss some new extensions to the spatio-temporal models and the computational algorithms involved. It is shown step-by-step how data from historical WNV outbreaks and surveillance data for neurological syndromes can be used for model construction. The model is implemented using a Gibbs sampling procedure, and its sensitivity and specificity is evaluated. Finally, it is illustrated how predictive modelling of syndromes can be useful for decision making in animal health surveillance.
Collapse
Affiliation(s)
- Ronny Hedell
- Swedish National Forensic Centre, SE-581 94 Linköping, Sweden; Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, SE-412 96 Gothenburg, Sweden.
| | | | - Céline Faverjon
- Veterinary Public Health Institute, Vetsuisse Faculty, University of Bern, Schwarzenburgstrasse 155, 3097 Liebefeld, Switzerland.
| | - Christel Marcillaud-Pitel
- Réseau d'épidémio-surveillance en pathologie équine, rue Nelson Mandela, 14280 Saint Contest, France.
| | - Agnès Leblond
- EPIA, INRA, University of Lyon, VetAgro Sup, 69280 Marcy L'Etoile, France.
| | - Petter Mostad
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, SE-412 96 Gothenburg, Sweden.
| |
Collapse
|
34
|
Lustig Y, Sofer D, Bucris ED, Mendelson E. Surveillance and Diagnosis of West Nile Virus in the Face of Flavivirus Cross-Reactivity. Front Microbiol 2018; 9:2421. [PMID: 30369916 PMCID: PMC6194321 DOI: 10.3389/fmicb.2018.02421] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 09/21/2018] [Indexed: 01/20/2023] Open
Abstract
West Nile Virus (WNV) is an arthropod-borne flavivirus whose zoonotic cycle includes both mosquitoes and birds as amplifiers and humans and horses as dead-end hosts. In recent years WNV has been spreading globally and is currently endemic in Africa, The Middle East, India, Australia, central and southern Europe, and the Americas. Integrated surveillance schemes and environmental data aim to detect viral circulation and reduce the risk of infection for the human population emphasizing the critical role for One Health principles in public health. Approximately 20% of WNV infected patients develop West Nile Fever while in less than 1%, infection results in West Nile Neurological Disease. Currently, the diagnosis of WNV infection is primarily based on serology, since molecular identification of WNV RNA is unreliable due to the short viremia. The recent emergence of Zika virus epidemic in America and Asia has added another layer of complexity to WNV diagnosis due to significant cross-reactivity between several members of the Flaviviridae family such as Zika, dengue, Usutu, and West Nile viruses. Diagnosis is especially challenging in persons living in regions with flavivirus co-circulation as well as in travelers from WNV endemic countries traveling to Zika or dengue infected areas or vise-versa. Here, we review the recent studies implementing WNV surveillance of mosquitoes and birds within the One Health initiative. Furthermore, we discuss the utility of novel molecular methods, alongside traditional molecular and serological methods, in WNV diagnosis and epidemiological research.
Collapse
Affiliation(s)
- Yaniv Lustig
- Central Virology Laboratory, Ministry of Health, Sheba Medical Center, Ramat Gan, Israel
| | - Danit Sofer
- Central Virology Laboratory, Ministry of Health, Sheba Medical Center, Ramat Gan, Israel
| | - Efrat Dahan Bucris
- Central Virology Laboratory, Ministry of Health, Sheba Medical Center, Ramat Gan, Israel
| | - Ella Mendelson
- Central Virology Laboratory, Ministry of Health, Sheba Medical Center, Ramat Gan, Israel.,School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
35
|
West Nile virus transmission and human infection risk in Veneto (Italy): a modelling analysis. Sci Rep 2018; 8:14005. [PMID: 30228340 PMCID: PMC6143586 DOI: 10.1038/s41598-018-32401-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/07/2018] [Indexed: 11/08/2022] Open
Abstract
An intensified and continuous West Nile virus (WNV) spread across northern Italy has been observed since 2008, which caused more than one hundred reported human infections until 2016. Veneto is one of the Italian regions where WNV is considered endemic, and the greatest intensity of circulation was observed during 2013 and 2016. By using entomological data collected across the region in those years, we calibrated a temperature-driven mathematical model through a Bayesian approach that simulates the WNV infection in an avian population with seasonal demography. We considered two alternative routes of life cycle re-activation of the virus at the beginning of each vector breeding season: in the first one the virus is maintained by infected birds, in the other by diapausing mosquitoes previously infected. Afterwards, we computed seasonal risk curves for human infection and quantified how they translate into reported symptomatic cases. According to our results, WNV is more likely to be re-activated each year via previously infected mosquitoes. The highest probability of human infection is expected to occur in August, consistently with observations. Our epidemiological estimates can be of particular interest for public health authorities, to support decisions in term of designing efficient surveillance plans and preventive measures.
Collapse
|
36
|
Remoli ME, Fiorentini C, Marchi A, Di Renzi S, Vonesch N, Peri MV, Bastianini L, Rossi S, Bartoccini G, Kuttappasery ML, Ciufolini MG, Tomao P. Seroprevalence survey of arboviruses in workers from Tuscany, Italy. LA MEDICINA DEL LAVORO 2018; 109:125-131. [PMID: 29701628 PMCID: PMC7682178 DOI: 10.23749/mdl.v109i2.5024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 01/17/2018] [Indexed: 12/12/2022]
Abstract
Background: Arthropod-borne viruses (Arbovirus) play an important role among emerging and re-emerging infectious diseases and in the spreading of infections in new geographic areas. Although some arboviral infections may be asymptomatic or mild flu-like illnesses, many occur as severe forms of meningitis and meningoencephalitis. Objectives: To assess whether arboviral infections may be associated with occupational risk, in a population of agricultural and forestry workers potentially at high risk for arthropods bite and sting. Methods: A seroprevalence survey for arboviruses belonging to the genera Flaviviruses (West Nile, Tick-borne encephalitis and Usutu viruses) and Phlebovirus (Toscana virus) was carried out in Grosseto province (Tuscany, Italy). One hundred and one serum samples of occupationally exposed workers and 100 serum samples of not exposed workers were analyzed using commercial and home-made serological assays. Serological data were obtained in 2012 and analyzed according to demographic characteristics, recollection of insect-bites, and time spent in outdoor activities. Results: A total seropositivity of 10% (21/201) was observed for Toscana virus. No difference in seroprevalence for Toscana virus was observed among the exposed (10/101) versus the not exposed (11/100) workers. No seropositivity for West Nile, Usutu and Tick-borne encephalitis viruses was detected. Conclusions: Although circulation of Toscana virus is recognized in the study area, our results did not reveal a higher risk for workers exposed to arthropods bite and sting. Health surveillance programs remain useful to monitor the potential emergence of arboviruses.
Collapse
Affiliation(s)
- Maria Elena Remoli
- ISTITUTO SUPERIORE DI SANITÀ, Dipartimento di Malattie Infettive, Parassitarie e Immunomediate, Roma, Italy.
| | - Cristiano Fiorentini
- ISTITUTO SUPERIORE DI SANITÀ, Dipartimento di Malattie Infettive, Parassitarie e Immunomediate, Roma, Italy.
| | - Antonella Marchi
- ISTITUTO SUPERIORE DI SANITÀ, Dipartimento di Malattie Infettive, Parassitarie e Immunomediate, Roma, Italy.
| | - Simona Di Renzi
- INAIL, Dipartimento di Medicina, Epidemiologia, Igiene del Lavoro e Ambientale, Monteporzio Catone (Rome), Italy;.
| | - Nicoletta Vonesch
- INAIL, Dipartimento di Medicina, Epidemiologia, Igiene del Lavoro e Ambientale, Monteporzio Catone (Rome), Italy;.
| | - Maria Vittoria Peri
- INAIL, Dipartimento di Medicina, Epidemiologia, Igiene del Lavoro e Ambientale, Monteporzio Catone (Rome), Italy;.
| | - Lucia Bastianini
- AZIENDA SANITARIA LOCALE, Dipartimento di Prevenzione, Grosseto, Italy..
| | - Sonia Rossi
- AZIENDA SANITARIA LOCALE, Dipartimento di Prevenzione, Grosseto, Italy..
| | - Giulia Bartoccini
- AZIENDA SANITARIA LOCALE, Dipartimento di Prevenzione, Grosseto, Italy..
| | - Maya Lissa Kuttappasery
- INAIL, Dipartimento di Medicina, Epidemiologia, Igiene del Lavoro e Ambientale, Monteporzio Catone (Rome), Italy;.
| | - Maria Grazia Ciufolini
- ISTITUTO SUPERIORE DI SANITÀ, Dipartimento di Malattie Infettive, Parassitarie e Immunomediate, Roma, Italy.
| | - Paola Tomao
- INAIL, Dipartimento di Medicina, Epidemiologia, Igiene del Lavoro e Ambientale, Monteporzio Catone (Rome), Italy;.
| |
Collapse
|
37
|
García-Bocanegra I, Belkhiria J, Napp S, Cano-Terriza D, Jiménez-Ruiz S, Martínez-López B. Epidemiology and spatio-temporal analysis of West Nile virus in horses in Spain between 2010 and 2016. Transbound Emerg Dis 2017; 65:567-577. [PMID: 29034611 DOI: 10.1111/tbed.12742] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Indexed: 10/18/2022]
Abstract
During the last decade, West Nile virus (WNV) outbreaks have increased sharply in both horses and human in Europe. The aims of this study were to evaluate characteristics and spatio-temporal distribution of WNV outbreaks in horses in Spain between 2010 and 2016 in order to identify the environmental variables most associated with WNV occurrence and to generate high-resolution WNV suitability maps to inform risk-based surveillance strategies in this country. Between August 2010 and November 2016, a total of 403 WNV suspected cases were investigated, of which, 177 (43.9%) were laboratory confirmed. Mean values of morbidity, mortality and case fatality rates were 7.5%, 1.6% and 21.2%, respectively. The most common clinical symptoms were as follows: tiredness/apathy, recumbency, muscular tremor, ataxia, incoordination and hyperaesthesia. The outbreaks confirmed during the last 7 years, with detection of WNV RNA lineage 1 in 2010, 2012, 2013, 2015 and 2016, suggest an endemic circulation of the virus in Spain. The spatio-temporal distribution of WNV outbreaks in Spain was not homogeneous, as most of them (92.7%) were concentrated in western part of Andalusia (southern Spain) and significant clusters were detected in this region in two non-consecutive years. These findings were supported by the results of the space-time scan statistics permutation model. A presence-only MaxEnt ecological niche model was used to generate a suitability map for WNV occurrence in Andalusia. The most important predictors selected by the Ecological Niche Modeling were as follows: mean annual temperature (49.5% contribution), presence of Culex pipiens (19.5% contribution), mean annual precipitation (16.1% contribution) and distance to Ramsar wetlands (14.9% contribution). Our results constitute an important step for understanding WNV emergence and spread in Spain and will provide valuable information for the development of more cost-effective surveillance and control programmes and improve the protection of horse and human populations in WNV-endemic areas.
Collapse
Affiliation(s)
- I García-Bocanegra
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | - J Belkhiria
- Center for Animal Disease Modeling and Surveillance (CADMS), Department of Medicine & Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - S Napp
- Centre de Recerca en Sanitat Animal (CReSA) - Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Barcelona, Spain
| | - D Cano-Terriza
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | - S Jiménez-Ruiz
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | - B Martínez-López
- Center for Animal Disease Modeling and Surveillance (CADMS), Department of Medicine & Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, USA
| |
Collapse
|
38
|
Soltész Z, Erdélyi K, Bakonyi T, Barna M, Szentpáli-Gavallér K, Solt S, Horváth É, Palatitz P, Kotymán L, Dán Á, Papp L, Harnos A, Fehérvári P. West Nile virus host-vector-pathogen interactions in a colonial raptor. Parasit Vectors 2017; 10:449. [PMID: 28962629 PMCID: PMC5622512 DOI: 10.1186/s13071-017-2394-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 09/19/2017] [Indexed: 11/12/2022] Open
Abstract
Background Avian host species have different roles in the amplification and maintenance of West Nile virus (WNV), therefore identifying key taxa is vital in understanding WNV epidemics. Here, we present a comprehensive case study conducted on red-footed falcons, where host-vector, vector-virus and host-virus interactions were simultaneously studied to evaluate host species contribution to WNV circulation qualitatively. Results Mosquitoes were trapped inside red-footed falcon nest-boxes by a method originally developed for the capture of blackflies and midges. We showed that this approach is also efficient for trapping mosquitoes and that the number of trapped vectors is a function of host attraction. Brood size and nestling age had a positive effect on the number of attracted Culex pipiens individuals while the blood-feeding success rate of both dominant Culex species (Culex pipiens and Culex modestus) markedly decreased after the nestlings reached 14 days of age. Using RT-PCR, we showed that WNV was present in these mosquitoes with 4.2% (CI: 0.9–7.5%) prevalence. We did not detect WNV in any of the nestling blood samples. However, a relatively high seroprevalence (25.4% CI: 18.8–33.2%) was detected with an enzyme-linked immunoabsorbent assay (ELISA). Using the ELISA OD ratios as a proxy to antibody titers, we showed that older seropositive nestlings have lower antibody levels than their younger conspecifics and that hatching order negatively influences antibody levels in broods with seropositive nestlings. Conclusions Red-footed falcons in the studied system are exposed to a local sylvatic WNV circulation, and the risk of infection is higher for younger nestlings. However, the lack of individuals with viremia and the high WNV seroprevalence, indicate that either host has a very short viremic period or that a large percentage of nestlings in the population receive maternal antibodies. This latter assumption is supported by the age and hatching order dependence of antibody levels found for seropositive nestlings. Considering the temporal pattern in mosquito feeding success, maternal immunity may be effective in protecting progeny against WNV infection despite the short antibody half-life measured in various other species. We conclude that red-footed falcons seem to have low WNV host competence and are unlikely to be effective virus reservoirs in the studied region.
Collapse
Affiliation(s)
- Zoltán Soltész
- Lendület Ecosystem Services Research Group, MTA Centre for Ecological Research, Vácrátót, Hungary. .,Hungarian Natural History Museum, Budapest, Hungary.
| | - Károly Erdélyi
- National Food Chain Safety Office, Veterinary Diagnostic Directorate, Budapest, Hungary
| | - Tamás Bakonyi
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Budapest, Hungary.,Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine, Vienna, Austria
| | - Mónika Barna
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Budapest, Hungary
| | | | - Szabolcs Solt
- MME/BirdLife Hungary, Red-footed Falcon Conservation Working Group, Budapest, Hungary
| | - Éva Horváth
- MME/BirdLife Hungary, Red-footed Falcon Conservation Working Group, Budapest, Hungary
| | - Péter Palatitz
- MME/BirdLife Hungary, Red-footed Falcon Conservation Working Group, Budapest, Hungary
| | | | - Ádám Dán
- National Food Chain Safety Office, Veterinary Diagnostic Directorate, Budapest, Hungary
| | - László Papp
- Hungarian Academy of Sciences, Biological Section, Budapest, Hungary
| | - Andrea Harnos
- Department of Biomathematics and Informatics, University of Veterinary Medicine, Budapest, Hungary
| | - Péter Fehérvári
- Hungarian Natural History Museum, Budapest, Hungary.,Department of Biomathematics and Informatics, University of Veterinary Medicine, Budapest, Hungary
| |
Collapse
|
39
|
Paternoster G, Tomassone L, Tamba M, Chiari M, Lavazza A, Piazzi M, Favretto AR, Balduzzi G, Pautasso A, Vogler BR. The Degree of One Health Implementation in the West Nile Virus Integrated Surveillance in Northern Italy, 2016. Front Public Health 2017; 5:236. [PMID: 28929098 PMCID: PMC5591825 DOI: 10.3389/fpubh.2017.00236] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/21/2017] [Indexed: 11/13/2022] Open
Abstract
West Nile virus (WNV) is endemic in the Po valley area, Northern Italy, and within the legal framework of the national plan for the surveillance of human vector-borne diseases, WNV surveillance has over time been implemented. The surveillance plans are based on the transdisciplinary and trans-sectorial collaboration between regional institutions involved in public, animal, and environmental health. This integrated surveillance targets mosquitoes, wild birds, humans, and horses and aims at early detecting the viral circulation and reducing the risk of infection in the human populations. The objective of our study was to assess the degree of One Health (OH) implementation (OH-ness) of the WNV surveillance system in three North Italian regions (Emilia-Romagna, Lombardy, Piedmont) in 2016, following the evaluation protocol developed by the Network for Evaluation of One Health (NEOH). In detail, we (i) described the OH initiative (drivers, outcomes) and its system (boundaries, aim, dimensions, actors, stakeholders) and (ii) scored different aspects of this initiative (i.e., OH-thinking, -planning, -sharing, -learning, transdisciplinarity and leadership), with values from 0 (=no OH approach) to 1 (=perfect OH approach). We obtained a mean score for each aspect evaluated. We reached high scores for OH thinking (0.90) and OH planning (0.89). Lower scores were attributed to OH sharing (0.83), transdisciplinarity and leadership (0.77), and OH learning (0.67), highlighting some critical issues related to communication and learning gaps. The strengths and weaknesses detected by the described quantitative evaluation will be investigated in detail by a qualitative evaluation (process evaluation), aiming to provide a basis for the development of shared recommendations to refine the initiative and conduct it in a more OH-oriented perspective.
Collapse
Affiliation(s)
- Giulia Paternoster
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna (IZSLER), Brescia, Italy.,Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Laura Tomassone
- Dipartimento di Scienze Veterinarie, Università degli Studi di Torino, Grugliasco, Italy
| | - Marco Tamba
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna (IZSLER), Brescia, Italy
| | - Mario Chiari
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna (IZSLER), Brescia, Italy
| | - Antonio Lavazza
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna (IZSLER), Brescia, Italy
| | - Mauro Piazzi
- Servizio di Riferimento Regionale di Epidemiologia per la Sorveglianza la Prevenzione e il Controllo delle Malattie Infettive (SeREMI), Alessandria, Italy
| | - Anna R Favretto
- Dipartimento di Giurisprudenza e Scienze Politiche, Economiche e Sociali, Università del Piemonte Orientale, Alessandria, Italy
| | - Giacomo Balduzzi
- Dipartimento di Scienze Politiche e Sociali, Università degli Studi di Pavia, Pavia, Italy
| | - Alessandra Pautasso
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta (IZSTO), Turin, Italy
| | - Barbara R Vogler
- Department of Poultry Diseases, Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
40
|
Zehender G, Veo C, Ebranati E, Carta V, Rovida F, Percivalle E, Moreno A, Lelli D, Calzolari M, Lavazza A, Chiapponi C, Baioni L, Capelli G, Ravagnan S, Da Rold G, Lavezzo E, Palù G, Baldanti F, Barzon L, Galli M. Reconstructing the recent West Nile virus lineage 2 epidemic in Europe and Italy using discrete and continuous phylogeography. PLoS One 2017; 12:e0179679. [PMID: 28678837 PMCID: PMC5497961 DOI: 10.1371/journal.pone.0179679] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 06/04/2017] [Indexed: 11/24/2022] Open
Abstract
West Nile virus lineage 2 (WNV-2) was mainly confined to sub-Saharan Africa until the early 2000s, when it was identified for the first time in Central Europe causing outbreaks of human and animal infection. The aim of this study was to reconstruct the origin and dispersion of WNV-2 in Central Europe and Italy on a phylodynamic and phylogeographical basis. To this aim, discrete and continuous space phylogeographical models were applied to a total of 33 newly characterised full-length viral genomes obtained from mosquitoes, birds and humans in Northern Italy in the years 2013–2015 aligned with 64 complete sequences isolated mainly in Europe. The European isolates segregated into two highly significant clades: a small one including three sequences and a large clade including the majority of isolates obtained in Central Europe since 2004. Discrete phylogeographical analysis showed that the most probable location of the root of the largest European clade was in Hungary a mean 12.78 years ago. The European clade bifurcated into two highly supported subclades: one including most of the Central/East European isolates and the other encompassing all of the isolates obtained in Greece. The continuous space phylogeographical analysis of the Italian clade showed that WNV-2 entered Italy in about 2008, probably by crossing the Adriatic sea and reaching a central area of the Po Valley. The epidemic then spread simultaneously eastward, to reach the region of the Po delta in 2013, and westward to the border area between Lombardy and Piedmont in 2014; later, the western strain changed direction southward, and reached the central area of the Po valley once again in 2015. Over a period of about seven years, the virus spread all over an area of northern Italy by following the Po river and its main tributaries.
Collapse
Affiliation(s)
- Gianguglielmo Zehender
- Department of Biomedical and Clinical Sciences "L.Sacco", University of Milan, Milano, Italy
- CRC-Coordinated Research Center “EpiSoMI”, University of Milan, Milano, Italy
- * E-mail:
| | - Carla Veo
- Department of Biomedical and Clinical Sciences "L.Sacco", University of Milan, Milano, Italy
- CRC-Coordinated Research Center “EpiSoMI”, University of Milan, Milano, Italy
| | - Erika Ebranati
- Department of Biomedical and Clinical Sciences "L.Sacco", University of Milan, Milano, Italy
- CRC-Coordinated Research Center “EpiSoMI”, University of Milan, Milano, Italy
| | - Valentina Carta
- Department of Biomedical and Clinical Sciences "L.Sacco", University of Milan, Milano, Italy
- CRC-Coordinated Research Center “EpiSoMI”, University of Milan, Milano, Italy
| | - Francesca Rovida
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Elena Percivalle
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Ana Moreno
- Experimental Zooprophylactic Institute of Lombardy and Emilia-Romagna (IZSLER), Brescia, Italy
| | - Davide Lelli
- Experimental Zooprophylactic Institute of Lombardy and Emilia-Romagna (IZSLER), Brescia, Italy
| | - Mattia Calzolari
- Experimental Zooprophylactic Institute of Lombardy and Emilia-Romagna (IZSLER), Reggio Emilia, Italy
| | - Antonio Lavazza
- Experimental Zooprophylactic Institute of Lombardy and Emilia-Romagna (IZSLER), Brescia, Italy
| | - Chiara Chiapponi
- Experimental Zooprophylactic Institute of Lombardy and Emilia-Romagna (IZSLER), Parma, Italy
| | - Laura Baioni
- Experimental Zooprophylactic Institute of Lombardy and Emilia-Romagna (IZSLER), Parma, Italy
| | - Gioia Capelli
- Experimental Zooprophylactic Institute of Venice, Legnaro, Padua, Italy
| | - Silvia Ravagnan
- Experimental Zooprophylactic Institute of Venice, Legnaro, Padua, Italy
| | - Graziana Da Rold
- Experimental Zooprophylactic Institute of Venice, Legnaro, Padua, Italy
| | - Enrico Lavezzo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Fausto Baldanti
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Luisa Barzon
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Massimo Galli
- Department of Biomedical and Clinical Sciences "L.Sacco", University of Milan, Milano, Italy
- CRC-Coordinated Research Center “EpiSoMI”, University of Milan, Milano, Italy
| |
Collapse
|
41
|
Cardinale E, Bernard C, Lecollinet S, Rakotoharinome VM, Ravaomanana J, Roger M, Olive MM, Meenowa D, Jaumally MR, Melanie J, Héraud JM, Zientara S, Cêtre-Sossah C. West Nile virus infection in horses, Indian ocean. Comp Immunol Microbiol Infect Dis 2017; 53:45-49. [PMID: 28750867 DOI: 10.1016/j.cimid.2017.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/20/2017] [Accepted: 06/23/2017] [Indexed: 11/16/2022]
Abstract
The circulation of West Nile virus (WNV) in horses was investigated in the Southwest Indian ocean. In 2010, blood samples were collected from a total of 303 horses originating from Madagascar, Mauritius, Reunion and the Seychelles and tested for WNV-specific antibodies. An overall seroprevalence of 27.39% was detected in the Indian Ocean with the highest WNV antibody prevalence of 46.22% (95% CI: [37.4-55.2%]) in Madagascar. The age and origin of the horses were found to be associated with the WNV infection risk. This paper presents the first seroprevalence study investigating WN fever in horses in the Southwest Indian Ocean area and indicates a potential risk of infection for humans and animals. In order to gain a better understanding of WN transmission cycles, WNV surveillance needs to be implemented in each of the countries.
Collapse
Affiliation(s)
- E Cardinale
- CIRAD, UMR 117 ASTRE, Cyroi Platform, F-97490 Sainte Clotilde, La Réunion, France; INRA, UMR 1309 ASTRE, F-34598 Montpellier, France.
| | - C Bernard
- CIRAD, UMR 117 ASTRE, Cyroi Platform, F-97490 Sainte Clotilde, La Réunion, France; INRA, UMR 1309 ASTRE, F-34598 Montpellier, France
| | - S Lecollinet
- UMR 1161 (ANSES/INRA/ENVA), EU-RL on Equine Diseases, F- 94701 Maisons-Alfort, France
| | - V M Rakotoharinome
- Ministère auprès de la Présidence en charge de l'Agriculture, de l'Elevage, Direction des Services Vétérinaires, Ampandrianomby, Antananarivo, Madagascar
| | - J Ravaomanana
- Centre National de la Recherche Appliquée au Développement Rural (Fofifa), Département de Recherches Zootechniques et Vétérinaires, Antananarivo, Madagascar
| | - M Roger
- CIRAD, UMR 117 ASTRE, Cyroi Platform, F-97490 Sainte Clotilde, La Réunion, France; INRA, UMR 1309 ASTRE, F-34598 Montpellier, France
| | - M M Olive
- CIRAD, UMR 117 ASTRE, Cyroi Platform, F-97490 Sainte Clotilde, La Réunion, France; INRA, UMR 1309 ASTRE, F-34598 Montpellier, France
| | - D Meenowa
- Ministère des Agro-Industries, Réduit, Mauritius
| | - M R Jaumally
- Ministère des Agro-Industries, Réduit, Mauritius
| | - J Melanie
- Ministère de l'Agriculture et des ressources marines, Victoria, Seychelles
| | - J M Héraud
- Institut Pasteur de Madagascar, Unité de Virologie, BP 1274, Antananarivo 101, Madagascar
| | - S Zientara
- UMR 1161 (ANSES/INRA/ENVA), EU-RL on Equine Diseases, F- 94701 Maisons-Alfort, France
| | - C Cêtre-Sossah
- CIRAD, UMR 117 ASTRE, Cyroi Platform, F-97490 Sainte Clotilde, La Réunion, France; INRA, UMR 1309 ASTRE, F-34598 Montpellier, France
| |
Collapse
|
42
|
Rizzo C, Napoli C, Venturi G, Pupella S, Lombardini L, Calistri P, Monaco F, Cagarelli R, Angelini P, Bellini R, Tamba M, Piatti A, Russo F, Palù G, Chiari M, Lavazza A, Bella A. West Nile virus transmission: results from the integrated surveillance system in Italy, 2008 to 2015. ACTA ACUST UNITED AC 2017; 21:30340. [PMID: 27684046 PMCID: PMC5032855 DOI: 10.2807/1560-7917.es.2016.21.37.30340] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 06/17/2016] [Indexed: 11/20/2022]
Abstract
In Italy a national Plan for the surveillance of imported and autochthonous human vector-borne diseases (chikungunya, dengue, Zika virus disease and West Nile virus (WNV) disease) that integrates human and veterinary (animals and vectors) surveillance, is issued and revised annually according with the observed epidemiological changes. Here we describe results of the WNV integrated veterinary and human surveillance systems in Italy from 2008 to 2015. A real time data exchange protocol is in place between the surveillance systems to rapidly identify occurrence of human and animal cases and to define and update the map of affected areas i.e. provinces during the vector activity period from June to October. WNV continues to cause severe illnesses in Italy during every transmission season, albeit cases are sporadic and the epidemiology varies by virus lineage and geographic area. The integration of surveillance activities and a multidisciplinary approach made it possible and have been fundamental in supporting implementation of and/or strengthening preventive measures aimed at reducing the risk of transmission of WNV trough blood, tissues and organ donation and to implementing further measures for vector control.
Collapse
Affiliation(s)
- Caterina Rizzo
- National Institute of Health (Istituto Superiore di Sanità, ISS), Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
MAMAK N, Bilgili İ. BATI NİL VİRUSU ENFEKSİYONU. MEHMET AKIF ERSOY ÜNIVERSITESI VETERINER FAKÜLTESI DERGISI 2016. [DOI: 10.24880/maeuvfd.287350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
44
|
Early detection of West Nile virus in France: quantitative assessment of syndromic surveillance system using nervous signs in horses. Epidemiol Infect 2016; 145:1044-1057. [PMID: 27938434 DOI: 10.1017/s0950268816002946] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
West Nile virus (WNV) is a growing public health concern in Europe and there is a need to develop more efficient early detection systems. Nervous signs in horses are considered to be an early indicator of WNV and, using them in a syndromic surveillance system, might be relevant. In our study, we assessed whether or not data collected by the passive French surveillance system for the surveillance of equine diseases can be used routinely for the detection of WNV. We tested several pre-processing methods and detection algorithms based on regression. We evaluated system performances using simulated and authentic data and compared them to those of the surveillance system currently in place. Our results show that the current detection algorithm provided similar performances to those tested using simulated and real data. However, regression models can be easily and better adapted to surveillance objectives. The detection performances obtained were compatible with the early detection of WNV outbreaks in France (i.e. sensitivity 98%, specificity >94%, timeliness 2·5 weeks and around four false alarms per year) but further work is needed to determine the most suitable alarm threshold for WNV surveillance in France using cost-efficiency analysis.
Collapse
|
45
|
Balasuriya UBR, Shi PY, Wong SJ, Demarest VL, Gardner IA, Hullinger PJ, Ferraro GL, Boone JD, De Cino CL, Glaser AL, Renshaw RW, Ledizet M, Koski RA, MacLachlan NJ. Detection of Antibodies to West Nile Virus in Equine Sera Using Microsphere Immunoassay. J Vet Diagn Invest 2016; 18:392-5. [PMID: 16921881 DOI: 10.1177/104063870601800413] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
One hundred and ninety-one sera from horses that recently were exposed to West Nile virus (WNV) by either vaccination or natural infection or that were not vaccinated and remained free of infection were used to evaluate fluorescent microsphere immunoassays (MIAs) incorporating recombinant WNV envelope protein (rE) and recombinant nonstructural proteins (rNS1, rNS3, and rNS5) for detection of equine antibodies to WNV. The rE MIA had a diagnostic sensitivity and specificity, respectively, of 99.3% and 97.4% for detection of WNV antibodies in the serum of horses that were recently vaccinated or naturally infected with WNV, as compared to the plaque reduction neutralization test (PRNT). The positive rE MIA results were assumed to be WNV-specific because of the close agreement between this assay and the PRNT and the fact that unvaccinated control horses included in this study were confirmed to be free of exposure to the related St Louis encephalitis virus. The NS protein–based MIA were all less sensitive than either the rE MIA or PRNT (sensitivity 0–48.0), although the rNS1 MIA distinguished horses vaccinated with the recombinant WNV vaccine from those that were immunized with the inactivated WNV vaccine ( P < 0.0001) or naturally infected with WNV ( P < 0.0001). The rE MIA would appear to provide a rapid, convenient, inexpensive, and accurate test for the screening of equine sera for the presence of antibodies to WNV.
Collapse
Affiliation(s)
- Udeni B R Balasuriya
- Equine Viral Disease Laboratory, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Faverjon C, Andersson MG, Decors A, Tapprest J, Tritz P, Sandoz A, Kutasi O, Sala C, Leblond A. Evaluation of a Multivariate Syndromic Surveillance System for West Nile Virus. Vector Borne Zoonotic Dis 2016; 16:382-90. [PMID: 27159212 DOI: 10.1089/vbz.2015.1883] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Various methods are currently used for the early detection of West Nile virus (WNV) but their outputs are not quantitative and/or do not take into account all available information. Our study aimed to test a multivariate syndromic surveillance system to evaluate if the sensitivity and the specificity of detection of WNV could be improved. METHODS Weekly time series data on nervous syndromes in horses and mortality in both horses and wild birds were used. Baselines were fitted to the three time series and used to simulate 100 years of surveillance data. WNV outbreaks were simulated and inserted into the baselines based on historical data and expert opinion. Univariate and multivariate syndromic surveillance systems were tested to gauge how well they detected the outbreaks; detection was based on an empirical Bayesian approach. The systems' performances were compared using measures of sensitivity, specificity, and area under receiver operating characteristic curve (AUC). RESULTS When data sources were considered separately (i.e., univariate systems), the best detection performance was obtained using the data set of nervous symptoms in horses compared to those of bird and horse mortality (AUCs equal to 0.80, 0.75, and 0.50, respectively). A multivariate outbreak detection system that used nervous symptoms in horses and bird mortality generated the best performance (AUC = 0.87). CONCLUSIONS The proposed approach is suitable for performing multivariate syndromic surveillance of WNV outbreaks. This is particularly relevant, given that a multivariate surveillance system performed better than a univariate approach. Such a surveillance system could be especially useful in serving as an alert for the possibility of human viral infections. This approach can be also used for other diseases for which multiple sources of evidence are available.
Collapse
Affiliation(s)
- Céline Faverjon
- 1 INRA UR0346 Animal Epidemiology , VetagroSup, Marcy l'Etoile, France
| | - M Gunnar Andersson
- 2 Department of Chemistry, Environment and Feed Hygiene, The National Veterinary Institute , Uppsala, Sweden
| | - Anouk Decors
- 3 Office National de la Chasse et de la Faune Sauvage, Direction des Études et de la Recherche , Auffargis, France
| | - Jackie Tapprest
- 4 ANSES Dozulé Laboratory for Equine Diseases , Dozulé, France
| | - Pierre Tritz
- 5 Clinique Vétérinaire, Collège Syndrome Nerveux du RESPE et Commission Maladies Infectieuses de l'AVEF , Faulquemont, Caen, France
| | - Alain Sandoz
- 6 Centre de Recherche Pour la Conservation des Zones Humides Méditerranéennes , Fondation Tour du Valat, Arles, France .,7 UFR Sciences, Aix-Marseille University , Marseille, France
| | - Orsolya Kutasi
- 8 Hungarian Academy of Sciences-Szent Istvan University (MTA-SZIE) Large Animal Clinical Research Group , Ullo, Dóra major, Hungary
| | - Carole Sala
- 9 ANSES-Lyon , Epidemiology Unit, Lyon, France
| | - Agnès Leblond
- 10 INRA UR0346 Animal Epidemiology et Département Hippique , VetAgroSup, Marcy L'Etoile, France .,11 Réseau d'Epidémio-Surveillance en Pathologie Equine (RESPE) , Caen, France
| |
Collapse
|
47
|
Simonato M, Martinez-Sañudo I, Cavaletto G, Santoiemma G, Saltarin A, Mazzon L. High genetic diversity in the Culex pipiens complex from a West Nile Virus epidemic area in Southern Europe. Parasit Vectors 2016; 9:150. [PMID: 26979749 PMCID: PMC4791856 DOI: 10.1186/s13071-016-1429-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 03/05/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Culex pipiens complex includes the most widespread mosquito species in the world. Cx. pipiens is the primary vector of the West Nile Virus (WNV) in Europe and North America. Cases of WNV have been recorded in Italy since 1998. In particular, wet areas along the Po River are considered some of the most WNV affected areas in Italy. Here, we analyzed the genetic structure of ten Cx. pipiens populations collected in the last part of the Po River including the Delta area. METHODS We assessed the genetic variability of two mitochondrial markers, cytochrome oxidase 1 (COI) and 2 (COII), for a total of 1200 bp, and one nuclear marker, a fragment of acetylcholinesterase-2 (ace-2), 502 bp long. The effect of the landscape features was evaluated comparing haplotype and nucleotide diversity with the landscape composition. RESULTS The analysis showed a high genetic diversity in both COI and COII gene fragments mainly shared by the populations in the Delta area. The COI-COII network showed that the set of haplotypes found was grouped into three main supported lineages with the higher genetic variability gathered in two of the three lineages. By contrast, ace-2 fragment did not show the same differentiation, displaying alleles grouped in a single clade. Finally, a positive correlation between mitochondrial diversity and natural wetland areas was found. CONCLUSIONS The high mitochondrial genetic diversity found in Cx. pipiens populations from the Po River Delta contrasts with the low variability of inland populations. The different patterns of genetic diversity found comparing mitochondrial and nuclear markers could be explained by factors such as differences in effective population size between markers, sex biased dispersal or lower fitness of dispersing females. Moreover, the correlation between genetic diversity and wetland areas is consistent with ecosystem stability and lack of insecticide pressure characteristic of this habitat. The mtDNA polymorphism found in the Po River Delta is even more interesting due to possible linkages between the mitochondrial lineages and different biting behaviors of the mosquitoes influencing their vector ability of arboviral infections.
Collapse
Affiliation(s)
- Mauro Simonato
- Department of Agronomy, Food, Natural Resources, Animals, & Environment (DAFNAE), University of Padua, Viale dell'Università 16, 35020, Legnaro, PD, Italy
| | - Isabel Martinez-Sañudo
- Department of Agronomy, Food, Natural Resources, Animals, & Environment (DAFNAE), University of Padua, Viale dell'Università 16, 35020, Legnaro, PD, Italy
| | - Giacomo Cavaletto
- Department of Agronomy, Food, Natural Resources, Animals, & Environment (DAFNAE), University of Padua, Viale dell'Università 16, 35020, Legnaro, PD, Italy
| | - Giacomo Santoiemma
- Department of Agronomy, Food, Natural Resources, Animals, & Environment (DAFNAE), University of Padua, Viale dell'Università 16, 35020, Legnaro, PD, Italy
| | - Andrea Saltarin
- Istituto Tecnico Agrario "O. Munerati", Via Capello 10, 45010, Sant'Apollinare, RO, Italy
| | - Luca Mazzon
- Department of Agronomy, Food, Natural Resources, Animals, & Environment (DAFNAE), University of Padua, Viale dell'Università 16, 35020, Legnaro, PD, Italy.
| |
Collapse
|
48
|
Ahmadnejad F, Otarod V, Fathnia A, Ahmadabadi A, Fallah MH, Zavareh A, Miandehi N, Durand B, Sabatier P. Impact of Climate and Environmental Factors on West Nile Virus Circulation in Iran. J Arthropod Borne Dis 2016; 10:315-27. [PMID: 27308290 PMCID: PMC4906738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 12/17/2014] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Geographic distribution of West Nile virus (WNV) is heterogeneous in Iran by a high circulation in the southern-western areas. The objective of our study was to determine environmental and climatic factors associated with the risk of WNV equine seropositivity in Iran. METHODS Serological data were obtained from a serosurvey conducted in equine population in 260 districts in Iran. The climate and environmental parameters included in the models were distance to the nearest wetland area, type of stable, Normalized Difference Vegetation Index (NDVI), annual mean temperature, humidity and precipitation. RESULTS The important risk factors included annual mean temperature, distance to wetlands, local and seasonal NDVI differences. The effect of local NDVI differences in spring was particularly notable. This was a normalized difference of average NDVI between two areas: a 5 km radius area centered on the stable and the 5-10 km surrounding area. CONCLUSION The model indicated that local NDVI's contrast during spring is a major risk factor of the transmission of West-Nile virus in Iran. This so-called oasis effect consistent with the seasonal production of vegetation in spring, and is associated to the attractiveness of the local NDVI environment for WNV vectors and hosts.
Collapse
Affiliation(s)
- Farzaneh Ahmadnejad
- Viral Vaccines Production Department, Pasteur Institute, Tehran, Iran,TIMC-IMAG Team EPSP, VetAgroSup, Campus Vétérinaire de Lyon, France,Corresponding authors: Dr Farzaneh Ahmadnejad, E-mail:
| | - Vahid Otarod
- Quarantine and Biosafety Directorate General, Iran Veterinary Organization, Tehran, Iran
| | | | | | - Mohammad H. Fallah
- Department of Poultry Viral Diseases, Razi Vaccine and Serum Research Institute, Alborz, Iran
| | - Alireza Zavareh
- Viral Vaccines Production Department, Pasteur Institute, Tehran, Iran
| | - Nargess Miandehi
- Viral Vaccines Production Department, Pasteur Institute, Tehran, Iran
| | - Benoit Durand
- University Paris Est, Anses, Laboratory of Animal Health, Epidemiology Unit, Maisons-Alfort, France
| | | |
Collapse
|
49
|
Bagheri M, Terenius O, Oshaghi MA, Motazakker M, Asgari S, Dabiri F, Vatandoost H, Mohammadi Bavani M, Chavshin AR. West Nile Virus in Mosquitoes of Iranian Wetlands. Vector Borne Zoonotic Dis 2015; 15:750-4. [DOI: 10.1089/vbz.2015.1778] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Masoomeh Bagheri
- Social Determinants of Health Research Center, Urmia University of Medical Sciences, Urmia, Iran
- Department of Medical Entomology and Vector Control, School of Public Health, Urmia University of Medical Sciences, Urmia, Iran
| | - Olle Terenius
- Department of Ecology, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Mohammad Ali Oshaghi
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Motazakker
- Department of Virology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Sassan Asgari
- School of Biological Sciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Farrokh Dabiri
- Department of Medical Entomology and Vector Control, School of Public Health, Urmia University of Medical Sciences, Urmia, Iran
| | - Hassan Vatandoost
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mulood Mohammadi Bavani
- Department of Medical Entomology and Vector Control, School of Public Health, Urmia University of Medical Sciences, Urmia, Iran
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Reza Chavshin
- Social Determinants of Health Research Center, Urmia University of Medical Sciences, Urmia, Iran
- Department of Medical Entomology and Vector Control, School of Public Health, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
50
|
West Nile Virus Surveillance in 2013 via Mosquito Screening in Northern Italy and the Influence of Weather on Virus Circulation. PLoS One 2015; 10:e0140915. [PMID: 26488475 PMCID: PMC4619062 DOI: 10.1371/journal.pone.0140915] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 10/01/2015] [Indexed: 11/20/2022] Open
Abstract
West Nile virus (WNV) is a recently re-emerged health problem in Europe. In Italy, an increasing number of outbreaks of West Nile disease, with occurrences of human cases, have been reported since 2008. This is particularly true in northern Italy, where entomological surveillance systems have been implemented at a regional level. The aim of this study was to use, for the first time, all the entomological data collected in the five regions undergoing surveillance for WNV in northern Italy to characterize the viral circulation (at a spatial and temporal scale), identify potential mosquito vectors, and specify relationships between virus circulation and meteorological conditions. In 2013, 286 sites covering the entire Pianura Padana area were monitored. A total of 757,461 mosquitoes were sampled. Of these, 562,079 were tested by real-time PCR in 9,268 pools, of which 180 (1.9%) were positive for WNV. The largest part of the detected WNV sequences belonged to lineage II, demonstrating that, unlike those in the past, the 2013 outbreak was mainly sustained by this WNV lineage. This surveillance also detected the Usutu virus, a WNV-related flavivirus, in 241 (2.6%) pools. The WNV surveillance systems precisely identified the area affected by the virus and detected the viral circulation approximately two weeks before the occurrence of onset of human cases. Ninety percent of the sampled mosquitoes were Culex pipiens, and 178/180 WNV-positive pools were composed of only this species, suggesting this mosquito is the main WNV vector in northern Italy. A significantly higher abundance of the vector was recorded in the WNV circulation area, which was characterized by warmer and less rainy conditions and greater evapotranspiration compared to the rest of the Pianura Padana, suggesting that areas exposed to these conditions are more suitable for WNV circulation. This observation highlights warmer and less rainy conditions as factors able to enhance WNV circulation and cause virus spillover outside the sylvatic cycle.
Collapse
|