1
|
Leopardi S, Dacheux L, Serra-Cobo J, Ábrahám Á, Bajić B, Bourhy H, Bücs SL, Budinski I, Castellan M, Drzewniokova P, Dundarova H, Festa F, Kergoat L, Leuchtmann M, López-Roig M, Pontier D, Priore MF, Robardet E, Scaravelli D, Zecchin B, Lanszki Z, Görföl T, Kemenesi G, De Benedictis P. European distribution and intramuscular pathogenicity of divergent lyssaviruses West Caucasian bat virus and Lleida bat lyssavirus. iScience 2025; 28:111738. [PMID: 39898037 PMCID: PMC11787528 DOI: 10.1016/j.isci.2024.111738] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/18/2024] [Accepted: 12/31/2024] [Indexed: 02/04/2025] Open
Abstract
Among lyssaviruses, West Caucasian bat virus (WCBV) and Lleida bat lyssavirus (LLEBV) raise concern as their divergence from rabies virus leads to the inefficacy of available prophylactic agents. Both viruses were described in the bat Miniopterus schreibersii. We investigated the European distribution of WCBV and LLEBV by screening sera from Miniopterus schreibersii across eight countries, finding widespread serological evidence and positivity up to 70%. We evaluated the intramuscular lethality of wild type isolates in Syrian hamsters. WCBV induced 100% lethality and a clinical disease compatible with furious rabies. All animals infected with LLEBV remained healthy for 40 days, despite one individual testing positive in the brain. We confirmed LLEBV's intramuscular a-pathogenicity using mice. Infected hamsters developed antibodies by day seven, regardless the virus and the clinical outcome. This study highlights the widespread circulation of WCBV and LLEBV in Europe and suggests differences in neuro-invasiveness and/or pathogenesis that are crucial for risk assessment.
Collapse
Affiliation(s)
- Stefania Leopardi
- Laboratory for Emerging Viral Zoonoses, Istituto Zooprofilattico Sperimentale delle Venezie, Padova, Italy
| | - Laurent Dacheux
- Unit Lyssavirus, Epidemiology and Neuropathology, Institut Pasteur, Université Paris-Cité, Paris, France
- Unit Environment and Infectious Risks, Institut Pasteur, Université Paris-Cité, Paris, France
| | - Jordi Serra-Cobo
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals. Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Ágota Ábrahám
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Branka Bajić
- Department of Genetic Research, Institute for Biological Research “Siniša Stanković” – National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Hervé Bourhy
- Unit Lyssavirus, Epidemiology and Neuropathology, Institut Pasteur, Université Paris-Cité, Paris, France
| | | | - Ivana Budinski
- Department of Genetic Research, Institute for Biological Research “Siniša Stanković” – National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Martina Castellan
- Laboratory for Emerging Viral Zoonoses, Istituto Zooprofilattico Sperimentale delle Venezie, Padova, Italy
| | - Petra Drzewniokova
- Laboratory for Emerging Viral Zoonoses, Istituto Zooprofilattico Sperimentale delle Venezie, Padova, Italy
- Department of Public Health Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Heliana Dundarova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Francesca Festa
- Laboratory for Emerging Viral Zoonoses, Istituto Zooprofilattico Sperimentale delle Venezie, Padova, Italy
- Department of Biology and Biotechnology "Charles Darwin", University of Rome "La Sapienza", Roma, Italy
| | - Lauriane Kergoat
- Unit Lyssavirus, Epidemiology and Neuropathology, Institut Pasteur, Université Paris-Cité, Paris, France
| | - Maxime Leuchtmann
- Nature Environnement 17, Surgères, France
- France Nature Environnement Nouvelle-Aquitaine, Angoulême, France
| | - Marc López-Roig
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals. Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Dominique Pontier
- CNRS Laboratoire de Biométrie et Biologie Évolutive UMR5558, Université de Lyon Université, Lyon, France
- LabEx ECOFECT Ecoevolutionary Dynamics of Infectious Diseases, Université de Lyon, Lyon, France
| | - Maria Francesca Priore
- Laboratory for Emerging Viral Zoonoses, Istituto Zooprofilattico Sperimentale delle Venezie, Padova, Italy
| | - Emmanuelle Robardet
- Anses, Nancy Laboratory for Rabies and Wildlife, EURL for Rabies, ANSES, Malzéville Cedex, France
| | | | - Barbara Zecchin
- Laboratory for Emerging Viral Zoonoses, Istituto Zooprofilattico Sperimentale delle Venezie, Padova, Italy
| | - Zsófia Lanszki
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Tamás Görföl
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Gábor Kemenesi
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Paola De Benedictis
- Laboratory for Emerging Viral Zoonoses, Istituto Zooprofilattico Sperimentale delle Venezie, Padova, Italy
| |
Collapse
|
2
|
Carrascosa-Sàez M, Buigues J, Viñals A, Andreu-Moreno I, Martínez-Recio R, Soriano-Tordera C, Monrós JS, Cuevas JM, Sanjuán R. Genetic diversity and cross-species transmissibility of bat-associated picornaviruses from Spain. Virol J 2024; 21:193. [PMID: 39175061 PMCID: PMC11342490 DOI: 10.1186/s12985-024-02456-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/31/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Emerging zoonotic diseases arise from cross-species transmission events between wild or domesticated animals and humans, with bats being one of the major reservoirs of zoonotic viruses. Viral metagenomics has led to the discovery of many viruses, but efforts have mainly been focused on some areas of the world and on certain viral families. METHODS We set out to describe full-length genomes of new picorna-like viruses by collecting feces from hundreds of bats captured in different regions of Spain. Viral sequences were obtained by high-throughput Illumina sequencing and analyzed phylogenetically to classify them in the context of known viruses. Linear discriminant analysis (LDA) was performed to infer likely hosts based on genome composition. RESULTS We found five complete or nearly complete genomes belonging to the family Picornaviridae, including a new species of the subfamily Ensavirinae. LDA suggested that these were true vertebrate viruses, rather than viruses from the bat diet. Some of these viruses were related to picornaviruses previously found in other bat species from distant geographical regions. We also found a calhevirus genome that most likely belongs to a proposed new family within the order Picornavirales, and for which genome composition analysis suggested a plant host. CONCLUSIONS Our findings describe new picorna-like viral species and variants circulating in the Iberian Peninsula, illustrate the wide geographical distribution and interspecies transmissibility of picornaviruses, and suggest new hosts for calheviruses.
Collapse
Affiliation(s)
- Marc Carrascosa-Sàez
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València - CSIC, València, Spain
| | - Jaime Buigues
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València - CSIC, València, Spain
| | - Adrià Viñals
- Institut Cavanilles de Biodiversitat I Biologia Evolutiva, Universitat de València, València, Spain
| | - Iván Andreu-Moreno
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València - CSIC, València, Spain
| | - Raquel Martínez-Recio
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València - CSIC, València, Spain
| | - Clàudia Soriano-Tordera
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València - CSIC, València, Spain
| | - Juan S Monrós
- Institut Cavanilles de Biodiversitat I Biologia Evolutiva, Universitat de València, València, Spain
| | - José M Cuevas
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València - CSIC, València, Spain.
- Department of Genetics, Universitat de València, València, Spain.
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València - CSIC, València, Spain.
- Department of Genetics, Universitat de València, València, Spain.
| |
Collapse
|
3
|
Buigues J, Viñals A, Martínez-Recio R, Monrós JS, Sanjuán R, Cuevas JM. Full-genome sequencing of dozens of new DNA viruses found in Spanish bat feces. Microbiol Spectr 2024; 12:e0067524. [PMID: 38990026 PMCID: PMC11323972 DOI: 10.1128/spectrum.00675-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/26/2024] [Indexed: 07/12/2024] Open
Abstract
Bats are natural hosts of multiple viruses, many of which have clear zoonotic potential. The search for emerging viruses has been aided by the implementation of metagenomic tools, which have also enabled the detection of unprecedented viral diversity. Currently, this search is mainly focused on RNA viruses, which are largely over-represented in databases. To compensate for this research bias, we analyzed fecal samples from 189 Spanish bats belonging to 22 different species using viral metagenomics. This allowed us to identify 52 complete or near-complete viral genomes belonging to the families Adenoviridae, Circoviridae, Genomoviridae, Papillomaviridae, Parvoviridae, Polyomaviridae and Smacoviridae. Of these, 30 could constitute new species, doubling the number of viruses currently described in Europe. These findings open the door to a more thorough analysis of bat DNA viruses and their zoonotic potential. IMPORTANCE Metagenomics has become a fundamental tool to characterize the global virosphere, allowing us not only to understand the existing viral diversity and its ecological implications but also to identify new and emerging viruses. RNA viruses have a higher zoonotic potential, but this risk is also present for some DNA virus families. In our study, we analyzed the DNA fraction of fecal samples from 22 Spanish bat species, identifying 52 complete or near-complete genomes of different viral families with zoonotic potential. This doubles the number of genomes currently described in Europe. Metagenomic data often produce partial genomes that can be difficult to analyze. Our work, however, has characterized a large number of complete genomes, thus facilitating their taxonomic classification and enabling different analyses to be carried out to evaluate their zoonotic potential. For example, recombination studies are relevant since this phenomenon could play a major role in cross-species transmission.
Collapse
Affiliation(s)
- Jaime Buigues
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València and Consejo Superior de Investigaciones Científicas, València, Spain
| | - Adrià Viñals
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, València, Spain
| | - Raquel Martínez-Recio
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València and Consejo Superior de Investigaciones Científicas, València, Spain
| | - Juan S. Monrós
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, València, Spain
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València and Consejo Superior de Investigaciones Científicas, València, Spain
- Department of Genetics, Universitat de València, València, Spain
| | - José M. Cuevas
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València and Consejo Superior de Investigaciones Científicas, València, Spain
- Department of Genetics, Universitat de València, València, Spain
| |
Collapse
|
4
|
Golding ME, Wu G, Wilkie R, Picard-Meyer E, Servat A, Marston DA, Aegerter JN, Horton DL, McElhinney LM. Investigating the emergence of a zoonotic virus: phylogenetic analysis of European bat lyssavirus 1 in the UK. Virus Evol 2024; 10:veae060. [PMID: 39193178 PMCID: PMC11345707 DOI: 10.1093/ve/veae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 06/27/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
European bat lyssavirus 1 (EBLV-1, Lyssavirus hamburg) is predominantly detected in serotine bats (Eptesicus serotinus) and is responsible for the majority of bat rabies cases in mainland Europe. A passive bat rabies surveillance scheme detected the virus in a serotine bat in the UK for the first time in October 2018. As of May 2024, 34 cases have been reported, 20 of which involved contact with an animal and 5 reported human contact. We investigated the emergence of EBLV-1 by undertaking comprehensive sequence analysis and Bayesian phylogenetics, based on complete virus genomes of 33 UK sequences and 108 sequences covering six countries in mainland Europe (1968-2023), including 21 French EBLV-1-positive RNA samples sequenced for this study. Sequence analysis revealed extreme similarity among UK EBLV-1 sequences (99.9%-100%), implying a single source of introduction rather than multiple independent introductions. Bayesian analysis revealed that the UK EBLV-1 sequences shared their most recent common ancestor with an EBLV-1 sequence from a serotine bat detected in Brittany, France, in 2001, with an estimated date of divergence of 1997. Within the UK sequences, the earliest divergence was estimated to occur in 2007. This study provides valuable insights into the molecular epidemiology of an emerging zoonotic pathogen and improved understanding of the risks posed to public and animal health.
Collapse
Affiliation(s)
- Megan E Golding
- Department of Virology, Animal and Plant Health Agency, Woodham Lane, Addlestone KT15 3NB, United Kingdom
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
| | - Guanghui Wu
- Department of Virology, Animal and Plant Health Agency, Woodham Lane, Addlestone KT15 3NB, United Kingdom
| | - Rebekah Wilkie
- Department of Virology, Animal and Plant Health Agency, Woodham Lane, Addlestone KT15 3NB, United Kingdom
| | | | - Alexandre Servat
- Nancy Laboratory for Rabies and Wildlife, ANSES, Malzéville 51220, France
| | - Denise A Marston
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
- Department of Science, Strategy and Planning, Animal and Plant Health Agency, Woodham Lane, Addlestone KT15 3NB, United Kingdom
| | - James N Aegerter
- National Wildlife Management Centre, Wildlife Epidemiology and Modelling, Animal and Plant Health Agency, Sand Hutton, York YO41 1LZ, United Kingdom
| | - Daniel L Horton
- Department of Virology, Animal and Plant Health Agency, Woodham Lane, Addlestone KT15 3NB, United Kingdom
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
| | - Lorraine M McElhinney
- Department of Virology, Animal and Plant Health Agency, Woodham Lane, Addlestone KT15 3NB, United Kingdom
| |
Collapse
|
5
|
Nauwelaers I, Van den Eynde C, Terryn S, Vandendriessche B, Willems W, Dekeukeleire D, Van Gucht S. Detection and Serological Evidence of European Bat Lyssavirus 1 in Belgian Bats between 2016 and 2018. Trop Med Infect Dis 2024; 9:151. [PMID: 39058193 PMCID: PMC11281572 DOI: 10.3390/tropicalmed9070151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/17/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Lyssaviruses are neurotropic viruses capable of inducing fatal encephalitis. While rabies virus has been successfully eradicated in Belgium, the prevalence of other lyssaviruses remains uncertain. In this study, we conducted a survey on live animals and passive surveillance to investigate the presence of lyssaviruses in Belgium. In 2018, a total of 113 saliva samples and 87 blood samples were collected from bats. Saliva was subjected to RT-qPCR to identify lyssavirus infections. Additionally, an adapted lyssavirus neutralisation assay was set up for the detection of antibodies neutralising EBLV-1 in blood samples. Furthermore, we examined 124 brain tissue samples obtained from deceased bats during passive surveillance between 2016 and 2018. All saliva samples tested negative for lyssaviruses. Analysis of the blood samples uncovered the presence of lyssavirus-neutralising antibodies in five bat species and 32% of samples with a wide range depending on bat species, suggesting past exposure to a lyssavirus. Notably, EBLV-1 was detected in brain tissue samples from two Eptesicus serotinus specimens collected in 2016 near Bertrix and 2017 near Étalle, confirming for the first time the presence of EBLV-1 in Belgium and raising awareness of the potential risks associated with this species of bats as reservoirs of the virus.
Collapse
Affiliation(s)
- Inne Nauwelaers
- Viral Diseases Unit, Sciensano, 1000 Brussels, Belgium; (I.N.); (S.T.)
| | | | - Sanne Terryn
- Viral Diseases Unit, Sciensano, 1000 Brussels, Belgium; (I.N.); (S.T.)
| | | | - Wout Willems
- Natuurpunt Studie, Vleermuizenwerkgroep, 2800 Mechelen, Belgium (W.W.)
| | - Daan Dekeukeleire
- Natuurpunt Studie, Vleermuizenwerkgroep, 2800 Mechelen, Belgium (W.W.)
- Research Institute for Nature and Forest, 1000 Brussels, Belgium
| | - Steven Van Gucht
- Viral Diseases Unit, Sciensano, 1000 Brussels, Belgium; (I.N.); (S.T.)
| |
Collapse
|
6
|
Vodopija R, Lojkić I, Hamidović D, Boneta J, Primorac D. Bat Bites and Rabies PEP in the Croatian Reference Centre for Rabies 1995-2020. Viruses 2024; 16:876. [PMID: 38932168 PMCID: PMC11209127 DOI: 10.3390/v16060876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Seroprevalence of lyssaviruses in certain bat species has been proven in the Republic of Croatia, but there have been no confirmed positive bat brain isolates or human fatalities associated with bat injuries/bites. The study included a retrospective analysis of bat injuries/bites, post-exposure prophylaxis (PEP) and geographic distribution of bat injuries in persons examined at the Zagreb Antirabies Clinic, the Croatian Reference Centre for Rabies. In the period 1995-2020, we examined a total of 21,910 patients due to animal injuries, of which 71 cases were bat-related (0.32%). Of the above number of patients, 4574 received rabies PEP (20.87%). However, for bat injuries, the proportion of patients receiving PEP was significantly higher: 66 out of 71 patients (92.95%). Of these, 33 received only the rabies vaccine, while the other 33 patients received the vaccine with human rabies immunoglobulin (HRIG). In five cases, PEP was not administered, as there was no indication for treatment. Thirty-five of the injured patients were biologists or biology students (49.29%). The bat species was confirmed in only one of the exposure cases. This was a serotine bat (Eptesicus serotinus), a known carrier of Lyssavirus hamburg. The results showed that the bat bites were rather sporadic compared to other human injuries caused by animal bites. All bat injuries should be treated as if they were caused by a rabid animal, and according to WHO recommendations. People who come into contact with bats should be strongly advised to be vaccinated against rabies. Entering bat habitats should be done with caution and in accordance with current recommendations, and nationwide surveillance should be carried out by competent institutions and in close collaboration between bat experts, epidemiologists and rabies experts.
Collapse
Affiliation(s)
- Radovan Vodopija
- Department of Epidemiology, Andrija Štampar Teaching Institute of Public Health, 10000 Zagreb, Croatia; (R.V.); (D.P.)
| | - Ivana Lojkić
- Laboratory for Rabies and General Virology, Croatian Veterinary Institute, 10000 Zagreb, Croatia
| | - Daniela Hamidović
- Ministry of Environment and Green Transition, 10000 Zagreb, Croatia;
| | - Jelena Boneta
- Institute of Public Health of Zagreb County, 10290 Zaprešić, Croatia;
| | - Dora Primorac
- Department of Epidemiology, Andrija Štampar Teaching Institute of Public Health, 10000 Zagreb, Croatia; (R.V.); (D.P.)
| |
Collapse
|
7
|
Arnaout Y, Picard-Meyer E, Robardet E, Cappelle J, Cliquet F, Touzalin F, Jimenez G, Djelouadji Z. Assessment of virus and Leptospira carriage in bats in France. PLoS One 2023; 18:e0292840. [PMID: 37862301 PMCID: PMC10588846 DOI: 10.1371/journal.pone.0292840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/29/2023] [Indexed: 10/22/2023] Open
Abstract
With over 1,400 species worldwide, bats represent the second largest order of mammals after rodents, and are known to host major zoonotic pathogens. Here, we estimate the presence of pathogens in autochthonous bat populations. First, we set out to check our samples for PCR amplification efficiency by assessing the occurrence of inhibited PCR reactions from different types of bat samples with amplifying the housekeeping gene β-actin. Second, we investigated the presence of five targeted pathogens in a French bat population using PCR. We targeted viral RNA of Canine distemper virus, Alphacoronavirus, Lyssavirus, Rotavirus and bacterial Leptospira DNA. To do so, we screened for these viruses in bat faecal samples as well as in oropharyngeal swab samples. The presence of Leptospira was assessed in urine, kidney, lung and faecal samples. Results showed a frequency of inhibited reactions ranging from 5 to 60% of samples, varying according to the sample itself and also suspected to vary according to sampling method and the storage buffer solution used, demonstrating the importance of the sampling and storage on the probability of obtaining negative PCR results. For pathogen assessment, rotavirus and alphacoronavirus RNA were detected in Myotis myotis, Myotis daubentonii, Myotis emarginatus and Rhinolophus ferrumequinum bats. Rotaviruses were also detected in Barbastella barbastellus. The presence of alphacoronavirus also varied seasonally, with higher frequencies in late summer and October, suggesting that juveniles potentially play an important role in the dynamics of these viruses. Leptospira DNA was detected in M. myotis and M. daubentonii colonies. The 16S rRNA sequences obtained from Leptospira positive samples showed 100% genetic identity with L. borgpetersenii. Neither canine distemper virus nor lyssavirus RNA were detected in any of the tested samples. This study is the first to show the presence of Leptospira in autochthonous French bats in addition to coronavirus and rotavirus RNA previously reported in European autochthonous bats.
Collapse
Affiliation(s)
- Youssef Arnaout
- Lyssavirus Unit, Nancy Laboratory for Rabies and Wildlife, ANSES, Malzéville, France
- USC 1233-INRAE Rongeurs Sauvages, Risque Sanitaire et Gestion des Populations, VetAgro Sup, Marcy l’Etoile, France
| | - Evelyne Picard-Meyer
- Lyssavirus Unit, Nancy Laboratory for Rabies and Wildlife, ANSES, Malzéville, France
| | - Emmanuelle Robardet
- Lyssavirus Unit, Nancy Laboratory for Rabies and Wildlife, ANSES, Malzéville, France
| | - Julien Cappelle
- UMR ASTRE, CIRAD, INRAE, Université de Montpellier, Montpellier, France
- UMR EPIA, INRAE, VetAgro Sup, Theix, France
| | - Florence Cliquet
- Lyssavirus Unit, Nancy Laboratory for Rabies and Wildlife, ANSES, Malzéville, France
| | - Frédéric Touzalin
- School of Biology and Environmental Science, Science Centre West, University College Dublin, Dublin, Ireland
| | | | - Zouheira Djelouadji
- USC 1233-INRAE Rongeurs Sauvages, Risque Sanitaire et Gestion des Populations, VetAgro Sup, Marcy l’Etoile, France
| |
Collapse
|
8
|
Viljoen N, Weyer J, Coertse J, Markotter W. Evaluation of Taxonomic Characteristics of Matlo and Phala Bat Rabies-Related Lyssaviruses Identified in South Africa. Viruses 2023; 15:2047. [PMID: 37896824 PMCID: PMC10611238 DOI: 10.3390/v15102047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
We report the genetic characterization of two potentially novel rabies-related lyssaviruses identified from bats in Limpopo province, South Africa. Matlo bat lyssavirus (MBLV) was identified in two Miniopterus natalensis (Natal long-fingered) bats in 2015 and 2016, and Phala bat lyssavirus (PBLV) was identified in a Nycticeinops schlieffeni (Schlieffen's) bat in 2021. The distribution of both of these bat species is largely confined to parts of Africa, with limited reports from the Arabian Peninsula. MBLV and PBLV were demonstrated to group with the unassigned and phylogroup I lyssaviruses, respectively. MBLV was most closely related to Lyssavirus caucasicus (WCBV), whereas PBLV was most closely related to Lyssavirus formosa (TWBLV-1) and Taiwan bat lyssavirus 2 (TWBLV-2), based on analysis of the N and G genes, the concatenated N + P + M + G + L coding sequence, and the complete genome sequence. Based on our analysis, MBLV and WCBV appeared to constitute a phylogroup separate from Lyssavirus lleida (LLEBV) and Lyssavirus ikoma (IKOV). Analysis of the antigenic sites suggests that PBLV will likely be serologically distinguishable from established lyssaviruses in virus-neutralization tests, whereas MBLV appeared to be antigenically highly similar to WCBV. Taken together, the findings suggested that, while PBLV is likely a new lyssavirus species, MBLV is likely related to WCBV.
Collapse
Affiliation(s)
- Natalie Viljoen
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria 0001, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Disease of the National Health Laboratory Service, Johannesburg 2131, South Africa
| | - Jacqueline Weyer
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria 0001, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Disease of the National Health Laboratory Service, Johannesburg 2131, South Africa
- Department of Microbiology and Infectious Diseases, Faculty of Health Sciences, University of Witwatersrand, Johannesburg 2000, South Africa
| | - Jessica Coertse
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria 0001, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Disease of the National Health Laboratory Service, Johannesburg 2131, South Africa
| | - Wanda Markotter
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria 0001, South Africa
| |
Collapse
|
9
|
Dundarova H, Ivanova-Aleksandrova N, Bednarikova S, Georgieva I, Kirov K, Miteva K, Neov B, Ostoich P, Pikula J, Zukal J, Hristov P. Phylogeographic Aspects of Bat Lyssaviruses in Europe: A Review. Pathogens 2023; 12:1089. [PMID: 37764897 PMCID: PMC10534866 DOI: 10.3390/pathogens12091089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/08/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
During the last few decades, bat lyssaviruses have become the topic of intensive molecular and epidemiological investigations. Since ancient times, rhabdoviruses have caused fatal encephalitis in humans which has led to research into effective strategies for their eradication. Modelling of potential future cross-species virus transmissions forms a substantial component of the recent infection biology of rabies. In this article, we summarise the available data on the phylogeography of both bats and lyssaviruses in Europe and the adjacent reg ions, especially in the contact zone between the Palearctic and Ethiopian realms. Within these zones, three bat families are present with high potential for cross-species transmission and the spread of lyssaviruses in Phylogroup II to Europe (part of the western Palearctic). The lack of effective therapies for rabies viruses in Phylogroup II and the most divergent lyssaviruses generates impetus for additional phylogenetic and virological research within this geographical region.
Collapse
Affiliation(s)
- Heliana Dundarova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1 Tsar Osvoboditel Blvd., 1000 Sofia, Bulgaria
| | | | - Sarka Bednarikova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
| | - Irina Georgieva
- National Centre of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504 Sofia, Bulgaria
| | - Krasimir Kirov
- Faculty of Biology, University of Plovdiv “Paisii Hilendarski”, 24 Tzar Assen Str., 4000 Plovdiv, Bulgaria
| | - Kalina Miteva
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1 Tsar Osvoboditel Blvd., 1000 Sofia, Bulgaria
| | - Boyko Neov
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1 Tsar Osvoboditel Blvd., 1000 Sofia, Bulgaria
| | - Peter Ostoich
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1 Tsar Osvoboditel Blvd., 1000 Sofia, Bulgaria
| | - Jiri Pikula
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
| | - Jan Zukal
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 65 Brno, Czech Republic
| | - Peter Hristov
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1 Tsar Osvoboditel Blvd., 1000 Sofia, Bulgaria
| |
Collapse
|
10
|
Černe D, Hostnik P, Toplak I, Presetnik P, Maurer-Wernig J, Kuhar U. Discovery of a novel bat lyssavirus in a Long-fingered bat (Myotis capaccinii) from Slovenia. PLoS Negl Trop Dis 2023; 17:e0011420. [PMID: 37384601 DOI: 10.1371/journal.pntd.0011420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/25/2023] [Indexed: 07/01/2023] Open
Abstract
Lyssaviruses are the causative agents of rabies, a zoonotic, fatal disease that is thought to be ancestral to bats. In the last decade, the detection of bat associated lyssaviruses is increasing also in Europe. Within a retrospective bat associated lyssavirus surveillance study a total of 225 dead bats of 21 bat species were collected in Slovenia between 2012 and 2019 and tested by specific real-time RT-PCR method. The first lyssavirus positive sample in bats in Slovenia was detected using the real-time RT-PCR, the fluorescent antibody test, and next generation sequencing, while the rabies tissue culture inoculation test was unsuccessful due to sample degradation and storage conditions. The nearly complete genome of Divača bat lyssavirus from Slovenia consists of 11,871 nucleotides and reflects the characteristic gene organization known for lyssaviruses, encoding the five viral proteins. Phylogenetic analysis of Divača bat lyssavirus revealed that it belongs to phylogroup I lyssaviruses and is most closely related to Kotalahti bat lyssavirus (KBLV) with 87.20% nucleotide and 99.22% amino acid identity. Together with KBLV, Khujand virus, European bat lyssavirus 2, Bakeloh bat lyssavirus, and Aravan virus, Divača bat lyssavirus was detected in the genus Myotis suggesting its key role in the transmission and maintenance of certain lyssaviruses.
Collapse
Affiliation(s)
- Danijela Černe
- Institute of Microbiology and Parasitology, Virology Unit, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Peter Hostnik
- Institute of Microbiology and Parasitology, Virology Unit, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Ivan Toplak
- Institute of Microbiology and Parasitology, Virology Unit, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Primož Presetnik
- Centre for Cartography of Fauna and Flora, Ljubljana office, Ljubljana, Slovenia
| | - Jedrt Maurer-Wernig
- Administration of the Republic of Slovenia for food safety, veterinary sector, and plant protection, Ljubljana, Slovenia
| | - Urška Kuhar
- Institute of Microbiology and Parasitology, Virology Unit, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
11
|
Abstract
Bats perform important ecological roles in our ecosystem. However, recent studies have demonstrated that bats are reservoirs of emerging viruses that have spilled over into humans and agricultural animals to cause severe diseases. These viruses include Hendra and Nipah paramyxoviruses, Ebola and Marburg filoviruses, and coronaviruses that are closely related to severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and the recently emerged SARS-CoV-2. Intriguingly, bats that are naturally or experimentally infected with these viruses do not show clinical signs of disease. Here we have reviewed ecological, behavioral, and molecular factors that may influence the ability of bats to harbor viruses. We have summarized known zoonotic potential of bat-borne viruses and stress on the need for further studies to better understand the evolutionary relationship between bats and their viruses, along with discovering the intrinsic and external factors that facilitate the successful spillover of viruses from bats.
Collapse
Affiliation(s)
- Victoria Gonzalez
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Arinjay Banerjee
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
12
|
Povolyaeva OS, Chadaeva AA, Lunitsin AV, Yurkov SG. [Dwarf bat's (Pipistrellus pipistrellus) lung diploid cell strains and their permissivity to orbiviruses (Reoviridae: Orbivirus) - pathogens of vector-borne animal diseases]. Vopr Virusol 2022; 67:227-236. [PMID: 35831965 DOI: 10.36233/0507-4088-114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Bat cell cultures are a popular model both for the isolation of vector-borne disease viruses and for assessing the possible role of these mammalian species in forming the natural reservoirs of arbovirus infection vectors. The goal of the research was to obtain and characterize strains of diploid lung cells of the bat (Pipistrellus pipistrellus) and evaluate their permissivity to bluetongue, African horse sickness (AHS), and epizootic hemorrhagic disease of deer (EHD) viruses. MATERIALS AND METHODS Cell cultures of the dwarf bat's lung were obtained by standard enzymatic disaggregation of donor tissue and selection of cells for adhesive properties. The permissivity of cell cultures was determined to bluetongue, AHL, and EHD orbiviruses. RESULTS Diploid cell strains (epithelium-like and fibroblast-like types) retaining cytomorphological characteristics and karyotype stability were obtained from tissue of the bat's lung. Their permissivity to viruses of the genus Orbivirus of the Reoviridae family, pathogens of transmissible animal diseases, has been established. DISCUSSION The permissivity of the obtained strains of bat's lung cells to bluetongue, AHL, and EHD viruses is consistent with the isolation of orbiviruses in bats of the species Pteropus poliocephalus, Pteropus hypomelanus, Rousettus aegyptiacus leachii, Syconycteris crassa, Myotis macrodactylus, and Eidolon helvum. CONCLUSION Strains of diploid lung cells of the dwarf bat are permissive to orbiviruses of bluetongue, AHS, and EHD, which allows us to recommend them for the isolation of these viruses, and the species Pipistrellus pipistrellus to be considered as a potential natural reservoir and carrier of pathogens of these vector-borne diseases.
Collapse
Affiliation(s)
| | - A A Chadaeva
- Federal Research Center for Virology and Microbiology
| | - A V Lunitsin
- Federal Research Center for Virology and Microbiology
| | - S G Yurkov
- Federal Research Center for Virology and Microbiology
| |
Collapse
|
13
|
Elakov AL. [Anti-rabies vaccines applied in the Russian Federation and perspectives for their improvement]. Vopr Virusol 2022; 67:107-114. [PMID: 35521983 DOI: 10.36233/0507-4088-102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 05/05/2022] [Indexed: 12/25/2022]
Abstract
Rabies is almost ubiquitous (except in certain areas) and poses a significant danger to both animals and humans. Every year around 55,000 people die from this disease worldwide. In the Russian Federation alone 400,000- 450,000 patients annually apply for anti-rabies treatment. In the absolute majority of cases human infection is caused by contact with infected animals. In RF, a number of cultured inactivated anti-rabies vaccines for medical and veterinary purposes have been developed, registered and used for specific prevention of rabies. These vaccine preparations have shown high effectiveness in preventing infection in domestic and farm animals. At the same time, the main reservoir of the rabies virus (Mononegavirales: Rhabdoviridae: Lyssavirus) (RV) are wild carnivores (Mammalia: Carnivora). For the purpose of their oral immunization, live virus vaccines from attenuated (fixed) strains of RV that are little resistant in the external environment are used. In Western Europe and North America there is successful experience with recombinant anti-rabies vaccine preparations containing a viral glycoprotein gene (G-protein). Such vaccines are safe for humans and animals. In Russia also had been developed a vector anti-rabies vaccine based on adenovirus (Adenoviridae), which can be used to combat this infection. Currently, in addition to classical rabies, diseases caused by new, previously unknown lyssaviruses (Lyssavirus) are becoming increasingly important. Bats (Mammalia: Microchiroptera) are their vectors. Cases of illness and death after contact with these animals have been described. In the near future, we should expect the development of new vaccines that will provide protection not only against RV, but also against other lyssaviruses.
Collapse
Affiliation(s)
- A L Elakov
- FSBSI «Federal Scientific Center - All-Russian Scientific Research Institute of Experimental Veterinary Medicine named after K.I. Skryabin and Ya.R. Kovalenko of the Russian Academy of Sciences»
| |
Collapse
|
14
|
Scott TP, Nel LH. Lyssaviruses and the Fatal Encephalitic Disease Rabies. Front Immunol 2021; 12:786953. [PMID: 34925368 PMCID: PMC8678592 DOI: 10.3389/fimmu.2021.786953] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022] Open
Abstract
Lyssaviruses cause the disease rabies, which is a fatal encephalitic disease resulting in approximately 59,000 human deaths annually. The prototype species, rabies lyssavirus, is the most prevalent of all lyssaviruses and poses the greatest public health threat. In Africa, six confirmed and one putative species of lyssavirus have been identified. Rabies lyssavirus remains endemic throughout mainland Africa, where the domestic dog is the primary reservoir - resulting in the highest per capita death rate from rabies globally. Rabies is typically transmitted through the injection of virus-laden saliva through a bite or scratch from an infected animal. Due to the inhibition of specific immune responses by multifunctional viral proteins, the virus usually replicates at low levels in the muscle tissue and subsequently enters the peripheral nervous system at the neuromuscular junction. Pathogenic rabies lyssavirus strains inhibit innate immune signaling and induce cellular apoptosis as the virus progresses to the central nervous system and brain using viral protein facilitated retrograde axonal transport. Rabies manifests in two different forms - the encephalitic and the paralytic form - with differing clinical manifestations and survival times. Disease symptoms are thought to be due mitochondrial dysfunction, rather than neuronal apoptosis. While much is known about rabies, there remain many gaps in knowledge about the neuropathology of the disease. It should be emphasized however, that rabies is vaccine preventable and dog-mediated human rabies has been eliminated in various countries. The global elimination of dog-mediated human rabies in the foreseeable future is therefore an entirely feasible goal.
Collapse
Affiliation(s)
| | - Louis Hendrik Nel
- Global Alliance for Rabies Control, Manhattan, KS, United States
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
15
|
Spillover of West Caucasian Bat Lyssavirus (WCBV) in a Domestic Cat and Westward Expansion in the Palearctic Region. Viruses 2021; 13:v13102064. [PMID: 34696493 PMCID: PMC8540014 DOI: 10.3390/v13102064] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/04/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022] Open
Abstract
In June 2020, a cat from Arezzo (Italy) that died from a neurological disease was diagnosed with West Caucasian Bat Lyssavirus (WCBV). The virus retained high identity across the whole-genome with the reference isolate found in 2002 from a Russian bent-winged bat. We applied control measures recommended by national regulations, investigated a possible interface between cats and bats using visual inspections, bioacoustics analyses and camera trapping and performed active and passive surveillance in bats to trace the source of infection. People that were exposed to the cat received full post-exposure prophylaxis while animals underwent six months of quarantine. One year later, they are all healthy. In a tunnel located near the cat’s house, we identified a group of bent-winged bats that showed virus-neutralizing antibodies to WCBV across four sampling occasions, but no virus in salivary swabs. Carcasses from other bat species were all negative. This description of WCBV in a non-flying mammal confirms that this virus can cause clinical rabies in the absence of preventive and therapeutic measures, and highlights the lack of international guidelines against divergent lyssaviruses. We detected bent-winged bats as the most probable source of infection, testifying the encroachment between these bats and pets/human in urban areas and confirming free-ranging cats as potential hazard for public health and conservation.
Collapse
|
16
|
Renewed Public Health Threat from Emerging Lyssaviruses. Viruses 2021; 13:v13091769. [PMID: 34578350 PMCID: PMC8472001 DOI: 10.3390/v13091769] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 12/25/2022] Open
Abstract
Pathogen discovery contributes to our knowledge of bat-borne viruses and is linked to the heightened interest globally in bats as recognised reservoirs of zoonotic agents. The transmission of lyssaviruses from bats-to-humans, domestic animals, or other wildlife species is uncommon, but interest in these pathogens remains due to their ability to cause an acute, progressive, invariably fatal encephalitis in humans. Consequently, the detection and characterisation of bat lyssaviruses continues to expand our knowledge of their phylogroup definition, viral diversity, host species association, geographical distribution, evolution, mechanisms for perpetuation, and the potential routes of transmission. Although the opportunity for lyssavirus cross-species transmission seems rare, adaptation in a new host and the possibility of onward transmission to humans requires continued investigation. Considering the limited efficacy of available rabies biologicals it is important to further our understanding of protective immunity to minimize the threat from these pathogens to public health. Hence, in addition to increased surveillance, the development of a niche pan-lyssavirus vaccine or therapeutic biologics for post-exposure prophylaxis for use against genetically divergent lyssaviruses should be an international priority as these emerging lyssaviruses remain a concern for global public health.
Collapse
|
17
|
Glycoproteins of Predicted Amphibian and Reptile Lyssaviruses Can Mediate Infection of Mammalian and Reptile Cells. Viruses 2021; 13:v13091726. [PMID: 34578307 PMCID: PMC8473393 DOI: 10.3390/v13091726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 01/04/2023] Open
Abstract
Lyssaviruses are neurotropic rhabdoviruses thought to be restricted to mammalian hosts, and to originate from bats. The identification of lyssavirus sequences from amphibians and reptiles by metatranscriptomics thus comes as a surprise and challenges the mammalian origin of lyssaviruses. The novel sequences of the proposed American tree frog lyssavirus (ATFLV) and anole lizard lyssavirus (ALLV) reveal substantial phylogenetic distances from each other and from bat lyssaviruses, with ATFLV being the most distant. As virus isolation has not been successful yet, we have here studied the functionality of the authentic ATFLV- and ALLV-encoded glycoproteins in the context of rabies virus pseudotype particles. Cryogenic electron microscopy uncovered the incorporation of the plasmid-encoded G proteins in viral envelopes. Infection experiments revealed the infectivity of ATFLV and ALLV G-coated RABV pp for a broad spectrum of cell lines from humans, bats, and reptiles, demonstrating membrane fusion activities. As presumed, ATFLV and ALLV G RABV pp escaped neutralization by human rabies immune sera. The present findings support the existence of contagious lyssaviruses in poikilothermic animals, and reveal a broad cell tropism in vitro, similar to that of the rabies virus.
Collapse
|
18
|
Update on Potentially Zoonotic Viruses of European Bats. Vaccines (Basel) 2021; 9:vaccines9070690. [PMID: 34201666 PMCID: PMC8310327 DOI: 10.3390/vaccines9070690] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/10/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022] Open
Abstract
Bats have been increasingly gaining attention as potential reservoir hosts of some of the most virulent viruses known. Numerous review articles summarize bats as potential reservoir hosts of human-pathogenic zoonotic viruses. For European bats, just one review article is available that we published in 2014. The present review provides an update on the earlier article and summarizes the most important viruses found in European bats and their possible implications for Public Health. We identify the research gaps and recommend monitoring of these viruses.
Collapse
|
19
|
Vora NM, Osinubi MOV, Davis L, Abdurrahman M, Adedire EB, Akpan H, Aman-Oloniyo AF, Audu SW, Blau D, Dankoli RS, Ehimiyein AM, Ellison JA, Gbadegesin YH, Greenberg L, Haberling D, Hutson C, Idris JM, Kia GSN, Lawal M, Matthias SY, Mshelbwala PP, Niezgoda M, Ogunkoya AB, Ogunniyi AO, Okara GC, Olugasa BO, Ossai OP, Oyemakinde A, Person MK, Rupprecht CE, Saliman OA, Sani M, Sanni-Adeniyi OA, Satheshkumar PS, Smith TG, Soleye MO, Wallace RM, Yennan SK, Recuenco S. Bat and Lyssavirus Exposure among Humans in Area that Celebrates Bat Festival, Nigeria, 2010 and 2013. Emerg Infect Dis 2021; 26:1399-1408. [PMID: 32568051 PMCID: PMC7323560 DOI: 10.3201/eid2607.191016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Using questionnaires and serologic testing, we evaluated bat and lyssavirus exposure among persons in an area of Nigeria that celebrates a bat festival. Bats from festival caves underwent serologic testing for phylogroup II lyssaviruses (Lagos bat virus, Shimoni bat virus, Mokola virus). The enrolled households consisted of 2,112 persons, among whom 213 (10%) were reported to have ever had bat contact (having touched a bat, having been bitten by a bat, or having been scratched by a bat) and 52 (2%) to have ever been bitten by a bat. Of 203 participants with bat contact, 3 (1%) had received rabies vaccination. No participant had neutralizing antibodies to phylogroup II lyssaviruses, but >50% of bats had neutralizing antibodies to these lyssaviruses. Even though we found no evidence of phylogroup II lyssavirus exposure among humans, persons interacting with bats in the area could benefit from practicing bat-related health precautions.
Collapse
|
20
|
Fisher CR, Lowe DE, Smith TG, Yang Y, Hutson CL, Wirblich C, Cingolani G, Schnell MJ. Lyssavirus Vaccine with a Chimeric Glycoprotein Protects across Phylogroups. Cell Rep 2021; 32:107920. [PMID: 32697993 PMCID: PMC7373069 DOI: 10.1016/j.celrep.2020.107920] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 03/21/2020] [Accepted: 06/26/2020] [Indexed: 12/25/2022] Open
Abstract
Rabies is nearly 100% lethal in the absence of treatment, killing an estimated 59,000 people annually. Vaccines and biologics are highly efficacious when administered properly. Sixteen rabies-related viruses (lyssaviruses) are similarly lethal, but some are divergent enough to evade protection from current vaccines and biologics, which are based only on the classical rabies virus (RABV). Here we present the development and characterization of LyssaVax, a vaccine featuring a structurally designed, functional chimeric glycoprotein (G) containing immunologically important domains from both RABV G and the highly divergent Mokola virus (MOKV) G. LyssaVax elicits high titers of antibodies specific to both RABV and MOKV Gs in mice. Immune sera also neutralize a range of wild-type lyssaviruses across the major phylogroups. LyssaVax-immunized mice are protected against challenge with recombinant RABV and MOKV. Altogether, LyssaVax demonstrates the utility of structural modeling in vaccine design and constitutes a broadened lyssavirus vaccine candidate.
Collapse
Affiliation(s)
- Christine R Fisher
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - David E Lowe
- National Center for Emerging and Zoonotic Infectious Diseases, Division of High-Consequence Pathogens and Pathology, Poxvirus and Rabies Branch, Centers for Disease Control and Prevention (CDC), Atlanta, GA 30333, USA
| | - Todd G Smith
- National Center for Emerging and Zoonotic Infectious Diseases, Division of High-Consequence Pathogens and Pathology, Poxvirus and Rabies Branch, Centers for Disease Control and Prevention (CDC), Atlanta, GA 30333, USA
| | - Yong Yang
- National Center for Emerging and Zoonotic Infectious Diseases, Division of High-Consequence Pathogens and Pathology, Poxvirus and Rabies Branch, Centers for Disease Control and Prevention (CDC), Atlanta, GA 30333, USA
| | - Christina L Hutson
- National Center for Emerging and Zoonotic Infectious Diseases, Division of High-Consequence Pathogens and Pathology, Poxvirus and Rabies Branch, Centers for Disease Control and Prevention (CDC), Atlanta, GA 30333, USA
| | - Christoph Wirblich
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Gino Cingolani
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Matthias J Schnell
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA; Jefferson Vaccine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
21
|
Povolyaeva OS, Yurkov SG, Lapteva OG, Kolbasova OL, Chadaeva AA, Kol'tsov АY, Sindryakova IP, Vlasov ME, Zhivoderov SP, Lunitsin AV. [Biological characteristics and permissiveness to viruses of diploid kidney cells strain from the bat Nathusius' pipistrelle ( Pipistrellus nathusii Keyserling & Blasius, 1839; Chiroptera: Microchiroptera: Vespertilionidae)]. Vopr Virusol 2021; 66:29-39. [PMID: 33683063 DOI: 10.36233/0507-4088-12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Bats are an epidemiologically important natural reservoir of viruses of various taxonomic groups, including causative agents of especially dangerous infections of humans and animals. Considering the relevance of arbovirus infections, it seems advisable to study the spectrum of the sensitivity of cells derived from bats inhabiting and migrating on the territory of the Russian Federation to causative agents of vector-borne diseases of animals.The study aimed to obtain a diploid strain of cells from renal tissue of bats Pipistrellus nathusii and to investigate its biological characteristics, as well as to assess its permissiveness for bluetongue (BTV); Rift Valley fever (RVFV); lumpy skin disease (LSDV); rabbit myxoma (Myxomatosis cuniculi); rabbit, or Shope fibroma (RFV); African horse sickness (AHSV) and African swine fever (ASFV) viruses. MATERIAL AND METHODS There were 2 clinically healthy male individuals of P. nathusii who taken as donors of organs. To obtain diploid kidney cell culture strain and to study its properties, the level of the 6th passage was investigated by conventional cytological, virological, and molecular methods. The permissiveness of the obtained cell culture for BTV, RVFV, LSDV, Myxomatosis cuniculi, RFV, AHSV and ASFV was determined. RESULTS The formation of a confluent monolayer was observed after 72 hours, while the proliferation index was 2.7-3.3. The cell monolayer had been maintained without changing the medium for 45 days (observation period). The stability of the karyotype had been demonstrated in continuous subculturing at the 36th passage. The cell culture named «Diploid cell line Pipistrellus nathusii kidney», and its permissiveness to BTV, RVFV, LSDV and Myxomatosis cuniculi had been demonstrated. DISCUSSION The sensitivity of the strain to BTV and RVFV is consistent with the data on the identification of reovirus and RVFV in Egyptian fruit bats (Rousettus aegyptiacus), and its permissiveness for LSDV and rabbits myxoma virus is consistent with the results of detection of poxviruses in big brown bat (Eptesicus fuscus). CONCLUSION A diploid kidney cell strain derived from P. nathusii was obtained and certified. Its permissiveness to BTV, RVFV, LSDV and rabbits myxoma viruses makes it possible to use this strain for isolation and studies of these viruses. Reproduction of the viruses in diploid kidney cells strain derived from P. nathusii living and migrating in the European part of the Russian Federation indicates their potential role in the epidemiology of significant infections, especially transmissible ones.
Collapse
Affiliation(s)
- O S Povolyaeva
- FSBRI Federal Research Center for Virology and Microbiology of the Ministry of Science and Higher Education of Russia
| | - S G Yurkov
- FSBRI Federal Research Center for Virology and Microbiology of the Ministry of Science and Higher Education of Russia
| | - O G Lapteva
- FSBRI Federal Research Center for Virology and Microbiology of the Ministry of Science and Higher Education of Russia
| | - O L Kolbasova
- FSBRI Federal Research Center for Virology and Microbiology of the Ministry of Science and Higher Education of Russia
| | - A A Chadaeva
- FSBRI Federal Research Center for Virology and Microbiology of the Ministry of Science and Higher Education of Russia
| | - А Yu Kol'tsov
- FSBRI Federal Research Center for Virology and Microbiology of the Ministry of Science and Higher Education of Russia
| | - I P Sindryakova
- FSBRI Federal Research Center for Virology and Microbiology of the Ministry of Science and Higher Education of Russia
| | - M E Vlasov
- FSBRI Federal Research Center for Virology and Microbiology of the Ministry of Science and Higher Education of Russia
| | - S P Zhivoderov
- FSBRI Federal Research Center for Virology and Microbiology of the Ministry of Science and Higher Education of Russia
| | - A V Lunitsin
- FSBRI Federal Research Center for Virology and Microbiology of the Ministry of Science and Higher Education of Russia
| |
Collapse
|
22
|
Vega S, Lorenzo-Rebenaque L, Marin C, Domingo R, Fariñas F. Tackling the Threat of Rabies Reintroduction in Europe. Front Vet Sci 2021; 7:613712. [PMID: 33521085 PMCID: PMC7843519 DOI: 10.3389/fvets.2020.613712] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/15/2020] [Indexed: 12/25/2022] Open
Abstract
Rabies is one of the oldest, most important zoonoses worldwide due to its extreme and inevitably lethal nature, causing one death every 9 min worldwide. Recent reports have demonstrated that the Lyssavirus continues more alive than ever, despite the control carried out against the virus throughout Europe. In this context, this work reviews the main immunological implications, transmission risk factors and current prevention measures for virus control in Europe, and especially in Spain.
Collapse
Affiliation(s)
- Santiago Vega
- Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, Spain
| | - Laura Lorenzo-Rebenaque
- Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, Spain
| | - Clara Marin
- Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, Spain
| | - Rosana Domingo
- Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, Spain
| | - Fernando Fariñas
- Instituto de Inmunología Clínica y Enfermedades Infecciosas. Grupo One Health, Malaga, Spain
| |
Collapse
|
23
|
Calvelage S, Tammiranta N, Nokireki T, Gadd T, Eggerbauer E, Zaeck LM, Potratz M, Wylezich C, Höper D, Müller T, Finke S, Freuling CM. Genetic and Antigenetic Characterization of the Novel Kotalahti Bat Lyssavirus (KBLV). Viruses 2021; 13:69. [PMID: 33419096 PMCID: PMC7825429 DOI: 10.3390/v13010069] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 02/07/2023] Open
Abstract
There is a growing diversity of bat-associated lyssaviruses in the Old World. In August 2017, a dead Brandt's bat (Myotis brandtii) tested positive for rabies and based on partial sequence analysis, the novel Kotalahti bat lyssavirus (KBLV) was identified. Because the bat was in an autolyzed state, isolation of KBLV was neither successful after three consecutive cell passages on cells nor in mice. Next generation sequencing (NGS) was applied using Ion Torrent ™ S5 technology coupled with target enrichment via hybridization-based capture (myBaits®) was used to sequence 99% of the genome, comprising of 11,878 nucleotides (nt). KBLV is most closely related to EBLV-2 (78.7% identity), followed by KHUV (79.0%) and BBLV (77.6%), supporting the assignment as phylogroup I lyssavirus. Interestingly, all of these lyssaviruses were also isolated from bat species of the genus Myotis, thus supporting that M. brandtii is likely the reservoir host. All information on antigenic and genetic divergence fulfil the species demarcation criteria by ICTV, so that we recommend KBLV as a novel species within the Lyssavirus genus. Next to sequence analyses, assignment to phylogroup I was functionally corroborated by cross-neutralization of G-deleted RABV, pseudotyped with KBLV-G by sera from RABV vaccinated humans. This suggests that conventional RABV vaccines also confer protection against the novel KBLV.
Collapse
Affiliation(s)
- Sten Calvelage
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut (FLI), 17493 Greifswald-Insel Riems, Germany; (S.C.); (C.W.); (D.H.)
| | - Niina Tammiranta
- Finnish Food Authority, Research Department, Virology Unit, Mustialankatu 3, FI-00790 Helsinki, Finland; (N.T.); (T.N.); (T.G.)
| | - Tiina Nokireki
- Finnish Food Authority, Research Department, Virology Unit, Mustialankatu 3, FI-00790 Helsinki, Finland; (N.T.); (T.N.); (T.G.)
| | - Tuija Gadd
- Finnish Food Authority, Research Department, Virology Unit, Mustialankatu 3, FI-00790 Helsinki, Finland; (N.T.); (T.N.); (T.G.)
| | - Elisa Eggerbauer
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut (FLI), WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies, 17493 Greifswald-Insel Riems, Germany; (E.E.); (L.M.Z.); (M.P.); (T.M.); (S.F.)
| | - Luca M. Zaeck
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut (FLI), WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies, 17493 Greifswald-Insel Riems, Germany; (E.E.); (L.M.Z.); (M.P.); (T.M.); (S.F.)
| | - Madlin Potratz
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut (FLI), WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies, 17493 Greifswald-Insel Riems, Germany; (E.E.); (L.M.Z.); (M.P.); (T.M.); (S.F.)
| | - Claudia Wylezich
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut (FLI), 17493 Greifswald-Insel Riems, Germany; (S.C.); (C.W.); (D.H.)
| | - Dirk Höper
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut (FLI), 17493 Greifswald-Insel Riems, Germany; (S.C.); (C.W.); (D.H.)
| | - Thomas Müller
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut (FLI), WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies, 17493 Greifswald-Insel Riems, Germany; (E.E.); (L.M.Z.); (M.P.); (T.M.); (S.F.)
| | - Stefan Finke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut (FLI), WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies, 17493 Greifswald-Insel Riems, Germany; (E.E.); (L.M.Z.); (M.P.); (T.M.); (S.F.)
| | - Conrad M. Freuling
- Central Duties, Friedrich-Loeffler-Institut (FLI), 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
24
|
Luo DS, Li B, Shen XR, Jiang RD, Zhu Y, Wu J, Fan Y, Bourhy H, Hu B, Ge XY, Shi ZL, Dacheux L. Characterization of Novel Rhabdoviruses in Chinese Bats. Viruses 2021; 13:v13010064. [PMID: 33466539 PMCID: PMC7824899 DOI: 10.3390/v13010064] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/24/2020] [Accepted: 12/30/2020] [Indexed: 12/25/2022] Open
Abstract
Bats, the second largest order of mammals worldwide, harbor specific characteristics such as sustaining flight, a special immune system, unique habits, and ecological niches. In addition, they are the natural reservoirs of a variety of emerging or re-emerging zoonotic pathogens. Rhabdoviridae is one of the most diverse families of RNA viruses, which consists of 20 ecologically diverse genera, infecting plants, mammals, birds, reptiles, and fish. To date, three bat-related genera are described, named Lyssavirus, Vesiculovirus, and Ledantevirus. However, the prevalence and the distribution of these bat-related rhabdoviruses remain largely unknown, especially in China. To fill this gap, we performed a large molecular retrospective study based on the real-time reverse transcription polymerase chain reaction (RT-qPCR) detection of lyssavirus in bat samples (1044 brain and 3532 saliva samples, from 63 different bat species) originating from 21 provinces of China during 2006–2018. None of them were positive for lyssavirus, but six bat brains (0.6%) of Rhinolophus bat species, originating from Hubei and Hainan provinces, were positive for vesiculoviruses or ledanteviruses. Based on complete genomes, these viruses were phylogenetically classified into three putative new species, tentatively named Yinshui bat virus (YSBV), Taiyi bat virus (TYBV), and Qiongzhong bat virus (QZBV). These results indicate the novel rhabdoviruses circulated in different Chinese bat populations.
Collapse
Affiliation(s)
- Dong-Sheng Luo
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (D.-S.L.); (B.L.); (X.-R.S.); (R.-D.J.); (Y.Z.); (J.W.); (Y.F.); (B.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institut Pasteur, Lyssavirus Epidemiology and Neuropathology Unit, 75724 Paris, France;
| | - Bei Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (D.-S.L.); (B.L.); (X.-R.S.); (R.-D.J.); (Y.Z.); (J.W.); (Y.F.); (B.H.)
| | - Xu-Rui Shen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (D.-S.L.); (B.L.); (X.-R.S.); (R.-D.J.); (Y.Z.); (J.W.); (Y.F.); (B.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ren-Di Jiang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (D.-S.L.); (B.L.); (X.-R.S.); (R.-D.J.); (Y.Z.); (J.W.); (Y.F.); (B.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Zhu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (D.-S.L.); (B.L.); (X.-R.S.); (R.-D.J.); (Y.Z.); (J.W.); (Y.F.); (B.H.)
| | - Jia Wu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (D.-S.L.); (B.L.); (X.-R.S.); (R.-D.J.); (Y.Z.); (J.W.); (Y.F.); (B.H.)
| | - Yi Fan
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (D.-S.L.); (B.L.); (X.-R.S.); (R.-D.J.); (Y.Z.); (J.W.); (Y.F.); (B.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hervé Bourhy
- Institut Pasteur, Lyssavirus Epidemiology and Neuropathology Unit, 75724 Paris, France;
| | - Ben Hu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (D.-S.L.); (B.L.); (X.-R.S.); (R.-D.J.); (Y.Z.); (J.W.); (Y.F.); (B.H.)
| | - Xing-Yi Ge
- Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha 410082, China;
| | - Zheng-Li Shi
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (D.-S.L.); (B.L.); (X.-R.S.); (R.-D.J.); (Y.Z.); (J.W.); (Y.F.); (B.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (Z.-L.S.); (L.D.); Tel.: +86-02787197311 (Z.-L.S.); +33-140613303 (L.D.)
| | - Laurent Dacheux
- Institut Pasteur, Lyssavirus Epidemiology and Neuropathology Unit, 75724 Paris, France;
- Correspondence: (Z.-L.S.); (L.D.); Tel.: +86-02787197311 (Z.-L.S.); +33-140613303 (L.D.)
| |
Collapse
|
25
|
Flis M. Rabies in Europe in 2010-2019. BULGARIAN JOURNAL OF VETERINARY MEDICINE 2021. [DOI: 10.15547/bjvm.2020-0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The paper presents the epizootic and epidemiological situation of rabies in European countries during the last decade. The presented results indicate that the oral immunisation of fox anti-rabies (ORV), used in many European countries, significantly reduced the number of rabies cases found in ground mammals, but did not eliminate the virus at all. Currently, the largest reservoir of the virus are Eastern European countries where there are no immunisation activities or their effectiveness is low. Due to the absence of geographical barriers, the virus reappears in countries that have been described as free from rabies. As a rule, it is dragged into these areas along with the movement of companion animals and by people travelling to countries where the prevalence of the virus is common. It should be emphasised that due to the significant elimination of the virus in wild and domestic animals, it found quite quickly found a new reservoir in a specific group of mammals, having the ability to fly, like bats. Currently there is no possibility of carrying out any preventive measures in bats, so all the virus strains found in this group of animals are dangerous to humans, raising possibilities of epidemiological threat. It should be noted that despite the significant elimination of rabies in many European countries, given the almost unlimited possibilities of virus transmission to new areas, it still poses a serious threat to public health. Thus, it is necessary to constantly monitor the occurrence of the virus and possibly take preventive actions in terms of its elimination from the environment.
Collapse
Affiliation(s)
- M. Flis
- Department of Animal Ethology and Wildlife Management, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Lublin, Poland
| |
Collapse
|
26
|
Seidlova V, Zukal J, Brichta J, Anisimov N, Apoznański G, Bandouchova H, Bartonička T, Berková H, Botvinkin AD, Heger T, Dundarova H, Kokurewicz T, Linhart P, Orlov OL, Piacek V, Presetnik P, Shumkina AP, Tiunov MP, Treml F, Pikula J. Active surveillance for antibodies confirms circulation of lyssaviruses in Palearctic bats. BMC Vet Res 2020; 16:482. [PMID: 33302915 PMCID: PMC7731468 DOI: 10.1186/s12917-020-02702-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 12/02/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Palearctic bats host a diversity of lyssaviruses, though not the classical rabies virus (RABV). As surveillance for bat rabies over the Palearctic area covering Central and Eastern Europe and Siberian regions of Russia has been irregular, we lack data on geographic and seasonal patterns of the infection. RESULTS To address this, we undertook serological testing, using non-lethally sampled blood, on 1027 bats of 25 species in Bulgaria, the Czech Republic, Poland, Russia and Slovenia between 2014 and 2018. The indirect enzyme-linked immunosorbent assay (ELISA) detected rabies virus anti-glycoprotein antibodies in 33 bats, giving an overall seroprevalence of 3.2%. Bat species exceeding the seroconversion threshold included Myotis blythii, Myotis gracilis, Myotis petax, Myotis myotis, Murina hilgendorfi, Rhinolophus ferrumequinum and Vespertilio murinus. While Myotis species (84.8%) and adult females (48.5%) dominated in seropositive bats, juveniles of both sexes showed no difference in seroprevalence. Higher numbers tested positive when sampled during the active season (10.5%), as compared with the hibernation period (0.9%). Bat rabies seroprevalence was significantly higher in natural habitats (4.0%) compared with synanthropic roosts (1.2%). Importantly, in 2018, we recorded 73.1% seroprevalence in a cave containing a M. blythii maternity colony in the Altai Krai of Russia. CONCLUSIONS Identification of such "hotspots" of non-RABV lyssavirus circulation not only provides important information for public health protection, it can also guide research activities aimed at more in-depth bat rabies studies.
Collapse
Affiliation(s)
- Veronika Seidlova
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic.
| | - Jan Zukal
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 65, Brno, Czech Republic
- Department of Botany and Zoology, Masaryk University, Kotlářská 267/2, 611 37, Brno, Czech Republic
| | - Jiri Brichta
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic
| | - Nikolay Anisimov
- Land Use and Biodiversity, International Complex Research Laboratory for Study of Climate Change, Tyumen State University, Volodarckogo 6, 625003, Tyumen, Russia
| | - Grzegorz Apoznański
- Institute of Biology, Department of Vertebrate Ecology and Palaeontology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Hana Bandouchova
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic
| | - Tomáš Bartonička
- Department of Botany and Zoology, Masaryk University, Kotlářská 267/2, 611 37, Brno, Czech Republic
| | - Hana Berková
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 65, Brno, Czech Republic
| | - Alexander D Botvinkin
- Irkutsk State Medical University, Krasnogo Vosstania street 1, 664003, Irkutsk, Russian Federation
| | - Tomas Heger
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic
| | - Heliana Dundarova
- Department of Ecosystem Research, Environment Risk Assessment and Conservation Biology, Institute of Biodiversity and Ecosystem Research, Tsar Osvoboditel 1, 1000, Sofia, Bulgaria
| | - Tomasz Kokurewicz
- Institute of Biology, Department of Vertebrate Ecology and Palaeontology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Petr Linhart
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic
| | - Oleg L Orlov
- Land Use and Biodiversity, International Complex Research Laboratory for Study of Climate Change, Tyumen State University, Volodarckogo 6, 625003, Tyumen, Russia
- Department of Biochemistry, Ural State Medical University, Repina 3, 620014, Ekaterinburg, Russia
| | - Vladimir Piacek
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic
| | - Primož Presetnik
- Centre for Cartography of Fauna and Flora, Antoličičeva 1, SI-2204 , Miklavž na Dravskem polju, Slovenia
| | - Alexandra P Shumkina
- Western Baikal protected areas, Federal State Budgetary Institution "Zapovednoe Pribaikalye", Baikalskaya st. 291B, 664050, Irkutsk, Russia
| | - Mikhail P Tiunov
- Institute of Biology and Soil Science, Far East Branch of the Russian Academy of Sciences, Pr- t 100-letiya Vladivostoka 159, 690022, Vladivostok, Russia
| | - Frantisek Treml
- Department of Infectious Diseases and Microbiology, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic
| | - Jiri Pikula
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic
- CEITEC - Central European Institute of Technology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| |
Collapse
|
27
|
AL-Eitan LN, Tarkhan AH, Alghamdi MA, Marston DA, Wu G, McElhinney LM, Brown IH, Fooks AR. Bat-Borne Coronaviruses in Jordan and Saudi Arabia: A Threat to Public Health? Viruses 2020; 12:E1413. [PMID: 33316899 PMCID: PMC7764733 DOI: 10.3390/v12121413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 11/22/2022] Open
Abstract
Emerging infectious diseases are of great concern to public health, as highlighted by the ongoing coronavirus disease 2019 (COVID-19) pandemic. Such diseases are of particular danger during mass gathering and mass influx events, as large crowds of people in close proximity to each other creates optimal opportunities for disease transmission. The Hashemite Kingdom of Jordan and the Kingdom of Saudi Arabia are two countries that have witnessed mass gatherings due to the arrival of Syrian refugees and the annual Hajj season. The mass migration of people not only brings exotic diseases to these regions but also brings new diseases back to their own countries, e.g., the outbreak of MERS in South Korea. Many emerging pathogens originate in bats, and more than 30 bat species have been identified in these two countries. Some of those bat species are known to carry viruses that cause deadly diseases in other parts of the world, such as the rabies virus and coronaviruses. However, little is known about bats and the pathogens they carry in Jordan and Saudi Arabia. Here, the importance of enhanced surveillance of bat-borne infections in Jordan and Saudi Arabia is emphasized, promoting the awareness of bat-borne diseases among the general public and building up infrastructure and capability to fill the gaps in public health preparedness to prevent future pandemics.
Collapse
Affiliation(s)
- Laith N. AL-Eitan
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Amneh H. Tarkhan
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Mansour A. Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia;
- Genomics and Personalized Medicine Unit, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Denise A. Marston
- Department of Virology, Animal and Plant Health Agency (APHA, Weybridge), Surrey KT15 3NB, UK; (D.A.M.); (G.W.); (L.M.M.); (I.H.B.); (A.R.F.)
| | - Guanghui Wu
- Department of Virology, Animal and Plant Health Agency (APHA, Weybridge), Surrey KT15 3NB, UK; (D.A.M.); (G.W.); (L.M.M.); (I.H.B.); (A.R.F.)
| | - Lorraine M. McElhinney
- Department of Virology, Animal and Plant Health Agency (APHA, Weybridge), Surrey KT15 3NB, UK; (D.A.M.); (G.W.); (L.M.M.); (I.H.B.); (A.R.F.)
| | - Ian H. Brown
- Department of Virology, Animal and Plant Health Agency (APHA, Weybridge), Surrey KT15 3NB, UK; (D.A.M.); (G.W.); (L.M.M.); (I.H.B.); (A.R.F.)
| | - Anthony R. Fooks
- Department of Virology, Animal and Plant Health Agency (APHA, Weybridge), Surrey KT15 3NB, UK; (D.A.M.); (G.W.); (L.M.M.); (I.H.B.); (A.R.F.)
| |
Collapse
|
28
|
Forró B, Marton S, Fehér E, Domán M, Kemenesi G, Cadar D, Hornyák Á, Bányai K. Phylogeny of Hungarian EBLV-1 strains using whole-genome sequence data. Transbound Emerg Dis 2020; 68:1323-1331. [PMID: 33460276 DOI: 10.1111/tbed.13789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 07/17/2020] [Accepted: 08/10/2020] [Indexed: 11/26/2022]
Abstract
European bat lyssavirus 1 (EBLV-1) is a widespread lyssavirus across Europe, whose epizootic cycle is linked to a few bat species. Occasionally, EBLV-1 infection may occur in domestic animals and humans. EBLV-1 can be classified into two subtypes, where subtype EBLV-1a shows a wide geographic distribution between France and Russia whereas subtype EBLV-1b is distributed between Spain and Poland. In this study, we determined the genome sequence of two recent EBLV-1a strains detected in Hungary and analysed their adaptive evolution and phylodynamics. The data set that included 100 EBLV-1 genome sequences identified positive selection at selected sites in genes coding for viral proteins (N, codon 18; P, 141 and 155; G, 244 and 488; L, 168, 980, 1597 and 1754). A major genetic clade containing EBLV-1a isolates from Hungary, Slovakia, Denmark and Poland was estimated to have diverged during the 19th century whereas the divergence of the most recent ancestor of Hungarian and Slovakian isolates dates back to 1950 (time span, 1930 to 1970). Phylogeographic analysis of the EBLV-1a genomic sequences demonstrated strong evidence of viral dispersal from Poland to Hungary. This new information indicates that additional migratory flyways may help the virus spread, a finding that supplements the general theory on a west-to-east dispersal of EBLV-1a strains. Long-distance migrant bats may mediate the dispersal of EBLV-1 strains across Europe; however, structured surveillance and extended genome sequencing would be needed to better understand the epizootiology of EBLV-1 infections in Europe.
Collapse
Affiliation(s)
- Barbara Forró
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Budapest, Hungary
| | - Szilvia Marton
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Budapest, Hungary
| | - Enikő Fehér
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Budapest, Hungary
| | - Marianna Domán
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Budapest, Hungary
| | - Gábor Kemenesi
- Szentágothai Research Centre, Virological Research Group Pécs Hungary, University of Pécs, Pécs, Hungary.,Faculty of Sciences, Institute of Biology, University of Pécs, Pécs, Hungary
| | - Daniel Cadar
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, National Reference Centre for Tropical Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Ákos Hornyák
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, Budapest, Hungary
| | - Krisztián Bányai
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Budapest, Hungary
| |
Collapse
|
29
|
Orłowska A, Smreczak M, Freuling CM, Müller T, Trębas P, Rola J. Serological Survey of Lyssaviruses in Polish Bats in the Frame of Passive Rabies Surveillance Using an Enzyme-Linked Immunosorbent Assay. Viruses 2020; 12:v12030271. [PMID: 32121200 PMCID: PMC7150987 DOI: 10.3390/v12030271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/17/2020] [Accepted: 02/27/2020] [Indexed: 12/27/2022] Open
Abstract
Background: Bats are known to host a number of nonpathogenic viruses, as well as highly pathogenic viruses causing fatal diseases like rabies. Serological surveys as part of active and passive bat rabies surveillance mainly use seroneutralization assays, demonstrating the presence of lyssavirus-specific antibodies in a variety of European bats, particularly against European bat lyssaviruses type 1 (EBLV-1). Here, we present the first serological survey in European bats of this kind during which European bats from Poland collected in the frame of passive rabies surveillance between 2012 and 2018, as well as Serotine bats (Eptesicus serotinus) and North American Big Brown bats (Eptesicus fuscus) from previous experimental studies, were tested using a commercial ELISA kit for the detection of anti-lyssavirus antibodies. Results: Lyssavirus-specific antibodies were detected in 35 (30.4%) out of 115 Polish bats of both sexes, representing nine out of 13 identified bat species endemic mainly to Central Southern Europe and Western Asia, i.e., Eptesicus serotinus, Nyctalus noctula, Myotis daubentonii, Plecotus auritus, Vespertillo murinus, Pipistrellus pipistrellus, Pipistrellus pipilstrellus/Pipistrellus pygmaeus, Myotis brandtii, and Barbastella barbastellus. Seroprevalence was highest in bat species of Nyctalus noctula, Eptesicus serotinus, Plecotus auritus, and Myotis daubentonii. More than 60% of the ELISA seropositive bats originated from the voivodeships of Silesia, Lower-Silesian, Warmian-Mazurian, and Mazowian. Rabies-specific antibodies were also found in Eptesicus fuscus bats from North America. Conclusions: The study demonstrates the principal application of the BioPro Rabies ELISA Ab Kit for the detection of anti-lyssavirus specific antibodies in body fluids and serum samples of bats. However, results may only be reliable for North American bats, whereas interpretation of results for European bats per se is difficult because proper validation of the test is hampered by the protected status of these species.
Collapse
Affiliation(s)
- Anna Orłowska
- Department of Virology, National Veterinary Research Institute, 24-100 Puławy, Poland; (P.T.); (J.R.)
- Correspondence: (A.O.); (M.S.); Tel.: +48-818-893-072 (A.O.); +48818-893-029 (M.S.)
| | - Marcin Smreczak
- Department of Virology, National Veterinary Research Institute, 24-100 Puławy, Poland; (P.T.); (J.R.)
- Correspondence: (A.O.); (M.S.); Tel.: +48-818-893-072 (A.O.); +48818-893-029 (M.S.)
| | - Conrad Martin Freuling
- Institute of Molecular Virology and Cell Biology, FLI, WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies, 17493 Greifswald-Insel Riems, Germany; (C.M.F.); (T.M.)
| | - Thomas Müller
- Institute of Molecular Virology and Cell Biology, FLI, WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies, 17493 Greifswald-Insel Riems, Germany; (C.M.F.); (T.M.)
| | - Paweł Trębas
- Department of Virology, National Veterinary Research Institute, 24-100 Puławy, Poland; (P.T.); (J.R.)
| | - Jerzy Rola
- Department of Virology, National Veterinary Research Institute, 24-100 Puławy, Poland; (P.T.); (J.R.)
| |
Collapse
|
30
|
Begeman L, Kooi EA, van Weezep E, van de Bildt MWG, Reusken CBEM, Lina PHC, Koopmans MPG, van den Brand JMA, Kuiken T. Faeces as a novel material to estimate lyssavirus prevalence in bat populations. Zoonoses Public Health 2019; 67:198-202. [PMID: 31814288 PMCID: PMC7027462 DOI: 10.1111/zph.12672] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/23/2019] [Accepted: 11/22/2019] [Indexed: 12/19/2022]
Abstract
Rabies is caused by infection with a lyssavirus. Bat rabies is of concern for both public health and bat conservation. The current method for lyssavirus prevalence studies in bat populations is by oral swabbing, which is invasive for the bats, dangerous for handlers, time-consuming and expensive. In many situations, such sampling is not feasible, and hence, our understanding of epidemiology of bat rabies is limited. Faeces are usually easy to collect from bat colonies without disturbing the bats and thus could be a practical and feasible material for lyssavirus prevalence studies. To further explore this idea, we performed virological analysis on faecal pellets and oral swabs of seven serotine bats (Eptesicus serotinus) that were positive for European bat 1 lyssavirus in the brain. We also performed immunohistochemical and virological analyses on digestive tract samples of these bats to determine potential sources of lyssavirus in the faeces. We found that lyssavirus detection by RT-qPCR was nearly as sensitive in faecal pellets (6/7 bats positive, 86%) as in oral swabs (7/7 bats positive, 100%). The likely source of lyssavirus in the faeces was virus excreted into the oral cavity from the salivary glands (5/6 bats positive by immunohistochemistry and RT-qPCR) or tongue (3/4 bats positive by immunohistochemistry) and swallowed with saliva. Virus could not be isolated from any of the seven faecal pellets, suggesting the lyssavirus detected in faeces is not infectious. Lyssavirus detection in the majority of faecal pellets of infected bats shows that this novel material should be further explored for lyssavirus prevalence studies in bats.
Collapse
Affiliation(s)
- Lineke Begeman
- Department of Viroscience, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Engbert A Kooi
- Wageningen Bioveterinary Research, Lelystad, The Netherlands.,Health and Youth Care Inspectorate, National Authority for Containment, Ministry of Health, Welfare and Sport, Utrecht, The Netherlands
| | - Erik van Weezep
- Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Marco W G van de Bildt
- Department of Viroscience, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Chantal B E M Reusken
- Department of Viroscience, Erasmus University Medical Centre, Rotterdam, The Netherlands.,Centre for Infectious Disease Control-RIVM, Bilthoven, The Netherlands
| | | | - Marion P G Koopmans
- Department of Viroscience, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | | | - Thijs Kuiken
- Department of Viroscience, Erasmus University Medical Centre, Rotterdam, The Netherlands
| |
Collapse
|
31
|
Servat A, Wasniewski M, Cliquet F. Cross-Protection of Inactivated Rabies Vaccines for Veterinary Use against Bat Lyssaviruses Occurring in Europe. Viruses 2019; 11:v11100936. [PMID: 31614675 PMCID: PMC6832384 DOI: 10.3390/v11100936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/09/2019] [Accepted: 10/09/2019] [Indexed: 12/28/2022] Open
Abstract
Human rabies vaccines have been shown to induce partial protection against members of phylogroup I bat lyssaviruses. Here, we investigated the capacity of a widely used rabies inactivated vaccine (Rabisin, Boehringer-Ingelheim) for veterinary use to cross-protect mice experimentally infected with European bat lyssavirus 1 (EBLV-1b), European bat lyssavirus 2 (EBLV-2), and Bokeloh bat lyssavirus (BBLV) occurring in Europe. For each lyssavirus, we investigated the efficacy of two different doses of vaccine against two viral doses administrated by either central or peripheral routes. In parallel, seroconversion following pre-exposure vaccination was investigated. In this study, we demonstrated that the three investigated bat isolates were pathogenic, even at low dose, when inoculated by the central route but were not/less pathogenic when administrated peripherally. The Rabisin vaccine was capable of significantly cross-protecting mice inoculated intramuscularly with EBLV-1b and EBLV-2 and intracerebrally with BBLV. The level of rabies neutralizing antibodies induced by the Rabisin was quite high against the bat lyssaviruses, but with no significant differences between immunization with 1 and 5 IU/dose. The study emphasizes that the quality of rabies-inactivated vaccines for veterinary use is of utmost importance to optimize the cross-protection of pets against phylogroup I bat lyssaviruses occurring in Europe.
Collapse
Affiliation(s)
- Alexandre Servat
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Nancy Laboratory for Rabies and Wildlife, OIE Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies Serology, Technopôle Agricole et Vétérinaire, Domaine de Pixérécourt, CS 40009, 54220 Malzéville, France.
| | - Marine Wasniewski
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Nancy Laboratory for Rabies and Wildlife, OIE Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies Serology, Technopôle Agricole et Vétérinaire, Domaine de Pixérécourt, CS 40009, 54220 Malzéville, France.
| | - Florence Cliquet
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Nancy Laboratory for Rabies and Wildlife, OIE Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies Serology, Technopôle Agricole et Vétérinaire, Domaine de Pixérécourt, CS 40009, 54220 Malzéville, France.
| |
Collapse
|
32
|
Hu SC, Hsu CL, Lee MS, Tu YC, Chang JC, Wu CH, Lee SH, Ting LJ, Tsai KR, Cheng MC, Tu WJ, Hsu WC. Lyssavirus in Japanese Pipistrelle, Taiwan. Emerg Infect Dis 2019; 24:782-785. [PMID: 29553328 PMCID: PMC5875257 DOI: 10.3201/eid2404.171696] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A putative new lyssavirus was found in 2 Japanese pipistrelles (Pipistrellus abramus) in Taiwan in 2016 and 2017. The concatenated coding regions of the virus showed 62.9%–75.1% nucleotide identities to the other 16 species of lyssavirus, suggesting that it may be representative of a new species of this virus.
Collapse
|
33
|
Shipley R, Wright E, Selden D, Wu G, Aegerter J, Fooks AR, Banyard AC. Bats and Viruses: Emergence of Novel Lyssaviruses and Association of Bats with Viral Zoonoses in the EU. Trop Med Infect Dis 2019; 4:tropicalmed4010031. [PMID: 30736432 PMCID: PMC6473451 DOI: 10.3390/tropicalmed4010031] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 12/25/2022] Open
Abstract
Bats in the EU have been associated with several zoonotic viral pathogens of significance to both human and animal health. Virus discovery continues to expand the existing understating of virus classification, and the increased interest in bats globally as reservoirs or carriers of zoonotic agents has fuelled the continued detection and characterisation of new lyssaviruses and other viral zoonoses. Although the transmission of lyssaviruses from bat species to humans or terrestrial species appears rare, interest in these viruses remains, through their ability to cause the invariably fatal encephalitis—rabies. The association of bats with other viral zoonoses is also of great interest. Much of the EU is free of terrestrial rabies, but several bat species harbor lyssaviruses that remain a risk to human and animal health. Whilst the rabies virus is the main cause of rabies globally, novel related viruses continue to be discovered, predominantly in bat populations, that are of interest purely through their classification within the lyssavirus genus alongside the rabies virus. Although the rabies virus is principally transmitted from the bite of infected dogs, these related lyssaviruses are primarily transmitted to humans and terrestrial carnivores by bats. Even though reports of zoonotic viruses from bats within the EU are rare, to protect human and animal health, it is important characterise novel bat viruses for several reasons, namely: (i) to investigate the mechanisms for the maintenance, potential routes of transmission, and resulting clinical signs, if any, in their natural hosts; (ii) to investigate the ability of existing vaccines, where available, to protect against these viruses; (iii) to evaluate the potential for spill over and onward transmission of viral pathogens in novel terrestrial hosts. This review is an update on the current situation regarding zoonotic virus discovery within bats in the EU, and provides details of potential future mechanisms to control the threat from these deadly pathogens.
Collapse
Affiliation(s)
- Rebecca Shipley
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency (APHA), KT15 3NB Weybridge-London, UK.
- School of Life Sciences, University of Sussex, Falmer, BN1 9QG Brighton, UK.
| | - Edward Wright
- School of Life Sciences, University of Sussex, Falmer, BN1 9QG Brighton, UK.
| | - David Selden
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency (APHA), KT15 3NB Weybridge-London, UK.
| | - Guanghui Wu
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency (APHA), KT15 3NB Weybridge-London, UK.
| | - James Aegerter
- APHA - National Wildlife Management Centre, Wildlife Epidemiology and Modelling, Sand Hutton, YO41 1LZ York, UK.
| | - Anthony R Fooks
- Institute for Infection and Immunity, St. George's Hospital Medical School, University of London, London, SW17 0RE, UK.
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE, UK.
| | - Ashley C Banyard
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency (APHA), KT15 3NB Weybridge-London, UK.
- School of Life Sciences, University of Sussex, Falmer, BN1 9QG Brighton, UK.
- Institute for Infection and Immunity, St. George's Hospital Medical School, University of London, London, SW17 0RE, UK.
| |
Collapse
|
34
|
Mechanisms for lyssavirus persistence in non-synanthropic bats in Europe: insights from a modeling study. Sci Rep 2019; 9:537. [PMID: 30679459 PMCID: PMC6345892 DOI: 10.1038/s41598-018-36485-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/16/2018] [Indexed: 12/25/2022] Open
Abstract
Bats are natural reservoirs of the largest proportion of viral zoonoses among mammals, thus understanding the conditions for pathogen persistence in bats is essential to reduce human risk. Focusing on the European Bat Lyssavirus subtype 1 (EBLV-1), causing rabies disease, we develop a data-driven spatially explicit metapopulation model to investigate EBLV-1 persistence in Myotis myotis and Miniopterus schreibersii bat species in Catalonia. We find that persistence relies on host spatial structure through the migratory nature of M. schreibersii, on cross-species mixing with M. myotis, and on survival of infected animals followed by temporary immunity. The virus would not persist in the single colony of M. myotis. Our study provides for the first time epidemiological estimates for EBLV-1 progression in M. schreibersii. Our approach can be readily adapted to other zoonoses of public health concern where long-range migration and habitat sharing may play an important role.
Collapse
|
35
|
The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2017. EFSA J 2018; 16:e05500. [PMID: 32625785 PMCID: PMC7009540 DOI: 10.2903/j.efsa.2018.5500] [Citation(s) in RCA: 537] [Impact Index Per Article: 76.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This report of the European Food Safety Authority and the European Centre for Disease Prevention and Control presents the results of zoonoses monitoring activities carried out in 2017 in 37 European countries (28 Member States (MS) and nine non-MS). Campylobacteriosis was the commonest reported zoonosis and its EU trend for confirmed human cases increasing since 2008 stabilised during 2013-2017. The decreasing EU trend for confirmed human salmonellosis cases since 2008 ended during 2013-2017, and the proportion of human Salmonella Enteritidis cases increased, mostly due to one MS starting to report serotype data. Sixteen MS met all Salmonella reduction targets for poultry, whereas 12 MS failed meeting at least one. The EU flock prevalence of target Salmonella serovars in breeding hens, laying hens, broilers and fattening turkeys decreased or remained stable compared to 2016, and slightly increased in breeding turkeys. Salmonella results on pig carcases and target Salmonella serovar results for poultry from competent authorities tended to be generally higher compared to those from food business operators. The notification rate of human listeriosis further increased in 2017, despite Listeria seldom exceeding the EU food safety limit in ready-to-eat food. The decreasing EU trend for confirmed yersiniosis cases since 2008 stabilised during 2013-2017. The number of confirmed shiga toxin-producing Escherichia coli (STEC) infections in humans was stable. A total of 5,079 food-borne (including waterborne) outbreaks were reported. Salmonella was the commonest detected agent with S. Enteritidis causing one out of seven outbreaks, followed by other bacteria, bacterial toxins and viruses. The agent was unknown in 37.6% of all outbreaks. Salmonella in eggs and Salmonella in meat and meat products were the highest risk agent/food pairs. The report further summarises trends and sources for bovine tuberculosis, Brucella, Trichinella, Echinococcus, Toxoplasma, rabies, Coxiella burnetii (Q fever), West Nile virus and tularaemia.
Collapse
|
36
|
Picard-Meyer E, Beven V, Hirchaud E, Guillaume C, Larcher G, Robardet E, Servat A, Blanchard Y, Cliquet F. Lleida Bat Lyssavirus isolation in Miniopterus schreibersii in France. Zoonoses Public Health 2018; 66:254-258. [PMID: 30460779 DOI: 10.1111/zph.12535] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 10/12/2018] [Accepted: 10/15/2018] [Indexed: 01/26/2023]
Abstract
Bat rabies cases are attributed in Europe to five different Lyssavirus species of 16 recognized Lyssavirus species causing rabies. One of the most genetically divergent Lyssavirus spp. has been detected in a dead Miniopterus schreibersii bat in France. Brain samples were found positive for the presence of antigen, infectious virus and viral RNA by classical virological methods and molecular methods respectively. The complete genome sequence was determined by next-generation sequencing. The analysis of the complete genome sequence confirmed the presence of Lleida bat lyssavirus (LLEBV) in bats in France with 99.7% of nucleotide identity with the Spanish LLEBV strain (KY006983).
Collapse
Affiliation(s)
| | | | | | | | | | | | - Alexandre Servat
- ANSES-Nancy Laboratory for Rabies and Wildlife, Malzéville, France
| | | | - Florence Cliquet
- ANSES-Nancy Laboratory for Rabies and Wildlife, Malzéville, France
| |
Collapse
|
37
|
Abstract
Many infectious diseases originating from, or carried by, wildlife affect wildlife conservation and biodiversity, livestock health, or human health. We provide an update on changes in the epidemiology of 25 selected infectious, wildlife-related diseases in Europe (from 2010-16) that had an impact, or may have a future impact, on the health of wildlife, livestock, and humans. These pathogens were selected based on their: 1) identification in recent Europe-wide projects as important surveillance targets, 2) inclusion in European Union legislation as pathogens requiring obligatory surveillance, 3) presence in recent literature on wildlife-related diseases in Europe since 2010, 4) inclusion in key pathogen lists released by the Office International des Epizooties, 5) identification in conference presentations and informal discussions on a group email list by a European network of wildlife disease scientists from the European Wildlife Disease Association, or 6) identification as pathogens with changes in their epidemiology during 2010-16. The wildlife pathogens or diseases included in this review are: avian influenza virus, seal influenza virus, lagoviruses, rabies virus, bat lyssaviruses, filoviruses, canine distemper virus, morbilliviruses in aquatic mammals, bluetongue virus, West Nile virus, hantaviruses, Schmallenberg virus, Crimean-Congo hemorrhagic fever virus, African swine fever virus, amphibian ranavirus, hepatitis E virus, bovine tuberculosis ( Mycobacterium bovis), tularemia ( Francisella tularensis), brucellosis ( Brucella spp.), salmonellosis ( Salmonella spp.), Coxiella burnetii, chytridiomycosis, Echinococcus multilocularis, Leishmania infantum, and chronic wasting disease. Further work is needed to identify all of the key drivers of disease change and emergence, as they appear to be influencing the incidence and spread of these pathogens in Europe. We present a summary of these recent changes during 2010-16 to discuss possible commonalities and drivers of disease change and to identify directions for future work on wildlife-related diseases in Europe. Many of the pathogens are entering Europe from other continents while others are expanding their ranges inside and beyond Europe. Surveillance for these wildlife-related diseases at a continental scale is therefore important for planet-wide assessment, awareness of, and preparedness for the risks they may pose to wildlife, domestic animal, and human health.
Collapse
|
38
|
Smreczak M, Orłowska A, Marzec A, Trębas P, Müller T, Freuling CM, Żmudziński JF. Bokeloh bat lyssavirus isolation in a Natterer's bat, Poland. Zoonoses Public Health 2018; 65:1015-1019. [PMID: 30198169 DOI: 10.1111/zph.12519] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/28/2018] [Accepted: 08/07/2018] [Indexed: 11/27/2022]
Abstract
In recent years, Bokeloh bat lyssavirus (BBLV), a member of the novel lyssavirus genus Bokeloh bat lyssavirus in the family Rhabdoviridae, has been detected in Germany (five cases) and France (two cases). Here, we report the isolation of BBLV in a Natterer's bat (Myotis nattereri) in Poland. The bat brain tested positive for rabies using classical diagnostics tests (FAT and RTCIT) and then subsequently confirmed by molecular techniques. Viral RNA was found in all peripheral organs tested, and the highest viral loads were detected in brain, the salivary gland and bladder. Phylogenetic analysis performed on complete viral genome sequences revealed the closest homology to representatives of BBLV lineage B, isolated previously in southern Germany. This case provides further evidence that BBLV is widespread in Europe.
Collapse
Affiliation(s)
- Marcin Smreczak
- Department of Virology, National Veterinary Research Institute, Puławy, Poland
| | - Anna Orłowska
- Department of Virology, National Veterinary Research Institute, Puławy, Poland
| | - Anna Marzec
- Department of Virology, National Veterinary Research Institute, Puławy, Poland
| | - Paweł Trębas
- Department of Virology, National Veterinary Research Institute, Puławy, Poland
| | - Thomas Müller
- Institute of Molecular Virology and Cell Biology, WHO Collaborating Centre for Rabies Surveillance and Research, Friedrich - Loeffler Institut, Greiifswald-Insel Riems, Germany
| | - Conrad M Freuling
- Institute of Molecular Virology and Cell Biology, WHO Collaborating Centre for Rabies Surveillance and Research, Friedrich - Loeffler Institut, Greiifswald-Insel Riems, Germany
| | - Jan F Żmudziński
- Department of Virology, National Veterinary Research Institute, Puławy, Poland
| |
Collapse
|
39
|
Šimić I, Lojkić I, Krešić N, Cliquet F, Picard-Meyer E, Wasniewski M, Ćukušić A, Zrnčić V, Bedeković T. Molecular and serological survey of lyssaviruses in Croatian bat populations. BMC Vet Res 2018; 14:274. [PMID: 30189884 PMCID: PMC6127996 DOI: 10.1186/s12917-018-1592-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/23/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rabies is the only known zoonotic disease of bat origin in Europe. The disease is caused by species belonging to the genus Lyssavirus. Five Lyssavirus species, i.e., European bat lyssavirus (EBLV)-1, EBLV-2, Bokeloh bat lyssavirus, Lleida bat lyssavirus, and West Caucasian bat virus, have been identified in European bats. More recently, a proposed sixth species, Kotalahti bat lyssavirus, was detected. Thus, in this study, active surveillance was initiated in order to obtain insights into the prevalence of lyssaviruses in Croatian bat populations and to improve our understanding of the public health threat of infected bats. RESULTS In total, 455 bats were caught throughout Continental and Mediterranean Croatia. Antibodies were found in 20 of 350 bats (5.71%, 95% confidence interval 3.73-8.66). The majority of seropositive bats were found in Trbušnjak cave (Continental Croatia, Eastern part), and most seropositive bats belonged to Myotis myotis (13/20). All oropharyngeal swabs were negative for the presence of Lyssavirus. CONCLUSIONS The presence of lyssaviruses in bat populations was confirmed for the first time in Croatia and Southeastern Europe. The results of this study suggest the need for further comprehensive analyses of lyssaviruses in bats in this part of Europe.
Collapse
Affiliation(s)
- Ivana Šimić
- Croatian Veterinary Institute, Savska cesta 143, 10000 Zagreb, Croatia
| | - Ivana Lojkić
- Croatian Veterinary Institute, Savska cesta 143, 10000 Zagreb, Croatia
| | - Nina Krešić
- Croatian Veterinary Institute, Savska cesta 143, 10000 Zagreb, Croatia
| | - Florence Cliquet
- ANSES - Nancy Laboratory for rabies and wildlife, Batiment H CS 40009, 54220 Malzeville, France
| | - Evelyne Picard-Meyer
- ANSES - Nancy Laboratory for rabies and wildlife, Batiment H CS 40009, 54220 Malzeville, France
| | - Marine Wasniewski
- ANSES - Nancy Laboratory for rabies and wildlife, Batiment H CS 40009, 54220 Malzeville, France
| | - Anđela Ćukušić
- Croatian Biospeleological Society, Demetrova 1, 10000 Zagreb, Croatia
| | - Vida Zrnčić
- Croatian Biospeleological Society, Demetrova 1, 10000 Zagreb, Croatia
| | | |
Collapse
|
40
|
Iglesias-Caballero M, Juste J, Vázquez-Morón S, Falcon A, Aznar-Lopez C, Ibáñez C, Pozo F, Ruiz G, Berciano JM, Garin I, Aihartza J, Echevarría JE, Casas I. New Adenovirus Groups in Western Palaearctic Bats. Viruses 2018; 10:v10080443. [PMID: 30127258 PMCID: PMC6116233 DOI: 10.3390/v10080443] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/17/2018] [Accepted: 08/18/2018] [Indexed: 12/14/2022] Open
Abstract
In the context of long-term screening for viruses on Western Palaearctic bats, we tested for the presence of adenovirus 1392 oropharyngeal swabs and 325 stool samples taken from 27 bat species. Adenoviruses were detected in 12 species of the Vespertilionidae and the Rhinolophidae families. Fifty positive respiratory and 26 positive stool samples were studied. Phylogenetic analyses of partial hexon protein and partial DNA-dependent DNA polymerase genes indicate that all these bat adenoviruses belong to the genus Mastadenovirus but without constituting a monophyletic cluster. According to genetic identities, the new groups are distinct to the previously described Bat mastadenovirus A and B species and contribute with potentially new members. Our data support that diversity of bat mastadenovirus is host-dependent and increase the knowledge of potentially pathogenic virus from bats. Due to the active role of bats as viral reservoirs, the characterization of these viruses is relevant for Public Health.
Collapse
Affiliation(s)
- Maria Iglesias-Caballero
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Carretera de Majadahonda-Pozuelo km 2. Majadahonda 28220, Madrid, Spain.
| | - Javier Juste
- Estación Biológica de Doñana, CSIC, Avda Américo Vespucio 16, 41092 Seville, Spain.
| | - Sonia Vázquez-Morón
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Carretera de Majadahonda-Pozuelo km 2. Majadahonda 28220, Madrid, Spain.
- Centro de Investigación Biomédica Epidemiología y Salud Pública, CIBERESP, 28029 Madrid, Spain.
| | - Ana Falcon
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Carretera de Majadahonda-Pozuelo km 2. Majadahonda 28220, Madrid, Spain.
- Consorcio Centro de Investigación Biomédica en Red (CIBER), 28029 Madrid, Spain.
| | - Carolina Aznar-Lopez
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Carretera de Majadahonda-Pozuelo km 2. Majadahonda 28220, Madrid, Spain.
- Centro de Investigación Biomédica Epidemiología y Salud Pública, CIBERESP, 28029 Madrid, Spain.
| | - Carlos Ibáñez
- Estación Biológica de Doñana, CSIC, Avda Américo Vespucio 16, 41092 Seville, Spain.
| | - Francisco Pozo
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Carretera de Majadahonda-Pozuelo km 2. Majadahonda 28220, Madrid, Spain.
| | - Guillermo Ruiz
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Carretera de Majadahonda-Pozuelo km 2. Majadahonda 28220, Madrid, Spain.
| | - Jose M Berciano
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Carretera de Majadahonda-Pozuelo km 2. Majadahonda 28220, Madrid, Spain.
| | - Inazio Garin
- Department of Zoology and Animal Cell Biology, University of the Basque Country (UPV/EHU), Leioa 48940, Basque Country, Spain.
| | - Joxerra Aihartza
- Department of Zoology and Animal Cell Biology, University of the Basque Country (UPV/EHU), Leioa 48940, Basque Country, Spain.
| | - Juan E Echevarría
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Carretera de Majadahonda-Pozuelo km 2. Majadahonda 28220, Madrid, Spain.
- Centro de Investigación Biomédica Epidemiología y Salud Pública, CIBERESP, 28029 Madrid, Spain.
| | - Inmaculada Casas
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Carretera de Majadahonda-Pozuelo km 2. Majadahonda 28220, Madrid, Spain.
| |
Collapse
|
41
|
Comprehensive Analysis of Codon Usage on Rabies Virus and Other Lyssaviruses. Int J Mol Sci 2018; 19:ijms19082397. [PMID: 30110957 PMCID: PMC6121662 DOI: 10.3390/ijms19082397] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 12/15/2022] Open
Abstract
Rabies virus (RABV) and other lyssaviruses can cause rabies and rabies-like diseases, which are a persistent public health threat to humans and other mammals. Lyssaviruses exhibit distinct characteristics in terms of geographical distribution and host specificity, indicative of a long-standing diversification to adapt to the environment. However, the evolutionary diversity of lyssaviruses, in terms of codon usage, is still unclear. We found that RABV has the lowest codon usage bias among lyssaviruses strains, evidenced by its high mean effective number of codons (ENC) (53.84 ± 0.35). Moreover, natural selection is the driving force in shaping the codon usage pattern of these strains. In summary, our study sheds light on the codon usage patterns of lyssaviruses, which can aid in the development of control strategies and experimental research.
Collapse
|
42
|
Amarasinghe GK, Aréchiga Ceballos NG, Banyard AC, Basler CF, Bavari S, Bennett AJ, Blasdell KR, Briese T, Bukreyev A, Caì Y, Calisher CH, Campos Lawson C, Chandran K, Chapman CA, Chiu CY, Choi KS, Collins PL, Dietzgen RG, Dolja VV, Dolnik O, Domier LL, Dürrwald R, Dye JM, Easton AJ, Ebihara H, Echevarría JE, Fooks AR, Formenty PBH, Fouchier RAM, Freuling CM, Ghedin E, Goldberg TL, Hewson R, Horie M, Hyndman TH, Jiāng D, Kityo R, Kobinger GP, Kondō H, Koonin EV, Krupovic M, Kurath G, Lamb RA, Lee B, Leroy EM, Maes P, Maisner A, Marston DA, Mor SK, Müller T, Mühlberger E, Ramírez VMN, Netesov SV, Ng TFF, Nowotny N, Palacios G, Patterson JL, Pawęska JT, Payne SL, Prieto K, Rima BK, Rota P, Rubbenstroth D, Schwemmle M, Siddell S, Smither SJ, Song Q, Song T, Stenglein MD, Stone DM, Takada A, Tesh RB, Thomazelli LM, Tomonaga K, Tordo N, Towner JS, Vasilakis N, Vázquez-Morón S, Verdugo C, Volchkov VE, Wahl V, Walker PJ, Wang D, Wang LF, Wellehan JFX, Wiley MR, Whitfield AE, Wolf YI, Yè G, Zhāng YZ, Kuhn JH. Taxonomy of the order Mononegavirales: update 2018. Arch Virol 2018; 163:2283-2294. [PMID: 29637429 PMCID: PMC6076851 DOI: 10.1007/s00705-018-3814-x] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 03/12/2018] [Indexed: 11/27/2022]
Abstract
In 2018, the order Mononegavirales was expanded by inclusion of 1 new genus and 12 novel species. This article presents the updated taxonomy of the order Mononegavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV) and summarizes additional taxonomic proposals that may affect the order in the near future.
Collapse
Affiliation(s)
- Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | - Christopher F Basler
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Sina Bavari
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Andrew J Bennett
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Kim R Blasdell
- Australian Animal Health Laboratory, CSIRO Health and Biosecurity, Geelong, VIC, Australia
| | - Thomas Briese
- Department of Epidemiology, Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| | | | - Yíngyún Caì
- Integrated Research Facility at Fort Detrick (IRF-Frederick), Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), B-8200 Research Plaza, Fort Detrick, Frederick, MD, 21702, USA
| | - Charles H Calisher
- Arthropod-Borne and Infectious Diseases Laboratory, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Cristine Campos Lawson
- Integrated Research Facility at Fort Detrick (IRF-Frederick), Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), B-8200 Research Plaza, Fort Detrick, Frederick, MD, 21702, USA
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Colin A Chapman
- Department of Anthropology and McGill School of Environment, McGill University, Montreal, QC, Canada
- Wildlife Conservation Society, Bronx, NY, USA
- Section of Social Systems Evolution, Primate Research Institute, Kyoto University, Kyoto, Japan
| | | | - Kang-Seuk Choi
- Avian Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Peter L Collins
- Respiratory Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MA, USA
| | - Ralf G Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| | - Valerian V Dolja
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, USA
| | - Olga Dolnik
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Leslie L Domier
- Department of Crop Sciences, University of Illinois, Chicago, IL, USA
| | | | - John M Dye
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Andrew J Easton
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Hideki Ebihara
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Juan E Echevarría
- National Center of Microbiology, Carlos III Institute of Health, Majadahonda, Madrid, Spain
| | | | | | - Ron A M Fouchier
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Conrad M Freuling
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institute, WHO Collaborating Centre for Rabies Surveillance and Research, Greifswald-Insel Riems, Germany
| | - Elodie Ghedin
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Tony L Goldberg
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Roger Hewson
- Public Health England, Porton Down, Salisbury, Wiltshire, UK
| | - Masayuki Horie
- Hakubi Center for Advanced Research, Kyoto University, Kyoto, Japan
| | - Timothy H Hyndman
- College of Veterinary Medicine, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia
| | - Dàohóng Jiāng
- State Key Laboratory of Agricultural Microbiology, The Provincial Key Lab of Plant Pathology of Húběi Province, College of Plant Science and Technology, Huázhōng Agricultural University, Wuhan, China
| | - Robert Kityo
- Department of Zoology, Makerere University, Kampala, Uganda
| | - Gary P Kobinger
- Department of Microbiology, Immunology and Infectious Diseases, Université Laval, Quebec City, Canada
| | - Hideki Kondō
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Mart Krupovic
- Department of Microbiology, Institut Pasteur, Paris, France
| | - Gael Kurath
- US Geological Survey Western Fisheries Research Center, Seattle, WA, USA
| | - Robert A Lamb
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- Howard Hughes Medical Institute, Northwestern University, Evanston, IL, USA
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric M Leroy
- Centre International de Recherches Médicales de Franceville, Institut de Recherche pour le Développement, Franceville, Gabon
| | - Piet Maes
- Zoonotic Infectious Diseases Unit, KU Leuven, Leuven, Belgium
| | - Andrea Maisner
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | | | - Sunil Kumar Mor
- Department of Veterinary Population Medicine and Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - Thomas Müller
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institute, WHO Collaborating Centre for Rabies Surveillance and Research, Greifswald-Insel Riems, Germany
| | - Elke Mühlberger
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA, USA
| | | | - Sergey V Netesov
- Novosibirsk State University, Novosibirsk, Novosibirsk Oblast, Russia
| | - Terry Fei Fan Ng
- Department of Laboratory Medicine, University of California at San Francisco, San Francisco, CA, USA
| | - Norbert Nowotny
- Institute of Virology, University of Veterinary Medicine, Vienna, Austria
- Department of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Gustavo Palacios
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Jean L Patterson
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Janusz T Pawęska
- Center for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham, Johannesburg, Gauteng, South Africa
| | - Susan L Payne
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Karla Prieto
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Bertus K Rima
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, The Queen's University of Belfast, Belfast, Northern Ireland, UK
| | - Paul Rota
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Dennis Rubbenstroth
- Institute of Virology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin Schwemmle
- Institute of Virology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stuart Siddell
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | | | - Qisheng Song
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, USA
| | - Timothy Song
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Mark D Stenglein
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - David M Stone
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, Dorset, UK
| | - Ayato Takada
- Division of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
| | - Robert B Tesh
- Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, Center for Tropical Diseases and Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, TX, USA
| | | | - Keizō Tomonaga
- Institute for Frontier Life and Medical Sciences (inFront), Kyoto University, Kyoto, Japan
| | - Noël Tordo
- Institut Pasteur, Unité des Stratégies Antivirales, WHO Collaborative Centre for Viral Haemorrhagic Fevers and Arboviruses, OIE Reference Laboratory for RVFV and CCHFV, Paris, France
- Institut Pasteur de Guinée, Conakry, Guinea
| | - Jonathan S Towner
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Nikos Vasilakis
- Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, Center for Tropical Diseases and Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, TX, USA
| | - Sonia Vázquez-Morón
- National Center of Microbiology, Carlos III Institute of Health, Majadahonda, Madrid, Spain
| | - Claudio Verdugo
- Universidad Austral de Chile Facultad de Ciencias Veterinarias, Valdivia, Chile
| | - Viktor E Volchkov
- Molecular Basis of Viral Pathogenicity, CIRI, INSERM U1111-CNRS, UMR5308, Université de Lyon, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Victoria Wahl
- National Biodefense Analysis and Countermeasures Center, Fort Detrick, Frederick, MD, USA
| | - Peter J Walker
- School of Biological Sciences, University of Queensland, St. Lucia, QLD, Australia
| | - David Wang
- Departments of Molecular Microbiology and Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - James F X Wellehan
- College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Michael R Wiley
- The University of Texas Medical Branch, Galveston, TX, USA
- University of Nebraska Medical Center, Omaha, NE, USA
| | - Anna E Whitfield
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Gōngyín Yè
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yǒng-Zhèn Zhāng
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Zoonoses, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick (IRF-Frederick), Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), B-8200 Research Plaza, Fort Detrick, Frederick, MD, 21702, USA.
| |
Collapse
|
43
|
El-Sayed A. Advances in rabies prophylaxis and treatment with emphasis on immunoresponse mechanisms. Int J Vet Sci Med 2018; 6:8-15. [PMID: 30255072 PMCID: PMC6149183 DOI: 10.1016/j.ijvsm.2018.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 05/08/2018] [Accepted: 05/08/2018] [Indexed: 12/25/2022] Open
Abstract
Rabies is a vaccine-preventable fatal disease in man and most mammals. Although rabies is recorded in 150 territories and is responsible for at least 60,000 human deaths every year worldwide, it is a neglected tropical problem. Most of the rabies free countries are considered to be fragile free as the disease may re-emerge easily through wild mammals. For the performance of effective rabies eradication programs, a complex set of strategies and activities is required. At the time, a joint project of WHO-OIE-FAO which was announced in 2015, plans to control animal-human-ecosystems rabies interface. For effective rabies control, prophylactic policies must be applied. These include various educational outreaches for farmers and people living in endemic areas, enforced legislation for responsible dog ownership, control programs for the free-ranging stray dog and cat populations, field large-scale vaccination campaigns, and the development of new vaccine delivery strategies for both humans and animals. The present work presents the advances in the development of new safe, effective and economic vaccines for domestic dogs, and oral vaccines for the control of the disease in wild animals. It presents also some therapeutic protocols used for the treatment of patients.
Collapse
Affiliation(s)
- A El-Sayed
- Faculty of Veterinary Medicine, Department of Medicine and Infectious Diseases, Cairo University, Giza, Egypt
| |
Collapse
|
44
|
Banyard AC, Selden D, Wu G, Thorne L, Jennings D, Marston D, Finke S, Freuling CM, Müller T, Echevarría JE, Fooks AR. Isolation, antigenicity and immunogenicity of Lleida bat lyssavirus. J Gen Virol 2018; 99:1590-1599. [PMID: 29745870 DOI: 10.1099/jgv.0.001068] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The lyssaviruses are an important group of viruses that cause a fatal encephalitis termed rabies. The prototypic lyssavirus, rabies virus, is predicted to cause more than 60 000 human fatalities annually. The burden of disease for the other lyssaviruses is undefined. The original reports for the recently described highly divergent Lleida bat lyssavirus were based on the detection of virus sequence alone. The successful isolation of live Lleida bat lyssavirus from the carcass of the original bat and in vitro characterization of this novel lyssavirus are described here. In addition, the ability of a human rabies vaccine to confer protective immunity following challenge with this divergent lyssavirus was assessed. Two different doses of Lleida bat lyssavirus were used to challenge vaccinated or naïve mice: a high dose of 100 focus-forming units (f.f.u.) 30 µl-1 and a 100-fold dilution of this dose, 1 f.f.u. 30 µl-1. Although all naïve control mice succumbed to the 100 f.f.u. 30 µl-1 challenge, 42 % (n=5/12) of those infected intracerebrally with 1 f.f.u. 30 µl-1 survived the challenge. In the high-challenge-dose group, 42 % of the vaccinated mice survived the challenge (n=5/12), whilst at the lower challenge dose, 33 % (n=4/12) survived to the end of the experiment. Interestingly, a high proportion of mice demonstrated a measurable virus-neutralizing antibody response, demonstrating that neutralizing antibody titres do not necessarily correlate with the outcome of infection via the intracerebral route. Assessing the ability of existing rabies vaccines to protect against novel divergent lyssaviruses is important for the development of future public health strategies.
Collapse
Affiliation(s)
- Ashley C Banyard
- 1Animal and Plant Health Agency (APHA), Wildlife Zoonoses and Vector Borne Disease Research Group, (WHO Collaborating Centre for the Characterisation of Rabies and Rabies-Related Viruses, OIE Reference Laboratory for Rabies), Weybridge, New Haw, Surrey, KT15 3NB, UK
| | - David Selden
- 1Animal and Plant Health Agency (APHA), Wildlife Zoonoses and Vector Borne Disease Research Group, (WHO Collaborating Centre for the Characterisation of Rabies and Rabies-Related Viruses, OIE Reference Laboratory for Rabies), Weybridge, New Haw, Surrey, KT15 3NB, UK
| | - Guanghui Wu
- 1Animal and Plant Health Agency (APHA), Wildlife Zoonoses and Vector Borne Disease Research Group, (WHO Collaborating Centre for the Characterisation of Rabies and Rabies-Related Viruses, OIE Reference Laboratory for Rabies), Weybridge, New Haw, Surrey, KT15 3NB, UK
| | - Leigh Thorne
- 1Animal and Plant Health Agency (APHA), Wildlife Zoonoses and Vector Borne Disease Research Group, (WHO Collaborating Centre for the Characterisation of Rabies and Rabies-Related Viruses, OIE Reference Laboratory for Rabies), Weybridge, New Haw, Surrey, KT15 3NB, UK
| | - Daisy Jennings
- 1Animal and Plant Health Agency (APHA), Wildlife Zoonoses and Vector Borne Disease Research Group, (WHO Collaborating Centre for the Characterisation of Rabies and Rabies-Related Viruses, OIE Reference Laboratory for Rabies), Weybridge, New Haw, Surrey, KT15 3NB, UK
| | - Denise Marston
- 1Animal and Plant Health Agency (APHA), Wildlife Zoonoses and Vector Borne Disease Research Group, (WHO Collaborating Centre for the Characterisation of Rabies and Rabies-Related Viruses, OIE Reference Laboratory for Rabies), Weybridge, New Haw, Surrey, KT15 3NB, UK
| | - Stefan Finke
- 2Friedrich-Loeffler-Institute (FLI), (WHO Collaborating Centre, OIE Reference Laboratory for Rabies), Institute of Molecular Virology and Cell Biology, Greifswald-Insel Riems, Germany
| | - Conrad M Freuling
- 2Friedrich-Loeffler-Institute (FLI), (WHO Collaborating Centre, OIE Reference Laboratory for Rabies), Institute of Molecular Virology and Cell Biology, Greifswald-Insel Riems, Germany
| | - Thomas Müller
- 2Friedrich-Loeffler-Institute (FLI), (WHO Collaborating Centre, OIE Reference Laboratory for Rabies), Institute of Molecular Virology and Cell Biology, Greifswald-Insel Riems, Germany
| | | | - Anthony R Fooks
- 1Animal and Plant Health Agency (APHA), Wildlife Zoonoses and Vector Borne Disease Research Group, (WHO Collaborating Centre for the Characterisation of Rabies and Rabies-Related Viruses, OIE Reference Laboratory for Rabies), Weybridge, New Haw, Surrey, KT15 3NB, UK.,4University of Liverpool, Institute of Infection & Global Health, Liverpool, UK.,5University of London, St George's Hospital Medical School, Institute for Infection and Immunity, London, UK
| |
Collapse
|
45
|
Mingo-Casas P, Sandonís V, Obón E, Berciano JM, Vázquez-Morón S, Juste J, Echevarría JE. First cases of European bat lyssavirus type 1 in Iberian serotine bats: Implications for the molecular epidemiology of bat rabies in Europe. PLoS Negl Trop Dis 2018; 12:e0006290. [PMID: 29684025 PMCID: PMC5933805 DOI: 10.1371/journal.pntd.0006290] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 05/03/2018] [Accepted: 01/31/2018] [Indexed: 12/01/2022] Open
Abstract
Previous studies have shown that EBLV-1 strains exclusively hosted by Eptesicus isabellinus bats in the Iberian Peninsula cluster in a specific monophyletic group that is related to the EBLV-1b lineage found in the rest of Europe. More recently, enhanced passive surveillance has allowed the detection of the first EBLV-1 strains associated to Eptesicus serotinus south of the Pyrenees. The aim of this study is the reconstruction of the EBLV-1 phylogeny and phylodynamics in the Iberian Peninsula in the context of the European continent. We have sequenced 23 EBLV-1 strains detected on nine E. serotinus and 14 E. isabellinus. Phylogenetic analyses were performed on the first 400-bp-5’ fragment of the Nucleoprotein (N) gene together with other 162 sequences from Europe. Besides, fragments of the variable region of the phosphoprotein (P) gene and the glycoprotein-polymerase (G-L) intergenic region were studied on Spanish samples. Phylogenies show that two of the new EBLV-1a strains from Iberian E. serotinus clustered together with French strains from the North of the Pyrenees, suggesting a recent expansion southwards of this subtype. The remaining seven Iberian strains from E. serotinus grouped, instead, within the cluster linked, so far, to E. isabellinus, indicating that spatial distribution prevails over species specificity in explaining rabies distribution and supporting interspecific transmission. The structure found within the Iberian Peninsula for EBLV-1b is in concordance with that described previously for E. isabellinus. Finally, we have found that the current EBLV-1 European strains could have emerged only 175 years ago according to our evolutionary dynamics analyses. Rabies is caused by at least fourteen different viruses of the genus Lyssavirus. Although the classical rabies virus transmitted by the dog accounts for most human cases, most lyssaviruses are hosted by bats, which are able to transmit the disease to humans. The European bat lyssaviruses 1 (EBLV-1) and 2 (EBLV-2) have caused human rabies in Europe, while more than 90% of the bat rabies cases have been reported from serotine bats (Eptesicus serotinus) infected by EBLV-1. These cases clearly accumulate in certain areas of Europe, but the factors driving this distribution are unknown. The evolutionary relationships among these viral strains provide valuable information, however, they are only partially known. The south of the Iberian Peninsula is the only location within Europe with an additional reservoir for EBLV-1, the isabelline serotine bat (Eptesicus isabellinus) which is present also in North Africa. In this study we have reconstructed the EBLV-1 phylogeny and phylodynamics in the Iberian Peninsula in the context of the European continent. Our results suggest that some lineages have longer evolutionary history in their distribution areas, than others which seem to be in the process of a geographical expansion.
Collapse
Affiliation(s)
- Patricia Mingo-Casas
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Virginia Sandonís
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Elena Obón
- Centre de Fauna Salvatge de Torreferrussa, Catalan Wildlife Service, Direcció General de Medi Natural-Forestal Catalana, Santa Perpètua de la Mogoda, Barcelona, Catalonia, Spain
| | - José M. Berciano
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Sonia Vázquez-Morón
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Javier Juste
- Estación Biológica de Doñana, CSIC, Sevilla, Andalusia, Spain
- CIBER de Epidemiología y Salud Pública, CIBERESP, Madrid, Spain
| | - Juan E. Echevarría
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- CIBER de Epidemiología y Salud Pública, CIBERESP, Madrid, Spain
- * E-mail:
| |
Collapse
|
46
|
Fisher CR, Streicker DG, Schnell MJ. The spread and evolution of rabies virus: conquering new frontiers. Nat Rev Microbiol 2018; 16:241-255. [PMID: 29479072 PMCID: PMC6899062 DOI: 10.1038/nrmicro.2018.11] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Rabies is a lethal zoonotic disease that is caused by lyssaviruses, most often rabies virus. Despite control efforts, sporadic outbreaks in wildlife populations are largely unpredictable, underscoring our incomplete knowledge of what governs viral transmission and spread in reservoir hosts. Furthermore, the evolutionary history of rabies virus and related lyssaviruses remains largely unclear. Robust surveillance efforts combined with diagnostics and disease modelling are now providing insights into the epidemiology and evolution of rabies virus. The immune status of the host, the nature of exposure and strain differences all clearly influence infection and transmission dynamics. In this Review, we focus on rabies virus infections in the wildlife and synthesize current knowledge in the rapidly advancing fields of rabies virus epidemiology and evolution, and advocate for multidisciplinary approaches to advance our understanding of this disease.
Collapse
Affiliation(s)
- Christine R. Fisher
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Daniel G. Streicker
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, Scotland, UK
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, UK
| | - Matthias J. Schnell
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Vaccine Center at Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
47
|
Utilisation of Chimeric Lyssaviruses to Assess Vaccine Protection against Highly Divergent Lyssaviruses. Viruses 2018; 10:v10030130. [PMID: 29543715 PMCID: PMC5869523 DOI: 10.3390/v10030130] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 03/13/2018] [Accepted: 03/13/2018] [Indexed: 02/07/2023] Open
Abstract
Lyssaviruses constitute a diverse range of viruses with the ability to cause fatal encephalitis known as rabies. Existing human rabies vaccines and post exposure prophylaxes (PEP) are based on inactivated preparations of, and neutralising antibody preparations directed against, classical rabies viruses, respectively. Whilst these prophylaxes are highly efficient at neutralising and preventing a productive infection with rabies virus, their ability to neutralise other lyssaviruses is thought to be limited. The remaining 15 virus species within the lyssavirus genus have been divided into at least three phylogroups that generally predict vaccine protection. Existing rabies vaccines afford protection against phylogroup I viruses but offer little to no protection against phylogroup II and III viruses. As such, work involving sharps with phylogroup II and III must be considered of high risk as no PEP is thought to have any effect on the prevention of a productive infection with these lyssaviruses. Whilst rabies virus itself has been characterised in a number of different animal models, data on the remaining lyssaviruses are scarce. As the lyssavirus glycoprotein is considered to be the sole target of neutralising antibodies we generated a vaccine strain of rabies using reverse genetics expressing highly divergent glycoproteins of West Caucasian Bat lyssavirus and Ikoma lyssavirus. Using these recombinants, we propose that recombinant vaccine strain derived lyssaviruses containing heterologous glycoproteins may be a suitable surrogate for wildtype viruses when assessing vaccine protection for the lyssaviruses.
Collapse
|
48
|
Nokireki T, Tammiranta N, Kokkonen UM, Kantala T, Gadd T. Tentative novel lyssavirus in a bat in Finland. Transbound Emerg Dis 2018; 65:593-596. [DOI: 10.1111/tbed.12833] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Indexed: 11/29/2022]
Affiliation(s)
- T. Nokireki
- Finnish Food Safety Authority Evira; Virology Research Unit; Helsinki Finland
| | - N. Tammiranta
- Finnish Food Safety Authority Evira; Virology Research Unit; Helsinki Finland
| | - U.-M. Kokkonen
- Finnish Food Safety Authority Evira; Virology Research Unit; Helsinki Finland
| | - T. Kantala
- Finnish Food Safety Authority Evira; Virology Research Unit; Helsinki Finland
| | - T. Gadd
- Finnish Food Safety Authority Evira; Virology Research Unit; Helsinki Finland
| |
Collapse
|
49
|
Fischer S, Freuling CM, Müller T, Pfaff F, Bodenhofer U, Höper D, Fischer M, Marston DA, Fooks AR, Mettenleiter TC, Conraths FJ, Homeier-Bachmann T. Defining objective clusters for rabies virus sequences using affinity propagation clustering. PLoS Negl Trop Dis 2018; 12:e0006182. [PMID: 29357361 PMCID: PMC5794188 DOI: 10.1371/journal.pntd.0006182] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 02/01/2018] [Accepted: 12/19/2017] [Indexed: 11/18/2022] Open
Abstract
Rabies is caused by lyssaviruses, and is one of the oldest known zoonoses. In recent years, more than 21,000 nucleotide sequences of rabies viruses (RABV), from the prototype species rabies lyssavirus, have been deposited in public databases. Subsequent phylogenetic analyses in combination with metadata suggest geographic distributions of RABV. However, these analyses somewhat experience technical difficulties in defining verifiable criteria for cluster allocations in phylogenetic trees inviting for a more rational approach. Therefore, we applied a relatively new mathematical clustering algorythm named ‘affinity propagation clustering’ (AP) to propose a standardized sub-species classification utilizing full-genome RABV sequences. Because AP has the advantage that it is computationally fast and works for any meaningful measure of similarity between data samples, it has previously been applied successfully in bioinformatics, for analysis of microarray and gene expression data, however, cluster analysis of sequences is still in its infancy. Existing (516) and original (46) full genome RABV sequences were used to demonstrate the application of AP for RABV clustering. On a global scale, AP proposed four clusters, i.e. New World cluster, Arctic/Arctic-like, Cosmopolitan, and Asian as previously assigned by phylogenetic studies. By combining AP with established phylogenetic analyses, it is possible to resolve phylogenetic relationships between verifiably determined clusters and sequences. This workflow will be useful in confirming cluster distributions in a uniform transparent manner, not only for RABV, but also for other comparative sequence analyses. Rabies is one of the oldest known zoonoses, caused by lyssaviruses. In recent years, more than 21,000 nucleotide sequences for rabies viruses (RABV) have been deposited in public databases. In this study, a novel mathematical approach called affinity propagation (AP) clustering, a highly powerful tool, to verifiably divide full genome RABV sequences into genetic clusters, was used. A panel of existing and novel RABV full genome sequences was used to demonstrate the application of AP for RABV clustering. Using a combination of AP with established phylogenetic analyses is useful in resolving phylogenetic relationships between more objectively determined clusters and sequences. This workflow will help to substantiate a transparent cluster distribution, not only for RABV, but also for other comparative sequence analyses.
Collapse
Affiliation(s)
- Susanne Fischer
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Greifswald-Insel Riems, Germany
| | - Conrad M. Freuling
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Molecular Virology and Cell Biology, OIE Reference Laboratory for Rabies, WHO Collaborating Centre for Rabies Surveillance and Research, Greifswald-Insel Riems, Germany
| | - Thomas Müller
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Molecular Virology and Cell Biology, OIE Reference Laboratory for Rabies, WHO Collaborating Centre for Rabies Surveillance and Research, Greifswald-Insel Riems, Germany
- * E-mail:
| | - Florian Pfaff
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Diagnostic Virology, Greifswald-Insel Riems, Germany
| | - Ulrich Bodenhofer
- Institute of Bioinformatics, Johannes Kepler University Linz, Linz, Austria
| | - Dirk Höper
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Molecular Virology and Cell Biology, OIE Reference Laboratory for Rabies, WHO Collaborating Centre for Rabies Surveillance and Research, Greifswald-Insel Riems, Germany
| | - Mareike Fischer
- Institute of Mathematics and Computer Science, University Greifswald, Greifswald, Germany
| | - Denise A. Marston
- Wildlife Zoonoses and Vector-Borne Diseases Research Group, Animal and Plant Health Agency (APHA), OIE Reference Laboratory for Rabies, WHO Collaborating Centre for Characterization of Lyssaviruses, Weybridge, United Kingdom
| | - Anthony R. Fooks
- Wildlife Zoonoses and Vector-Borne Diseases Research Group, Animal and Plant Health Agency (APHA), OIE Reference Laboratory for Rabies, WHO Collaborating Centre for Characterization of Lyssaviruses, Weybridge, United Kingdom
| | - Thomas C. Mettenleiter
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Molecular Virology and Cell Biology, OIE Reference Laboratory for Rabies, WHO Collaborating Centre for Rabies Surveillance and Research, Greifswald-Insel Riems, Germany
| | - Franz J. Conraths
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Greifswald-Insel Riems, Germany
| | - Timo Homeier-Bachmann
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Greifswald-Insel Riems, Germany
| |
Collapse
|
50
|
McElhinney LM, Marston DA, Wise EL, Freuling CM, Bourhy H, Zanoni R, Moldal T, Kooi EA, Neubauer-Juric A, Nokireki T, Müller T, Fooks AR. Molecular Epidemiology and Evolution of European Bat Lyssavirus 2. Int J Mol Sci 2018; 19:ijms19010156. [PMID: 29303971 PMCID: PMC5796105 DOI: 10.3390/ijms19010156] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 12/26/2017] [Accepted: 12/29/2017] [Indexed: 12/25/2022] Open
Abstract
Bat rabies cases in Europe are mainly attributed to two lyssaviruses, namely European Bat Lyssavirus 1 (EBLV-1) and European Bat Lyssavirus 2 (EBLV-2). Prior to the death of a bat worker in Finland in 1985, very few bat rabies cases were reported. Enhanced surveillance in the two subsequent years (1986-1987) identified 263 cases (more than a fifth of all reported cases to date). Between 1977 and 2016, 1183 cases of bat rabies were reported, with the vast majority (>97%) being attributed to EBLV-1. In contrast, there have been only 39 suspected cases of EBLV-2, of which 34 have been confirmed by virus typing and presently restricted to just two bat species; Myotis daubentonii and Myotis dasycneme. The limited number of EBLV-2 cases in Europe prompted the establishment of a network of European reference laboratories to collate all available viruses and data. Despite the relatively low number of EBLV-2 cases, a large amount of anomalous data has been published in the scientific literature, which we have here reviewed and clarified. In this review, 29 EBLV-2 full genome sequences have been analysed to further our understanding of the diversity and molecular evolution of EBLV-2 in Europe. Analysis of the 29 complete EBLV-2 genome sequences clearly corroborated geographical relationships with all EBLV-2 sequences clustering at the country level irrespective of the gene studied. Further geographical clustering was also observed at a local level. There are high levels of homogeneity within the EBLV-2 species with nucleotide identities ranging from 95.5-100% and amino acid identities between 98.7% and 100%, despite the widespread distribution of the isolates both geographically and chronologically. The mean substitution rate for EBLV-2 across the five concatenated genes was 1.65 × 10-5, and evolutionary clock analysis confirms the slow evolution of EBLV-2 both between and within countries in Europe. This is further supported by the first detailed EBLV-2 intra-roost genomic analysis whereby a relatively high sequence homogeneity was found across the genomes of three EBLV-2 isolates obtained several years apart (2007, 2008, and 2014) from M. daubentonii at the same site (Stokesay Castle, Shropshire, UK).
Collapse
Affiliation(s)
- Lorraine M McElhinney
- Wildlife Zoonoses and Vector Borne Disease Research Group, Animal and Plant Health Agency (APHA), Surrey KT15 3NB, UK.
- Institute of Global Health, University of Liverpool, Liverpool L69 3BX, UK.
| | - Denise A Marston
- Wildlife Zoonoses and Vector Borne Disease Research Group, Animal and Plant Health Agency (APHA), Surrey KT15 3NB, UK.
| | - Emma L Wise
- Wildlife Zoonoses and Vector Borne Disease Research Group, Animal and Plant Health Agency (APHA), Surrey KT15 3NB, UK.
| | - Conrad M Freuling
- Institute of Molecular Virology and Cell Biology, Friedrich Loeffler Institute, (FLI), 17493 Greifswald, Germany.
| | - Hervé Bourhy
- Institut Pasteur, Unit Lyssavirus Dynamics and Host Adaptation, 75015 Paris, France.
| | - Reto Zanoni
- Institute of Virology and Immunology, University of Berne, 3012 Berne, Switzerland.
| | | | - Engbert A Kooi
- Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands.
| | | | - Tiina Nokireki
- Finnish Food Safety Authority Evira, 00790 Helsinki, Finland.
| | - Thomas Müller
- Institute of Molecular Virology and Cell Biology, Friedrich Loeffler Institute, (FLI), 17493 Greifswald, Germany.
| | - Anthony R Fooks
- Wildlife Zoonoses and Vector Borne Disease Research Group, Animal and Plant Health Agency (APHA), Surrey KT15 3NB, UK.
- Institute of Global Health, University of Liverpool, Liverpool L69 3BX, UK.
| |
Collapse
|