1
|
Imai M, Ueki H, Ito M, Iwatsuki-Horimoto K, Kiso M, Biswas A, Trifkovic S, Cook N, Halfmann PJ, Neumann G, Eisfeld AJ, Kawaoka Y. Highly pathogenic avian H5N1 influenza A virus replication in ex vivo cultures of bovine mammary gland and teat tissues. Emerg Microbes Infect 2025; 14:2450029. [PMID: 39781889 PMCID: PMC11740294 DOI: 10.1080/22221751.2025.2450029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/29/2024] [Accepted: 01/01/2025] [Indexed: 01/12/2025]
Abstract
Since early 2024, highly pathogenic avian influenza H5N1 viruses have been causing outbreaks in dairy cattle in the United States. Here, we compared the replicative capacity of A/dairy cattle/Texas/24-008749-001/2024 (H5N1; Cow-H5N1) isolated from a dairy cow, A/chicken/Ghana/AVL-76321VIR7050-39/2021 (H5N1; Chicken-H5N1) isolated from a chicken, and a human H1N1 2009 pandemic virus in ex vivo explant cultures of mammary gland and teat from lactating cows. We also examined the expression of influenza virus receptors in these organs. We observed that human influenza virus receptors are widely distributed throughout the epithelium of alveoli, ducts, and gland cisterns within the mammary gland, and in the teat cistern epithelium of dairy cattle, whereas avian influenza virus receptors are distributed on the alveolar, ductal, and teat cistern epithelium. We also found that Cow-H5N1 virus replicates more efficiently than Chicken-H5N1 or human H1N1pdm viruses in the gland cistern epithelium of dairy cattle. Notably, bovine H5N1 viruses replicated efficiently in the epithelium of the bovine teat cistern. These findings suggest that H5N1 viruses invade the mammary gland through the teat canal, which is easily accessed by viruses.
Collapse
Affiliation(s)
- Masaki Imai
- Department of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Hiroshi Ueki
- Department of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
- The University of Tokyo Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Tokyo, Japan
| | - Mutsumi Ito
- Department of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Kiyoko Iwatsuki-Horimoto
- Department of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- The University of Tokyo Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Tokyo, Japan
| | - Maki Kiso
- Department of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- The University of Tokyo Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Tokyo, Japan
| | - Asim Biswas
- Department of Pathobiological Sciences, Influenza Research Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Sanja Trifkovic
- Department of Pathobiological Sciences, Influenza Research Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Nigel Cook
- Department of Medical Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Peter J. Halfmann
- Department of Pathobiological Sciences, Influenza Research Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Gabriele Neumann
- Department of Pathobiological Sciences, Influenza Research Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Amie J. Eisfeld
- Department of Pathobiological Sciences, Influenza Research Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Yoshihiro Kawaoka
- Department of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
- The University of Tokyo Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Tokyo, Japan
- Department of Pathobiological Sciences, Influenza Research Institute, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
2
|
Ríos Carrasco M, Lin TH, Zhu X, Gabarroca García A, Uslu E, Liang R, Spruit CM, Richard M, Boons GJ, Wilson IA, de Vries RP. The Q226L mutation can convert a highly pathogenic H5 2.3.4.4e virus to bind human-type receptors. Proc Natl Acad Sci U S A 2025; 122:e2419800122. [PMID: 40232794 PMCID: PMC12036971 DOI: 10.1073/pnas.2419800122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 02/24/2025] [Indexed: 04/16/2025] Open
Abstract
H5Nx viruses continue to wreak havoc in avian and mammalian species worldwide. The virus distinguishes itself by the ability to replicate to high titers and transmit efficiently in a wide variety of hosts in diverse climatic environments. Fortunately, transmission to and between humans is scarce. Yet, if such an event were to occur, it could spark a pandemic as humans are immunologically naïve to H5 viruses. A significant determinant of transmission to and between humans is the ability of the influenza A virus hemagglutinin (HA) protein to shift from an avian-type to a human-type receptor specificity. Here, we demonstrate that a 2016 2.3.4.4e virus HA can convert to human-type receptor binding via a single Q226L mutation, in contrast to a cleavage-modified 2016 2.3.4.4b virus HA. Using glycan arrays, X-ray structural analyses, tissue- and direct glycan binding, we show that L133a Δ and 227Q are vital for this phenotype. Thus, whereas the 2.3.4.4e virus HA only needs a single amino acid mutation, the modified 2016 2.3.4.4b HA was not easily converted to human-type receptor specificity.
Collapse
Affiliation(s)
- María Ríos Carrasco
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht3584CG, The Netherlands
| | - Ting-Hui Lin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Xueyong Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Alba Gabarroca García
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht3584CG, The Netherlands
| | - Elif Uslu
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht3584CG, The Netherlands
| | - Ruonan Liang
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht3584CG, The Netherlands
| | - Cindy M. Spruit
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht3584CG, The Netherlands
| | - Mathilde Richard
- Department of Viroscience, Erasmus University Medical Center, Rotterdam3000CA, The Netherlands
| | - Geert-Jan Boons
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht3584CG, The Netherlands
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA30602
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA92037
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Robert P. de Vries
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht3584CG, The Netherlands
| |
Collapse
|
3
|
Chopra P, Ray SD, Page CK, Shepard JD, Kandeil A, Jeevan T, Bowman AS, Ellebedy AH, Webby RJ, de Vries RP, Tompkins SM, Boons GJ. Receptor-binding specificity of a bovine influenza A virus. Nature 2025; 640:E21-E27. [PMID: 40240861 DOI: 10.1038/s41586-025-08822-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/20/2025] [Indexed: 04/18/2025]
Affiliation(s)
- Pradeep Chopra
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
- Center for Influenza Disease and Emergence Response (CIDER), University of Georgia, Athens, GA, USA
| | - Sean D Ray
- Center for Influenza Disease and Emergence Response (CIDER), University of Georgia, Athens, GA, USA
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - Caroline K Page
- Center for Influenza Disease and Emergence Response (CIDER), University of Georgia, Athens, GA, USA
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - Justin D Shepard
- Center for Influenza Disease and Emergence Response (CIDER), University of Georgia, Athens, GA, USA
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - Ahmed Kandeil
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
- St Jude Center of Excellence for Influenza Research and Response, Memphis, TN, USA
| | - Trushar Jeevan
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
- St Jude Center of Excellence for Influenza Research and Response, Memphis, TN, USA
| | - Andrew S Bowman
- St Jude Center of Excellence for Influenza Research and Response, Memphis, TN, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Ali H Ellebedy
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA
| | - Richard J Webby
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
- St Jude Center of Excellence for Influenza Research and Response, Memphis, TN, USA
| | - Robert P de Vries
- Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - S Mark Tompkins
- Center for Influenza Disease and Emergence Response (CIDER), University of Georgia, Athens, GA, USA.
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA.
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA.
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA.
- Center for Influenza Disease and Emergence Response (CIDER), University of Georgia, Athens, GA, USA.
- Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
- Department of Chemistry, University of Georgia, Athens, GA, USA.
| |
Collapse
|
4
|
Zhang G, Shi Y, Ge H, Wang Y, Lu L, Jiang S, Wang Q. Genomic signatures and host adaptation of H5N1 clade 2.3.4.4b: A call for global surveillance and multi-target antiviral strategies. CURRENT RESEARCH IN MICROBIAL SCIENCES 2025; 8:100377. [PMID: 40177627 PMCID: PMC11964551 DOI: 10.1016/j.crmicr.2025.100377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025] Open
Abstract
The recent report of the first fatality associated with infection by influenza virus H5N1 clade 2.3.4.4b, identified as genotype D1.1, which is distinct from the B3.13 genotype, has sparked fears of a potential human pandemic. However, the genetic relationships between B3.13 and D1.1, as well as their origins, host adaptability, and antiviral resistance, remain poorly understood. Here we conducted a comprehensive phylogenetic and comparative analysis of H5N1 clade 2.3.4.4b across multiple species, in order to identify the molecular characteristics and frequency of resistance mutations in these two genotypes, elucidate their evolutionary trajectories, and assess their implications for public health. Our results demonstrate that B3.13 exhibits mammalian adaptability, while D1.1 retains avian adaptability. Importantly, both genotypes display limited occurrences of human-like signatures, which can help alleviate public anxiety. Additionally, the emergence of the resistance mutations in the clade 2.3.4.4b on the binding sites of antivirals calls for the development of multi-target antiviral strategies to mitigate the risk of resistant strain reassortment.
Collapse
Affiliation(s)
| | | | - Haoyu Ge
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yuanzhou Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Qian Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Ríos Carrasco M, Lin TH, Zhu X, García AG, Uslu E, Liang R, Spruit CM, Richard M, Boons GJ, Wilson IA, de Vries RP. The Q226L mutation can convert a highly pathogenic H5 2.3.4.4e virus to bind human-type receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.10.632119. [PMID: 39829928 PMCID: PMC11741302 DOI: 10.1101/2025.01.10.632119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
H5Nx viruses continue to wreak havoc in avian and mammalian species worldwide. The virus distinguishes itself by the ability to replicate to high titers and transmit efficiently in a wide variety of hosts in diverse climatic environments. Fortunately, transmission to and between humans is scarce. Yet, if such an event were to occur, it could spark a pandemic as humans are immunologically naïve to H5 viruses. A significant determinant of transmission to and between humans is the ability of the influenza A virus hemagglutinin (HA) protein to shift from an avian-type to a human-type receptor specificity. Here, we demonstrate that a 2016 2.3.4.4e virus HA can convert to human-type receptor binding via a single Q226L mutation, in contrast to a cleavage-modified 2016 2.3.4.4b virus HA. Using glycan arrays, x-ray structural analyses, tissue- and direct glycan binding, we show that L133aΔ and 227Q are vital for this phenotype. Thus, whereas the 2.3.4.4e virus HA only needs a single amino acid mutation, the modified 2.3.4.4b HA was not easily converted to human-type receptor specificity.
Collapse
Affiliation(s)
- María Ríos Carrasco
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584CG, Utrecht, The Netherlands
| | - Ting-Hui Lin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xueyong Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Alba Gabarroca García
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584CG, Utrecht, The Netherlands
| | - Elif Uslu
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584CG, Utrecht, The Netherlands
| | - Ruonan Liang
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584CG, Utrecht, The Netherlands
| | - Cindy M. Spruit
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584CG, Utrecht, The Netherlands
| | - Mathilde Richard
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Geert-Jan Boons
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584CG, Utrecht, The Netherlands
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA 30602, USA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Robert P. de Vries
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584CG, Utrecht, The Netherlands
| |
Collapse
|
6
|
Good MR, Fernández-Quintero ML, Ji W, Rodriguez AJ, Han J, Ward AB, Guthmiller JJ. A single mutation in dairy cow-associated H5N1 viruses increases receptor binding breadth. Nat Commun 2024; 15:10768. [PMID: 39737954 PMCID: PMC11685663 DOI: 10.1038/s41467-024-54934-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/21/2024] [Indexed: 01/01/2025] Open
Abstract
Clade 2.3.4.4b H5N1 is causing an unprecedented outbreak in dairy cows in the United States. To understand if recent H5N1 viruses are changing their receptor use, we screened recombinant hemagglutinin (HA) from historical and recent 2.3.4.4b H5N1 viruses for binding to distinct glycans bearing terminal sialic acids using a glycan microarray. We find that H5 from A/Texas/37/2024, an isolate from the dairy cow outbreak, has increased binding breadth to core glycans bearing terminal α2,3 sialic acids, the avian receptor, compared to historical and recent 2.3.4.4b H5N1 viruses. We do not observe any binding to α2,6 sialic acids, the receptor used by human seasonal influenza viruses. Using molecular dynamics and a cryo-EM structure of A/Texas/37/2024 H5, we show A/Texas/37/2024 H5 is more flexible within the receptor-binding site compared to a 2.3.4.4b H5 from 2022. We identify a single mutation outside of the receptor binding site, T199I, is responsible for increased binding breadth, as it increases receptor binding site flexibility. Together, these data show recent H5N1 viruses are evolving increased receptor binding breadth which could impact the host range and cell types infected with H5N1.
Collapse
Affiliation(s)
- Marina R Good
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Monica L Fernández-Quintero
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Wei Ji
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alesandra J Rodriguez
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Julianna Han
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Jenna J Guthmiller
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
7
|
Loureiro CL, Bonetti V, Jaspe RC, Sulbaran Y, Alcazar W, Hernández C, Rodríguez N, Rangel HR, Zambrano JL, Pujol FH. Analysis of the Monophyletic Lineage of Avian Influenza H5N1 Which Circulated in Venezuelan Birds During the 2022-2023 Outbreak. Microorganisms 2024; 12:2519. [PMID: 39770722 PMCID: PMC11677842 DOI: 10.3390/microorganisms12122519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/30/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Avian influenza subtype H5N1 has caused outbreaks worldwide since 1996, with the emergence of the Guandong lineage in China. The current clade 2.3.4.4b has evolved from this lineage, with increased virulence and mass mortality events in birds and mammals. The objective of this study was the analysis of 17 viral genomes of H5N1 avian influenza isolated in Venezuela during the 2022-2023 outbreak. The eight viral genomic segments were amplified using universal primers and sequenced via next-generation sequencing. The sequences were analyzed to confirm the H5 hemagglutinin clade, identify possible genetic reassortments, and perform a phylogenetic and docking analysis of the viral isolates. The viruses found in Venezuela belonged, as expected, to clade 2.3.4.4b and formed a monophyletic clade with North American influenza viruses, with no evidence of further reassortment. The introduction of the virus in South America is associated with bird migration through the Atlantic (Venezuela), Atlantic/Mississippi (Choco, Colombia), and Pacific migratory flyways, with the emergence of several viral lineages. Several mutations were found in all segments of the genome, although none of the key mutations was involved in mammalian adaptation. Moreover, in silico structural analysis suggests, as expected, that the viral hemagglutinin maintained a predilection for avian α2,3-linked sialic acid. The unprecedented pathogenic outbreak of avian influenza disease in South America was associated with the circulation of three different lineages, which maintain a lower affinity for the mammalian receptor.
Collapse
Affiliation(s)
- Carmen Luisa Loureiro
- Laboratorio de Virologia Molecular, Centro de Microbiología y Biología Celular (CMBC), Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas 1020, Venezuela; (C.L.L.); (V.B.); (R.C.J.); (Y.S.); (H.R.R.)
| | - Valeria Bonetti
- Laboratorio de Virologia Molecular, Centro de Microbiología y Biología Celular (CMBC), Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas 1020, Venezuela; (C.L.L.); (V.B.); (R.C.J.); (Y.S.); (H.R.R.)
| | - Rossana C. Jaspe
- Laboratorio de Virologia Molecular, Centro de Microbiología y Biología Celular (CMBC), Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas 1020, Venezuela; (C.L.L.); (V.B.); (R.C.J.); (Y.S.); (H.R.R.)
| | - Yoneira Sulbaran
- Laboratorio de Virologia Molecular, Centro de Microbiología y Biología Celular (CMBC), Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas 1020, Venezuela; (C.L.L.); (V.B.); (R.C.J.); (Y.S.); (H.R.R.)
| | - Wilmer Alcazar
- Instituto Nacional de Salud Agricola Integral (INSAI), Maracay 2101, Venezuela; (W.A.); (C.H.); (N.R.)
| | - Carlos Hernández
- Instituto Nacional de Salud Agricola Integral (INSAI), Maracay 2101, Venezuela; (W.A.); (C.H.); (N.R.)
| | - Nardraka Rodríguez
- Instituto Nacional de Salud Agricola Integral (INSAI), Maracay 2101, Venezuela; (W.A.); (C.H.); (N.R.)
| | - Hector R. Rangel
- Laboratorio de Virologia Molecular, Centro de Microbiología y Biología Celular (CMBC), Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas 1020, Venezuela; (C.L.L.); (V.B.); (R.C.J.); (Y.S.); (H.R.R.)
| | - Jose Luis Zambrano
- Laboratorio de Virologia Celular, Centro de Microbiología y Biología Celular (CMBC), Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas 1020, Venezuela
| | - Flor H. Pujol
- Laboratorio de Virologia Molecular, Centro de Microbiología y Biología Celular (CMBC), Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas 1020, Venezuela; (C.L.L.); (V.B.); (R.C.J.); (Y.S.); (H.R.R.)
| |
Collapse
|
8
|
Ríos Carrasco M, Gröne A, van den Brand JMA, de Vries RP. The mammary glands of cows abundantly display receptors for circulating avian H5 viruses. J Virol 2024; 98:e0105224. [PMID: 39387556 PMCID: PMC11575340 DOI: 10.1128/jvi.01052-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/19/2024] [Indexed: 10/13/2024] Open
Abstract
Influenza A viruses (IAVs) from the H5N1 2.3.4.4b clade are circulating in dairy farms in the USA.; ruminants were presumed not to be hosts for IAVs. Previously, IAV-positive mammalian species were hunters and scavengers, possibly getting infected while feeding on infected birds. It is now recognized that H5N1 viruses that circulate in US dairy cattle transmit through a mammary gland route, in contrast to transmission by aerosols via the respiratory tract. The sialome in the cow mammary and respiratory tract is so far solely defined using plant lectins. Here, we used recombinant HA proteins representing current circulating and classical H5 viruses to determine the distribution of IAV receptors in the respiratory and mammary tract tissues of cows. We complemented our study by mapping the glycan distribution of the upper and lower respiratory tracts of horses and pigs. Most of the sialome of the cow respiratory tract is lined with sialic acid modifications, such as N-glycolyl and O-acetyl, which are not bound by IAV. Interestingly, the H5 protein representing the cow isolates is bound significantly in the mammary gland, whereas classical H5 proteins failed to do so. Furthermore, whereas the 9-O-acetyl modification is prominent in all tissues tested, the 5-N-glycolyl modification is not, resulting in the display of receptors for avian IAV hemagglutinins. This could explain the high levels of virus found in these tissues and milk, adding supporting data to this virus transmission route.IMPORTANCEH5N1 influenza viruses, which usually affect birds, have been found on dairy farms in the USA. Surprisingly, these viruses are spreading among dairy cows, and there is a possibility that they do not spread through the air but through their milk glands. To understand this better, we studied how the virus attaches to tissues in the cow's respiratory tract and mammary glands using specific viral proteins. We found that the cow-associated virus binds strongly to the mammary glands, unlike older versions infecting birds. This might explain why the virus is found in cow's milk, suggesting a new way the virus could be spreading.
Collapse
Affiliation(s)
- María Ríos Carrasco
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Andrea Gröne
- Division of Pathology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Judith M A van den Brand
- Division of Pathology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Robert P de Vries
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
9
|
Li R, Gao J, Wang L, Gui M, Xiang Y. Multivalent interactions between fully glycosylated influenza virus hemagglutinins mediated by glycans at distinct N-glycosylation sites. NPJ VIRUSES 2024; 2:48. [PMID: 40295773 PMCID: PMC11721446 DOI: 10.1038/s44298-024-00059-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/11/2024] [Indexed: 04/30/2025]
Abstract
The hemagglutinin (HA) glycoprotein of influenza virus binds host cell receptors and mediates viral entry. Here we present cryo-EM structures of fully glycosylated HAs from H5N1 and H5N8 influenza viruses. We find that the H5N1 HA can form filaments that comprise two head-to-head HA trimers. Multivalent interactions between the two HA trimers are mediated by glycans attached to N158. The distal Sia1-Gal2-NAG3 sugar moiety of N158 interacts with the receptor binding site on the opposing HA trimer. Additional interactions are observed between NAG3 and residues K222 and K193. The H5N8 HA lacks the N158 glycosylation site and does not form the filamentous structure. However, the H5N8 HA exhibits an auto-inhibition conformation, where the receptor binding site is occupied by the glycan chain attached to residue N169 from a neighboring protomer. These structures represent native HA-glycan interactions, which may closely mimic the receptor-HA interactions on the cell surface.
Collapse
Affiliation(s)
- Ruofan Li
- Beijing Frontier Research Center for Biological Structure, Center for Infectious Disease Research, School of Basic Medical Sciences, Tsinghua University, 100084, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, 030001, Taiyuan, Shanxi Province, China
- Tsinghua-Peking Center for Life Sciences, 100084, Beijing, China
| | - Jingjing Gao
- Beijing Frontier Research Center for Biological Structure, Center for Infectious Disease Research, School of Basic Medical Sciences, Tsinghua University, 100084, Beijing, China
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Lin Wang
- Beijing Frontier Research Center for Biological Structure, Center for Infectious Disease Research, School of Basic Medical Sciences, Tsinghua University, 100084, Beijing, China
- Guangzhou National Laboratory, 510320, Guangzhou, China
| | - Miao Gui
- Department of Obstetrics and Gynecology, Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine and Liangzhu Laboratory, 310016, Hangzhou, China.
| | - Ye Xiang
- Beijing Frontier Research Center for Biological Structure, Center for Infectious Disease Research, School of Basic Medical Sciences, Tsinghua University, 100084, Beijing, China.
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, 030001, Taiyuan, Shanxi Province, China.
- Tsinghua-Peking Center for Life Sciences, 100084, Beijing, China.
| |
Collapse
|
10
|
Duijvestijn MBHM, Schuurman NNMP, Vernooij JCM, van Leeuwen MAJM, van den Brand JMA, Wagenaar JA, van Kuppeveld FJM, Egberink HF, de Haan CAM, Verhagen JH. Highly pathogenic avian influenza (HPAI) H5 virus exposure in domestic cats and rural stray cats, the Netherlands, October 2020 to June 2023. Euro Surveill 2024; 29:2400326. [PMID: 39484684 PMCID: PMC11528901 DOI: 10.2807/1560-7917.es.2024.29.44.2400326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/06/2024] [Indexed: 11/03/2024] Open
Abstract
BackgroundHighly pathogenic avian influenza (HPAI) H5Nx and human H1N1pdm2009 influenza viruses can infect cats. Infections in cats may result in viral adaptations or recombinant viruses, which may facilitate zoonotic transfer.AimWe aimed to investigate the presence of HPAI H5 clade 2.3.4.4 and H1 influenza viruses and antibodies to these viruses in domestic and rural stray cats in the Netherlands and factors associated with exposure.MethodsSera from stray and domestic cats, sampled 2020-2023, were analysed by ELISA and confirmed by hemagglutination inhibition assay (HAI) and pharyngeal swabs and lung tissue for influenza A virus by RT-qPCR.ResultsIn 701 stray cats, 83 (11.8%; 95% confidence interval (CI): 9.5-14.5) sera were positive for HPAI H5 and 65 findings were confirmed. In HAI, two sera were positive for both HPAI H5 and H1. In 871 domestic cats, four (0.46%; 95% CI: 0.13-1.2) sera were HPAI H5 positive and none were confirmed but 40 (4.6%; 95% CI: 3.3-6.2) sera were seropositive for H1 and 26 were confirmed. Stray cats living in nature reserves (odds ratio (OR) = 5.4; 95% CI: 1.5-20.1) and older cats (OR = 3.8; 95% CI: 2.7-7.1) were more likely to be HPAI H5 seropositive. No influenza A virus was detected in 230 cats.ConclusionThe higher HPAI H5 seroprevalence in stray cats compared with domestic cats suggests more frequent viral exposure, most likely due to foraging on wild birds. In contrast, exposure to H1 was more common in domestic cats compared with stray cats.
Collapse
Affiliation(s)
- Mirjam B H M Duijvestijn
- Clinical Infectiology, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Nancy N M P Schuurman
- Section of Virology, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Johannes C M Vernooij
- Section Farm Animal Health, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | - Judith M A van den Brand
- Division of Pathology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Jaap A Wagenaar
- Clinical Infectiology, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Frank J M van Kuppeveld
- Section of Virology, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Herman F Egberink
- Clinical Infectiology, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Section of Virology, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Cornelis A M de Haan
- Section of Virology, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Josanne H Verhagen
- Clinical Infectiology, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Section of Virology, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
11
|
European Food Safety Authority, European Centre for Disease Prevention and Control, European Union Reference Laboratory for Avian Influenza, Alexakis L, Buczkowski H, Ducatez M, Fusaro A, Gonzales JL, Kuiken T, Ståhl K, Staubach C, Svartström O, Terregino C, Willgert K, Delacourt R, Kohnle L. Avian influenza overview June-September 2024. EFSA J 2024; 22:e9057. [PMID: 39434784 PMCID: PMC11492803 DOI: 10.2903/j.efsa.2024.9057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024] Open
Abstract
Between 15 June and 20 September 2024, 75 highly pathogenic avian influenza (HPAI) A(H5) and A(H7) virus detections were reported in domestic (16) and wild (59) birds across 11 countries in Europe. Although the overall number of detections in Europe continued to be low compared to previous epidemiological years, an increase in cases along the Atlantic, North Sea and Baltic coasts was notable, particularly an increase in the detection of HPAI viruses in colony-breeding seabirds. Besides EA-2022-BB and other circulating genotypes, these detections also included EA-2023-DT, a new genotype that may transmit more efficiently among gulls. In Germany, HPAI A(H7N5) virus emerged in a poultry establishment near the border with the Netherlands. No new HPAI virus detections in mammals were reported in Europe during this period, but the number of reportedly affected dairy cattle establishments in the United States of America (USA) rose to >230 in 14 states, and HPAI virus was identified in three new mammal species. Between 21 June and 20 September 2024, 19 new human cases with avian influenza virus infection were reported from the USA (six A(H5N1) cases and five A(H5) cases), Cambodia (five A(H5N1) cases, including one fatal), China (one fatal A(H5N6) case and one A(H9N2) case), and Ghana (one A(H9N2) case). Most of the human cases (90%, n = 17/19) had reported exposure to poultry, live poultry markets, or dairy cattle prior to avian influenza virus detection or onset of illness. Human infections with avian influenza viruses remain rare and no evidence of human-to-human transmission has been documented in the reporting period. The risk of infection with currently circulating avian A(H5) influenza viruses of clade 2.3.4.4b in Europe remains low for the general public in the European Union/European Economic Area (EU/EEA). The risk of infection remains low-to-moderate for those occupationally or otherwise exposed to infected animals or contaminated environments.
Collapse
|
12
|
Ichikawa T, Hiono T, Okamatsu M, Maruyama J, Kobayashi D, Matsuno K, Kida H, Sakoda Y. Hemagglutinin and neuraminidase of a non-pathogenic H7N7 avian influenza virus coevolved during the acquisition of intranasal pathogenicity in chickens. Arch Virol 2024; 169:207. [PMID: 39307848 DOI: 10.1007/s00705-024-06118-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/16/2024] [Indexed: 09/25/2024]
Abstract
Polybasic amino acid residues at the hemagglutinin (HA) cleavage site are insufficient to induce the highly pathogenic phenotype of avian influenza viruses in chickens. In our previous study, an H7N7 avian influenza virus named "Vac2sub-P0", which is nonpathogenic despite carrying polybasic amino acids at the HA cleavage site, was passaged in chick air sacs, and a virus with high intravenous pathogenicity, Vac2sub-P3, was obtained. Intranasal infection with Vac2sub-P3 resulted in limited lethality in chickens; therefore, in this study, this virus was further passaged in chicken lungs, and the resultant virus, Vac2sub-P3L4, acquired high intranasal pathogenicity. Experimental infection of chickens with recombinant viruses demonstrated that mutations in HA and neuraminidase (NA) found in consecutive passages were responsible for the increased pathogenicity. The HA and NA functions of Vac2sub-P3L4 were compared with those of the parental virus in vitro; the virus growth at 40 °C was faster, the binding affinity to a sialic acid receptor was lower, and the rate of release by NA from the cell surface was lower, suggesting that these changes enabled the virus to replicate efficiently in chickens with high intranasal pathogenicity. This study demonstrates that viruses that are highly pathogenic when administered intranasally require additional adaptations for increased pathogenicity to be highly lethal to intranasally infected chickens.
Collapse
Affiliation(s)
- Takaya Ichikawa
- Faculty of Veterinary Medicine, Laboratory of Microbiology, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
- Faculty of Medicine, Department of Microbiology and Immunology, Hokkaido University, Sapporo, Japan
| | - Takahiro Hiono
- Faculty of Veterinary Medicine, Laboratory of Microbiology, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| | - Masatoshi Okamatsu
- Faculty of Veterinary Medicine, Laboratory of Microbiology, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| | - Junki Maruyama
- Faculty of Veterinary Medicine, Laboratory of Microbiology, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Daiki Kobayashi
- Faculty of Veterinary Medicine, Laboratory of Microbiology, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| | - Keita Matsuno
- One Health Research Center, Hokkaido University, Sapporo, Japan
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| | - Hiroshi Kida
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| | - Yoshihiro Sakoda
- Faculty of Veterinary Medicine, Laboratory of Microbiology, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan.
- One Health Research Center, Hokkaido University, Sapporo, Japan.
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan.
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan.
| |
Collapse
|
13
|
Chopra P, Page CK, Shepard JD, Ray SD, Kandeil A, Jeevan T, Bowman AS, Ellebedy AH, Webby RJ, de Vries RP, Tompkins SM, Boons GJ. Receptor Binding Specificity of a Bovine A(H5N1) Influenza Virus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.605893. [PMID: 39131339 PMCID: PMC11312569 DOI: 10.1101/2024.07.30.605893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Outbreaks in the US of highly pathogenic avian influenza virus (H5N1) in dairy cows have been occurring for months creating new possibilities for direct contact between the virus and humans. Eisfeld et al. examined the pathogenicity and transmissibility of a bovine HPAI H5N1 virus isolated from New Mexico in a series of in vitro and in vivo assays. They found the virus has a dual human- and avian virus-like receptor-binding specificity as measured in a solid phase glycan binding assay. Here, we examined the receptor specificity of a bovine HPAI H5N1 virus (A/bovine/OH/B24OSU-432/2024, H5N1, clade 2.3.4.4b) employing four different assays including glycan array technology, bio-layer interferometry (BLI), a solid phase capture assay and hemagglutination of glycan remodeled erythrocytes. As controls, well characterized avian (A/Vietnam/1203/2004, H5N1, clade 1) and human (A/CA/04/2009, H1N1) IAVs were included that bind α2,3- and α2,6-sialosides, respectively. We found that A/bovine/OH/B24OSU-432/2024 preferentially binds to "avian type" receptors (α2,3-sialosides). Furthermore, sequence alignments showed that A/bovine has maintained amino acids in its HA associated with α2,3-sialoside (avian) receptor specificity. We conclude that while we find no evidence that A/bovine has acquired human virus receptor binding specificity, ongoing efforts must be placed on monitoring for this trait.
Collapse
Affiliation(s)
- Pradeep Chopra
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA 30602, USA
- Center for Influenza Disease and Emergence Response (CIDER), University of Georgia, Athens, GA 30602, USA
| | - Caroline K. Page
- Center for Influenza Disease and Emergence Response (CIDER), University of Georgia, Athens, GA 30602, USA
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA and Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
| | - Justin D. Shepard
- Center for Influenza Disease and Emergence Response (CIDER), University of Georgia, Athens, GA 30602, USA
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA and Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
| | - Sean D. Ray
- Center for Influenza Disease and Emergence Response (CIDER), University of Georgia, Athens, GA 30602, USA
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA and Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
| | - Ahmed Kandeil
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, TN, USA
- St. Jude Center of Excellence for Influenza Research and Response, Memphis, TN, USA
| | - Trushar Jeevan
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, TN, USA
- St. Jude Center of Excellence for Influenza Research and Response, Memphis, TN, USA
| | - Andrew S. Bowman
- St. Jude Center of Excellence for Influenza Research and Response, Memphis, TN, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Ali H. Ellebedy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO 63110, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Richard J. Webby
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, TN, USA
- St. Jude Center of Excellence for Influenza Research and Response, Memphis, TN, USA
| | - Robert P. de Vries
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - S. Mark Tompkins
- Center for Influenza Disease and Emergence Response (CIDER), University of Georgia, Athens, GA 30602, USA
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA and Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA 30602, USA
- Center for Influenza Disease and Emergence Response (CIDER), University of Georgia, Athens, GA 30602, USA
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
14
|
European Food Safety Authority, European Centre for Disease Prevention and Control, European Union Reference Laboratory for Avian Influenza, Alexakis L, Fusaro A, Kuiken T, Mirinavičiūtė G, Ståhl K, Staubach C, Svartström O, Terregino C, Willgert K, Delacourt R, Goudjihounde SM, Grant M, Tampach S, Kohnle L. Avian influenza overview March-June 2024. EFSA J 2024; 22:e8930. [PMID: 39036773 PMCID: PMC11258884 DOI: 10.2903/j.efsa.2024.8930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024] Open
Abstract
Between 16 March and 14 June 2024, 42 highly pathogenic avian influenza (HPAI) A(H5) virus detections were reported in domestic (15) and wild (27) birds across 13 countries in Europe. Although the overall number of detections in Europe has not been this low since the 2019-2020 epidemiological year, HPAI viruses continue to circulate at a very low level. Most detections in poultry were due to indirect contact with wild birds, but there was also secondary spread. Outside Europe, the HPAI situation intensified particularly in the USA, where a new A(H5N1) virus genotype (B3.13) has been identified in >130 dairy herds in 12 states. Infection in cattle appears to be centred on the udder, with milk from infected animals showing high viral loads and representing a new vehicle of transmission. Apart from cattle, HPAI viruses were identified in two other mammal species (alpaca and walrus) for the first time. Between 13 March and 20 June 2024, 14 new human cases with avian influenza virus infection were reported from Vietnam (one A(H5N1), one A(H9N2)), Australia (with travel history to India, one A(H5N1)), USA (three A(H5N1)), China (two A(H5N6), three A(H9N2), one A(H10N3)), India (one A(H9N2)), and Mexico (one fatal A(H5N2) case). The latter case was the first laboratory-confirmed human infection with avian influenza virus subtype A(H5N2). Most of the human cases had reported exposure to poultry, live poultry markets, or dairy cattle prior to avian influenza virus detection or onset of illness. Human infections with avian influenza viruses remain rare and no human-to-human transmission has been observed. The risk of infection with currently circulating avian A(H5) influenza viruses of clade 2.3.4.4b in Europe remains low for the general public in the EU/EEA. The risk of infection remains low-to-moderate for those occupationally or otherwise exposed to infected animals or contaminated environments.
Collapse
|
15
|
Li T, Spruit CM, Wei N, Liu L, Wolfert MA, de Vries RP, Boons GJ. Chemoenzymatic Synthesis of Tri-antennary N-Glycans Terminating in Sialyl-Lewis x Reveals the Importance of Glycan Complexity for Influenza A Virus Receptor Binding. Chemistry 2024; 30:e202401108. [PMID: 38567703 PMCID: PMC11156558 DOI: 10.1002/chem.202401108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Indexed: 05/09/2024]
Abstract
Sialyl-Lewisx (SLex) is involved in immune regulation, human fertilization, cancer, and bacterial and viral diseases. The influence of the complex glycan structures, which can present SLex epitopes, on binding is largely unknown. We report here a chemoenzymatic strategy for the preparation of a panel of twenty-two isomeric asymmetrical tri-antennary N-glycans presenting SLex-Lex epitopes on either the MGAT4 or MGAT5 arm that include putative high-affinity ligands for E-selectin. The N-glycans were prepared starting from a sialoglycopeptide isolated from egg yolk powder and took advantage of inherent substrate preferences of glycosyltransferases and the use of 5'-diphospho-N-trifluoracetylglucosamine (UDP-GlcNHTFA) that can be transferred by branching N-acetylglucosaminyltransferases to give, after base treatment, GlcNH2-containing glycans that temporarily disable an antenna from enzymatic modification. Glycan microarray binding studies showed that E-selectin bound equally well to linear glycans and tri-antennary N-glycans presenting SLex-Lex. On the other hand, it was found that hemagglutinins (HA) of H5 influenza A viruses (IAV) preferentially bound the tri-antennary N-glycans. Furthermore, several H5 HAs preferentially bound to N-glycan presenting SLex on the MGAT4 arm. SLex is displayed in the respiratory tract of several avian species, demonstrating the relevance of investigating the binding of, among others IAVs, to complex N-glycans presenting SLex.
Collapse
Affiliation(s)
- Tiehai Li
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- Present address: Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Cindy M Spruit
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Na Wei
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Lin Liu
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Margreet A Wolfert
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Robert P de Vries
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
- Chemistry Department, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
16
|
Zhirnov OP, Lvov DK. Avian flu: «for whom the bell tolls»? Vopr Virusol 2024; 69:101-118. [PMID: 38843017 DOI: 10.36233/10.36233/0507-4088-213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Indexed: 06/14/2024]
Abstract
The family Orthomyxoviridae consists of 9 genera, including Alphainfluenzavirus, which contains avian influenza viruses. In two subtypes H5 and H7 besides common low-virulent strains, a specific type of highly virulent avian virus have been described to cause more than 60% mortality among domestic birds. These variants of influenza virus are usually referred to as «avian influenza virus». The difference between high (HPAI) and low (LPAI) virulent influenza viruses is due to the structure of the arginine-containing proteolytic activation site in the hemagglutinin (HA) protein. The highly virulent avian influenza virus H5 was identified more than 100 years ago and during this time they cause outbreaks among wild and domestic birds on all continents and only a few local episodes of the disease in humans have been identified in XXI century. Currently, a sharp increase in the incidence of highly virulent virus of the H5N1 subtype (clade h2.3.4.4b) has been registered in birds on all continents, accompanied by the transmission of the virus to various species of mammals. The recorded global mortality rate among wild, domestic and agricultural birds from H5 subtype is approaching to the level of 1 billion cases. A dangerous epidemic factor is becoming more frequent outbreaks of avian influenza with high mortality among mammals, in particular seals and marine lions in North and South America, minks and fur-bearing animals in Spain and Finland, domestic and street cats in Poland. H5N1 avian influenza clade h2.3.4.4b strains isolated from mammals have genetic signatures of partial adaptation to the human body in the PB2, NP, HA, NA genes, which play a major role in regulating the aerosol transmission and the host range of the virus. The current situation poses a real threat of pre-adaptation of the virus in mammals as intermediate hosts, followed by the transition of the pre-adapted virus into the human population with catastrophic consequences.
Collapse
Affiliation(s)
- O P Zhirnov
- The D.I. Ivaovsky Institute of Virology, The N.F. Gamaleya Research Center of Epidemiology and Microbiology, The Russian Ministry of Health
- The Russian-German Academy of Medical-Social and Biotechnological Sciences, Skolkovo Innovation Center
| | - D K Lvov
- The D.I. Ivaovsky Institute of Virology, The N.F. Gamaleya Research Center of Epidemiology and Microbiology, The Russian Ministry of Health
| |
Collapse
|
17
|
Spruit CM, Palme DI, Li T, Ríos Carrasco M, Gabarroca García A, Sweet IR, Kuryshko M, Maliepaard JCL, Reiding KR, Scheibner D, Boons GJ, Abdelwhab EM, de Vries RP. Complex N-glycans are important for interspecies transmission of H7 influenza A viruses. J Virol 2024; 98:e0194123. [PMID: 38470143 PMCID: PMC11019957 DOI: 10.1128/jvi.01941-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/20/2024] [Indexed: 03/13/2024] Open
Abstract
Influenza A viruses (IAVs) can overcome species barriers by adaptation of the receptor-binding site of the hemagglutinin (HA). To initiate infection, HAs bind to glycan receptors with terminal sialic acids, which are either N-acetylneuraminic acid (NeuAc) or N-glycolylneuraminic acid (NeuGc); the latter is mainly found in horses and pigs but not in birds and humans. We investigated the influence of previously identified equine NeuGc-adapting mutations (S128T, I130V, A135E, T189A, and K193R) in avian H7 IAVs in vitro and in vivo. We observed that these mutations negatively affected viral replication in chicken cells but not in duck cells and positively affected replication in horse cells. In vivo, the mutations reduced virus virulence and mortality in chickens. Ducks excreted high viral loads longer than chickens, although they appeared clinically healthy. To elucidate why these viruses infected chickens and ducks despite the absence of NeuGc, we re-evaluated the receptor binding of H7 HAs using glycan microarray and flow cytometry studies. This re-evaluation demonstrated that mutated avian H7 HAs also bound to α2,3-linked NeuAc and sialyl-LewisX, which have an additional fucose moiety in their terminal epitope, explaining why infection of ducks and chickens was possible. Interestingly, the α2,3-linked NeuAc and sialyl-LewisX epitopes were only bound when presented on tri-antennary N-glycans, emphasizing the importance of investigating the fine receptor specificities of IAVs. In conclusion, the binding of NeuGc-adapted H7 IAV to tri-antennary N-glycans enables viral replication and shedding by chickens and ducks, potentially facilitating interspecies transmission of equine-adapted H7 IAVs.IMPORTANCEInfluenza A viruses (IAVs) cause millions of deaths and illnesses in birds and mammals each year. The viral surface protein hemagglutinin initiates infection by binding to host cell terminal sialic acids. Hemagglutinin adaptations affect the binding affinity to these sialic acids and the potential host species targeted. While avian and human IAVs tend to bind to N-acetylneuraminic acid (sialic acid), equine H7 viruses prefer binding to N-glycolylneuraminic acid (NeuGc). To better understand the function of NeuGc-specific adaptations in hemagglutinin and to elucidate interspecies transmission potential NeuGc-adapted viruses, we evaluated the effects of NeuGc-specific mutations in avian H7 viruses in chickens and ducks, important economic hosts and reservoir birds, respectively. We also examined the impact on viral replication and found a binding affinity to tri-antennary N-glycans containing different terminal epitopes. These findings are significant as they contribute to the understanding of the role of receptor binding in avian influenza infection.
Collapse
Affiliation(s)
- Cindy M. Spruit
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Diana I. Palme
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Germany
| | - Tiehai Li
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - María Ríos Carrasco
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Alba Gabarroca García
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Igor R. Sweet
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Maryna Kuryshko
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Germany
| | - Joshua C. L. Maliepaard
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Karli R. Reiding
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - David Scheibner
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Germany
| | - Geert-Jan Boons
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Elsayed M. Abdelwhab
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Germany
| | - Robert P. de Vries
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
18
|
Dziadek K, Świętoń E, Kozak E, Wyrostek K, Tarasiuk K, Styś-Fijoł N, Śmietanka K. Phylogenetic and Molecular Characteristics of Wild Bird-Origin Avian Influenza Viruses Circulating in Poland in 2018-2022: Reassortment, Multiple Introductions, and Wild Bird-Poultry Epidemiological Links. Transbound Emerg Dis 2024; 2024:6661672. [PMID: 40303090 PMCID: PMC12017110 DOI: 10.1155/2024/6661672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/20/2024] [Accepted: 03/29/2024] [Indexed: 05/02/2025]
Abstract
Since 2020, a significant increase in the severity of H5Nx highly pathogenic avian influenza (HPAI) epidemics in poultry and wild birds has been observed in Poland. To further investigate the genetic diversity of HPAI H5Nx viruses of clade 2.3.4.4b, HPAIV-positive samples collected from dead wild birds in 2020-2022 were phylogenetically characterized. In addition, zoonotic potential and possible reassortment between HPAIVs and LPAIVs circulating in the wild avifauna in Poland have been examined. The genome-wide phylogenetic analysis revealed the presence of three different avian influenza virus (AIV) subtypes (H5N8, H5N5, and H5N1) during the HPAI 2020/2021 season, while in the next HPAI 2021/2022 epidemic only one H5N1 subtype encompassing seven various genotypes (G1-G7) was confirmed. No reassortment events between LPAIVs (detected in the framework of active surveillance) and HPAIVs circulating in Poland have been captured, but instead, epidemiological links between wild birds and poultry due to bidirectional, i.e., wild bird-to-poultry and poultry-to-wild bird HPAIV transmission were evident. Furthermore, at least five independent H5N8 HPAIV introductions into the Baltic Sea region related to unprecedented mass mortality among swans in February-March 2021 in Poland, as well as a general tendency of current H5Nx viruses to accumulate specific mutations associated with the ability to break the interspecies barrier were identified. These results highlight the importance of continuous active and passive surveillance for AI to allow a rapid response to emerging viruses.
Collapse
Affiliation(s)
- Kamila Dziadek
- Department of Poultry Diseases, National Veterinary Research Institute, Pulawy 24-100, Poland
| | - Edyta Świętoń
- Department of Omic Analyses, National Veterinary Research Institute, Pulawy 24-100, Poland
| | - Edyta Kozak
- Department of Poultry Diseases, National Veterinary Research Institute, Pulawy 24-100, Poland
| | - Krzysztof Wyrostek
- Department of Poultry Diseases, National Veterinary Research Institute, Pulawy 24-100, Poland
| | - Karolina Tarasiuk
- Department of Poultry Diseases, National Veterinary Research Institute, Pulawy 24-100, Poland
| | - Natalia Styś-Fijoł
- Department of Poultry Diseases, National Veterinary Research Institute, Pulawy 24-100, Poland
| | - Krzysztof Śmietanka
- Department of Poultry Diseases, National Veterinary Research Institute, Pulawy 24-100, Poland
| |
Collapse
|
19
|
Hiono T, Isoda N, Sakoda Y. [The current situation of H5 high pathogenicity avian influenza viruses in wild birds and mammals]. Uirusu 2024; 74:107-116. [PMID: 40024793 DOI: 10.2222/jsv.74.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
H5 high pathogenicity avian influenza viruses, which emerged in Guangdong Province, China, in 1996, has now been persistently transmitted among various wild birds due to the "silent spreading" of the viruses among vaccinated poultry and domestic waterfowl. These viruses traveled long distances along with bird migration; therefore, the threat of H5 high pathogenicity avian influenza viruses is now a global issue. Furthermore, infection in wild mammals has become more prominent since 2020. The contamination of the wild bird population by the virus is considered to be an irreversible situation, and thus, the reduction of virus levels in the environment is an urgent issue to prevent further deterioration of the situation. This review will describe the history and current situations of influenza virus infection in wild birds and mammals, and discuss the research and countermeasures that are required to stop the damage caused by this virus.
Collapse
Affiliation(s)
- Takahiro Hiono
- Faculty of Veterinary Medicine, Hokkaido University
- One Health Research Center, Hokkaido University
- nternational Institute for Zoonosis Control, Hokkaido University
- Institute for Vaccine Research and Development (IVReD), Hokkaido University
| | - Norikazu Isoda
- Faculty of Veterinary Medicine, Hokkaido University
- One Health Research Center, Hokkaido University
- nternational Institute for Zoonosis Control, Hokkaido University
- Institute for Vaccine Research and Development (IVReD), Hokkaido University
| | - Yoshihiro Sakoda
- Faculty of Veterinary Medicine, Hokkaido University
- One Health Research Center, Hokkaido University
- nternational Institute for Zoonosis Control, Hokkaido University
- Institute for Vaccine Research and Development (IVReD), Hokkaido University
| |
Collapse
|
20
|
Liu M, van Kuppeveld FJM, de Haan CAM, de Vries E. Gradual adaptation of animal influenza A viruses to human-type sialic acid receptors. Curr Opin Virol 2023; 60:101314. [DOI: 10.1016/j.coviro.2023.101314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 04/01/2023]
|
21
|
Rosone F, Bonfante F, Sala MG, Maniero S, Cersini A, Ricci I, Garofalo L, Caciolo D, Denisi A, Napolitan A, Parente M, Zecchin B, Terregino C, Scicluna MT. Seroconversion of a Swine Herd in a Free-Range Rural Multi-Species Farm against HPAI H5N1 2.3.4.4b Clade Virus. Microorganisms 2023; 11:1162. [PMCID: PMC10224318 DOI: 10.3390/microorganisms11051162] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 06/10/2023] Open
Abstract
Starting from October 2021, several outbreaks of highly pathogenic avian influenza virus (HPAIV) subtype H5N1 were reported in wild and domestic birds in Italy. Following the detection of an HPAIV in a free-ranging poultry farm in Ostia, province of Rome, despite the lack of clinical signs, additional virological and serological analyses were conducted on samples collected from free-ranging pigs, reared in the same holding, due to their direct contact with the infected poultry. While the swine nasal swabs were all RT-PCR negative for the influenza type A matrix (M) gene, the majority (%) of the tested pigs resulted serologically positive for the hemagglutination inhibition test and microneutralization assay, using an H5N1 strain considered to be homologous to the virus detected in the farm. These results provide further evidence of the worrisome replicative fitness that HPAI H5Nx viruses of the 2.3.4.4b clade have in mammalian species. Moreover, our report calls for additional active surveillance, to promptly intercept occasional spillover transmissions to domestic mammals in close contact with HPAI affected birds. Strengthened biosecurity measures and efficient separation should be prioritized in mixed-species farms in areas at risk of HPAI introduction.
Collapse
Affiliation(s)
- Francesca Rosone
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Via Appia Nuova, 1411, 00178 Rome, Italy; (M.G.S.); (A.C.); (I.R.); (L.G.); (D.C.); (A.D.); (M.T.S.)
| | - Francesco Bonfante
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 35020 Legnaro, Italy; (F.B.); (S.M.); (A.N.); (B.Z.)
| | - Marcello Giovanni Sala
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Via Appia Nuova, 1411, 00178 Rome, Italy; (M.G.S.); (A.C.); (I.R.); (L.G.); (D.C.); (A.D.); (M.T.S.)
| | - Silvia Maniero
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 35020 Legnaro, Italy; (F.B.); (S.M.); (A.N.); (B.Z.)
| | - Antonella Cersini
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Via Appia Nuova, 1411, 00178 Rome, Italy; (M.G.S.); (A.C.); (I.R.); (L.G.); (D.C.); (A.D.); (M.T.S.)
| | - Ida Ricci
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Via Appia Nuova, 1411, 00178 Rome, Italy; (M.G.S.); (A.C.); (I.R.); (L.G.); (D.C.); (A.D.); (M.T.S.)
| | - Luisa Garofalo
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Via Appia Nuova, 1411, 00178 Rome, Italy; (M.G.S.); (A.C.); (I.R.); (L.G.); (D.C.); (A.D.); (M.T.S.)
| | - Daniela Caciolo
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Via Appia Nuova, 1411, 00178 Rome, Italy; (M.G.S.); (A.C.); (I.R.); (L.G.); (D.C.); (A.D.); (M.T.S.)
| | - Antonella Denisi
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Via Appia Nuova, 1411, 00178 Rome, Italy; (M.G.S.); (A.C.); (I.R.); (L.G.); (D.C.); (A.D.); (M.T.S.)
| | - Alessandra Napolitan
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 35020 Legnaro, Italy; (F.B.); (S.M.); (A.N.); (B.Z.)
| | - Monja Parente
- State Veterinarians of the Local Health Unit (LHU), 00054 Rome, Italy;
| | - Bianca Zecchin
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 35020 Legnaro, Italy; (F.B.); (S.M.); (A.N.); (B.Z.)
| | - Calogero Terregino
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 35020 Legnaro, Italy; (F.B.); (S.M.); (A.N.); (B.Z.)
| | - Maria Teresa Scicluna
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Via Appia Nuova, 1411, 00178 Rome, Italy; (M.G.S.); (A.C.); (I.R.); (L.G.); (D.C.); (A.D.); (M.T.S.)
| |
Collapse
|
22
|
Demirev AV, Park H, Lee K, Park S, Bae JY, Park MS, Kim JI. Phylodynamics and Molecular Mutations of the Hemagglutinin Affecting Global Transmission and Host Adaptation of H5Nx Viruses. Transbound Emerg Dis 2023; 2023:8855164. [PMID: 40303705 PMCID: PMC12017097 DOI: 10.1155/2023/8855164] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/22/2023] [Accepted: 03/29/2023] [Indexed: 05/02/2025]
Abstract
Highly pathogenic avian influenza (HPAI) H5 viruses have circulated globally causing incidental human infection with a substantial pandemic threat. The present study investigated the molecular evolution and phylodynamics of hemagglutinin (HA) in avian and human-isolated H5Nx viruses globally circulating since 2000. We investigated the dynamics of amino acid substitution in the HA sequences of avian and human H5Nx viruses and performed a phylogenetic analysis. Our study found that the H5Nx lineages dominantly expanded since 2000 and diverged into multiple sublineages with unique genetic mutations. P185S mutation in HA became a molecular characteristic of dominant H5Nx viruses throughout clades 2.3.4.1 to 2.3.4.4 (2.3.4.1-4). The key mutations, ΔE130 and I155T, and potential N-linked glycosylation at residues 128, 144, and 159 in the HA gene of human-isolated viruses possibly contributed to both the individual and population levels of the H5 evolution and the host adaptation. Our analysis detected heterogeneity in amino acid sites under positive selection in the HA gene of clades 2.3.4.1-4. Accumulated mutations in the HA protein may potentially affect not only the genetic and antigenic diversity of HPAI H5Nx viruses but also increase the functional compatibility with NA subtypes. Given the global spread and incessantly occurring HA mutations of H5Nx viruses, our results emphasize the importance of early identification of HA mutations as well as the need for a comprehensive assessment of H5Nx variants in terms of pandemic preparedness.
Collapse
Affiliation(s)
- Atanas V. Demirev
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Heedo Park
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Kyuyoung Lee
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Sejik Park
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Joon-Yong Bae
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Man-Seong Park
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Republic of Korea
- Biosafety Center, College of Medicine, Korea University, Seoul, Republic of Korea
- Vaccine Innovation Center, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Jin Il Kim
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Republic of Korea
- Biosafety Center, College of Medicine, Korea University, Seoul, Republic of Korea
- Vaccine Innovation Center, College of Medicine, Korea University, Seoul, Republic of Korea
| |
Collapse
|
23
|
Hiono T, Kobayashi D, Kobayashi A, Suzuki T, Satake Y, Harada R, Matsuno K, Sashika M, Ban H, Kobayashi M, Takaya F, Fujita H, Isoda N, Kimura T, Sakoda Y. Virological, pathological, and glycovirological investigations of an Ezo red fox and a tanuki naturally infected with H5N1 high pathogenicity avian influenza viruses in Hokkaido, Japan. Virology 2023; 578:35-44. [PMID: 36462496 DOI: 10.1016/j.virol.2022.11.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 11/30/2022]
Abstract
In winter/spring 2021-2022, high pathogenicity avian influenza viruses (HPAIVs) that are genetically closely related to each other were detected worldwide. In a public garden in Sapporo, Hokkaido, Japan, a crow die-off by HPAIV infection occurred from March 29 to May 18, 2022. During the event, H5N1 HPAIVs were isolated from an Ezo red fox (Vulpes vulpes schrencki) and a tanuki (Nyctereutes procyonoides albus) found in the same garden. The fox showed viral meningoencephalitis and moderate virus replication in the upper respiratory tract, whereas the tanuki showed viral conjunctivitis and secondary bacterial infection in the eyes accompanied with visceral larva migrans. Viruses isolated from the fox and the tanuki were genetically closely related to those isolated from crows in the same garden. Various α2-3 sialosides were found in the respiratory tracts of these canid mammals, consistent with HPAIV infections in these animals. This study highlighted the importance of monitoring HPAIV infections in wild carnivore mammals to detect the potential virus spreading in nature.
Collapse
Affiliation(s)
- Takahiro Hiono
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, 001-0020, Japan
| | - Daiki Kobayashi
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Atsushi Kobayashi
- Laboratory of Comparative Pathology, Department of Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, 060-0818, Japan; One Health Research Center, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Tamami Suzuki
- Laboratory of Comparative Pathology, Department of Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, 060-0818, Japan
| | - Yuki Satake
- Laboratory of Comparative Pathology, Department of Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, 060-0818, Japan
| | - Rio Harada
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Keita Matsuno
- One Health Research Center, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan; Division of Risk Analysis and Management, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, 001-0020, Japan; Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, 001-0020, Japan
| | - Mariko Sashika
- Laboratory of Wildlife Biology and Medicine, Department of Environmental Veterinary Science, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Hinako Ban
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Maya Kobayashi
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Fumihito Takaya
- Botanic Garden, Field Science Center for Northern Biosphere (FSC), Hokkaido University, Sapporo, Hokkaido, 060-0003, Japan
| | - Hiroko Fujita
- Botanic Garden, Field Science Center for Northern Biosphere (FSC), Hokkaido University, Sapporo, Hokkaido, 060-0003, Japan
| | - Norikazu Isoda
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, 001-0020, Japan; One Health Research Center, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Takashi Kimura
- Laboratory of Comparative Pathology, Department of Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, 060-0818, Japan
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, 001-0020, Japan; One Health Research Center, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan; Hokkaido University, Institute for Vaccine Research and Development (HU-IVReD), Sapporo, Hokkaido, 001-0021, Japan.
| |
Collapse
|
24
|
Antigua KJC, Baek YH, Choi WS, Jeong JH, Kim EH, Oh S, Yoon SW, Kim C, Kim EG, Choi SY, Hong SK, Choi YK, Song MS. Multiple HA substitutions in highly pathogenic avian influenza H5Nx viruses contributed to the change in the NA subtype preference. Virulence 2022; 13:990-1004. [PMID: 36560870 PMCID: PMC9176248 DOI: 10.1080/21505594.2022.2082672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Novel highly pathogenic avian influenza (HPAI) H5Nx viruses are predominantly circulating worldwide, with an increasing potential threat of an outbreak in humans. It remains largely unknown how the stably maintained HPAI H5N1 suddenly altered its neuraminidase (NA) to other NA subtypes, which resulted in the emergence and evolution of H5Nx viruses. Here, we found that a combination of four specific amino acid (AA) substitutions (S123P-T156A-D183N- S223 R) in the hemagglutinin (HA) protein consistently observed in the H5Nx markedly altered the NA preference of H5N1 viruses. These molecular changes in H5N1 impaired its fitness, particularly viral growth and the functional activities of the HA and NA proteins. Among the AA substitutions identified, the T156A substitution, which contributed to the NA shift, also dramatically altered the antigenicity of H5N1 viruses, suggesting an occurrence of antigenic drift triggered by selective pressure. Our study shows the importance of how HA and NA complement each other and that antigenic drift in HA can potentially cause a shift in the NA protein in influenza A virus evolution.
Collapse
Affiliation(s)
- Khristine Joy C. Antigua
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea
| | - Yun Hee Baek
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea
| | - Won-Suk Choi
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea
| | - Ju Hwan Jeong
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea
| | - Eun-Ha Kim
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea
| | - Sol Oh
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea
| | - Sun-Woo Yoon
- Viral Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Changil Kim
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea
| | - Eung-Gook Kim
- Department of Biochemistry, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea
| | - So-Young Choi
- New Drug Development Center, Osong Medical Innovation Foundation, Cheongju, Republic of Korea
| | - Seung Kon Hong
- New Drug Development Center, Osong Medical Innovation Foundation, Cheongju, Republic of Korea
| | - Young Ki Choi
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea,Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS)Center for Study of Emerging and Re-Emerging, Daejeon, Republic of Korea,Young Ki Choi
| | - Min Suk Song
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea,CONTACT Min Suk Song
| |
Collapse
|
25
|
Guan M, Olivier AK, Lu X, Epperson W, Zhang X, Zhong L, Waters K, Mamaliger N, Li L, Wen F, Tao YJ, DeLiberto TJ, Wan XF. The Sialyl Lewis X Glycan Receptor Facilitates Infection of Subtype H7 Avian Influenza A Viruses. J Virol 2022; 96:e0134422. [PMID: 36125302 PMCID: PMC9555156 DOI: 10.1128/jvi.01344-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Subtype H7 avian influenza A viruses (IAVs) are enzootic in wild aquatic birds and have caused sporadic spillovers into domestic poultry and humans. Here, we determined the distribution of fucosylated α2,3 sialoglycan (i.e., sialyl Lewis X [SLeX]) in chickens and five common dabbling duck species and the association between SLeX and cell/tissue/host tropisms of H7 IAVs. Receptor binding analyses showed that H7 IAVs bind to both α2,3-linked (SA2,3Gal) and α2,6-linked sialic acids (SA2,6Gal), but with a higher preference for SLeX; H7 IAVs replicated more efficiently in SLeX-overexpressed than SLeX-deficient MDCK cells. While chickens and all tested dabbling ducks expressed abundant SA2,3Gal and SA2,6Gal, SLeX was detected in both respiratory and gastrointestinal tissues of chickens and mallard ducks and in only the respiratory tissues of gadwall, green-wing teal, and northern shoveler but not in wood ducks. Viral-tissue binding assays showed that H7 IAVs bind to chicken colon crypt cells that express SLeX but fewer bind to mallard colon crypt cells, which do not express SLeX; H7 IAVs bind efficiently to epithelial cells of all tissues expressing SA2,3Gal. High viral replication was identified in both chickens and mallards infected with an H7 virus, regardless of SLeX expression, and viruses were detected in all cells to the same degree as viruses detected in the viral-tissue binding assays. In summary, this study suggests that SLeX facilitates infection of H7 viruses, but other types of SA2,3Gal glycan receptors shape the tissue/host tropisms of H7 IAVs. IMPORTANCE In addition to causing outbreaks in domestic poultry, subtype H7 IAVs can cause sporadic spillover infections in lower mammals and humans. In this study, we showed that SLeX expression varies among wild dabbling ducks. Although it facilitated virus binding and affected infection of H7 IAV in cells, SLeX expression is not the only determinant of viral replication at either the tissue or host level. This study suggested that access to heterologous SA2,3Gal glycan receptors, including fucosylated α2,3-linked sialoglycans, shape tissue and host tropism of H7 IAVs in aquatic wild birds.
Collapse
Affiliation(s)
- Minhui Guan
- Center for Influenza and Emerging Infectious Diseases (CIEID), University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State Universitygrid.260120.7, Starkville, Mississippi, USA
| | - Alicia K. Olivier
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State Universitygrid.260120.7, Starkville, Mississippi, USA
| | - Xiaotong Lu
- Department of BioSciences, Rice Universitygrid.21940.3e, Houston, Texas, USA
| | - William Epperson
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State Universitygrid.260120.7, Starkville, Mississippi, USA
| | - Xiaojian Zhang
- Center for Influenza and Emerging Infectious Diseases (CIEID), University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Lei Zhong
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State Universitygrid.260120.7, Starkville, Mississippi, USA
| | - Kaitlyn Waters
- Center for Influenza and Emerging Infectious Diseases (CIEID), University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Nataly Mamaliger
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State Universitygrid.260120.7, Starkville, Mississippi, USA
| | - Lei Li
- Department of Chemistry, Georgia State Universitygrid.256304.6, Atlanta, Georgia, USA
| | - Feng Wen
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State Universitygrid.260120.7, Starkville, Mississippi, USA
| | - Yizhi J. Tao
- Department of BioSciences, Rice Universitygrid.21940.3e, Houston, Texas, USA
| | - Thomas J. DeLiberto
- U.S. Department of Agriculture Animal and Plant Health Inspection Service, Wildlife Services, Fort Collins, Colorado, USA
| | - Xiu-Feng Wan
- Center for Influenza and Emerging Infectious Diseases (CIEID), University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State Universitygrid.260120.7, Starkville, Mississippi, USA
- Department of Electrical Engineering & Computer Science, College of Engineering, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
26
|
Zhao C, Pu J. Influence of Host Sialic Acid Receptors Structure on the Host Specificity of Influenza Viruses. Viruses 2022; 14:v14102141. [PMID: 36298694 PMCID: PMC9608321 DOI: 10.3390/v14102141] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/23/2022] Open
Abstract
Influenza viruses need to use sialic acid receptors to invade host cells, and the α-2,3 and α-2,6 sialic acids glycosidic bonds linking the terminal sialic acids are generally considered to be the most important factors influencing the cross-species transmission of the influenza viruses. The development of methods to detect the binding of influenza virus HA proteins to sialic acid receptors, as well as the development of glycobiological techniques, has led to a richer understanding of the structure of the sialylated glycan in influenza virus hosts. It was found that, in addition to the sialic acid glycosidic bond, sialic acid variants, length of the sialylated glycan, Gal-GlcNAc-linked glycosidic bond within the sialylated glycan, and sulfation/fucosylation of the GlcNAc within the sialylated glycan all affect the binding properties of influenza viruses to the sialic acid receptors, thus indirectly affecting the host specificity of influenza viruses. This paper will review the sialic acid variants, internal structural differences of sialylated glycan molecules that affect the host specificity of influenza viruses, and distribution characteristics of sialic acid receptors in influenza virus hosts, in order to provide a more reliable theoretical basis for the in-depth investigation of cross-species transmission of influenza viruses and the development of new antiviral drugs.
Collapse
|
27
|
Islam N, Reuben JS, Dale J, Gutman J, McMahon CM, Amaya M, Goodman B, Toninato J, Gasparetto M, Stevens B, Pei S, Gillen A, Staggs S, Engel K, Davis S, Hull M, Burke E, Larchick L, Zane R, Weller G, Jordan C, Smith C. Machine Learning–Based Exploratory Clinical Decision Support for Newly Diagnosed Patients With Acute Myeloid Leukemia Treated With 7 + 3 Type Chemotherapy or Venetoclax/Azacitidine. JCO Clin Cancer Inform 2022; 6:e2200030. [DOI: 10.1200/cci.22.00030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PURPOSE There are currently limited objective criteria to help assist physicians in determining whether an individual patient with acute myeloid leukemia (AML) is likely to do better with induction with either standard 7 + 3 chemotherapy or targeted therapy with venetoclax plus azacitidine. The study goal was to address this need by developing exploratory clinical decision support methods. PATIENTS AND METHODS Univariable and multivariable analysis as well as comparison of a range of machine learning (ML) predictors were performed using cohorts of 120 newly diagnosed 7 + 3-treated AML patients compared with 101 venetoclax plus azacitidine–treated patients. RESULTS A variety of features in the two patient cohorts were identified that may potentially correlate with short- and long-term outcomes, toxicities, and other considerations. A subset of these diagnostic features was then used to develop ML-based predictors with relatively high areas under the curve of short- and long-term outcomes, hospital stays, transfusion requirements, and toxicities for individual patients treated with either venetoclax/azacitidine or 7 + 3. CONCLUSION Potential ML-based approaches to clinical decision support to help guide individual patients with newly diagnosed AML to either 7 + 3 or venetoclax plus azacitidine induction therapy were identified. Larger cohorts with separate test and validation studies are necessary to confirm these initial findings.
Collapse
Affiliation(s)
| | | | - Justin Dale
- Department of Medicine, University of Colorado, Aurora, CO
| | - Jon Gutman
- Department of Medicine, University of Colorado, Aurora, CO
| | | | - Maria Amaya
- Department of Medicine, University of Colorado, Aurora, CO
| | | | | | | | - Brett Stevens
- Department of Medicine, University of Colorado, Aurora, CO
| | - Shanshan Pei
- Department of Medicine, University of Colorado, Aurora, CO
| | - Austin Gillen
- Department of Medicine, University of Colorado, Aurora, CO
| | - Sarah Staggs
- Department of Medicine, University of Colorado, Aurora, CO
| | - Krysta Engel
- Department of Medicine, University of Colorado, Aurora, CO
| | - Sarah Davis
- Department of Medicine, University of Colorado, Aurora, CO
| | - Madelyne Hull
- Health Data Compass, Colorado Center for Personalized Medicine, University of Colorado, Aurora, CO
| | | | | | - Richard Zane
- UCHealth Care Innovations and Department of Emergency Medicine, University of Colorado, Aurora, CO
| | | | - Craig Jordan
- Department of Medicine, University of Colorado, Aurora, CO
| | - Clay Smith
- Department of Medicine, University of Colorado, Aurora, CO
| |
Collapse
|
28
|
Youk S, Leyson CM, Parris DJ, Kariithi HM, Suarez DL, Pantin-Jackwood MJ. Phylogenetic analysis, molecular changes, and adaptation to chickens of Mexican lineage H5N2 low-pathogenic avian influenza viruses from 1994 to 2019. Transbound Emerg Dis 2022; 69:e1445-e1459. [PMID: 35150205 PMCID: PMC9365891 DOI: 10.1111/tbed.14476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 11/29/2022]
Abstract
The Mexican lineage H5N2 low pathogenic avian influenza viruses (LPAIVs) were first detected in 1994 and mutated to highly pathogenic avian influenza viruses (HPAIVs) in 1994-1995 causing widespread outbreaks in poultry. By using vaccination and other control measures, the HPAIVs were eradicated but the LPAIVs continued circulating in Mexico and spread to several other countries. To get better resolution of the phylogenetics of this virus, the full genome sequences of 44 H5N2 LPAIVs isolated from 1994 to 2011, and 6 detected in 2017 and 2019, were analysed. Phylogenetic incongruence demonstrated genetic reassortment between two separate groups of the Mexican lineage H5N2 viruses between 2005 and 2010. Moreover, the recent H5N2 viruses reassorted with previously unidentified avian influenza viruses. Bayesian phylogeographic results suggested that mechanical transmission involving human activity is the most probable cause of the virus spillover to Central American, Caribbean, and East Asian countries. Increased infectivity and transmission of a 2011 H5N2 LPAIV in chickens compared to a 1994 virus demonstrates improved adaptation to chickens, while low virus shedding, and limited contact transmission was observed in mallards with the same 2011 virus. The sporadic increase in basic amino acids in the HA cleavage site, changes in potential N-glycosylation sites in the HA, and truncations of PB1-F2 should be further examined in relation to the increased infectivity and transmission in poultry. The genetic changes that occur as this lineage of H5N2 LPAIVs continues circulating in poultry is concerning not only because of the effect of these changes on vaccination efficacy, but also because of the potential of the viruses to mutate to the highly pathogenic form. Continued vigilance and surveillance efforts, and the pathogenic and genetic characterization of circulating viruses, are required for the effective control of this virus.
Collapse
Affiliation(s)
- Sungsu Youk
- Exotic and Emerging Avian Diseases Unit, Southeast Poultry Research Laboratory, United States National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture
| | - Christina M. Leyson
- Exotic and Emerging Avian Diseases Unit, Southeast Poultry Research Laboratory, United States National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture
| | - Darren J. Parris
- Exotic and Emerging Avian Diseases Unit, Southeast Poultry Research Laboratory, United States National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture
| | - Henry M. Kariithi
- Exotic and Emerging Avian Diseases Unit, Southeast Poultry Research Laboratory, United States National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture
- Biotechnology Research Centre, Kenya Agricultural and Livestock Research Organization, Nairobi, Kenya
| | - David L. Suarez
- Exotic and Emerging Avian Diseases Unit, Southeast Poultry Research Laboratory, United States National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture
| | - Mary J. Pantin-Jackwood
- Exotic and Emerging Avian Diseases Unit, Southeast Poultry Research Laboratory, United States National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture
| |
Collapse
|
29
|
Zhu W, Li X, Dong J, Bo H, Liu J, Yang J, Zhang Y, Wei H, Huang W, Zhao X, Chen T, Yang J, Li Z, Zeng X, Li C, Tang J, Xin L, Gao R, Liu L, Tan M, Shu Y, Yang L, Wang D. Epidemiologic, Clinical, and Genetic Characteristics of Human Infections with Influenza A(H5N6) Viruses, China. Emerg Infect Dis 2022; 28:1332-1344. [PMID: 35476714 PMCID: PMC9239879 DOI: 10.3201/eid2807.212482] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The recent rise in the frequency of influenza A(H5N6) infections in China has raised serious concerns about whether the risk for human infection has increased. We surveyed epidemiologic, clinical, and genetic data of human infections with A(H5N6) viruses. Severe disease occurred in 93.8% of cases, and the fatality rate was 55.4%. Median patient age was 51 years. Most H5N6 hemagglutinin (HA) genes in human isolates in 2021 originated from subclade 2.3.4.4b; we estimated the time to most recent common ancestor as June 16, 2020. A total of 13 genotypes with HA genes from multiple subclades in clade 2.3.4.4 were identified in human isolates. Of note, 4 new genotypes detected in 2021 were the major causes of increased H5N6 virus infections. Mammalian-adapted mutations were found in HA and internal genes. Although we found no evidence of human-to-human transmission, continuous evolution of H5N6 viruses may increase the risk for human infections.
Collapse
|
30
|
Sun H, Deng G, Sun H, Song J, Zhang W, Li H, Wei X, Li F, Zhang X, Liu J, Pu J, Sun Y, Tong Q, Bi Y, Xie Y, Qi J, Chang KC, Gao GF, Liu J. N-linked glycosylation enhances hemagglutinin stability in avian H5N6 influenza virus to promote adaptation in mammals. PNAS NEXUS 2022; 1:pgac085. [PMID: 36741455 PMCID: PMC9896958 DOI: 10.1093/pnasnexus/pgac085] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/05/2022] [Indexed: 02/07/2023]
Abstract
Clade 2.3.4.4 avian H5Ny viruses, namely H5N2, H5N6, and H5N8, have exhibited unprecedented intercontinental spread in poultry. Among them, only H5N6 viruses are frequently reported to infect mammals and cause serious human infections. In this study, the genetic and biological characteristics of surface hemagglutinin (HA) from clade 2.3.4.4 H5Ny avian influenza viruses (AIVs) were examined for adaptation in mammalian infection. Phylogenetic analysis identified an amino acid (AA) deletion at position 131 of HA as a distinctive feature of H5N6 virus isolated from human patients. This single AA deletion was found to enhance H5N6 virus replication and pathogenicity in vitro and in mammalian hosts (mice and ferrets) through HA protein acid and thermal stabilization that resulted in reduced pH threshold from pH 5.7 to 5.5 for viral-endosomal membrane fusion. Mass spectrometry and crystal structure revealed that the AA deletion in HA at position 131 introduced an N-linked glycosylation site at 129, which increases compactness between HA monomers, thus stabilizes the trimeric structure. Our findings provide a molecular understanding of how HA protein stabilization promotes cross-species avian H5N6 virus infection to mammalian hosts.
Collapse
Affiliation(s)
| | | | | | | | | | - Han Li
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaohui Wei
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Fangtao Li
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xin Zhang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jiyu Liu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Juan Pu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yipeng Sun
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Qi Tong
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Yufeng Xie
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China,Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Kin-Chow Chang
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - George Fu Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China,Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China,WHO Collaborating Center for Reference and Research on Influenza, Beijing 102206, China
| | - Jinhua Liu
- To whom correspondence should be addressed:
| |
Collapse
|
31
|
Jiang W, Liu S, Yin X, Li Z, Lan Z, Xire L, Wang Z, Xie Y, Peng C, Li J, Hou G, Yu X, Sun R, Liu H. Comparative Antigenicity and Pathogenicity of Two Distinct Genotypes of Highly Pathogenic Avian Influenza Viruses (H5N8) From Wild Birds in China, 2020-2021. Front Microbiol 2022; 13:893253. [PMID: 35602012 PMCID: PMC9122345 DOI: 10.3389/fmicb.2022.893253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
To date, there have been three epidemic waves of H5N8 avian influenza worldwide. The current third epidemic wave began in October 2020 and has expanded to at least 46 countries. Active and passive surveillance were conducted to monitor H5N8 viruses from wild birds in China. Genetic analysis of 10 H5N8 viruses isolated from wild birds identified two different genotypes. Animal challenge experiments indicated that the H5N8 isolates are highly pathogenic in chickens, mildly pathogenic in ducks, while pathogenicity varied in BALB/c mice. Moreover, there were significant differences in antigenicity as compared to Re-11 vaccine strain and vaccinated chickens were not completely protected against challenge with the high dose of H5N8 virus. With the use of the new matched vaccine and increased poultry immune density, surveillance should be intensified to monitor the emergence of mutant strains and potential worldwide spread via wild birds.
Collapse
Affiliation(s)
- Wenming Jiang
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Shuo Liu
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Xin Yin
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Zhixin Li
- Ningxia Hui Autonomous Region Animal Disease Prevention and Control Center, Yinchuan, China
| | - Zouran Lan
- Shandong Provincial Center for Animal Disease Control, Jinan, China
| | - Luosong Xire
- Tibet Autonomous Region Veterinary Biological Pharmaceuticals Factory, Lhasa, China
| | - Zhongbing Wang
- Shanxi Animal Disease Prevention and Control Center, Taiyuan, China
| | - Yinqian Xie
- Shaanxi Animal Disease Prevention and Control Center, Xi'an, China
| | - Cheng Peng
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Jinping Li
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Guangyu Hou
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Xiaohui Yu
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Rongzhao Sun
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Hualei Liu
- China Animal Health and Epidemiology Center, Qingdao, China
| |
Collapse
|
32
|
Sun R, Jiang W, Liu S, Peng C, Yin X, Liu H, Tang L. Emergence of novel reassortant H5N6 influenza viruses in poultry and humans in Sichuan Province, China, 2021. J Infect 2022; 84:e50-e52. [PMID: 35259421 DOI: 10.1016/j.jinf.2022.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023]
Affiliation(s)
- Rongzhao Sun
- Northeast Agricultural University, Haerbin, China
| | - Wenming Jiang
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Shuo Liu
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Cheng Peng
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Xin Yin
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Hualei Liu
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Lijie Tang
- Northeast Agricultural University, Haerbin, China.
| |
Collapse
|
33
|
Jiang W, Dong C, Liu S, Peng C, Yin X, Liang S, Zhang L, Li J, Yu X, Li Y, Wang J, Hou G, Zeng Z, Liu H. Emerging Novel Reassortant Influenza A(H5N6) Viruses in Poultry and Humans, China, 2021. Emerg Infect Dis 2022; 28:1064-1066. [PMID: 35447059 PMCID: PMC9045449 DOI: 10.3201/eid2805.212163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
A novel highly pathogenic avian influenza A(H5N6) clade 2.3.4.4b virus was isolated from a poultry market in China that a person with a confirmed case had visited. Most genes of the avian and human H5N6 isolates were closely related. The virus also exhibited distinct antigenicity to the Re-11 vaccine strain.
Collapse
|
34
|
Gaide N, Lucas MN, Delpont M, Croville G, Bouwman KM, Papanikolaou A, van der Woude R, Gagarinov IA, Boons GJ, De Vries RP, Volmer R, Teillaud A, Vergne T, Bleuart C, Le Loc’h G, Delverdier M, Guérin JL. Pathobiology of highly pathogenic H5 avian influenza viruses in naturally infected Galliformes and Anseriformes in France during winter 2015–2016. Vet Res 2022; 53:11. [PMID: 35164866 PMCID: PMC8842868 DOI: 10.1186/s13567-022-01028-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 12/10/2021] [Indexed: 12/22/2022] Open
Abstract
In late 2015, an epizootic of Highly Pathogenic Avian Influenza (H5Nx) was registered in Southwestern France, including more than 70 outbreaks in commercial poultry flocks. Phylogenetic analyses suggested local emergence of H5 viruses which differed from A/goose/Guangdong/1/1996 clade 2.3.4.4b lineage and shared a unique polybasic cleavage site in their hemagglutinin protein. The present work provides an overview of the pathobiological picture associated with this epizootic in naturally infected chickens, guinea fowls and ducks. Upon necropsy examination, selected tissues were sampled for histopathology, immunohistochemistry and quantitative Real Time Polymerase Chain Reaction. In Galliformes, HPAIVs infection manifested as severe acute systemic vasculitis and parenchymal necrosis and was associated with endothelial expression of viral antigen. In ducks, lesions were mild and infrequent, with sparse antigenic detection in respiratory and digestive mucosae and leukocytes. Tissue quantifications of viral antigen and RNA were higher in chickens and guinea fowls compared to duck. Subsequently, recombinant HA (rHA) was generated from a H5 HPAIV isolated from an infected duck to investigate its glycan-binding affinity for avian mucosae. Glycan-binding analysis revealed strong affinity of rHA for 3’Sialyl-LacNAc and low affinity for Sialyl-LewisX, consistent with a duck-adapted virus similar to A/Duck/Mongolia/54/2001 (H5N2). K222R and S227R mutations on rHA sequence shifted affinity towards Sialyl-LewisX and led to an increased affinity for chicken mucosa, confirming the involvement of these two mutations in the glycan-binding specificity of the HA. Interestingly, the rHA glycan binding pattern of guinea fowl appeared intermediate between duck and chicken. The present study presents a unique pathobiological description of the H5 HPAIVs outbreaks that occurred in 2015–2016 in Southwestern France.
Collapse
|
35
|
Hiono T, Kobayashi D. Receptor-Binding Assay for Avian Influenza Viruses. Methods Mol Biol 2022; 2556:141-148. [PMID: 36175632 DOI: 10.1007/978-1-0716-2635-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
It is well known that influenza viruses utilize host cell glycans for virus attachment factors via their major glycoprotein, hemagglutinin (HA), to initiate their invasion to host cells. Unlike well-known theories in human and avian influenza viruses, barriers laying between interspecies transmission of influenza viruses among bird species are not well understood. Recently, it was speculated that glycan binding of the HA to fucosylated Siaα2-3Gal is related to the expansion in the host range of the virus in avian species. Accordingly, the binding specificity of avian influenza viruses to fucosylated Siaα2-3Gal glycans should be monitored for the better control of avian influenza in both poultry and wild birds. Here, general methods and points for the glycan-binding assay that are specifically modified to target fucosylated Siaα2-3Gal glycans are provided.
Collapse
Affiliation(s)
- Takahiro Hiono
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan.
| | - Daiki Kobayashi
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
36
|
Bui CHT, Kuok DIT, Yeung HW, Ng KC, Chu DKW, Webby RJ, Nicholls JM, Peiris JSM, Hui KPY, Chan MCW. Risk Assessment for Highly Pathogenic Avian Influenza A(H5N6/H5N8) Clade 2.3.4.4 Viruses. Emerg Infect Dis 2021; 27:2619-2627. [PMID: 34545790 PMCID: PMC8462306 DOI: 10.3201/eid2710.210297] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The numerous global outbreaks and continuous reassortments of highly pathogenic avian influenza (HPAI) A(H5N6/H5N8) clade 2.3.4.4 viruses in birds pose a major risk to the public health. We investigated the tropism and innate host responses of 5 recent HPAI A(H5N6/H5N8) avian isolates of clades 2.3.4.4b, e, and h in human airway organoids and primary human alveolar epithelial cells. The HPAI A(H5N6/H5N8) avian isolates replicated productively but with lower competence than the influenza A(H1N1)pdm09, HPAI A(H5N1), and HPAI A(H5N6) isolates from humans in both or either models. They showed differential cellular tropism in human airway organoids; some infected all 4 major epithelial cell types: ciliated cells, club cells, goblet cells, and basal cells. Our results suggest zoonotic potential but low transmissibility of the HPAI A(H5N6/H5N8) avian isolates among humans. These viruses induced low levels of proinflammatory cytokines/chemokines, which are unlikely to contribute to the pathogenesis of severe disease.
Collapse
|
37
|
Wen F, Yang J, Guo J, Wang C, Cheng Q, Tang Z, Luo K, Yuan S, Huang S, Li Y. Genetic characterization of an H5N6 avian influenza virus with multiple origins from a chicken in southern China, October 2019. BMC Vet Res 2021; 17:200. [PMID: 34049549 PMCID: PMC8161609 DOI: 10.1186/s12917-021-02903-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 05/17/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Highly pathogenic avian influenza viruses (HPAIVs) of H5 subtype pose a great threat to the poultry industry and human health. In recent years, H5N6 subtype has rapidly replaced H5N1 as the most predominate HPAIV subtype circulating in domestic poultry in China. In this study, we describe the genetic and phylogenetic characteristics of a prevalent H5N6 strain in Guangdong, China. RESULTS Nucleotide sequencing identified a H5N6 subtype HPAIV, designated as A/chicken/Dongguan/1101/2019 (DG/19), with a multibasic cleavage site in the hemagglutinin (HA). Phylogenetic analysis revealed DG/19 was a reassortant of H5N1, H5N2, H5N8, and H6N6 subtypes of avian influenza viruses. A number of mammalian adaptive markers such as D36N in the HA were identified. CONCLUSIONS Our results showed that HPAIV H5N6 strains still emerge in well-managed groups of chicken farms. Considering the increasing prevalence of H5N6 HPAIV, and the fact that H5N6 HPAIVs are well adapted to migratory birds, an enhanced surveillance for the East Asian-Australasian flyway should be undertaken to prevent potential threats to the poultry industry and human health.
Collapse
Affiliation(s)
- Feng Wen
- College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China.
| | - Jing Yang
- College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China
| | - Jinyue Guo
- College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China
| | - Congying Wang
- College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China
| | - Qing Cheng
- College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China
| | - Zheng Tang
- College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China
| | - Kaijian Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Sheng Yuan
- College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China
| | - Shujian Huang
- College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China
| | - Yong Li
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China.
| |
Collapse
|
38
|
Wallace LE, Liu M, van Kuppeveld FJM, de Vries E, de Haan CAM. Respiratory mucus as a virus-host range determinant. Trends Microbiol 2021; 29:983-992. [PMID: 33875348 PMCID: PMC8503944 DOI: 10.1016/j.tim.2021.03.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 11/19/2022]
Abstract
Efficient penetration of the mucus layer is needed for respiratory viruses to avoid mucociliary clearance prior to infection. Many respiratory viruses bind to glycans on the heavily glycosylated mucins that give mucus its gel-like characteristics. Influenza viruses, some paramyxoviruses, and coronaviruses avoid becoming trapped in the mucus by releasing themselves by means of their envelope-embedded enzymes that destroy glycan receptors. For efficient infection, receptor binding and destruction need to be in balance with the host receptor repertoire. Establishment in a novel host species requires resetting of the balance to adapt to the different glycan repertoire encountered. Growing understanding of species-specific mucosal glycosylation patterns and the dynamic interaction with respiratory viruses identifies the mucus layer as a major host-range determinant and barrier for zoonotic transfer.
Collapse
Affiliation(s)
- Louisa E Wallace
- Section Virology, Division Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands
| | - Mengying Liu
- Section Virology, Division Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands
| | - Frank J M van Kuppeveld
- Section Virology, Division Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands
| | - Erik de Vries
- Section Virology, Division Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands.
| | - Cornelis A M de Haan
- Section Virology, Division Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands.
| |
Collapse
|
39
|
Wang D, Zhu W, Yang L, Shu Y. The Epidemiology, Virology, and Pathogenicity of Human Infections with Avian Influenza Viruses. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a038620. [PMID: 31964651 DOI: 10.1101/cshperspect.a038620] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Influenza is a global challenge, and future pandemics of influenza are inevitable. One of the lessons learned from past pandemics is that all pandemic influenza viruses characterized to date possess viral genes originating from avian influenza viruses (AIVs). During the past decades, a wide range of AIVs have overcome the species barrier and infected humans with different clinical manifestations ranging from mild illness to severe disease and even death. Understanding the mechanisms of infection in the context of clinical outcomes, the mechanism of interspecies transmission, and the molecular determinants that confer interspecies transmission is important for pandemic preparedness. Here, we summarize the epidemiology, virology, and pathogenicity of human infections with AIVs to further our understanding of interspecies transmission.
Collapse
Affiliation(s)
- Dayan Wang
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention; Key Laboratory for Medical Virology, National Health Commission of the People's Republic of China, Beijing 102206, P.R. China
| | - Wenfei Zhu
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention; Key Laboratory for Medical Virology, National Health Commission of the People's Republic of China, Beijing 102206, P.R. China
| | - Lei Yang
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention; Key Laboratory for Medical Virology, National Health Commission of the People's Republic of China, Beijing 102206, P.R. China
| | - Yuelong Shu
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention; Key Laboratory for Medical Virology, National Health Commission of the People's Republic of China, Beijing 102206, P.R. China.,School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong 510275, P.R. China
| |
Collapse
|
40
|
Verhagen JH, Eriksson P, Leijten L, Blixt O, Olsen B, Waldenström J, Ellström P, Kuiken T. Host Range of Influenza A Virus H1 to H16 in Eurasian Ducks Based on Tissue and Receptor Binding Studies. J Virol 2021; 95:e01873-20. [PMID: 33361418 PMCID: PMC8094940 DOI: 10.1128/jvi.01873-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/01/2020] [Indexed: 12/26/2022] Open
Abstract
Dabbling and diving ducks partly occupy shared habitats but have been reported to play different roles in wildlife infectious disease dynamics. Influenza A virus (IAV) epidemiology in wild birds has been based primarily on surveillance programs focused on dabbling duck species, particularly mallard (Anas platyrhynchos). Surveillance in Eurasia has shown that in mallards, some subtypes are commonly (H1 to H7 and H10), intermediately (H8, H9, H11, and H12), or rarely (H13 to H16) detected, contributing to discussions on virus host range and reservoir competence. An alternative to surveillance in determining IAV host range is to study virus attachment as a determinant for infection. Here, we investigated the attachment patterns of all avian IAV subtypes (H1 to H16) to the respiratory and intestinal tracts of four dabbling duck species (Mareca and Anas spp.), two diving duck species (Aythya spp.), and chicken, as well as to a panel of 65 synthetic glycan structures. We found that IAV subtypes generally showed abundant attachment to colon of the Anas duck species, mallard, and Eurasian teal (Anas crecca), supporting the fecal-oral transmission route in these species. The reported glycan attachment profile did not explain the virus attachment patterns to tissues but showed significant attachment of duck-originated viruses to fucosylated glycan structures and H7 virus tropism for Neu5Gc-LN. Our results suggest that Anas ducks play an important role in the ecology and epidemiology of IAV. Further knowledge on virus tissue attachment, receptor distribution, and receptor binding specificity is necessary to understand the mechanisms underlying host range and epidemiology of IAV.IMPORTANCE Influenza A viruses (IAVs) circulate in wild birds worldwide. From wild birds, the viruses can cause outbreaks in poultry and sporadically and indirectly infect humans. A high IAV diversity has been found in mallards (Anas platyrhynchos), which are most often sampled as part of surveillance programs; meanwhile, little is known about the role of other duck species in IAV ecology and epidemiology. In this study, we investigated the attachment of all avian IAV hemagglutinin (HA) subtypes (H1 to H16) to tissues of six different duck species and chicken as an indicator of virus host range. We demonstrated that the observed virus attachment patterns partially explained reported field prevalence. This study demonstrates that dabbling ducks of the Anas genus are potential hosts for most IAV subtypes, including those infecting poultry. This knowledge is useful to target the sampling of wild birds in nature and to further study the interaction between IAVs and birds.
Collapse
Affiliation(s)
- Josanne H Verhagen
- Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Per Eriksson
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology (IMBIM), Uppsala University, Uppsala, Sweden
| | - Lonneke Leijten
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Ola Blixt
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Björn Olsen
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Jonas Waldenström
- Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Patrik Ellström
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Thijs Kuiken
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
41
|
Gao R, Gu M, Shi L, Liu K, Li X, Wang X, Hu J, Liu X, Hu S, Chen S, Peng D, Jiao X, Liu X. N-linked glycosylation at site 158 of the HA protein of H5N6 highly pathogenic avian influenza virus is important for viral biological properties and host immune responses. Vet Res 2021; 52:8. [PMID: 33436086 PMCID: PMC7805195 DOI: 10.1186/s13567-020-00879-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023] Open
Abstract
Since 2014, clade 2.3.4.4 has become the dominant epidemic branch of the Asian lineage H5 subtype highly pathogenic avian influenza virus (HPAIV) in southern and eastern China, while the H5N6 subtype is the most prevalent. We have shown earlier that lack of glycosylation at position 158 of the hemagglutinin (HA) glycoprotein due to the T160A mutation is a key determinant of the dual receptor binding property of clade 2.3.4.4 H5NX subtypes. Our present study aims to explore other effects of this site among H5N6 viruses. Here we report that N-linked glycosylation at site 158 facilitated the assembly of virus-like particles and enhanced virus replication in A549, MDCK, and chicken embryonic fibroblast (CEF) cells. Consistently, the HA-glycosylated H5N6 virus induced higher levels of inflammatory factors and resulted in stronger pathogenicity in mice than the virus without glycosylation at site 158. However, H5N6 viruses without glycosylation at site 158 were more resistant to heat and bound host cells better than the HA-glycosylated viruses. H5N6 virus without glycosylation at this site triggered the host immune response mechanism to antagonize the viral infection, making viral pathogenicity milder and favoring virus spread. These findings highlight the importance of glycosylation at site 158 of HA for the pathogenicity of the H5N6 viruses.
Collapse
Affiliation(s)
- Ruyi Gao
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
| | - Min Gu
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Liwei Shi
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
| | - Kaituo Liu
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
| | - Xiuli Li
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
| | - Xiaoquan Wang
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jiao Hu
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xiaowen Liu
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Shunlin Hu
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Sujuan Chen
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, Jiangsu, China
| | - Xinan Jiao
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, Jiangsu, China
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
42
|
[The issues in detection of avian-type receptors for influenza viruses]. Uirusu 2021; 71:175-184. [PMID: 37245980 DOI: 10.2222/jsv.71.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Influenza viruses utilize sialic acid-containing glycoconjugates as receptors. The distribution of receptors in host tissues has been investigated in many species to understand the ecology of influenza viruses in nature and the mechanisms of interspecies transmission of the viruses. On the other hand, lectins, which have been widely used to detect these receptor molecules, have many different characteristics from antibodies and thus, require special attention in interpreting the results of lectin staining. In particular, lectins derived from Maackia amurensis, which has been used to detect Siaα2-3Gal, the avian-type receptor for influenza viruses, have been used without fully understanding its characteristics. This led to some confusion in interpreting the distribution of influenza virus receptors in host tissues. How accurately do we know the distribution of avian-type receptors in host animals? In this article, we would like to suggest reviewing the influenza virus receptors by providing issues related to Maackia lectins.
Collapse
|
43
|
Du W, Wolfert MA, Peeters B, van Kuppeveld FJM, Boons GJ, de Vries E, de Haan CAM. Mutation of the second sialic acid-binding site of influenza A virus neuraminidase drives compensatory mutations in hemagglutinin. PLoS Pathog 2020; 16:e1008816. [PMID: 32853241 PMCID: PMC7480853 DOI: 10.1371/journal.ppat.1008816] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 09/09/2020] [Accepted: 07/16/2020] [Indexed: 01/03/2023] Open
Abstract
Influenza A viruses (IAVs) cause seasonal epidemics and occasional pandemics. Most pandemics occurred upon adaptation of avian IAVs to humans. This adaptation includes a hallmark receptor-binding specificity switch of hemagglutinin (HA) from avian-type α2,3- to human-type α2,6-linked sialic acids. Complementary changes of the receptor-destroying neuraminidase (NA) are considered to restore the precarious, but poorly described, HA-NA-receptor balance required for virus fitness. In comparison to the detailed functional description of adaptive mutations in HA, little is known about the functional consequences of mutations in NA in relation to their effect on the HA-NA balance and host tropism. An understudied feature of NA is the presence of a second sialic acid-binding site (2SBS) in avian IAVs and absence of a 2SBS in human IAVs, which affects NA catalytic activity. Here we demonstrate that mutation of the 2SBS of avian IAV H5N1 disturbs the HA-NA balance. Passaging of a 2SBS-negative H5N1 virus on MDCK cells selected for progeny with a restored HA-NA balance. These viruses obtained mutations in NA that restored a functional 2SBS and/or in HA that reduced binding of avian-type receptors. Importantly, a particular HA mutation also resulted in increased binding of human-type receptors. Phylogenetic analyses of avian IAVs show that also in the field, mutations in the 2SBS precede mutations in HA that reduce binding of avian-type receptors and increase binding of human-type receptors. Thus, 2SBS mutations in NA can drive acquisition of mutations in HA that not only restore the HA-NA balance, but may also confer increased zoonotic potential.
Collapse
Affiliation(s)
- Wenjuan Du
- Section of Virology, Division of Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Margreet A. Wolfert
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
- Complex Carbohydrate Research Center, University of Georgia, Athens, United States of America
| | - Ben Peeters
- Wageningen Bioveterinary Research, Department of Virology, Lelystad, the Netherlands
| | - Frank J. M. van Kuppeveld
- Section of Virology, Division of Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Geert-Jan Boons
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
- Complex Carbohydrate Research Center, University of Georgia, Athens, United States of America
| | - Erik de Vries
- Section of Virology, Division of Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Cornelis A. M. de Haan
- Section of Virology, Division of Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
44
|
Di Micco P, Di Micco G, Russo V, Poggiano MR, Salzano C, Bosevski M, Imparato M, Fontanella L, Fontanella A. Blood Targets of Adjuvant Drugs Against COVID19. J Blood Med 2020; 11:237-241. [PMID: 32694923 PMCID: PMC7338832 DOI: 10.2147/jbm.s256121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/17/2020] [Indexed: 12/21/2022] Open
Abstract
While waiting for the vaccine and/or the best treatment for COVID19, several drugs have been identified as potential adjuvant drugs to counteract the viral action. Several drugs, in fact, have been suggested for their ancillary antiviral role. Viral proteases and peptidases, may interact with well-known drugs such as anticoagulants, antihypertensives, antiserotoninergics and immunomodulants. We here report a basic list of these drugs that include bioflavonoids, heparinoids, ACE inhibitors, angiotensin receptor blockers, antiserotoninergics, and monoclonal antibodies against cytokines that may interact with the viral cycle.
Collapse
Affiliation(s)
- Pierpaolo Di Micco
- Internal Medicine Department, Emergency Room Unit, Fatebenefratelli Hospital of Naples, Naples, Italy
| | | | - Vincenzo Russo
- University Cardiology Clinic, Faculty of Medicine, Skopje, Macedonia
| | - Maria Rita Poggiano
- Internal Medicine Department, Emergency Room Unit, Fatebenefratelli Hospital of Naples, Naples, Italy
| | - Ciro Salzano
- Internal Medicine Department, Emergency Room Unit, Fatebenefratelli Hospital of Naples, Naples, Italy
| | - Marijan Bosevski
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli” Monaldi Hospital, Naples80131, Italy
| | - Michele Imparato
- Internal Medicine Department, Emergency Room Unit, Fatebenefratelli Hospital of Naples, Naples, Italy
| | - Luca Fontanella
- Internal Medicine Department, Emergency Room Unit, Fatebenefratelli Hospital of Naples, Naples, Italy
| | - Andrea Fontanella
- Internal Medicine Department, Emergency Room Unit, Fatebenefratelli Hospital of Naples, Naples, Italy
| |
Collapse
|
45
|
Kikutani Y, Okamatsu M, Nishihara S, Takase-Yoden S, Hiono T, de Vries RP, McBride R, Matsuno K, Kida H, Sakoda Y. E190V substitution of H6 hemagglutinin is one of key factors for binding to sulfated sialylated glycan receptor and infection to chickens. Microbiol Immunol 2020; 64:304-312. [PMID: 31943329 DOI: 10.1111/1348-0421.12773] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/23/2019] [Accepted: 12/27/2019] [Indexed: 11/30/2022]
Abstract
Avian influenza viruses (AIVs) recognize sialic acid linked α2,3 to galactose (SAα2,3Gal) glycans as receptors. In this study, the interactions between hemagglutinins (HAs) of AIVs and sulfated SAα2,3Gal glycans were analyzed to clarify the molecular basis of interspecies transmission of AIVs from ducks to chickens. It was revealed that E190V and N192D substitutions of the HA increased the recovery of viruses derived from an H6 duck virus isolate, A/duck/Hong Kong/960/1980 (H6N2), in chickens. Recombinant HAs from an H6 chicken virus, A/chicken/Tainan/V156/1999 (H6N1), bound to sulfated SAα2,3Gal glycans, whereas the HAs from an H6 duck virus did not. Binding preference of mutant HAs revealed that an E190V substitution is critical for the recognition of sulfated SAα2,3Gal glycans. These results suggest that the binding of the HA from H6 AIVs to sulfated SAα2,3Gal glycans explains a part of mechanisms of interspecies transmission of AIVs from ducks to chickens.
Collapse
Affiliation(s)
- Yuto Kikutani
- Department of Disease Control, Laboratory of Microbiology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Masatoshi Okamatsu
- Department of Disease Control, Laboratory of Microbiology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Shoko Nishihara
- Department of Bioinformatics, Graduate School of Engineering, Tokyo, Japan
| | | | - Takahiro Hiono
- Department of Disease Control, Laboratory of Microbiology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan.,Glycoscience & Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science & Technology, Tsukuba, Ibaraki, Japan
| | - Robert P de Vries
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Ryan McBride
- Departments of Molecular Medicine and Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, USA
| | - Keita Matsuno
- Department of Disease Control, Laboratory of Microbiology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan.,Global Station for Zoonosis Control, Global Institute for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hiroshi Kida
- Global Station for Zoonosis Control, Global Institute for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido, Japan.,Research Center for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yoshihiro Sakoda
- Department of Disease Control, Laboratory of Microbiology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan.,Global Station for Zoonosis Control, Global Institute for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
46
|
HA-Dependent Tropism of H5N1 and H7N9 Influenza Viruses to Human Endothelial Cells Is Determined by Reduced Stability of the HA, Which Allows the Virus To Cope with Inefficient Endosomal Acidification and Constitutively Expressed IFITM3. J Virol 2019; 94:JVI.01223-19. [PMID: 31597765 DOI: 10.1128/jvi.01223-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/30/2019] [Indexed: 11/20/2022] Open
Abstract
Previous studies revealed that certain avian influenza A viruses (IAVs), including zoonotic H5N1 and H7N9 IAVs, infect cultured human lung microvascular endothelial cells (HULEC) more efficiently than other IAVs and that tropism to HULEC is determined by viral hemagglutinin (HA). To characterize mechanisms of HA-mediated endotheliotropism, we used 2:6 recombinant IAVs harboring HAs from distinctive avian and human viruses and found that efficient infection of HULEC correlated with low conformational stability of the HA. We next studied effects on viral infectivity of single-point amino acid substitutions in the HA of 2:6 recombinant virus A/Vietnam/1203/2004-PR8 (H5N1). Substitutions H8Q, H103Y, T315I, and K582I (K58I in the HA2 subunit), which increased stability of the HA, markedly reduced viral infectivity for HULEC, whereas substitutions K189N and K218Q, which altered typical H5N1 virus-like receptor specificity and reduced binding avidity of the HA, led to only marginal reduction of infectivity. None of these substitutions affected virus infection in MDCK cells. We confirmed the previous observation of elevated basal expression of IFITM3 protein in HULEC and found that endosomal acidification is less efficient in HULEC than in MDCK cells. In accord with these findings, counteraction of IFITM3-mediated restriction by amphotericin B and reduction of endosomal pH by moderate acidification of the extracellular medium enhanced infectivity of viruses with stable HA for HULEC without significant effect on infectivity for MDCK cells. Collectively, our results indicate that relatively high pH optimum of fusion of the HA of zoonotic H5N1 and H7N9 IAVs allows them to overcome antiviral effects of inefficient endosomal acidification and IFITM3 in human endothelial cells.IMPORTANCE Receptor specificity of the HA of IAVs is known to be a critical determinant of viral cell tropism. Here, we show that fusion properties of the HA may also play a key role in the tropism. Thus, we demonstrate that IAVs having a relatively low pH optimum of fusion cannot efficiently infect human endothelial cells owing to their relatively high endosomal pH and increased expression of fusion-inhibiting IFITM3 protein. These restrictions can be overcome by IAVs with elevated pH of fusion, such as zoonotic H5N1 and H7N9. Our results illustrate that the infectivity of IAVs depends on an interplay between HA conformational stability, endosomal acidification and IFITM3 expression in target cells, and the extracellular pH. Given significant variation of levels of HA stability among animal, human, and zoonotic IAVs, our findings prompt further studies on the fusion-dependent tropism of IAVs to different cell types in humans and its role in viral host range and pathogenicity.
Collapse
|
47
|
Suttie A, Deng YM, Greenhill AR, Dussart P, Horwood PF, Karlsson EA. Inventory of molecular markers affecting biological characteristics of avian influenza A viruses. Virus Genes 2019; 55:739-768. [PMID: 31428925 PMCID: PMC6831541 DOI: 10.1007/s11262-019-01700-z] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 08/09/2019] [Indexed: 12/20/2022]
Abstract
Avian influenza viruses (AIVs) circulate globally, spilling over into domestic poultry and causing zoonotic infections in humans. Fortunately, AIVs are not yet capable of causing sustained human-to-human infection; however, AIVs are still a high risk as future pandemic strains, especially if they acquire further mutations that facilitate human infection and/or increase pathogenesis. Molecular characterization of sequencing data for known genetic markers associated with AIV adaptation, transmission, and antiviral resistance allows for fast, efficient assessment of AIV risk. Here we summarize and update the current knowledge on experimentally verified molecular markers involved in AIV pathogenicity, receptor binding, replicative capacity, and transmission in both poultry and mammals with a broad focus to include data available on other AIV subtypes outside of A/H5N1 and A/H7N9.
Collapse
Affiliation(s)
- Annika Suttie
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, 5 Monivong Blvd, PO Box #983, Phnom Penh, Cambodia
- School of Health and Life Sciences, Federation University, Churchill, Australia
- World Health Organization Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Yi-Mo Deng
- World Health Organization Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Andrew R Greenhill
- School of Health and Life Sciences, Federation University, Churchill, Australia
| | - Philippe Dussart
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, 5 Monivong Blvd, PO Box #983, Phnom Penh, Cambodia
| | - Paul F Horwood
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - Erik A Karlsson
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, 5 Monivong Blvd, PO Box #983, Phnom Penh, Cambodia.
| |
Collapse
|
48
|
Loss of Fitness of Mexican H7N3 Highly Pathogenic Avian Influenza Virus in Mallards after Circulating in Chickens. J Virol 2019; 93:JVI.00543-19. [PMID: 31068421 DOI: 10.1128/jvi.00543-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 04/30/2019] [Indexed: 11/20/2022] Open
Abstract
Outbreaks of highly pathogenic avian influenza (HPAI) virus subtype H7N3 have been occurring in commercial chickens in Mexico since its first introduction in 2012. In order to determine changes in virus pathogenicity and adaptation in avian species, three H7N3 HPAI viruses from 2012, 2015, and 2016 were evaluated in chickens and mallards. All three viruses caused high mortality in chickens when given at medium to high doses and replicated similarly. No mortality or clinical signs and similar infectivity were observed in mallards inoculated with the 2012 and 2016 viruses. However, the 2012 H7N3 HPAI virus replicated well in mallards and transmitted to contacts, whereas the 2016 virus replicated poorly and did not transmit to contacts, which indicates that the 2016 virus is less adapted to mallards. In vitro, the 2016 virus grew slower and to lower titers than did the 2012 virus in duck fibroblast cells. Full-genome sequencing showed 115 amino acid differences between the 2012 and the 2016 viruses, with some of these changes previously associated with changes in replication in avian species, including hemagglutinin (HA) A125T, nucleoprotein (NP) M105V, and NP S377N. In conclusion, as the Mexican H7N3 HPAI virus has passaged through large populations of chickens in a span of several years and has retained its high pathogenicity for chickens, it has decreased in fitness in mallards, which could limit the potential spread of this HPAI virus by waterfowl.IMPORTANCE Not much is known about changes in host adaptation of avian influenza (AI) viruses in birds after long-term circulation in chickens or other terrestrial poultry. Although the origin of AI viruses affecting poultry is wild aquatic birds, the role of these birds in further dispersal of poultry-adapted AI viruses is not clear. Previously, we showed that HPAI viruses isolated early from poultry outbreaks could still infect and transmit well in mallards. In this study, we demonstrate that the Mexican H7N3 HPAI virus after four years of circulation in chickens replicates poorly and does not transmit in mallards but remains highly pathogenic in chickens. This information on changes in host adaptation is important for understanding the epidemiology of AI viruses and the role that wild waterfowl may play in disseminating viruses adapted to terrestrial poultry.
Collapse
|
49
|
Du W, Guo H, Nijman VS, Doedt J, van der Vries E, van der Lee J, Li Z, Boons GJ, van Kuppeveld FJM, de Vries E, Matrosovich M, de Haan CAM. The 2nd sialic acid-binding site of influenza A virus neuraminidase is an important determinant of the hemagglutinin-neuraminidase-receptor balance. PLoS Pathog 2019; 15:e1007860. [PMID: 31181126 PMCID: PMC6586374 DOI: 10.1371/journal.ppat.1007860] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 06/20/2019] [Accepted: 05/22/2019] [Indexed: 11/18/2022] Open
Abstract
Influenza A virus (IAV) neuraminidase (NA) receptor-destroying activity and hemagglutinin (HA) receptor-binding affinity need to be balanced with the host receptor repertoire for optimal viral fitness. NAs of avian, but not human viruses, contain a functional 2nd sialic acid (SIA)-binding site (2SBS) adjacent to the catalytic site, which contributes to sialidase activity against multivalent substrates. The receptor-binding specificity and potentially crucial contribution of the 2SBS to the HA-NA balance of virus particles is, however, poorly characterized. Here, we elucidated the receptor-binding specificity of the 2SBS of N2 NA and established an important role for this site in the virion HA-NA-receptor balance. NAs of H2N2/1957 pandemic virus with or without a functional 2SBS and viruses containing this NA were analysed. Avian-like N2, with a restored 2SBS due to an amino acid substitution at position 367, was more active than human N2 on multivalent substrates containing α2,3-linked SIAs, corresponding with the pronounced binding-specificity of avian-like N2 for these receptors. When introduced into human viruses, avian-like N2 gave rise to altered plaque morphology and decreased replication compared to human N2. An opposite replication phenotype was observed when N2 was combined with avian-like HA. Specific bio-layer interferometry assays revealed a clear effect of the 2SBS on the dynamic interaction of virus particles with receptors. The absence or presence of a functional 2SBS affected virion-receptor binding and receptor cleavage required for particle movement on a receptor-coated surface and subsequent NA-dependent self-elution. The contribution of the 2SBS to virus-receptor interactions depended on the receptor-binding properties of HA and the identity of the receptors used. We conclude that the 2SBS is an important and underappreciated determinant of the HA-NA-receptor balance. The rapid loss of a functional 2SBS in pandemic viruses may have served to balance the novel host receptor-repertoire and altered receptor-binding properties of the corresponding HA protein.
Collapse
Affiliation(s)
- Wenjuan Du
- Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Hongbo Guo
- Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Vera S. Nijman
- Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Jennifer Doedt
- Institute of Virology, Philipps University, Marburg, Germany
| | - Erhard van der Vries
- Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Joline van der Lee
- Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Zeshi Li
- Department of Chemical Biology and Drug Discovery, Utrecht University, Utrecht, the Netherlands
| | - Geert-Jan Boons
- Department of Chemical Biology and Drug Discovery, Utrecht University, Utrecht, the Netherlands
| | | | - Erik de Vries
- Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Mikhail Matrosovich
- Institute of Virology, Philipps University, Marburg, Germany
- * E-mail: (MM); (CAMdH)
| | - Cornelis A. M. de Haan
- Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- * E-mail: (MM); (CAMdH)
| |
Collapse
|
50
|
Antigua KJC, Choi WS, Baek YH, Song MS. The Emergence and Decennary Distribution of Clade 2.3.4.4 HPAI H5Nx. Microorganisms 2019; 7:microorganisms7060156. [PMID: 31146461 PMCID: PMC6616411 DOI: 10.3390/microorganisms7060156] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 11/27/2022] Open
Abstract
Reassortment events among influenza viruses occur naturally and may lead to the development of new and different subtypes which often ignite the possibility of an influenza outbreak. Between 2008 and 2010, highly pathogenic avian influenza (HPAI) H5 of the N1 subtype from the A/goose/Guangdong/1/96-like (Gs/GD) lineage generated novel reassortants by introducing other neuraminidase (NA) subtypes reported to cause most outbreaks in poultry. With the extensive divergence of the H5 hemagglutinin (HA) sequences of documented viruses, the WHO/FAO/OIE H5 Evolutionary Working Group clustered these viruses into a systematic and unified nomenclature of clade 2.3.4.4 currently known as “H5Nx” viruses. The rapid emergence and circulation of these viruses, namely, H5N2, H5N3, H5N5, H5N6, H5N8, and the regenerated H5N1, are of great concern based on their pandemic potential. Knowing the evolution and emergence of these novel reassortants helps to better understand their complex nature. The eruption of reports of each H5Nx reassortant through time demonstrates that it could persist beyond its usual seasonal activity, intensifying the possibility of these emerging viruses’ pandemic potential. This review paper provides an overview of the emergence of each novel HPAI H5Nx virus as well as its current epidemiological distribution.
Collapse
Affiliation(s)
- Khristine Joy C Antigua
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Chungbuk 28644, Korea.
| | - Won-Suk Choi
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Chungbuk 28644, Korea.
| | - Yun Hee Baek
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Chungbuk 28644, Korea.
| | - Min-Suk Song
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Chungbuk 28644, Korea.
| |
Collapse
|