1
|
Nita A, Abraham SP, Elrefaay ER, Fafilek B, Cizkova E, Ursachi VC, Gudernova I, Koudelka A, Dudeja P, Gregor T, Feketova Z, Rico G, Svozilova K, Celiker C, Czyrek AA, Barta T, Trantirek L, Wiedlocha A, Krejci P, Bosakova M. FGFR2 residence in primary cilia is necessary for epithelial cell signaling. J Cell Biol 2025; 224:e202311030. [PMID: 40257378 PMCID: PMC12010920 DOI: 10.1083/jcb.202311030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/21/2024] [Accepted: 03/21/2025] [Indexed: 04/22/2025] Open
Abstract
Primary cilium projects from cells to provide a communication platform with neighboring cells and the surrounding environment. This is ensured by the selective entry of membrane receptors and signaling molecules, producing fine-tuned and effective responses to the extracellular cues. In this study, we focused on one family of signaling molecules, the fibroblast growth factor receptors (FGFRs), their residence within cilia, and its role in FGFR signaling. We show that FGFR1 and FGFR2, but not FGFR3 and FGFR4, localize to primary cilia of the developing mouse tissues and in vitro cells. For FGFR2, we demonstrate that the ciliary residence is necessary for its signaling and expression of target morphogenic genes. We also show that the pathogenic FGFR2 variants have minimal cilium presence, which can be rescued for the p.P253R variant associated with the Apert syndrome by using the RLY-4008 kinase inhibitor. Finally, we determine the molecular regulators of FGFR2 trafficking to cilia, including IFT144, BBS1, and the conserved T429V430 motif within FGFR2.
Collapse
Affiliation(s)
- Alexandru Nita
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Institute of Animal Physiology and Genetics of the CAS, Brno, Czech Republic
| | - Sara P. Abraham
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Institute of Animal Physiology and Genetics of the CAS, Brno, Czech Republic
| | - Eman R. Elrefaay
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Institute of Animal Physiology and Genetics of the CAS, Brno, Czech Republic
| | - Bohumil Fafilek
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Eliska Cizkova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Vlad Constantin Ursachi
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czech Republic
| | - Iva Gudernova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Institute of Animal Physiology and Genetics of the CAS, Brno, Czech Republic
| | - Adolf Koudelka
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Pooja Dudeja
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czech Republic
| | - Tomas Gregor
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Zuzana Feketova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czech Republic
| | - Gustavo Rico
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czech Republic
| | - Katerina Svozilova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Institute of Animal Physiology and Genetics of the CAS, Brno, Czech Republic
| | - Canan Celiker
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Aleksandra A. Czyrek
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czech Republic
| | - Tomas Barta
- Institute of Animal Physiology and Genetics of the CAS, Brno, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lukas Trantirek
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Antoni Wiedlocha
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Cell Reprograming, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Institute of Animal Physiology and Genetics of the CAS, Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czech Republic
| | - Michaela Bosakova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Institute of Animal Physiology and Genetics of the CAS, Brno, Czech Republic
| |
Collapse
|
2
|
Pant K, Peixoto E, Gradilone SA. Primary Cilia in Hepatic Biliary Hyperplasia: Implications for Liver Diseases. Semin Liver Dis 2025. [PMID: 40118103 DOI: 10.1055/a-2563-9791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Primary cilia, hair-like projections on the surface of various cell types, play crucial roles in sensing and regulating environmental cues within the liver, particularly among cholangiocytes. These structures detect changes in bile composition, flow, and other biochemical signals, integrating this information to modulate cellular processes. Dysfunction in cholangiocyte cilia-whether due to structural abnormalities or genetic mutations-has been linked to an array of cholangiopathies and ciliopathies. These include conditions such as biliary atresia, cholangiocarcinoma, primary sclerosing cholangitis, and polycystic liver diseases, each with distinct clinical phenotypes influenced by impaired ciliary function. Given the complexity of the ciliary proteome and its role in cellular signaling, including the Hedgehog, Wnt, and TGR5 pathways, ciliary dysfunction disrupts essential signaling cascades, thus driving disease progression. While over 40 gene mutations are associated with ciliopathic features, there may be additional contributors within the expansive ciliary proteome. This study synthesizes current knowledge on cholangiocyte cilia, emphasizing their mechanistic role in liver disease, and highlights emerging therapeutic strategies aimed at restoring ciliary function. In conclusion, ciliotherapies are proposed as a promising approach for addressing cholangiopathies, with the potential to shift the current therapeutic landscape.
Collapse
Affiliation(s)
- Kishor Pant
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | | | - Sergio A Gradilone
- The Hormel Institute, University of Minnesota, Austin, Minnesota
- Masonic Cancer Centre, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
3
|
Devlin LA, Dewhurst RM, Sudhindar PD, Sayer JA. Renal ciliopathies. Curr Top Dev Biol 2025; 163:229-305. [PMID: 40254346 DOI: 10.1016/bs.ctdb.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Primary cilia are essential cellular organelles with pivotal roles in many signalling pathways. Here we provide an overview of the role of primary cilia within the kidney, starting with primary ciliary structure and key protein complexes. We then highlight the specialised functions of primary cilia, emphasising their role in a group of diseases known as renal ciliopathies. These conditions include forms of polycystic kidney disease, nephronophthisis, and other syndromic ciliopathies, such as Joubert syndrome and Bardet-Biedl syndrome. We explore models of renal ciliopathies, both in vitro and in vivo, shedding light on the molecular mechanisms underlying these diseases including Wnt and Hedgehog signalling pathways, inflammation, and cellular metabolism. Finally, we discuss therapeutic approaches, from current treatments to cutting-edge preclinical research and clinical trials.
Collapse
Affiliation(s)
- Laura A Devlin
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Rebecca M Dewhurst
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Praveen D Sudhindar
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - John A Sayer
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom; Renal Services, Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne, United Kingdom; National Institute for Health Research, Newcastle Biomedical Research Centre, Newcastle Upon Tyne, United Kingdom.
| |
Collapse
|
4
|
Laporte D, Sagot I. Microtubule Reorganization and Quiescence: an Intertwined Relationship. Physiology (Bethesda) 2025; 40:0. [PMID: 39378102 DOI: 10.1152/physiol.00036.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/10/2024] Open
Abstract
Quiescence is operationally defined as a reversible proliferation arrest. This cellular state is central to both organism development and homeostasis, and its dysregulation causes many pathologies. The quiescent state encompasses very diverse cellular situations depending on the cell type and its environment. Further, quiescent cell properties evolve with time, a process that is thought to be the origin of aging in multicellular organisms. Microtubules are found in all eukaryotes and are essential for cell proliferation as they support chromosome segregation and intracellular trafficking. Upon proliferation cessation and quiescence establishment, the microtubule cytoskeleton was shown to undergo significant remodeling. The purpose of this review is to examine the literature in search of evidence to determine whether the observed microtubule reorganizations are merely a consequence of quiescence establishment or if they somehow participate in this cell fate decision.
Collapse
Affiliation(s)
- Damien Laporte
- Centre National de la Recherche ScientifiqueUniversité de Bordeaux-Institut de Biochimie et Génétique Cellulaires, UMR5095, Bordeaux, France
| | - Isabelle Sagot
- Centre National de la Recherche ScientifiqueUniversité de Bordeaux-Institut de Biochimie et Génétique Cellulaires, UMR5095, Bordeaux, France
| |
Collapse
|
5
|
Zhong BH, Nie N, Dong M. Molecular mechanisms of the obesity associated with Bardet-Biedl syndrome: An update. Obes Rev 2025; 26:e13859. [PMID: 39477210 DOI: 10.1111/obr.13859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/27/2024] [Accepted: 10/02/2024] [Indexed: 02/05/2025]
Abstract
Obesity is a prominent feature of Bardet-Biedl syndrome (BBS), which represents a major and growing public health problem. More than half of BBS patients carry mutations in one of eight genes that encode subunits of a protein complex known as the BBSome, which has emerged as a key regulator of energy and glucose homeostasis. However, the mechanisms underlying obesity in BBS are complex. Numerous studies have identified a high prevalence of insulin resistance and metabolic syndrome among individuals with BBS. However, the exact mechanisms are not fully understood. This review summarized evidence from experiments using mouse and cell models, focusing on the energy imbalance that leads to obesity in patients with BBS. The studies discussed in this review contribute to understanding the functional role of the BBSome in the obesity associated with BBS, laying the foundation for developing new preventive or therapeutic strategies for obese patients.
Collapse
Affiliation(s)
- Bang-Hua Zhong
- Department of Gastrointestinal Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ning Nie
- Comprehensive Geriatric First Ward, Jinqiu Hospital of Liaoning Province, Shenyang, China
| | - Ming Dong
- Department of Gastrointestinal Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
6
|
Wu Z, Chen N, Takao D. The role of primary cilia in myoblast proliferation and cell cycle regulation during myogenesis. Cell Struct Funct 2025; 50:53-63. [PMID: 39805615 DOI: 10.1247/csf.24067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
The process of mammalian myogenesis is fundamental to understanding muscle development and holds broad relevance across multiple fields, from developmental biology to regenerative medicine. This review highlights two key aspects: myoblast proliferation and the role of cilia in this process. Myoblasts, as muscle precursor cells, must undergo tightly regulated cycles of proliferation and differentiation to ensure proper muscle growth and function. Recent research has uncovered an essential role for primary cilia, hair-like sensory organelles on the cell surface, in modulating signaling pathways crucial to myogenesis. Cilium-mediated signaling appears to regulate various stages of myogenesis, including the control of myoblast differentiation. Furthermore, primary cilia undergo multiple cycles of formation and disassembly during myogenesis, presumably enabling detailed, context-dependent regulation of their functions. In particular, the regulation of myoblast proliferation through cell cycle control by primary cilia is an important topic that requires further investigation. By examining the interactions between primary cilia and myoblasts, this review aims to provide new insights into the molecular and cellular mechanisms driving muscle development, with potential applications for understanding muscle-related diseases and advancing therapeutic strategies. Additionally, advancements in imaging and image analysis technologies have become indispensable for studying these processes at the cellular level. This review also addresses these technological advancements and current challenges.Key words: myogenesis, myoblast, proliferation, cilia, imaging.
Collapse
Affiliation(s)
- Zhichao Wu
- College of Animal Sciences and Technology and College of Veterinary Medicine, Huazhong Agricultural University
| | - Nuo Chen
- College of Animal Sciences and Technology and College of Veterinary Medicine, Huazhong Agricultural University
| | - Daisuke Takao
- College of Animal Sciences and Technology and College of Veterinary Medicine, Huazhong Agricultural University
- Hubei Hongshan Labolatory
| |
Collapse
|
7
|
Sentell ZT, Mougharbel L, Nurcombe ZW, Babayeva S, Henein M, Chu LL, Akpa MM, Chung CF, Rivière JB, Pupavac M, Li R, Rosenblatt DS, Majewski J, Goodyer PR, Torban E, Kitzler TM. Use of patient-derived cell models for characterization of compound heterozygous hypomorphic C2CD3 variants in a patient with isolated nephronophthisis. Hum Mol Genet 2025; 34:368-380. [PMID: 39690811 PMCID: PMC11811416 DOI: 10.1093/hmg/ddae182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/23/2024] [Accepted: 12/04/2024] [Indexed: 12/19/2024] Open
Abstract
BACKGROUND Primary ciliopathies are a heterogeneous group of rare disorders predominantly caused by autosomal-recessive genetic variants that disrupt non-motile ciliary function. They often manifest as a syndromic phenotype, frequently involving the kidney. Biallelic pathogenic variants in C2CD3 disrupt ciliogenesis and Sonic Hedgehog (SHH) signaling, resulting in a severe ciliopathy (Orofaciodigital syndrome XIV, OMIM 615948). We present compound heterozygous missense variants in C2CD3 that partially disrupt ciliary function in a patient with isolated renal disease. METHODS Exome sequencing identified biallelic C2CD3 missense variants (p.Pro168Leu; p.Thr2079Met). Patient-derived fibroblasts and urinary renal epithelial cells (URECs), and human RPE-1 C2CD3 knockout (KO) cell-lines were used for in vitro studies. RESULTS Cilia length was significantly shorter in patient-derived fibroblasts compared to an unaffected sibling (2.309 vs. 2.850 μm, P < 0.0001), while URECs showed significantly shortened cilia (2.068 vs. 2.807 μm, P < 0.0001) and a 40.8% reduction in ciliation (P < 0.001). The latter was not observed in fibroblasts, suggesting a kidney-specific effect. SHH signaling was dysregulated in patient cells as expression of GLI3 activator protein and GLI1 mRNA was significantly reduced. C2CD3 localization to the basal body was significantly reduced in patient URECs. Finally, rescue experiments in C2CD3 KO RPE-1 cells corroborated these findings by demonstrating a reduced capacity to restore ciliogenesis for each variant. CONCLUSION Biallelic hypomorphic missense variants in C2CD3 may contribute to an isolated nephronophthisis phenotype with impaired ciliogenesis and SHH signaling. Our findings underscore the importance of functional testing to characterize candidate gene-disease relationships in patients with nephropathy of unknown etiology.
Collapse
Affiliation(s)
- Zachary T Sentell
- Department of Human Genetics, McGill University, 3640 rue University, Montreal, QC, H3A 0C7, Canada
- Child Health and Human Development, The Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Lina Mougharbel
- Child Health and Human Development, The Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Zachary W Nurcombe
- Department of Human Genetics, McGill University, 3640 rue University, Montreal, QC, H3A 0C7, Canada
- Child Health and Human Development, The Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Sima Babayeva
- Department of Medicine, McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
- Research Institute of the McGill University Health Centre, McGill University, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Marc Henein
- Division of Medical Genetics, Department of Specialized Medicine, McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Lee Lee Chu
- Child Health and Human Development, The Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Murielle M Akpa
- Child Health and Human Development, The Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Chen-Fang Chung
- Department of Medicine, McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
- Research Institute of the McGill University Health Centre, McGill University, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Jean-Baptiste Rivière
- Department of Human Genetics, McGill University, 3640 rue University, Montreal, QC, H3A 0C7, Canada
| | - Mihaela Pupavac
- Department of Human Genetics, McGill University, 3640 rue University, Montreal, QC, H3A 0C7, Canada
| | - Rui Li
- Department of Human Genetics, McGill University, 3640 rue University, Montreal, QC, H3A 0C7, Canada
| | - David S Rosenblatt
- Child Health and Human Development, The Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
- Departments of Human Genetics, Medicine, Pediatrics and Biology, McGill University, 3640 rue University, Montreal, QC, H3A 0C7, Canada
- Divisions of Medical Genetics and Medical Biochemistry, Department of Specialized Medicine, McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Jacek Majewski
- Department of Human Genetics, McGill University, 3640 rue University, Montreal, QC, H3A 0C7, Canada
| | - Paul R Goodyer
- Child Health and Human Development, The Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
- Department of Pediatrics, Division of Nephrology, McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Elena Torban
- Department of Medicine, McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
- Research Institute of the McGill University Health Centre, McGill University, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Thomas M Kitzler
- Department of Human Genetics, McGill University, 3640 rue University, Montreal, QC, H3A 0C7, Canada
- Child Health and Human Development, The Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
- Division of Medical Genetics, Department of Specialized Medicine, McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| |
Collapse
|
8
|
Schneider P, Fandrey J, Leu T. Primary cilia as antennas for oxygen. Am J Physiol Cell Physiol 2025; 328:C381-C386. [PMID: 39714449 DOI: 10.1152/ajpcell.00298.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 12/05/2024] [Accepted: 12/11/2024] [Indexed: 12/24/2024]
Abstract
Over the past few decades, the primary cilium, an inconspicuous cell organelle, has increasingly become the focus of current research. The primary cilium is a microtubule-based, nonmotile, antenna-like structure that is present in almost all mammalian cells. The ciliary membrane incorporates a large number of receptor molecules, which further characterize this cellular organelle. These include receptors of the Sonic hedgehog (Shh)-, Wnt-, or platelet-derived growth factor (PDGF) signaling pathways. For this reason, as well as due to the fact that extracellular signaling molecules can bind to the ciliary membrane, primary cilia have been named "the antenna of the cell." In addition to their signaling function, the association of ciliary dysfunctions with a variety of diseases, so-called ciliopathies, underscores the importance of this functional cellular structure. Recent studies have also implicated primary cilia in the adaptation to low-oxygen conditions, which are characteristic of ischemia, such as in stroke or myocardial infarction, or tumor entities. The aim of this review is to provide an overview of these multiple facets and to take a closer look at the evolution of an inconspicuous cell organelle to a major player in hypoxia.
Collapse
Affiliation(s)
- Pascal Schneider
- Institute of Physiology, University Duisburg-Essen, Essen, Germany
| | - Joachim Fandrey
- Institute of Physiology, University Duisburg-Essen, Essen, Germany
| | - Tristan Leu
- Institute of Physiology, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
9
|
Rinaldi L, Senatore E, Feliciello S, Chiuso F, Insabato L, Feliciello A. Kidney cancer: From tumor biology to innovative therapeutics. Biochim Biophys Acta Rev Cancer 2025; 1880:189240. [PMID: 39674419 DOI: 10.1016/j.bbcan.2024.189240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/21/2024] [Accepted: 12/06/2024] [Indexed: 12/16/2024]
Abstract
Renal cell carcinoma (RCC) constitutes the most frequent kidney cancer of the adult population and one of the most lethal malignant tumors worldwide. RCC often presents without early symptoms, leading to late diagnosis. Prognosis varies widely based on the stage of cancer at diagnosis. In the early-stage, localized RCC has a relatively good prognosis, while advanced or metastatic RCC has a poor outcome. Obesity, smoking, genetic mutations and family history are all considered risk factors for RCC, while inherited disorders, such as Tuberous Sclerosis and von Hippel-Lindau syndrome, are causally associated with RCC development. Genetic screening, deep sequencing analysis, quantitative proteomics and immunostaining analysis on RCC tissues, biological fluids and blood samples have been employed to identify novel biomarkers, predisposing factors and therapeutic targets for RCC with important clinical implications for patient treatment. Combined approaches of gene-targeting strategies coupled to a deep functional analysis of cancer cell biology, both in vitro and in appropriate animal models of RCC, significantly contributed to identify and characterize relevant pathogenic mechanisms underlying development and progression of RCC. These studies provided also important cues for the generation of novel target-specific therapeutics that selectively restore deranged cancer cell signalling and dysfunctional immune checkpoints, positively impacting on the survival rate of treated RCC patients. In this review, we will describe the recent discoveries concerning the most relevant pathogenic mechanisms of RCC and will highlight novel therapeutic strategies that interrupt oncogenic pathways and restore immune defences in RCC patients.
Collapse
Affiliation(s)
- Laura Rinaldi
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Emanuela Senatore
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Stella Feliciello
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Italy
| | - Francesco Chiuso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Luigi Insabato
- Department of Advanced Biomedical Sciences, University Hospital Federico II, Naples, Italy
| | - Antonio Feliciello
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy.
| |
Collapse
|
10
|
Karbanová J, Thamm K, Fargeas CA, Deniz IA, Lorico A, Corbeil D. Prominosomes - a particular class of extracellular vesicles containing prominin-1/CD133? J Nanobiotechnology 2025; 23:61. [PMID: 39881297 PMCID: PMC11776279 DOI: 10.1186/s12951-025-03102-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/09/2025] [Indexed: 01/31/2025] Open
Abstract
Extracellular membrane vesicles (EVs) offer promising values in various medical fields, e.g., as biomarkers in liquid biopsies or as native (or bioengineered) biological nanocarriers in tissue engineering, regenerative medicine and cancer therapy. Based on their cellular origin EVs can vary considerably in composition and diameter. Cell biological studies on mammalian prominin-1, a cholesterol-binding membrane glycoprotein, have helped to reveal new donor membranes as sources of EVs. For instance, small EVs can originate from microvilli and primary cilia, while large EVs might be produced by transient structures such as retracting cellular extremities of cancer cells during the mitotic rounding process, and the midbody at the end of cytokinesis. Here, we will highlight the various subcellular origins of prominin-1+ EVs, also called prominosomes, and the potential mechanism(s) regulating their formation. We will further discuss the molecular and cellular characteristics of prominin-1, notably those that have a direct effect on the release of prominin-1+ EVs, a process that might be directly implicated in donor cell reprogramming of stem and cancer stem cells. Prominin-1+ EVs also mediate intercellular communication during embryonic development and adult homeostasis in healthy individuals, while disseminating biological information during diseases.
Collapse
Affiliation(s)
- Jana Karbanová
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany.
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
- Tissue Engineering Laboratories, Biotechnology Center, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany.
| | - Kristina Thamm
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
- denovoMATRIX GmbH, Tatzberg 47, 01307, Dresden, Germany
| | - Christine A Fargeas
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Ilker A Deniz
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Aurelio Lorico
- College of Osteopathic Medicine, Touro University Nevada, 874 American Pacific Drive, Henderson, NV, 89014, USA
| | - Denis Corbeil
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany.
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
- Tissue Engineering Laboratories, Biotechnology Center, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany.
| |
Collapse
|
11
|
Niewoehner R, Paulding D, Leal J, Stottmann RW. Perdurant TTC21B protein in the early mouse embryo is required for proper forebrain neural progenitor proliferation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.14.632919. [PMID: 39868177 PMCID: PMC11761405 DOI: 10.1101/2025.01.14.632919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Primary cilia play a pivotal role in cellular signaling and development and disruptions in ciliary form and/or function leads to human ciliopathies. Here, we examine the role of Ttc21b , a key component of the intraflagellar transport-A complex, in mouse forebrain development using a Ttc21b alien null allele. Our findings reveal significant microcephaly in homozygous mutants is caused by disrupted neural progenitor proliferation and differentiation. Histological and immunohistochemical analyses show an enlarged ventricular zone and reduced cortical plate thickness, accompanied by altered mitotic spindle angles, suggesting defects in symmetric versus asymmetric cell divisions. Despite low Ttc21b expression in the forebrain epithelium, early embryonic expression patterns imply that perdurant TTC21B protein may underlie these phenotypes. Progenitor proliferation kinetics were disrupted, with fewer cells re-entering the cell cycle, correlating with reduced TBR2-positive intermediate progenitors and altered neurogenesis dynamics. Neuronal processes in the cortical plate were significantly shortened, suggesting cytoskeletal defects specific to terminal differentiation stages. Our findings support a model where early Ttc21b expression in precursors destined for the forebrain is critical for sustaining later neural progenitor proliferation and differentiation. These results advance our understanding of primary cilia in cortical development and provide a framework for exploring cytoskeletal contributions to ciliopathies.
Collapse
|
12
|
Fakhari S, Campolina‐Silva G, Asayesh F, Girardet L, Scott‐Boyer M, Droit A, Soulet D, Greener J, Belleannée C. Shear stress effects on epididymal epithelial cell via primary cilia mechanosensory signaling. J Cell Physiol 2025; 240:e31475. [PMID: 39508588 PMCID: PMC11733861 DOI: 10.1002/jcp.31475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/24/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024]
Abstract
Shear stress, resulting from fluid flow, is a fundamental mechanical stimulus affecting various cellular functions. The epididymis, essential for sperm maturation, offers a compelling model to study the effects of shear stress on cellular behavior. This organ undergoes extensive proliferation and differentiation until puberty, achieving full functionality as spermatozoa commence their post-testicular maturation. Although the mechanical tension exerted by testicular fluid is hypothesized to drive epithelial proliferation and differentiation, the precise mechanisms remain unclear. Here we assessed whether the responsiveness of the epididymal cells to shear stress depends on functional primary cilia by combining microfluidic strategies on immortalized epididymal cells, calcium signaling assays, and high-throughput gene expression analysis. We identified 97 genes overexpressed in response to shear stress, including early growth response (Egr) 2/3, cellular communication network factor (Ccn) 1/2, and Fos proto-oncogene (Fos). While shear stress triggered a rapid increase of intracellular Ca2+, this response was abrogated following the impairment of primary ciliogenesis through pharmacological and siRNA approaches. Overall, our findings provide valuable insights into how mechanical forces influence the development of the male reproductive system, a requisite to sperm maturation.
Collapse
Affiliation(s)
- Sepideh Fakhari
- Department of Obstetrics, Gynecology, and Reproduction, Centre de recherche en Reproduction, Développement et Santé IntergénérationnelleFaculty of MedicineQuébec CityQuebecCanada
- Centre de recherche du centre hospitalier universitaire de Québec ‐ Université LavalQuébec CityQuebecCanada
- Department of ChemistryFaculty of Science and EngineeringQuébec CityQuebecCanada
| | - Gabriel Campolina‐Silva
- Department of Obstetrics, Gynecology, and Reproduction, Centre de recherche en Reproduction, Développement et Santé IntergénérationnelleFaculty of MedicineQuébec CityQuebecCanada
- Centre de recherche du centre hospitalier universitaire de Québec ‐ Université LavalQuébec CityQuebecCanada
| | - Farnaz Asayesh
- Department of Obstetrics, Gynecology, and Reproduction, Centre de recherche en Reproduction, Développement et Santé IntergénérationnelleFaculty of MedicineQuébec CityQuebecCanada
| | - Laura Girardet
- Department of Obstetrics, Gynecology, and Reproduction, Centre de recherche en Reproduction, Développement et Santé IntergénérationnelleFaculty of MedicineQuébec CityQuebecCanada
- Centre de recherche du centre hospitalier universitaire de Québec ‐ Université LavalQuébec CityQuebecCanada
| | - Marie‐Pier Scott‐Boyer
- Proteomics Platform, Québec Genomic Center, Université Laval, CHU de Québec Research Center (CHUL)Québec CityQuebecCanada
| | - Arnaud Droit
- Proteomics Platform, Québec Genomic Center, Université Laval, CHU de Québec Research Center (CHUL)Québec CityQuebecCanada
| | - Denis Soulet
- Centre de recherche du centre hospitalier universitaire de Québec ‐ Université LavalQuébec CityQuebecCanada
- Faculté de pharmacieUniversité LavalQuébec CityQuebecCanada
| | - Jesse Greener
- Centre de recherche du centre hospitalier universitaire de Québec ‐ Université LavalQuébec CityQuebecCanada
- Department of ChemistryFaculty of Science and EngineeringQuébec CityQuebecCanada
| | - Clémence Belleannée
- Department of Obstetrics, Gynecology, and Reproduction, Centre de recherche en Reproduction, Développement et Santé IntergénérationnelleFaculty of MedicineQuébec CityQuebecCanada
- Centre de recherche du centre hospitalier universitaire de Québec ‐ Université LavalQuébec CityQuebecCanada
| |
Collapse
|
13
|
Guo Y, Dupart M, Irondelle M, Peraldi P, Bost F, Mazure NM. YAP1 modulation of primary cilia-mediated ciliogenesis in 2D and 3D prostate cancer models. FEBS Lett 2024; 598:3071-3086. [PMID: 39424416 DOI: 10.1002/1873-3468.15029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/10/2024] [Accepted: 09/16/2024] [Indexed: 10/21/2024]
Abstract
The primary cilium, a non-motile organelle present in most human cells, plays a crucial role in detecting microenvironmental changes and regulating intracellular signaling. Its dysfunction is linked to various diseases, including cancer. We explored the role of ciliated cells in prostate cancer by using Gefitinib and Jasplakinolide compounds to induce ciliated cells in both normal and tumor-like prostate cell lines. We assessed GLI1 and IFT20 expression and investigated YAP1 protein's role, which is implicated in primary cilium regulation. Finally, we examined these compounds in 3D cell models, aiming to simulate in vivo conditions. Our study highlights YAP1 as a potential target for novel genetic models to understand the primary cilium's role in mediating resistance to anticancer treatments.
Collapse
Affiliation(s)
- Yingbo Guo
- INSERM U1065, C3M, Université Côte d'Azur, Nice Cedex 03, France
- Equipe Labellisée Ligue Contre le Cancer, Xxxxx, France
| | - Mathilde Dupart
- INSERM U1065, C3M, Université Côte d'Azur, Nice Cedex 03, France
- Equipe Labellisée Ligue Contre le Cancer, Xxxxx, France
- IRCAN, Université Côte d'Azur, Nice Cedex 02, France
| | - Marie Irondelle
- INSERM U1065, C3M, Université Côte d'Azur, Nice Cedex 03, France
| | - Pascal Peraldi
- INSERM U1065, C3M, Université Côte d'Azur, Nice Cedex 03, France
- Equipe Labellisée Ligue Contre le Cancer, Xxxxx, France
| | - Frederic Bost
- INSERM U1065, C3M, Université Côte d'Azur, Nice Cedex 03, France
- Equipe Labellisée Ligue Contre le Cancer, Xxxxx, France
| | - Nathalie M Mazure
- INSERM U1065, C3M, Université Côte d'Azur, Nice Cedex 03, France
- Equipe Labellisée Ligue Contre le Cancer, Xxxxx, France
| |
Collapse
|
14
|
Monteillet L, Perrot G, Evrard F, Miliano A, Silva M, Leblond A, Nguyen C, Terzi F, Mithieux G, Rajas F. Impaired Glucose Metabolism, Primary Cilium Defects, and Kidney Cystogenesis in Glycogen Storage Disease Type Ia. J Am Soc Nephrol 2024; 35:1639-1654. [PMID: 39141438 PMCID: PMC11617483 DOI: 10.1681/asn.0000000000000452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 07/31/2024] [Indexed: 08/16/2024] Open
Abstract
Key Points Metabolism adaptations due to glucose-6 phosphate accumulation in glycogen storage disease type Ia kidneys, toward a Warburg-like metabolism, promoted cell proliferation. Metabolic perturbations directly affected primary cilium structure and cystogenesis in glycogen storage disease type Ia kidneys. Background Glycogen storage disease type Ia (GSDIa) is a rare metabolic disorder caused by mutations in the catalytic subunit of glucose-6 phosphatase (G6PC1). This leads to severe hypoglycemia, and most young patients with GSDIa develop CKD. The kidney pathology is characterized by the development of cysts, which typically occur at an advanced stage of CKD. Methods To elucidate the molecular mechanisms responsible for cyst formation, we characterized renal metabolism, molecular pathways involved in cell proliferation, and primary cilium integrity using mice in which G6pc1 was specifically deleted in the kidney from an in utero stage. Results GSDIa mice exhibited kidney fibrosis, high inflammation, and cyst formation, leading to kidney dysfunction. In addition, the loss of G6PC1 led to the ectopic accumulation of glycogen and lipids in the kidneys and a metabolic shift toward a Warburg-like metabolism. This metabolic adaptation was due to an excess of glucose-6 phosphate, which supports cell proliferation, driven by the mitogen-activated protein kinase/extracellular signal–regulated kinases and protein kinase B/mammalian target of rapamycin pathways. Treatment of GSDIa mice with rapamycin, a target of the mammalian target of rapamycin pathway, reduced cell proliferation and kidney damage. Our results also identified lipocalin 2 as a contributor to renal inflammation and an early biomarker of CKD progression in GSDIa mice. Its inactivation partially prevented kidney lesions in GSDIa. Importantly, primary cilium defects were observed in the kidneys of GSDIa mice. Conclusions Metabolic adaptations because of glucose-6 phosphate accumulation in GSDIa renal tubules, toward a Warburg-like metabolism, promoted cell proliferation and cyst formation in a similar manner to that observed in various cystic kidney diseases. This was associated with downregulation of primary cilium gene expression and, consequently, altered cilium morphology.
Collapse
Affiliation(s)
- Laure Monteillet
- Université Claude Bernard Lyon 1, INSERM, UMR_S1213, NUDICE, Villeurbanne, France
| | - Gwendoline Perrot
- Université Claude Bernard Lyon 1, INSERM, UMR_S1213, NUDICE, Villeurbanne, France
| | - Félicie Evrard
- Université Claude Bernard Lyon 1, INSERM, UMR_S1213, NUDICE, Villeurbanne, France
| | - Alexane Miliano
- Université Claude Bernard Lyon 1, INSERM, UMR_S1213, NUDICE, Villeurbanne, France
| | - Marine Silva
- Université Claude Bernard Lyon 1, INSERM, UMR_S1213, NUDICE, Villeurbanne, France
| | - Alicia Leblond
- Université Claude Bernard Lyon 1, INSERM, UMR_S1213, NUDICE, Villeurbanne, France
| | - Clément Nguyen
- Université de Paris Cité, INSERM U1151, CNRS UMR 8253, Institut Necker Enfants Malades, Département “Croissance et Signalisation,” Paris, France
| | - Fabiola Terzi
- Université de Paris Cité, INSERM U1151, CNRS UMR 8253, Institut Necker Enfants Malades, Département “Croissance et Signalisation,” Paris, France
| | - Gilles Mithieux
- Université Claude Bernard Lyon 1, INSERM, UMR_S1213, NUDICE, Villeurbanne, France
| | - Fabienne Rajas
- Université Claude Bernard Lyon 1, INSERM, UMR_S1213, NUDICE, Villeurbanne, France
| |
Collapse
|
15
|
Sarić N, Atak Z, Sade CF, Reddy N, Bell G, Tolete C, Rajtboriraks MT, Hashimoto-Torii K, Jevtović-Todorović V, Haydar TF, Ishibashi N. Ciliopathy interacts with neonatal anesthesia to cause non-apoptotic caspase-mediated motor deficits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.27.624302. [PMID: 39651246 PMCID: PMC11623571 DOI: 10.1101/2024.11.27.624302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Increasing evidence suggests that anesthesia may induce developmental neurotoxicity, yet the influence of genetic predispositions associated with congenital anomalies on this toxicity remains largely unknown. Children with congenital heart disease often exhibit mutations in cilia-related genes and ciliary dysfunction, requiring sedation for their catheter or surgical interventions during the neonatal period. Here we demonstrate that briefly exposing ciliopathic neonatal mice to ketamine causes motor skill impairments, which are associated with a baseline deficit in neocortical layer V neuron apical spine density and their altered dynamics during motor learning.. These neuromorphological changes were linked to augmented non-apoptotic neuronal caspase activation. Neonatal caspase suppression rescued the spine density and motor deficits, confirming the requirement for sublethal caspase signaling in appropriate spine formation and motor learning. Our findings suggest that ciliopathy interacts with ketamine to induce motor impairments, which is reversible through caspase inhibition. Furthermore, they underscore the potential for ketamine- induced sublethal caspase responses in shaping neurodevelopmental outcomes.
Collapse
|
16
|
Kobayashi Y, Hamamoto A, Saito Y. Ciliary length variations impact cilia-mediated signaling and biological responses. J Biochem 2024; 176:369-383. [PMID: 39115281 DOI: 10.1093/jb/mvae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/24/2024] [Indexed: 11/05/2024] Open
Abstract
Primary cilia are thin hair-like organelles that protrude from the surface of most mammalian cells. They act as specialized cell antennas that can vary widely in response to specific stimuli. However, the effect of changes in cilia length on cellular signaling and behavior remains unclear. Therefore, we aimed to characterize the elongated primary cilia induced by different chemical agents, lithium chloride (LiCl), cobalt chloride (CoCl2) and rotenone, using human retinal pigmented epithelial 1 (hRPE1) cells expressing ciliary G protein-coupled receptor (GPCR), melanin-concentrating hormone (MCH) receptor 1 (MCHR1). MCH induces cilia shortening mainly via MCHR1-mediated Akt phosphorylation. Therefore, we verified the proper functioning of the MCH-MCHR1 axis in elongated cilia. Although MCH shortened cilia that were elongated by LiCl and rotenone, it did not shorten CoCl2-induced elongated cilia, which exhibited lesser Akt phosphorylation. Furthermore, serum readdition was found to delay cilia shortening in CoCl2-induced elongated cilia. In contrast, rotenone-induced elongated cilia rapidly shortened via a chopping mechanism at the tip of the cilia. Conclusively, we found that each chemical exerted different effects on ciliary GPCR signaling and serum-mediated ciliary structure dynamics in cells with elongated cilia. These results provide a basis for understanding the functional consequences of changes in ciliary length.
Collapse
|
17
|
Riparbelli MG, Pratelli A, Callaini G. The cilium like region of the Drosophila bifurca spermatocyte: Elongation of a giant axoneme without intraflagellar transport. Cytoskeleton (Hoboken) 2024; 81:529-538. [PMID: 38073091 DOI: 10.1002/cm.21816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 11/20/2024]
Abstract
The growth of the ciliary axonemes mainly depends on the evolutionary conserved intraflagellar transport (IFT) machinery. However, insect spermatocytes are characterized by cilium-like regions (CLRs) that elongate in the absence of IFT. It is generally believed that the dynamics of these structures relies on the free diffusion of soluble tubulin from the cytoplasm. However, this passive process could allow the elongation of short ciliary axonemes, but it is unclear whether simple diffusion of tubulin molecules can ensure the correct assembly of elongated ciliary structures. To decipher this point we analyzed the assembly of the CLRs held by the primary spermatocytes of Drosophila bifurca. These ciliary structures consist of a very elongated axoneme that grows without IFT and, therefore, could represent a good model in which to evaluate the role played by the free diffusion of soluble tubulin. The observation of wavy microtubules in the axonemal lumen of fully elongated CLRs of D. bifurca may be consistent with the diffusion of tubulin within the axonemal lumen. Progressive consumption of soluble tubulin used for axoneme growth at the apical tip of the CLRs could result in a gradient sufficient to move tubulin from the cytoplasm to the apical end of the forming ciliary structure. When the axoneme reaches its full length, tubulin molecules are not drawn to the tip of the CLRs and accumulate at the base of the axoneme, where its concentration may exceed the threshold need for microtubule polymerization. The presence of γ-TuRCs at the proximal ends of the supernumerary microtubules could enhance their nucleation.
Collapse
Affiliation(s)
| | - Ambra Pratelli
- Department of Life Sciences, University of Siena, Siena, Italy
| | | |
Collapse
|
18
|
Roth C, Paulini L, Hoffmann ME, Mosler T, Dikic I, Brunschweiger A, Körschgen H, Behl C, Linder B, Kögel D. BAG3 regulates cilia homeostasis of glioblastoma via its WW domain. Biofactors 2024; 50:1113-1133. [PMID: 38655699 PMCID: PMC11627473 DOI: 10.1002/biof.2060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024]
Abstract
The multidomain protein BAG3 exerts pleiotropic oncogenic functions in many tumor entities including glioblastoma (GBM). Here, we compared BAG3 protein-protein interactions in either adherently cultured or stem-like cultured U251 GBM cells. In line with BAG3's putative role in regulating stem-like properties, identified interactors in sphere-cultured cells included different stem cell markers (SOX2, OLIG2, and NES), while interactomes of adherent BAG3-proficient cells indicated a shift toward involvement of BAG3 in regulation of cilium assembly (ACTR3 and ARL3). Applying a set of BAG3 deletion constructs we could demonstrate that none of the domains except the WW domain are required for suppression of cilia formation by full-length BAG3 in U251 and U343 cells. In line with the established regulation of the Hippo pathway by this domain, we could show that the WW mutant fails to rescue YAP1 nuclear translocation. BAG3 depletion reduced activation of a YAP1/AURKA signaling pathway and induction of PLK1. Collectively, our findings point to a complex interaction network of BAG3 with several pathways regulating cilia homeostasis, involving processes related to ciliogenesis and cilium degradation.
Collapse
Affiliation(s)
- Caterina Roth
- Department of Neurosurgery, Experimental NeurosurgeryUniversity Hospital, Goethe UniversityFrankfurt am MainGermany
| | - Lara Paulini
- Department of Neurosurgery, Experimental NeurosurgeryUniversity Hospital, Goethe UniversityFrankfurt am MainGermany
| | | | - Thorsten Mosler
- Institute of Biochemistry II, Goethe UniversityFrankfurt am MainGermany
| | - Ivan Dikic
- Institute of Biochemistry II, Goethe UniversityFrankfurt am MainGermany
- Buchmann Institute for Molecular Life Sciences, Goethe UniversityFrankfurt am MainGermany
| | - Andreas Brunschweiger
- Institute of Pharmacy and Food Chemistry, Faculty of Chemistry and PharmacyJulius‐Maximilians‐UniversitätWürzburgGermany
| | - Hagen Körschgen
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg UniversityMainzGermany
| | - Christian Behl
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg UniversityMainzGermany
| | - Benedikt Linder
- Department of Neurosurgery, Experimental NeurosurgeryUniversity Hospital, Goethe UniversityFrankfurt am MainGermany
| | - Donat Kögel
- Department of Neurosurgery, Experimental NeurosurgeryUniversity Hospital, Goethe UniversityFrankfurt am MainGermany
- German Cancer Consortium (DKTK), Partner Site FrankfurtFrankfurt am MainGermany
- German Cancer Research Center DKFZHeidelbergGermany
| |
Collapse
|
19
|
Olawuni B, Bode BP. Asparagine as a signal for glutamine sufficiency via asparagine synthetase: a fresh evidence-based framework in physiology and oncology. Am J Physiol Cell Physiol 2024; 327:C1335-C1346. [PMID: 39344414 DOI: 10.1152/ajpcell.00316.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
Among the 20 proteinogenic amino acids, glutamine (GLN) and asparagine (ASN) represent a unique cohort in containing a terminal amide in their side chain, and share a direct metabolic relationship, with glutamine generating asparagine through the ATP-dependent asparagine synthetase (ASNS) reaction. Circulating glutamine levels and metabolic flux through cells and tissues greatly exceed those for asparagine, and "glutamine addiction" in cancer has likewise received considerable attention. However, historic and recent evidence collectively suggest that in spite of its modest presence, asparagine plays an outsized regulatory role in cellular function. Here, we present a unifying evidence-based hypothesis that the amides constitute a regulatory signaling circuit, with glutamine as a driver and asparagine as a second messenger that allosterically regulates key biochemical and physiological functions, particularly cell growth and survival. Specifically, it is proposed that ASNS serves as a sensor of substrate sufficiency for S-phase entry and progression in proliferating cells. ASNS-generated asparagine serves as a subsequent second messenger that modulates the activity of key regulatory proteins and promotes survival in the face of cellular stress, and serves as a feed-forward driver of S-phase progression in cell growth. We propose that this signaling pathway be termed the amide signaling circuit (ASC) in homage to the SLC1A5-encoded ASCT2 that transports both glutamine and asparagine in a bidirectional manner, and has been implicated in the pathogenesis of a broad spectrum of human cancers. Support for the ASC model is provided by the recent discovery that glutamine is sensed in primary cilia via ASNS during metabolic stress.
Collapse
Affiliation(s)
- Babatunde Olawuni
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, United States
| | - Barrie P Bode
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, United States
- Division of Research and Innovation Partnerships, Northern Illinois University, DeKalb, Illinois, United States
| |
Collapse
|
20
|
Iwaya C, Suzuki A, Iwata J. Loss of Sc5d results in micrognathia due to a failure in osteoblast differentiation. J Adv Res 2024; 65:153-165. [PMID: 38086515 PMCID: PMC11519736 DOI: 10.1016/j.jare.2023.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/30/2023] [Accepted: 12/09/2023] [Indexed: 01/01/2024] Open
Abstract
INTRODUCTION Mutations in genes related to cholesterol metabolism, or maternal diet and health status, affect craniofacial bone formation. However, the precise role of intracellular cholesterol metabolism in craniofacial bone development remains unclear. OBJECTIVE The aim of this study is to determine how cholesterol metabolism aberrations affect craniofacial bone development. METHODS Mice with a deficiency in Sc5d, which encodes an enzyme involved in cholesterol synthesis, were analyzed with histology, micro computed tomography (microCT), and cellular and molecular biological methods. RESULTS Sc5d null mice exhibited mandible hypoplasia resulting from defects in osteoblast differentiation. The activation of the hedgehog and WNT/β-catenin signaling pathways, which induce expression of osteogenic genes Col1a1 and Spp1, was compromised in the mandible of Sc5d null mice due to a failure in the formation of the primary cilium, a cell surface structure that senses extracellular cues. Treatments with an inducer of hedgehog or WNT/β-catenin signaling or with simvastatin, a drug that restores abnormal cholesterol production, partially rescued the defects in osteoblast differentiation seen in Sc5d mutant cells. CONCLUSION Our results indicate that loss of Sc5d results in mandibular hypoplasia through defective primary cilia-mediated hedgehog and WNT/β-catenin signaling pathways.
Collapse
Affiliation(s)
- Chihiro Iwaya
- Department of Diagnostic & Biomedical Sciences, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX 77054, USA; Center for Craniofacial Research, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX 77054, USA
| | - Akiko Suzuki
- Department of Diagnostic & Biomedical Sciences, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX 77054, USA; Center for Craniofacial Research, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX 77054, USA
| | - Junichi Iwata
- Department of Diagnostic & Biomedical Sciences, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX 77054, USA; Center for Craniofacial Research, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX 77054, USA; MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA.
| |
Collapse
|
21
|
Kim JB, Hyung H, Bae JE, Jang S, Park NY, Jo DS, Kim YH, Choi DK, Ryu HY, Lee HS, Ryoo ZY, Cho DH. Increased ER stress by depletion of PDIA6 impairs primary ciliogenesis and enhances sensitivity to ferroptosis in kidney cells. BMB Rep 2024; 57:453-458. [PMID: 39044457 PMCID: PMC11524824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/16/2024] [Accepted: 03/18/2024] [Indexed: 07/25/2024] Open
Abstract
Primary cilia are crucial for cellular balance, serving as sensors for external conditions. Nephronophthisis and related ciliopathies, which are hereditary and degenerative, stem from genetic mutations in cilia-related genes. However, the precise mechanisms of these conditions are still not fully understood. Our research demonstrates that downregulating PDIA6, leading to cilia removal, makes cells more sensitive to ferroptotic death caused by endoplasmic reticulum (ER) stress. The reduction of PDIA6 intensifies the ER stress response, while also impairing the regulation of primary cilia in various cell types. PDIA6 loss worsens ER stress, hastening ferroptotic death in proximal tubule epithelial cells, HK2 cells. Counteracting this ER stress can mitigate PDIA6 depletion effects, restoring both the number and length of cilia. Moreover, preventing ferroptosis corrects the disrupted primary ciliogenesis due to PDIA6 depletion in HK2 cells. Our findings emphasize the role of PDIA6 in primary ciliogenesis, and suggest its absence enhances ER stress and ferroptosis. These insights offer new therapeutic avenues for treating nephronophthisis and similar ciliopathies. [BMB Reports 2024; 57(10): 453-458].
Collapse
Affiliation(s)
- Joon Bum Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| | - Hyejin Hyung
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| | - Ji-Eun Bae
- KNU LAMP Research Center, KNU Institute of Basic Sciences, Kyungpook National University, Daegu 41566, Korea
| | - Soyoung Jang
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| | - Na Yeon Park
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| | | | - Yong Hwan Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| | - Dong Kyu Choi
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| | - Hong-Yeoul Ryu
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
- KNU LAMP Research Center, KNU Institute of Basic Sciences, Kyungpook National University, Daegu 41566, Korea
| | - Hyun-Shik Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
- KNU LAMP Research Center, KNU Institute of Basic Sciences, Kyungpook National University, Daegu 41566, Korea
| | - Zae Young Ryoo
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| | - Dong-Hyung Cho
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
- ORGASIS Corp., Suwon 16229, Korea
- Organelle Institute, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
22
|
Maknis TR, Fussi MF, Pariani AP, Huhn V, Vena R, Favre C, Molinas SM, Larocca MC. Activation of angiotensin II type 2 receptor leads to preservation of primary cilia in tubular cells during renal ischaemia-reperfusion injury. J Physiol 2024; 602:5083-5103. [PMID: 39146457 DOI: 10.1113/jp286514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/12/2024] [Indexed: 08/17/2024] Open
Abstract
Ischaemia-reperfusion (IR)-associated acute kidney injury (AKI) is a severe clinical condition that lacks effective pharmacological treatments. Our recent research revealed that pretreatment with the angiotensin II type 2 receptor (AT2R) agonist C21 alleviates kidney damage during IR. Primary cilia are organelles crucial for regulation of epithelial cell homeostasis, which are significantly affected by IR injury. This study aimed to evaluate the impact of AT2R activation on cilia integrity during IR and to identify pathways involved in the nephroprotective effect of C21. Rats were subjected to 40 min of unilateral ischaemia followed by 24 h of reperfusion. Immunofluorescence analysis of the kidneys showed that the nephroprotective effect of C21 was associated with preservation of cilia integrity in tubular cells. AT2R agonists increased α-tubulin acetylation in primary cilia in tubular cells in vivo and in a cell model. Analysis of ERK phosphorylation indicated that AT2R activation led to diminished activation of ERK1/2 in tubular cells. Similar to AT2R agonists, inhibitors of α-tubulin deacetylase HDAC6 or inhibitors of ERK activation ameliorated IR-induced cell death and preserved cilia integrity. Immunofluorescence analysis of tubular cells revealed significant ERK localization at primary cilia and demonstrated that ERK inhibition increased cilia levels of acetylated α-tubulin. Overall, our findings demonstrate that C21 elicits a preconditioning effect that enhances cilia stability in renal tubular cells, thereby preserving their integrity when exposed to IR injury. Furthermore, our results indicate that this effect might be mediated by AT2R-induced inhibition of ERK activation. These findings offer potential insights for the development of pharmacological interventions to mitigate IR-associated AKI. KEY POINTS: The AT2R agonist C21 prevents primary cilia shortening and tubular cell deciliation during renal ischaemia-reperfusion. AT2R activation inhibits ERK1/2 in renal tubular cells. Both AT2R agonists and ERK1/2 inhibitors increase alpha-tubulin acetylation at the primary cilium in tubular cells. AT2R activation, ERK1/2 inhibition or inhibition of alpha-tubulin deacetylation elicit protective effects in tubular cells subjected to ischaemia-reperfusion injury.
Collapse
Affiliation(s)
- Tomás Rivabella Maknis
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas (FBIOyF), Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - M Fernanda Fussi
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas (FBIOyF), Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Alejandro P Pariani
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas (FBIOyF), Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Victoria Huhn
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas (FBIOyF), Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Rodrigo Vena
- Instituto de Biología Molecular y Celular de Rosario, CONICET-UNR, Rosario, Argentina
| | - Cristián Favre
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas (FBIOyF), Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Sara M Molinas
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas (FBIOyF), Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - M Cecilia Larocca
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas (FBIOyF), Universidad Nacional de Rosario (UNR), Rosario, Argentina
| |
Collapse
|
23
|
Tian Z, Zhang Y, Xu J, Yang Q, Hu D, Feng J, Gai C. Primary cilia in Parkinson's disease: summative roles in signaling pathways, genes, defective mitochondrial function, and substantia nigra dopaminergic neurons. Front Aging Neurosci 2024; 16:1451655. [PMID: 39364348 PMCID: PMC11447156 DOI: 10.3389/fnagi.2024.1451655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/02/2024] [Indexed: 10/05/2024] Open
Abstract
Primary cilia (PC) are microtubules-based, independent antennal-like sensory organelles, that are seen in most vertebrate cells of different types, including astrocytes and neurons. They send signals to cells to control many physiological and cellular processes by detecting changes in the extracellular environment. Parkinson's disease (PD), a neurodegenerative disease that progresses over time, is primarily caused by a gradual degradation of the dopaminergic pathway in the striatum nigra, which results in a large loss of neurons in the substantia nigra compact (SNpc) and a depletion of dopamine (DA). PD samples have abnormalities in the structure and function of PC. The alterations contribute to the cause, development, and recovery of PD via influencing signaling pathways (SHH, Wnt, Notch-1, α-syn, and TGFβ), genes (MYH10 and LRRK2), defective mitochondrial function, and substantia nigra dopaminergic neurons. Thus, restoring the normal structure and physiological function of PC and neurons in the brain are effective treatment for PD. This review summarizes the function of PC in neurodegenerative diseases and explores the pathological mechanisms caused by PC alterations in PD, in order to provide references and ideas for future research.
Collapse
Affiliation(s)
- Zijiao Tian
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yixin Zhang
- College of Acupuncture and Massage, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Xu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qianwen Yang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Die Hu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Feng
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Cong Gai
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
24
|
Ahmed M, Fischer S, Robert KL, Lange KI, Stuck MW, Best S, Johnson CA, Pazour GJ, Blacque OE, Nandadasa S. Two functional forms of the Meckel-Gruber syndrome protein TMEM67 generated by proteolytic cleavage by ADAMTS9 mediate Wnt signaling and ciliogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.04.611229. [PMID: 39282264 PMCID: PMC11398388 DOI: 10.1101/2024.09.04.611229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
TMEM67 mutations are the major cause of Meckel-Gruber syndrome. TMEM67 is involved in both ciliary transition zone assembly, and non-canonical Wnt signaling mediated by its extracellular domain. How TMEM67 performs these two separate functions is not known. We identify a novel cleavage motif in the extracellular domain of TMEM67 cleaved by the extracellular matrix metalloproteinase ADAMTS9. This cleavage regulates the abundance of two functional forms: A C-terminal portion which localizes to the ciliary transition zone regulating ciliogenesis, and a non-cleaved form which regulates Wnt signaling. By characterizing three TMEM67 ciliopathy patient variants within the cleavage motif utilizing mammalian cell culture and C. elegans, we show the cleavage motif is essential for cilia structure and function, highlighting its clinical significance. We generated a novel non-cleavable TMEM67 mouse model which develop severe ciliopathies phenocopying Tmem67 -/- mice, but in contrast, undergo normal Wnt signaling, substantiating the existence of two functional forms of TMEM67.
Collapse
Affiliation(s)
- Manu Ahmed
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA
| | - Sydney Fischer
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA
| | - Karyn L. Robert
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA
| | - Karen I. Lange
- School of Biomolecular & Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Michael W. Stuck
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA
| | - Sunayna Best
- Division of Molecular Medicine, Leeds Institute of Medical Research, The University of Leeds, Leeds, UK
- Department of Clinical Genetics, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Colin A. Johnson
- Division of Molecular Medicine, Leeds Institute of Medical Research, The University of Leeds, Leeds, UK
| | - Gregory J. Pazour
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA
| | - Oliver E. Blacque
- School of Biomolecular & Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sumeda Nandadasa
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA
| |
Collapse
|
25
|
Ansari SS, Dillard ME, Zhang Y, Austria MA, Boatwright N, Shelton EL, Stewart DP, Johnson A, Wang CE, Young BM, Rankovic Z, Hansen BS, Pruett-Miller SM, Carisey AF, Schuetz JD, Robinson CG, Ogden SK. Sonic Hedgehog activates prostaglandin signaling to stabilize primary cilium length. J Cell Biol 2024; 223:e202306002. [PMID: 38856684 PMCID: PMC11166601 DOI: 10.1083/jcb.202306002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 04/03/2024] [Accepted: 05/24/2024] [Indexed: 06/11/2024] Open
Abstract
Sonic Hedgehog (SHH) is a driver of embryonic patterning that, when corrupted, triggers developmental disorders and cancers. SHH effector responses are organized through primary cilia (PC) that grow and retract with the cell cycle and in response to extracellular cues. Disruption of PC homeostasis corrupts SHH regulation, placing significant pressure on the pathway to maintain ciliary fitness. Mechanisms by which ciliary robustness is ensured in SHH-stimulated cells are not yet known. Herein, we reveal a crosstalk circuit induced by SHH activation of Phospholipase A2α that drives ciliary E-type prostanoid receptor 4 (EP4) signaling to ensure PC function and stabilize ciliary length. We demonstrate that blockade of SHH-EP4 crosstalk destabilizes PC cyclic AMP (cAMP) equilibrium, slows ciliary transport, reduces ciliary length, and attenuates SHH pathway induction. Accordingly, Ep4-/- mice display shortened neuroepithelial PC and altered SHH-dependent neuronal cell fate specification. Thus, SHH initiates coordination between distinct ciliary receptors to maintain PC function and length homeostasis for robust downstream signaling.
Collapse
Affiliation(s)
- Shariq S. Ansari
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Miriam E. Dillard
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Yan Zhang
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Mary Ashley Austria
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
- Rhodes College Summer Plus Program, Memphis, TN, USA
| | - Naoko Boatwright
- Department of Pediatrics, Monroe Carell Jr. Children’s Hospital at Vanderbilt and Vanderbilt University Medical Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Elaine L. Shelton
- Department of Pediatrics, Monroe Carell Jr. Children’s Hospital at Vanderbilt and Vanderbilt University Medical Center, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Daniel P. Stewart
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Amanda Johnson
- Cell and Tissue Imaging Center, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Christina E. Wang
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Brandon M. Young
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Zoran Rankovic
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Baranda S. Hansen
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
- Center for Advanced Genome Engineering, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Shondra M. Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
- Center for Advanced Genome Engineering, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Alexandre F. Carisey
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - John D. Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Camenzind G. Robinson
- Cell and Tissue Imaging Center, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Stacey K. Ogden
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
26
|
Wang L, Guo Q, Acharya S, Zheng X, Huynh V, Whitmore B, Yimit A, Malhotra M, Chatterji S, Rosin N, Labit E, Chipak C, Gorzo K, Haidey J, Elliott DA, Ram T, Zhang Q, Kuipers H, Gordon G, Biernaskie J, Guo J. Primary cilia signaling in astrocytes mediates development and regional-specific functional specification. Nat Neurosci 2024; 27:1708-1720. [PMID: 39103557 DOI: 10.1038/s41593-024-01726-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 07/09/2024] [Indexed: 08/07/2024]
Abstract
Astrocyte diversity is greatly influenced by local environmental modulation. Here we report that the majority of astrocytes across the mouse brain possess a singular primary cilium localized to the cell soma. Comparative single-cell transcriptomics reveals that primary cilia mediate canonical SHH signaling to modulate astrocyte subtype-specific core features in synaptic regulation, intracellular transport, energy and metabolism. Independent of canonical SHH signaling, primary cilia are important regulators of astrocyte morphology and intracellular signaling balance. Dendritic spine analysis and transcriptomics reveal that perturbation of astrocytic cilia leads to disruption of neuronal development and global intercellular connectomes in the brain. Mice with primary ciliary-deficient astrocytes show behavioral deficits in sensorimotor function, sociability, learning and memory. Our results uncover a critical role for primary cilia in transmitting local cues that drive the region-specific diversification of astrocytes within the developing brain.
Collapse
Affiliation(s)
- Lizheng Wang
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Qianqian Guo
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sandesh Acharya
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Xiao Zheng
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Vanessa Huynh
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Brandon Whitmore
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Askar Yimit
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mehr Malhotra
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Siddharth Chatterji
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nicole Rosin
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Surgery, University of Calgary, Calgary, Alberta, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Elodie Labit
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Surgery, University of Calgary, Calgary, Alberta, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Colten Chipak
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Kelsea Gorzo
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Jordan Haidey
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - David A Elliott
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Tina Ram
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Qingrun Zhang
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Hedwich Kuipers
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neuroscience, University of Calgary, Calgary, Alberta, Canada
| | - Grant Gordon
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Jeff Biernaskie
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Surgery, University of Calgary, Calgary, Alberta, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jiami Guo
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada.
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
27
|
Tiberio F, Coda ARD, Tosi DD, Luzi D, Polito L, Liso A, Lattanzi W. Mechanobiology and Primary Cilium in the Pathophysiology of Bone Marrow Myeloproliferative Diseases. Int J Mol Sci 2024; 25:8860. [PMID: 39201546 PMCID: PMC11354938 DOI: 10.3390/ijms25168860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
Philadelphia-Negative Myeloproliferative neoplasms (MPNs) are a diverse group of blood cancers leading to excessive production of mature blood cells. These chronic diseases, including polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF), can significantly impact patient quality of life and are still incurable in the vast majority of the cases. This review examines the mechanobiology within a bone marrow niche, emphasizing the role of mechanical cues and the primary cilium in the pathophysiology of MPNs. It discusses the influence of extracellular matrix components, cell-cell and cell-matrix interactions, and mechanosensitive structures on hematopoietic stem cell (HSC) behavior and disease progression. Additionally, the potential implications of the primary cilium as a chemo- and mechanosensory organelle in bone marrow cells are explored, highlighting its involvement in signaling pathways crucial for hematopoietic regulation. This review proposes future research directions to better understand the dysregulated bone marrow niche in MPNs and to identify novel therapeutic targets.
Collapse
Affiliation(s)
- Federica Tiberio
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.T.); (D.D.T.); (L.P.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | | | - Domiziano Dario Tosi
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.T.); (D.D.T.); (L.P.)
| | - Debora Luzi
- S.C. Oncoematologia, Azienda Ospedaliera di Terni, 05100 Terni, Italy;
| | - Luca Polito
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.T.); (D.D.T.); (L.P.)
| | - Arcangelo Liso
- Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy
| | - Wanda Lattanzi
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.T.); (D.D.T.); (L.P.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
28
|
Pir MS, Begar E, Yenisert F, Demirci HC, Korkmaz ME, Karaman A, Tsiropoulou S, Firat-Karalar EN, Blacque OE, Oner SS, Doluca O, Cevik S, Kaplan OI. CilioGenics: an integrated method and database for predicting novel ciliary genes. Nucleic Acids Res 2024; 52:8127-8145. [PMID: 38989623 DOI: 10.1093/nar/gkae554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/21/2024] [Accepted: 07/09/2024] [Indexed: 07/12/2024] Open
Abstract
Uncovering the full list of human ciliary genes holds enormous promise for the diagnosis of cilia-related human diseases, collectively known as ciliopathies. Currently, genetic diagnoses of many ciliopathies remain incomplete (1-3). While various independent approaches theoretically have the potential to reveal the entire list of ciliary genes, approximately 30% of the genes on the ciliary gene list still stand as ciliary candidates (4,5). These methods, however, have mainly relied on a single strategy to uncover ciliary candidate genes, making the categorization challenging due to variations in quality and distinct capabilities demonstrated by different methodologies. Here, we develop a method called CilioGenics that combines several methodologies (single-cell RNA sequencing, protein-protein interactions (PPIs), comparative genomics, transcription factor (TF) network analysis, and text mining) to predict the ciliary capacity of each human gene. Our combined approach provides a CilioGenics score for every human gene that represents the probability that it will become a ciliary gene. Compared to methods that rely on a single method, CilioGenics performs better in its capacity to predict ciliary genes. Our top 500 gene list includes 258 new ciliary candidates, with 31 validated experimentally by us and others. Users may explore the whole list of human genes and CilioGenics scores on the CilioGenics database (https://ciliogenics.com/).
Collapse
Affiliation(s)
- Mustafa S Pir
- Rare Disease Laboratory, School of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkiye
| | - Efe Begar
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkiye
| | - Ferhan Yenisert
- Rare Disease Laboratory, School of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkiye
| | - Hasan C Demirci
- Rare Disease Laboratory, School of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkiye
| | - Mustafa E Korkmaz
- Rare Disease Laboratory, School of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkiye
| | - Asli Karaman
- Istanbul Medeniyet University, Science and Advanced Technologies Research Center (BILTAM), 34700 Istanbul, Turkiye
| | - Sofia Tsiropoulou
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Elif Nur Firat-Karalar
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkiye
- School of Medicine, Koç University, Istanbul 34450, Turkiye
| | - Oliver E Blacque
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sukru S Oner
- Istanbul Medeniyet University, Science and Advanced Technologies Research Center (BILTAM), 34700 Istanbul, Turkiye
- Goztepe Prof. Dr. Suleyman Yalcin City Hospital, Istanbul, Turkiye
| | - Osman Doluca
- Izmir University of Economics, Faculty of Engineering, Department of Biomedical Engineering, Izmir, Turkiye
| | - Sebiha Cevik
- Rare Disease Laboratory, School of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkiye
| | - Oktay I Kaplan
- Rare Disease Laboratory, School of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkiye
| |
Collapse
|
29
|
Nowak-Ciołek M, Ciołek M, Tomaszewska A, Hildebrandt F, Kitzler T, Deutsch K, Lemberg K, Shril S, Szczepańska M, Zachurzok A. Collaborative effort: managing Bardet-Biedl syndrome in pediatric patients. Case series and a literature review. Front Endocrinol (Lausanne) 2024; 15:1424819. [PMID: 39092285 PMCID: PMC11291331 DOI: 10.3389/fendo.2024.1424819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
Bardet-Biedl Syndrome (BBS) is an autosomal recessive non-motile ciliopathy, caused by mutations in more than twenty genes. Their expression leads to the production of BBSome-building proteins or chaperon-like proteins supporting its structure. The prevalence of the disease is estimated at 1: 140,000 - 160,000 of life births. Its main clinical features are retinal dystrophy, polydactyly, obesity, cognitive impairment, hypogonadism, genitourinary malformations, and kidney disease. BBS is characterized by heterogeneous clinical manifestation and the variable onset of signs and symptoms. We present a case series of eight pediatric patients with BBS (6 boys and 2 girls) observed in one clinical center including two pairs of siblings. The patients' age varies between 2 to 13 years (average age of diagnosis: 22 months). At presentation kidney disorders were observed in seven patients, polydactyly in six patients' obesity, and psychomotor development delay in two patients. In two patients with kidney disorders, the genetic tests were ordered at the age of 1 and 6 months due to the presence of symptoms suggesting BBS and having an older sibling with the diagnosis of the syndrome. The mutations in the following genes were confirmed: BBS10, MKKS, BBS7/BBS10, BBS7, BBS9. All described patients developed symptoms related to the urinary system and kidney-function impairment. Other most common symptoms are polydactyly and obesity. In one patient the obesity class 3 was diagnosed with multiple metabolic disorders. In six patients the developmental delay was diagnosed. The retinopathy was observed only in one, the oldest patient. Despite having the same mutations (siblings) or having mutations in the same gene, the phenotypes of the patients are different. We aimed to addresses gaps in understanding BBS by comparing our data and existing literature through a narrative review. This research includes longitudinal data and explores genotype-phenotype correlations of children with BBS. BBS exhibits diverse clinical features and genetic mutations, making diagnosis challenging despite defined criteria. Same mutations can result in different phenotypes. Children with constellations of polydactyly and/or kidney disorders and/or early-onset obesity should be managed towards BBS. Early diagnosis is crucial for effective monitoring and intervention to manage the multisystemic dysfunctions associated with BBS.
Collapse
Affiliation(s)
- Maria Nowak-Ciołek
- Students’ Scientific Association at the Department of Pediatrics, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Michał Ciołek
- Students’ Scientific Association at the Department of Psychiatry and Psychotherapy of Developmental Age, Medical University of Silesia in Katowice, Katowice, Poland
| | | | - Friedhelm Hildebrandt
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Thomas Kitzler
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Konstantin Deutsch
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Katharina Lemberg
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Shirlee Shril
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Maria Szczepańska
- Department of Pediatrics, Faculty of Medical Sciences, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Agnieszka Zachurzok
- Department of Pediatrics, Faculty of Medical Sciences, Medical University of Silesia in Katowice, Zabrze, Poland
| |
Collapse
|
30
|
Jin M, An Y, Wang Z, Wang G, Lin Z, Ding P, Lu E, Zhao Z, Bi H. Distraction force promotes the osteogenic differentiation of Gli1 + cells in facial sutures via primary cilia-mediated Hedgehog signaling pathway. Stem Cell Res Ther 2024; 15:198. [PMID: 38971766 PMCID: PMC11227703 DOI: 10.1186/s13287-024-03811-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 06/21/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Trans-sutural distraction osteogenesis (TSDO) involves the application of distraction force to facial sutures to stimulate osteogenesis. Gli1+ cells in the cranial sutures play an important role in bone growth. However, whether Gli1+ cells in facial sutures differentiate into bone under distraction force is unknown. METHODS 4-week-old Gli1ER/Td and C57BL/6 mice were used to establish a TSDO model to explore osteogenesis of zygomaticomaxillary sutures. A Gli1+ cell lineage tracing model was used to observe the distribution of Gli1+ cells and explore the role of Gli1+ cells in facial bone remodeling. RESULTS Distraction force promoted bone remodeling during TSDO. Fluorescence and two-photon scanning images revealed the distribution of Gli1+ cells. Under distraction force, Gli1-lineage cells proliferated significantly and co-localized with Runx2+ cells. Hedgehog signaling was upregulated in Gli1+ cells. Inhibition of Hedgehog signaling suppresses the proliferation and osteogenesis of Gli1+ cells induced by distraction force. Subsequently, the stem cell characteristics of Gli1+ cells were identified. Cell-stretching experiments verified that mechanical force promoted the osteogenic differentiation of Gli1+ cells through Hh signaling. Furthermore, immunofluorescence staining and RT-qPCR experiments demonstrated that the primary cilia in Gli1+ cells exhibit Hedgehog-independent mechanosensitivity, which was required for the osteogenic differentiation induced by mechanical force. CONCLUSIONS Our study indicates that the primary cilia of Gli1+ cells sense mechanical stimuli, mediate Hedgehog signaling activation, and promote the osteogenic differentiation of Gli1+ cells in zygomaticomaxillary sutures.
Collapse
Affiliation(s)
- Mengying Jin
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
- Department of Plastic and Cosmetic Surgery, Henan Provincial People's Hospital, Henan, China
| | - Yang An
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Zheng Wang
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Guanhuier Wang
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Zhiyu Lin
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Pengbing Ding
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Enhang Lu
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Zhenmin Zhao
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China.
| | - Hongsen Bi
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
31
|
Patel K, Smith NJ. Primary cilia, A-kinase anchoring proteins and constitutive activity at the orphan G protein-coupled receptor GPR161: A tale about a tail. Br J Pharmacol 2024; 181:2182-2196. [PMID: 36772847 DOI: 10.1111/bph.16053] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/22/2022] [Accepted: 02/04/2023] [Indexed: 02/12/2023] Open
Abstract
Primary cilia are non-motile antennae-like structures responsible for sensing environmental changes in most mammalian cells. Ciliary signalling is largely mediated by the Sonic Hedgehog (Shh) pathway, which acts as a master regulator of ciliary protein transit and is essential for normal embryonic development. One particularly important player in primary cilia is the orphan G protein-coupled receptor, GPR161. In this review, we introduce GPR161 in the context of Shh signalling and describe the unique features on its C-terminus such as PKA phosphorylation sites and an A-kinase anchoring protein motif, which may influence the function of the receptor, cAMP compartmentalisation and/or trafficking within primary cilia. We discuss the recent putative pairing of GPR161 and spexin-1, highlighting the additional steps needed before GPR161 could be considered 'deorphanised'. Finally, we speculate that the marked constitutive activity and unconventional regulation of GPR161 may indicate that the receptor may not require an endogenous ligand. LINKED ARTICLES: This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.
Collapse
Affiliation(s)
- Kinjal Patel
- Orphan Receptor Laboratory, School of Biomedical Sciences, Faculty of Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
| | - Nicola J Smith
- Orphan Receptor Laboratory, School of Biomedical Sciences, Faculty of Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
| |
Collapse
|
32
|
Agborbesong E, Li X. The Immune Checkpoint Protein PD-L1 Regulates Ciliogenesis and Hedgehog Signaling. Cells 2024; 13:1003. [PMID: 38920633 PMCID: PMC11201989 DOI: 10.3390/cells13121003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/01/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
The primary cilium, an antenna-like sensory organelle that protrudes from the surface of most eukaryotic cell types, has become a signaling hub of growing interest given that defects in its structure and/or function are associated with human diseases and syndromes, known as ciliopathies. With the continuously expanding role of primary cilia in health and diseases, identifying new players in ciliogenesis will lead to a better understanding of the function of this organelle. It has been shown that the primary cilium shares similarities with the immune synapse, a highly organized structure at the interface between an antigen-presenting or target cell and a lymphocyte. Studies have demonstrated a role for known cilia regulators in immune synapse formation. However, whether immune synapse regulators modulate ciliogenesis remains elusive. Here, we find that programmed death ligand 1 (PD-L1), an immune checkpoint protein and regulator of immune synapse formation, plays a role in the regulation of ciliogenesis. We found that PD-L1 is enriched at the centrosome/basal body and Golgi apparatus of ciliated cells and depleting PD-L1 enhanced ciliogenesis and increased the accumulation of ciliary membrane trafficking proteins Rab8a, BBS5, and sensory receptor protein PC-2. Moreover, PD-L1 formed a complex with BBS5 and PC-2. In addition, we found that depletion of PD-L1 resulted in the ciliary accumulation of Gli3 and the downregulation of Gli1. Our results suggest that PD-L1 is a new player in ciliogenesis, contributing to PC-2-mediated sensory signaling and the Hh signaling cascade.
Collapse
Affiliation(s)
- Ewud Agborbesong
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, R, 200 1st Street, SW, Rochester, MN 55905, USA
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, R, 200 1st Street, SW, Rochester, MN 55905, USA
| |
Collapse
|
33
|
Kuwasako K, Dang W, He F, Takahashi M, Tsuda K, Nagata T, Tanaka A, Kobayashi N, Kigawa T, Güntert P, Shirouzu M, Yokoyama S, Muto Y. 1H, 13C, and 15N resonance assignments and solution structure of the N-terminal divergent calponin homology (NN-CH) domain of human intraflagellar transport protein 54. BIOMOLECULAR NMR ASSIGNMENTS 2024; 18:71-78. [PMID: 38551798 DOI: 10.1007/s12104-024-10170-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/13/2024] [Indexed: 05/12/2024]
Abstract
The intraflagellar transport (IFT) machinery plays a crucial role in the bidirectional trafficking of components necessary for ciliary signaling, such as the Hedgehog, Wnt/PCR, and cAMP/PKA systems. Defects in some components of the IFT machinery cause dysfunction, leading to a wide range of human diseases and developmental disorders termed ciliopathies, such as nephronophthisis. The IFT machinery comprises three sub-complexes: BBsome, IFT-A, and IFT-B. The IFT protein 54 (IFT54) is an important component of the IFT-B sub-complex. In anterograde movement, IFT54 binds to active kinesin-II, walking along the cilia microtubule axoneme and carrying the dynein-2 complex in an inactive state, which works for retrograde movement. Several mutations in IFT54 are known to cause Senior-Loken syndrome, a ciliopathy. IFT54 possesses a divergent Calponin Homology (CH) domain termed as NN-CH domain at its N-terminus. However, several aspects of the function of the NN-CH domain of IFT54 are still obscure. Here, we report the 1H, 15N, and 13C resonance assignments of the NN-CH domain of human IFT54 and its solution structure. The NN-CH domain of human IFT54 adopts essentially the α1-α2-α3-α4-α5 topology as that of mouse IFT54, whose structure was determined by X-ray crystallographic study. The structural information and assignments obtained in this study shed light on the molecular function of the NN-CH domain in IFT54.
Collapse
Affiliation(s)
- Kanako Kuwasako
- RIKEN, Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230- 0045, Japan
- Faculty of Pharmacy and Research Institute of Pharmaceutical Sciences, Musashino University, Tokyo, 202-8585, Japan
| | - Weirong Dang
- RIKEN, Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Fahu He
- RIKEN, Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Mari Takahashi
- RIKEN, Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230- 0045, Japan
| | - Kengo Tsuda
- RIKEN, Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Takashi Nagata
- RIKEN, Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
- Institute of Advanced Energy, Graduate School of Energy Science, Kyoto University, Gokasho, Kyoto, Uji, 611-0011, Japan
| | - Akiko Tanaka
- RIKEN, Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Naohiro Kobayashi
- RIKEN, Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
- RIKEN Yokohama NMR Facility, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Takanori Kigawa
- RIKEN, Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230- 0045, Japan
| | - Peter Güntert
- Tatsuo Miyazawa Memorial Program, RIKEN Genomic Sciences Center, Yokohama, 230-0045, Japan
- Institute of Biophysical Chemistry, Goethe-University Frankfurt am Main, Max-von-Laue-Str. 9, Frankfurt am Main, 60438, Germany
- Institute of Molecular Physical Science, ETH Zurich, Vladimir-Prelog-Weg 2, Zurich, 8093, Switzerland
- Department of Chemistry, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji, Tokyo, 192- 0397, Japan
| | - Mikako Shirouzu
- RIKEN, Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230- 0045, Japan
| | - Shigeyuki Yokoyama
- RIKEN, Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan.
- RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.
- RIKEN Cluster for Science, Technology and Innovation Hub, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Yokohama, 230-0045, Japan.
| | - Yutaka Muto
- RIKEN, Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan.
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230- 0045, Japan.
- Faculty of Pharmacy and Research Institute of Pharmaceutical Sciences, Musashino University, Tokyo, 202-8585, Japan.
| |
Collapse
|
34
|
Ma R, Chen L, Hu N, Caplan S, Hu G. Cilia and Extracellular Vesicles in Brain Development and Disease. Biol Psychiatry 2024; 95:1020-1029. [PMID: 37956781 PMCID: PMC11087377 DOI: 10.1016/j.biopsych.2023.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/21/2023] [Accepted: 11/05/2023] [Indexed: 11/15/2023]
Abstract
Primary and motile cilia are thin, hair-like cellular projections from the cell surface involved in movement, sensing, and communication between cells. Extracellular vesicles (EVs) are small membrane-bound vesicles secreted by cells and contain various proteins, lipids, and nucleic acids that are delivered to and influence the behavior of other cells. Both cilia and EVs are essential for the normal functioning of brain cells, and their malfunction can lead to several neurological diseases. Cilia and EVs can interact with each other in several ways, and this interplay plays a crucial role in facilitating various biological processes, including cell-to-cell communication, tissue homeostasis, and pathogen defense. Cilia and EV crosstalk in the brain is an emerging area of research. Herein, we summarize the detailed molecular mechanisms of cilia and EV interplay and address the ciliary molecules that are involved in signaling and cellular dysfunction in brain development and diseases. Finally, we discuss the potential clinical use of cilia and EVs in brain diseases.
Collapse
Affiliation(s)
- Rong Ma
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska; Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liang Chen
- Department of Computer Science, College of Engineering, Shantou University, Shantou, Guangdong, China
| | - Ningyun Hu
- Millard West High School, Omaha, Nebraska
| | - Steve Caplan
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska.
| | - Guoku Hu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska.
| |
Collapse
|
35
|
Suong DNA, Imamura K, Kato Y, Inoue H. Design of neural organoids engineered by mechanical forces. IBRO Neurosci Rep 2024; 16:190-195. [PMID: 38328799 PMCID: PMC10847990 DOI: 10.1016/j.ibneur.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/19/2024] [Indexed: 02/09/2024] Open
Abstract
Neural organoids consist of three-dimensional tissue derived from pluripotent stem cells that could recapitulate key features of the human brain. During the past decade, organoid technology has evolved in the field of human brain science by increasing the quality and applicability of its products. Among them, a novel approach involving the design of neural organoids engineered by mechanical forces has emerged. This review describes previous approaches for the generation of neural organoids, the engineering of neural organoids by mechanical forces, and future challenges for the application of mechanical forces in the design of neural organoids.
Collapse
Affiliation(s)
- Dang Ngoc Anh Suong
- iPSC‑Based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Keiko Imamura
- iPSC‑Based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Medical‑Risk Avoidance Based On iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| | - Yoshikazu Kato
- Mixing Technology Laboratory, SATAKE MultiMix Corporation, Saitama, Japan
| | - Haruhisa Inoue
- iPSC‑Based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Medical‑Risk Avoidance Based On iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| |
Collapse
|
36
|
Muhamad NA, Masutani K, Furukawa S, Yuri S, Toriyama M, Matsumoto C, Itoh S, Shinagawa Y, Isotani A, Toriyama M, Itoh H. Astrocyte-Specific Inhibition of the Primary Cilium Suppresses C3 Expression in Reactive Astrocyte. Cell Mol Neurobiol 2024; 44:48. [PMID: 38822888 PMCID: PMC11144130 DOI: 10.1007/s10571-024-01482-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 05/21/2024] [Indexed: 06/03/2024]
Abstract
C3-positive reactive astrocytes play a neurotoxic role in various neurodegenerative diseases. However, the mechanisms controlling C3-positive reactive astrocyte induction are largely unknown. We found that the length of the primary cilium, a cellular organelle that receives extracellular signals was increased in C3-positive reactive astrocytes, and the loss or shortening of primary cilium decreased the count of C3-positive reactive astrocytes. Pharmacological experiments suggested that Ca2+ signalling may synergistically promote C3 expression in reactive astrocytes. Conditional knockout (cKO) mice that specifically inhibit primary cilium formation in astrocytes upon drug stimulation exhibited a reduction in the proportions of C3-positive reactive astrocytes and apoptotic cells in the brain even after the injection of lipopolysaccharide (LPS). Additionally, the novel object recognition (NOR) score observed in the cKO mice was higher than that observed in the neuroinflammation model mice. These results suggest that the primary cilium in astrocytes positively regulates C3 expression. We propose that regulating astrocyte-specific primary cilium signalling may be a novel strategy for the suppression of neuroinflammation.
Collapse
Affiliation(s)
- Nor Atiqah Muhamad
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama Cho, Ikoma, Nara, 630-0192, Japan
| | - Kohei Masutani
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama Cho, Ikoma, Nara, 630-0192, Japan
| | - Shota Furukawa
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama Cho, Ikoma, Nara, 630-0192, Japan
| | - Shunsuke Yuri
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama Cho, Ikoma, Nara, 630-0192, Japan
| | - Michinori Toriyama
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, 1 Gakuenuegahara, Sanda, Hyogo, 669-1330, Japan
| | - Chuya Matsumoto
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama Cho, Ikoma, Nara, 630-0192, Japan
| | - Seiya Itoh
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama Cho, Ikoma, Nara, 630-0192, Japan
| | - Yuichiro Shinagawa
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama Cho, Ikoma, Nara, 630-0192, Japan
| | - Ayako Isotani
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama Cho, Ikoma, Nara, 630-0192, Japan
| | - Manami Toriyama
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama Cho, Ikoma, Nara, 630-0192, Japan.
| | - Hiroshi Itoh
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama Cho, Ikoma, Nara, 630-0192, Japan.
| |
Collapse
|
37
|
Martinez-Mayer J, Brinkmeier ML, O'Connell SP, Ukagwu A, Marti MA, Miras M, Forclaz MV, Benzrihen MG, Cheung LYM, Camper SA, Ellsworth BS, Raetzman LT, Pérez-Millán MI, Davis SW. Knockout mice with pituitary malformations help identify human cases of hypopituitarism. Genome Med 2024; 16:75. [PMID: 38822427 PMCID: PMC11140907 DOI: 10.1186/s13073-024-01347-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 05/20/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Congenital hypopituitarism (CH) and its associated syndromes, septo-optic dysplasia (SOD) and holoprosencephaly (HPE), are midline defects that cause significant morbidity for affected people. Variants in 67 genes are associated with CH, but a vast majority of CH cases lack a genetic diagnosis. Whole exome and whole genome sequencing of CH patients identifies sequence variants in genes known to cause CH, and in new candidate genes, but many of these are variants of uncertain significance (VUS). METHODS The International Mouse Phenotyping Consortium (IMPC) is an effort to establish gene function by knocking-out all genes in the mouse genome and generating corresponding phenotype data. We used mouse embryonic imaging data generated by the Deciphering Mechanisms of Developmental Disorders (DMDD) project to screen 209 embryonic lethal and sub-viable knockout mouse lines for pituitary malformations. RESULTS Of the 209 knockout mouse lines, we identified 51 that have embryonic pituitary malformations. These genes not only represent new candidates for CH, but also reveal new molecular pathways not previously associated with pituitary organogenesis. We used this list of candidate genes to mine whole exome sequencing data of a cohort of patients with CH, and we identified variants in two unrelated cases for two genes, MORC2 and SETD5, with CH and other syndromic features. CONCLUSIONS The screening and analysis of IMPC phenotyping data provide proof-of-principle that recessive lethal mouse mutants generated by the knockout mouse project are an excellent source of candidate genes for congenital hypopituitarism in children.
Collapse
Affiliation(s)
- Julian Martinez-Mayer
- Institute of Biosciences, Biotechnology and Translational Biology (iB3), University of Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina
| | - Michelle L Brinkmeier
- Department of Human Genetics, University of Michigan, 1241 Catherine St., Ann Arbor, MI, 48109-5618, USA
| | - Sean P O'Connell
- Department of Biological Sciences, University of South Carolina, 715 Sumter St., Columbia, SC, 29208, USA
| | - Arnold Ukagwu
- Department of Physiology, Southern Illinois University, 1135 Lincoln Dr, Carbondale, IL, 62901, USA
| | - Marcelo A Marti
- Instituto de Química Biológica de La Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mirta Miras
- Hospital De Niños de La Santísima Trinidad, Córdoba, Argentina
| | - Maria V Forclaz
- Servicio de Endocrinología, Hospital Posadas, Buenos Aires, Argentina
| | - Maria G Benzrihen
- Servicio de Endocrinología, Hospital Posadas, Buenos Aires, Argentina
| | - Leonard Y M Cheung
- Department of Human Genetics, University of Michigan, 1241 Catherine St., Ann Arbor, MI, 48109-5618, USA
- Department of Physiology and Biophyscis, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Sally A Camper
- Department of Human Genetics, University of Michigan, 1241 Catherine St., Ann Arbor, MI, 48109-5618, USA
| | - Buffy S Ellsworth
- Department of Physiology, Southern Illinois University, 1135 Lincoln Dr, Carbondale, IL, 62901, USA
| | - Lori T Raetzman
- Department of Molecular and Integrative Physiology, University of Illinois, Champaign-Urbana, Urbana, IL, 61801, USA
| | - Maria I Pérez-Millán
- Institute of Biosciences, Biotechnology and Translational Biology (iB3), University of Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina.
| | - Shannon W Davis
- Department of Biological Sciences, University of South Carolina, 715 Sumter St., Columbia, SC, 29208, USA.
| |
Collapse
|
38
|
Kawasaki M, Al-Shama RFM, Nariswari FA, Fabrizi B, van den Berg NWE, Wesselink R, Neefs J, Meulendijks ER, Baalman SWE, Driessen AHG, de Groot JR. Primary cilia suppress the fibrotic activity of atrial fibroblasts from patients with atrial fibrillation in vitro. Sci Rep 2024; 14:12470. [PMID: 38816374 PMCID: PMC11139955 DOI: 10.1038/s41598-024-60298-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/21/2024] [Indexed: 06/01/2024] Open
Abstract
Atrial fibrosis serves as an arrhythmogenic substrate in atrial fibrillation (AF) and contributes to AF persistence. Treating atrial fibrosis is challenging because atrial fibroblast activity is multifactorial. We hypothesized that the primary cilium regulates the profibrotic response of AF atrial fibroblasts, and explored therapeutic potentials of targeting primary cilia to treat fibrosis in AF. We included 25 patients without AF (non-AF) and 26 persistent AF patients (AF). Immunohistochemistry using a subset of the patients (non-AF: n = 10, AF: n = 10) showed less ciliated fibroblasts in AF versus non-AF. Acetylated α-tubulin protein levels were decreased in AF, while the gene expressions of AURKA and NEDD9 were highly increased in AF patients' left atrium. Loss of primary cilia in human atrial fibroblasts through IFT88 knockdown enhanced expression of ECM genes, including FN1 and COL1A1. Remarkably, restoration or elongation of primary cilia by an AURKA selective inhibitor or lithium chloride, respectively, prevented the increased expression of ECM genes induced by different profibrotic cytokines in atrial fibroblasts of AF patients. Our data reveal a novel mechanism underlying fibrotic substrate formation via primary cilia loss in AF atrial fibroblasts and suggest a therapeutic potential for abrogating atrial fibrosis by restoring primary cilia.
Collapse
Affiliation(s)
- Makiri Kawasaki
- Amsterdam UMC, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - Rushd F M Al-Shama
- Amsterdam UMC, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - Fransisca A Nariswari
- Amsterdam UMC, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Benedetta Fabrizi
- Amsterdam UMC, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Nicoline W E van den Berg
- Amsterdam UMC, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Robin Wesselink
- Amsterdam UMC, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Jolien Neefs
- Amsterdam UMC, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Eva R Meulendijks
- Amsterdam UMC, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Sarah W E Baalman
- Amsterdam UMC, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Antoine H G Driessen
- Amsterdam UMC, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Joris R de Groot
- Amsterdam UMC, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
39
|
Fagan RR, Lee DF, Geron M, Scherrer G, von Zastrow M, Ehrlich AT. Selective targeting of mu opioid receptors to primary cilia. Cell Rep 2024; 43:114164. [PMID: 38678559 PMCID: PMC11257377 DOI: 10.1016/j.celrep.2024.114164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/21/2024] [Accepted: 04/11/2024] [Indexed: 05/01/2024] Open
Abstract
Opioid receptors are therapeutically important G protein-coupled receptors (GPCRs) with diverse neuromodulatory effects. The functional consequences of opioid receptor activation are known to depend on receptor location in the plasma membrane, but mechanisms mediating selective localization of receptors to any particular membrane domain remain elusive. Here, we demonstrate the targeting of the mu opioid receptor (MOR) to the primary cilium, a discrete microdomain of the somatic plasma membrane, both in vivo and in cultured cells. We further show that ciliary targeting is specific to MORs, requires a 17-residue sequence unique to the MOR cytoplasmic tail, and additionally requires the Tubby-like protein 3 (TULP3) ciliary adaptor protein. Our results reveal the potential for opioid receptors to undergo selective localization to the primary cilium. We propose that ciliary targeting is mediated through an elaboration of the recycling pathway, directed by a specific C-terminal recycling sequence in cis and requiring TULP3 in trans.
Collapse
Affiliation(s)
- Rita R Fagan
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - David F Lee
- Department of Cell Biology and Physiology, UNC Neuroscience Center, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matan Geron
- Department of Cell Biology and Physiology, UNC Neuroscience Center, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Grégory Scherrer
- Department of Cell Biology and Physiology, UNC Neuroscience Center, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; New York Stem Cell Foundation, Chapel Hill, NC 27599, USA
| | - Mark von Zastrow
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Aliza T Ehrlich
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
40
|
Tingey M, Ruba A, Jiang Z, Yang W. Deciphering vesicle-assisted transport mechanisms in cytoplasm to cilium trafficking. Front Cell Neurosci 2024; 18:1379976. [PMID: 38860265 PMCID: PMC11163138 DOI: 10.3389/fncel.2024.1379976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/13/2024] [Indexed: 06/12/2024] Open
Abstract
The cilium, a pivotal organelle crucial for cell signaling and proper cell function, relies on meticulous macromolecular transport from the cytoplasm for its formation and maintenance. While the intraflagellar transport (IFT) pathway has traditionally been the focus of extensive study concerning ciliogenesis and ciliary maintenance, recent research highlights a complementary and alternative mechanism-vesicle-assisted transport (VAT) in cytoplasm to cilium trafficking. Despite its potential significance, the VAT pathway remains largely uncharacterized. This review explores recent studies providing evidence for the dynamics of vesicle-related diffusion and transport within the live primary cilium, employing high-speed super-resolution light microscopy. Additionally, we analyze the spatial distribution of vesicles in the cilium, mainly relying on electron microscopy data. By scrutinizing the VAT pathways that facilitate cargo transport into the cilium, with a specific emphasis on recent advancements and imaging data, our objective is to synthesize a comprehensive model of ciliary transport through the integration of IFT-VAT mechanisms.
Collapse
Affiliation(s)
| | | | | | - Weidong Yang
- Department of Biology, Temple University, Philadelphia, PA, United States
| |
Collapse
|
41
|
Hong J, Kwon KY, Jang DG, Kwon T, Yoon H, Park TJ. Mebendazole preferentially inhibits cilia formation and exerts anticancer activity by synergistically augmenting DNA damage. Biomed Pharmacother 2024; 174:116434. [PMID: 38513592 DOI: 10.1016/j.biopha.2024.116434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/29/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024] Open
Abstract
The cilium is a microtubule-based organelle that plays a pivotal role in embryonic development and maintenance of physiological functions in the human body. In addition to their function as sensors that transduce diverse extracellular signals, including growth factors, fluid flow, and physical forces, cilia are intricately involved in cell cycle regulation and preservation of DNA integrity, as their formation and resorption dynamics are tightly linked to cell cycle progression. Recently, several studies have linked defects in specific ciliary proteins to the DNA damage response. However, it remains unclear whether and how primary cilia contribute to cancer development. Mebendazole (MBZ) is an anthelmintic drug with anticancer properties in some cancer cells. MBZ is continuously being tested for clinical studies, but the precise mechanism of its anticancer activities remains unknown. Here, using Xenopus laevis embryos as a model system, we discovered that MBZ significantly hinders cilia formation and induces DNA damage. Remarkably, primary cilium-bearing cancer cells exhibited heightened vulnerability to combined treatment with MBZ and conventional anticancer drugs. Our findings shed light on the specific influence of MBZ on cilia, rather than cytosolic microtubules, in triggering DNA damage, elucidating a previously unidentified mechanism underlying potential MBZ-mediated cancer therapy.
Collapse
Affiliation(s)
- Juyeon Hong
- Department of Biological Sciences, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Keun Yeong Kwon
- Department of Biological Sciences, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Dong Gil Jang
- Department of Biological Sciences, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Taejoon Kwon
- Department of Biological Medical Engineering, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea; Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Haejin Yoon
- Department of Biological Sciences, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Tae Joo Park
- Department of Biological Sciences, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea; Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea.
| |
Collapse
|
42
|
Hembach S, Schmidt S, Orschmann T, Burtscher I, Lickert H, Giesert F, Weisenhorn DV, Wurst W. Engrailed 1 deficiency induces changes in ciliogenesis during human neuronal differentiation. Neurobiol Dis 2024; 194:106474. [PMID: 38518837 DOI: 10.1016/j.nbd.2024.106474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/24/2024] Open
Abstract
A key pathological feature of Parkinson's Disease (PD) is the progressive degeneration of dopaminergic neurons (DAns) in the substantia nigra pars compacta. Considering the major role of EN1 in the development and maintenance of these DAns and the implications from En1 mouse models, it is highly interesting to study the molecular and protective effect of EN1 also in a human cellular model. Therefore, we generated EN1 knock-out (ko) human induced pluripotent stem cell (hiPSCs) lines and analyzed these during neuronal differentiation. Although the EN1 ko didn't interfere with neuronal differentiation and generation of tyrosine hydroxylase positive (TH+) neurons per se, the neurons exhibited shorter neurites. Furthermore, mitochondrial respiration, as well as mitochondrial complex I abundance was significantly reduced in fully differentiated neurons. To understand the implications of an EN1 ko during differentiation, we performed a transcriptome analysis of human neuronal precursor cells (hNPCs) which unveiled alterations in cilia-associated pathways. Further analysis of ciliary morphology revealed an elongation of primary cilia in EN1-deficient hNPCs. Besides, also Wnt signaling pathways were severely affected. Upon stimulating hNPCs with Wnt which drastically increased EN1 expression in WT lines, the phenotypes concerning mitochondrial function and cilia were exacerbated in EN1 ko hNPCs. They failed to enhance the expression of the complex I subunits NDUFS1 and 3, and now displayed a reduced mitochondrial respiration. Furthermore, Wnt stimulation decreased ciliogenesis in EN1 ko hNPCs but increased ciliary length even further. This further highlights the relevance of primary cilia next to mitochondria for the functionality and correct maintenance of human DAns and provides new possibilities to establish neuroprotective therapies for PD.
Collapse
Affiliation(s)
- Sina Hembach
- Institute of Developmental Genetics, Helmholtz Munich, Neuherberg, Germany; Munich School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | - Sebastian Schmidt
- Institute of Developmental Genetics, Helmholtz Munich, Neuherberg, Germany; Neurobiological Engineering, Munich Institute of Biomedical Engineering, TUM School of Natural Sciences, Garching, Germany; Deutsche Zentrum für Psychische Gesundheit (DZPG), Site Munich-Augsburg, Munich, Germany
| | - Tanja Orschmann
- Institute of Developmental Genetics, Helmholtz Munich, Neuherberg, Germany
| | - Ingo Burtscher
- Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; School of Medicine, Technische Universität München, Munich, Germany
| | - Florian Giesert
- Institute of Developmental Genetics, Helmholtz Munich, Neuherberg, Germany
| | | | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Munich, Neuherberg, Germany; Deutsche Zentrum für Psychische Gesundheit (DZPG), Site Munich-Augsburg, Munich, Germany; Technische Universität München-Weihenstephan, Neuherberg, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany.
| |
Collapse
|
43
|
Díaz de Cerio M, Oliván S, Ochoa I, García-Sanmartín J, Martínez A. Cold-shock proteins accumulate in centrosomes and their expression and primary cilium morphology are regulated by hypothermia and shear stress. Histol Histopathol 2024; 39:447-462. [PMID: 37694837 DOI: 10.14670/hh-18-656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Primary cilia act as cellular sensors for multiple extracellular stimuli and regulate many intracellular signaling pathways in response. Here we investigate whether the cold-shock proteins (CSPs), CIRP and RBM3, are present in the primary cilia and the physiological consequences of such a relationship. R28, an immortalized retinal precursor cell line, was stained with antibodies against CIRP, RBM3, and ciliary markers. Both CSPs were found in intimate contact with the basal body of the cilium during all stages of the cell cycle, including migrating with the centrosome during mitosis. In addition, the morphological and physiological manifestations of exposing the cells to hypothermia and shear stress were investigated. Exposure to moderately cold (32°C) temperatures, the hypothermia mimetic small molecule zr17-2, or to shear stress resulted in a significant reduction in the number and length of primary cilia. In addition, shear stress induced expression of CIRP and RBM3 in a complex pattern depending on the specific protein, flow intensity, and type of flow (laminar versus oscillatory). Flow-mediated CSP overexpression was detected by qRT-PCR and confirmed by Western blot, at least for CIRP. Furthermore, analysis of public RNA Seq databases on flow experiments confirmed an increase of CIRP and RBM3 expression following exposure to shear stress in renal cell lines. In conclusion, we found that CSPs are integral components of the centrosome and that they participate in cold and shear stress sensing.
Collapse
Affiliation(s)
- María Díaz de Cerio
- Angiogenesis Unit, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| | - Sara Oliván
- Tissue Microenvironment Lab (TMELab), University of Zaragoza, Aragón Institute of Engineering Research (I3A), Institute for Health Research Aragon (IIS Aragón), Zaragoza, Spain
| | - Ignacio Ochoa
- Tissue Microenvironment Lab (TMELab), University of Zaragoza, Aragón Institute of Engineering Research (I3A), Institute for Health Research Aragon (IIS Aragón), Zaragoza, Spain
- Centro de Investigación Biomédica en Red. Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Institute for Health Research Aragon (IIS Aragón), Zaragoza, Spain
| | - Josune García-Sanmartín
- Angiogenesis Unit, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| | - Alfredo Martínez
- Angiogenesis Unit, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain.
| |
Collapse
|
44
|
Jagannathan C, Waddington R, Nishio Ayre W. Nanoparticle and Nanotopography-Induced Activation of the Wnt Pathway in Bone Regeneration. TISSUE ENGINEERING. PART B, REVIEWS 2024; 30:270-283. [PMID: 37795571 DOI: 10.1089/ten.teb.2023.0108] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Background and Aims: Recent research has focused on developing nanoparticle and nanotopography-based technologies for bone regeneration. The Wingless-related integration site (Wnt) signaling pathway has been shown to play a vital role in this process, in particular in osteogenic differentiation and proliferation. The exact mechanisms by which nanoparticles and nanotopographies activate the Wnt signaling pathway, however, are not fully understood. This review aimed to elucidate the mechanisms by which nanoscale technologies activate the Wnt signaling pathway during bone regeneration. Methods: The terms "Wnt," "bone," and "nano*" were searched on PubMed and Ovid with no date limit. Only original research articles related to Wnt signaling and bone regeneration in the context of nanotopographies, nanoparticles, or scaffolds with nanotopographies/nanoparticles were reviewed. Results: The primary mechanism by which nanoparticles activated the Wnt pathway was by internalization through the endocytic pathway or diffusion through the cell membrane, leading to accumulation of nonphosphorylated β-catenin in the cytoplasm and subsequently downstream osteogenic signaling (e.g., upregulation of runt-related transcription factor 2 [RUNX2]). The specific size of the nanoparticles and the process of endocytosis itself has been shown to modulate the Wnt-β-catenin pathway. Nanotopographies were shown to directly activate frizzled receptors, initiating Wnt/β-catenin signaling. Additional studies showed nanotopographies to activate the Wnt/calcium (Wnt/Ca2+)-dependent and Wnt/planar cell polarity pathways through nuclear factor of activated T cells, and α5β1 integrin stimulation. Finally, scaffolds containing nanotopographies/nanoparticles were found to induce Wnt signaling through a combination of ion release (e.g., lithium, boron, lanthanum, and icariin), which inhibited glycogen synthase kinase 3 beta (GSK-3β) activity, and through similar mechanisms to the nanotopographies. Conclusion: This review concludes that nanoparticles and nanotopographies cause Wnt activation through several different mechanisms, specific to the size, shape, and structure of the nanoparticles or nanotopographies. Endocytosis-related mechanisms, integrin signaling and ion release were the major mechanisms identified across nanoparticles, nanotopographies, and scaffolds, respectively. Knowledge of these mechanisms will help develop more effective targeted nanoscale technologies for bone regeneration. Impact statement Nanoparticles and nanotopographies can activate the Wingless-related integration site (Wnt) signaling pathway, which is essential for bone regeneration. This review has identified that activation is due to endocytosis, integrin signaling and ion release, depending on the size, shape, and structure of the nanoparticles or nanotopographies. By identifying and further understanding these mechanisms, more effective nanoscale technologies that target the Wnt signaling pathway can be developed. These technologies can be used for the treatment of nonunion bone fractures, a major clinical challenge, with the potential to improve the quality of life of millions of patients around the world.
Collapse
Affiliation(s)
- Chitra Jagannathan
- Department of Applied Sciences, University of the West of England, Bristol, United Kingdom
| | | | | |
Collapse
|
45
|
Laporte D, Massoni-Laporte A, Lefranc C, Dompierre J, Mauboules D, Nsamba ET, Royou A, Gal L, Schuldiner M, Gupta ML, Sagot I. A stable microtubule bundle formed through an orchestrated multistep process controls quiescence exit. eLife 2024; 12:RP89958. [PMID: 38527106 PMCID: PMC10963028 DOI: 10.7554/elife.89958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024] Open
Abstract
Cells fine-tune microtubule assembly in both space and time to give rise to distinct edifices with specific cellular functions. In proliferating cells, microtubules are highly dynamics, and proliferation cessation often leads to their stabilization. One of the most stable microtubule structures identified to date is the nuclear bundle assembled in quiescent yeast. In this article, we characterize the original multistep process driving the assembly of this structure. This Aurora B-dependent mechanism follows a precise temporality that relies on the sequential actions of kinesin-14, kinesin-5, and involves both microtubule-kinetochore and kinetochore-kinetochore interactions. Upon quiescence exit, the microtubule bundle is disassembled via a cooperative process involving kinesin-8 and its full disassembly is required prior to cells re-entry into proliferation. Overall, our study provides the first description, at the molecular scale, of the entire life cycle of a stable microtubule structure in vivo and sheds light on its physiological function.
Collapse
Affiliation(s)
| | | | | | | | | | - Emmanuel T Nsamba
- Genetics, Development, and Cell Biology, Iowa State UniversityAmesUnited States
| | - Anne Royou
- Univ. Bordeaux, CNRS, IBGC, UMR 5095BordeauxFrance
| | - Lihi Gal
- Department of Molecular Genetics, Weizmann Institute of ScienceRehovotIsrael
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of ScienceRehovotIsrael
| | - Mohan L Gupta
- Genetics, Development, and Cell Biology, Iowa State UniversityAmesUnited States
| | | |
Collapse
|
46
|
Söderman J, Almer S. Discerning Endoscopic Severity of Inflammatory Bowel Disease by Scoping the Peripheral Blood Transcriptome. GASTRO HEP ADVANCES 2024; 3:618-633. [PMID: 39165421 PMCID: PMC11330933 DOI: 10.1016/j.gastha.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/29/2024] [Indexed: 08/22/2024]
Abstract
Background and Aims Ulcerative colitis (UC) and Crohn's disease (CD) are chronic inflammatory bowel diseases (IBDs) with an incompletely understood etiology and pathogenesis. Identification of suitable drug targets and assessment of disease severity are crucial for optimal management. Methods Using RNA sequencing, we investigated differential gene expression in peripheral blood samples from IBD patients and non-inflamed controls, analyzed pathway enrichment, and identified genes whose expression correlated with endoscopic disease severity. Results Neutrophil degranulation emerged as the most significant pathway across all IBD sample types. Signaling by interleukins was prominent in patients with active intestinal inflammation but also enriched in CD and UC patients without intestinal inflammation. Nevertheless, genes correlated to endoscopic disease severity implicated the primary cilium in CD patients and translation and focal adhesion in UC patients. Moreover, several of these genes were located in genome-wide associated loci linked to IBD, cholesterol levels, blood cell counts, and levels of markers assessing liver and kidney function. These genes also suggested connections to intestinal epithelial barrier dysfunction, contemporary IBD drug treatment, and new actionable drug targets. A large number of genes associated with endoscopic disease severity corresponded to noncoding RNAs. Conclusion This study revealed biological pathways associated with IBD disease state and endoscopic disease severity, thus providing insights into the underlying mechanisms of IBD pathogenesis as well as identifying potential biomarkers and therapies. Peripheral blood might constitute a suitable noninvasive diagnostic sample type, in which gene expression profiles might serve as indicators of ongoing mucosal inflammation, and thus guide personalized treatment decisions.
Collapse
Affiliation(s)
- Jan Söderman
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Laboratory Medicine, Jönköping, Region Jönköping County, Sweden
| | - Sven Almer
- Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- IBD-Unit, Division of Gastroenterology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
47
|
Hoffman HK, Prekeris R. HOPS-dependent lysosomal fusion controls Rab19 availability for ciliogenesis in polarized epithelial cells. J Cell Sci 2024; 137:jcs261047. [PMID: 37665101 PMCID: PMC10499034 DOI: 10.1242/jcs.261047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/20/2023] [Indexed: 09/05/2023] Open
Abstract
Primary cilia are sensory cellular organelles crucial for organ development and homeostasis. Ciliogenesis in polarized epithelial cells requires Rab19-mediated clearing of apical cortical actin to allow the cilium to grow from the apically docked basal body into the extracellular space. Loss of the lysosomal membrane-tethering homotypic fusion and protein sorting (HOPS) complex disrupts this actin clearing and ciliogenesis, but it remains unclear how the ciliary function of HOPS relates to its canonical function in regulating late endosome-lysosome fusion. Here, we show that disruption of HOPS-dependent lysosomal fusion indirectly impairs actin clearing and ciliogenesis by disrupting the targeting of Rab19 to the basal body, and that this effect is specific to polarized epithelial cells. We also find that Rab19 functions in endolysosomal cargo trafficking in addition to having its previously identified role in ciliogenesis. In summary, we show that inhibition of lysosomal fusion leads to the abnormal accumulation of Rab19 on late endosomes, thus depleting Rab19 from the basal body and thereby disrupting Rab19-mediated actin clearing and ciliogenesis in polarized epithelial cells.
Collapse
Affiliation(s)
- Huxley K. Hoffman
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
48
|
Coschiera A, Yoshihara M, Lauter G, Ezer S, Pucci M, Li H, Kavšek A, Riedel CG, Kere J, Swoboda P. Primary cilia promote the differentiation of human neurons through the WNT signaling pathway. BMC Biol 2024; 22:48. [PMID: 38413974 PMCID: PMC10900739 DOI: 10.1186/s12915-024-01845-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 02/12/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Primary cilia emanate from most human cell types, including neurons. Cilia are important for communicating with the cell's immediate environment: signal reception and transduction to/from the ciliated cell. Deregulation of ciliary signaling can lead to ciliopathies and certain neurodevelopmental disorders. In the developing brain cilia play well-documented roles for the expansion of the neural progenitor cell pool, while information about the roles of cilia during post-mitotic neuron differentiation and maturation is scarce. RESULTS We employed ciliated Lund Human Mesencephalic (LUHMES) cells in time course experiments to assess the impact of ciliary signaling on neuron differentiation. By comparing ciliated and non-ciliated neuronal precursor cells and neurons in wild type and in RFX2 -/- mutant neurons with altered cilia, we discovered an early-differentiation "ciliary time window" during which transient cilia promote axon outgrowth, branching and arborization. Experiments in neurons with IFT88 and IFT172 ciliary gene knockdowns, leading to shorter cilia, confirm these results. Cilia promote neuron differentiation by tipping WNT signaling toward the non-canonical pathway, in turn activating WNT pathway output genes implicated in cyto-architectural changes. CONCLUSIONS We provide a mechanistic entry point into when and how ciliary signaling coordinates, promotes and translates into anatomical changes. We hypothesize that ciliary alterations causing neuron differentiation defects may result in "mild" impairments of brain development, possibly underpinning certain aspects of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Andrea Coschiera
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
| | - Masahito Yoshihara
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
- Department of Artificial Intelligence Medicine, Graduate School of Medicine, Chiba, Japan
- Chiba University, Chiba, Japan
| | - Gilbert Lauter
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala, Sweden
- Uppsala University, Uppsala, Sweden
| | - Sini Ezer
- University of Helsinki, Stem Cells and Metabolism Research Program, and Folkhälsan Research Center, Helsinki, Finland
| | - Mariangela Pucci
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
- Department of Bioscience and Technology for Food, Agriculture and Environment, Teramo, Italy
- University of Teramo, Teramo, Italy
| | - Haonan Li
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
| | - Alan Kavšek
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
| | - Christian G Riedel
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
- University of Helsinki, Stem Cells and Metabolism Research Program, and Folkhälsan Research Center, Helsinki, Finland
| | - Peter Swoboda
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden.
| |
Collapse
|
49
|
Cenni V, Sabatelli P, Di Martino A, Merlini L, Antoniel M, Squarzoni S, Neri S, Santi S, Metti S, Bonaldo P, Faldini C. Collagen VI Deficiency Impairs Tendon Fibroblasts Mechanoresponse in Ullrich Congenital Muscular Dystrophy. Cells 2024; 13:378. [PMID: 38474342 PMCID: PMC10930931 DOI: 10.3390/cells13050378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/06/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
The pericellular matrix (PCM) is a specialized extracellular matrix that surrounds cells. Interactions with the PCM enable the cells to sense and respond to mechanical signals, triggering a proper adaptive response. Collagen VI is a component of muscle and tendon PCM. Mutations in collagen VI genes cause a distinctive group of inherited skeletal muscle diseases, and Ullrich congenital muscular dystrophy (UCMD) is the most severe form. In addition to muscle weakness, UCMD patients show structural and functional changes of the tendon PCM. In this study, we investigated whether PCM alterations due to collagen VI mutations affect the response of tendon fibroblasts to mechanical stimulation. By taking advantage of human tendon cultures obtained from unaffected donors and from UCMD patients, we analyzed the morphological and functional properties of cellular mechanosensors. We found that the length of the primary cilia of UCMD cells was longer than that of controls. Unlike controls, in UCMD cells, both cilia prevalence and length were not recovered after mechanical stimulation. Accordingly, under the same experimental conditions, the activation of the Hedgehog signaling pathway, which is related to cilia activity, was impaired in UCMD cells. Finally, UCMD tendon cells exposed to mechanical stimuli showed altered focal adhesions, as well as impaired activation of Akt, ERK1/2, p38MAPK, and mechanoresponsive genes downstream of YAP. By exploring the response to mechanical stimulation, for the first time, our findings uncover novel unreported mechanistic aspects of the physiopathology of UCMD-derived tendon fibroblasts and point at a role for collagen VI in the modulation of mechanotransduction in tendons.
Collapse
Affiliation(s)
- Vittoria Cenni
- CNR-Institute of Molecular Genetics, via di Barbiano 1/10, 40136 Bologna, Italy (S.S.); (S.S.)
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Patrizia Sabatelli
- CNR-Institute of Molecular Genetics, via di Barbiano 1/10, 40136 Bologna, Italy (S.S.); (S.S.)
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Alberto Di Martino
- 1st Orthopedics and Traumatology Department, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (A.D.M.); (C.F.)
- Department of Biomedical and Neuromotor Science, DIBINEM, University of Bologna, 40136 Bologna, Italy;
| | - Luciano Merlini
- Department of Biomedical and Neuromotor Science, DIBINEM, University of Bologna, 40136 Bologna, Italy;
| | - Manuela Antoniel
- CNR-Institute of Molecular Genetics, via di Barbiano 1/10, 40136 Bologna, Italy (S.S.); (S.S.)
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Stefano Squarzoni
- CNR-Institute of Molecular Genetics, via di Barbiano 1/10, 40136 Bologna, Italy (S.S.); (S.S.)
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Simona Neri
- Medicine and Rheumatology Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Spartaco Santi
- CNR-Institute of Molecular Genetics, via di Barbiano 1/10, 40136 Bologna, Italy (S.S.); (S.S.)
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Samuele Metti
- Department of Molecular Medicine, University of Padova, 35122 Padova, Italy; (S.M.); (P.B.)
| | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padova, 35122 Padova, Italy; (S.M.); (P.B.)
| | - Cesare Faldini
- 1st Orthopedics and Traumatology Department, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (A.D.M.); (C.F.)
- Department of Biomedical and Neuromotor Science, DIBINEM, University of Bologna, 40136 Bologna, Italy;
| |
Collapse
|
50
|
Varney MJ, Benovic JL. The Role of G Protein-Coupled Receptors and Receptor Kinases in Pancreatic β-Cell Function and Diabetes. Pharmacol Rev 2024; 76:267-299. [PMID: 38351071 PMCID: PMC10877731 DOI: 10.1124/pharmrev.123.001015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 02/16/2024] Open
Abstract
Type 2 diabetes (T2D) mellitus has emerged as a major global health concern that has accelerated in recent years due to poor diet and lifestyle. Afflicted individuals have high blood glucose levels that stem from the inability of the pancreas to make enough insulin to meet demand. Although medication can help to maintain normal blood glucose levels in individuals with chronic disease, many of these medicines are outdated, have severe side effects, and often become less efficacious over time, necessitating the need for insulin therapy. G protein-coupled receptors (GPCRs) regulate many physiologic processes, including blood glucose levels. In pancreatic β cells, GPCRs regulate β-cell growth, apoptosis, and insulin secretion, which are all critical in maintaining sufficient β-cell mass and insulin output to ensure euglycemia. In recent years, new insights into the signaling of incretin receptors and other GPCRs have underscored the potential of these receptors as desirable targets in the treatment of diabetes. The signaling of these receptors is modulated by GPCR kinases (GRKs) that phosphorylate agonist-activated GPCRs, marking the receptor for arrestin binding and internalization. Interestingly, genome-wide association studies using diabetic patient cohorts link the GRKs and arrestins with T2D. Moreover, recent reports show that GRKs and arrestins expressed in the β cell serve a critical role in the regulation of β-cell function, including β-cell growth and insulin secretion in both GPCR-dependent and -independent pathways. In this review, we describe recent insights into GPCR signaling and the importance of GRK function in modulating β-cell physiology. SIGNIFICANCE STATEMENT: Pancreatic β cells contain a diverse array of G protein-coupled receptors (GPCRs) that have been shown to improve β-cell function and survival, yet only a handful have been successfully targeted in the treatment of diabetes. This review discusses recent advances in our understanding of β-cell GPCR pharmacology and regulation by GPCR kinases while also highlighting the necessity of investigating islet-enriched GPCRs that have largely been unexplored to unveil novel treatment strategies.
Collapse
Affiliation(s)
- Matthew J Varney
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jeffrey L Benovic
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|