1
|
Pascua PNQ, Chesnokov A, Nguyen HT, Di H, La Cruz JD, Jang Y, Ivashchenko AA, Ivachtchenko AV, Karlsson EA, Sar B, Savuth C, Uyeki TM, Davis CT, Gubareva LV. Antiviral Susceptibility of Influenza A(H5N1) Clade 2.3.2.1c and 2.3.4.4b Viruses from Humans, 2023-2024. Emerg Infect Dis 2025; 31:751-760. [PMID: 40064473 PMCID: PMC11950254 DOI: 10.3201/eid3104.241820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025] Open
Abstract
During 2023-2024, highly pathogenic avian influenza A(H5N1) viruses from clade 2.3.2.1c caused human infections in Cambodia and from clade 2.3.4.4b caused human infections in the Americas. We assessed the susceptibility of those viruses to approved and investigational antiviral drugs. Except for 2 viruses isolated from Cambodia, all viruses were susceptible to M2 ion channel-blockers in cell culture-based assays. In the neuraminidase inhibition assay, all viruses displayed susceptibility to neuraminidase inhibitor antiviral drugs oseltamivir, zanamivir, peramivir, laninamivir, and AV5080. Oseltamivir was ≈4-fold less potent at inhibiting the neuraminidase activity of clade 2.3.4.4b than clade 2.3.2.1c viruses. All viruses were susceptible to polymerase inhibitors baloxavir and tivoxavir and to polymerase basic 2 inhibitor pimodivir with 50% effective concentrations in low nanomolar ranges. Because drug-resistant viruses can emerge spontaneously or by reassortment, close monitoring of antiviral susceptibility of H5N1 viruses collected from animals and humans by using sequence-based analysis supplemented with phenotypic testing is essential.
Collapse
|
2
|
Zhang X, Tao Y, Wu L, Shu J, He Y, Feng H. PA and PA-X: two key proteins from segment 3 of the influenza viruses. Front Cell Infect Microbiol 2025; 15:1560250. [PMID: 40160474 PMCID: PMC11949978 DOI: 10.3389/fcimb.2025.1560250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 02/27/2025] [Indexed: 04/02/2025] Open
Abstract
In recent years, the influenza viruses have posed an increasingly severe threat to public health. It is essential to analyze the virulence and pathogenesis of influenza viruses to prevent and control them, as well as create antiviral drugs. Previous studies have revealed that influenza virus segment 3 codes for not only the PA protein but also a novel protein, PA-X. PA protein is one subunit of the polymerase of influenza viruses and plays a critical role in its life cycle. PA presented endonuclease activity, the transcription and replication of the viral genome, viral virulence, protein degradation, and host immune response by interacting with viral proteins, including PB2, PB1, and host factors, including ANP32A, CHD6, HAX1, hCLE, HDAC6, MCM complex. PA mutations were involved in the viral replication, pathogenicity, and transmission of influenza viruses in poultry, mammals, and humans. PA-X is an open reading frame generated by +1 ribosomal code shift at the N-terminal amino acids of segment 3 and possesses the shutoff activity of host gene expression, regulating the host immune response, viral virulence and transmission. Therefore, PA is one ideal target for the development of antiviral drugs against influenza viruses. Baloxavir marboxil (BXM) and Favipiravir are two very effective anti-influenza virus drugs targeting the PA endonuclease domain of influenza A viruses. In this review, we summarized the structures, viral replication, virulent determinants and transmission, host factors, innate immunity, and antiviral drugs involved in PA and PA-X. The information is of great value for underlying the mechanism of viral replication and developing novel effective strategies to prevent and control influenza infection and the pandemic.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yingying Tao
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Li Wu
- Department of Biology, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Jianhong Shu
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yulong He
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Huapeng Feng
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
3
|
Duan H, Chi X, Yang X, Pan S, Liu X, Gao P, Zhang F, Zhang X, Dong X, Liao Y, Yang W. Computational design and improvement of a broad influenza virus HA stem targeting antibody. Structure 2025; 33:489-503.e5. [PMID: 39884272 DOI: 10.1016/j.str.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/28/2024] [Accepted: 01/03/2025] [Indexed: 02/01/2025]
Abstract
Broadly neutralizing antibodies (nAbs) are vital therapeutic tools to counteract both pandemic and seasonal influenza threats. Traditional strategies for optimizing nAbs generally rely on labor-intensive, high-throughput mutagenesis screens. Here, we present an innovative structure-based design framework for the optimization of nAbs, which integrates epitope-paratope analysis, computational modeling, and rational design approaches, complemented by comprehensive experimental assessment. This approach was applied to optimize MEDI8852, a nAb targeting the stalk region of influenza A virus hemagglutinin (HA). The resulting variant, M18.1.2.2, shows a marked enhancement in both affinity and neutralizing efficacy, as demonstrated both in vitro and in vivo. Computational modeling reveals that this improvement can be attributed to the fine-tuning of interactions between the antibody's side-chains and the epitope residues that are highly conserved across the influenza A virus HA stalk. Our dry-wet iterative protocol for nAb optimization presented here yielded a promising candidate for influenza intervention.
Collapse
Affiliation(s)
- Huarui Duan
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaojing Chi
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xuehua Yang
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shengnan Pan
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiuying Liu
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Peixiang Gao
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Fangyuan Zhang
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xinhui Zhang
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xuemeng Dong
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yi Liao
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wei Yang
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; State Key Laboratory of Respiratory Health and Multimorbidity, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
4
|
Kyaw MH, Chen SB, Wu S, Foo CY, Welch V, Boikos C, Jagun O. Systematic Review on Influenza Burden in Emerging Markets in 2018-2023-An Evidence Update to Guide Influenza Vaccination Recommendations. Vaccines (Basel) 2024; 12:1251. [PMID: 39591154 PMCID: PMC11599016 DOI: 10.3390/vaccines12111251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Influenza is a contagious respiratory illness responsible for seasonal epidemics and with potential to cause pandemics. The decline in influenza-related studies published since 2018 resulted in data gaps, particularly in emerging markets. Methods: This systematic review searched for studies in six databases and gray literature sources to define the clinical burden of influenza and influenza-like illness (ILIs) and their associated sequelae among humans across emerging markets. Eligible studies were published in English, Spanish, or Chinese between January 2018 and September 2023 and conducted in Asia, the Middle East, Africa, and Latin America. Results: In total, 256 articles were included, mostly on lab-confirmed influenza infections (n = 218). Incidences of lab-confirmed influenza cases in Asia (range 540-1279 cases/100,000 persons) and Sub-Saharan Africa (range 34,100-47,800 cases/100,000 persons) were higher compared to Latin America (range 0.7-112 cases/100,000 persons) and the Middle East and North Africa (range 0.1-10 cases/100,000 persons). Proportions of lab-confirmed influenza cases and influenza-associated outcomes (i.e., hospitalization, ICU admission and death) varied widely across regions. Temporal variation in influenza trend was observed before and during the COVID-19 pandemic. Conclusions: In conclusion, influenza causes significant disease burden in emerging markets. Robust large real-world studies using a similar methodology are needed to have more accurate estimates and compare studies within age groups and regions. Continuous monitoring of influenza epidemiology is important to inform vaccine programs in emerging markets with heavy influenza disease burden.
Collapse
Affiliation(s)
- Moe H. Kyaw
- Pfizer Inc., Collegeville, PA 19426, USA; (V.W.); (C.B.)
| | - Sophie Bozhi Chen
- Real World Solutions, IQVIA, Singapore 079906, Singapore; (S.B.C.); (S.W.); (C.Y.F.)
| | - Shishi Wu
- Real World Solutions, IQVIA, Singapore 079906, Singapore; (S.B.C.); (S.W.); (C.Y.F.)
| | - Chee Yoong Foo
- Real World Solutions, IQVIA, Singapore 079906, Singapore; (S.B.C.); (S.W.); (C.Y.F.)
| | - Verna Welch
- Pfizer Inc., Collegeville, PA 19426, USA; (V.W.); (C.B.)
| | | | | |
Collapse
|
5
|
Gao R, Pascua PNQ, Chesnokov A, Nguyen HT, Uyeki TM, Mishin VP, Zanders N, Cui D, Jang Y, Jones J, La Cruz JD, Di H, Davis CT, Gubareva LV. Antiviral Susceptibility of Swine-Origin Influenza A Viruses Isolated from Humans, United States. Emerg Infect Dis 2024; 30:2303-2312. [PMID: 39378870 PMCID: PMC11521183 DOI: 10.3201/eid3011.240892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
Since 2013, a total of 167 human infections with swine-origin (variant) influenza A viruses of A(H1N1)v, A(H1N2)v, and A(H3N2)v subtypes have been reported in the United States. Analysis of 147 genome sequences revealed that nearly all had S31N substitution, an M2 channel blocker-resistance marker, whereas neuraminidase inhibitor-resistance markers were not found. Two viruses had a polymerase acidic substitution (I38M or E199G) associated with decreased susceptibility to baloxavir, an inhibitor of viral cap-dependent endonuclease (CEN). Using phenotypic assays, we established subtype-specific susceptibility baselines for neuraminidase and CEN inhibitors. When compared with either baseline or CEN-sequence-matched controls, only the I38M substitution decreased baloxavir susceptibility, by 27-fold. Human monoclonal antibodies FI6v3 and CR9114 targeting the hemagglutinin's stem showed variable (0.03 to >10 µg/mL) neutralizing activity toward variant viruses, even within the same clade. Methodology and interpretation of laboratory data described in this study provide information for risk assessment and decision-making on therapeutic control measures.
Collapse
MESH Headings
- Humans
- Antiviral Agents/pharmacology
- Antiviral Agents/therapeutic use
- Influenza, Human/virology
- Influenza, Human/epidemiology
- Influenza, Human/drug therapy
- Drug Resistance, Viral/genetics
- United States/epidemiology
- Animals
- Swine
- Influenza A Virus, H1N1 Subtype/drug effects
- Influenza A Virus, H1N1 Subtype/genetics
- Dibenzothiepins
- Morpholines/pharmacology
- Influenza A virus/drug effects
- Influenza A virus/genetics
- Influenza A Virus, H3N2 Subtype/drug effects
- Influenza A Virus, H3N2 Subtype/genetics
- Pyridones/pharmacology
- Triazines/pharmacology
- Influenza A Virus, H1N2 Subtype/genetics
- Influenza A Virus, H1N2 Subtype/drug effects
Collapse
|
6
|
Acocal-Juárez E, Márquez-Domínguez L, Vallejo-Ruíz V, Cedillo L, Santos-López G. Baloxavir Resistance Markers in Influenza A and B Viruses in the Americas. Drug Healthc Patient Saf 2024; 16:105-113. [PMID: 39296541 PMCID: PMC11410037 DOI: 10.2147/dhps.s470868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/20/2024] [Indexed: 09/21/2024] Open
Abstract
Aim Influenza control demands multifaceted strategies, including antiviral drugs. Baloxavir, a recent addition to influenza treatment, acts as an inhibitor of the Polymerase acid (PA) component of the viral polymerase. However, mutations associated with resistance have been identified. Purpose This study analyzed PA gene sequences of influenza A and B viruses (IAV and IBV, respectively) reported in the Americas, retrieved from databases published until May 2023, to identify primary markers of resistance to baloxavir. Patients and Methods PA gene sequences were obtained from the GISAID and NCBI databases, focusing on countries in the Americas with 500 or more sequences for IAV, and 50 or more sequences for IBV. Results Of the 58,816 PA sequences analyzed for IAV, only 55 (0.1%) harbored resistance markers, representing approximately 1 in 1000 occurrence. The most frequent markers were I38V (21 cases) and I38M (7 cases) at position 38 of PA, followed by E199G (9 cases) at position 199. For IBV, 14,684 sequences were analyzed, of which only eight presented a resistance marker (0.05%). Five sequences had the M34I marker, while the remaining three had the I38V marker. While frequency of resistance markers in PA is comparable to other regions, these results highlight the need for enhanced sequencing efforts, particularly in Latin America. Such efforts would serve to intensify influenza surveillance and inform public health interventions. Conclusion While baloxavir demonstrates efficacy against influenza, resistance markers have been identified, including pre-existing ones. Our study adds eight (IAV: six and IBV: two) new spontaneously occurring substitutions to the existing literature, highlighting the need for continued surveillance. Among these, I38M stands out due to its significant tenfold reduction in drug susceptibility. Therefore, vigilant monitoring of these resistance markers in IAV and IBV remains crucial for maintaining baloxavir's effectiveness and informing future public health interventions.
Collapse
Affiliation(s)
- Erick Acocal-Juárez
- Centro de Investigaciones en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla, Puebla Pue, Mexico
- Laboratorio de Biología Molecular y Virología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Puebla, Mexico
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla México, Puebla Pue, Mexico
| | - Luis Márquez-Domínguez
- Laboratorio de Biología Molecular y Virología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Puebla, Mexico
| | - Verónica Vallejo-Ruíz
- Laboratorio de Biología Molecular y Virología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Puebla, Mexico
| | - Lilia Cedillo
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla México, Puebla Pue, Mexico
| | - Gerardo Santos-López
- Laboratorio de Biología Molecular y Virología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Puebla, Mexico
| |
Collapse
|
7
|
Chen D, Su W, Choy KT, Chu YS, Lin CH, Yen HL. High throughput profiling identified PA-L106R amino acid substitution in A(H1N1)pdm09 influenza virus that confers reduced susceptibility to baloxavir in vitro. Antiviral Res 2024; 229:105961. [PMID: 39002800 DOI: 10.1016/j.antiviral.2024.105961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
Baloxavir acid (BXA) is a pan-influenza antiviral that targets the cap-dependent endonuclease of the polymerase acidic (PA) protein required for viral mRNA synthesis. To gain a comprehensive understanding on the molecular changes associated with reduced susceptibility to BXA and their fitness profile, we performed a deep mutational scanning at the PA endonuclease domain of an A (H1N1)pdm09 virus. The recombinant virus libraries were serially passaged in vitro under increasing concentrations of BXA followed by next-generation sequencing to monitor PA amino acid substitutions with increased detection frequencies. Enriched PA amino acid changes were each introduced into a recombinant A (H1N1)pdm09 virus to validate their effect on BXA susceptibility and viral replication fitness in vitro. The I38 T/M substitutions known to confer reduced susceptibility to BXA were invariably detected from recombinant virus libraries within 5 serial passages. In addition, we identified a novel L106R substitution that emerged in the third passage and conferred greater than 10-fold reduced susceptibility to BXA. PA-L106 is highly conserved among seasonal influenza A and B viruses. Compared to the wild-type virus, the L106R substitution resulted in reduced polymerase activity and a minor reduction of the peak viral load, suggesting the amino acid change may result in moderate fitness loss. Our results support the use of deep mutational scanning as a practical tool to elucidate genotype-phenotype relationships, including mapping amino acid substitutions with reduced susceptibility to antivirals.
Collapse
Affiliation(s)
- Dongdong Chen
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Wen Su
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ka-Tim Choy
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yan Sing Chu
- Centre for PanorOmic Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Chi Ho Lin
- Centre for PanorOmic Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Hui-Ling Yen
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
8
|
Shimizu K, Kawakami C, Matsuzaki Y, Fujisaki S, Nagata S, Morita H, Watanabe K, Miura H, Momoki T, Saikusa M, Ozawa H, Kumazaki M, Usuku S, Tanaka N, Senda R, Okubo I, Watanabe S, Hasegawa H, Kawaoka Y, Takashita E. Monitoring Influenza C and D Viruses in Patients With Respiratory Diseases in Japan, January 2018 to March 2023. Influenza Other Respir Viruses 2024; 18:e13345. [PMID: 38923307 PMCID: PMC11196370 DOI: 10.1111/irv.13345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Influenza viruses can cause zoonotic infections that pose public health risks. Surveillance of influenza A and B viruses is conducted globally; however, information on influenza C and D viruses is limited. Longitudinal monitoring of influenza C virus in humans has been conducted in several countries, but there has been no long-term monitoring of influenza D virus in humans. The public health risks associated with the influenza D virus therefore remain unknown. METHODS We established a duplex real-time RT-PCR to detect influenza C and D viruses and analyzed respiratory specimens collected from 2144 patients in Japan with respiratory diseases between January 2018 and March 2023. We isolated viruses and conducted hemagglutination inhibition tests to examine antigenicity and focus reduction assays to determine susceptibility to the cap-dependent endonuclease inhibitor baloxavir marboxil. RESULTS We detected three influenza C viruses belonging to the C/Kanagawa- or C/Sao Paulo-lineages, which recently circulated globally. None of the specimens was positive for the influenza D virus. The C/Yokohama/1/2022 strain, isolated from the specimen with the highest viral RNA load and belonging to the C/Kanagawa-lineage, showed similar antigenicity to the reference C/Kanagawa-lineage strain and was susceptible to baloxavir. CONCLUSIONS Our duplex real-time RT-PCR is useful for the simultaneous detection of influenza C and D viruses from the same specimen. Adding the influenza D virus to the monitoring of the influenza C virus would help in assessing the public health risks posed by this virus.
Collapse
Affiliation(s)
- Kohei Shimizu
- Yokohama City Institute of Public HealthYokohamaKanagawaJapan
| | - Chiharu Kawakami
- Yokohama City Institute of Public HealthYokohamaKanagawaJapan
- Pandemic Preparedness, Infection, and Advanced Research CenterThe University of TokyoTokyoJapan
- Research Center for Global Viral DiseasesNational Center for Global Health and Medicine Research InstituteTokyoJapan
| | - Yoko Matsuzaki
- Department of Infectious DiseasesYamagata University Faculty of MedicineYamagataJapan
| | - Seiichiro Fujisaki
- Research Center for Influenza and Respiratory VirusesNational Institute of Infectious DiseasesTokyoJapan
| | - Shiho Nagata
- Research Center for Influenza and Respiratory VirusesNational Institute of Infectious DiseasesTokyoJapan
| | - Hiroko Morita
- Research Center for Influenza and Respiratory VirusesNational Institute of Infectious DiseasesTokyoJapan
| | - Kayo Watanabe
- Research Center for Influenza and Respiratory VirusesNational Institute of Infectious DiseasesTokyoJapan
| | - Hideka Miura
- Research Center for Influenza and Respiratory VirusesNational Institute of Infectious DiseasesTokyoJapan
| | - Tomoko Momoki
- Yokohama City Institute of Public HealthYokohamaKanagawaJapan
| | - Miwako Saikusa
- Yokohama City Institute of Public HealthYokohamaKanagawaJapan
| | - Hiroki Ozawa
- Yokohama City Institute of Public HealthYokohamaKanagawaJapan
| | - Makoto Kumazaki
- Yokohama City Institute of Public HealthYokohamaKanagawaJapan
| | - Shuzo Usuku
- Yokohama City Institute of Public HealthYokohamaKanagawaJapan
| | - Nobuko Tanaka
- Yokohama City Institute of Public HealthYokohamaKanagawaJapan
| | - Ryuichi Senda
- Yokohama City Institute of Public HealthYokohamaKanagawaJapan
| | - Ichiro Okubo
- Yokohama City Institute of Public HealthYokohamaKanagawaJapan
| | - Shinji Watanabe
- Research Center for Influenza and Respiratory VirusesNational Institute of Infectious DiseasesTokyoJapan
| | - Hideki Hasegawa
- Research Center for Influenza and Respiratory VirusesNational Institute of Infectious DiseasesTokyoJapan
| | - Yoshihiro Kawaoka
- Pandemic Preparedness, Infection, and Advanced Research CenterThe University of TokyoTokyoJapan
- Research Center for Global Viral DiseasesNational Center for Global Health and Medicine Research InstituteTokyoJapan
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Division of Virology, Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Emi Takashita
- Research Center for Influenza and Respiratory VirusesNational Institute of Infectious DiseasesTokyoJapan
| |
Collapse
|
9
|
Chesnokov A, Ivashchenko AA, Matsuzaki Y, Takashita E, Mishin VP, Ivachtchenko AV, Gubareva LV. Influenza C virus susceptibility to antivirals with different mechanisms of action. Antimicrob Agents Chemother 2024; 68:e0172723. [PMID: 38587392 PMCID: PMC11064526 DOI: 10.1128/aac.01727-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/14/2024] [Indexed: 04/09/2024] Open
Abstract
Antiviral susceptibility of influenza viruses was assessed using a high-content imaging-based neutralization test. Cap-dependent endonuclease inhibitors, baloxavir and AV5116, were superior to AV5115 against type A viruses, and AV5116 was most effective against PA mutants tested. However, these three inhibitors displayed comparable activity (EC50 8-22 nM) against type C viruses from six lineages. Banana lectin and a monoclonal antibody, YA3, targeting the hemagglutinin-esterase protein effectively neutralized some, but not all, type C viruses.
Collapse
Affiliation(s)
- Anton Chesnokov
- Influenza Division, NCIRD, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| | | | - Yoko Matsuzaki
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Emi Takashita
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, Tokyo, Japan
| | - Vasiliy P. Mishin
- Influenza Division, NCIRD, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| | | | - Larisa V. Gubareva
- Influenza Division, NCIRD, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| |
Collapse
|
10
|
Taniguchi K, Noshi T, Omoto S, Sato A, Shishido T, Matsuno K, Okamatsu M, Krauss S, Webby RJ, Sakoda Y, Kida H. The impact of PA/I38 substitutions and PA polymorphisms on the susceptibility of zoonotic influenza A viruses to baloxavir. Arch Virol 2024; 169:29. [PMID: 38216710 PMCID: PMC10786730 DOI: 10.1007/s00705-023-05958-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/28/2023] [Indexed: 01/14/2024]
Abstract
Genetic reassortment of avian, swine, and human influenza A viruses (IAVs) poses potential pandemic risks. Surveillance is important for influenza pandemic preparedness, but the susceptibility of zoonotic IAVs to the cap-dependent endonuclease inhibitor baloxavir acid (BXA) has not been thoroughly researched. Although an amino acid substitution at position 38 in the polymerase acidic protein (PA/I38) in seasonal IAVs reduces BXA susceptibility, PA polymorphisms at position 38 are rarely seen in zoonotic IAVs. Here, we examined the impact of PA/I38 substitutions on the BXA susceptibility of recombinant A(H5N1) viruses. PA mutants that harbored I38T, F, and M were 48.2-, 24.0-, and 15.5-fold less susceptible, respectively, to BXA than wild-type A(H5N1) but were susceptible to the neuraminidase inhibitor oseltamivir acid and the RNA polymerase inhibitor favipiravir. PA mutants exhibited significantly impaired replicative fitness in Madin-Darby canine kidney cells at 24 h postinfection. In addition, in order to investigate new genetic markers for BXA susceptibility, we screened geographically and temporally distinct IAVs isolated worldwide from birds and pigs. The results showed that BXA exhibited antiviral activity against avian and swine viruses with similar levels to seasonal isolates. All viruses tested in the study lacked the PA/I38 substitution and were susceptible to BXA. Isolates harboring amino acid polymorphisms at positions 20, 24, and 37, which have been implicated in the binding of BXA to the PA endonuclease domain, were also susceptible to BXA. These results suggest that monitoring of the PA/I38 substitution in animal-derived influenza viruses is important for preparedness against zoonotic influenza virus outbreaks.
Collapse
Affiliation(s)
- Keiichi Taniguchi
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., Toyonaka, Osaka, Japan
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takeshi Noshi
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., Toyonaka, Osaka, Japan
| | - Shinya Omoto
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., Toyonaka, Osaka, Japan
| | - Akihiko Sato
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., Toyonaka, Osaka, Japan
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
- Institute for Vaccine Research and Development, HU-IVReD, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takao Shishido
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., Toyonaka, Osaka, Japan.
| | - Keita Matsuno
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
- Institute for Vaccine Research and Development, HU-IVReD, Hokkaido University, Sapporo, Hokkaido, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
- One Health Research Center, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Masatoshi Okamatsu
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Scott Krauss
- St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Richard J Webby
- St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Yoshihiro Sakoda
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- Institute for Vaccine Research and Development, HU-IVReD, Hokkaido University, Sapporo, Hokkaido, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
- One Health Research Center, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hiroshi Kida
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
- Institute for Vaccine Research and Development, HU-IVReD, Hokkaido University, Sapporo, Hokkaido, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
11
|
Probst L, Laloli L, Licheri MF, Licheri M, Gultom M, Holwerda M, V’kovski P, Dijkman R. Generation and Characterization of an Influenza D Reporter Virus. Viruses 2023; 15:2444. [PMID: 38140686 PMCID: PMC10747006 DOI: 10.3390/v15122444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Influenza D virus (IDV) can infect various livestock animals, such as cattle, swine, and small ruminants, and was shown to have zoonotic potential. Therefore, it is important to identify viral factors involved in the broad host tropism and identify potential antiviral compounds that can inhibit IDV infection. Recombinant reporter viruses provide powerful tools for studying viral infections and antiviral drug discovery. Here we present the generation of a fluorescent reporter IDV using our previously established reverse genetic system for IDV. The mNeonGreen (mNG) fluorescent reporter gene was incorporated into the IDV non-structural gene segment as a fusion protein with the viral NS1 or NS2 proteins, or as a separate protein flanked by two autoproteolytic cleavage sites. We demonstrate that only recombinant reporter viruses expressing mNG as an additional separate protein or as an N-terminal fusion protein with NS1 could be rescued, albeit attenuated, compared to the parental reverse genetic clone. Serial passaging experiments demonstrated that the mNG gene is stably integrated for up to three passages, after which internal deletions accumulate. We conducted a proof-of-principle antiviral screening with the established fluorescent reporter viruses and identified two compounds influencing IDV infection. These results demonstrate that the newly established recombinant IDV reporter virus can be applied for antiviral drug discovery and monitoring viral replication, adding a new molecular tool for investigating IDV.
Collapse
Affiliation(s)
- Lukas Probst
- Institute for Infectious Diseases, University of Bern, 3001 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Laura Laloli
- Institute for Infectious Diseases, University of Bern, 3001 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Manon Flore Licheri
- Institute for Infectious Diseases, University of Bern, 3001 Bern, Switzerland
| | - Matthias Licheri
- Institute for Infectious Diseases, University of Bern, 3001 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Mitra Gultom
- Institute for Infectious Diseases, University of Bern, 3001 Bern, Switzerland
| | - Melle Holwerda
- Institute for Infectious Diseases, University of Bern, 3001 Bern, Switzerland
| | - Philip V’kovski
- Institute for Infectious Diseases, University of Bern, 3001 Bern, Switzerland
| | - Ronald Dijkman
- Institute for Infectious Diseases, University of Bern, 3001 Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases, University of Bern, 3012 Bern, Switzerland
- European Virus Bioinformatics Center, 07743 Jena, Germany
- Microscope Imaging Center, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
12
|
Fukao K, Noshi T, Shano S, Baba K, Sato K, Sakuramoto M, Kitade N, Tanioka H, Kusakabe S, Shishido T. Prophylactic Treatment with Baloxavir Protects Mice from Lethal Infection with Influenza A and B Viruses. Viruses 2023; 15:2264. [PMID: 38005940 PMCID: PMC10675732 DOI: 10.3390/v15112264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Influenza remains a worldwide health concern. Antiviral drugs are considered as one of the useful options for its prevention as a complementary measure to vaccination. Baloxavir acid selectively inhibits the cap-dependent endonuclease of influenza viruses and exhibits marked viral titre reduction in patients. Here, we describe the prophylactic potency of baloxavir acid against lethal infection with influenza A and B viruses in mice. BALB/c mice were subcutaneously administered once with baloxavir acid suspension, or orally administered once daily for 10 days with oseltamivir phosphate solution at human relevant doses. Next, the mice were intranasally inoculated with A/PR/8/34 (H1N1) or B/Hong Kong/5/72 strain at 24 to 96 h after the initial dosing. Prophylactic treatment with the antiviral drugs significantly reduced the lung viral titres and prolonged survival time. In particular, baloxavir acid showed a greater suppressive effect on lung viral titres compared to oseltamivir phosphate. In this model, baloxavir acid maintained significant prophylactic effects against influenza A and B virus infections when the plasma concentration at the time of infection was at least 0.88 and 3.58 ng/mL, respectively. The significant prophylactic efficacy observed in our mouse model suggests the potential utility of baloxavir marboxil for prophylaxis against influenza in humans.
Collapse
Affiliation(s)
- Keita Fukao
- Shionogi & Co., Ltd., Osaka 561-0825, Japan (S.K.)
| | | | - Shinya Shano
- Shionogi TechnoAdvance Research, Co., Ltd., Osaka 561-0825, Japan
| | - Kaoru Baba
- Shionogi TechnoAdvance Research, Co., Ltd., Osaka 561-0825, Japan
| | - Kenji Sato
- Shionogi & Co., Ltd., Osaka 561-0825, Japan (S.K.)
| | | | | | | | | | | |
Collapse
|
13
|
Ivachtchenko AV, Ivashchenko AA, Shkil DO, Ivashchenko IA. Aprotinin-Drug against Respiratory Diseases. Int J Mol Sci 2023; 24:11173. [PMID: 37446350 PMCID: PMC10342444 DOI: 10.3390/ijms241311173] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Aprotinin (APR) was discovered in 1930. APR is an effective pan-protease inhibitor, a typical "magic shotgun". Until 2007, APR was widely used as an antithrombotic and anti-inflammatory drug in cardiac and noncardiac surgeries for reduction of bleeding and thus limiting the need for blood transfusion. The ability of APR to inhibit proteolytic activation of some viruses leads to its use as an antiviral drug for the prevention and treatment of acute respiratory virus infections. However, due to incompetent interpretation of several clinical trials followed by incredible controversy in the literature, the usage of APR was nearly stopped for a decade worldwide. In 2015-2020, after re-analysis of these clinical trials' data the restrictions in APR usage were lifted worldwide. This review discusses antiviral mechanisms of APR action and summarizes current knowledge and prospective regarding the use of APR treatment for diseases caused by RNA-containing viruses, including influenza and SARS-CoV-2 viruses, or as a part of combination antiviral treatment.
Collapse
Affiliation(s)
- Alexandre V. Ivachtchenko
- ChemDiv Inc., San Diego, CA 92130, USA; (A.A.I.); (I.A.I.)
- ASAVI LLC, 1835 East Hallandale Blvd #442, Hallandale Beach, FL 33009, USA;
| | | | - Dmitrii O. Shkil
- ASAVI LLC, 1835 East Hallandale Blvd #442, Hallandale Beach, FL 33009, USA;
| | | |
Collapse
|
14
|
Sreenivasan CC, Liu R, Gao R, Guo Y, Hause BM, Thomas M, Naveed A, Clement T, Rausch D, Christopher-Hennings J, Nelson E, Druce J, Zhao M, Kaushik RS, Li Q, Sheng Z, Wang D, Li F. Influenza C and D Viruses Demonstrated a Differential Respiratory Tissue Tropism in a Comparative Pathogenesis Study in Guinea Pigs. J Virol 2023; 97:e0035623. [PMID: 37199648 PMCID: PMC10308911 DOI: 10.1128/jvi.00356-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/26/2023] [Indexed: 05/19/2023] Open
Abstract
Influenza C virus (ICV) is increasingly associated with community-acquired pneumonia (CAP) in children and its disease severity is worse than the influenza B virus, but similar to influenza A virus associated CAP. Despite the ubiquitous infection landscape of ICV in humans, little is known about its replication and pathobiology in animals. The goal of this study was to understand the replication kinetics, tissue tropism, and pathogenesis of human ICV (huICV) in comparison to the swine influenza D virus (swIDV) in guinea pigs. Intranasal inoculation of both viruses did not cause clinical signs, however, the infected animals shed virus in nasal washes. The huICV replicated in the nasal turbinates, soft palate, and trachea but not in the lungs while swIDV replicated in all four tissues. A comparative analysis of tropism and pathogenesis of these two related seven-segmented influenza viruses revealed that swIDV-infected animals exhibited broad tissue tropism with an increased rate of shedding on 3, 5, and 7 dpi and high viral loads in the lungs compared to huICV. Seroconversion occurred late in the huICV group at 14 dpi, while swIDV-infected animals seroconverted at 7 dpi. Guinea pigs infected with huICV exhibited mild to moderate inflammatory changes in the epithelium of the soft palate and trachea, along with mucosal damage and multifocal alveolitis in the lungs. In summary, the replication kinetics and pathobiological characteristics of ICV in guinea pigs agree with the clinical manifestation of ICV infection in humans, and hence guinea pigs could be used to study these distantly related influenza viruses. IMPORTANCE Similar to influenza A and B, ICV infections are seen associated with bacterial and viral co-infections which complicates the assessment of its real clinical significance. Further, the antivirals against influenza A and B viruses are ineffective against ICV which mandates the need to study the pathobiological aspects of this virus. Here we demonstrated that the respiratory tract of guinea pigs possesses specific viral receptors for ICV. We also compared the replication kinetics and pathogenesis of huICV and swIDV, as these viruses share 50% sequence identity. The tissue tropism and pathology associated with huICV in guinea pigs are analogous to the mild respiratory disease caused by ICV in humans, thereby demonstrating the suitability of guinea pigs to study ICV. Our comparative analysis revealed that huICV and swIDV replicated differentially in the guinea pigs suggesting that the type-specific genetic differences can result in the disparity of the viral shedding and tissue tropism.
Collapse
Affiliation(s)
- Chithra C. Sreenivasan
- Department of Veterinary Science, M. H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky, USA
| | - Runxia Liu
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, USA
| | - Rongyuan Gao
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, USA
| | - Yicheng Guo
- Zuckerman Mind Brian Behavior Institute, Columbia University, New York, New York, USA
| | - Ben M. Hause
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, USA
| | - Milton Thomas
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, USA
| | - Ahsan Naveed
- Department of Veterinary Science, M. H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky, USA
| | - Travis Clement
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, USA
| | - Dana Rausch
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, USA
| | - Jane Christopher-Hennings
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, USA
| | - Eric Nelson
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, USA
| | - Julian Druce
- Virology Section, Victorian Infectious Diseases Reference Laboratory, Melbourne, Victoria, Australia
| | - Miaoyun Zhao
- Nebraska Center for Virology, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
- School of Biological Sciences, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
| | - Radhey S. Kaushik
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, USA
| | - Qingsheng Li
- Nebraska Center for Virology, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
- School of Biological Sciences, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
| | - Zizhang Sheng
- Zuckerman Mind Brian Behavior Institute, Columbia University, New York, New York, USA
| | - Dan Wang
- Department of Veterinary Science, M. H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky, USA
| | - Feng Li
- Department of Veterinary Science, M. H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
15
|
Kuroda T, Fukao K, Yoshida S, Oka R, Baba K, Ando Y, Taniguchi K, Noshi T, Shishido T. In Vivo Antiviral Activity of Baloxavir against PA/I38T-Substituted Influenza A Viruses at Clinically Relevant Doses. Viruses 2023; 15:v15051154. [PMID: 37243240 DOI: 10.3390/v15051154] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Although the prevalence of polymerase acidic (PA)/I38T strains of influenza virus with reduced susceptibility to baloxavir acid is low, there is a possibility of emergence under selective pressure. Furthermore, the virus may be transmitted between humans. We investigated the in vivo efficacy of baloxavir acid and oseltamivir phosphate against influenza A subtypes H1N1, H1N1pdm09, and H3N2, with PA/I38T substitution, at doses simulating human plasma concentrations. A pharmacokinetic/pharmacodynamic analysis was performed to strengthen the validity of the findings and the applicability in a clinical setting. Although the antiviral effect of baloxavir acid was attenuated in mice infected with PA/I38T-substituted viral strains compared with the wild type (WT), baloxavir acid significantly reduced virus titers at higher-but clinically relevant-doses. The virus titer reduction with baloxavir acid (30 mg/kg subcutaneous single dose) was comparable to that of oseltamivir phosphate (5 mg/kg orally twice daily) against H1N1 and H1N1pdm09 PA/I38T strains in mice, as well as the H3N2 PA/I38T strain in hamsters. Baloxavir acid demonstrated an antiviral effect against PA/I38T-substituted strains, at day 6, with no further viral rebound. In conclusion, baloxavir acid demonstrated dose-dependent antiviral effects comparable to that of oseltamivir phosphate, even though the degree of lung virus titer reduction was diminished in animal models infected with PA/I38T-substituted strains.
Collapse
Affiliation(s)
| | | | | | - Ryoko Oka
- Shionogi & Co., Ltd., Osaka 561-0825, Japan
| | - Kaoru Baba
- Shionogi TechnoAdvance Research, Co., Ltd., Osaka 561-0825, Japan
| | | | | | | | | |
Collapse
|
16
|
Kumari R, Sharma SD, Kumar A, Ende Z, Mishina M, Wang Y, Falls Z, Samudrala R, Pohl J, Knight PR, Sambhara S. Antiviral Approaches against Influenza Virus. Clin Microbiol Rev 2023; 36:e0004022. [PMID: 36645300 PMCID: PMC10035319 DOI: 10.1128/cmr.00040-22] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Preventing and controlling influenza virus infection remains a global public health challenge, as it causes seasonal epidemics to unexpected pandemics. These infections are responsible for high morbidity, mortality, and substantial economic impact. Vaccines are the prophylaxis mainstay in the fight against influenza. However, vaccination fails to confer complete protection due to inadequate vaccination coverages, vaccine shortages, and mismatches with circulating strains. Antivirals represent an important prophylactic and therapeutic measure to reduce influenza-associated morbidity and mortality, particularly in high-risk populations. Here, we review current FDA-approved influenza antivirals with their mechanisms of action, and different viral- and host-directed influenza antiviral approaches, including immunomodulatory interventions in clinical development. Furthermore, we also illustrate the potential utility of machine learning in developing next-generation antivirals against influenza.
Collapse
Affiliation(s)
- Rashmi Kumari
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Department of Anesthesiology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Suresh D. Sharma
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Amrita Kumar
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Zachary Ende
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Oak Ridge Institute for Science and Education (ORISE), CDC Fellowship Program, Oak Ridge, Tennessee, USA
| | - Margarita Mishina
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Yuanyuan Wang
- Biotechnology Core Facility Branch, Division of Scientific Resources, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Association of Public Health Laboratories, Silver Spring, Maryland, USA
| | - Zackary Falls
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Ram Samudrala
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Jan Pohl
- Biotechnology Core Facility Branch, Division of Scientific Resources, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Paul R. Knight
- Department of Anesthesiology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Suryaprakash Sambhara
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
17
|
Oh DY, Milde J, Ham Y, Ramos Calderón JP, Wedde M, Dürrwald R, Duwe SC. Preparing for the Next Influenza Season: Monitoring the Emergence and Spread of Antiviral Resistance. Infect Drug Resist 2023; 16:949-959. [PMID: 36814825 PMCID: PMC9939793 DOI: 10.2147/idr.s389263] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/16/2023] [Indexed: 02/17/2023] Open
Abstract
Purpose The relaxation of pandemic restrictions in 2022 has led to a reemergence of respiratory virus circulation worldwide and anticipation of substantial influenza waves for the 2022/2023 Northern Hemisphere winter. Therefore, the antiviral susceptibility profiles of human influenza viruses circulating in Germany were characterized. Methods Between October 2019 (week 40/2019) and March 2022 (week 12/2022), nasal swabs from untreated patients with acute respiratory symptoms were collected in the national German influenza surveillance system. A total of 598 influenza viruses were isolated and analyzed for susceptibility to oseltamivir, zanamivir and peramivir, using a neuraminidase (NA) inhibition assay. In addition, next-generation sequencing was applied to assess molecular markers of resistance to NA, cap-dependent endonuclease (PA) and M2 ion channel inhibitors (NAI, PAI, M2I) in 367 primary clinical samples. Furthermore, a genotyping assay based on RT-PCR and pyrosequencing to rapidly assess the molecular resistance marker PA-I38X in PA genes was designed and established. Results While NAI resistance in the strict sense, defined by a ≥ 10-fold (influenza A) or ≥5-fold (influenza B) increase of NAI IC50, was not detected, a subtype A(H1N1)pdm09 isolate displayed 2.3- to 7.5-fold IC50 increase for all three NAI. This isolate carried the NA-S247N substitution, which is known to enhance NAI resistance induced by NA-H275Y. All sequenced influenza A viruses carried the M2-S31N substitution, which confers resistance to M2I. Of note, one A(H3N2) virus displayed the PA-I38M substitution, which is associated with reduced susceptibility to the PAI baloxavir marboxil. Pyrosequencing analysis confirmed these findings in the original clinical specimen and in cultured virus isolate, suggesting sufficient replicative fitness of this virus mutant. Conclusion Over the last three influenza seasons, the vast majority of influenza viruses in this national-level sentinel were susceptible to NAIs and PAIs. These findings support the use of antivirals in the upcoming influenza season.
Collapse
Affiliation(s)
- Djin-Ye Oh
- Robert Koch Institute, Department 1: Infectious Diseases, Unit 17: Influenza and Other Respiratory Viruses, National Influenza Center, Berlin, Germany
| | - Jeanette Milde
- Robert Koch Institute, Department 1: Infectious Diseases, Unit 17: Influenza and Other Respiratory Viruses, National Influenza Center, Berlin, Germany
| | - Youngsun Ham
- Robert Koch Institute, Department 1: Infectious Diseases, Unit 17: Influenza and Other Respiratory Viruses, National Influenza Center, Berlin, Germany
| | - Julia Patricia Ramos Calderón
- Robert Koch Institute, Department 1: Infectious Diseases, Unit 17: Influenza and Other Respiratory Viruses, National Influenza Center, Berlin, Germany
| | - Marianne Wedde
- Robert Koch Institute, Department 1: Infectious Diseases, Unit 17: Influenza and Other Respiratory Viruses, National Influenza Center, Berlin, Germany
| | - Ralf Dürrwald
- Robert Koch Institute, Department 1: Infectious Diseases, Unit 17: Influenza and Other Respiratory Viruses, National Influenza Center, Berlin, Germany
| | - Susanne C Duwe
- Robert Koch Institute, Department 1: Infectious Diseases, Unit 17: Influenza and Other Respiratory Viruses, National Influenza Center, Berlin, Germany
- Correspondence: Susanne C Duwe, Robert Koch Institute, Department 1: Infectious Diseases, Unit 17: Influenza Viruses and Other Respiratory Viruses | National Influenza Center, Seestr. 10, Berlin, 13353, Germany, Tel +49 30 18754 2283, Fax +49 30 18754 2699, Email
| |
Collapse
|
18
|
Takashita E, Murakami S, Matsuzaki Y, Fujisaki S, Morita H, Nagata S, Katayama M, Mizuta K, Nishimura H, Watanabe S, Horimoto T, Hasegawa H. Antiviral Susceptibilities of Distinct Lineages of Influenza C and D Viruses. Viruses 2023; 15:244. [PMID: 36680284 PMCID: PMC9861540 DOI: 10.3390/v15010244] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
The emergence and spread of antiviral-resistant influenza viruses are of great concern. To minimize the public health risk, it is important to monitor antiviral susceptibilities of influenza viruses. Analyses of the antiviral susceptibilities of influenza A and B viruses have been conducted globally; however, those of influenza C and D viruses are limited. Here, we determined the susceptibilities of influenza C viruses representing all six lineages (C/Taylor, C/Yamagata, C/Sao Paulo, C/Aichi, C/Kanagawa, and C/Mississippi) and influenza D viruses representing four lineages (D/OK, D/660, D/Yama2016, and D/Yama2019) to RNA polymerase inhibitors (baloxavir and favipiravir) by using a focus reduction assay. All viruses tested were susceptible to both drugs. We then performed a genetic analysis to check for amino acid substitutions associated with baloxavir and favipiravir resistance and found that none of the viruses tested possessed these substitutions. Use of the focus reduction assay with the genotypic assay has proven valuable for monitoring the antiviral susceptibilities of influenza C and D viruses as well as influenza A and B viruses. Antiviral susceptibility monitoring of all influenza virus types should continue in order to assess the public health risks posed by these viruses.
Collapse
Affiliation(s)
- Emi Takashita
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Shin Murakami
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Yoko Matsuzaki
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan
| | - Seiichiro Fujisaki
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Hiroko Morita
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Shiho Nagata
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Misa Katayama
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Katsumi Mizuta
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, Yamagata 990-0031, Japan
| | - Hidekazu Nishimura
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Sendai 983-8520, Japan
| | - Shinji Watanabe
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Taisuke Horimoto
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Hideki Hasegawa
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| |
Collapse
|
19
|
Yasuhara A, Yamayoshi S, Kiso M, Sakai-Tagawa Y, Okuda M, Kawaoka Y. A broadly protective human monoclonal antibody targeting the sialidase activity of influenza A and B virus neuraminidases. Nat Commun 2022; 13:6602. [PMID: 36329075 PMCID: PMC9632566 DOI: 10.1038/s41467-022-34521-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Improved vaccines and antiviral agents that provide better, broader protection against seasonal and emerging influenza viruses are needed. The viral surface glycoprotein hemagglutinin (HA) is a primary target for the development of universal influenza vaccines and therapeutic antibodies. The other major surface antigen, neuraminidase (NA), has been less well studied as a potential target and fewer broadly reactive anti-NA antibodies have been identified. In this study, we isolate three human monoclonal antibodies that recognize NA from A/H1N1 subtypes, and find that one of them, clone DA03E17, binds to the NA of A/H3N2, A/H5N1, A/H7N9, B/Ancestral-lineage, B/Yamagata-lineage, and B/Victoria-lineage viruses. DA03E17 inhibits the neuraminidase activity by direct binding to the enzyme active site, and provides in vitro and in vivo protection against infection with several types of influenza virus. This clone could, therefore, be useful as a broadly protective therapeutic agent. Moreover, the neutralizing epitope of DA03E17 could be useful in the development of an NA-based universal influenza vaccine.
Collapse
Affiliation(s)
- Atsuhiro Yasuhara
- grid.26999.3d0000 0001 2151 536XDivision of Virology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Seiya Yamayoshi
- grid.26999.3d0000 0001 2151 536XDivision of Virology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan ,grid.26999.3d0000 0001 2151 536XInternational Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan ,grid.45203.300000 0004 0489 0290Research Center for Global Viral Infections, National Center for Global Health and Medicine, Tokyo, Japan
| | - Maki Kiso
- grid.26999.3d0000 0001 2151 536XDivision of Virology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yuko Sakai-Tagawa
- grid.26999.3d0000 0001 2151 536XDivision of Virology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Moe Okuda
- grid.26999.3d0000 0001 2151 536XDivision of Virology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yoshihiro Kawaoka
- grid.26999.3d0000 0001 2151 536XDivision of Virology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan ,grid.26999.3d0000 0001 2151 536XInternational Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan ,grid.45203.300000 0004 0489 0290Research Center for Global Viral Infections, National Center for Global Health and Medicine, Tokyo, Japan ,grid.14003.360000 0001 2167 3675Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI USA
| |
Collapse
|
20
|
Saim-Mamoun A, Abed Y, Carbonneau J, Boivin G. Generation and Characterization of Drug-Resistant Influenza B Viruses Selected In Vitro with Baloxavir Acid. Pathogens 2022; 11:pathogens11091048. [PMID: 36145480 PMCID: PMC9505253 DOI: 10.3390/pathogens11091048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/04/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Baloxavir marboxil (BXM) is an antiviral drug that targets the endonuclease of the influenza polymerase acidic (PA) protein. Antiviral resistance, mainly mediated by the I38T PA substitution, readily occurs in both A(H1N1) and A(H3N2) viruses following a single dose of BXM. Influenza B resistance to BXM remains poorly documented. We aimed to generate baloxavir-resistant contemporary influenza B/Yamagata/16/1988- and B/Victoria/2/1987-like viruses by in vitro passages under baloxavir acid (BXA) pressure to identify resistance mutations and to characterize the fitness of drug-resistant variants. Influenza B/Phuket/3073/2013 recombinant virus (rg-PKT13, a B/Yamagata/16/1988-like virus) and B/Quebec/MCV-11/2019 (MCV19, a B/Victoria/2/1987-like isolate) were passaged in ST6GalI-MDCK cells in the presence of increasing concentrations of BXA. At defined passages, viral RNA was extracted for sequencing the PA gene. The I38T PA substitution was selected in MCV19 after six passages in presence of BXA whereas no PA change was detected in rg-PKT13. The I38T substitution increased the BXA IC50 value by 13.7-fold in the MCV19 background and resulted in reduced viral titers compared to the wild type (WT) at early time points in ST6GalI-MDCK and at all time-points in human epithelial cells. By contrast, the I38T substitution had no impact on MCV19 polymerase activity, and this mutation was genetically stable over four passages. In conclusion, our results show a similar pathway of resistance to BXA in influenza B viruses highlighting the major role of the I38T PA substitution and suggest that I38T may differently impact the fitness of influenza variants depending on the viral type, subtype, or lineage.
Collapse
|
21
|
Ilyicheva TN, Netesov SV, Gureyev VN. COVID-19, Influenza, and Other Acute Respiratory Viral Infections: Etiology, Immunopathogenesis, Diagnosis, and Treatment. Part I. COVID-19 and Influenza. MOLECULAR GENETICS, MICROBIOLOGY AND VIROLOGY : MOLEKULYARNAYA GENETIKA, MIKROBIOLOGIYA I VIRUSOLOGIYA 2022; 37:1-9. [PMID: 35936505 PMCID: PMC9342941 DOI: 10.3103/s0891416822010025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/01/2021] [Accepted: 09/15/2021] [Indexed: 06/08/2023]
Abstract
The paper briefly reviews pathogens causing acute respiratory viral infections (ARVIs), including influenza viruses; coronaviruses, including SARS-CoV-2; parainfluenza viruses, adenoviruses, pneumoviruses, and specifically respiratory syncytial virus and metapneumoviruses, enteroviruses, rhinoviruses, and bocaviruses. This review presents modern data on the structure and replication of viruses, epidemiology, and immunopathogenesis of diseases and on diagnostics, preventive vaccination, and antiviral drugs for the treatment of ARVIs. Special attention is paid to the SARS-CoV-2 virus caused COVID-19 pandemic with analyses of similarities and differences between COVID-19 and other ARVIs, first of all, influenza virus. Topical issues regarding ARVI vaccination and the search for new broad-spectrum antiviral drugs are discussed.
Collapse
Affiliation(s)
- T. N. Ilyicheva
- Novosibirsk State University, 630090 Novosibirsk, Russia
- Vector State Research Center of Virology and Biotechnology, 630559 Koltsovo, Russia
| | - S. V. Netesov
- Novosibirsk State University, 630090 Novosibirsk, Russia
| | - V. N. Gureyev
- Vector State Research Center of Virology and Biotechnology, 630559 Koltsovo, Russia
| |
Collapse
|
22
|
Caceres CJ, Seibert B, Cargnin Faccin F, Cardenas‐Garcia S, Rajao DS, Perez DR. Influenza antivirals and animal models. FEBS Open Bio 2022; 12:1142-1165. [PMID: 35451200 PMCID: PMC9157400 DOI: 10.1002/2211-5463.13416] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/04/2022] [Accepted: 04/20/2022] [Indexed: 11/29/2022] Open
Abstract
Influenza A and B viruses are among the most prominent human respiratory pathogens. About 3-5 million severe cases of influenza are associated with 300 000-650 000 deaths per year globally. Antivirals effective at reducing morbidity and mortality are part of the first line of defense against influenza. FDA-approved antiviral drugs currently include adamantanes (rimantadine and amantadine), neuraminidase inhibitors (NAI; peramivir, zanamivir, and oseltamivir), and the PA endonuclease inhibitor (baloxavir). Mutations associated with antiviral resistance are common and highlight the need for further improvement and development of novel anti-influenza drugs. A summary is provided for the current knowledge of the approved influenza antivirals and antivirals strategies under evaluation in clinical trials. Preclinical evaluations of novel compounds effective against influenza in different animal models are also discussed.
Collapse
Affiliation(s)
- C. Joaquin Caceres
- Department of Population HealthCollege of Veterinary MedicineUniversity of GeorgiaAthensGAUSA
| | - Brittany Seibert
- Department of Population HealthCollege of Veterinary MedicineUniversity of GeorgiaAthensGAUSA
| | - Flavio Cargnin Faccin
- Department of Population HealthCollege of Veterinary MedicineUniversity of GeorgiaAthensGAUSA
| | | | - Daniela S. Rajao
- Department of Population HealthCollege of Veterinary MedicineUniversity of GeorgiaAthensGAUSA
| | - Daniel R. Perez
- Department of Population HealthCollege of Veterinary MedicineUniversity of GeorgiaAthensGAUSA
| |
Collapse
|
23
|
Taniguchi K, Ando Y, Kobayashi M, Toba S, Nobori H, Sanaki T, Noshi T, Kawai M, Yoshida R, Sato A, Shishido T, Naito A, Matsuno K, Okamatsu M, Sakoda Y, Kida H. Characterization of the In Vitro and In Vivo Efficacy of Baloxavir Marboxil against H5 Highly Pathogenic Avian Influenza Virus Infection. Viruses 2022; 14:v14010111. [PMID: 35062315 PMCID: PMC8777714 DOI: 10.3390/v14010111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 12/31/2021] [Indexed: 02/04/2023] Open
Abstract
Human infections caused by the H5 highly pathogenic avian influenza virus (HPAIV) sporadically threaten public health. The susceptibility of HPAIVs to baloxavir acid (BXA), a new class of inhibitors for the influenza virus cap-dependent endonuclease, has been confirmed in vitro, but it has not yet been fully characterized. Here, the efficacy of BXA against HPAIVs, including recent H5N8 variants, was assessed in vitro. The antiviral efficacy of baloxavir marboxil (BXM) in H5N1 virus-infected mice was also investigated. BXA exhibited similar in vitro activities against H5N1, H5N6, and H5N8 variants tested in comparison with seasonal and other zoonotic strains. Compared with oseltamivir phosphate (OSP), BXM monotherapy in mice infected with the H5N1 HPAIV clinical isolate, the A/Hong Kong/483/1997 strain, also caused a significant reduction in viral titers in the lungs, brains, and kidneys, thereby preventing acute lung inflammation and reducing mortality. Furthermore, compared with BXM or OSP monotherapy, combination treatments with BXM and OSP using a 48-h delayed treatment model showed a more potent effect on viral replication in the organs, accompanied by improved survival. In conclusion, BXM has a potent antiviral efficacy against H5 HPAIV infections.
Collapse
Affiliation(s)
- Keiichi Taniguchi
- Shionogi & Co., Ltd., Osaka 561-0825, Japan; (K.T.); (Y.A.); (M.K.); (S.T.); (H.N.); (T.S.); (T.N.); (M.K.); (R.Y.); (A.S.); (A.N.)
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido 060-0818, Japan; (M.O.); (Y.S.)
| | - Yoshinori Ando
- Shionogi & Co., Ltd., Osaka 561-0825, Japan; (K.T.); (Y.A.); (M.K.); (S.T.); (H.N.); (T.S.); (T.N.); (M.K.); (R.Y.); (A.S.); (A.N.)
| | - Masanori Kobayashi
- Shionogi & Co., Ltd., Osaka 561-0825, Japan; (K.T.); (Y.A.); (M.K.); (S.T.); (H.N.); (T.S.); (T.N.); (M.K.); (R.Y.); (A.S.); (A.N.)
| | - Shinsuke Toba
- Shionogi & Co., Ltd., Osaka 561-0825, Japan; (K.T.); (Y.A.); (M.K.); (S.T.); (H.N.); (T.S.); (T.N.); (M.K.); (R.Y.); (A.S.); (A.N.)
- International Institute for Zoonosis Control, Hokkaido University, Hokkaido 001-0020, Japan; (K.M.); (H.K.)
| | - Haruaki Nobori
- Shionogi & Co., Ltd., Osaka 561-0825, Japan; (K.T.); (Y.A.); (M.K.); (S.T.); (H.N.); (T.S.); (T.N.); (M.K.); (R.Y.); (A.S.); (A.N.)
| | - Takao Sanaki
- Shionogi & Co., Ltd., Osaka 561-0825, Japan; (K.T.); (Y.A.); (M.K.); (S.T.); (H.N.); (T.S.); (T.N.); (M.K.); (R.Y.); (A.S.); (A.N.)
| | - Takeshi Noshi
- Shionogi & Co., Ltd., Osaka 561-0825, Japan; (K.T.); (Y.A.); (M.K.); (S.T.); (H.N.); (T.S.); (T.N.); (M.K.); (R.Y.); (A.S.); (A.N.)
| | - Makoto Kawai
- Shionogi & Co., Ltd., Osaka 561-0825, Japan; (K.T.); (Y.A.); (M.K.); (S.T.); (H.N.); (T.S.); (T.N.); (M.K.); (R.Y.); (A.S.); (A.N.)
| | - Ryu Yoshida
- Shionogi & Co., Ltd., Osaka 561-0825, Japan; (K.T.); (Y.A.); (M.K.); (S.T.); (H.N.); (T.S.); (T.N.); (M.K.); (R.Y.); (A.S.); (A.N.)
| | - Akihiko Sato
- Shionogi & Co., Ltd., Osaka 561-0825, Japan; (K.T.); (Y.A.); (M.K.); (S.T.); (H.N.); (T.S.); (T.N.); (M.K.); (R.Y.); (A.S.); (A.N.)
- International Institute for Zoonosis Control, Hokkaido University, Hokkaido 001-0020, Japan; (K.M.); (H.K.)
| | - Takao Shishido
- Shionogi & Co., Ltd., Osaka 561-0825, Japan; (K.T.); (Y.A.); (M.K.); (S.T.); (H.N.); (T.S.); (T.N.); (M.K.); (R.Y.); (A.S.); (A.N.)
- Correspondence: ; Tel.: +81-6-6331-7263
| | - Akira Naito
- Shionogi & Co., Ltd., Osaka 561-0825, Japan; (K.T.); (Y.A.); (M.K.); (S.T.); (H.N.); (T.S.); (T.N.); (M.K.); (R.Y.); (A.S.); (A.N.)
| | - Keita Matsuno
- International Institute for Zoonosis Control, Hokkaido University, Hokkaido 001-0020, Japan; (K.M.); (H.K.)
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Hokkaido 001-0020, Japan
| | - Masatoshi Okamatsu
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido 060-0818, Japan; (M.O.); (Y.S.)
| | - Yoshihiro Sakoda
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido 060-0818, Japan; (M.O.); (Y.S.)
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Hokkaido 001-0020, Japan
| | - Hiroshi Kida
- International Institute for Zoonosis Control, Hokkaido University, Hokkaido 001-0020, Japan; (K.M.); (H.K.)
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Hokkaido 001-0020, Japan
| |
Collapse
|
24
|
Sreenivasan CC, Sheng Z, Wang D, Li F. Host Range, Biology, and Species Specificity of Seven-Segmented Influenza Viruses-A Comparative Review on Influenza C and D. Pathogens 2021; 10:1583. [PMID: 34959538 PMCID: PMC8704295 DOI: 10.3390/pathogens10121583] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 02/06/2023] Open
Abstract
Other than genome structure, influenza C (ICV), and D (IDV) viruses with seven-segmented genomes are biologically different from the eight-segmented influenza A (IAV), and B (IBV) viruses concerning the presence of hemagglutinin-esterase fusion protein, which combines the function of hemagglutinin and neuraminidase responsible for receptor-binding, fusion, and receptor-destroying enzymatic activities, respectively. Whereas ICV with humans as primary hosts emerged nearly 74 years ago, IDV, a distant relative of ICV, was isolated in 2011, with bovines as the primary host. Despite its initial emergence in swine, IDV has turned out to be a transboundary bovine pathogen and a broader host range, similar to influenza A viruses (IAV). The receptor specificities of ICV and IDV determine the host range and the species specificity. The recent findings of the presence of the IDV genome in the human respiratory sample, and high traffic human environments indicate its public health significance. Conversely, the presence of ICV in pigs and cattle also raises the possibility of gene segment interactions/virus reassortment between ICV and IDV where these viruses co-exist. This review is a holistic approach to discuss the ecology of seven-segmented influenza viruses by focusing on what is known so far on the host range, seroepidemiology, biology, receptor, phylodynamics, species specificity, and cross-species transmission of the ICV and IDV.
Collapse
Affiliation(s)
- Chithra C. Sreenivasan
- Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA; (C.C.S.); (D.W.)
| | - Zizhang Sheng
- Aaron Diamond AIDS Research Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA;
| | - Dan Wang
- Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA; (C.C.S.); (D.W.)
| | - Feng Li
- Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA; (C.C.S.); (D.W.)
| |
Collapse
|
25
|
Abstract
Avian influenza viruses pose a continuous threat to both poultry and human health, with significant economic impact. The ability of viruses to reassort and jump the species barrier into mammalian hosts generates a constant pandemic threat. H10Nx avian viruses have been shown to replicate in mammalian species without prior adaptation and have caused significant human infection and fatalities. They are able to rapidly reassort with circulating poultry strains and go undetected due to their low pathogenicity in chickens. Novel detections of both human reassortant strains and increasing endemicity of H10Nx poultry infections highlight the increasing need for heightened surveillance and greater understanding of the distribution, tropism, and infection capabilities of these viruses. In this minireview, we highlight the gap in the current understanding of this subtype and its prevalence across a vast range of host species and geographical locations.
Collapse
|
26
|
Ison MG, Hayden FG, Hay AJ, Gubareva LV, Govorkova EA, Takashita E, McKimm-Breschkin JL. Influenza polymerase inhibitor resistance: Assessment of the current state of the art - A report of the isirv Antiviral group. Antiviral Res 2021; 194:105158. [PMID: 34363859 PMCID: PMC9012257 DOI: 10.1016/j.antiviral.2021.105158] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/31/2022]
Abstract
It is more than 20 years since the neuraminidase inhibitors, oseltamivir and zanamivir were approved for the treatment and prevention of influenza. Guidelines for global surveillance and methods for evaluating resistance were established initially by the Neuraminidase Inhibitor Susceptibility Network (NISN), which merged 10 years ago with the International Society for influenza and other Respiratory Virus Diseases (isirv) to become the isirv-Antiviral Group (isirv-AVG). With the ongoing development of new influenza polymerase inhibitors and recent approval of baloxavir marboxil, the isirv-AVG held a closed meeting in August 2019 to discuss the impact of resistance to these inhibitors. Following this meeting and review of the current literature, this article is intended to summarize current knowledge regarding the clinical impact of resistance to polymerase inhibitors and approaches for surveillance and methods for laboratory evaluation of resistance, both in vitro and in animal models. We highlight limitations and gaps in current knowledge and suggest some strategies for addressing these gaps, including the need for additional clinical studies of influenza antiviral drug combinations. Lessons learned from influenza resistance monitoring may also be helpful for establishing future drug susceptibility surveillance and testing for SARS-CoV-2.
Collapse
Affiliation(s)
- Michael G Ison
- Divisions of Infectious Diseases and Organ Transplantation, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| | - Frederick G Hayden
- Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, VA, USA.
| | - Alan J Hay
- The Francis Crick Institute, London, UK.
| | - Larisa V Gubareva
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Elena A Govorkova
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA.
| | - Emi Takashita
- National Institute of Infectious Diseases, Tokyo, Japan.
| | - Jennifer L McKimm-Breschkin
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria, Australia.
| |
Collapse
|
27
|
Mthembu N, Ikwegbue P, Brombacher F, Hadebe S. Respiratory Viral and Bacterial Factors That Influence Early Childhood Asthma. FRONTIERS IN ALLERGY 2021; 2:692841. [PMID: 35387053 PMCID: PMC8974778 DOI: 10.3389/falgy.2021.692841] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
Asthma is a chronic respiratory condition characterised by episodes of shortness of breath due to reduced airway flow. The disease is triggered by a hyperreactive immune response to innocuous allergens, leading to hyper inflammation, mucus production, changes in structural cells lining the airways, and airway hyperresponsiveness. Asthma, although present in adults, is considered as a childhood condition, with a total of about 6.2 million children aged 18 and below affected globally. There has been progress in understanding asthma heterogeneity in adults, which has led to better patient stratification and characterisation of multiple asthma endotypes with distinct, but overlapping inflammatory features. The asthma inflammatory profile in children is not well-defined and heterogeneity of the disease is less described. Although many factors such as genetics, food allergies, antibiotic usage, type of birth, and cigarette smoke exposure can influence asthma development particularly in children, respiratory infections are thought to be the major contributing factor in poor lung function and onset of the disease. In this review, we focus on viral and bacterial respiratory infections in the first 10 years of life that could influence development of asthma in children. We also review literature on inflammatory immune heterogeneity in asthmatic children and how this overlaps with early lung development, poor lung function and respiratory infections. Finally, we review animal studies that model early development of asthma and how these studies could inform future therapies and better understanding of this complex disease.
Collapse
Affiliation(s)
- Nontobeko Mthembu
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Paul Ikwegbue
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Frank Brombacher
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Division of Immunology, Health Science Faculty, International Centre for Genetic Engineering and Biotechnology (ICGEB) and Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
- Faculty of Health Sciences, Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Sabelo Hadebe
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
28
|
Shah S, McManus D, Bejou N, Tirmizi S, Rouse GE, Lemieux SM, Gritsenko D, Topal JE. Clinical outcomes of baloxavir versus oseltamivir in patients hospitalized with influenza A. J Antimicrob Chemother 2021; 75:3015-3022. [PMID: 32712669 DOI: 10.1093/jac/dkaa252] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES To date, clinical trials evaluating baloxavir have excluded patients hospitalized with influenza infection and therefore this study sought to evaluate the efficacy of baloxavir in inpatients with influenza A. METHODS This study was a multicentre, retrospective chart review of adult patients admitted to the hospital within the Yale New Haven Health System who received oseltamivir or baloxavir for the treatment of influenza A. Patients were screened for inclusion between January 2018 and April 2018 in the oseltamivir group, while patients in the baloxavir group were screened for inclusion between January 2019 and April 2019. Influenza A diagnosis was confirmed by RT-PCR using a nasopharyngeal swab specimen. RESULTS Of the 2392 patients assessed, 790 met the inclusion criteria. There were 359 patients who received baloxavir and 431 patients who received oseltamivir. Patients who received baloxavir were younger compared with those who received oseltamivir [median = 69 (IQR = 57-81) years versus 77 (IQR = 62-86) years; P < 0.001]. Patients who received baloxavir had no significant difference in hospital length of stay [median = 4 (IQR = 3-6) days versus 5 (IQR = 3-6) days; P = 0.45] or 30 day all-cause mortality [12 (3.3%) versus 26 (6%); P = 0.079] compared with those who received oseltamivir. However, patients who received baloxavir had a significantly faster time to hypoxia resolution [median = 51.7 (IQR = 25.3-89.3) h versus 72 (IQR = 37.5-123) h; P < 0.001]. CONCLUSIONS The results of this study support the use of baloxavir for the treatment of influenza A in hospitalized patients with the potential benefit of a faster time to resolution of hypoxia.
Collapse
Affiliation(s)
- Sunish Shah
- Department of Pharmacy, Yale New Haven Hospital, Department of Pharmacy Services, New Haven, CT, USA
| | - Dayna McManus
- Department of Pharmacy, Yale New Haven Hospital, Department of Pharmacy Services, New Haven, CT, USA
| | - Nika Bejou
- Department of Pharmacy, Yale New Haven Hospital, Department of Pharmacy Services, New Haven, CT, USA.,Janssen Scientific Affairs, Raritan, NJ, USA
| | - Samad Tirmizi
- Department of Pharmacy, Yale New Haven Hospital, Department of Pharmacy Services, New Haven, CT, USA
| | - Ginger E Rouse
- Department of Pharmacy, Yale New Haven Hospital, Department of Pharmacy Services, New Haven, CT, USA
| | - Steven M Lemieux
- Department of Pharmacy, Yale New Haven Hospital, Department of Pharmacy Services, New Haven, CT, USA.,University of Saint Joseph, School of Pharmacy, Hartford, CT, USA
| | - Diana Gritsenko
- Department of Pharmacy, Yale New Haven Hospital, Department of Pharmacy Services, New Haven, CT, USA
| | - Jeffrey E Topal
- Department of Pharmacy, Yale New Haven Hospital, Department of Pharmacy Services, New Haven, CT, USA.,Yale University School of Medicine, Department of Internal Medicine, Section of Infectious Diseases, New Haven, CT, USA
| |
Collapse
|
29
|
Devi AB, Sarala R. Substantial effect of phytochemical constituents against the pandemic disease influenza-a review. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021; 7:120. [PMID: 34150912 PMCID: PMC8196934 DOI: 10.1186/s43094-021-00269-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/20/2021] [Indexed: 12/17/2022] Open
Abstract
Background Influenza is an acute respiratory tract infection caused by the influenza virus. Vaccination and antiviral drugs are the two methods opted to control the disease. Besides their efficiency, they also cause adverse side effects. Hence, scientists turned their attention to powerful herbal medicines. This review put focus on various proven, scientifically validated anti-influenza compounds produced by the plants suggested for the production of newer drugs for the better treatment of influenza and its related antiviral diseases too. Main body In this review, fifty medicinal herb phytochemical constituents and their anti-influenza activities have been documented. Specifically, this review brings out the accurate and substantiates mechanisms of action of these constituents. This study categorizes the phytochemical constituents into primary and secondary metabolites which provide a source for synthesizing and developing new drugs. Conclusion This article provides a summary of the actions of the herbal constituents. Since the mechanisms of action of the components are elucidated, the pandemic situation arising due to influenza and similar antiviral diseases can be handled promisingly with greater efficiency. However, clinical trials are in great demand. The formulation of usage may be a single drug compound or multi-herbal combination. These, in turn, open up a new arena for the pharmaceutical industries to develop innovative drugs.
Collapse
Affiliation(s)
- A Brindha Devi
- Department of Botany, Periyar EVR College (Autonomous), (Affiliated to Bharathidasan University, Trichy-24), Trichy-620 023, Tamil Nadu, India
| | - R Sarala
- Department of Botany, Periyar EVR College (Autonomous), (Affiliated to Bharathidasan University, Trichy-24), Trichy-620 023, Tamil Nadu, India
| |
Collapse
|
30
|
Macesic N, Laplante JM, Aaron JG, DiMango EA, Miko BA, Pereira MR, Reshef R, St George K. Baloxavir treatment of oseltamivir-resistant influenza A/H1pdm09 in two immunocompromised patients. Transpl Infect Dis 2021; 23:e13542. [PMID: 33278052 DOI: 10.1111/tid.13542] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/03/2020] [Accepted: 11/22/2020] [Indexed: 11/26/2022]
Abstract
Few treatment options are available for oseltamivir-resistant influenza. It has been proposed that baloxavir can be effective in this setting due to its distinct mechanism of action but clinical experience is lacking for immunocompromised patients. We report two such cases treated with baloxavir after failure of oseltamivir and detection of oseltamivir resistance mutations. Baloxavir/zanamivir combination therapy was effective in one patient, but persistent viral shedding was noted with baloxavir monotherapy in the other patient.
Collapse
Affiliation(s)
- Nenad Macesic
- Division of Infectious Diseases, Columbia University Irving Medical Center, New York, NY, USA
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Jennifer M Laplante
- Laboratory of Viral Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Justin G Aaron
- Division of Infectious Diseases, Columbia University Irving Medical Center, New York, NY, USA
| | - Emily A DiMango
- Department of Pulmonary, Allergy, and Critical Care Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Benjamin A Miko
- Division of Infectious Diseases, Columbia University Irving Medical Center, New York, NY, USA
| | - Marcus R Pereira
- Division of Infectious Diseases, Columbia University Irving Medical Center, New York, NY, USA
| | - Ran Reshef
- Division of Hematology & Oncology, Columbia University Irving Medical Center, New York, NY, USA
| | - Kirsten St George
- Laboratory of Viral Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, USA
- Department of Biomedical Science, University at Albany, Albany, NY, USA
| |
Collapse
|
31
|
Unconventional viral gene expression mechanisms as therapeutic targets. Nature 2021; 593:362-371. [PMID: 34012080 DOI: 10.1038/s41586-021-03511-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 03/22/2021] [Indexed: 12/14/2022]
Abstract
Unlike the human genome that comprises mostly noncoding and regulatory sequences, viruses have evolved under the constraints of maintaining a small genome size while expanding the efficiency of their coding and regulatory sequences. As a result, viruses use strategies of transcription and translation in which one or more of the steps in the conventional gene-protein production line are altered. These alternative strategies of viral gene expression (also known as gene recoding) can be uniquely brought about by dedicated viral enzymes or by co-opting host factors (known as host dependencies). Targeting these unique enzymatic activities and host factors exposes vulnerabilities of a virus and provides a paradigm for the design of novel antiviral therapies. In this Review, we describe the types and mechanisms of unconventional gene and protein expression in viruses, and provide a perspective on how future basic mechanistic work could inform translational efforts that are aimed at viral eradication.
Collapse
|
32
|
Lee LY, Zhou J, Koszalka P, Frise R, Farrukee R, Baba K, Miah S, Shishido T, Galiano M, Hashimoto T, Omoto S, Uehara T, Mifsud EJ, Collinson N, Kuhlbusch K, Clinch B, Wildum S, Barclay WS, Hurt AC. Evaluating the fitness of PA/I38T-substituted influenza A viruses with reduced baloxavir susceptibility in a competitive mixtures ferret model. PLoS Pathog 2021; 17:e1009527. [PMID: 33956888 PMCID: PMC8130947 DOI: 10.1371/journal.ppat.1009527] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 05/18/2021] [Accepted: 04/01/2021] [Indexed: 12/11/2022] Open
Abstract
Baloxavir is approved in several countries for the treatment of uncomplicated influenza in otherwise-healthy and high-risk patients. Treatment-emergent viruses with reduced susceptibility to baloxavir have been detected in clinical trials, but the likelihood of widespread occurrence depends on replication capacity and onward transmission. We evaluated the fitness of A/H3N2 and A/H1N1pdm09 viruses with the polymerase acidic (PA) I38T-variant conferring reduced susceptibility to baloxavir relative to wild-type (WT) viruses, using a competitive mixture ferret model, recombinant viruses and patient-derived virus isolates. The A/H3N2 PA/I38T virus showed a reduction in within-host fitness but comparable between-host fitness to the WT virus, while the A/H1N1pdm09 PA/I38T virus had broadly similar within-host fitness but substantially lower between-host fitness. Although PA/I38T viruses replicate and transmit between ferrets, our data suggest that viruses with this amino acid substitution have lower fitness relative to WT and this relative fitness cost was greater in A/H1N1pdm09 viruses than in A/H3N2 viruses. Influenza viruses are associated with considerable disease burden and circulate annually causing seasonal epidemics. Antiviral drugs can be used to treat influenza infections and help reduce the disease burden. Occasionally, treatment can lead to the emergence of viruses with reduced antiviral susceptibility. Normally such viruses have reduced ‘fitness’, meaning they do not tend to spread or transmit widely, however on rare occasions, oseltamivir-resistant variants have become widespread in the community, thereby reducing the utility of the drug for treatment. Baloxavir is an antiviral recently licensed in many parts of the world for the treatment of influenza. Viruses with reduced susceptibility to baloxavir have been observed in clinical trials, but the frequency of such variants in the community has remained low (<0.1% globally since 2017–2018). We evaluated the fitness of viruses in ferrets and found that although A/H1N1 and A/H3N2 viruses with reduced baloxavir susceptibility were able to replicate and transmit among ferrets, they had a moderate reduction in fitness compared to normal ‘wild-type’ viruses, suggesting a reduced likelihood of spread. Surveillance to monitor for the frequency of viruses with reduced baloxavir susceptibility remains important.
Collapse
Affiliation(s)
- Leo Y Lee
- WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Jie Zhou
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Paulina Koszalka
- WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.,Biomedicine Discovery Institute & Department of Microbiology, Monash University, Victoria, Australia
| | - Rebecca Frise
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Rubaiyea Farrukee
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Australia
| | | | | | | | | | | | | | | | - Edin J Mifsud
- WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.,Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Australia
| | | | | | - Barry Clinch
- Roche Products Ltd, Welwyn Garden City, United Kingdom
| | | | - Wendy S Barclay
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Aeron C Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.,Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Australia.,F. Hoffmann-La Roche Ltd, Basel, Switzerland
| |
Collapse
|
33
|
Takashita E. Influenza Polymerase Inhibitors: Mechanisms of Action and Resistance. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a038687. [PMID: 32122918 PMCID: PMC8091960 DOI: 10.1101/cshperspect.a038687] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The influenza virus RNA-dependent RNA polymerase is highly conserved among influenza A, B, C, and D viruses. It comprises three subunits: polymerase basic protein 1 (PB1), polymerase basic protein 2 (PB2), and polymerase acidic protein (PA) in influenza A and B viruses or polymerase 3 protein (P3) in influenza C and D viruses. Because this polymerase is essential for influenza virus replication, it has been considered as a target for antiviral agents. Recently, several polymerase inhibitors that target each subunit have been developed. This review discusses the mechanism of action, antiviral activity, and emergence of resistance to three inhibitors approved for the treatment of influenza or in late-phase clinical trials: the PB1 inhibitor favipiravir, the PB2 inhibitor pimodivir, and the PA inhibitor baloxavir marboxil.
Collapse
Affiliation(s)
- Emi Takashita
- Influenza Virus Research Center, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan
| |
Collapse
|
34
|
Abstract
Baloxavir marboxil (Xofluza®; hereafter referred to as baloxavir), the prodrug of baloxavir acid, is a first-in-class, small molecule inhibitor of the polymerase acidic (PA) protein subunit of the influenza virus polymerase complex. Baloxavir (after conversion to baloxavir acid) acts to block influenza virus replication by inhibiting the cap-dependent endonuclease activity of the PA protein. Taken orally as a single dose, baloxavir is approved in the USA for the treatment of acute uncomplicated influenza in patients ≥ 12 years of age who have been symptomatic for ≤ 48 h. Data from randomized, double-blind, placebo- and oseltamivir-controlled phase III trials have shown that baloxavir is efficacious in improving influenza symptoms both in otherwise healthy adolescents and adults and in those at high risk of influenza complications, displaying similar efficacy to that of oseltamivir. Furthermore, there is evidence that baloxavir can reduce influenza viral load more rapidly than oseltamivir. Baloxavir has activity against influenza A and B viruses (including strains resistant to neuraminidase inhibitors) and is well tolerated. Evidence of the emergence and likely human-to-human transmission of variant viruses with reduced susceptibility to baloxavir highlights the importance of monitoring and surveillance for changes in influenza virus drug susceptibility patterns. However, currently available evidence suggests that baloxavir, with the benefits of a single oral dose regimen, provides a useful alternative to neuraminidase inhibitors for the treatment of acute uncomplicated influenza in adolescents and adults.
Collapse
Affiliation(s)
- Matt Shirley
- Springer Nature, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.
| |
Collapse
|
35
|
Duwe SC, Schmidt B, Gärtner BC, Timm J, Adams O, Fickenscher H, Schmidtke M. Prophylaxis and treatment of influenza: options, antiviral susceptibility, and existing recommendations. GMS INFECTIOUS DISEASES 2021; 9:Doc02. [PMID: 34113534 PMCID: PMC8165743 DOI: 10.3205/id000071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Influenza viruses of types A and B attack 5-10% of adults and 20-30% of children, thereby causing millions of acute respiratory infections in Germany annually. A significant number of these infections are associated with complications such as pneumonia and bacterial superinfections that need hospitalization and might lead to death. In addition to vaccines, drugs were developed that might support influenza prevention and that can be used to treat influenza patients. The timely application of anti-influenza drugs can inhibit virus replication, help reduce and shorten the symptoms, and prevent death as well as virus transmission. This review concisely describes the mechanism of action, the potential for prophylactic and therapeutic use, and the knowledge on resistance of anti-influenza drugs approved today. However, the main aim is to give an overview on the recommendations available in Germany for the proper use of these drugs. In doing so, the recommendations published in statements and guidelines of medical societies as well as the German influenza pandemic preparedness plan are summarized with the consideration of specific circumstances and groups of patients.
Collapse
Affiliation(s)
- Susanne C Duwe
- Robert Koch Institute, Unit 17: Influenza and Other Respiratory Viruses, National Reference Centre for Influenza, Berlin, Germany
| | - Barbara Schmidt
- Institute for Clinical Microbiology and Hygiene, Regensburg University Hospital, Regensburg, Germany
| | - Barbara C Gärtner
- Institute of Medical Microbiology & Hygiene, Saarland University Medical Center, Homburg, Germany
| | - Jörg Timm
- Institute for Virology, University Hospital Düsseldorf, Faculty of Medicine, University Düsseldorf, Germany
| | - Ortwin Adams
- Institute for Virology, University Hospital Düsseldorf, Faculty of Medicine, University Düsseldorf, Germany
| | - Helmut Fickenscher
- Institute for Infection Medicine, University of Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Michaela Schmidtke
- Section Experimental Virology, Department of Medical Microbiology, Jena University Hospital, Germany
| |
Collapse
|
36
|
Kuo YC, Lai CC, Wang YH, Chen CH, Wang CY. Clinical efficacy and safety of baloxavir marboxil in the treatment of influenza: A systematic review and meta-analysis of randomized controlled trials. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2021; 54:865-875. [PMID: 34020891 DOI: 10.1016/j.jmii.2021.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/03/2021] [Accepted: 04/13/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE The aim of this meta-analysis is to compare the clinical efficacy and safety of baloxavir with other anti-influenza agents or placebo in the treatment of influenza. METHODS PubMed, Embase, Web of Science, Google Scholar, Scopus, CINAHL, Cochrane databases and clinical registration were searched from inception until February 15 2021 for relevant randomized controlled trials (RCTs). Only phase 3 RCTs evaluating the usefulness of baloxavir in the treatment of influenza were included. RESULTS Three RCTs enrolling 3771 patients (baloxavir group, n = 1451; oseltamivir group, n = 1288; placebo group, n = 1032) were included. Compared with oseltamivir, baloxavir had an insignificantly shorter time to the alleviation of symptoms (mean difference [MD], -1.29 h; 95% CI, -6.80 to 4.21; I2 = 0%). In contrast, baloxavir had a significantly shorter time to the alleviation of symptoms than placebo (MD, -26.32 h; 95% CI, -33.78 to -18.86; I2 = 0%). Baloxavir was associated with a significant decline in influenza virus titers and viral RNA load compared to oseltamivir and placebo. Baloxavir was associated with a lower risk of any adverse events than oseltamivir (OR, 0.82; 95% CI, 0.69-0.98; I2 = 0%) and placebo (OR, 0.79; 95% CI, 0.66-0.96; I2 = 0%). CONCLUSIONS The findings of this meta-analysis suggested that baloxavir is superior to placebo in the treatment of influenza in both clinical outcome and virological response. Moreover, baloxavir was found to have a better virological response than oseltamivir and to be as effective as oseltamivir clinically. Compared with oseltamivir and placebo, baloxavir appears to be a relatively safe anti-influenza agent.
Collapse
Affiliation(s)
- Yu-Chi Kuo
- Department of Internal Medicine, Chi-Mei Hospital, Chiali, Tainan, Taiwan.
| | - Chih-Cheng Lai
- Department of Internal Medicine, Kaohsiung Veterans General Hospital, Tainan Branch, Tainan, Taiwan.
| | - Ya-Hui Wang
- Medical Research Center, Cardinal Tien Hospital and School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, Taiwan.
| | - Chao-Hsien Chen
- Division of Pulmonary, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan; Department of Medicine, MacKay Medical College, New Taipei, Taiwan.
| | - Cheng-Yi Wang
- Department of Internal Medicine, Cardinal Tien Hospital and School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, Taiwan.
| |
Collapse
|
37
|
Identification of amino acid residues required for inhibition of host gene expression by influenza A/Viet Nam/1203/2004 H5N1 PA-X. J Virol 2021; 96:e0040821. [PMID: 33853954 DOI: 10.1128/jvi.00408-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PA-X is a non-structural protein of influenza A virus (IAV), which is encoded by the polymerase acidic (PA) N-terminal region that contains a C-terminal +1 frameshifted sequence. IAV PA-X protein modulates virus-induced host innate immune responses and viral pathogenicity via suppression of host gene expression or cellular shutoff, through cellular mRNA cleavage. Highly pathogenic avian influenza viruses (HPAIV) of the H5N1 subtype naturally infect different avian species, they have an enormous economic impact in the poultry farming, and they also have zoonotic and pandemic potential, representing a risk to human public health. In the present study, we describe a novel bacteria-based approach to identify amino acid residues in the PA-X protein of the HPAIV A/Viet Nam/1203/2004 H5N1 that are important for its ability to inhibit host protein expression or cellular shutoff activity. Identified PA-X mutants displayed a reduced shutoff activity as compared to that of the wild-type (WT) A/Viet Nam/1203/2004 H5N1 PA-X protein. Notably, this new bacteria-based screening allowed us to identify amino acid residues widely distributed over the entire N-terminal region of PA-X. Furthermore, we found that some of the residues affecting A/Viet Nam/1203/2004 H5N1 PA-X host shutoff activity also affect PA polymerase activity in a minigenome assay. This information could be used for the rational design of new and more effective compounds with antiviral activity against IAV. Moreover, our results demonstrate the feasibility of using this bacteria-based approach to identify amino acid residues important for the activity of viral proteins to inhibit host gene expression. IMPORTANCE Highly pathogenic avian influenza viruses (HPAIV) continue to pose a huge threat to global animal and human health. Despite of the limited genome size of Influenza A virus (IAV), the virus encodes eight main viral structural proteins and multiple accessory non-structural proteins, depending on the IAV type, subtype or strain. One of the IAV accessory proteins, PA-X, is encoded by the polymerase acidic (PA) protein and is involved in pathogenicity through the modulation of IAV-induced host inflammatory and innate immune responses. However, the molecular mechanism(s) of IAV PA-X regulation of the host immune response is not well understood. In this work, we used, for the first time, a bacteria-based approach for the identification of amino acids important for the ability of IAV PA-X to induce host shutoff activity and describe novel residues relevant for its ability to inhibit host gene expression, and their contribution in PA polymerase activity.
Collapse
|
38
|
Beigel JH, Hayden FG. Influenza Therapeutics in Clinical Practice-Challenges and Recent Advances. Cold Spring Harb Perspect Med 2021; 11:a038463. [PMID: 32041763 PMCID: PMC8015700 DOI: 10.1101/cshperspect.a038463] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the last few years, several new direct-acting influenza antivirals have been licensed, and others have advanced in clinical development. The increasing diversity of antiviral classes should allow an adequate public health response should a resistant virus to one agent or class widely circulate. One new antiviral, baloxavir marboxil, has been approved in the United States for treatment of influenza in those at high risk of developing influenza-related complications. Except for intravenous zanamivir in European Union countries, no antivirals have been licensed specifically for the indication of severe influenza or hospitalized influenza. This review addresses recent clinical developments involving selected polymerase inhibitors, neuraminidase inhibitors, antibody-based therapeutics, and host-directed therapies. There are many knowledge gaps for most of these agents because some data are not published and multiple pivotal studies are in progress at present. This review also considers important clinical research issues, including regulatory pathways, study designs, endpoints, and target populations encountered during the clinical development of novel therapeutics.
Collapse
Affiliation(s)
- John H Beigel
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20892-9826, USA
| | - Frederick G Hayden
- Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| |
Collapse
|
39
|
Hamza H, Shehata MM, Mostafa A, Pleschka S, Planz O. Improved in vitro Efficacy of Baloxavir Marboxil Against Influenza A Virus Infection by Combination Treatment With the MEK Inhibitor ATR-002. Front Microbiol 2021; 12:611958. [PMID: 33679636 PMCID: PMC7928405 DOI: 10.3389/fmicb.2021.611958] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/22/2021] [Indexed: 01/21/2023] Open
Abstract
Currently, all available antiviral drugs against influenza virus (IV) that target the virus proteins directly, like Baloxavir acid (BXA), lead to viral resistance. Therefore, cellular mechanisms and factors essential for IV replication are promising antiviral targets. As IV strongly depends on the virus-induced Raf/MEK/ERK signal pathway for efficient generation of infectious progeny virions, this pathway represents an important target. We aimed to determine whether the MEK inhibitor ATR-002 (PD0184264) is able to impair replication of BXA-resistant influenza A virus (IAV) and whether a treatment combining BXA and ATR-002 improves the therapeutic efficiency in vitro. A549 cells infected with different IAV strains including BXA-resistant variants were treated with ATR-002 or BXA and the effect on virus titer reduction was determined. The synergistic effect of ATR-002 and BXA was also analyzed using different evaluation methods. The data demonstrated that ATR-002 has a significant and dose-dependent inhibitory effect on IAV replication across different strains and subtypes. IAV with the PA-I38T mutation shows resistance against BXA, but is still susceptible toward ATR-002. The combination of ATR-002 and BXA exhibited a synergistic potency reflected by low combination index values. In conclusion, we show that ATR-002 permits to counteract the limitations of BXA against BXA-resistant IAV. Moreover, the results support the use of ATR-002 (i) in a mono-therapy, as well as (ii) in a combined approach together with BXA. These findings might also apply to the treatment of infections with IAV, resistant against other direct-acting antiviral compounds.
Collapse
Affiliation(s)
- Hazem Hamza
- Department of Immunology, Institute for Cell Biology, Eberhard Karls University of Tübingen, Tübingen, Germany.,Virology Laboratory, Environmental Research Division, National Research Centre, Giza, Egypt
| | - Mahmoud M Shehata
- Virology Laboratory, Environmental Research Division, National Research Centre, Giza, Egypt.,Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Ahmed Mostafa
- Virology Laboratory, Environmental Research Division, National Research Centre, Giza, Egypt.,Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt.,Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany
| | - Stephan Pleschka
- Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany.,German Center for Infection Research (DZIF), Partner Site Giessen, Giessen, Germany
| | - Oliver Planz
- Department of Immunology, Institute for Cell Biology, Eberhard Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
40
|
Patel MC, Chesnokov A, Jones J, Mishin VP, De La Cruz JA, Nguyen HT, Zanders N, Wentworth DE, Davis TC, Gubareva LV. Susceptibility of widely diverse influenza a viruses to PB2 polymerase inhibitor pimodivir. Antiviral Res 2021; 188:105035. [PMID: 33581212 PMCID: PMC8978222 DOI: 10.1016/j.antiviral.2021.105035] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/01/2021] [Accepted: 02/06/2021] [Indexed: 11/25/2022]
Abstract
Pimodivir exerts an antiviral effect on the early stages of influenza A virus replication by inhibiting the cap-binding function of polymerase basic protein 2 (PB2). In this study, we used a combination of sequence analysis and phenotypic methods to evaluate pimodivir susceptibility of influenza A viruses collected from humans and other hosts. Screening PB2 sequences for substitutions previously associated with reduced pimodivir susceptibility revealed a very low frequency among seasonal viruses circulating in the U.S. during 2015–2020 (<0.03%; 3/11,934) and among non-seasonal viruses collected in various countries during the same period (0.2%; 18/8971). Pimodivir potently inhibited virus replication in two assays, a single-cycle HINT and a multi-cycle FRA, with IC50 values in a nanomolar range. Median IC50 values determined by HINT were similar for both subtypes of seasonal viruses, A(H1N1)pdm09 and A(H3N2), across three seasons. Human seasonal viruses with PB2 substitutions S324C, S324R, or N510K displayed a 27–317-fold reduced pimodivir susceptibility by HINT. In addition, pimodivir was effective at inhibiting replication of a diverse group of animal-origin viruses that have pandemic potential, including avian viruses of A(H5N6) and A(H7N9) subtypes. A rare PB2 substitution H357N was identified in an A(H4N2) subtype poultry virus that displayed >100-fold reduced pimodivir susceptibility. Our findings demonstrate a broad inhibitory activity of pimodivir and expand the existing knowledge of amino acid substitutions that can reduce susceptibility to this investigational antiviral.
Collapse
Affiliation(s)
- Mira C Patel
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Anton Chesnokov
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Joyce Jones
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Vasiliy P Mishin
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Juan A De La Cruz
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ha T Nguyen
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA; General Dynamics Information Technology, Atlanta, GA, USA
| | - Natosha Zanders
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA; General Dynamics Information Technology, Atlanta, GA, USA
| | - David E Wentworth
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Todd C Davis
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Larisa V Gubareva
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| |
Collapse
|
41
|
Yin H, Jiang N, Shi W, Chi X, Liu S, Chen JL, Wang S. Development and Effects of Influenza Antiviral Drugs. Molecules 2021; 26:molecules26040810. [PMID: 33557246 PMCID: PMC7913928 DOI: 10.3390/molecules26040810] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 12/15/2022] Open
Abstract
Influenza virus is a highly contagious zoonotic respiratory disease that causes seasonal outbreaks each year and unpredictable pandemics occasionally with high morbidity and mortality rates, posing a great threat to public health worldwide. Besides the limited effect of vaccines, the problem is exacerbated by the lack of drugs with strong antiviral activity against all flu strains. Currently, there are two classes of antiviral drugs available that are chemosynthetic and approved against influenza A virus for prophylactic and therapeutic treatment, but the appearance of drug-resistant virus strains is a serious issue that strikes at the core of influenza control. There is therefore an urgent need to develop new antiviral drugs. Many reports have shown that the development of novel bioactive plant extracts and microbial extracts has significant advantages in influenza treatment. This paper comprehensively reviews the development and effects of chemosynthetic drugs, plant extracts, and microbial extracts with influenza antiviral activity, hoping to provide some references for novel antiviral drug design and promising alternative candidates for further anti-influenza drug development.
Collapse
|
42
|
Maheden K, Todd B, Gordon CJ, Tchesnokov EP, Götte M. Inhibition of viral RNA-dependent RNA polymerases with clinically relevant nucleotide analogs. Enzymes 2021; 49:315-354. [PMID: 34696837 PMCID: PMC8517576 DOI: 10.1016/bs.enz.2021.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The treatment of viral infections remains challenging, in particular in the face of emerging pathogens. Broad-spectrum antiviral drugs could potentially be used as a first line of defense. The RNA-dependent RNA polymerase (RdRp) of RNA viruses serves as a logical target for drug discovery and development efforts. Herein we discuss compounds that target RdRp of poliovirus, hepatitis C virus, influenza viruses, respiratory syncytial virus, and the growing data on coronaviruses. We focus on nucleotide analogs and mechanisms of action and resistance.
Collapse
Affiliation(s)
- Kieran Maheden
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Brendan Todd
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Calvin J Gordon
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Egor P Tchesnokov
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Matthias Götte
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada; Li Ka Shing Institute of Virology at University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
43
|
Zaraket H, Hurt AC, Clinch B, Barr I, Lee N. Burden of influenza B virus infection and considerations for clinical management. Antiviral Res 2020; 185:104970. [PMID: 33159999 DOI: 10.1016/j.antiviral.2020.104970] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 12/27/2022]
Abstract
Influenza B viruses cause significant morbidity and mortality, particularly in children, but the awareness of their impact is often less than influenza A viruses partly due to their lack of pandemic potential. Here, we summarise the biology, epidemiology and disease burden of influenza B, and review existing data on available antivirals for its management. There has long been uncertainty surrounding the clinical efficacy of neuraminidase inhibitors (NAIs) for influenza B treatment. In this article, we bring together the existing data on NAIs and discuss these alongside recent large randomised controlled trial data for the new polymerase inhibitor baloxavir in high-risk influenza B patients. Finally, we offer considerations for the clinical management of influenza B, with a focus on children and high-risk patients where disease burden is highest.
Collapse
Affiliation(s)
- Hassan Zaraket
- Center for Infectious Disease Research, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | | | | | - Ian Barr
- WHO Collaborating Centre for Reference and Research on Influenza, Melbourne, Australia; Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute, Melbourne, Australia
| | - Nelson Lee
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Canada.
| |
Collapse
|
44
|
Pfäfflin F, Stegemann MS. Seltene, in Deutschland nicht endemische Infektionen der Lunge. DER PNEUMOLOGE 2020; 17:477-488. [PMID: 33162874 PMCID: PMC7607892 DOI: 10.1007/s10405-020-00352-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/29/2022]
|
45
|
Hashimoto T, Baba K, Inoue K, Okane M, Hata S, Shishido T, Naito A, Wildum S, Omoto S. Comprehensive assessment of amino acid substitutions in the trimeric RNA polymerase complex of influenza A virus detected in clinical trials of baloxavir marboxil. Influenza Other Respir Viruses 2020; 15:389-395. [PMID: 33099886 PMCID: PMC8051730 DOI: 10.1111/irv.12821] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/01/2020] [Accepted: 10/04/2020] [Indexed: 01/18/2023] Open
Abstract
Background Baloxavir marboxil (BXM) is an approved drug that selectively targets cap‐dependent endonuclease on PA subunit in the RNA polymerase complex of influenza A and B viruses. Amino acid substitutions at position 38 in the PA subunit were identified as a major pathway for reduced susceptibility to baloxavir acid (BXA), the active form of BXM. Additionally, substitutions found at positions E23, A37, and E199 in the PA subunit impact BXA susceptibility by less than 10‐fold. Methods We comprehensively evaluated the impact of novel amino acid substitutions identified in PA, PB1, and PB2 subunits in BXM clinical trials and influenza sequence databases by means of drug susceptibility and replicative capacity. Results PA/I38N in A(H1N1)pdm09 and PA/I38R in A(H3N2) were newly identified as treatment‐emergent substitutions in the CAPSTONE‐2 study. The I38N substitution conferred reduced susceptibility by 24‐fold, whereas replicative capacity of the I38N‐substituted virus was impaired compared with the wild‐type. The I38R‐substituted virus was not viable in cell culture. All other mutations assessed in this extensive study did not significantly affect BXA susceptibility (< 2.4‐fold change). Conclusion These results provide additional information on the impact of amino acid substitutions in the trimeric viral polymerase complex to BXA susceptibility and will further support influenza surveillance.
Collapse
Affiliation(s)
- Takashi Hashimoto
- Shionogi & Co., Ltd., Osaka, Japan.,Shionogi Techno Advance Research, Co., Ltd., Osaka, Japan
| | | | - Kae Inoue
- Shionogi Techno Advance Research, Co., Ltd., Osaka, Japan
| | - Miyako Okane
- Shionogi Techno Advance Research, Co., Ltd., Osaka, Japan
| | - Satoshi Hata
- Shionogi Techno Advance Research, Co., Ltd., Osaka, Japan
| | | | | | | | | |
Collapse
|
46
|
Abstract
Influenza continues to baffle humans by its constantly changing nature. The twenty-first century has witnessed considerable advances in the understanding of the influenza viral pathogenesis, its synergy with bacterial infections and diagnostic methods. However, challenges continue: to find a less expensive and more reliable point-of-care test for use in developing countries, to produce more efficacious antiviral drugs, to explore ways to combat emerging antiviral resistance and to develop vaccines that can either be produced in a shorter production time or can overcome the need for annual matching with the circulating influenza strains. Most importantly for India, as a nation that suffered the highest mortality in the influenza pandemic 1918, there is an urgent need to gear up our existing preparedness for the next pandemic which is capable to hit at any moment in time.
Collapse
|
47
|
Abed Y, Saim-Mamoun A, Boivin G. Fitness of influenza A and B viruses with reduced susceptibility to baloxavir: A mini-review. Rev Med Virol 2020; 31:e2175. [PMID: 32975358 DOI: 10.1002/rmv.2175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022]
Abstract
Neuraminidase inhibitors (NAIs), that currently include oseltamivir (Tamiflu® ), zanamivir (Relenza® ), peramivir (Rapivab® ) and laninamivir (Inavir® ), constitute an important class of antivirals recommended against seasonal influenza A and B infections. NAIs target the surface NA protein whose sialidase activity is responsible for virion release from infected cells. Because of their pivotal role in the transcription/translation process, the polymerase acidic (PA) and polymerase basic 1 and 2 (PB1 and PB2, respectively) internal proteins also constitute targets of interest for the development of additional anti-influenza agents. Baloxavir marboxil (BXM), an inhibitor of the cap-dependent endonuclease activity of the influenza PA protein, was approved in the United States and Japan in 2018. Baloxavir acid (BXA), the active compound of BXM, demonstrated a potent in vitro activity against different types/subtypes of influenza viruses including seasonal influenza A/B strains as well as avian influenza A viruses with a pandemic potential. A single oral dose of BXM provided virological and clinical benefits that were respectively superior or equal to those displayed by the standard (5 days, twice daily) oseltamivir regimen. Nevertheless, BXM-resistant variants have emerged at relatively high rates in BXM-treated children and adults. Consequently, there is a need to study the fitness (virulence and transmissibility) characteristics of mutants with a high potential to emerge as such variants can compromise the clinical usefulness of BXM. The purpose of this manuscript is to review the fitness properties of influenza A and B isolates harbouring mutations of reduced susceptibility to BXA.
Collapse
Affiliation(s)
- Yacine Abed
- CHUQ-CHUL and Laval University, Québec, Canada
| | | | - Guy Boivin
- CHUQ-CHUL and Laval University, Québec, Canada
| |
Collapse
|
48
|
Madsen A, Dai YN, McMahon M, Schmitz AJ, Turner JS, Tan J, Lei T, Alsoussi WB, Strohmeier S, Amor M, Mohammed BM, Mudd PA, Simon V, Cox RJ, Fremont DH, Krammer F, Ellebedy AH. Human Antibodies Targeting Influenza B Virus Neuraminidase Active Site Are Broadly Protective. Immunity 2020; 53:852-863.e7. [PMID: 32976769 DOI: 10.1016/j.immuni.2020.08.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 06/01/2020] [Accepted: 08/25/2020] [Indexed: 12/23/2022]
Abstract
Influenza B virus (IBV) infections can cause severe disease in children and the elderly. Commonly used antivirals have lower clinical effectiveness against IBV compared to influenza A viruses (IAV). Neuraminidase (NA), the second major surface protein on the influenza virus, is emerging as a target of broadly protective antibodies that recognize the NA active site of IAVs. However, similarly broadly protective antibodies against IBV NA have not been identified. Here, we isolated and characterized human monoclonal antibodies (mAbs) that target IBV NA from an IBV-infected patient. Two mAbs displayed broad and potent capacity to inhibit IBV NA enzymatic activity, neutralize the virus in vitro, and protect against lethal IBV infection in mice in prophylactic and therapeutic settings. These mAbs inserted long CDR-H3 loops into the NA active site, engaging residues highly conserved among IBV NAs. These mAbs provide a blueprint for the development of improved vaccines and therapeutics against IBVs.
Collapse
Affiliation(s)
- Anders Madsen
- Influenza Centre, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | - Ya-Nan Dai
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Meagan McMahon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Aaron J Schmitz
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jackson S Turner
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jessica Tan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tingting Lei
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Wafaa B Alsoussi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shirin Strohmeier
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mostafa Amor
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bassem M Mohammed
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Philip A Mudd
- Division of Emergency Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rebecca J Cox
- Influenza Centre, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; Department of Microbiology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Daved H Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Ali H Ellebedy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
49
|
Pfäfflin F, Flick H, Vogtmann M. Seltene virale Infektionen der Lunge. DER PNEUMOLOGE 2020; 17:311-321. [PMID: 32837494 PMCID: PMC7369536 DOI: 10.1007/s10405-020-00337-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Die Lunge ist aufgrund ihres direkten Kontakts mit der Umwelt gegenüber einer Vielzahl von Viren exponiert. Im folgenden Beitrag werden Infektionen durch 4 virale Erreger dargestellt, die zu pulmonalen Manifestationen führen können, die in Deutschland aufgrund ihrer Seltenheit wenig bekannt sind. Bei der zoonotischen Influenza, dem „Middle East respiratory syndrome“ (MERS) und der Infektion durch Hantaviren handelt es sich um zoonotische Infektionen, während es sich bei den Masern um eine rein humane Erkrankung handelt. Allen 4 Infektionen gemein sind die potenziell schweren pulmonalen Komplikationen mit hoher Mortalität. Über den einzelnen Patienten hinaus können die Masern, MERS und auch die zoonotische Influenza zu weiteren Übertragungen mit weitreichenden Konsequenzen führen. Der Beitrag beleuchtet für die jeweiligen Erreger relevante Aspekte von Epidemiologie, klinischem Verlauf, Therapie und Prävention. Diese Kenntnisse erscheinen wichtig, da jederzeit mit dem Auftreten von Fällen in Deutschland gerechnet werden muss.
Collapse
Affiliation(s)
- F. Pfäfflin
- Medizinische Klinik mit Schwerpunkt Infektiologie und Pneumologie, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Deutschland
| | - H. Flick
- Klinische Abteilung für Pulmonologie, Medizinische Universität Graz, Graz, Österreich
| | - M. Vogtmann
- Medizinische Klinik mit Schwerpunkt Infektiologie und Pneumologie, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Deutschland
| |
Collapse
|
50
|
Monoclonal Antibody Therapy Protects Pharmacologically Immunosuppressed Mice from Lethal Infection with Influenza B Virus. Antimicrob Agents Chemother 2020; 64:AAC.00284-20. [PMID: 32631823 DOI: 10.1128/aac.00284-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/27/2020] [Indexed: 11/20/2022] Open
Abstract
Human influenza A and B viruses are highly contagious and cause similar illnesses and seasonal epidemics. Currently available antiviral drugs have limited efficacy in humans with compromised immune systems; therefore, alternative strategies for protection are needed. Here, we investigated whether monoclonal antibodies (MAbs) targeting hemagglutinin (HA) and/or neuraminidase (NA) proteins would protect immunosuppressed mice from severe infections with influenza B virus. Pharmacologically immunosuppressed BALB/c mice were inoculated with B/Brisbane/60/2008 (BR/08) influenza virus and were treated with a single dose of 1, 5, or 25 mg/kg of body weight per day of either an anti-HA MAb (1D2) or an anti-NA MAb (1F2) starting at 24 hours postinoculation (hpi). Monotherapy with 1D2 or 1F2 MAbs provided dose-dependent protection of mice, with decreased BR/08 virus replication and spread in the mouse lungs, compared with those of controls. Combination treatment with 1D2 and 1F2 provided greater protection than did monotherapy, even when started at 48 hpi. Virus spread was also efficiently restrained within the lungs, being limited to 6%, 10%, and 10% of that seen in active infection when treatment was initiated at 24, 48, and 72 hpi, respectively. In most cases, the expression of cytokines and chemokines was altered according to when treatment was initiated. Higher expression of proinflammatory IP-10 and MCP-1 in combination-treatment groups, but not in monotherapy groups, to some extent, promoted better control of virus spread within the lungs. This study demonstrates the potential value of MAb immunotherapy in treating influenza in immunocompromised hosts who are at increased risk of severe disease.
Collapse
|