1
|
Vosough M, Shokouhian B, Sharbaf MA, Solhi R, Heidari Z, Seydi H, Hassan M, Devaraj E, Najimi M. Role of mitogens in normal and pathological liver regeneration. Hepatol Commun 2025; 9:e0692. [PMID: 40304568 DOI: 10.1097/hc9.0000000000000692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/31/2025] [Indexed: 05/02/2025] Open
Abstract
The liver has a unique ability to regenerate to meet the body's metabolic needs, even following acute or chronic injuries. The cellular and molecular mechanisms underlying normal liver regeneration have been well investigated to improve organ transplantation outcomes. Once liver regeneration is impaired, pathological regeneration occurs, and the underlying cellular and molecular mechanisms require further investigations. Nevertheless, a plethora of cytokines and growth factor-mediated pathways have been reported to modulate physiological and pathological liver regeneration. Regenerative mitogens play an essential role in hepatocyte proliferation. Accelerator mitogens in synergism with regenerative ones promote liver regeneration following hepatectomy. Finally, terminator mitogens restore the proliferating status of hepatocytes to a differentiated and quiescent state upon completion of regeneration. Chronic loss of hepatocytes, which can manifest in chronic liver disorders of any etiology, often has undesired structural consequences, including fibrosis, cirrhosis, and liver neoplasia due to the unregulated proliferation of remaining hepatocytes. In fact, any impairment in the physiological function of the terminator mitogens results in the progression of pathological liver regeneration. In the current review, we intend to highlight the updated cellular and molecular mechanisms involved in liver regeneration and discuss the impairments in central regulating mechanisms responsible for pathological liver regeneration.
Collapse
Affiliation(s)
- Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Bahare Shokouhian
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohammad Amin Sharbaf
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Roya Solhi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Zahra Heidari
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Homeyra Seydi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ezhilarasan Devaraj
- Department of Pharmacology, Hepatology and Molecular Medicine Lab, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| |
Collapse
|
2
|
Strojny-Cieślak B, Pruchniewski M, Sosnowska M, Szczepaniak J, Wierzbicki M. Toxicological insights into graphene family materials: Cytochrome P450 modulation and cellular stress in liver cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 974:179211. [PMID: 40138895 DOI: 10.1016/j.scitotenv.2025.179211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/14/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
Graphene family materials (GFM), including pristine graphene (GN), graphene oxide (GO), and nano-sized graphene oxide (nGO), are increasingly utilized across industrial, environmental, and biomedical domains. Despite their potential benefits, the hazardous effects of GFM, particularly on liver xenobiotic-metabolizing enzymes and cellular functions, are not fully understood. Cytochrome P450 (CYP) are enzymes conserved across species, which play a crucial role in the metabolism of xenobiotics, drugs, environmental pollutants, and endogenous compounds, are key to understanding the biotransformation and detoxification processes impacted by GFM. This study investigates the effects of GFMs on CYP enzymes (CYP1A2, CYP2D6, CYP3A4) in a recombinant CYP system and HepG2 liver cells, alongside an assessment of cellular stress responses. In HepG2 cells, GFMs induced oxidative stress, mitochondrial depolarization, and cytotoxicity, with GN causing the most pronounced effects. GO exhibited the strongest inhibition of CYP enzymatic activity, particularly CYP1A2, in a dose-dependent manner in a recombinant CYP system. None of the tested nanomaterials significantly altered CYP expression, except for nGO, where a slight increase in CYP3A4 protein expression was observed. These findings highlight the significant influence of GFM physicochemical properties on their hazardous potential, especially their ability to disrupt metabolic processes and induce cellular stress. This study emphasizes the critical need for evaluating the safety of GFM in light of their widespread application and potential environmental and human health implications.
Collapse
Affiliation(s)
- Barbara Strojny-Cieślak
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Ciszewskiego 8 str, 02-786 Warsaw, Poland.
| | - Michał Pruchniewski
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Ciszewskiego 8 str, 02-786 Warsaw, Poland
| | - Malwina Sosnowska
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Ciszewskiego 8 str, 02-786 Warsaw, Poland
| | - Jarosław Szczepaniak
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159C str, 02-776 Warsaw, Poland
| | - Mateusz Wierzbicki
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Ciszewskiego 8 str, 02-786 Warsaw, Poland
| |
Collapse
|
3
|
Morales Castro RA, Kern BC, Díaz-Basabe A, Meinen ER, Zhao D, Zhou Y, Castillo F, Monasterio G, Farcas V, Chávez MN, Fransson J, Villablanca EJ. A zebrafish model of intestinal epithelial damage reveals macrophages and igfbp1a as major modulators of mucosal healing. Mucosal Immunol 2025:S1933-0219(25)00042-X. [PMID: 40252728 DOI: 10.1016/j.mucimm.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 03/30/2025] [Accepted: 04/10/2025] [Indexed: 04/21/2025]
Abstract
Promoting intestinal regeneration and enhancing mucosal healing have emerged as promising therapeutic alternatives for treating intestinal disorders that compromise epithelial barrier integrity and function. However, the cellular and molecular mechanisms underlying these processes remain poorly understood. This knowledge gap is partly due to the lack of reliable and cost-effective in vivo models for studying the mechanisms governing intestinal damage and regeneration. Here, we developed a controlled, inducible, and targeted intestinal epithelial cell (IEC) ablation transgenic zebrafish model that recapitulates features of intestinal damage and regeneration observed in humans. Single-cell RNAseq and live imaging revealed accumulation of macrophages in the recovering intestine, contributing to its regeneration. Furthermore, we observed overexpression of insulin-like growth factor binding protein 1a (igfbp1a) during intestinal damage. Morpholino-mediated knockdown of igfbp1a exacerbated intestinal damage and impaired subsequent regeneration. In summary, we introduced a novel zebrafish model of intestinal damage that enables in vivo high-throughput screening for identifying and validating novel modulators of mucosal healing and intestinal regeneration.
Collapse
Affiliation(s)
- Rodrigo A Morales Castro
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna (MedS), Karolinska Institute and University Hospital, SE-171 76 Stockholm, Sweden; Center for Molecular Medicine (CMM), Karolinska University Hospital, SE-171 64 Solna, Sweden; Division of Clinical Immunology, Department of Laboratory Medicine (Labmed), Karolinska Institute, SE-141 52 Huddinge, Sweden.
| | - Bianca C Kern
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna (MedS), Karolinska Institute and University Hospital, SE-171 76 Stockholm, Sweden; Center for Molecular Medicine (CMM), Karolinska University Hospital, SE-171 64 Solna, Sweden
| | - Angélica Díaz-Basabe
- Center for Molecular Medicine (CMM), Karolinska University Hospital, SE-171 64 Solna, Sweden; Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | - Eveline R Meinen
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna (MedS), Karolinska Institute and University Hospital, SE-171 76 Stockholm, Sweden; Center for Molecular Medicine (CMM), Karolinska University Hospital, SE-171 64 Solna, Sweden
| | - Danxia Zhao
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna (MedS), Karolinska Institute and University Hospital, SE-171 76 Stockholm, Sweden; Center for Molecular Medicine (CMM), Karolinska University Hospital, SE-171 64 Solna, Sweden
| | - Yuqing Zhou
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna (MedS), Karolinska Institute and University Hospital, SE-171 76 Stockholm, Sweden; Center for Molecular Medicine (CMM), Karolinska University Hospital, SE-171 64 Solna, Sweden
| | - Francisca Castillo
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna (MedS), Karolinska Institute and University Hospital, SE-171 76 Stockholm, Sweden; Center for Molecular Medicine (CMM), Karolinska University Hospital, SE-171 64 Solna, Sweden
| | - Gustavo Monasterio
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna (MedS), Karolinska Institute and University Hospital, SE-171 76 Stockholm, Sweden; Center for Molecular Medicine (CMM), Karolinska University Hospital, SE-171 64 Solna, Sweden
| | - Vlad Farcas
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna (MedS), Karolinska Institute and University Hospital, SE-171 76 Stockholm, Sweden; Center for Molecular Medicine (CMM), Karolinska University Hospital, SE-171 64 Solna, Sweden
| | - Myra N Chávez
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern CH-3012 Bern, Switzerland
| | - Jennifer Fransson
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna (MedS), Karolinska Institute and University Hospital, SE-171 76 Stockholm, Sweden; Center for Molecular Medicine (CMM), Karolinska University Hospital, SE-171 64 Solna, Sweden
| | - Eduardo J Villablanca
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna (MedS), Karolinska Institute and University Hospital, SE-171 76 Stockholm, Sweden; Center for Molecular Medicine (CMM), Karolinska University Hospital, SE-171 64 Solna, Sweden.
| |
Collapse
|
4
|
Kirkham AL, Avery JP, Beltran RS, Burns JM. Post-lactation mass recovery and metabolic hormone dynamics in adult female Weddell seals. Gen Comp Endocrinol 2025; 365:114706. [PMID: 40074089 DOI: 10.1016/j.ygcen.2025.114706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/27/2025] [Accepted: 03/09/2025] [Indexed: 03/14/2025]
Abstract
Weddell seal (Leptonychotes weddellii) females lose substantial body mass across an intensive, nutritionally restricted lactation period and then must rapidly recover mass during the short Antarctic summer. In this study, we examined endocrine dynamics associated with mass loss across lactation and subsequent realimentation in Weddell seals, comparing patterns between seals that recently gave birth and demographically similar non-reproductive females (skip females) in McMurdo Sound, Antarctica. Postpartum seals near weaning (∼35 days postpartum, n = 64) and skip females (n = 32) were handled during early austral summer (November/December) and rehandled in late summer (January/February). Body mass, body composition (% lipid), and a suite of metabolic hormones (growth hormone (GH), insulin-like growth factor (IGF)-I, cortisol, total thyroxine (tT4), free thyroxine (fT4), and total triiodothyronine (tT3) and IGF binding protein (IGFBP)-2 and -3) were measured. Postpartum seals gained mass after weaning (0.98 ± 0.56 kg·day-1 (mean ± SD)), primarily as lean tissue rather than lipid, while their serum concentrations of tT4 and fT4, IGF-I, and cortisol increased. Their circulating GH and IGFBP-2 concentrations decreased and correlated negatively with mass. Skip females had greater body masses and lipid stores than postpartum seals at the end of the lactation period in early summer, but they lost mass (-1.03 ± 0.35 kg·day-1) and lipid stores over summer while their serum cortisol concentrations increased. Overall, body mass and composition of postpartum and skip females converged across summer. This convergence, likely driven in large part by contrasting endocrine profiles between the groups, may allow female Weddell seals to reach an advantageous seasonal body mass "set point" by onset of winter.
Collapse
Affiliation(s)
- Amy L Kirkham
- Department of Biological Sciences, University of Alaska Anchorage, 3101 Science Circle, Anchorage, AK 99508, USA; College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, 17101 Point Lena Loop Road, Juneau, AK 99801, USA.
| | - Julie P Avery
- Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, PO Box 755910, AK 99775, USA.
| | - Roxanne S Beltran
- Ecology and Evolutionary Biology, University of California Santa Cruz, CA 95060, USA.
| | - Jennifer M Burns
- Department of Biological Sciences, Texas Tech University, Box 43131, Lubbock, TX 79409, USA.
| |
Collapse
|
5
|
Blanchard AC, Maximova A, Phillips-Jones T, Bruce MR, Anastasiadis P, Dionisos CV, Engel K, Reinl E, Pham A, Malaiya S, Singh N, Ament S, McCarthy MM. Mast cells proliferate in the peri-hippocampal space during early development and modulate local and peripheral immune cells. Dev Cell 2025; 60:853-870.e7. [PMID: 39662467 PMCID: PMC11945645 DOI: 10.1016/j.devcel.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/04/2024] [Accepted: 11/14/2024] [Indexed: 12/13/2024]
Abstract
Brain development is a non-linear process of regionally specific epochs occurring during windows of sensitivity to endogenous and exogenous stimuli. We have identified an epoch in the neonatal rat brain defined by a transient population of peri-hippocampal mast cells (phMCs) that are abundant from birth through 2-weeks post-natal but absent thereafter. The phMCs are maintained by proliferation and harbor a unique transcriptome compared with mast cells residing in the skin, bone marrow, or other brain regions. Pharmacological activation of this population broadly increases blood-brain barrier permeability, recruits peripheral immune cells, and stunts local microglia proliferation. Examination of the post-mortem human brain demonstrated mast cells in the peri-hippocampal region of a newborn, but not an older infant, suggesting a similar developmental period exists in humans. Mast cells specifically, and early-life inflammation generally, have been linked to heightened risk for neurodevelopmental disorders, and these results demonstrate a plausible source of that risk.
Collapse
Affiliation(s)
- Alexa C Blanchard
- Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD, USA; Medical Scientist Training Program, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Anna Maximova
- Medical Scientist Training Program, University of Maryland School of Medicine, Baltimore, MD, USA; Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Taylor Phillips-Jones
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Matthew R Bruce
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Pavlos Anastasiadis
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA; University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA; Medicine Institute for Neuroscience Discovery, University of Maryland, Baltimore, MD 21201, USA
| | - Christie V Dionisos
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kaliroi Engel
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Erin Reinl
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Aidan Pham
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sonia Malaiya
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nevil Singh
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA; University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Seth Ament
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA; Medicine Institute for Neuroscience Discovery, University of Maryland, Baltimore, MD 21201, USA
| | - Margaret M McCarthy
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA; University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA; Medicine Institute for Neuroscience Discovery, University of Maryland, Baltimore, MD 21201, USA.
| |
Collapse
|
6
|
Fernández-Pereira C, Agís-Balboa RC. The Insulin-like Growth Factor Family as a Potential Peripheral Biomarker in Psychiatric Disorders: A Systematic Review. Int J Mol Sci 2025; 26:2561. [PMID: 40141202 PMCID: PMC11942524 DOI: 10.3390/ijms26062561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 03/28/2025] Open
Abstract
Psychiatric disorders (PDs), including schizophrenia (SZ), major depressive disorder (MDD), bipolar disorder (BD), autism spectrum disorder (ASD), among other disorders, represent a significant global health burden. Despite advancements in understanding their biological mechanisms, there is still no reliable objective and reliable biomarker; therefore, diagnosis remains largely reliant on subjective clinical assessments. Peripheral biomarkers in plasma or serum are interesting due to their accessibility, low cost, and potential to reflect central nervous system processes. Among these, the insulin-like growth factor (IGF) family, IGF-1, IGF-2, and IGF-binding proteins (IGFBPs), has gained attention for its roles in neuroplasticity, cognition, and neuroprotection, as well as for their capability to cross the blood-brain barrier. This review evaluates the evidence for IGF family alterations in PDs, with special focus on SZ, MDD, and BD, while also addressing other PDs covering almost 40 years of history. In SZ patients, IGF-1 alterations have been linked to metabolic dysregulation, treatment response, and hypothalamic-pituitary-adrenal axis dysfunction. In MDD patients, IGF-1 appears to compensate for impaired neurogenesis, although findings are inconsistent. Emerging studies on IGF-2 and IGFBPs suggest potential roles across PDs. While promising, heterogeneity among studies and methodological limitations highlights the need for further research to validate IGFs as reliable psychiatric biomarkers.
Collapse
Affiliation(s)
- Carlos Fernández-Pereira
- Neuro Epigenetics Lab, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Hospital Complex, 15706 Santiago de Compostela, Spain;
- Translational Research in Neurological Diseases (ITEN) Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Hospital Complex, SERGAS-USC, 15706 Santiago de Compostela, Spain
- Neurology Service, Santiago University Hospital Complex, 15706 Santiago de Compostela, Spain
| | - Roberto Carlos Agís-Balboa
- Neuro Epigenetics Lab, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Hospital Complex, 15706 Santiago de Compostela, Spain;
- Translational Research in Neurological Diseases (ITEN) Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Hospital Complex, SERGAS-USC, 15706 Santiago de Compostela, Spain
- Neurology Service, Santiago University Hospital Complex, 15706 Santiago de Compostela, Spain
| |
Collapse
|
7
|
Shi L, Ding Z, Chen J. Deciphering the role of IGFBP5 in delaying fibrosis and sarcopenia in aging skeletal muscle: therapeutic implications and molecular mechanisms. Front Pharmacol 2025; 16:1557703. [PMID: 40144669 PMCID: PMC11937025 DOI: 10.3389/fphar.2025.1557703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/14/2025] [Indexed: 03/28/2025] Open
Abstract
Introduction Sarcopenia is a condition characterized by the loss of muscle fibers and excessive deposition of extracellular matrix proteins. The interplay between muscle atrophy and fibrosis is a central feature of sarcopenia. While the mechanisms underlying skeletal muscle aging and fibrosis remain incompletely understood, cellular senescence has emerged as a key contributor. This study investigates the role of D-galactose (D-gal) in inducing fibroblasts senescence and skeletal muscle fibrosis, and aims to find the key regulator of the process to serve as a therapeutical target. Methods To discover the role of D-gal in inducing cellular senescence and fibrosis, the senescence markers and the expression of fibrosis-related proteins were assessed after introducing D-gal among fibroblasts, and muscle strength and mass. The severity of muscle atrophy and fibrosis were also verified by using H&E staining and Masson trichrome staining after D-gal treatment via subcutaneous injection among mice. Subsequently, mRNA sequencing (RNA-seq) was performed and the differential expressed genes were identified between under D-gal or control treatment, to discover the key regulator of D-GAL-driven fibroblasts senescence and fibrosis. The role of the key regulator IGFBP5 were then validated in D-GAL treated IGFBP5-knockdown fibroblasts in vitro by analyzing the level of senescence and fibrosis-related markers. And the results were further confirmed in vivo in IGFBP5-knockdown SAMP8 mice with histological examinations. Results D-gal treatment effectively induced cellular senescence and fibrosis in fibroblasts, as well as skeletal muscle atrophy, fibrosis and loss in muscle mass and function in mice. IGFBP5 was identified as a key regulator of D-GAL induced senescence and fibrosis among fibroblasts using RNA-seq. And further validation tests showed that IGFBP5-knockdown could alleviate D-GAL-induced fibroblast cellular senescence and fibrosis, as well as the severity of muscle atrophy and fibrosis in SAMP8 mice. Discussion IGFBP5 emerging as a key regulator of D-GAL-induced fibroblast cellular senescence and fibrosis. The findings provide new insights into the molecular mechanisms underlying age-related skeletal muscle fibrosis and highlight IGFBP5 as a potential therapeutic target. Further research is needed to validate these findings and explore related clinical applications.
Collapse
Affiliation(s)
| | - Zheci Ding
- *Correspondence: Zheci Ding, ; Jiwu Chen,
| | - Jiwu Chen
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
8
|
Kjeldsen CMN, Oxvig C. The Proteinase PAPP-A has Deep Evolutionary Roots Outside of the IGF System. Genome Biol Evol 2025; 17:evaf042. [PMID: 40084812 PMCID: PMC11925022 DOI: 10.1093/gbe/evaf042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/16/2025] Open
Abstract
The animal pappalysin metalloproteinases, PAPP-A and PAPP-A2, are highly specific regulatory enzymes of the insulin-like growth factor (IGF) system. Cleavage of their only known substrates, a subset of IGF binding proteins (IGFBPs), releases bioactive IGFI and IGFII, thus promoting IGF signaling. Stanniocalcin-1 and -2 (STC1 and STC2) are potent pappalysin inhibitors, completing the STC-PAPP-A-IGFBP-IGF axis. Utilizing homology searches and phylogenetic analyses, we examined the occurrence of pappalysins in the animal kingdom and their functional conservation. This revealed the extensive presence of pappalysins across metazoans, as well as the presence of 3 pappalysins: PAPP-A, PAPP-A2, and a third group of invertebrate pappalysins, which we name invertebrate PAPP-A (invPAPP-A). We show that PAPP-A and PAPP-A2 arose by duplication during early vertebrate evolution. Despite significant evolutionary distance, the domain architecture of the metazoan pappalysins is completely conserved, and several functional domains and motifs are highly conserved across all pappalysins. However, invPAPP-A exists outside the context of IGFBPs, suggesting that the animal pappalysins may have substrates beyond the IGFBPs for PAPP-A and PAPP-A2 that remain to be discovered. Since PAPP-A is an emerging drug target, it is important to understand potential involvement in regulatory systems other than the IGF system, which might be affected upon targeting of PAPP-A.
Collapse
Affiliation(s)
- Caroline M N Kjeldsen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus DK-8000 C, Denmark
| | - Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus DK-8000 C, Denmark
| |
Collapse
|
9
|
Jin Y, Qi M, Si L, Shi X, Cai M, Fu H, Liu Y, Guo R. IGFBP2 Promotes Proliferation and Glycolysis of Endometrial Cancer by Regulating PKM2/HIF-1α Axis. Cancer Sci 2025; 116:656-672. [PMID: 39761954 PMCID: PMC11875784 DOI: 10.1111/cas.16447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 12/02/2024] [Accepted: 12/23/2024] [Indexed: 03/05/2025] Open
Abstract
Endometrial cancer (EC) is a worldwide gynecologic malignancies, with a remarking increase of incidence and mortality rates in recent years. Growing evidence indicates that glucose metabolism reprogramming is the most representative metabolic signature of tumor cells and exploring its modulatory function in EC development will promote identifying potential EC therapeutic targets. IGFBP2 is an insulin-like growth factor binding protein which is closely associated with a variety of metabolic diseases. However, its biological role in EC and its effects on glucose metabolism remain unclear. In this study, we demonstrated that IGFBP2 was highly expressed in EC tissues and correlated with poor prognosis. Overexpression of IGFBP2 promoted proliferation and glycolysis in EC cells, whereas IGFBP2 knockdown had the opposite effect. Mechanistically, IGFBP2 directly interacted with PKM2, inducing weakened PKM2 protein degradation, and knockdown IGFBP2 expression prevented the translocation of PKM2 to the nucleus. Additionally, IGFBP2 expression was upregulated under the condition of hypoxia which directly regulated by transcriptional activation of HIF-1α. Finally, the role of the IGFBP2/PKM2/HIF-1α axis in EC tumor growth was confirmed in vivo using mouse xenograft models. Taken together, the current study identifies IGFBP2 as an upstream activator of PKM2-driven proliferation and glycolysis in EC cells, providing a promising therapeutic target for EC.
Collapse
Affiliation(s)
- Yuxi Jin
- Department of GynecologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
- Medical Key Laboratory for Prevention and Treatment of Malignant Gynecological TumorZhengzhouHenanChina
| | - Meng Qi
- Department of GynecologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
- Medical Key Laboratory for Prevention and Treatment of Malignant Gynecological TumorZhengzhouHenanChina
| | - Lulu Si
- Department of GynecologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
- Medical Key Laboratory for Prevention and Treatment of Malignant Gynecological TumorZhengzhouHenanChina
| | - Xiaojing Shi
- Laboratory Animal Center, State Key Laboratory of Esophageal Cancer Prevention & TreatmentZhengzhou UniversityZhengzhouHenanChina
| | - Mingbo Cai
- Department of GynecologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Hanlin Fu
- Department of GynecologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
- Medical Key Laboratory for Prevention and Treatment of Malignant Gynecological TumorZhengzhouHenanChina
| | - Yana Liu
- Department of GynecologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
- Medical Key Laboratory for Prevention and Treatment of Malignant Gynecological TumorZhengzhouHenanChina
| | - Ruixia Guo
- Department of GynecologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
- Medical Key Laboratory for Prevention and Treatment of Malignant Gynecological TumorZhengzhouHenanChina
| |
Collapse
|
10
|
Yu H, Li Z, Yimiletey J, Wan C, Velleman S. Molecular characterization of the heterogeneity of satellite cell populations isolated from an individual Turkey pectoralis major muscle. Front Physiol 2025; 16:1547188. [PMID: 40052144 PMCID: PMC11882874 DOI: 10.3389/fphys.2025.1547188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/03/2025] [Indexed: 03/09/2025] Open
Abstract
Satellite cells (SCs) are myogenic stem cells responsible for post hatch muscle growth and the regeneration of muscle fibers. Satellite cells are not a homogenous population of cells within a muscle and have variable rates of proliferation and differentiation even within a single fiber type muscle like the turkey pectoralis major muscle. In this study, the single satellite cell clones derived from the same turkey pectoralis major muscle with different proliferation rates were compared. The clones were classified as either fast-growing (early clone) or slow-growing (late clone) SCs. To thoroughly examine the molecular differences between these two groups, RNA sequencing was conducted to compare their transcriptomes following 72 h of proliferation. Principal Component Analysis confirmed that the transcriptomic profiles of early- and late-clones are markedly distinct. Differential gene expression analysis identified over 5,300 genes that were significantly differentially expressed between the two groups of cells. Gene ontology analysis showed that genes highly expressed in early clones are responsible for the fundamental aspects of muscle biology, including muscle tissue development and structural maturation. Conversely, genes upregulated in late clones are involved in cell-cell communication, extracellular matrix interactions, signal ligand activity, and cytokine activity-key components for forming an extracellular niche essential for functional satellite cells maintenance. Further examination of specific gene ontology categories such as muscle structure development and extracellular matrix components indicated significant differences in gene expression patterns between early- and late-clones. These findings highlight the genetic and functional diversity of SCs in turkeys. The distinct roles of these satellite cell populations indicate that a balance between them is necessary for preserving the normal physiological functions of SCs.
Collapse
Affiliation(s)
- Hui Yu
- Department of Animal Sciences, The Ohio State University, Columbus, OH, United States
| | | | | | | | | |
Collapse
|
11
|
Choi E, Duan C, Bai XC. Regulation and function of insulin and insulin-like growth factor receptor signalling. Nat Rev Mol Cell Biol 2025:10.1038/s41580-025-00826-3. [PMID: 39930003 DOI: 10.1038/s41580-025-00826-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2025] [Indexed: 03/24/2025]
Abstract
Receptors of insulin and insulin-like growth factors (IGFs) are receptor tyrosine kinases whose signalling controls multiple aspects of animal physiology throughout life. In addition to regulating metabolism and growth, insulin-IGF receptor signalling has recently been linked to a variety of new, cell type-specific functions. In the last century, key questions have focused on how structural differences of insulin and IGFs affect receptor activation, and how insulin-IGF receptor signalling translates into pleiotropic biological functions. Technological advances such as cryo-electron microscopy have provided a detailed understanding of how native and engineered ligands activate insulin-IGF receptors. In this Review, we highlight recent structural and functional insights into the activation of insulin-IGF receptors, and summarize new agonists and antagonists developed for intervening in the activation of insulin-IGF receptor signalling. Furthermore, we discuss recently identified regulatory mechanisms beyond ligand-receptor interactions and functions of insulin-IGF receptor signalling in diseases.
Collapse
Affiliation(s)
- Eunhee Choi
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| | - Cunming Duan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| | - Xiao-Chen Bai
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
12
|
Kalafateli M, Tourkochristou E, Tsounis EP, Aggeletopoulou I, Triantos C. New Insights into the Pathogenesis of Intestinal Fibrosis in Inflammatory Bowel Diseases: Focusing on Intestinal Smooth Muscle Cells. Inflamm Bowel Dis 2025; 31:579-592. [PMID: 39680685 DOI: 10.1093/ibd/izae292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Indexed: 12/18/2024]
Abstract
Strictures in inflammatory bowel disease, especially Crohn's disease (CD), are characterized by increased intestinal wall thickness, which, according to recent accumulating data, is mainly attributed to the expansion of the intestinal smooth muscle layers and to a lesser extent to collagen deposition. In this review, we will discuss the role of intestinal smooth muscle cells (SMCs) as crucial orchestrators of stricture formation. Activated SMCs can synthesize extracellular matrix (ECM), thus contributing to intestinal fibrosis, as well as growth factors and cytokines that can further enhance ECM production, stimulate other surrounding mesenchymal and immune cells, and increase SMC proliferation via paracrine or autocrine signaling. There is also evidence that, in stricturing CD, a phenotypic modulation of SMC toward a myofibroblast-like synthetic phenotype takes place. Moreover, the molecular mechanisms and signaling pathways that regulate SMC hyperplasia/hypertrophy will be extensively reviewed. The understanding of the cellular network and the molecular background behind stricture formation is essential for the design of effective anti-fibrotic strategies, and SMCs might be a promising therapeutic target in the future.
Collapse
Affiliation(s)
- Maria Kalafateli
- Department of Gastroenterology, General Hospital of Patras, Patras, Greece
| | - Evanthia Tourkochristou
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Efthymios P Tsounis
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Ioanna Aggeletopoulou
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras, Greece
| | - Christos Triantos
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| |
Collapse
|
13
|
Miura T, Watanabe S, Kizaki R, Hasegawa R, Isozaki T, Shimizu M. Production of recombinant masu salmon insulin-like growth factor binding protein-2b1 and its action on pituitary cells. Gen Comp Endocrinol 2025; 363:114674. [PMID: 39914704 DOI: 10.1016/j.ygcen.2025.114674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 01/19/2025] [Accepted: 02/03/2025] [Indexed: 03/03/2025]
Abstract
Insulin-like growth factor binding protein (Igfbp)-2b is believed to be a major carrier of circulating Igf-1 in salmonids. We cloned cDNAs of two paralogs of igfbp-2b from the liver of masu salmon and produced recombinant Igfbp-2b1 corresponding to the circulating form using a bacterial expression system. The deduced amino acid sequence of masu salmon igfbp-2b1 had a 75.2 % sequence identity with that of masu salmon igfbp-2b2, and 88.7 % and 96.5 % with those of Atlantic salmon and rainbow trout igfbp-2b1, respectively. The coding region of masu salmon igfbp-2b1 cDNA was subcloned into the pET-16b or pET-32a vector and expressed using either a histidine (His)-tag or a thioredoxin (Trx) and His-tag. Recombinant masu salmon (rs) Igfbp-2b1 with the fusion partner was fractionated in the precipitate, solubilized, and isolated using Ni-affinity chromatography. His.rsIgfbp-2b1 and Trx.His.rsIgfbp-2b1 were treated with Factor Xa and enterokinase K, respectively, to remove the fusion partner; only the digestion with enterokinase was successful. After enzymatic digestion, rsIgfbp-2b1 was purified employing reversed-phase high-performance liquid chromatography. The purified rsIgfbp-2b1 was added to a primary culture of masu salmon pituitary cells with or without human (h) IGF-1 to assess its effect on the release of growth hormone (Gh). Although addition of hIGF-1 alone had no effect on Gh release, co-incubation with varying amounts of rsIgfbp-2b1 increased Gh release in a dose-dependent manner. In addition, rsIgfbp-2b1 in the absence of hIGF-1 showed a positive effect on Gh release from salmon pituitary cells. These results suggest that rsIgfbp-2b1 may either have Igf-1-independent action on Gh release or inhibits the suppressive effect of local pituitary Igf-1 on Gh release.
Collapse
Affiliation(s)
- Takuto Miura
- Graduate School of Environmental Science, Hokkaido University, Kita 10, Nishi 5, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Sota Watanabe
- School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan
| | - Ryousuke Kizaki
- Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan
| | - Ryuya Hasegawa
- Graduate School of Environmental Science, Hokkaido University, Kita 10, Nishi 5, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Taiga Isozaki
- School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan
| | - Munetaka Shimizu
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan; Field Science Center for Northern Biosphere, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan.
| |
Collapse
|
14
|
Li Y, Liu R, Zhao Z. Targeting Brain Drug Delivery with Macromolecules Through Receptor-Mediated Transcytosis. Pharmaceutics 2025; 17:109. [PMID: 39861756 PMCID: PMC11769103 DOI: 10.3390/pharmaceutics17010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Brain diseases pose significant treatment challenges due to the restrictive nature of the blood-brain barrier (BBB). Recent advances in targeting macromolecules offer promising avenues for overcoming these obstacles through receptor-mediated transcytosis (RMT). We summarize the current progress in targeting brain drug delivery with macromolecules for brain diseases. This exploration details the transport mechanisms across the BBB, focusing on RMT and its use of natural ligands for drug delivery. Furthermore, the review examines macromolecular ligands such as antibodies, peptides, and aptamers that leverage RMT for effective BBB traversal. Advancements in macromolecules-based delivery systems for brain diseases are summarized, emphasizing their therapeutic potential and limitations. Finally, emerging RMT strategies, including viral vectors, exosomes, and boron neutron capture therapy, are discussed for their precision in brain-targeted treatments. This comprehensive overview underscores the potential of RMT-based approaches to revolutionize brain disease therapy.
Collapse
Affiliation(s)
- Yuanke Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China
| | - Ruiying Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Zhen Zhao
- Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Health Sciences & Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
15
|
Pan F, Zhang F, Li MD, Liang Y, Wang WS, Sun K. Disturbance of Fetal Growth by Azithromycin Through Induction of ER Stress in the Placenta. Antioxid Redox Signal 2025; 42:16-35. [PMID: 38877798 DOI: 10.1089/ars.2024.0592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Aim: Azithromycin (AZM) is widely used to treat mycoplasma infection in pregnancy. However, there is no adequate evaluation of its side effect on the placenta. In this study, using human placental syncytiotrophoblasts and a mouse model, we investigated whether AZM use in pregnancy might adversely affect placental function and pregnancy outcome. Results: Transcriptomic analysis of AZM-treated human placental syncytiotrophoblasts showed increased expression of endoplasmic reticulum (ER) stress-related genes and decreased expression of genes for hormone production and growth factor processing. Verification studies showed that AZM increased the abundance of ER stress mediators (phosphorylated eIF2α, activating transcription factor 4 [ATF4], and C/EBP Homologous Protein [CHOP]) and decreased the abundance of enzymes involved in progesterone and estradiol synthesis (STS, CYP11A1, and CYP19A1) and insulin-like growth factor binding protein (IGFBP) cleavage (PAPPA and ADAM12) in human placental syncytiotrophoblasts. Inhibition of ER stress blocked AZM-induced decreases in the expression of CYP19A1, CYP11A1, PAPPA, and ADAM12, suggesting that the inhibition of AZM on those genes' expression was secondary to AZM-induced ER stress. Further mechanism study showed that increased ATF4 in ER stress might repressively interact with C/EBPα to suppress the expression of those genes, including CEBPA itself. Mouse studies showed that AZM administration decreased fetal weights along with increased ER stress mediators and decreased levels of insulin-like growth factor, estrogen, and progesterone in the maternal blood, which could be alleviated by inhibition of ER stress. Innovation and Conclusion: These findings first support the fact that AZM, often used during pregnancy, may affect fetal growth by inhibiting crucial enzymes for estrogen and progesterone synthesis and disrupting crucial proteases for IGFBP cleavage via inducing ER stress in placental syncytiotrophoblasts. Antioxid. Redox Signal. 42, 16-35.
Collapse
Affiliation(s)
- Fan Pan
- Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P.R. China
| | - Fan Zhang
- Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P.R. China
| | - Meng-Die Li
- Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P.R. China
| | - YaKun Liang
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Wang-Sheng Wang
- Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P.R. China
| | - Kang Sun
- Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P.R. China
| |
Collapse
|
16
|
Khan MZ, Zugaza JL, Torres Aleman I. The signaling landscape of insulin-like growth factor 1. J Biol Chem 2025; 301:108047. [PMID: 39638246 PMCID: PMC11748690 DOI: 10.1016/j.jbc.2024.108047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
The sheer amplitude of biological actions of insulin-like growth factor I (IGF-1) affecting all types of cells in all tissues suggests a vast signaling landscape for this ubiquitous humoral signal. While the canonical signaling pathways primarily involve the Ras/MAPK and PI3K/AKT cascades, the evolutionary conservation of insulin-like peptides (ILPs) and their pathways hints at the potential for novel functions to emerge over time. Indeed, the evolutionary trajectory of ILPs opens the possibility of either novel functions for these two pathways, novel downstream routes, or both. Evidence supporting this notion includes observations of neofunctionalization in bony fishes or crustaceans, and the involvement of ILPs pathways in invertebrate eusociality or in vertebrate bone physiology, respectively. Such evolutionary processes likely contribute to the rich diversity of ILPs signaling observed today. Moreover, the interplay between conserved signaling pathways, such as those implicated in aging (predominantly involving the PI3K-AKT route), and lesser known pathways, such as those mediated by biased G-protein coupled receptors and others even less known, may underpin the context-dependent actions characteristic of ILPs signaling. While canonical IGF-1 signaling is often assumed to account for the intracellular pathways utilized by this growth factor, a comprehensive analysis of all the pathways mediated by the IGF-1 receptor (IGF-1R) remains lacking. This review aims to explore both canonical and non-canonical routes of IGF-1R action across various cell types, offering a detailed examination of the mechanisms underlying IGF-1 signaling and highlighting the significant gaps in our current understanding.
Collapse
Affiliation(s)
- Muhammad Zahid Khan
- Achucarro Basque Center for Neuroscience, Leioa, Spain; CIBERNED, Madrid, Spain
| | - Jose Luis Zugaza
- Achucarro Basque Center for Neuroscience, Leioa, Spain; Ikerbasque Science Foundation, Bilbao, Spain
| | - Ignacio Torres Aleman
- Achucarro Basque Center for Neuroscience, Leioa, Spain; CIBERNED, Madrid, Spain; Ikerbasque Science Foundation, Bilbao, Spain.
| |
Collapse
|
17
|
Kitai Y, Toriu N, Yoshikawa T, Sahara Y, Kinjo S, Shimizu Y, Sato Y, Oguchi A, Yamada R, Kondo M, Uchino E, Taniguchi K, Arai H, Sasako T, Haga H, Fukuma S, Kubota N, Kadowaki T, Takasato M, Murakawa Y, Yanagita M. Female sex hormones inversely regulate acute kidney disease susceptibility throughout life. Kidney Int 2025; 107:68-83. [PMID: 39503698 DOI: 10.1016/j.kint.2024.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 08/16/2024] [Accepted: 08/27/2024] [Indexed: 11/08/2024]
Abstract
While epidemiological and experimental studies have demonstrated kidney-protective effects of estrogen and female sex in adulthood, some epidemiological data showed deterioration of kidney function during puberty when estrogen production increases. However, molecular mechanisms explaining these conflicting phenomena remain unknown. Here, we showed that the pubertal sex hormone surge in female mice increases susceptibility to kidney ischemia reperfusion injury partly via downregulation of insulin-like growth factor 1 receptor (IGF-1R) expression in proximal tubules. Adult mice ovariectomized pre-pubertally (at postnatal day 21) showed strong tolerance to kidney ischemia, which was partly reversed by the administration of 17β-estradiol, while adult mice ovariectomized post-pubertally (at 8 weeks of age) were vulnerable to kidney ischemia. Kidney tubular IGF-1R protein expression decreased during postnatal growth but was highly expressed in adult mice ovariectomized pre-pubertally and in infant mice, which might be partly explained by different expression of an E3 ligase (MDM2) of IGF-1R. Mice deficient of Igf-1r in proximal tubules (iIGF-1RKO mice) during postnatal kidney growth showed increased susceptibility to ischemic injury. RNA-seq and western blotting analysis using proximal tubular cells from pre-pubertally ovariectomized iIGF-1RKO and control mice revealed altered expression of cell cycle-associated molecules such as cyclin D1. These results suggest that Igf-1r deletion during postnatal growth renders proximal tubular cells susceptible to ischemia possibly via altered cell cycle regulation. Thus, our findings provide evidence that exposure to pubertal sex hormones leads to increased susceptibility to kidney ischemia, which is partly mediated by modulation of IGF-1R signaling.
Collapse
Affiliation(s)
- Yuichiro Kitai
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Naoya Toriu
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takahisa Yoshikawa
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshiki Sahara
- Laboratory for Human Organogenesis, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan; Laboratory of Molecular Cell Biology and Development, Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Sonoko Kinjo
- DNA Data Analysis Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Yoko Shimizu
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuki Sato
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Medical Innovation Center TMK project, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akiko Oguchi
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Ryo Yamada
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Makiko Kondo
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Eiichiro Uchino
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Biomedical Data Intelligence, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keisuke Taniguchi
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroyuki Arai
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takayoshi Sasako
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Hironori Haga
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Shingo Fukuma
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Naoto Kubota
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Takashi Kadowaki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan; Toranomon Hospital, Tokyo, Japan
| | - Minoru Takasato
- Laboratory for Human Organogenesis, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan; Laboratory of Molecular Cell Biology and Development, Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yasuhiro Murakawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
| | - Motoko Yanagita
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.
| |
Collapse
|
18
|
Cleveland BM, Izutsu A, Ushizawa Y, Radler L, Shimizu M. Profiling growth performance, insulin-like growth factors, and IGF-binding proteins in rainbow trout lacking IGFBP-2b. Am J Physiol Regul Integr Comp Physiol 2025; 328:R34-R44. [PMID: 39401484 DOI: 10.1152/ajpregu.00209.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 12/12/2024]
Abstract
Insulin-like growth factor-binding proteins (IGFBPs) regulate insulin-like growth factor (IGF) signaling, but IGFBP-specific functions are not well characterized in fishes. A line of rainbow trout (Oncorhynchus mykiss) lacking a functional IGFBP-2b was produced using gene editing and subsequent breeding to an F2 generation. This loss-of-function model [IGFBP-2b knockout (2bKO)] was subjected to either continuous feeding or feed deprivation (3 wk) followed by refeeding (1 wk). During continuous feeding, the 2bKO line displayed faster specific growth rate for both body weight and fork length, higher feed intake, and reduced feed conversion ratio compared with a wild-type (WT) line. However, loss of IGFBP-2b did not affect the feed deprivation or refeeding response in terms of weight loss or weight gain, respectively. Several components of the IGF/IGFBP system were affected by loss of IGFBP-2b. Total serum IGF-1 in the 2bKO line was reduced to 0.5- to 0.8-fold of the WT line, although the concentration of free serum IGF-1 was not affected. Gene expression differences include reduced abundance of igfbp1a1, igfbp1b2, igfbp5b2, and igfbp6b1 transcripts and elevated igf2 and igfbp6b2 transcripts in liver of the 2bKO line. Collectively, these findings suggest that although IGFBP-2b is a carrier of circulating IGF-1 in salmonids, the presence of IGFBP-2a and compensatory responses of other IGF/IGFBP system components support an anabolic response that improved growth performance in the loss-of-function model.NEW & NOTEWORTHY Knocking out IGFBP-2b in rainbow trout improved food intake, growth performance, and feed conversion ratio and reduced serum IGF-1 by 0.5- to 0.8-fold, without changes in the concentration of free serum IGF-1. Based on these findings, we propose that, in addition to IGFBP-2b, the 32-kDa IGFBP (putative IGFBP-2a) also serves as a major carrier of circulating IGF-1 in salmonids.
Collapse
Affiliation(s)
- Beth M Cleveland
- Agricultural Research Service/United States Department of Agriculture, National Center for Cool and Cold Water Aquaculture, Kearneysville, West Virginia, United States
| | - Ayaka Izutsu
- Graduate School of Fisheries Science, Hokkaido University, Hakodate, Japan
| | - Yuika Ushizawa
- Graduate School of Fisheries Science, Hokkaido University, Hakodate, Japan
| | - Lisa Radler
- Agricultural Research Service/United States Department of Agriculture, National Center for Cool and Cold Water Aquaculture, Kearneysville, West Virginia, United States
| | - Munetaka Shimizu
- Field Science Center for Northern Biosphere, Hokkaido University, Hakodate, Japan
| |
Collapse
|
19
|
Sun Z, Wang X. Absence of genetic association between insulin-like growth factors and esophageal cancer. Medicine (Baltimore) 2024; 103:e40899. [PMID: 39969361 PMCID: PMC11688069 DOI: 10.1097/md.0000000000040899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/22/2024] [Indexed: 02/20/2025] Open
Abstract
This study aimed to explore the causal relationship between concentrations of various insulin-like growth factors (IGFs) and IGF-binding proteins (IGFBPs) and esophageal cancer (ESC), addressing the gap in understanding the genetic link between IGF1 and ESC. A two-sample Mendelian randomization (MR) analysis was conducted using single nucleotide polymorphisms linked to IGFs/IGFBPs and ESC from the IEU Open GWAS Project. This analysis included ESC GWAS data from 1996 individuals of European descent and genetic variant data from 3310 individuals of European ancestry. Various methods, such as inverse variance weighting, weighted median, weighted mode, and MR-Egger regression, were applied for analysis, with sensitivity assessments including MR-PRESSO, Cochran Q, and leave-one-out analysis to ensure the robustness of results and detect biases. The genetic predictions indicated no significant association between IGFs/IGFBPs and ESC. When ESC was the outcome measure, the odds ratios with 95% confidence intervals were as follows: IGF1 = 1.00 (0.89-1.12, P = .936), IGF1R = 1.07 (0.90-1.27, P = .453), IGFBP3 = 1.00 (0.79-1.26, P = .975), and IGFBPL1 = 0.91 (0.75-1.12, P = .372). MR-Egger regression confirmed the absence of horizontal pleiotropy, and no outliers were identified by MR-PRESSO. Leave-one-out analysis supported the stability of the results. The study did not find a causal connection between IGFs/IGFBPs and ESC. These results suggest the need for further validation and potentially highlight the complex interplay of factors involved in the development of ESC.
Collapse
Affiliation(s)
- Zhengliang Sun
- Department of Thoracic Surgery, East Hospital of Tongji University, Pudong District, Shanghai, China
| | - Xiaohong Wang
- Longhua Street Community Health Center, Xuhui District, Shanghai, China
| |
Collapse
|
20
|
Dong K, Hou Z, Li Z, Xu Y, Gao Q. Extended Photoperiod Facilitated the Restoration of the Expression of GH-IGF Axis Genes in Submerged Rainbow Trout ( Oncorhynchus mykiss). Int J Mol Sci 2024; 25:13583. [PMID: 39769354 PMCID: PMC11679508 DOI: 10.3390/ijms252413583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/14/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Salmonids, classified as physostomous fish, maintain buoyancy by ingesting air to inflate their swim bladders. Long-term submergence has been shown to cause body imbalance and reduced growth performance in these fish. Previous studies have demonstrated that extended photoperiod can promote growth in salmonids. This study aimed to investigate the regulatory effects of prolonged lighting on the growth of submerged rainbow trout (Oncorhynchus mykiss) by examining the transcriptional expression of genes in the growth hormone (GH)-insulin-like growth factor (IGF) axis. Rainbow trout were individually reared in one of the six environments, defined by the combination of three photoperiods (0L:24D, 12L:12D, and 24L:0D) and two spatial rearing modes (routine and submerged), for 16 weeks. We compared the growth performance of rainbow trout in different environments and further analyzed the transcription profiles and correlations of GH-IGF axis genes in the brain, liver, and muscle. The findings of this study were as follows: growth performance of rainbow trout gradually increased with photoperiod duration. Specifically, final body weight (FBW) and specific growth rate (SGR) increased, while feed conversion ratio (FCR) decreased. Extended photoperiod partially mitigated the adverse effects of long-term submergence on rainbow trout growth. Under 24L:0D photoperiod conditions, growth performance (FBW, SGR, and FCR) in submerged and routine rainbow trout was more closely aligned compared to 0L:24D and 12L:12D photoperiod conditions. In response to variations in the photoperiod, GH-IGF axis genes of rainbow trout exhibited significant transcriptional differences, particularly between treatments with 0L:24D and 24L:0D light exposure. An extended photoperiod facilitated the restoration of the expression of GH-IGF axis genes in submerged rainbow trout towards routine levels, including the up-regulation of sst and sstr2 genes in the brain. Correlation analysis implied differentiation of physiological functions of ghr and igfbp paralogs. This study provided insights into the feasibility of enhancing the growth performance of submerged salmonids through photoperiod manipulation.
Collapse
Affiliation(s)
- Kang Dong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; (K.D.); (Z.L.); (Y.X.)
| | - Zhishuai Hou
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; (K.D.); (Z.L.); (Y.X.)
| | - Zhao Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; (K.D.); (Z.L.); (Y.X.)
| | - Yuling Xu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; (K.D.); (Z.L.); (Y.X.)
| | - Qinfeng Gao
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; (K.D.); (Z.L.); (Y.X.)
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China
| |
Collapse
|
21
|
Ferreri DM, Sutliffe JT, Lopez NV, Sutliffe CA, Smith R, Carreras-Gallo N, Dwaraka VB, Prestrud AA, Fuhrman JH. Slower Pace of Epigenetic Aging and Lower Inflammatory Indicators in Females Following a Nutrient-Dense, Plant-Rich Diet Than Those in Females Following the Standard American Diet. Curr Dev Nutr 2024; 8:104497. [PMID: 39668946 PMCID: PMC11635705 DOI: 10.1016/j.cdnut.2024.104497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/04/2024] [Accepted: 10/22/2024] [Indexed: 12/14/2024] Open
Abstract
Background Plant-based diets are associated with lower inflammatory biomarkers and reduced risk of age-related chronic diseases. Epigenetic biomarkers of aging are DNA methylation-based tools that estimate biological age and rate of aging, providing insights into age-related health risks. Healthy diet and lifestyle indicators correlate with slower epigenetic aging. Objectives Neither inflammatory biomarkers nor epigenetic aging has yet been studied in the nutrient-dense, plant-rich (Nutritarian) diet, a plant-based diet that emphasizes specific plant foods, such as cruciferous vegetables, beans and other legumes, onions and garlic, mushrooms, berries, nuts, and seeds. We aimed to compare inflammatory status and epigenetic age acceleration in females following a Nutritarian diet with those of females following a standard American diet (SAD). Methods We investigated dietary inflammatory potential, epigenetic age acceleration using first, second, and third-generation clocks, and additional health-related epigenetic biomarkers in this retrospective cohort study of 48 females who habitually (≥5 y) follow a Nutritarian diet and 49 females without obesity who habitually (≥5 y) follow a SAD. Participants completed a series of online questionnaires and provided a blood sample. Results Epigenetic age acceleration, indicated by the third-generation clock DunedinPACE, was significantly slower in the Nutritarian group than that in the SAD group (P = 4.26 × 10-6). The Nutritarian diet group showed lower dietary inflammatory potential, as indicated by Empirical Dietary Inflammatory Pattern and Dietary Inflammatory Index. We observed differences in methylation-predicted immune cell subsets (lower neutrophils and higher T regulatory cells) and a lower epigenetic biomarker proxy for C-reactive protein, both of which suggested a lower inflammatory status in the Nutritarian group. Epigenetic biomarker proxies for LDL cholesterol, body mass index (BMI), insulin-like growth factor binding protein 5, and blood glucose were also lower in the Nutritarian group. Conclusions Our findings suggest the Nutritarian diet could help reduce chronic inflammation and slow epigenetic aging.
Collapse
Affiliation(s)
- Deana M Ferreri
- Nutritional Research Foundation, Flemington, NJ, United States
| | - Jay T Sutliffe
- Department of Health Sciences and the PRANDIAL Lab, Northern Arizona University, Flagstaff, AZ, United States
| | - Nanette V Lopez
- Department of Health Sciences and the PRANDIAL Lab, Northern Arizona University, Flagstaff, AZ, United States
| | - Chloe A Sutliffe
- Department of Health Sciences and the PRANDIAL Lab, Northern Arizona University, Flagstaff, AZ, United States
| | - Ryan Smith
- TruDiagnostic, Lexington, KY, United States
| | | | | | | | - Joel H Fuhrman
- Nutritional Research Foundation, Flemington, NJ, United States
| |
Collapse
|
22
|
Zhu Q, Lu X, Chen M, Zhang T, Shi M, Yao W, Zhang H, Gao R, Li X, Zhou Y, Liao S. IGFBP5 affects cardiomyocyte survival and functional recovery in mice following myocardial ischemia. Commun Biol 2024; 7:1594. [PMID: 39613849 DOI: 10.1038/s42003-024-07304-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024] Open
Abstract
Insulin-like growth factor-binding protein 5 (IGFBP5) has been shown to be useful for the diagnosis and treatment of multiple tumors and cerebrovascular diseases. However, it is unknown whether IGFBP5 is involved in myocardial repair following myocardial infarction (MI). Here we show high expression of IGFBP5 in multiple models of ischemic and hypoxic injury. IGFBP5 affected the proliferation of neonatal rat cardiomyocytes (NRCMs) and the cardiomyocyte apoptosis induced by oxygen-glucose deprivation (OGD). Subsequently, heart-specific IGFBP5 knockdown inhibited myocardial apoptosis and increased cardiomyocyte proliferation in mice with MI. During the chronic remodeling stage, heart-specific regulation of IGFBP5 ameliorated pathological cardiac remodeling and dysfunction. Mechanistically, IGFBP5 regulated cardiomyocyte survival through the insulin-like growth factor 1 (IGF1) receptor (IGF1R)/protein kinase B (PKB/AKT) pathway. In summary, our results provide mechanistic insights into the effect of IGFBP5 on cardiomyocyte during cardiac repair. IGFBP5 may represent a therapeutic target for myocardial ischemic injury.
Collapse
Affiliation(s)
- Qingqing Zhu
- Division of Cardiac Surgery Intensive Care Unit, Department of Cardiac Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xinyi Lu
- National Key Laboratory for Innovation and Transformation of Luobing Theory. Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Mengli Chen
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Ting Zhang
- Department of Cardiovascular Medicine, The Air Force Hospital from Eastern Theater, Nanjing, China
| | - Mengsha Shi
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Wenming Yao
- National Key Laboratory for Innovation and Transformation of Luobing Theory. Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Haifeng Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory. Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Rongrong Gao
- National Key Laboratory for Innovation and Transformation of Luobing Theory. Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Xinli Li
- National Key Laboratory for Innovation and Transformation of Luobing Theory. Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Yanli Zhou
- National Key Laboratory for Innovation and Transformation of Luobing Theory. Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.
| | - Shengen Liao
- National Key Laboratory for Innovation and Transformation of Luobing Theory. Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.
| |
Collapse
|
23
|
Yuen KCJ, Hjortebjerg R, Ganeshalingam AA, Clemmons DR, Frystyk J. Growth hormone/insulin-like growth factor I axis in health and disease states: an update on the role of intra-portal insulin. Front Endocrinol (Lausanne) 2024; 15:1456195. [PMID: 39665021 PMCID: PMC11632222 DOI: 10.3389/fendo.2024.1456195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/22/2024] [Indexed: 12/13/2024] Open
Abstract
Growth hormone (GH) is the key regulator of insulin-like growth factor I (IGF-I) generation in healthy states. However, portal insulin delivery is also an essential co-player in the regulation of the GH/IGF-I axis by affecting and regulating hepatic GH receptor synthesis, and subsequently altering hepatic GH sensitivity and IGF-I generation. Disease states of GH excess (e.g., acromegaly) and GH deficiency (e.g., congenital isolated GH deficiency) are characterized by increased and decreased GH, IGF-I and insulin levels, respectively, where the GH/IGF-I relationship is reflected by a "primary association". When intra-portal insulin levels are increased (e.g., obesity, Cushing's syndrome, or due to treatment with glucocorticoids and glucagon-like peptide 1 receptor agonists) or decreased (e.g., malnutrition, anorexia nervosa and type 1 diabetes mellitus), these changes secondarily alter hepatic GH sensitivity resulting in a "secondary association" with discordant GH and IGF-I levels (e.g., high GH/low IGF-I levels or low GH/high IGF-I levels, respectively). Additionally, intra-portal insulin regulates hepatic secretion of IGFBP-1, an inhibitor of IGF-I action. Through its effects on IGFBP-1 and subsequently free IGF-I, intra-portal insulin exerts its effects to influence endogenous GH secretion via the negative feedback loop. Therefore, it is important to understand the effects of changes in intra-portal insulin when interpreting the GH/IGF-I axis in disease states. This review summarizes our current understanding of how changes in intra-portal insulin delivery to the liver in health, disease states and drug therapy use and misuse that leads to alterations in GH/IGF-I secretion that may dictate management decisions in afflicted patients.
Collapse
Affiliation(s)
- Kevin C. J. Yuen
- Department of Neuroendocrinology and Neurosurgery, Barrow Neurological Institute, University of Arizona College of Medicine and Creighton School of Medicine, Phoenix, AZ, United States
| | - Rikke Hjortebjerg
- Department of Endocrinology, Odense University Hospital, Odense, Denmark
- Department of Clinical Medicine, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
| | - Ashok Ainkaran Ganeshalingam
- Department of Endocrinology, Odense University Hospital, Odense, Denmark
- Department of Clinical Medicine, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
| | - David R. Clemmons
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Jan Frystyk
- Department of Endocrinology, Odense University Hospital, Odense, Denmark
- Department of Clinical Medicine, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
24
|
Sullivan KM, Kriegel AJ. Growth hormone in pediatric chronic kidney disease: more than just height. Pediatr Nephrol 2024; 39:3167-3175. [PMID: 38607423 DOI: 10.1007/s00467-024-06330-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/24/2024] [Accepted: 02/09/2024] [Indexed: 04/13/2024]
Abstract
Recombinant human growth hormone therapy, which was introduced in the 1980s, is now routine for children with advanced chronic kidney disease (CKD) who are exhibiting growth impairment. Growth hormone usage remains variable across different centers, with some showing low uptake. Much of the focus on growth hormone supplementation has been on increasing height because of social and psychological effects of short stature. There are, however, numerous other changes that occur in CKD that have not received as much attention but are biologically important for pediatric growth and development. This article reviews the current knowledge about the multisystem effects of growth hormone therapy in pediatric patients with CKD and highlights areas where additional clinical research is needed. We also included clinical data on children and adults who had received growth hormone for other indications apart from CKD. Ultimately, having robust clinical studies which examine these effects will allow children and their families to make more informed decisions about this therapy.
Collapse
Affiliation(s)
- Katie Marie Sullivan
- Division of Nephrology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Alison J Kriegel
- Division of Nephrology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA.
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
25
|
Lin CJ, Keating C, Roth R, Caliskan Y, Nazzal M, Exil V, DiPaolo R, Verma DR, Harjai K, Zayed M, Lin CY, Mecham RP, Jain AK. Distinct Patterns of Smooth Muscle Phenotypic Modulation in Thoracic and Abdominal Aortic Aneurysms. J Cardiovasc Dev Dis 2024; 11:349. [PMID: 39590192 PMCID: PMC11594343 DOI: 10.3390/jcdd11110349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Thoracic and abdominal aortic aneurysms (TAAs and AAAs, respectively) share morphological features but have distinct clinical and hereditary characteristics. Studies using bulk RNA comparisons revealed distinct patterns of gene expression in human TAA and AAA tissues. However, given the summative nature of bulk RNA studies, these findings represent the totality of gene expression without regards to the differences in cellular composition. Single-cell RNA sequencing provides an opportunity to interrogate cell-type-specific transcriptomes. Single cell RNA sequencing datasets from mouse TAA (GSE153534) and AAA (GSE164678 and GSE152583) with respective controls were obtained from the Gene Expression Omnibus. Bioinformatic analysis was performed with the Seurat 4, clusterProfiler, and Connectome software packages (V1.0.1). Immunostaining was performed with standard protocols. Within normal and aneurysmal aortae, three unique populations of cells that express smooth muscle cell (SMC) markers were identified (SMC1, SMC2, and SMCmod). A greater proportion of TAA SMCs clustered as a unique population, SMCmod, relative to the AAA SMCs (38% vs. 10-12%). These cells exhibited transcriptional features distinct from other SMCs, which were characterized by Igfbp2 and Tnfrsf11b expression. Genes upregulated in TAA SMCs were enriched for the Reactome terms "extracellular matrix organization" and "insulin-like growth factor (IGF) transport and uptake by IGF binding proteins (IGFBPs)", indicating a role for Igfbp2 in TAA pathogenesis. Regulon analysis revealed transcription factors enriched in TAAs and AAAs. Validating these mouse bioinformatic findings, immunostaining demonstrated that both IGFBP2 and TNFRSF11B proteins increased in human TAAs compared to AAAs. These results highlight the unique cellular composition and transcriptional signature of SMCs in TAAs and AAAs. Future studies are needed to reveal the pathogenetic pathways of IGFBP2 and TNFRSF11B.
Collapse
Affiliation(s)
- Chien-Jung Lin
- Division of Cardiology, Department of Internal Medicine, SSM-Saint Louis University Hospital, St. Louis, MO 63110, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Campbell Keating
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Robyn Roth
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yasar Caliskan
- Division of Nephrology and Hypertension, Department of Internal Medicine, SSM-Saint Louis University Hospital, St. Louis, MO 63110, USA
| | - Mustafa Nazzal
- Department of Surgery, SSM-Saint Louis University Hospital, St. Louis, MO 63110, USA
| | - Vernat Exil
- Division of Cardiology, Department of Pediatrics, SSM-Cardinal Glennon Children’s Hospital, St. Louis, MO 63104, USA
| | - Richard DiPaolo
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, MO 63104, USA
| | - Divya Ratan Verma
- Division of Cardiology, Department of Internal Medicine, SSM-Saint Louis University Hospital, St. Louis, MO 63110, USA
| | - Kishore Harjai
- Division of Cardiology, Department of Internal Medicine, SSM-Saint Louis University Hospital, St. Louis, MO 63110, USA
| | - Mohamed Zayed
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Molecular Cell Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chieh-Yu Lin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Robert P. Mecham
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ajay K. Jain
- Division of Gastroenterology and Hepatology, Department of Pediatrics, SSM-Cardinal Glennon Children’s Hospital, St. Louis, MO 63104, USA
| |
Collapse
|
26
|
Henne WM, Ugrankar-Banerjee R, Tran S, Bowerman J, Paul B, Zacharias L, Mathews T, DeBerardinis R. Metabolic rewiring in fat-depleted Drosophila reveals triglyceride:glycogen crosstalk and identifies cDIP as a new regulator of energy metabolism. RESEARCH SQUARE 2024:rs.3.rs-4505077. [PMID: 39483909 PMCID: PMC11527204 DOI: 10.21203/rs.3.rs-4505077/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Tissues store excess nutrients as triglyceride or glycogen, but how these reserves are sensed and communicate remains poorly understood. Here we identify molecular players orchestrating this metabolic balance during fat depletion. We show fat body (FB)-specific depletion of fatty acyl-CoA synthase FASN1 in Drosophila causes near-complete fat loss and metabolic remodeling that dramatically elevates glycogen storage and carbohydrate metabolism. Proteomics and metabolomics identify key factors necessary for rewiring including glycolysis enzymes and target-of-brain-insulin (tobi). FASN1-deficient flies are viable but starvation sensitive, oxidatively stressed, and infertile. We also identify CG10824/cDIP as upregulated in FASN1-depleted Drosophila. cDIP is a leucine-rich-repeat protein with homology to secreted adipokines that fine-tune energy signaling, and is required for fly development in the absence of FASN1. Collectively, we show fat-depleted Drosophila rewire their metabolism to complete development, and identify cDIP as a putative new cytokine that signals fat insufficiency and may regulate energy homeostasis.
Collapse
|
27
|
Haque M, Shyanti RK, Mishra MK. Targeted therapy approaches for epithelial-mesenchymal transition in triple negative breast cancer. Front Oncol 2024; 14:1431418. [PMID: 39450256 PMCID: PMC11499239 DOI: 10.3389/fonc.2024.1431418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is distinguished by negative expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), making it an aggressive subtype of breast cancer and contributes to 15-20% of the total incidence. TNBC is a diverse disease with various genetic variations and molecular subtypes. The tumor microenvironment involves multiple cells, including immune cells, fibroblast cells, extracellular matrix (ECM), and blood vessels that constantly interact with tumor cells and influence each other. The ECM undergoes significant structural changes, leading to induced cell proliferation, migration, adhesion, invasion, and epithelial-to-mesenchymal transition (EMT). The involvement of EMT in the occurrence and development of tumors through invasion and metastasis in TNBC has been a matter of concern. Therefore, EMT markers could be prognostic predictors and potential therapeutic targets in TNBC. Chemotherapy has been one of the primary options for treating patients with TNBC, but its efficacy against TNBC is still limited. Targeted therapy is a critical emerging option with enhanced efficacy and less adverse effects on patients. Various targeted therapy approaches have been developed based on the specific molecules and the signaling pathways involved in TNBC. These include inhibitors of signaling pathways such as TGF-β, Wnt/β-catenin, Notch, TNF-α/NF-κB and EGFR, as well as immune checkpoint inhibitors, such as pembrolizumab, 2laparib, and talazoparib have been widely explored. This article reviews recent developments in EMT in TNBC invasion and metastasis and potential targeted therapy strategies.
Collapse
Affiliation(s)
| | | | - Manoj K. Mishra
- Cancer Research Center, Department of Biological Sciences, Alabama State
University, Montgomery, AL, United States
| |
Collapse
|
28
|
Than NG, Romero R, Fitzgerald W, Gudicha DW, Gomez-Lopez N, Posta M, Zhou F, Bhatti G, Meyyazhagan A, Awonuga AO, Chaiworapongsa T, Matthies D, Bryant DR, Erez O, Margolis L, Tarca AL. Proteomic Profiles of Maternal Plasma Extracellular Vesicles for Prediction of Preeclampsia. Am J Reprod Immunol 2024; 92:e13928. [PMID: 39347565 DOI: 10.1111/aji.13928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 10/01/2024] Open
Abstract
PROBLEM Preeclampsia is a heterogeneous syndrome of diverse etiologies and molecular pathways leading to distinct clinical subtypes. Herein, we aimed to characterize the extracellular vesicle (EV)-associated and soluble fractions of the maternal plasma proteome in patients with preeclampsia and to assess their value for disease prediction. METHOD OF STUDY This case-control study included 24 women with term preeclampsia, 23 women with preterm preeclampsia, and 94 healthy pregnant controls. Blood samples were collected from cases on average 7 weeks before the diagnosis of preeclampsia and were matched to control samples. Soluble and EV fractions were separated from maternal plasma; EVs were confirmed by cryo-EM, NanoSight, and flow cytometry; and 82 proteins were analyzed with bead-based, multiplexed immunoassays. Quantile regression analysis and random forest models were implemented to evaluate protein concentration differences and their predictive accuracy. Preeclampsia subgroups defined by molecular profiles were identified by hierarchical cluster analysis. Significance was set at p < 0.05 or false discovery rate-adjusted q < 0.1. RESULTS In preterm preeclampsia, PlGF, PTX3, and VEGFR-1 displayed differential abundance in both soluble and EV fractions, whereas angiogenin, CD40L, endoglin, galectin-1, IL-27, CCL19, and TIMP1 were changed only in the soluble fraction (q < 0.1). The direction of changes in the EV fraction was consistent with that in the soluble fraction for nine proteins. In term preeclampsia, CCL3 had increased abundance in both fractions (q < 0.1). The combined EV and soluble fraction proteomic profiles predicted preterm and term preeclampsia with an AUC of 78% (95% CI, 66%-90%) and 68% (95% CI, 56%-80%), respectively. Three clusters of preeclampsia featuring distinct clinical characteristics and placental pathology were identified based on combined protein data. CONCLUSIONS Our findings reveal distinct alterations of the maternal EV-associated and soluble plasma proteome in preterm and term preeclampsia and identify molecular subgroups of patients with distinct clinical and placental histopathologic features.
Collapse
Affiliation(s)
- Nándor Gábor Than
- Systems Biology of Reproduction Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary
- Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary
| | - Roberto Romero
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
| | - Wendy Fitzgerald
- Section on Intercellular Interactions, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Dereje W Gudicha
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Nardhy Gomez-Lopez
- Department of Obstetrics and Gynecology & Department of Pathology and Immunology, Washington University, St. Louis, Missouri, USA
| | - Máté Posta
- Systems Biology of Reproduction Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Semmelweis University Doctoral School, Budapest, Hungary
| | - Fei Zhou
- Unit on Structural Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Gaurav Bhatti
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| | - Arun Meyyazhagan
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Awoniyi O Awonuga
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Tinnakorn Chaiworapongsa
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Doreen Matthies
- Unit on Structural Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - David R Bryant
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Offer Erez
- Department of Obstetrics and Gynecology, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Leonid Margolis
- Faculty of Natural Sciences and Medicine, Ilia State University, Tbilisi, Georgia
| | - Adi L Tarca
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Computer Science, Wayne State University College of Engineering, Detroit, Michigan, USA
| |
Collapse
|
29
|
Chagas ACS, Ribeiro DM, Osório H, Abreu AAP, Okino CH, Niciura SCM, Amarante AFT, Bello HJS, Melito GR, Esteves SN, Almeida AM. Molecular signatures of Haemonchus contortus infection in sheep: A comparative serum proteomic study on susceptible and resistant sheep breeds. Vet Parasitol 2024; 331:110280. [PMID: 39116550 DOI: 10.1016/j.vetpar.2024.110280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Due to the negative impact of Haemonchus contortus in the tropics and subtropics, the detection of serum protein profiles that occur in infected sheep is of high relevance for targeted selective treatment strategies (TST). Herein, we integrated proteomics with phenotypic traits to elucidate physiological mechanisms associated to H. contortus infection in susceptible (Dorper - D) and resistant (Santa Inês - S) sheep breeds. Naïve female lambs were infected with H. contortus third-stage larvae on day zero (D0), and samples were collected weekly, for 28 days. Feces were used for individual fecal egg counts (FEC) blood for packed cell volume (PCV) and serum for specific antibody quantification through ELISA. Sera was collected on D0 (-) and D21 (+), and analyzed using a LC-MS/MS based proteomics approach. FEC, PCV, and anti-H. contortus antibody levels confirmed the absence of infection on D0. On D28 there was a significant difference between the two breeds for logFEC means (D = 3774 and S = 3141, p=0.033) and PCV means (D = 16.3 % and S = 24.3 %, p=0.038). From a total of 754 proteins identified, 68 differentially abundant proteins (DAPs) were noted. Phosphopyruvate hydratase (ENO3) was a DAP in all comparisons, while S+ vs D+ and S- vs D- shared the highest number of DAPs (8). Each of the four experimental groups clustered separately in a principal component analysis (PCA) of protein profile. Among the DAPs, proteins associated with the innate and adaptive immune system were detected when comparing S- vs D- and S+ vs D+. In D-, some proteins were linked to stress response to handling, sampling and heat. Focusing on the consequences of infection in each breed, in the D+ vs D- comparison, upregulated proteins were associated with inflammation control and immune response, where downregulated proteins pointed to a negative impact of infection on tissue anabolism, compromising muscle growth and fat deposition. In the S+ vs S- comparison, upregulated proteins were related to immune response, while the downregulated proteins were possibly linked to muscular development and growth, impaired by infection. Collectively, it can be concluded that ENO3 regulation emerges as a potential factor underlying the differential immune response observed between Santa Inês and Dorper sheep infected with H. contortus. In turn, detected acute phase proteins (APPs) reinforce their relation with infection, inflammation and stress conditions, whereas THEMIS-like may contribute to the immune system in Dorper. GSDMD, Guanylate-binding protein and ACAN warrant further investigation as possible biomarkers for TST strategy development.
Collapse
Affiliation(s)
- Ana Carolina S Chagas
- Embrapa Pecuária Sudeste, Rod. Washington Luiz, Km 234, São Carlos, SP 13560-970, Brazil.
| | - David M Ribeiro
- Linking Landscape, Environment, Agriculture and Food Research Center (LEAF), Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | - Hugo Osório
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Ana A P Abreu
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Cintia H Okino
- Embrapa Pecuária Sudeste, Rod. Washington Luiz, Km 234, São Carlos, SP 13560-970, Brazil
| | - Simone C M Niciura
- Embrapa Pecuária Sudeste, Rod. Washington Luiz, Km 234, São Carlos, SP 13560-970, Brazil
| | | | - Hornblenda J S Bello
- Embrapa Pecuária Sudeste, Rod. Washington Luiz, Km 234, São Carlos, SP 13560-970, Brazil
| | - Gláucia R Melito
- Centro Universitário Central Paulista (UNICEP), São Carlos, SP, Brazil
| | - Sérgio N Esteves
- Embrapa Pecuária Sudeste, Rod. Washington Luiz, Km 234, São Carlos, SP 13560-970, Brazil
| | - André M Almeida
- Linking Landscape, Environment, Agriculture and Food Research Center (LEAF), Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
30
|
Woldeamanuel YW, Sanjanwala BM, Cowan RP. Deep and unbiased proteomics, pathway enrichment analysis, and protein-protein interaction of biomarker signatures in migraine. Ther Adv Chronic Dis 2024; 15:20406223241274302. [PMID: 39314676 PMCID: PMC11418313 DOI: 10.1177/20406223241274302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 07/24/2024] [Indexed: 09/25/2024] Open
Abstract
Background Currently, there are no biomarkers for migraine. Objectives We aimed to identify proteomic biomarker signatures for diagnosing, subclassifying, and predicting treatment response in migraine. Design This is a cross-sectional and longitudinal study of untargeted serum and cerebrospinal fluid (CSF) proteomics in episodic migraine (EM; n = 26), chronic migraine (CM; n = 26), and healthy controls (HC; n = 26). Methods We developed classification models for biomarker identification and natural clusters through unsupervised classification using agglomerative hierarchical clustering (AHC). Pathway analysis of differentially expressed proteins was performed. Results Of 405 CSF proteins, the top five proteins that discriminated between migraine patients and HC were angiotensinogen, cell adhesion molecule 3, immunoglobulin heavy variable (IGHV) V-III region JON, insulin-like growth factor binding protein 6 (IGFBP-6), and IGFBP-7. The top-performing classifier demonstrated 100% sensitivity and 75% specificity in differentiating the two groups. Of 229 serum proteins, the top five proteins in classifying patients with migraine were immunoglobulin heavy variable 3-74 (IGHV 3-74), proteoglycan 4, immunoglobulin kappa variable 3D-15, zinc finger protein (ZFP)-814, and mediator of RNA polymerase II transcription subunit 12. The best-performing classifier exhibited 94% sensitivity and 92% specificity. AHC separated EM, CM, and HC into distinct clusters with 90% success. Migraine patients exhibited increased ZFP-814 and calcium voltage-gated channel subunit alpha 1F (CACNA1F) levels, while IGHV 3-74 levels decreased in both cross-sectional and longitudinal serum analyses. ZFP-814 remained upregulated during the CM-to-EM reversion but was suppressed when CM persisted. CACNA1F was pronounced in CM persistence. Pathway analysis revealed immune, coagulation, glucose metabolism, erythrocyte oxygen and carbon dioxide exchange, and insulin-like growth factor regulation pathways. Conclusion Our data-driven study provides evidence for identifying novel proteomic biomarker signatures to diagnose, subclassify, and predict treatment responses for migraine. The dysregulated biomolecules affect multiple pathways, leading to cortical spreading depression, trigeminal nociceptor sensitization, oxidative stress, blood-brain barrier disruption, immune response, and coagulation cascades. Trial registration NCT03231241, ClincialTrials.gov.
Collapse
Affiliation(s)
- Yohannes W. Woldeamanuel
- Division of Headache, Department of Neurology, Mayo Clinic Arizona, 6161 E. Mayo Blvd, Phoenix, AZ, USA
| | - Bharati M. Sanjanwala
- Division of Headache and Facial Pain, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, CA, USA
| | - Robert P. Cowan
- Division of Headache and Facial Pain, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, CA, USA
| |
Collapse
|
31
|
Hourtovenko C, Sreetharan S, Tharmalingam S, Tai TC. Impact of Ionizing Radiation Exposure on Placental Function and Implications for Fetal Programming. Int J Mol Sci 2024; 25:9862. [PMID: 39337351 PMCID: PMC11432287 DOI: 10.3390/ijms25189862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/19/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Accidental exposure to high-dose radiation while pregnant has shown significant negative effects on the developing fetus. One fetal organ which has been studied is the placenta. The placenta performs all essential functions for fetal development, including nutrition, respiration, waste excretion, endocrine communication, and immunological functions. Improper placental development can lead to complications during pregnancy, as well as the occurrence of intrauterine growth-restricted (IUGR) offspring. IUGR is one of the leading indicators of fetal programming, classified as an improper uterine environment leading to the predisposition of diseases within the offspring. With numerous studies examining fetal programming, there remains a significant gap in understanding the placenta's role in irradiation-induced fetal programming. This review aims to synthesize current knowledge on how irradiation affects placental function to guide future research directions. This review provides a comprehensive overview of placental biology, including its development, structure, and function, and summarizes the placenta's role in fetal programming, with a focus on the impact of radiation on placental biology. Taken together, this review demonstrates that fetal radiation exposure causes placental degradation and immune function dysregulation. Given the placenta's crucial role in fetal development, understanding its impact on irradiation-induced IUGR is essential.
Collapse
Affiliation(s)
- Cameron Hourtovenko
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada
- School of Natural Sciences, Laurentian University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada
| | - Shayen Sreetharan
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada
- Department of Medical Imaging, London Health Sciences Centre, 339 Windermere Rd., London, ON N6A 5A5, Canada
| | - Sujeenthar Tharmalingam
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada
- School of Natural Sciences, Laurentian University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada
| | - T C Tai
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada
- School of Natural Sciences, Laurentian University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
32
|
Alizadeh Sadighi S, Rostami N, Tohidi M, Mashayekhi M. Insulin-like growth factor (IGF) levels in pre-treatment plasma identifying breast cancer: A case control study. CASPIAN JOURNAL OF INTERNAL MEDICINE 2024; 15:706-712. [PMID: 39359441 PMCID: PMC11444118 DOI: 10.22088/cjim.15.4.706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 12/05/2023] [Indexed: 10/04/2024]
Abstract
Background Diabetes (primarily type 2) is linked to a higher risk of breast cancer. Insulin-like growth factor (IGF) is one of the most important factors that affects mitosis and thus inhibits apoptosis. The purpose of this study was to compare the pre-treatment insulin-like growth factor (IGF) levels in breast cancer against normal population. Methods In this case-control study, 60 patients with breast cancer and 60 healthy controls were enrolled in 2017 and 2018 at Tehran's Shahid-Modarres Hospital. In this study, the blood sugar of the patients was examined before entering the study, and the age of the patients was also within the age limit of 18 to 70 years. They were studied to determine the relationship between insulin-like growth factor (ELISA method) and breast cancer. Results Both groups have similar IGF-1 levels (Ctrl and Case) (P= 0.188). But, IGF-2 levels were significantly higher in breast cancer patients (373.4 vs. 317.3 ng/ml), (P=0.0001). Conclusion According to our study, IGF-2 may serve as a prognostic biomarker and potential therapeutic target for breast cancer. However, further investigation is needed to validate this claim.
Collapse
Affiliation(s)
- Sarvin Alizadeh Sadighi
- Department of Internal Medicine, Clinical Research Development Center at Modarres Hospital, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Nematollah Rostami
- Department of Hematology, Modarres Hospital, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Maryam Tohidi
- Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahbobeh Mashayekhi
- Department of Endocrinology, Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Rao SS, Kundapura SV, Dey D, Palaniappan C, Sekar K, Kulal A, Ramagopal UA. Cumulative phylogenetic, sequence and structural analysis of Insulin superfamily proteins provide unique structure-function insights. Mol Inform 2024; 43:e202300160. [PMID: 38973776 DOI: 10.1002/minf.202300160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/17/2024] [Accepted: 03/14/2024] [Indexed: 07/09/2024]
Abstract
The insulin superfamily proteins (ISPs), in particular, insulin, IGFs and relaxin proteins are key modulators of animal physiology. They are known to have evolved from the same ancestral gene and have diverged into proteins with varied sequences and distinct functions, but maintain a similar structural architecture stabilized by highly conserved disulphide bridges. The recent surge of sequence data and the structures of these proteins prompted a need for a comprehensive analysis, which connects the evolution of these sequences (427 sequences) in the light of available functional and structural information including representative complex structures of ISPs with their cognate receptors. This study reveals (a) unusually high sequence conservation of IGFs (>90 % conservation in 184 sequences) and provides a possible structure-based rationale for such high sequence conservation; (b) provides an updated definition of the receptor-binding signature motif of the functionally diverse relaxin family members (c) provides a probable non-canonical C-peptide cleavage site in a few insulin sequences. The high conservation of IGFs appears to represent a classic case of resistance to sequence diversity exerted by physiologically important interactions with multiple partners. We also propose a probable mechanism for C-peptide cleavage in a few distinct insulin sequences and redefine the receptor-binding signature motif of the relaxin family. Lastly, we provide a basis for minimally modified insulin mutants with potential therapeutic application, inspired by concomitant changes observed in other insulin superfamily protein members supported by molecular dynamics simulation.
Collapse
Affiliation(s)
- Shrilakshmi Sheshagiri Rao
- Division of Biological Sciences, Poornaprajna Institute of Scientific Research, Poornaprajnapura, 562110, Bidalur (Post), Bengaluru, India
- Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Shankar V Kundapura
- Division of Biological Sciences, Poornaprajna Institute of Scientific Research, Poornaprajnapura, 562110, Bidalur (Post), Bengaluru, India
- Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Debayan Dey
- Division of Biological Sciences, Poornaprajna Institute of Scientific Research, Poornaprajnapura, 562110, Bidalur (Post), Bengaluru, India
- Present address: Department of Biochemistry, Emory University School of Medicine, GA 30322, Atlanta, USA
| | - Chandrasekaran Palaniappan
- Department of Computational and Data Sciences, Indian Institute of Science, 560012, Bangalore, India
- Molecular Biophysics Unit, Indian Institute of Science, 560012, Bangalore, India
| | - Kanagaraj Sekar
- Department of Computational and Data Sciences, Indian Institute of Science, 560012, Bangalore, India
| | - Ananda Kulal
- Division of Biological Sciences, Poornaprajna Institute of Scientific Research, Poornaprajnapura, 562110, Bidalur (Post), Bengaluru, India
| | - Udupi A Ramagopal
- Division of Biological Sciences, Poornaprajna Institute of Scientific Research, Poornaprajnapura, 562110, Bidalur (Post), Bengaluru, India
- Department of Microbiology and FST, School of Science, GITAM University, 530045, Visakhapatnam, India
| |
Collapse
|
34
|
Matuszewska J, Krawiec A, Radziemski A, Uruski P, Tykarski A, Mikuła-Pietrasik J, Książek K. Alterations of receptors and insulin-like growth factor binding proteins in senescent cells. Eur J Cell Biol 2024; 103:151438. [PMID: 38945074 DOI: 10.1016/j.ejcb.2024.151438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024] Open
Abstract
The knowledge about cellular senescence expands dynamically, providing more and more conclusive evidence of its triggers, mechanisms, and consequences. Senescence-associated secretory phenotype (SASP), one of the most important functional traits of senescent cells, is responsible for a large extent of their context-dependent activity. Both SASP's components and signaling pathways are well-defined. A literature review shows, however, that a relatively underinvestigated aspect of senescent cell autocrine and paracrine activity is the change in the production of proteins responsible for the reception and transmission of SASP signals, i.e., receptors and binding proteins. For this reason, we present in this article the current state of knowledge regarding senescence-associated changes in cellular receptors and insulin-like growth factor binding proteins. We also discuss the role of these alterations in senescence induction and maintenance, pro-cancerogenic effects of senescent cells, and aging-related structural and functional malfunctions.
Collapse
Affiliation(s)
- Julia Matuszewska
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str., Poznań 60-781, Poland
| | - Adrianna Krawiec
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str., Poznań 60-781, Poland
| | - Artur Radziemski
- Poznan University of Medical Sciences, Department of Hypertensiology, Długa 1/2 Str., Poznań 61-848, Poland
| | - Paweł Uruski
- Poznan University of Medical Sciences, Department of Hypertensiology, Długa 1/2 Str., Poznań 61-848, Poland
| | - Andrzej Tykarski
- Poznan University of Medical Sciences, Department of Hypertensiology, Długa 1/2 Str., Poznań 61-848, Poland
| | - Justyna Mikuła-Pietrasik
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str., Poznań 60-781, Poland
| | - Krzysztof Książek
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str., Poznań 60-781, Poland.
| |
Collapse
|
35
|
Erdogan MA, Nesil P, Altuntas I, Sirin C, Uyanikgil Y, Erbas O. Amelioration of propionic acid-induced autism spectrum disorder in rats through dapagliflozin: The role of IGF-1/IGFBP-3 and the Nrf2 antioxidant pathway. Neuroscience 2024; 554:16-25. [PMID: 39004410 DOI: 10.1016/j.neuroscience.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
The biological effects of dapagliflozin, a sodium-glucose cotransporter-2 (SGLT2) inhibitor, reveal its antioxidant and anti-inflammatory properties, suggesting therapeutic benefits beyond glycemic control. This study explores the neuroprotective effects of dapagliflozin in a rat model of autism spectrum disorder (ASD) induced by propionic acid (PPA), characterized by social interaction deficits, communication challenges, repetitive behaviors, cognitive impairments, and oxidative stress. Our research aims to find effective treatments for ASD, a condition with limited therapeutic options and significant impacts on individuals and families. PPA induces ASD-like symptoms in rodents, mimicking biochemical and behavioral features of human ASD. This study explores dapagliflozin's potential to mitigate these symptoms, providing insights into novel therapeutic avenues. The findings demonstrate that dapagliflozin enhances the activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant pathway and increases levels of neurotrophic and growth factors such as brain-derived neurotrophic factor (BDNF), insulin-like growth factor-1 (IGF-1), and insulin-like growth factor-binding protein-3 (IGFBP-3). Additionally, dapagliflozin reduces pro-inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α) and interleukin-17 (IL-17), and decreases the oxidative stress marker malondialdehyde (MDA). Dapagliflozin's antioxidant properties support cognitive functions by modulating apoptotic mechanisms and enhancing antioxidant capacity. These combined effects contribute to reducing learning and memory impairments in PPA-induced ASD, highlighting dapagliflozin's potential as an adjunctive therapy for oxidative stress and inflammation-related cognitive decline in ASD. This study underscores the importance of exploring new therapeutic strategies targeting molecular pathways involved in the pathophysiology of ASD, potentially improving the quality of life for individuals affected by this disorder.
Collapse
Affiliation(s)
- Mumin Alper Erdogan
- Department of Physiology, Izmir Katip Celebi University, Faculty of Medicine, Izmir, Turkey.
| | - Pemra Nesil
- Istanbul University, Faculty of Medicine, Istanbul, Turkey
| | | | - Cansın Sirin
- Department of Histology and Embryology, Ege University, Faculty of Medicine, Izmir, Turkey
| | - Yigit Uyanikgil
- Department of Histology and Embryology, Ege University, Faculty of Medicine, Izmir, Turkey
| | - Oytun Erbas
- Demiroglu Bilim University, Department of Physiology, İstanbul, Turkey
| |
Collapse
|
36
|
Kotsifaki A, Maroulaki S, Karalexis E, Stathaki M, Armakolas A. Decoding the Role of Insulin-like Growth Factor 1 and Its Isoforms in Breast Cancer. Int J Mol Sci 2024; 25:9302. [PMID: 39273251 PMCID: PMC11394947 DOI: 10.3390/ijms25179302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/25/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Insulin-like Growth Factor-1 (IGF-1) is a crucial mitogenic factor with important functions in the mammary gland, mainly through its interaction with the IGF-1 receptor (IGF-1R). This interaction activates a complex signaling network that promotes cell proliferation, epithelial to mesenchymal transition (EMT) and inhibits apoptosis. Despite extensive research, the precise molecular pathways and intracellular mechanisms activated by IGF-1, in cancer, remain poorly understood. Recent evidence highlights the essential roles of IGF-1 and its isoforms in breast cancer (BC) development, progression, and metastasis. The peptides that define the IGF-1 isoforms-IGF-1Ea, IGF-1Eb, and IGF-1Ec-act as key points of convergence for various signaling pathways that influence the growth, metastasis and survival of BC cells. The aim of this review is to provide a detailed exami-nation of the role of the mature IGF-1 and its isoforms in BC biology and their potential use as possible therapeutical targets.
Collapse
Affiliation(s)
- Amalia Kotsifaki
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Sousanna Maroulaki
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Efthymios Karalexis
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Martha Stathaki
- Surgical Clinic, "Elena Venizelou" General Hospital, 11521 Athens, Greece
| | - Athanasios Armakolas
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
37
|
Issa S, Fayoud H, Shaimardanova A, Sufianov A, Sufianova G, Solovyeva V, Rizvanov A. Growth Factors and Their Application in the Therapy of Hereditary Neurodegenerative Diseases. Biomedicines 2024; 12:1906. [PMID: 39200370 PMCID: PMC11351319 DOI: 10.3390/biomedicines12081906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Hereditary neurodegenerative diseases (hNDDs) such as Alzheimer's, Parkinson's, Huntington's disease, and others are primarily characterized by their progressive nature, severely compromising both the cognitive and motor abilities of patients. The underlying genetic component in hNDDs contributes to disease risk, creating a complex genetic landscape. Considering the fact that growth factors play crucial roles in regulating cellular processes, such as proliferation, differentiation, and survival, they could have therapeutic potential for hNDDs, provided appropriate dosing and safe delivery approaches are ensured. This article presents a detailed overview of growth factors, and explores their therapeutic potential in treating hNDDs, emphasizing their roles in neuronal survival, growth, and synaptic plasticity. However, challenges such as proper dosing, delivery methods, and patient variability can hinder their clinical application.
Collapse
Affiliation(s)
- Shaza Issa
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (S.I.); (H.F.)
| | - Haidar Fayoud
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (S.I.); (H.F.)
| | - Alisa Shaimardanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.S.); (V.S.)
| | - Albert Sufianov
- Department of Neurosurgery, Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia;
- The Research and Educational Institute of Neurosurgery, Peoples’ Friendship University of Russia (RUDN), 117198 Moscow, Russia
| | - Galina Sufianova
- Department of Pharmacology, Tyumen State Medical University, 625023 Tyumen, Russia;
| | - Valeriya Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.S.); (V.S.)
| | - Albert Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.S.); (V.S.)
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, 420111 Kazan, Russia
| |
Collapse
|
38
|
Barrios V, Martín-Rivada Á, Martos-Moreno GÁ, Canelles S, Moreno-Macián F, De Mingo-Alemany C, Delvecchio M, Pajno R, Fintini D, Chowen JA, Argente J. Increased IGFBP Proteolysis, IGF-I Bioavailability, and Pappalysin Levels in Children With Prader-Willi Syndrome. J Clin Endocrinol Metab 2024; 109:e1776-e1786. [PMID: 38141219 DOI: 10.1210/clinem/dgad754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 12/25/2023]
Abstract
CONTEXT Prader-Willi syndrome (PWS) is associated with impaired growth hormone (GH) secretion and decreased insulin-like growth factor (IGF)-I levels. Pappalysins (PAPP-A, PAPP-A2) and stanniocalcins (STC-1, STC-2) regulate IGF binding-protein (IGFBP) cleavage and IGF bioavailability, but their implication in PWS is unknown. OBJECTIVE We determined serum levels of PAPP-As and STCs in association with IGF axis components in prepubertal and pubertal patients with PWS, also analyzing the effect of GH treatment. METHODS Forty children and adolescents with PWS and 120 sex- and age-matched controls were included. The effect of GH was evaluated at 6 months of treatment in 11 children. RESULTS Children with PWS had lower levels of total IGF-I, total and intact IGFBP-3, acid-labile subunit, intact IGFBP-4, and STC-1, and they had higher concentrations of free IGF-I, IGFBP-5, and PAPP-A. Patients with PWS after pubertal onset had decreased total IGF-I, total and intact IGFBP-3, and intact IGFBP-4 levels, and had increased total IGFBP-4, and STCs concentrations. GH treatment increased total IGF-I, total and intact IGFBP-3, and intact IGFBP-4, with no changes in PAPP-As, STCs, and free IGF-I levels. Standardized height correlated directly with intact IGFBP-3 and inversely with PAPP-As and the free/total IGF-I ratio. CONCLUSION The increase in PAPP-A could be involved in increased IGFBP proteolysis, promoting IGF-I bioavailability in children with PWS. Further studies are needed to establish the relationship between growth, GH resistance, and changes in the IGF axis during development and after GH treatment in these patients.
Collapse
Affiliation(s)
- Vicente Barrios
- Departments of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Research Institute "La Princesa", Madrid 28009, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutriciόn (CIBEROBN), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Álvaro Martín-Rivada
- Departments of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Research Institute "La Princesa", Madrid 28009, Spain
| | - Gabriel Á Martos-Moreno
- Departments of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Research Institute "La Princesa", Madrid 28009, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutriciόn (CIBEROBN), Instituto de Salud Carlos III, Madrid 28029, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid 28029, Spain
| | - Sandra Canelles
- Departments of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Research Institute "La Princesa", Madrid 28009, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutriciόn (CIBEROBN), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Francisca Moreno-Macián
- Pediatric Endocrinology Unit, Hospital Universitario y Politécnico La Fe, Valencia 46009, Spain
| | - Carmen De Mingo-Alemany
- Pediatric Endocrinology Unit, Hospital Universitario y Politécnico La Fe, Valencia 46009, Spain
| | - Maurizio Delvecchio
- Department of Biotechnology and Applied Sciences, University of L'Aquila, Aquila 67100, Italy
| | - Roberta Pajno
- Department of Pediatrics, Endocrine Unit, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Danilo Fintini
- Ospedale Pediatrico Bambino Gesù, Prader-Willi Reference Center, Endocrinology and Diabetology Unit, IRCCS, Rome 00165, Italy
| | - Julie A Chowen
- Departments of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Research Institute "La Princesa", Madrid 28009, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutriciόn (CIBEROBN), Instituto de Salud Carlos III, Madrid 28029, Spain
- IMDEA, Food Institute, CEIUAM+CSI, Cantoblanco, Madrid 28049, Spain
| | - Jesús Argente
- Departments of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Research Institute "La Princesa", Madrid 28009, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutriciόn (CIBEROBN), Instituto de Salud Carlos III, Madrid 28029, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid 28029, Spain
- IMDEA, Food Institute, CEIUAM+CSI, Cantoblanco, Madrid 28049, Spain
| |
Collapse
|
39
|
Zheng J, Zhang W, Xu Y, Cui A, Jiang Y, Wang B. Insulin-like growth factor binding protein-3 (igfbp-3) and igfbp-5 in yellowtail kingfish (Seriola lalandi): molecular characterization and expression levels under different nutritional status and stocking density. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1621-1633. [PMID: 38758504 DOI: 10.1007/s10695-024-01359-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024]
Abstract
Insulin-like growth factor-binding proteins (IGFBPs) play important roles in regulating growth and development by binding to IGF, where IGFBP-3 and IGFBP-5 are the main binding carriers of IGF in the circulation system. In the present study, the gene sequences of igfbp-3, igfbp-5a, and igfbp-5b were cloned from the liver of yellowtail kingfish (Seriola lalandi). The ORF sequences of igfbp-3, igfbp-5a, and igfbp-5b were 888, 801, and 804 bp in length, which encoded 295, 266, and 267 amino acids, respectively. The above three genes were widely expressed in yellowtail kingfish tissues, with igfbp-3 being the most highly expressed in the heart, brain, and gonads, while igfbp-5a and igfbp-5b were both most highly expressed in the liver and kidney. The expression levels of igfbp-3, igfbp-5a, and igfbp-5b were detected throughout the embryonic and larval stages, suggesting their roles in early development and growth regulation of yellowtail kingfish. Besides, igfbp-3 and igfbp-5a were significantly up-regulated in the liver under food deprivation and high-density rearing conditions, which was exactly opposite to the growth performance of yellowtail kingfish, implying that they may serve as biomarkers of adverse culture conditions. Overall, the above results initially identified the molecular characteristics of igfbp-3/-5a/-5b in yellowtail kingfish and implied that they might play important roles in the growth and development, providing a basis for further research on underlying regulatory mechanisms.
Collapse
Affiliation(s)
- Jichang Zheng
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Wenjing Zhang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Yongjiang Xu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.
| | - Aijun Cui
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Yan Jiang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Bin Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| |
Collapse
|
40
|
Lendvai ÁZ, Tóth Z, Mahr K, Pénzes J, Vogel-Kindgen S, Gander BA, Vágási CI. IGF-1 induces sex-specific oxidative damage and mortality in a songbird. Oecologia 2024; 205:561-570. [PMID: 39014256 PMCID: PMC11358184 DOI: 10.1007/s00442-024-05587-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/28/2024] [Indexed: 07/18/2024]
Abstract
The insulin-like growth factor 1 (IGF-1) is a pleiotropic hormone that regulates essential life-history traits and is known for its major contribution to determining individual ageing processes. High levels of IGF-1 have been linked to increased mortality and are hypothesised to cause oxidative stress. This effect has been observed in laboratory animals, but whether it pertains to wild vertebrates has not been tested. This is surprising because studying the mechanisms that shape individual differences in lifespan is important to understanding mortality patterns in populations of free-living animals. We tested this hypothesis under semi-natural conditions by simulating elevated IGF-1 levels in captive bearded reedlings, a songbird species with an exceptionally fast pace of life. We subcutaneously injected slow-release biodegradable microspheres loaded with IGF-1 and achieved a systemic 3.7-fold increase of the hormone within the natural range for at least 24 h. Oxidative damage to lipids showed marked sexual differences: it significantly increased the day after the manipulation in treated males and returned to baseline levels four days post-treatment, while no treatment effect was apparent in females. Although there was no overall difference in survival between the treatment groups, high initial (pre-treatment) IGF-1 and low post-treatment plasma malondialdehyde levels were associated with enhanced survival prospects in males. These results suggest that males may be more susceptible to IGF-1-induced oxidative stress than females and quickly restoring oxidative balance may be related to fitness. IGF-1 levels evolve under opposing selection forces, and natural variation in this hormone's level may reflect the outcome of individual optimization.
Collapse
Affiliation(s)
- Ádám Z Lendvai
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary.
| | - Zsófia Tóth
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary
- Pál Juhász-Nagy Doctoral School of Biology Environmental Sciences, University of Debrecen, Debrecen, Hungary
- Department of Biology, Lund University, Lund, Sweden
| | - Katharina Mahr
- Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Konrad Lorenz Institute of Ethology, Vienna, Austria
| | - Janka Pénzes
- Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeş-Bolyai University, Cluj-Napoca, Romania
| | | | - Bruno A Gander
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Csongor I Vágási
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary
- Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeş-Bolyai University, Cluj-Napoca, Romania
| |
Collapse
|
41
|
Quarato ER, Salama NA, Calvi LM. Interplay Between Skeletal and Hematopoietic Cells in the Bone Marrow Microenvironment in Homeostasis and Aging. Curr Osteoporos Rep 2024; 22:416-432. [PMID: 38782850 DOI: 10.1007/s11914-024-00874-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/05/2024] [Indexed: 05/25/2024]
Abstract
PURPOSE OF THE REVIEW In this review, we discuss the most recent scientific advances on the reciprocal regulatory interactions between the skeletal and hematopoietic stem cell niche, focusing on immunomodulation and its interplay with the cell's mitochondrial function, and how this impacts osteoimmune health during aging and disease. RECENT FINDINGS Osteoimmunology investigates interactions between cells that make up the skeletal stem cell niche and immune system. Much work has investigated the complexity of the bone marrow microenvironment with respect to the skeletal and hematopoietic stem cells that regulate skeletal formation and immune health respectively. It has now become clear that these cellular components cooperate to maintain homeostasis and that dysfunction in their interaction can lead to aging and disease. Having a deeper, mechanistic appreciation for osteoimmune regulation will lead to better research perspective and therapeutics with the potential to improve the aging process, skeletal and hematologic regeneration, and disease targeting.
Collapse
Affiliation(s)
- Emily R Quarato
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA.
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
| | - Noah A Salama
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA.
| | - Laura M Calvi
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
42
|
Zhang X, Xie N, Ding G, Ning D, Dai W, Xiong Z, Zhong W, Zuo D, Zhao J, Zhang P, Liu C, Li Q, Ran H, Liu W, Zhang G. An evolutionarily conserved pathway mediated by neuroparsin-A regulates reproductive plasticity in ants. PLoS Biol 2024; 22:e3002763. [PMID: 39133741 PMCID: PMC11398701 DOI: 10.1371/journal.pbio.3002763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 09/13/2024] [Accepted: 07/23/2024] [Indexed: 09/14/2024] Open
Abstract
Phenotypic plasticity displayed by an animal in response to different environmental conditions is supposedly crucial for its survival and reproduction. The female adults of some ant lineages display phenotypic plasticity related to reproductive role. In pharaoh ant queens, insemination induces substantial physiological/behavioral changes and implicates remarkable gene regulatory network (GRN) shift in the brain. Here, we report a neuropeptide neuroparsin A (NPA) showing a conserved expression pattern associated with reproductive activity across ant species. Knock-down of NPA in unmated queen enhances ovary activity, whereas injection of NPA peptide in fertilized queen suppresses ovary activity. We found that NPA mainly affected the downstream gene JHBP in the ovary, which is positively regulated by NPA and suppression of which induces elevated ovary activity, and shadow which is negatively regulated by NPA. Furthermore, we show that NPA was also employed into the brain-ovary axis in regulating the worker reproductive changes in other distantly related species, such as Harpegnathos venator ants.
Collapse
Affiliation(s)
- Xiafang Zhang
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Nianxia Xie
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI Research, Wuhan, China
| | - Guo Ding
- Center of Evolutionary & Organismal Biology, and Women’s Hospital at Zhejiang University School of Medicine, Hangzhou, China
| | - Dongdong Ning
- College of Agriculture and Biotechnology, Institute of Insect Science, Zhejiang University, Hangzhou, China
| | | | | | - Wenjiang Zhong
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Dashuang Zuo
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Jie Zhao
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Pei Zhang
- BGI Research, Wuhan, China
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
| | - Chengyuan Liu
- Center of Evolutionary & Organismal Biology, and Women’s Hospital at Zhejiang University School of Medicine, Hangzhou, China
| | - Qiye Li
- BGI Research, Wuhan, China
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
| | - Hao Ran
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Weiwei Liu
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Guojie Zhang
- Center of Evolutionary & Organismal Biology, and Women’s Hospital at Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| |
Collapse
|
43
|
Adasheva DA, Serebryanaya DV. IGF Signaling in the Heart in Health and Disease. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1402-1428. [PMID: 39245453 DOI: 10.1134/s0006297924080042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/11/2024] [Accepted: 06/22/2024] [Indexed: 09/10/2024]
Abstract
One of the most vital processes of the body is the cardiovascular system's proper operation. Physiological processes in the heart are regulated by the balance of cardioprotective and pathological mechanisms. The insulin-like growth factor system (IGF system, IGF signaling pathway) plays a pivotal role in regulating growth and development of various cells and tissues. In myocardium, the IGF system provides cardioprotective effects as well as participates in pathological processes. This review summarizes recent data on the role of IGF signaling in cardioprotection and pathogenesis of various cardiovascular diseases, as well as analyzes severity of these effects in various scenarios.
Collapse
Affiliation(s)
- Daria A Adasheva
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Daria V Serebryanaya
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| |
Collapse
|
44
|
Davis LM, Hwang M. Metabolic Pathways in Hydrocephalus: Profiling with Proteomics and Advanced Imaging. Metabolites 2024; 14:412. [PMID: 39195508 DOI: 10.3390/metabo14080412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
Hemorrhagic hydrocephalus is a common pathology in neonates with high mortality and morbidity. Current imaging approaches fail to capture the mechanisms behind its pathogenesis. Here, we discuss the processes underlying this pathology, the metabolic dysfunction that occurs as a result, and the ways in which these metabolic changes inform novel methods of clinical imaging. The imaging advances described allow earlier detection of the cellular and metabolic changes, leading to better outcomes for affected neonates.
Collapse
Affiliation(s)
- Laura May Davis
- Clinical Research Core, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Misun Hwang
- Clinical Research Core, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Radiology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
45
|
Ebrahimnezhad M, Valizadeh A, Majidinia M, Tabnak P, Yousefi B. Unveiling the potential of FOXO3 in lung cancer: From molecular insights to therapeutic prospects. Biomed Pharmacother 2024; 176:116833. [PMID: 38843589 DOI: 10.1016/j.biopha.2024.116833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/18/2024] [Accepted: 05/26/2024] [Indexed: 06/20/2024] Open
Abstract
Lung cancer poses a significant challenge regarding molecular heterogeneity, as it encompasses a wide range of molecular alterations and cancer-related pathways. Recent discoveries made it feasible to thoroughly investigate the molecular mechanisms underlying lung cancer, giving rise to the possibility of novel therapeutic strategies relying on molecularly targeted drugs. In this context, forkhead box O3 (FOXO3), a member of forkhead transcription factors, has emerged as a crucial protein commonly dysregulated in cancer cells. The regulation of the FOXO3 in reacting to external stimuli plays a key role in maintaining cellular homeostasis as a component of the molecular machinery that determines whether cells will survive or dies. Indeed, various extrinsic cues regulate FOXO3, affecting its subcellular location and transcriptional activity. These regulations are mediated by diverse signaling pathways, non-coding RNAs (ncRNAs), and protein interactions that eventually drive post-transcriptional modification of FOXO3. Nevertheless, while it is no doubt that FOXO3 is implicated in numerous aspects of lung cancer, it is unclear whether they act as tumor suppressors, promotors, or both based on the situation. However, FOXO3 serves as an intriguing possible target in lung cancer therapeutics while widely used anti-cancer chemo drugs can regulate it. In this review, we describe a summary of recent findings on molecular mechanisms of FOXO3 to clarify that targeting its activity might hold promise in lung cancer treatment.
Collapse
Affiliation(s)
- Mohammad Ebrahimnezhad
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Amir Valizadeh
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Peyman Tabnak
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Bahman Yousefi
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
46
|
Cheng TS, Noor U, Watts E, Pollak M, Wang Y, McKay J, Atkins J, Masala G, Sánchez MJ, Agudo A, Castilla J, Aune D, Colorado-Yohar SM, Manfredi L, Gunter MJ, Pala V, Josefsson A, Key TJ, Smith-Byrne K, Travis RC. Circulating free insulin-like growth factor-I and prostate cancer: a case-control study nested in the European prospective investigation into cancer and nutrition. BMC Cancer 2024; 24:676. [PMID: 38831273 PMCID: PMC11145848 DOI: 10.1186/s12885-023-11425-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/20/2023] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Circulating total insulin-like growth factor-I (IGF-I) is an established risk factor for prostate cancer. However, only a small proportion of circulating IGF-I is free or readily dissociable from IGF-binding proteins (its bioavailable form), and few studies have investigated the association of circulating free IGF-I with prostate cancer risk. METHODS We analyzed data from 767 prostate cancer cases and 767 matched controls nested within the European Prospective Investigation into Cancer and Nutrition cohort, with an average of 14-years (interquartile range = 2.9) follow-up. Matching variables were study center, length of follow-up, age, and time of day and fasting duration at blood collection. Circulating free IGF-I concentration was measured in serum samples collected at recruitment visit (mean age 55 years old; standard deviation = 7.1) using an enzyme-linked immunosorbent assay (ELISA). Conditional logistic regressions were performed to examine the associations of free IGF-I with risk of prostate cancer overall and subdivided by time to diagnosis (≤ 14 and > 14 years), and tumor characteristics. RESULTS Circulating free IGF-I concentrations (in fourths and as a continuous variable) were not associated with prostate cancer risk overall (odds ratio [OR] = 1.00 per 0.1 nmol/L increment, 95% CI: 0.99, 1.02) or by time to diagnosis, or with prostate cancer subtypes, including tumor stage and histological grade. CONCLUSIONS Estimated circulating free IGF-I was not associated with prostate cancer risk. Further research may consider other assay methods that estimate bioavailable IGF-I to provide more insight into the well-substantiated association between circulating total IGF-I and subsequent prostate cancer risk.
Collapse
Affiliation(s)
- Tuck Seng Cheng
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Richard Doll Building, Old Road Campus, Oxford, OX3 7LF, UK
| | - Urwah Noor
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Richard Doll Building, Old Road Campus, Oxford, OX3 7LF, UK
| | - Eleanor Watts
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Michael Pollak
- Oncology Department, McGill University and Segal Cancer Centre, Jewish General Hospital, Montreal, QC, Canada
| | - Ye Wang
- Oncology Department, McGill University and Segal Cancer Centre, Jewish General Hospital, Montreal, QC, Canada
| | - James McKay
- Genomic Epidemiology Branch, International Agency for Research on Cancer, Lyon, France
| | - Joshua Atkins
- Genomic Epidemiology Branch, International Agency for Research on Cancer, Lyon, France
| | - Giovanna Masala
- Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - Maria-Jose Sánchez
- Escuela Andaluza de Salud Pública (EASP), Granada, 18011, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, 28029, Spain
- Department of Preventive Medicine and Public Health, University of Granada, Granada, 18071, Spain
| | - Antonio Agudo
- Unit of Nutrition and Cancer, Catalan Institute of Oncology - ICO, L'Hospitalet de Llobregat, Barcelona, Spain
- Nutrition and Cancer Group; Epidemiology, Public Health, Cancer Prevention and Palliative Care Program; Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jesús Castilla
- Instituto de Salud Pública de Navarra - IdiSNA, Pamplona, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Dagfinn Aune
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Department of Nutrition, Oslo New University College, Oslo, Norway
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital Ullevå, Oslo, Norway
| | - Sandra M Colorado-Yohar
- Department of Epidemiology, Murcia Regional Health Council-IMIB, Murcia, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Research Group on Demography and Health, National Faculty of Public Health, University of Antioquia, Medellín, Colombia
| | - Luca Manfredi
- Centre for Biostatistics, Epidemiology, and Public Health (C-BEPH), Department of Clinical and Biological Sciences, University of Turin, Orbassano, TO, Italy
| | - Marc J Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC- WHO), Lyon, France
| | - Valeria Pala
- Epidemiology and Prevention Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Andreas Josefsson
- Department of Urology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Center for Molecular Medicin, Umeå University, Umeå, Sweden
- Department of Urology and Andrology, Institute of surgery and perioperative Sciences, Umeå University, Umeå, Sweden
| | - Timothy J Key
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Richard Doll Building, Old Road Campus, Oxford, OX3 7LF, UK
| | - Karl Smith-Byrne
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Richard Doll Building, Old Road Campus, Oxford, OX3 7LF, UK
| | - Ruth C Travis
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Richard Doll Building, Old Road Campus, Oxford, OX3 7LF, UK.
| |
Collapse
|
47
|
Song F, Hu Y, Hong Y, Sun H, Han Y, Mao Y, Wu W, Li G, Wang Y. Deletion of endothelial IGFBP5 protects against ischaemic hindlimb injury by promoting angiogenesis. Clin Transl Med 2024; 14:e1725. [PMID: 38886900 PMCID: PMC11182737 DOI: 10.1002/ctm2.1725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Angiogenesis is critical for forming new blood vessels from antedating vascular vessels. The endothelium is essential for angiogenesis, vascular remodelling and minimisation of functional deficits following ischaemia. The insulin-like growth factor (IGF) family is crucial for angiogenesis. Insulin-like growth factor-binding protein 5 (IGFBP5), a binding protein of the IGF family, may have places in angiogenesis, but the mechanisms are not yet completely understood. We sought to probe whether IGFBP5 is involved in pathological angiogenesis and uncover the molecular mechanisms behind it. METHODS AND RESULTS IGFBP5 expression was elevated in the vascular endothelium of gastrocnemius muscle from critical limb ischaemia patients and hindlimb ischaemic (HLI) mice and hypoxic human umbilical vein endothelial cells (HUVECs). In vivo, loss of endothelial IGFBP5 (IGFBP5EKO) facilitated the recovery of blood vessel function and limb necrosis in HLI mice. Moreover, skin damage healing and aortic ring sprouting were faster in IGFBP5EKO mice than in control mice. In vitro, the genetic inhibition of IGFBP5 in HUVECs significantly promoted tube formation, cell proliferation and migration by mediating the phosphorylation of IGF1R, Erk1/2 and Akt. Intriguingly, pharmacological treatment of HUVECs with recombinant human IGFBP5 ensued a contrasting effect on angiogenesis by inhibiting the IGF1 or IGF2 function. Genetic inhibition of IGFBP5 promoted cellular oxygen consumption and extracellular acidification rates via IGF1R-mediated glycolytic adenosine triphosphate (ATP) metabolism. Mechanistically, IGFBP5 exerted its role via E3 ubiquitin ligase Von Hippel-Lindau (VHL)-regulated HIF1α stability. Furthermore, the knockdown of the endothelial IGF1R partially abolished the reformative effect of IGFBP5EKO mice post-HLI. CONCLUSION Our findings demonstrate that IGFBP5 ablation enhances angiogenesis by promoting ATP metabolism and stabilising HIF1α, implying IGFBP5 is a novel therapeutic target for treating abnormal angiogenesis-related conditions.
Collapse
Affiliation(s)
- Fei Song
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Yu Hu
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Yi‐Xiang Hong
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Hu Sun
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Yue Han
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Yi‐Jie Mao
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Wei‐Yin Wu
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
- Xiamen Key Laboratory of Cardiovascular DiseasesXiamenChina
| | - Gang Li
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
- Xiamen Key Laboratory of Cardiovascular DiseasesXiamenChina
| | - Yan Wang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
- Xiamen Key Laboratory of Cardiovascular DiseasesXiamenChina
| |
Collapse
|
48
|
Schlueter BC, Quanz K, Baldauf J, Petrovic A, Ruppert C, Guenther A, Gall H, Tello K, Grimminger F, Ghofrani HA, Weissmann N, Seeger W, Schermuly RT, Weiss A. The diverging roles of insulin-like growth factor binding proteins in pulmonary arterial hypertension. Vascul Pharmacol 2024; 155:107379. [PMID: 38762131 DOI: 10.1016/j.vph.2024.107379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/29/2023] [Accepted: 05/05/2024] [Indexed: 05/20/2024]
Abstract
Pulmonary hypertension (PH) is a progressive, severe and to date not curable disease of the pulmonary vasculature. Alterations of the insulin-like growth factor 1 (IGF-1) system are known to play a role in vascular pathologies and IGF-binding proteins (IGFBPs) are important regulators of the bioavailability and function of IGFs. In this study, we show that circulating plasma levels of IGFBP-1, IGFBP-2 and IGFBP-3 are increased in idiopathic pulmonary arterial hypertension (IPAH) patients compared to healthy individuals. These binding proteins inhibit the IGF-1 induced IGF-1 receptor (IGF1R) phosphorylation and exhibit diverging effects on the IGF-1 induced signaling pathways in human pulmonary arterial cells (i.e. healthy as well as IPAH-hPASMCs, and healthy hPAECs). Furthermore, IGFBPs are differentially expressed in an experimental mouse model of PH. In hypoxic mouse lungs, IGFBP-1 mRNA expression is decreased whereas the mRNA for IGFBP-2 is increased. In contrast to IGFBP-1, IGFBP-2 shows vaso-constrictive properties in the murine pulmonary vasculature. Our analyses show that IGFBP-1 and IGFBP-2 exhibit diverging effects on IGF-1 signaling and display a unique IGF1R-independent kinase activation pattern in human pulmonary arterial smooth muscle cells (hPASMCs), which represent a major contributor of PAH pathobiology. Furthermore, we could show that IGFBP-2, in contrast to IGFBP-1, induces epidermal growth factor receptor (EGFR) signaling, Stat-3 activation and expression of Stat-3 target genes. Based on our results, we conclude that the IGFBP family, especially IGFBP-1, IGFBP-2 and IGFBP-3, are deregulated in PAH, that they affect IGF signaling and thereby regulate the cellular phenotype in PH.
Collapse
MESH Headings
- Humans
- Animals
- Receptor, IGF Type 1/metabolism
- Receptor, IGF Type 1/genetics
- Signal Transduction
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Pulmonary Artery/physiopathology
- Insulin-Like Growth Factor Binding Protein 3/metabolism
- Insulin-Like Growth Factor Binding Protein 3/genetics
- Insulin-Like Growth Factor Binding Protein 2/metabolism
- Insulin-Like Growth Factor Binding Protein 2/genetics
- Insulin-Like Growth Factor I/metabolism
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Cells, Cultured
- Male
- Insulin-Like Growth Factor Binding Protein 1/metabolism
- Insulin-Like Growth Factor Binding Protein 1/genetics
- Phosphorylation
- Disease Models, Animal
- STAT3 Transcription Factor/metabolism
- Case-Control Studies
- Mice, Inbred C57BL
- Familial Primary Pulmonary Hypertension/metabolism
- Familial Primary Pulmonary Hypertension/physiopathology
- Familial Primary Pulmonary Hypertension/pathology
- Familial Primary Pulmonary Hypertension/genetics
- Female
- ErbB Receptors/metabolism
- Middle Aged
- Vascular Remodeling
- Adult
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
Collapse
Affiliation(s)
- Beate Christiane Schlueter
- Justus-Liebig-University Giessen (JLU), Aulweg 130, Giessen 35392, Germany; Universities of Giessen and Marburg Lung Center (UGMLC), Giessen 35392, Germany; Cardio-Pulmonary Institute (CPI), EXC 2026, Project ID: 390649896, Giessen 35392, Germany; Member of the German Center for Lung Research (DZL), Giessen 35392, Germany
| | - Karin Quanz
- Justus-Liebig-University Giessen (JLU), Aulweg 130, Giessen 35392, Germany; Universities of Giessen and Marburg Lung Center (UGMLC), Giessen 35392, Germany; Cardio-Pulmonary Institute (CPI), EXC 2026, Project ID: 390649896, Giessen 35392, Germany; Member of the German Center for Lung Research (DZL), Giessen 35392, Germany
| | - Julia Baldauf
- Justus-Liebig-University Giessen (JLU), Aulweg 130, Giessen 35392, Germany; Universities of Giessen and Marburg Lung Center (UGMLC), Giessen 35392, Germany; Cardio-Pulmonary Institute (CPI), EXC 2026, Project ID: 390649896, Giessen 35392, Germany; Member of the German Center for Lung Research (DZL), Giessen 35392, Germany
| | - Aleksandar Petrovic
- Justus-Liebig-University Giessen (JLU), Aulweg 130, Giessen 35392, Germany; Universities of Giessen and Marburg Lung Center (UGMLC), Giessen 35392, Germany; Cardio-Pulmonary Institute (CPI), EXC 2026, Project ID: 390649896, Giessen 35392, Germany; Member of the German Center for Lung Research (DZL), Giessen 35392, Germany
| | - Clemens Ruppert
- Justus-Liebig-University Giessen (JLU), Aulweg 130, Giessen 35392, Germany; Universities of Giessen and Marburg Lung Center (UGMLC), Giessen 35392, Germany; Cardio-Pulmonary Institute (CPI), EXC 2026, Project ID: 390649896, Giessen 35392, Germany; Member of the German Center for Lung Research (DZL), Giessen 35392, Germany
| | - Andreas Guenther
- Justus-Liebig-University Giessen (JLU), Aulweg 130, Giessen 35392, Germany; Universities of Giessen and Marburg Lung Center (UGMLC), Giessen 35392, Germany; Cardio-Pulmonary Institute (CPI), EXC 2026, Project ID: 390649896, Giessen 35392, Germany; Member of the German Center for Lung Research (DZL), Giessen 35392, Germany; Agaplesion Lung Clinic Waldhof-Elgershausen, Greifenstein 35753, Germany
| | - Henning Gall
- Justus-Liebig-University Giessen (JLU), Aulweg 130, Giessen 35392, Germany; Universities of Giessen and Marburg Lung Center (UGMLC), Giessen 35392, Germany; Cardio-Pulmonary Institute (CPI), EXC 2026, Project ID: 390649896, Giessen 35392, Germany; Member of the German Center for Lung Research (DZL), Giessen 35392, Germany; University Hospital Giessen and Marburg (UKGM), Giessen 35392, Germany
| | - Khodr Tello
- Justus-Liebig-University Giessen (JLU), Aulweg 130, Giessen 35392, Germany; Universities of Giessen and Marburg Lung Center (UGMLC), Giessen 35392, Germany; Cardio-Pulmonary Institute (CPI), EXC 2026, Project ID: 390649896, Giessen 35392, Germany; Member of the German Center for Lung Research (DZL), Giessen 35392, Germany; University Hospital Giessen and Marburg (UKGM), Giessen 35392, Germany
| | - Friedrich Grimminger
- Justus-Liebig-University Giessen (JLU), Aulweg 130, Giessen 35392, Germany; Universities of Giessen and Marburg Lung Center (UGMLC), Giessen 35392, Germany; Cardio-Pulmonary Institute (CPI), EXC 2026, Project ID: 390649896, Giessen 35392, Germany; Member of the German Center for Lung Research (DZL), Giessen 35392, Germany; University Hospital Giessen and Marburg (UKGM), Giessen 35392, Germany
| | - Hossein-Ardeschir Ghofrani
- Justus-Liebig-University Giessen (JLU), Aulweg 130, Giessen 35392, Germany; Universities of Giessen and Marburg Lung Center (UGMLC), Giessen 35392, Germany; Cardio-Pulmonary Institute (CPI), EXC 2026, Project ID: 390649896, Giessen 35392, Germany; Member of the German Center for Lung Research (DZL), Giessen 35392, Germany; University Hospital Giessen and Marburg (UKGM), Giessen 35392, Germany
| | - Norbert Weissmann
- Justus-Liebig-University Giessen (JLU), Aulweg 130, Giessen 35392, Germany; Universities of Giessen and Marburg Lung Center (UGMLC), Giessen 35392, Germany; Cardio-Pulmonary Institute (CPI), EXC 2026, Project ID: 390649896, Giessen 35392, Germany; Member of the German Center for Lung Research (DZL), Giessen 35392, Germany
| | - Werner Seeger
- Justus-Liebig-University Giessen (JLU), Aulweg 130, Giessen 35392, Germany; Universities of Giessen and Marburg Lung Center (UGMLC), Giessen 35392, Germany; Cardio-Pulmonary Institute (CPI), EXC 2026, Project ID: 390649896, Giessen 35392, Germany; Member of the German Center for Lung Research (DZL), Giessen 35392, Germany; Max Planck Institute (MPI) for Heart and Lung Research, Parkstrasse 1, Bad Nauheim 61231, Germany; University Hospital Giessen and Marburg (UKGM), Giessen 35392, Germany
| | - Ralph Theo Schermuly
- Justus-Liebig-University Giessen (JLU), Aulweg 130, Giessen 35392, Germany; Universities of Giessen and Marburg Lung Center (UGMLC), Giessen 35392, Germany; Cardio-Pulmonary Institute (CPI), EXC 2026, Project ID: 390649896, Giessen 35392, Germany; Member of the German Center for Lung Research (DZL), Giessen 35392, Germany
| | - Astrid Weiss
- Justus-Liebig-University Giessen (JLU), Aulweg 130, Giessen 35392, Germany; Universities of Giessen and Marburg Lung Center (UGMLC), Giessen 35392, Germany; Cardio-Pulmonary Institute (CPI), EXC 2026, Project ID: 390649896, Giessen 35392, Germany; Member of the German Center for Lung Research (DZL), Giessen 35392, Germany.
| |
Collapse
|
49
|
Millward DJ. Post-natal muscle growth and protein turnover: a narrative review of current understanding. Nutr Res Rev 2024; 37:141-168. [PMID: 37395180 DOI: 10.1017/s0954422423000124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
A model explaining the dietary-protein-driven post-natal skeletal muscle growth and protein turnover in the rat is updated, and the mechanisms involved are described, in this narrative review. Dietary protein controls both bone length and muscle growth, which are interrelated through mechanotransduction mechanisms with muscle growth induced both from stretching subsequent to bone length growth and from internal work against gravity. This induces satellite cell activation, myogenesis and remodelling of the extracellular matrix, establishing a growth capacity for myofibre length and cross-sectional area. Protein deposition within this capacity is enabled by adequate dietary protein and other key nutrients. After briefly reviewing the experimental animal origins of the growth model, key concepts and processes important for growth are reviewed. These include the growth in number and size of the myonuclear domain, satellite cell activity during post-natal development and the autocrine/paracrine action of IGF-1. Regulatory and signalling pathways reviewed include developmental mechanotransduction, signalling through the insulin/IGF-1-PI3K-Akt and the Ras-MAPK pathways in the myofibre and during mechanotransduction of satellite cells. Likely pathways activated by maximal-intensity muscle contractions are highlighted and the regulation of the capacity for protein synthesis in terms of ribosome assembly and the translational regulation of 5-TOPmRNA classes by mTORC1 and LARP1 are discussed. Evidence for and potential mechanisms by which volume limitation of muscle growth can occur which would limit protein deposition within the myofibre are reviewed. An understanding of how muscle growth is achieved allows better nutritional management of its growth in health and disease.
Collapse
Affiliation(s)
- D Joe Millward
- Department of Nutritional Sciences, School of Biosciences & Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
50
|
Elemam NM, Hotait HY, Saleh MA, El-Huneidi W, Talaat IM. Insulin-like growth factor family and prostate cancer: new insights and emerging opportunities. Front Endocrinol (Lausanne) 2024; 15:1396192. [PMID: 38872970 PMCID: PMC11169579 DOI: 10.3389/fendo.2024.1396192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/14/2024] [Indexed: 06/15/2024] Open
Abstract
Prostate cancer is the second most commonly diagnosed cancer in men. The mammalian insulin-like growth factor (IGF) family is made up of three ligands (IGF-I, IGF-II, and insulin), three receptors (IGF-I receptor (IGF-1R), insulin receptor (IR), and IGF-II receptor (IGF-2R)), and six IGF-binding proteins (IGFBPs). IGF-I and IGF-II were identified as potent mitogens and were previously associated with an increased risk of cancer development including prostate cancer. Several reports showed controversy about the expression of the IGF family and their connection to prostate cancer risk due to the high degree of heterogeneity among prostate tumors, sampling bias, and evaluation techniques. Despite that, it is clear that several IGF family members play a role in prostate cancer development, metastasis, and androgen-independent progression. In this review, we aim to expand our understanding of prostate tumorigenesis and regulation through the IGF system. Further understanding of the role of IGF signaling in PCa shows promise and needs to be considered in the context of a comprehensive treatment strategy.
Collapse
Affiliation(s)
- Noha M. Elemam
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | | | - Mohamed A. Saleh
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Waseem El-Huneidi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Basic Medical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Iman M. Talaat
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|