1
|
Ye R, Guo J, Yang Z, Wang Z, Chen Y, Huang J, Dong Y. Somatostatin and Mannooligosaccharide Modified Selenium Nanoparticles with Dual-Targeting for Ulcerative Colitis Treatment. ACS NANO 2025; 19:14914-14930. [PMID: 40214514 DOI: 10.1021/acsnano.5c00355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
Inflammatory bowel disease (IBD) is a prevalent condition worldwide, characterized by complex etiologies, limited efficacy of clinical drug treatments, and potential adverse effects. In this study, we designed 269 nm selenium nanoparticles with double-cell targeting for ulcerative colitis treatment. Somatostatin (SST) and mannooligosaccharide (MOS) were employed to functionalize an Eucommia ulmoides polysaccharide selenium nanoparticle (EUP-SeNP), resulting in the formulation of SST/MOS@EUP-SeNP. Nanoparticles were engineered to target intestinal epithelial cells and macrophages through specific cell surface receptors, enabling dual-targeted treatment. In addition, sodium alginate (SA) microspheres incorporating SST/MOS@EUP-SeNP were prepared for oral administration, protecting the nanoparticles from gastric fluid. The results showed that SA/SST/MOS@EUP-SeNP could preferentially target the inflamed colon tissue and adhere to the colon, enhance the intestinal barrier function, regulate the level of colon inflammation, enhance antioxidant capacity, and regulate the composition of intestinal microbes to effectively relieve the colitis induced by sodium glucan sulfate (DSS). Meanwhile, SA/SST/MOS@EUP-SeNP had excellent biocompatibility both in vivo and in vitro. To some extent, this study can provide a reference for the treatment of IBD.
Collapse
Affiliation(s)
- Ruihua Ye
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jianying Guo
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zhongjin Yang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Zixu Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yaoxing Chen
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jiaqiang Huang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100193, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Yulan Dong
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
2
|
Yang Q, Zhang H, Luo J, Yu H, Yang X, Wang C. FADS2 inhibits colorectal cancer cell proliferation by regulating ferroptosis through SLC7A11/GPX4. Mol Biol Rep 2025; 52:394. [PMID: 40232565 DOI: 10.1007/s11033-025-10395-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/26/2025] [Indexed: 04/16/2025]
Abstract
BACKGROUND Colorectal cancer (CRC) is a leading factor in cancer mortality globally. Ferroptosis, a regulated cell death described via lipid peroxidation, is crucial in cancer biology. This study explores the link between ferroptosis, FADS2, and CRC, focusing on the prognostic significance and therapeutic potential of targeting FADS2. METHODS The differential expression analysis of the Cancer Genome Atlas-colon adenocarcinoma (TCGA-COAD) and GSE36400 datasets was conducted to determine key ferroptosis-related genes, followed by functional enrichment analysis. Prognosis-related genes were assessed utilizing Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression. Genetic variation analysis and immune analysis were employed to evaluate the clinical significance of FADS2. The impacts of FADS2 knockdown on CRC cell migration, proliferation, invasion, and ferroptosis were evaluated by in vitro cell experiments. RESULTS 64 key ferroptosis-related genes in CRC were highly enriched in pathways such as glutathione metabolism and peroxisome. Eleven prognosis-associated genes were identified, with TP53 showing the highest mutation frequency. High FADS2 expression was linked to poorer prognosis and higher immune cell infiltration. FADS2 knockdown significantly decreased glutathione (GSH) levels, SLC7A11, and GPX4 expression, increased malondialdehyde (MDA) levels, indicating the promotion of ferroptosis. Functional tests revealed knockdown FADS2 repressed CRC cell proliferation, migration, and invasion. SLC7A11 or GPX4 overexpression partially rescued the effects of FADS2 knockdown. Additionally, FADS2 knockdown enhances the chemosensitivity of CRC cells to oxaliplatin. CONCLUSION FADS2 is essential for encouraging CRC cell proliferation and tumor growth by preventing ferroptosis. Targeting FADS2 may enhance ferroptosis and suppress CRC progression, offering a possible course of treatment for CRC patients. The knockdown of FADS2 enhances the chemosensitivity of CRC cells to oxaliplatin, providing valuable insights for future clinical applications.
Collapse
Affiliation(s)
- Qinghui Yang
- Department of Oncology, Minhang Branch, Zhongshan Hospital, Fudan University, No. 170 Xinsong Road, Minhang District, Shanghai, China
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer(SMHC), Minhang Hospital & AHS, Fudan University, Shanghai, China
| | - Hao Zhang
- Department of Oncology, Minhang Branch, Zhongshan Hospital, Fudan University, No. 170 Xinsong Road, Minhang District, Shanghai, China
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer(SMHC), Minhang Hospital & AHS, Fudan University, Shanghai, China
| | - Jing Luo
- Department of Oncology, Minhang Branch, Zhongshan Hospital, Fudan University, No. 170 Xinsong Road, Minhang District, Shanghai, China
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer(SMHC), Minhang Hospital & AHS, Fudan University, Shanghai, China
| | - Hongmei Yu
- Department of Oncology, Minhang Branch, Zhongshan Hospital, Fudan University, No. 170 Xinsong Road, Minhang District, Shanghai, China
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer(SMHC), Minhang Hospital & AHS, Fudan University, Shanghai, China
| | - Xiaodi Yang
- Department of Oncology, Minhang Branch, Zhongshan Hospital, Fudan University, No. 170 Xinsong Road, Minhang District, Shanghai, China.
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer(SMHC), Minhang Hospital & AHS, Fudan University, Shanghai, China.
| | - Chen Wang
- Department of Oncology, Minhang Branch, Zhongshan Hospital, Fudan University, No. 170 Xinsong Road, Minhang District, Shanghai, China.
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer(SMHC), Minhang Hospital & AHS, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Ungvari Z, Fekete M, Varga P, Munkácsy G, Fekete JT, Lehoczki A, Buda A, Kiss C, Ungvari A, Győrffy B. Exercise and survival benefit in cancer patients: evidence from a comprehensive meta-analysis. GeroScience 2025:10.1007/s11357-025-01647-0. [PMID: 40220151 DOI: 10.1007/s11357-025-01647-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/14/2025] Open
Abstract
Cancer remains a major global health challenge, and growing evidence suggests that physical activity is a key modifiable factor that may improve survival outcomes in cancer patients. However, a comprehensive, large-scale synthesis of the effects of post-diagnosis physical activity across multiple cancer types remains lacking. This meta-analysis aims to systematically evaluate the association between physical activity and survival in patients diagnosed with breast, lung, prostate, colorectal, and skin cancers. We conducted a comprehensive search in PubMed, Web of Science, Scopus, and Cochrane Library for studies on physical activity and cancer survival. Eligible studies (January 2000-November 2024) included adults (≥ 18 years) with breast, lung, prostate, colorectal, or skin cancer. Only prospective cohort and case-control studies reporting hazard ratios (HRs) with 95% confidence intervals (CIs) for overall or cancer-specific mortality were included, with a minimum sample size of 100 and at least six months of follow-up. Meta-analysis was performed using metaanalysisonline.com, applying random-effects models and assessing heterogeneity via the I2 statistic. Sensitivity analyses and publication bias (Egger's test, funnel plots) were evaluated. The meta-analysis included 151 cohorts with almost 1.5 million cancer patients. Post-diagnosis physical activity was associated with significantly lower cancer-specific mortality across all five cancer types. The greatest benefit was observed in breast cancer, with a pooled hazard ratio (HR) of 0.69 (95% CI: 0.63-0.75), followed by prostate cancer (HR: 0.73, 95% CI: 0.62-0.87). Lung cancer patients who engaged in physical activity had a 24% lower risk of cancer-specific death (HR: 0.76, 95% CI: 0.69-0.84), while colorectal cancer patients experienced a similar benefit (HR: 0.71, 95% CI: 0.63-0.80). In skin cancer, physical activity was associated with a non-significant reduction in mortality (HR: 0.86, 95% CI: 0.71-1.05). These findings provide robust evidence supporting the survival benefits of post-diagnosis physical activity in cancer patients, particularly for breast, prostate, lung, and colorectal cancers. The results underscore the potential for incorporating structured physical activity interventions into oncological care to improve long-term patient outcomes.
Collapse
Affiliation(s)
- Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College, Health Sciences Division/Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Mónika Fekete
- Institute of Preventive Medicine and Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary
- Jozsef Fodor Center for Prevention and Healthy Aging, Semmelweis University, Budapest, Hungary
| | - Péter Varga
- Institute of Preventive Medicine and Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary
- Jozsef Fodor Center for Prevention and Healthy Aging, Semmelweis University, Budapest, Hungary
- Doctoral College, Health Sciences Division, Semmelweis University, Budapest, Hungary
| | - Gyöngyi Munkácsy
- Dept. Of Bioinformatics, Semmelweis University, H- 1094, Budapest, Hungary
- Cancer Biomarker Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, H- 1117, Budapest, Hungary
| | - János Tibor Fekete
- Dept. Of Bioinformatics, Semmelweis University, H- 1094, Budapest, Hungary
- Cancer Biomarker Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, H- 1117, Budapest, Hungary
| | - Andrea Lehoczki
- Institute of Preventive Medicine and Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary
- Jozsef Fodor Center for Prevention and Healthy Aging, Semmelweis University, Budapest, Hungary
- Doctoral College, Health Sciences Division, Semmelweis University, Budapest, Hungary
| | - Annamaria Buda
- Institute of Preventive Medicine and Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary
- Jozsef Fodor Center for Prevention and Healthy Aging, Semmelweis University, Budapest, Hungary
- Doctoral College, Health Sciences Division, Semmelweis University, Budapest, Hungary
| | - Csaba Kiss
- Dept. Of Bioinformatics, Semmelweis University, H- 1094, Budapest, Hungary
- Cancer Biomarker Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, H- 1117, Budapest, Hungary
| | - Anna Ungvari
- Institute of Preventive Medicine and Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary.
| | - Balázs Győrffy
- Dept. Of Bioinformatics, Semmelweis University, H- 1094, Budapest, Hungary
- Cancer Biomarker Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, H- 1117, Budapest, Hungary
- Dept. Of Biophysics, Medical School, University of Pecs, H- 7624, Pecs, Hungary
| |
Collapse
|
4
|
Oyovwi MO, Ben-Azu B, Babawale KH. Therapeutic potential of microbiome modulation in reproductive cancers. Med Oncol 2025; 42:152. [PMID: 40188410 DOI: 10.1007/s12032-025-02708-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/30/2025] [Indexed: 04/08/2025]
Abstract
The human microbiome, a complex ecosystem of microbial communities, plays a crucial role in physiological processes, and emerging research indicates a potential link between it and reproductive cancers. This connection highlights the significance of understanding the microbiome's influence on cancer development and treatment. A comprehensive review of current literature was conducted, focusing on studies that investigate the relationship between microbiome composition, reproductive cancer progression, and potential therapeutic approaches to modulate the microbiome. Evidence suggests that imbalances in the microbiome, known as dysbiosis, may contribute to the development and progression of reproductive cancers. Specific microbial populations have been associated with inflammatory responses, immune modulation, and even resistance to conventional therapies. Interventions such as probiotics, dietary modifications, and fecal microbiota transplantation have shown promise in restoring healthy microbiome function and improving cancer outcomes in pre-clinical models, with pilot studies in humans indicating potential benefits. This review explores the therapeutic potential of microbiome modulation in the management of reproductive cancers, discussing the mechanisms involved and the evidence supporting microbiome-targeted therapies. Future research is warranted to unravel the complex interactions between the microbiome and reproductive cancer pathophysiology, paving the way for innovative approaches.
Collapse
Affiliation(s)
- Mega Obukohwo Oyovwi
- Faculty of Basic Medical Sciences, Department of Physiology, Adeleke University, Ede, Osun State, Nigeria.
- Department of Human Physiology, Faculty of Basic Medical Sciences, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria.
| | - Benneth Ben-Azu
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Delta State University, Abraka, 330106, Delta State, Nigeria
| | - Kehinde Henrietta Babawale
- Faculty of Basic Medical Sciences, Department of Physiology, Adeleke University, Ede, Osun State, Nigeria
| |
Collapse
|
5
|
Sahin D, Kepekci RA, Türkmenoğlu B, Akkoc S. Biological evaluations and computational studies of newly synthesized thymol-based Schiff bases as anticancer, antimicrobial and antioxidant agents. J Biomol Struct Dyn 2025; 43:3375-3389. [PMID: 38147403 DOI: 10.1080/07391102.2023.2297813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/17/2023] [Indexed: 12/28/2023]
Abstract
Three new thymol-based molecules were synthesized and evaluated as anticancer, antimicrobial and antioxidant agents. Liver, colon, lung and prostate cancer cell lines were utilized in cytotoxicity tests. The results demonstrated that synthesized molecules had a cytotoxic effect against the screened cell lines. One of the molecules (4a) was found to have a higher efficacy towards the colon cancer cell line (DLD-1) with an IC50 value of 12.39 µM and the other (4c) towards the prostate cancer cell line (PC3) with an IC50 value of 7.67 µM than the positive control drug cisplatin. To assess the antimicrobial activity of molecules (4a-c), Gram-positive bacteria, Gram-negative bacteria and yeast were subjected to agar disc diffusion and broth microdilution assays. The investigation of antioxidant potential was conducted using the DPPH radical scavenging activity assay. While all compounds displayed strong cytotoxic and antioxidant properties, they exhibited only moderate antimicrobial activity. Molecular docking studies were performed on epidermal growth factor receptor (EGFR), vascular endothelial growth factor receptor 2 (VEGFR-2), focal adhesion kinase (FAK), B-Raf and phosphoinositide 3-kinase (PI3K). The binding energies and interactions obtained from the docking results of compounds (4a-c) supported the experimental results. Drug similarity rates and pharmacokinetic properties were analyzed with the absorption, distribution, metabolism and excretion (ADME) method. Geometric parameters such as chemical potential (µ), electrophilicity index (ω) and chemical softness (σ) of compounds (4a-c) were calculated using the 6-31*G basis set B3LYP method.
Collapse
Affiliation(s)
- Dicle Sahin
- Department of Pharmaceutical Research and Development, Institute of Health Sciences, Suleyman Demirel University, Isparta, Türkiye
| | | | - Burçin Türkmenoğlu
- Department of Analytical Chemistry, Faculty of Pharmacy, Erzincan Binali Yildirim University, Erzincan, Türkiye
| | - Senem Akkoc
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Suleyman Demirel University, Isparta, Türkiye
- Faculty of Engineering and Natural Sciences, Bahçeşehir University, Istanbul, Türkiye
| |
Collapse
|
6
|
Chi ZC. Relationship between purinergic P2X7 receptor and colorectal cancer: Research progress and future prospect. WORLD CHINESE JOURNAL OF DIGESTOLOGY 2025; 33:169-177. [DOI: https:/dx.doi.org/10.11569/wcjd.v33.i3.169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
|
7
|
Chi ZC. Relationship between purinergic P2X7 receptor and colorectal cancer: Research progress and future prospect. Shijie Huaren Xiaohua Zazhi 2025; 33:169-177. [DOI: 10.11569/wcjd.v33.i3.169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/10/2025] [Accepted: 03/16/2025] [Indexed: 03/28/2025] Open
Abstract
Purinergic P2X7 receptor (P2X7R) is a cellular transmembrane protein. Its activation leads to the release of cytokines, causing the migration and invasion of cancer cells. The expression of P2X7R is associated with tumor inflammation, survival, proliferation, angiogenesis, and metastasis in colorectal cancer (CRC). Evidence suggests that P2X7R expression appears to be epigenetically regulated by DNA methylation and miRNA regulation. With the in-depth study of P2X7R, the application of P2X7R agonists and antagonists has been discussed in the treatment of CRC. This article reviews the relationship between P2X7R and CRC, focusing on the research progress and future prospects of P2X7R in CRC diagnosis and treat-ment.
Collapse
Affiliation(s)
- Zhao-Chun Chi
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao 266011, Shandong Province, China
| |
Collapse
|
8
|
Robinson KS, Sennhenn P, Yuan DS, Liu H, Taddei D, Qian Y, Luo W. TMBIM6/BI-1 is an intracellular environmental regulator that induces paraptosis in cancer via ROS and Calcium-activated ERAD II pathways. Oncogene 2025; 44:494-512. [PMID: 39609612 PMCID: PMC11832424 DOI: 10.1038/s41388-024-03222-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/28/2024] [Accepted: 11/05/2024] [Indexed: 11/30/2024]
Abstract
Transmembrane B cell lymphoma 2-associated X protein inhibitor motif-containing (TMBIM) 6, also known as Bax Inhibitor-1 (BI-1), has been heavily researched for its cytoprotective functions. TMBIM6 functional diversity includes modulating cell survival, stress, metabolism, cytoskeletal dynamics, organelle function, regulating cytosolic acidification, calcium, and reactive oxygen species (ROS). Clinical research shows TMBIM6 plays a key role in many of the world's top diseases/injuries (i.e., Alzheimer's, Parkinson's, diabetes, obesity, brain injury, liver disease, heart disease, aging, etc.), including cancer, where TMBIM6 expression impacts patient survival, chemoresistance, cancer progression, and metastasis. We show TMBIM6 is activated by, and undergoes, different conformational changes that dictate its function following a significant change in the cell's IntraCellular Environment (ICE). TMBIM6 agonism, following ICE change, can help the cell overcome multiple stresses including toxin exposure, viral infection, wound healing, and excitotoxicity. However, in cancer cells TMBIM6 agonism results in rapid paraptotic induction irrespective of the cancer type, sub-type, genotype or phenotype. Furthermore, the level of TMBIM6 expression in cancer did not dictate the level of paraptotic induction; however, it did dictate the rate at which paraptosis occurred. TMBIM6 agonism did not induce paraptosis in cancer via canonical routes involving p38 MAPK, JNK, ERK, UPR, autophagy, proteasomes, or Caspase-9. Instead, TMBIM6 agonism in cancer upregulates cytosolic Ca2+ and ROS, activates lysosome biogenesis, and induces paraptosis via ERAD II mechanisms. In xenograft models, we show TMBIM6 agonism induces rapid cancer cell death with no toxicity, even at high doses of TMBIM6 agonist (>450 mg/kg). In summary, this study shows TMBIM6's functional diversity is only activated by severe ICE change in diseased/injured cells, highlighting its transformative potential as a therapeutic target across various diseases and injuries, including cancer.
Collapse
Affiliation(s)
| | | | | | - Hai Liu
- Viva Biotech, Shanghai, China
| | | | | | - Wei Luo
- MicroQuin, Cambridge, MA, USA
| |
Collapse
|
9
|
Liu F, Gu Z, Yi F, Liu X, Zou W, Xu Q, Yuan Y, Chen N, Tang J. Potential of Glycyrrhiza in the prevention of colitis-associated colon cancer. Fitoterapia 2025; 181:106398. [PMID: 39842555 DOI: 10.1016/j.fitote.2025.106398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/09/2025] [Accepted: 01/15/2025] [Indexed: 01/24/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Glycyrrhiza, a legume native to the Mediterranean region, has a long history of ethnomedicinal use in China. Due to its antiviral, antibacterial, anti-inflammatory, antioxidant, antitumor, anti-ulcer, and hepatoprotective properties, Glycyrrhiza is widely utilized in the treatment of gastrointestinal disorders. THE AIM OF THE REVIEW The specific mechanisms of the main active constituents of glycyrrhiza in the treatment of inflammatory bowel disease, precancerous lesions and colorectal cancer at all stages of the colitis-associated colon cancer "Inflammation-Dysplasia-Cancer" sequence, as well as its pharmacokinetics, toxicology, formulation improvements, and application studies, are reviewed to provide new insights and perspectives on glycyrrhiza as a dietary supplement to treat and prevent colitis-associated colon cancer. MATERIALS AND METHODS Information on Glycyrrhiza was retrieved from electronic databases, including PubMed and Web of Science. RESULTS Glycyrrhiza is a well-established medicinal plant with significant potential for applications in both the food and pharmaceutical industries. Over 400 active constituents have been identified in Glycyrrhiza, including terpenoids, flavonoids, isoflavones, coumarins, and polyphenols. Numerous studies have demonstrated that Glycyrrhiza and its active compounds can inhibit the "Inflammation-Dysplasia-Cancer" progression of colitis-associated colon cancer by mitigating inflammatory bowel disease, reducing the number of intestinal precancerous lesions, and counteracting colorectal cancer. Furthermore, derivatives and nanocarriers are crucial for the effective treatment of colitis-associated colon cancer using Glycyrrhiza and its active constituents. CONCLUSION In conclusion, Glycyrrhiza is a plant with both medicinal and nutritional value, making it a potential food ingredient and dietary supplement for the treatment of colitis-associated colon cancer.
Collapse
Affiliation(s)
- Fang Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China; North Sichuan Medical College, Nanchong, China.
| | - Zhili Gu
- North Sichuan Medical College, Nanchong, China
| | - Feiyang Yi
- North Sichuan Medical College, Nanchong, China
| | - Xue Liu
- North Sichuan Medical College, Nanchong, China
| | - Wenxuan Zou
- North Sichuan Medical College, Nanchong, China
| | - Qingxia Xu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yun Yuan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Nianzhi Chen
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Jianyuan Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
10
|
Catalano T, Selvaggi F, Cotellese R, Aceto GM. The Role of Reactive Oxygen Species in Colorectal Cancer Initiation and Progression: Perspectives on Theranostic Approaches. Cancers (Basel) 2025; 17:752. [PMID: 40075600 PMCID: PMC11899472 DOI: 10.3390/cancers17050752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Altered levels of reactive oxygen species (ROS) are recognized as one of the key factors in mediating tumor cell survival in the tissue microenvironment, where they play a role in the initiation, progression and recurrence/relapse of colorectal cancer (CRC). Tumor cells can adapt to oxidative stress (OS) using genetic or metabolic reprogramming in the long or short term. In addition, tumor cells defend themselves through positive regulation of antioxidant molecules, enhancing ROS-driven proliferation. Balanced oxidative eustress levels can influence chemotherapy resistance, allowing tumor cells to survive treatment. Secondary effects of chemotherapy include increased ROS production and redox stress, which can kill cancer cells and eliminate drug resistance. Anticancer treatments based on manipulating ROS levels could represent the gold standard in CRC therapy. Therefore, exploring the modulation of the response to OS in deregulated signaling pathways may lead to the development of new personalized CRC treatments to overcome therapy resistance. In this review, we explore the role of ROS in the initiation and progression of CRC and their diagnostic implications as biomarkers of disease. Furthermore, we focused on the involvement of ROS in different CRC therapeutic options, such as surgery, radiotherapy, theranostic imaging, chemotherapy and immunotherapy and other precision medicine approaches.
Collapse
Affiliation(s)
- Teresa Catalano
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Federico Selvaggi
- Villa Serena Foundation for Research, 65013 Città Sant’Angelo, Italy; (F.S.); (R.C.)
| | - Roberto Cotellese
- Villa Serena Foundation for Research, 65013 Città Sant’Angelo, Italy; (F.S.); (R.C.)
| | - Gitana Maria Aceto
- Villa Serena Foundation for Research, 65013 Città Sant’Angelo, Italy; (F.S.); (R.C.)
- Department of Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| |
Collapse
|
11
|
Wang M, Wang X. Chemoprotective Potential of Cyanidin-3-Glucoside Against 1,2-Dimethylhydrazine-Induced Colorectal Cancer: Modulation of NF-κB and Bcl-2/Bax/Caspase Pathway. J Biochem Mol Toxicol 2025; 39:e70125. [PMID: 39843995 DOI: 10.1002/jbt.70125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/30/2024] [Accepted: 12/21/2024] [Indexed: 01/24/2025]
Abstract
Colorectal cancer (CRC) represents a significant global health challenge, with approximately 1.8 million new cases diagnosed annually and a mortality toll exceeding 881,000 lives each year. This study aimed to evaluate the chemoprotective efficacy of Cyanidin-3-glucoside (C3G) in a rat model of CRC induced by 1,2-dimethylhydrazine (DMH). Rats were stratified into groups and administered C3G at doses of 10 and 15 mg/kg following DMH exposure to initiate CRC. Key parameters, including organ weights, tumor burdens, and biochemical markers, were meticulously assessed. Administration of C3G significantly restored body weight while reducing the weights of colon and spleen tissues. Moreover, C3G treatment substantially suppressed tumor incidence and weight in DMH-induced CRC rats. Biochemical analysis revealed that C3G markedly reduced levels of CFA, CA19.9, LDH, and nitric oxide (NO). It also modulated lipid profiles, antioxidant activities, and the expression of both Phase I and II enzymes. Inflammatory mediators, including TNF-α, IL-1β, IL-1α, IL-2, IL-4, IL-6, IL-10, IL-12, and IL-17, were significantly downregulated. Notably, C3G inhibited inflammatory markers such as COX-2, PGE2, iNOS, and NF-κB while promoting Caspase-3, -6, and -9 activity. Furthermore, it regulated the Bax/Bcl-2 apoptotic axis, reducing the Bcl-2/Bax ratio. Cyanidin-3-glucoside demonstrated potent chemopreventive effects against colorectal cancer in this experimental model. Its mechanism of action is likely mediated through modulation of NF-κB and the Bcl-2/Bax/Caspase pathway, suggesting its potential as a therapeutic agent in CRC management.
Collapse
Affiliation(s)
- Miao Wang
- Department of Gastroenterology, The Second Hospital of Heilongjiang Province, Harbin City, Heilongjiang Province, China
| | - Xiaoyong Wang
- Department of Gastroenterology, The Second Hospital of Heilongjiang Province, Harbin City, Heilongjiang Province, China
| |
Collapse
|
12
|
Arifin H, Chu YH, Chen R, Lee CK, Liu D, Kustanti CY, Sukartini T, Banda KJ, Chou KR. Global prevalence and moderating factors of malnutrition in colorectal cancer survivors: A meta-analysis. J Cancer Surviv 2025:10.1007/s11764-025-01747-y. [PMID: 39878855 DOI: 10.1007/s11764-025-01747-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/13/2025] [Indexed: 01/31/2025]
Abstract
PURPOSE This meta-analysis aims to estimate the global prevalence of severe, moderate, overall malnutrition and moderating factors of malnutrition in colorectal cancer (CRC) survivors. METHODS A comprehensive search was conducted in Embase, CINAHL, Medline-OVID, PubMed, Scopus, and Web of Science from inception to February 8, 2024, without language, region, or publication date restrictions. A generalized linear mixed model and random-effects model were used to examine the pooled prevalence, and moderator analyses were implemented to investigate variations in the pooled prevalence. RESULTS In 35 studies involving 9,278 colorectal cancer survivors, the global prevalence was 12.10% for severe malnutrition (95% confidence interval (CI): 7.28-16.92; n = 507), 33.13% for moderate malnutrition (95% CI: 28.93-37.34; n: 2,192), and 47.78% for overall malnutrition (95% CI: 41.60-53.96; n: 3,812). Asia showed higher rates of severe malnutrition 16.67% (95% CI: 4.66-28.68, n: 232) and overall malnutrition 53.17% (95% CI: 39.66-66.69, n: 1,913), whereas low-middle income countries demonstrated higher rates of overall malnutrition 67.46% (95% CI: 30.25-100.00, n: 82). Male sex, colon cancer, advanced stage, metastasis, chemotherapy, surgery, adjuvant treatment, smoking, alcohol consumption, hypertension, and diabetes significantly moderated overall malnutrition prevalence. CONCLUSIONS This meta-analysis reports detailed data on the global prevalence of CRC survivors experience malnutrition, highlighting that health-care professionals should consider the identified moderating factors. IMPLICATIONS FOR CANCER SURVIVORS Addressing malnutrition in CRC survivors is critical, as early and proactive nutritional management can enhance recovery, improve quality of life, and potentially reduce cancer-related complications associated with malnutrition.
Collapse
Affiliation(s)
- Hidayat Arifin
- School of Nursing, College of Nursing, Taipei Medical University, Taipei, Taiwan
- Department of Basic Nursing, Faculty of Nursing, Universitas Airlangga, Surabaya, Indonesia
- Research Group in Medical-Surgical Nursing, Faculty of Nursing, Universitas Airlangga, Surabaya, Indonesia
| | - Yu-Hao Chu
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Ruey Chen
- School of Nursing, College of Nursing, Taipei Medical University, Taipei, Taiwan
- Department of Nursing, Taipei Medical University-Shuang Ho Hospital, New Taipei, Taiwan
- Post-Baccalaureate Program in Nursing, Taipei Medical University, College of Nursing, Taipei, Taiwan
| | - Chiu-Kuei Lee
- School of Nursing, College of Nursing, Taipei Medical University, Taipei, Taiwan
- Department of Nursing, Taipei Medical University-Shuang Ho Hospital, New Taipei, Taiwan
| | - Doresses Liu
- School of Nursing, College of Nursing, Taipei Medical University, Taipei, Taiwan
- Department of Medical Quality, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Research Center in Nursing Clinical Practice, Wan Fang Hospital Taipei Medical University, Taipei, Taiwan
| | - Christina Yeni Kustanti
- Study Program of Nursing Science, Sekolah Tinggi Ilmu Kesehatan Bethesda Yakkum, Yogyakarta, Indonesia
| | - Tintin Sukartini
- Research Group in Medical-Surgical Nursing, Faculty of Nursing, Universitas Airlangga, Surabaya, Indonesia
- Department of Advance Nursing, Faculty of Nursing, Universitas Airlangga, Surabaya, Indonesia
| | - Kondwani Joseph Banda
- School of Nursing, College of Nursing, Taipei Medical University, Taipei, Taiwan
- Endoscopy Unit, Department of Surgery, Kamuzu Central Hospital, Lilongwe, Malawi
| | - Kuei-Ru Chou
- School of Nursing, College of Nursing, Taipei Medical University, Taipei, Taiwan.
- Department of Nursing, Taipei Medical University-Shuang Ho Hospital, New Taipei, Taiwan.
- Research Center in Nursing Clinical Practice, Wan Fang Hospital Taipei Medical University, Taipei, Taiwan.
- Psychiatric Research Center, Taipei Medical University Hospital, Taipei, Taiwan.
- Research Center for Neuroscience, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
13
|
Levy S, Jiang AK, Grant MR, Arp G, Minabou Ndjite G, Jiang X, Hall B. Convergent evolution of oxidized sugar metabolism in commensal and pathogenic microbes in the inflamed gut. Nat Commun 2025; 16:1121. [PMID: 39875389 PMCID: PMC11775122 DOI: 10.1038/s41467-025-56332-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 01/14/2025] [Indexed: 01/30/2025] Open
Abstract
Inflammation-associated perturbations of the gut microbiome are well characterized, but poorly understood. Here, we demonstrate that disparate taxa recapitulate the metabolism of the oxidized sugars glucarate and galactarate, utilizing enzymatically divergent, yet functionally equivalent, gud/gar pathways. The divergent pathway in commensals includes a putative 5-KDG aldolase (GudL) and an uncharacterized ABC transporter (GarABC) that recapitulate the function of their non-homologous counterparts in pathogens. A systematic bioinformatic search for the gud/gar pathway in gut microbes identified 887 species putatively capable of metabolizing oxidized sugars. Previous studies showed that inflammation-derived nitrate, formed by nitric oxide reacting with superoxide, promotes pathogen growth. Our findings reveal a parallel phenomenon: oxidized sugars, also produced from reactions with nitric oxide, serve as alternative carbon sources for commensal microbes. Previously considered a pathogen virulence factor, oxidized sugar metabolism is also present in specific commensals and may contribute to their increased relative abundance in gastrointestinal inflammation.
Collapse
Affiliation(s)
- Sophia Levy
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, College Park, MD, USA
| | - Angela K Jiang
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, College Park, MD, USA
- National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Maggie R Grant
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, College Park, MD, USA
| | - Gabriela Arp
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, College Park, MD, USA
| | - Glory Minabou Ndjite
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, College Park, MD, USA
| | - Xiaofang Jiang
- National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
| | - Brantley Hall
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, College Park, MD, USA.
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, College Park, MD, USA.
| |
Collapse
|
14
|
Summer M, Riaz S, Ali S, Noor Q, Ashraf R, Khan RRM. Understanding the Dual Role of Macrophages in Tumor Growth and Therapy: A Mechanistic Review. Chem Biodivers 2025:e202402976. [PMID: 39869825 DOI: 10.1002/cbdv.202402976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/29/2025]
Abstract
Macrophages are heterogeneous cells that are the mediators of tissue homeostasis. These immune cells originated from monocytes and are classified into two basic categories, M1 and M2 macrophages. M1 macrophages exhibit anti-tumorous inflammatory reactions due to the behavior of phagocytosis. M2 macrophages or tumor-associated macrophages (TAMs) are the most abundant immune cells in the tumor microenvironment (TME) and have a basic role in tumor progression by interacting with other immune cells in TME. By the expression of various cytokines, chemokines, and growth factors, TAMs lead to strengthening tumor cell proliferation, angiogenesis, and suppression of the immune system which further support invasion and metastasis. This review discusses recent and updated mechanisms regarding tumor progression by M2 macrophages. Moreover, the current therapeutic approaches targeting TAMs, their advantages, and limitations are also summarized, and further treatment approaches are outlined along with an elaboration of the tumor regression role of macrophages. This comprehensive review article possibly helps to understand the mechanisms underlying the tumor progression and regression role of macrophages in a comparative way from a basic level to the advanced one.
Collapse
Affiliation(s)
- Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Saima Riaz
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Qudsia Noor
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Rimsha Ashraf
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Rana Rashad Mahmood Khan
- Faculty of Chemistry and Life Sciences, Department of Chemistry, Government College University Lahore, Lahore, Pakistan
| |
Collapse
|
15
|
Yin W, Ao Y, Jia Q, Zhang C, Yuan L, Liu S, Xiao W, Luo G, Shi X, Xin C, Chen M, Lü M, Yu Z. Integrated singlecell and bulk RNA-seq analysis identifies a prognostic signature related to inflammation in colorectal cancer. Sci Rep 2025; 15:874. [PMID: 39757274 PMCID: PMC11701073 DOI: 10.1038/s41598-024-84998-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/30/2024] [Indexed: 01/07/2025] Open
Abstract
Inflammation can influence the development of CRC as well as immunotherapy and plays a key role in CRC. Therefore, this study aimed to investigate the potential of inflammation-related genes in CRC risk prediction. Inflammation gene models were constructed and validated by combining transcriptomic and single-cell data from TCGA and GEO databases, and the expression of inflammation-related genes was verified by RT-qPCR. We identified two molecular subtypes and three genetic subtypes, two risk subgroups according to median risk values, constructed a prognostic model including thirteen genes (TIMP1, GDF15, UCN, KRT4, POU4F1, NXPH1, SIX2, NPC1L1, KLK12, IGFL1, FOXD1, ASPG, and CYP4F8), and validated the performance of each aspect of the model in an external database. Patients in the high-risk group had worse survival with reduced immune cell infiltration and a greater tumor mutational load. The risk score correlated strongly with the immune checkpoints PD1, PDL1, PDL2, and CTLA4, and it is possible that high-risk patients are more sensitive to treatment involving immune checkpoints. In the single-cell data, GDF15 was most significantly expressed in cancer cell populations. Therefore, we further validated their expression in cells and tissues using qPCR. In summary, we developed a prognostic marker associated with inflammatory genes to provide new directions for subsequent studies and to help clinicians assess the prognosis of CRC patients as well as to develop personalized treatment strategies.
Collapse
Affiliation(s)
- Wen Yin
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou City, China
| | - Yanting Ao
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou City, China
| | - Qian Jia
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou City, China
| | - Chao Zhang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou City, China
| | - Liping Yuan
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou City, China
| | - Sha Liu
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou City, China
| | - Wanmeng Xiao
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou City, China
| | - Gang Luo
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou City, China
| | - Xiaomin Shi
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou City, China
| | - Chen Xin
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou City, China
| | - Maolin Chen
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Muhan Lü
- The Affiliated Hospital of Southwest Medical University, Luzhou City, China.
- Human Microecology and Precision Diagnosis and Treatment of Luzhou Key Laboratory, Luzhou City, China.
| | - Zehui Yu
- Laboratory Animal Center, Southwest Medical University, Luzhou City, China.
| |
Collapse
|
16
|
Farombi EO, Ajayi BO, Ajeigbe OF, Maruf OR, Anyebe DA, Opafunso IT, Adedara IA. Mechanistic exploration of 6-shogaol's preventive effects on azoxymethane and dextran sulfate sodium -induced colorectal cancer: involvement of cell proliferation, apoptosis, carcinoembryonic antigen, wingless-related integration site signaling, and oxido-inflammation. Toxicol Mech Methods 2025; 35:1-10. [PMID: 39034841 DOI: 10.1080/15376516.2024.2381798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/04/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Colorectal cancer (CRC) poses a significant global health burden, being the third most prevalent cancer and the second most significant contributor to cancer-related deaths worldwide. Preventive strategies are crucial to combat this rising incidence. 6-shogaol, derived from ginger, has shown promise in preventing and treating various cancers. This study investigated the preventive effects of 6-shogaol on azoxymethane (AOM) and dextran sulfate sodium (DSS)-induced CRC in mice. Forty male BALB/c mice were randomly divided into control, 6-shogaol, AOM + DSS, and 6-shogaol + AOM + DSS. Mice in the control group received corn oil for 16 weeks, while those in the 6-Shogaol group were administered 20 mg/kg of 6-shogaol for 16 weeks. The AOM + DSS group received a single intraperitoneal dose (ip) of 10 mg/kg of AOM, followed by three cycles of 2.5% DSS in drinking water. The 6-shogaol + AOM + DSS group received both 6-shogaol for 16 weeks and a single ip of 10 mg/kg of AOM, followed by three cycles of 2.5% DSS in drinking water. The AOM + DSS-treated mice exhibited reduced food consumption, colon weight, and colon length, along with increased tumor formation. Co-administration of 6-shogaol effectively reversed these changes, inhibiting CRC development. Histopathological analysis revealed protective effects of 6-shogaol against colonic insults and modulation of inflammatory responses. 6-shogaol significantly reduced Carcinoembryonic antigen and Kiel 67 levels, indicating inhibition of tumor cell proliferation. Mechanistically, 6-shogaol promoted apoptosis by upregulating protein 53 and caspase-3 expression, and it effectively restored the balance of the Wingless-related integration site signaling pathway by regulating β-catenin and adenomatous polyposis coli levels. Moreover, 6-shogaol demonstrated anti-inflammatory effects, reducing myeloperoxidase, Tumor necrosis factor alpha, and cyclooxygenase-2 levels in AOM/DSS-treated mice. Additionally, 6-shogaol restored redox homeostasis by reducing lipid peroxidation and nitrosative stress and enhancing antioxidant enzyme activities. The findings suggest that 6-shogaol inhibits cell proliferation, induces apoptosis, regulates Wnt signaling, suppresses inflammation, and restores redox homeostasis, providing comprehensive insights into its potential therapeutic benefits for CRC.
Collapse
Affiliation(s)
- Ebenezer Olatunde Farombi
- Drug Metabolism & Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Department of Biochemistry, College of Natural and Applied Sciences, Chrisland University, Abeokuta, Nigeria
| | - Babajide Oluwaseun Ajayi
- Drug Metabolism & Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Oncopreventives and Systems Oncology Research Laboratory, Biochemistry Unit, Department of Chemical Sciences, Ajayi Crowther University, Oyo, Nigeria
| | - Olufunke Florence Ajeigbe
- Drug Metabolism & Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Opeyemi Rabiat Maruf
- Drug Metabolism & Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Daniel Abu Anyebe
- Drug Metabolism & Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ifeoluwa Tobi Opafunso
- Drug Metabolism & Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Isaac Adegboyega Adedara
- Drug Metabolism & Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
17
|
Yuan J, Wu Q, Guo Y, Tang Y, Gao S, Li T, Xuan H. Wolfberry Honey and Its Extract Alleviate Dextran Sodium Sulfate-Induced Ulcerative Colitis by Improving Intestinal Barrier Function and Reducing Oxidative Stress and Inflammation. Mol Nutr Food Res 2025; 69:e202400726. [PMID: 39690893 DOI: 10.1002/mnfr.202400726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/16/2024] [Accepted: 12/05/2024] [Indexed: 12/19/2024]
Abstract
Inflammatory bowel disease (IBD) is a chronic condition characterized by gut inflammation causing persistent diarrhea and abdominal pain. Despite the nutritional benefits of wolfberry honey (from Lycium barbarum L.), its potential to alleviate IBD remains underexplored. This study evaluated the protective effects of wolfberry honey and its extract (wolfberry honey extract [WHE]) against dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) using in vivo and in vitro models. Mice pretreated with wolfberry honey showed significant symptom improvement in DSS-induced UC, linked to reduced expression of proinflammatory markers (Il-1β, Il-6, Tnf-α, and Mcp-1) and increased antioxidant genes (Nrf2, Sod2). Increased Occludin levels indicated improved intestinal barrier function. In vitro, WHE protected DSS-treated Caco-2 cells by lowering reactive oxygen species (ROS), stabilizing mitochondrial membrane potential, and inhibiting TLR4/NF-κB signaling. It enhanced the expression of antioxidant genes and tight junction proteins (ZO-1, Occludin, and Claudin-1). Metabolomic analysis revealed that WHE modulated glycerophospholipid metabolism, increasing phosphatidylcholine and choline levels and decreasing lysophosphatidylcholine levels. These results highlight the potential of wolfberry honey and its extract as nutraceuticals for managing UC through their effects on inflammation, oxidative stress, and intestinal barrier function. Further research is warranted to elucidate their mechanisms of action and assess their long-term therapeutic benefits in IBD management.
Collapse
Affiliation(s)
- Jie Yuan
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Qian Wu
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Yuyang Guo
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Yujing Tang
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Shuangshuang Gao
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Ting Li
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Hongzhuan Xuan
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| |
Collapse
|
18
|
Chakraborty A, Midde A, Chakraborty P, Adhikary S, Kumar S, Arri N, Chandra Das N, Sen Gupta PS, Banerjee A, Mukherjee S. Revisiting Luteolin Against the Mediators of Human Metastatic Colorectal Carcinoma: A Biomolecular Approach. J Cell Biochem 2025; 126:e30654. [PMID: 39300917 DOI: 10.1002/jcb.30654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
Metastatic colorectal carcinoma (mCRC) is one of the prevalent subtypes of human cancers and is caused by the alterations of various lifestyle and diet-associated factors. β-catenin, GSK-3β, PI3K-α, AKT1, and NF-κB p50 are known to be the critical regulators of tumorigenesis and immunopathogenesis of mCRC. Unfortunately, current drugs have limited efficacy, side effects and can lead to chemoresistance. Therefore, searching for a nontoxic, efficacious anti-mCRC agent is crucial and of utmost interest. The present study demonstrates the identification of a productive and nontoxic anti-mCRC agent through a five-targets (β-catenin, GSK-3β, PI3K-α, AKT1, and p50)-based and three-tier (binding affinity, pharmacokinetics, and pharmacophore) screening strategy involving a series of 30 phytocompounds having a background of anti-inflammatory/anti-mCRC efficacy alongside 5-fluorouracil (FU), a reference drug. Luteolin (a phyto-flavonoid) was eventually rendered as the most potent and safe phytocompound. This inference was verified through three rounds of validation. Firstly, luteolin was found to be effective against the different mCRC cell lines (HCT-15, HCT-116, DLD-1, and HT-29) without hampering the viability of non-tumorigenic ones (RWPE-1). Secondly, luteolin was found to curtail the clonogenicity of CRC cells, and finally, it also disrupted the formation of colospheroids, a characteristic of metastasis. While studying the mechanistic insights, luteolin was found to inhibit β-catenin activity (a key regulator of mCRC) through direct physical interactions, promoting its degradation by activating GSK3-β and ceasing its activation by inactivating AKT1 and PI3K-α. Luteolin also inhibited p50 activity, which could be useful in mitigating mCRC-associated proinflammatory milieu. In conclusion, our study provides evidence on the efficacy of luteolin against the critical key regulators of immunopathogenesis of mCRC and recommends further studies in animal models to determine the effectiveness efficacy of this natural compound for treating mCRC in the future.
Collapse
Affiliation(s)
- Ankita Chakraborty
- Integrative Biochemistry and Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Advaitha Midde
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Pritha Chakraborty
- Integrative Biochemistry and Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Sourin Adhikary
- Integrative Biochemistry and Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
- Food Toxicology Laboratory, Food, Drug, and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Simran Kumar
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Navpreet Arri
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Nabarun Chandra Das
- Integrative Biochemistry and Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Parth Sarthi Sen Gupta
- School of Biosciences and Bioengineering, D. Y. Patil International University, Pune, Maharashtra, India
| | - Aditi Banerjee
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Suprabhat Mukherjee
- Integrative Biochemistry and Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| |
Collapse
|
19
|
Li H, Fan L, Yang S, Tan P, Lei W, Yang H, Gao Z. Lactobacillus acidophilus 6074 Fermented Jujube Juice Ameliorated DSS-induced Colitis via Repairing Intestinal Barrier, Modulating Inflammatory Factors, and Gut Microbiota. Mol Nutr Food Res 2024:e202400568. [PMID: 39676427 DOI: 10.1002/mnfr.202400568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/30/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024]
Abstract
Lactobacillus acidophilus L. acidophilus Lactobacillus, Bifidobacterium, and Akkermansia, This study aimed to explore the ameliorative effects and underlying mechanisms of oral administration Lactobacillus acidophilus 6074 fermented jujube juice (LAFJ) on dextran sulfate sodium (DSS)-induced colitis in mice. In this study, jujube juice was used as a substrate and fermented by L. acidophilus 6074 to investigate its effects on gut microbiota, intestinal barrier function, oxidative stress, inflammatory factors, and short-chain fatty acids (SCFAs) in mice with colitis and to reveal its potential mechanism for alleviating colitis. The results demonstrated that fermentation caused significant changes in the nutrients and nonnutrients of jujube juice, mainly in organic acids (malic acid, lactic acid, citric acid, and succinic acid) and free amino acids (Thr, Met, Ser, Ile, and Lys). High-dose LAFJ (20 mL/kg/day) significantly reduced the disease activity index (DAI), improved histopathological morphology, and increased colon length in colitis mice. LAFJ alleviated colon damage and preserved the integrity of the colonic mucosal barrier by promoting the expression of colonic tight junction proteins occludin, claudin-1, and zonula occluden-1 (ZO-1). Furthermore, LAFJ inhibited the production of proinflammatory factors and attenuated oxidative stress. Gut microbiota of mice revealed that LAFJ increased beneficial bacteria such as Lactobacillus, Bifidobacterium, and Akkermansia, promoted the production of SCFAs, and inhibited the growth of harmful microorganisms. Overall, LAFJ could reshape and restore gut microbiota imbalance caused by intestinal inflammation and alleviate the development of colitis, which may become a novel dietary intervention.
Collapse
Affiliation(s)
- Hongcai Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Lingjia Fan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Siqi Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Pei Tan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Wenzhi Lei
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Haihua Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Zhenpeng Gao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| |
Collapse
|
20
|
Bidooki SH, Quero J, Sánchez-Marco J, Herrero-Continente T, Marmol I, Lasheras R, Sebastian V, Arruebo M, Osada J, Rodriguez-Yoldi MJ. Squalene in Nanoparticles Improves Antiproliferative Effect on Human Colon Carcinoma Cells Through Apoptosis by Disturbances in Redox Balance. Int J Mol Sci 2024; 25:13048. [PMID: 39684759 DOI: 10.3390/ijms252313048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Squalene, a triterpene found in extra virgin olive oil, has therapeutic properties in diseases related to oxidative stress, such as cancer. However, its hydrophobic nature and susceptibility to oxidation limit its bioavailability outside of olive oil. To expand its applications, alternative delivery methods are necessary. The objective of the present study was to examine the impact of squalene encapsulated in PLGA (poly(lactic-co-glycolic) acid) nanoparticles (PLGA + Sq) on the proliferation of human colon carcinoma Caco-2 cells, as well as its underlying mechanism of action. The findings demonstrated that PLGA + Sq exert no influence on differentiated cells; however, it is capable of reducing the proliferation of undifferentiated Caco-2 cells through apoptosis and cell cycle arrest in the G1 phase. This effect was initiated by the release of cytochrome c into the cytoplasm and the subsequent activation of caspase-3. Furthermore, squalene exhibited pro-oxidant activity, as evidenced by an increase in intracellular ROS (reactive oxygen species) levels. The results of the squalene effect on genes associated with cell death, inflammation, and the cell cycle indicate that its antiproliferative effect may be post-transcriptional. In conclusion, PLGA + Sq demonstrate an antiproliferative effect on Caco-2 cells through apoptosis by altering redox balance, suggesting squalene's potential as a functional food ingredient for colorectal cancer prevention.
Collapse
Affiliation(s)
- Seyed Hesamoddin Bidooki
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain
| | - Javier Quero
- Departamento de Farmacología, Fisiología, Medicina Legal y Forense, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain
| | - Javier Sánchez-Marco
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain
| | - Tania Herrero-Continente
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain
| | - Inés Marmol
- Departamento de Farmacología, Fisiología, Medicina Legal y Forense, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain
| | - Roberto Lasheras
- Laboratorio Agroambiental, Servicio de Seguridad Agroalimentaria de la Dirección General de Alimentación y Fomento Agroalimentario, Gobierno de Aragón, E-50071 Zaragoza, Spain
| | - Victor Sebastian
- Departamento de Ingeniería Química y Tecnologías del Medio Ambiente, Universidad de Zaragoza, E-50018 Zaragoza, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC, Universidad de Zaragoza, E-50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Manuel Arruebo
- Departamento de Ingeniería Química y Tecnologías del Medio Ambiente, Universidad de Zaragoza, E-50018 Zaragoza, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC, Universidad de Zaragoza, E-50009 Zaragoza, Spain
| | - Jesús Osada
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain
- Instituto Agroalimentario de Aragón, CITA, Universidad de Zaragoza, E-50013 Zaragoza, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - María Jesús Rodriguez-Yoldi
- Departamento de Farmacología, Fisiología, Medicina Legal y Forense, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain
- Instituto Agroalimentario de Aragón, CITA, Universidad de Zaragoza, E-50013 Zaragoza, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, E-28029 Madrid, Spain
| |
Collapse
|
21
|
Kumar A, Pramanik J, Batta K, Bamal P, Gaur M, Rustagi S, Prajapati BG, Bhattacharya S. Impact of metallic nanoparticles on gut microbiota modulation in colorectal cancer: A review. CANCER INNOVATION 2024; 3:e150. [PMID: 39398260 PMCID: PMC11467490 DOI: 10.1002/cai2.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/03/2024] [Accepted: 07/05/2024] [Indexed: 10/15/2024]
Abstract
Colorectal cancer (CRC) is the third most prevalent cancer. Ongoing research aims to uncover the causes of CRC, with a growing focus on the role of gut microbiota (GM) in carcinogenesis. The GM influences CRC development, progression, treatment efficacy, and therapeutic toxicities. For example, Fusobacterium nucleatum and Escherichia coli can regulate microbial gene expression through the incorporation of human small noncode RNA and potentially contribute to cancer progression. Metallic nanoparticles (MNPs) have both negative and positive impacts on GM, depending on their type. Several studies state that titanium dioxide may increase the diversity, richness, and abundance of probiotics bacteria, whereas other studies demonstrate dose-dependent GM dysbiosis. The MNPs offer cytotoxicity through the modulation of MAPK signaling pathways, NF-kB signaling pathways, PI3K/Akt signaling pathways, extrinsic signaling pathways, intrinsic apoptosis, and cell cycle arrest at G1, G2, or M phase. MNPs enhance drug delivery, enable targeted therapy, and may restore GM. However, there is a need to conduct well-designed clinical trials to assess the toxicity, safety, and effectiveness of MNPs-based CRC therapies.
Collapse
Affiliation(s)
- Akash Kumar
- Department of Food TechnologySRM University, Delhi NCRSonepatIndia
- MMICT & BM (Hotel Management), Maharishi Markandeshwar (Deemed to be University)MullanaIndia
| | - Jhilam Pramanik
- Department of Food TechnologyWilliam Carey UniversityShillongIndia
| | - Kajol Batta
- Department of Food TechnologyITM UniversityGwaliorIndia
| | - Pooja Bamal
- Department of Food TechnologyChaudhary Devi Lal UniversitySirsaIndia
| | - Mukesh Gaur
- Department of Food TechnologyGuru Jambheshwar University of Science and TechnologyHisarIndia
| | - Sarvesh Rustagi
- School of Applied and Life SciencesUttaranchal UniversityDehradunIndia
| | - Bhupendra G. Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and ResearchGanpat UniversityMehsanaIndia
| | - Sankha Bhattacharya
- Department of PharmaceuticsSchool of Pharmacy & Technology Management, SVKM'S NMIMS Deemed‐to‐be UniversityShirpurMaharashtraIndia
| |
Collapse
|
22
|
Alrouji M, Anwar S, Venkatesan K, Shahwan M, Hassan MI, Islam A, Shamsi A. Iron homeostasis and neurodegeneration in the ageing brain: Insight into ferroptosis pathways. Ageing Res Rev 2024; 102:102575. [PMID: 39515619 DOI: 10.1016/j.arr.2024.102575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/25/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Ageing is a major risk factor for various chronic diseases and offers a potential target for developing novel and broadly effective preventatives or therapeutics for age-related conditions, including those affecting the brain. Mechanisms contributing to ageing have been summarized as the hallmarks of ageing, with iron imbalance being one of the major factors. Ferroptosis, an iron-mediated lipid peroxidation-induced programmed cell death, has recently been implicated in neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD). Addressing ferroptosis offers both opportunities and challenges for treating neurodegenerative diseases, though the specific mechanisms remain unclear. This research explores the key processes behind how ferroptosis contributes to brain ageing, with a focus on the complex signaling networks that are involved. The current article aims to uncover that how ferroptosis, a specific type of cell death, may drive age-related changes in the brain. Additionally, the article also unveils its role in neurodegenerative diseases, discussing how understanding these mechanisms could open up new therapeutic avenues.
Collapse
Affiliation(s)
- Mohammed Alrouji
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia.
| | - Saleha Anwar
- Center for Global Health Research, Saveetha medical college, Saveetha institute of Medical and Technical Sciences, Chennai, India.
| | - Kumar Venkatesan
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia.
| | - Moyad Shahwan
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, United Arab Emirates.
| | - Md Imtaiyaz Hassan
- Center for Interdsicplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India.
| | - Asimul Islam
- Center for Interdsicplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India.
| | - Anas Shamsi
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, United Arab Emirates.
| |
Collapse
|
23
|
Xu J, Xu X, Zhang H, Wu J, Pan R, Zhang B. Tumor-associated inflammation: The role and research progress in tumor therapy. J Drug Deliv Sci Technol 2024; 102:106376. [DOI: 10.1016/j.jddst.2024.106376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
24
|
Abebe Z, Wassie MM, Nguyen PD, Reynolds AC, Melaku YA. Association of dietary patterns derived by reduced-rank regression with colorectal cancer risk and mortality. Eur J Nutr 2024; 64:33. [PMID: 39607503 DOI: 10.1007/s00394-024-03513-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 10/10/2024] [Indexed: 11/29/2024]
Abstract
PURPOSE Unhealthy dietary patterns contribute to an increased risk of colorectal cancer (CRC). Limited prior research has used reduced rank regression (RRR) to assess dietary patterns relative to CRC risk. This study aimed to identify dietary patterns derived by RRR and assess their associations with CRC risk and mortality. METHODS We used data from the multicentre Prostate, Lung, Colorectal, and Ovarian Cancer Screening (PLCO) trial. Dietary intake was assessed using a Dietary History Questionnaire. In the RRR intake of fibre, folate, and the percentage of energy from carbohydrates, saturated and unsaturated fatty acids were used as response variables. Cox models and competing risk survival regression, with age as the time scale, were used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for CRC risk and mortality, respectively. RESULTS The median follow-up time for CRC risk (n = 1044) and mortality (n = 499) was 9.4 years (Interquartile Range: 8. 0, 10.1) and 16.9 years (11.9, 18.6), respectively. Two dietary patterns were identified: the first was characterised by high carbohydrate, folate and low fatty acid intake, and the second by high fibre and unsaturated fatty acid. Compared to participants in the first tertile of the high fibre and unsaturated fatty acid pattern, those in the third tertile had a lower risk of CRC (HR = 0.88; 95% CI: 0.76, 1.03), and colon cancer (HR = 0.85; 95% CI: 0.72, 1.01). Conversely, the high carbohydrate, high folate and low fatty acid pattern had no association with CRC outcomes. None of the dietary patterns showed associations with rectal cancer or CRC mortality. CONCLUSION A diet enriched with high fibre and unsaturated fatty acids may reduce the risk of CRC. These results highlight the potential protective effect of adequate fibre intake in conjunction with high consumption of unsaturated fatty acids against CRC.
Collapse
Affiliation(s)
- Zegeye Abebe
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, 5042, Australia.
- Department of Human Nutrition, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, P. O. Box 196, Gondar, Ethiopia.
| | - Molla Mesele Wassie
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, 5042, Australia
| | - Phuc D Nguyen
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, 5042, Australia
| | - Amy C Reynolds
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, 5042, Australia
| | - Yohannes Adama Melaku
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, 5042, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia
| |
Collapse
|
25
|
Gallegos-Arreola MP, Garibaldi-Ríos AF, Gutiérrez-Hurtado IA, Zúñiga-González GM, Figuera LE, Gómez-Meda BC, Puebla-Pérez AM, García-Ortiz JE, Delgado-Saucedo JI, Castro-García PB, Rentería-Ramírez MDJ, Torres-Mendoza BM. Association of Variants in IL-1RN (rs2234663) and IL-1β (rs1143627, rs16944) and Interleukin-1β Levels with Colorectal Cancer: Experimental Study and In Silico Analysis. Genes (Basel) 2024; 15:1528. [PMID: 39766795 PMCID: PMC11675222 DOI: 10.3390/genes15121528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/22/2024] [Accepted: 11/24/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Colorectal cancer (CRC) is a multifactorial disease where the inflammatory state is crucial. This study analyzes the association of the IL-1RN (rs2234663) and IL-1β (rs1143627, rs16944) variants and IL-1β levels with CRC. METHODS This study included 230 CRC patients and 256 controls. Genotypes were determined by PCR and plasma IL-1β levels by ELISA. RegulomeDB analyzed the variants' functional impacts, while OncoDB assessed IL-1β and IL-1RN expression's influence on CRC. RESULTS The A1A1 genotype and dominant pattern of the rs2234663 variant were risk factors for CRC, whereas the A1A2 genotype showed a protective effect. The TC genotype of the rs1143627 variant and the T allele of rs16944 were associated with increased risk, whereas the C allele had a protective effect. The A1A1 genotype was associated with stage I-II CRC diagnosis, while the A2A2 genotype was associated with stage III-IV and ethanol consumption. The CC genotype of rs1143627 was associated with people younger than 50 years and tobacco use, and the TCCC genotype was related to stage III-IV stages and metastasis and hemorrhoids (p < 0.05). IL-1β levels were not associated with CRC. In silico analysis revealed that the variants are in located in important regions regulatory of genes. Elevated IL-1B and IL-1RN mRNA levels were found in CRC, linked to clinicopathological features of the disease. CONCLUSIONS The analyzed variants are associated with CRC and may influence gene regulation by being located at critical sites of key genetic regulators.
Collapse
Affiliation(s)
- Martha Patricia Gallegos-Arreola
- División de Genética, Centro de Investigación Biomédica de Occidente, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Jalisco, Mexico; (A.F.G.-R.); (L.E.F.); (J.E.G.-O.); (M.d.J.R.-R.)
| | - Asbiel Felipe Garibaldi-Ríos
- División de Genética, Centro de Investigación Biomédica de Occidente, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Jalisco, Mexico; (A.F.G.-R.); (L.E.F.); (J.E.G.-O.); (M.d.J.R.-R.)
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico
| | - Itzae Adonaí Gutiérrez-Hurtado
- Departamento de Biología Molecular y Genómica, Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (I.A.G.-H.); (B.C.G.-M.)
| | - Guillermo Moisés Zúñiga-González
- División de Medicina Molecular, Centro de Investigación Biomédica de Occidente, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Sierra Mojada 800, Col. Independencia, Guadalajara 44340, Jalisco, Mexico;
| | - Luis E. Figuera
- División de Genética, Centro de Investigación Biomédica de Occidente, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Jalisco, Mexico; (A.F.G.-R.); (L.E.F.); (J.E.G.-O.); (M.d.J.R.-R.)
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico
| | - Belinda Claudia Gómez-Meda
- Departamento de Biología Molecular y Genómica, Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (I.A.G.-H.); (B.C.G.-M.)
| | - Ana María Puebla-Pérez
- Laboratorio de Inmunofarmacología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara (UdeG), Guadalajara 44430, Jalisco, Mexico; (A.M.P.-P.); (J.I.D.-S.); (P.B.C.-G.)
| | - José Elías García-Ortiz
- División de Genética, Centro de Investigación Biomédica de Occidente, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Jalisco, Mexico; (A.F.G.-R.); (L.E.F.); (J.E.G.-O.); (M.d.J.R.-R.)
| | - Jorge I. Delgado-Saucedo
- Laboratorio de Inmunofarmacología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara (UdeG), Guadalajara 44430, Jalisco, Mexico; (A.M.P.-P.); (J.I.D.-S.); (P.B.C.-G.)
| | - Paola Beatriz Castro-García
- Laboratorio de Inmunofarmacología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara (UdeG), Guadalajara 44430, Jalisco, Mexico; (A.M.P.-P.); (J.I.D.-S.); (P.B.C.-G.)
| | - María de Jesús Rentería-Ramírez
- División de Genética, Centro de Investigación Biomédica de Occidente, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Jalisco, Mexico; (A.F.G.-R.); (L.E.F.); (J.E.G.-O.); (M.d.J.R.-R.)
| | - Blanca Miriam Torres-Mendoza
- Laboratorio de Inmunodeficiencias y Retrovirus Humanos, División de Neurociencias, Centro de Investigación Biomédica de Occidente, Centro Médico Nacional de Occidente, Guadalajara 44340, Jalisco, Mexico;
- Departamento de Clínicas Médicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| |
Collapse
|
26
|
Gao J, Li M, Wang Y, Wang Z, Chen X, Li H. Prognostic Effect of the PNI and LSR in Patients with Esophageal Squamous Cell Carcinoma Patients Receiving Radiotherapy. J Gastrointest Cancer 2024; 56:26. [PMID: 39601941 DOI: 10.1007/s12029-024-01148-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2024] [Indexed: 11/29/2024]
Abstract
PURPOSE The prognostic nutritional index (PNI) has been used to assess the immunonutritional status of cancer patients and can predict the prognosis of various solid cancers, and the serum alanine transaminase (ALT)/aspartate transaminase (AST) ratio (LSR) is considered a good predictor of liver injury. A retrospective cohort analysis was conducted to investigate the relationship between the prognosis of esophageal squamous cell carcinoma (ESCC) patients and LSR or PNI, as well as to combine these two indicators (LSR-PNI) for further prognostic analysis in ESCC patients undergoing radiotherapy (RT). METHODS In this study, 134 patients with esophageal cancer were retrospectively analyzed. The Chi-square test was utilized to compare count data, and univariate and multivariate Cox proportional hazards models were employed to identify independent risk and prognostic factors. Additionally, the combination of LSR and PNI (LSR-PNI) was analyzed. RESULTS This study included a cohort of 134 patients, comprising 105 males with a mean age of 70.7 years and 29 females with a mean age of 76.3 years. Pathological examination categorized 41 cases as stage I-II and 93 cases as stage III-IV. The predominant treatment modality administered was intensity-modulated radiotherapy (IMRT) for esophageal cancer. Of these patients, 96 received radiation doses ≤ 54 Gy, while 38 were administered doses > 54 Gy. Radiation-induced adverse effects were observed in 67 patients, with the remaining 67 showing no such effects. Kaplan-Meier survival analysis revealed that elevated levels of the lymphocyte-to-serum ratio (LSR) and prognostic nutritional index (PNI) were significantly correlated with improved progression-free survival (PFS) and overall survival (OS). The high-LSR group demonstrated longer PFS (14.4 vs. 9.3 months, p = 0.0469) and OS (19.9 vs. 13.7 months, p = 0.0315) compared to the low-LSR group, with respective 3-year survival rates of 18.4% vs. 12.7%. Similarly, patients in the high-PNI group exhibited superior PFS (13.9 vs. 8.9 months, p = 0.0071) and OS (19.0 vs. 13.5 months, p = 0.0002) compared to the low-PNI group, with 3-year survival rates of 19.6% vs. 11.3%. Stratification based on combined LSR and PNI levels categorized patients into low-, intermediate-, and high-risk groups. The low-risk group demonstrated significantly better PFS (17.8 vs. 10.1 vs. 8.2 months) and OS (24.1 vs. 14.3 vs. 12.9 months, p < 0.0001) compared to the intermediate- and high-risk groups, with 3-year survival rates of 24%, 14%, and 10.3%, respectively. CONCLUSION Pretreatment LSR and PNI can serve as independent prognostic predictors for patients, with higher values of both being associated with improved progression-free survival and overall survival. Additionally, the combined LSR-PNI score effectively stratifies patients into distinct risk groups, offering a robust tool for predicting outcomes in clinical practice.
Collapse
Affiliation(s)
- Junfeng Gao
- Anhui Medical University, Hefei, 230032, China
- Department of Oncology, The Third Affiliated Hospital of Anhui Medical University, Hefei, 230041, China
| | - Meimei Li
- Anhui Medical University, Hefei, 230032, China
| | - Yi Wang
- Department of Oncology, The Third Affiliated Hospital of Anhui Medical University, Hefei, 230041, China
| | - Ziming Wang
- Department of Oncology, The Third Affiliated Hospital of Anhui Medical University, Hefei, 230041, China
| | - Xue Chen
- Bengbu Medical College, Bengbu, 233030, China
| | - Hongxia Li
- Anhui Medical University, Hefei, 230032, China.
- Department of Oncology, The Third Affiliated Hospital of Anhui Medical University, Hefei, 230041, China.
| |
Collapse
|
27
|
Mafe AN, Büsselberg D. Mycotoxins in Food: Cancer Risks and Strategies for Control. Foods 2024; 13:3502. [PMID: 39517285 PMCID: PMC11545588 DOI: 10.3390/foods13213502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Mycotoxins are toxic compounds produced by fungi such as Aspergillus, Penicillium, and Fusarium, contaminating various food crops and posing severe risks to food safety and human health. This review discusses mycotoxins' origins, significance, and impact, particularly in relation to cancer risk. Major mycotoxins like aflatoxins, ochratoxins, fumonisins, zearalenone, and patulin are examined, along with their sources and affected foods. The carcinogenic mechanisms of these toxins, including their biochemical and molecular interactions, are explored, as well as epidemiological evidence linking mycotoxin exposure to cancer in high-risk populations. The review also highlights critical methodologies for mycotoxin detection, including HPLC, GC-MS, MS, and ELISA, and the sample preparation techniques critical for accurate analysis. Strategies for controlling mycotoxin contamination, both pre- and post-harvest, are discussed, along with regulations from organizations like the FAO and WHO. Current challenges in detection sensitivity, cost, and control effectiveness are noted. Future research is needed to develop innovative analytical techniques, improve control strategies, and address the influence of climate change on mycotoxin production. Finally, global collaboration and emerging technologies are essential for advancing mycotoxin control and enhancing food safety.
Collapse
Affiliation(s)
- Alice N. Mafe
- Department of Biological Sciences, Faculty of Sciences, Taraba State University, Main Campus, Jalingo 660101, Taraba State, Nigeria;
| | - Dietrich Büsselberg
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha Metropolitan Area, P.O. Box 22104, Qatar
| |
Collapse
|
28
|
Martins-Gomes C, Nunes FM, Silva AM. Thymus spp. Aqueous Extracts and Their Constituent Salvianolic Acid A Induce Nrf2-Dependent Cellular Antioxidant Protection Against Oxidative Stress in Caco-2 Cells. Antioxidants (Basel) 2024; 13:1287. [PMID: 39594429 PMCID: PMC11591053 DOI: 10.3390/antiox13111287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 11/28/2024] Open
Abstract
The increasing incidence of colorectal cancer and inflammatory diseases poses a major health concern, with oxidative stress playing a significant role in the onset of these pathologies. Factors such as excessive consumption of sugar-rich and fatty foods, synthetic food additives, pesticides, alcohol, and tobacco contribute to oxidative stress and disrupt intestinal homeostasis. Functional foods arise as a potential tool to regulate redox balance in the intestinal tract. Herbs (such as Thymus spp.) have long been screened for their antioxidant properties, but their use as antioxidants for medicinal purposes requires validation in biological models. In this study, we addressed the potential antioxidant protection and preventive effects of extracts from two thyme species at the intestinal level, as well as their molecular mechanisms of action. Caco-2 cells were pre-exposed (4 h) to aqueous (AD) and hydroethanolic (HE) extracts of Thymus carnosus and Thymus capitellatus, followed by a recovery period in culture medium (16 h), and then treated with tert-butyl-hydroperoxide (TBHP; 4 h), before analyzing cell viability. The effect of the extracts' main components was also analysed. Cellular oxidative stress, cell-death markers, and the expression of antioxidant-related proteins were evaluated using flow cytometry on cells pre-exposed to the AD extracts and salvianolic acid A (SAA). Results showed that pre-exposure to AD extracts or SAA reduced TBHP-induced oxidative stress and cell death, mediated by increased levels of nuclear factor erythroid 2-related factor 2 (Nrf2) protein. The protective activity of T. capitellatus AD extract was shown to be dependent on NAD(P)H quinone dehydrogenase 1 (NQO1) protein expression and on increased glutathione (GSH) content. Furthermore, ursolic acid induced cytotoxicity and low cellular antioxidant activity, and thus the presence of this triterpenoid impaired the antioxidant effect of HE extracts. Thus, AD extracts show high potential as prophylactic dietary agents, while HE extracts arise as a source of nutraceuticals with antioxidant potential.
Collapse
Affiliation(s)
- Carlos Martins-Gomes
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Cell Biology and Biochemistry Laboratory, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - Fernando M. Nunes
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
- Department of Chemistry, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Amélia M. Silva
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Cell Biology and Biochemistry Laboratory, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
- Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4gro), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| |
Collapse
|
29
|
Sawai K, Goi T, Kimura Y, Koneri K. Reduction of Blood Oxidative Stress Following Colorectal Cancer Resection. Cancers (Basel) 2024; 16:3550. [PMID: 39456644 PMCID: PMC11505646 DOI: 10.3390/cancers16203550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Colorectal cancer is a major global health burden, with surgical resection being the standard treatment aimed at curative tumor removal. Oxidative stress plays a crucial role in colorectal cancer progression and prognosis. This study hypothesized that physical removal of colorectal cancer, a primary source of oxidative stress, would reduce blood levels of reactive oxygen metabolite derivatives (d-ROMs), a marker of oxidative stress, and biologic antioxidant potential (BAP) levels, a marker of antioxidant potential. METHODS This study included 123 patients who underwent radical resection for colorectal cancer. d-ROM and BAP levels were measured before and one month after surgery. RESULTS The clinicopathological analysis showed a correlation between preoperative d-ROM levels and tumor size (p < 0.001). This study confirmed a significant reduction in d-ROM levels following tumor resection, indicating reduced systemic oxidative stress. The reduction was significant in stages II and III, but not in stage I. The d-ROM ratio before and after tumor resection was significantly higher in cases with positive lymph node metastasis and larger tumor size. BAP levels showed no significant changes post-surgery. CONCLUSIONS These results suggest that d-ROMs could serve as a valuable biomarker for monitoring tumor burden and surgical efficacy in patients with colorectal cancer.
Collapse
Affiliation(s)
- Katsuji Sawai
- First Department of Surgery, University of Fukui, Fukui 910-1193, Japan; (T.G.); (Y.K.); (K.K.)
| | | | | | | |
Collapse
|
30
|
Mohammadpour S, Torshizi Esfahani A, Sarpash S, Vakili F, Zafarjafarzadeh N, Mashaollahi A, Pardakhtchi A, Nazemalhosseini-Mojarad E. Hippo Signaling Pathway in Colorectal Cancer: Modulation by Various Signals and Therapeutic Potential. Anal Cell Pathol (Amst) 2024; 2024:5767535. [PMID: 39431199 PMCID: PMC11489006 DOI: 10.1155/2024/5767535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 07/07/2024] [Accepted: 08/19/2024] [Indexed: 10/22/2024] Open
Abstract
Colorectal cancer (CRC) stands as a significant global health issue, marked by elevated occurrence and mortality statistics. Despite the availability of various treatments, including chemotherapy, radiotherapy, and targeted therapy, CRC cells often exhibit resistance to these interventions. As a result, it is imperative to identify the disease at an earlier stage and enhance the response to treatment by acquiring a deeper comprehension of the processes driving tumor formation, aggressiveness, metastasis, and resistance to therapy. The Hippo pathway plays a critical role in facilitating the initiation of tumorigenesis and frequently experiences disruption within CRC because of genetic mutations and modified expression in its fundamental constituents. Targeting upstream regulators or core Hippo pathway components may provide innovative therapeutic strategies for modulating Hippo signaling dysfunction in CRC. To advance novel therapeutic techniques for CRC, it is imperative to grasp the involvement of the Hippo pathway in CRC and its interaction with alternate signaling pathways, noncoding RNAs, gut microbiota, and the immune microenvironment. This review seeks to illuminate the function and control of the Hippo pathway in CRC, ultimately aiming to unearth innovative therapeutic methodologies for addressing this ailment.
Collapse
Affiliation(s)
- Somayeh Mohammadpour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Torshizi Esfahani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - SeyedKasra Sarpash
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Vakili
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nikta Zafarjafarzadeh
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirhesam Mashaollahi
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ali Pardakhtchi
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ehsan Nazemalhosseini-Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Santana PT, de Lima IS, da Silva e Souza KC, Barbosa PHS, de Souza HSP. Persistent Activation of the P2X7 Receptor Underlies Chronic Inflammation and Carcinogenic Changes in the Intestine. Int J Mol Sci 2024; 25:10874. [PMID: 39456655 PMCID: PMC11507540 DOI: 10.3390/ijms252010874] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Aberrant signaling through damage-associated molecular patterns (DAMPs) has been linked to several health disorders, attracting considerable research interest over the last decade. Adenosine triphosphate (ATP), a key extracellular DAMP, activates the purinergic receptor P2X7, which acts as a danger sensor in immune cells and is implicated in distinct biological functions, including cell death, production of pro-inflammatory cytokines, and defense against microorganisms. In addition to driving inflammation mediated by immune and non-immune cells, the persistent release of endogenous DAMPs, including ATP, has been shown to result in epigenetic modifications. In intestinal diseases such as inflammatory bowel disease (IBD) and colorectal cancer (CRC), consequent amplification of the inflammatory response and the resulting epigenetic reprogramming may impact the development of pathological changes associated with specific disease phenotypes. P2X7 is overexpressed in the gut mucosa of patients with IBD, whereas the P2X7 blockade prevents the development of chemically induced experimental colitis. Recent data suggest a role for P2X7 in determining gut microbiota composition. Regulatory mechanisms downstream of the P2X7 receptor, combined with signals from dysbiotic microbiota, trigger intracellular signaling pathways and inflammasomes, intensify inflammation, and foster colitis-associated CRC development. Preliminary studies targeting the ATP-P2X7 pathway have shown favorable therapeutic effects in human IBD and experimental colitis.
Collapse
Affiliation(s)
- Patricia Teixeira Santana
- Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, Brazil; (P.T.S.); (I.S.d.L.); (K.C.d.S.e.S.); (P.H.S.B.)
- D’Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro 30, Botafogo, Rio de Janeiro 22281-100, Brazil
| | - Isadora Schmukler de Lima
- Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, Brazil; (P.T.S.); (I.S.d.L.); (K.C.d.S.e.S.); (P.H.S.B.)
| | - Karen Cristina da Silva e Souza
- Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, Brazil; (P.T.S.); (I.S.d.L.); (K.C.d.S.e.S.); (P.H.S.B.)
| | - Pedro Henrique Sales Barbosa
- Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, Brazil; (P.T.S.); (I.S.d.L.); (K.C.d.S.e.S.); (P.H.S.B.)
| | - Heitor Siffert Pereira de Souza
- Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, Brazil; (P.T.S.); (I.S.d.L.); (K.C.d.S.e.S.); (P.H.S.B.)
- D’Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro 30, Botafogo, Rio de Janeiro 22281-100, Brazil
| |
Collapse
|
32
|
Zamanian MY, Taheri N, Ramadan MF, Mustafa YF, Alkhayyat S, Sergeevna KN, Alsaab HO, Hjazi A, Molavi Vasei F, Daneshvar S. A comprehensive view on the fisetin impact on colorectal cancer in animal models: Focusing on cellular and molecular mechanisms. Animal Model Exp Med 2024; 7:591-605. [PMID: 39136058 PMCID: PMC11528395 DOI: 10.1002/ame2.12476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/21/2024] [Accepted: 07/09/2024] [Indexed: 11/02/2024] Open
Abstract
Flavonoids, including fisetin, have been linked to a reduced risk of colorectal cancer (CRC) and have potential therapeutic applications for the condition. Fisetin, a natural flavonoid found in various fruits and vegetables, has shown promise in managing CRC due to its diverse biological activities. It has been found to influence key cell signaling pathways related to inflammation, angiogenesis, apoptosis, and transcription factors. The results of this study demonstrate that fisetin induces colon cancer cell apoptosis through multiple mechanisms. It impacts the p53 pathway, leading to increased levels of p53 and decreased levels of murine double minute 2, contributing to apoptosis induction. Fisetin also triggers the release of important components in the apoptotic process, such as second mitochondria-derived activator of caspase/direct inhibitor of apoptosis-binding protein with low pI and cytochrome c. Furthermore, fisetin inhibits the cyclooxygenase-2 and wingless-related integration site (Wnt)/epidermal growth factor receptor/nuclear factor kappa B signaling pathways, reducing Wnt target gene expression and hindering colony formation. It achieves this by regulating the activities of cyclin-dependent kinase 2 and cyclin-dependent kinase 4, reducing retinoblastoma protein phosphorylation, decreasing cyclin E levels, and increasing p21 levels, ultimately influencing E2 promoter binding factor 1 and cell division cycle 2 (CDC2) protein levels. Additionally, fisetin exhibits various effects on CRC cells, including inhibiting the phosphorylation of Y-box binding protein 1 and ribosomal S6 kinase, promoting the phosphorylation of extracellular signal-regulated kinase 1/2, and disrupting the repair process of DNA double-strand breaks. Moreover, fisetin serves as an adjunct therapy for the prevention and treatment of phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit α (PIK3CA)-mutant CRC, resulting in a reduction in phosphatidylinositol-3 kinase (PI3K) expression, Ak strain transforming phosphorylation, mTOR activity, and downstream target proteins in CRC cells with a PIK3CA mutation. These findings highlight the multifaceted potential of fisetin in managing CRC and position it as a promising candidate for future therapy development.
Collapse
Affiliation(s)
- Mohammad Yasin Zamanian
- Department of Physiology, School of MedicineHamadan University of Medical SciencesHamadanIran
- Department of Pharmacology and Toxicology, School of PharmacyHamadan University of Medical SciencesHamadanIran
| | - Niloofar Taheri
- School of MedicineShahroud University of Medical SciencesShahroudIran
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical ChemistryCollege of Pharmacy, University of MosulMosulIraq
| | | | - Klunko Nataliya Sergeevna
- Department of Training of Scientific and Scientific‐Pedagogical PersonnelRussian New UniversityMoscowRussian Federation
| | - Hashem O. Alsaab
- Department of Pharmaceutics and Pharmaceutical TechnologyTaif UniversityTaifSaudi Arabia
| | - Ahmed Hjazi
- Department of Medical LaboratoryCollege of Applied Medical Sciences, Prince Sattam bin Abdulaziz UniversityAl‐KharjSaudi Arabia
| | - Farnoosh Molavi Vasei
- Department of Clinical Biochemistry, School of MedicineRafsanjan University of Medical SciencesRafsanjanIran
| | - Siamak Daneshvar
- Department of Surgery, School of MedicineHamadan University of Medical SciencesHamadanIran
| |
Collapse
|
33
|
Al-Medhtiy MH, Mohammed MT, M Raouf MMH, Al-Qaaneh AM, Jabbar AAJ, Abdullah FO, Mothana RA, Alanzi AR, Hassan RR, Abdulla MA, Saleh MI, Hasson S. A triterpenoid (corosolic acid) ameliorated AOM-mediated aberrant crypt foci in rats: modulation of Bax/PCNA, antioxidant and inflammatory mechanisms. J Mol Histol 2024; 55:765-783. [PMID: 39122895 DOI: 10.1007/s10735-024-10229-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024]
Abstract
Corosolic acid (CA) is a well-known natural pentacyclic triterpene found in numerous therapeutic plants that can exhibit many bioactivities including anti-inflammatory and anti-tumor actions. The current investigation explores the chemoprotective roles of CA against azoxymethane (AOM)-induced colonic aberrant crypt foci (ACF) in rats. Thirty Sprague Dawley rats were grouped in 5 cages; Group A, normal control rats inoculated subcutaneously (sc) with two doses of normal saline and fed orally on 10% tween 20; Groups B-E received two doses (sc) of azoxymethane in two weeks and treated with either 10% tween 20 (group B) or two intraperitoneal injections of 35 mg/kg 5-fluorouracil each week for one month (group C), while group D and E treated with 30 and 60 mg/kg, respectively, for 2 months. The toxicity results showed lack of any behavioral abnormalities or mortality in rats ingested with up-to 500 mg/kg of CA. The present AOM induction caused a significant initiation of ACF characterized by an increased number, larger in size, and well-matured tissue clusters in cancer controls. AOM inoculation created a bizarrely elongated nucleus, and strained cells, and significantly lowered the submucosal glands in colon tissues of cancer controls compared to 5-FU or CA-treated rats. CA treatment led to significant suppression of ACF incidence, which could be mediated by its modulatory effects on the immunohistochemical proteins (pro-apoptotic (Bax) and reduced PCNA protein expressions in colon tissues). Moreover, CA-treated rats had improved oxidative stress-mediated cytotoxicity indicated by increased endogenous antioxidants (SOD and CAT) and reduced lipid peroxidation indicators (MDA). In addition, CA ingestion (30 and 60 mg/kg) suppressed the inflammatory cascades, indicated by decreased serum TNF-α and IL-6 cytokines and increased anti-inflammatory (IL-10) cytokines consequently preventing further tumor development. CA treatment maintained liver and kidney functions in rats exposed to AOM cytotoxicity. CA could be a viable alternative for the treatment of oxidative-related human disorders including ACF.
Collapse
Affiliation(s)
- Morteta H Al-Medhtiy
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, University of Kufa, Kufa, Najaf Region, 540011, Iraq
| | - Mohammed T Mohammed
- Department of Microbiology, Faculty of veterinary medicine, University of Kufa, Kufa, Iraq
| | - Mohammed M Hussein M Raouf
- Department of Biomedical Sciences, College of Applied Science, Cihan University-Erbil, Erbil, Kurdistan Region, 44001, Iraq
| | - Ayman M Al-Qaaneh
- Department of Allied Health Sciences, Al-Balqa Applied University (BAU), Al-Salt, 19117, Jordan
| | - Ahmed A J Jabbar
- Department of Medical Laboratory Technology, Erbil Technical Health and Medical College, Erbil Polytechnic University, Erbil, 44001, Iraq.
| | - Fuad Othman Abdullah
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Ramzi A Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Abdullah R Alanzi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Rawaz Rizgar Hassan
- Department of Medical Laboratory Science, College of Science, Knowledge University, Kirkuk Road, Erbil, 44001, Iraq
| | - Mahmood Ameen Abdulla
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Iraq
| | - Musher Ismail Saleh
- Department of Chemistry, Faculty of Science and Health, Koya University, Koya KOY45, Kurdistan Region, Erbil, 44001, Iraq
| | - Sidgi Hasson
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| |
Collapse
|
34
|
Qin YC, Jin CL, Hu TC, Zhou JY, Wang XF, Wang XQ, Kong XF, Yan HC. Early Weaning Inhibits Intestinal Stem Cell Expansion to Disrupt the Intestinal Integrity of Duroc Piglets via Regulating the Keap1/Nrf2 Signaling. Antioxidants (Basel) 2024; 13:1188. [PMID: 39456442 PMCID: PMC11505184 DOI: 10.3390/antiox13101188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
There are different stress resistance among different breeds of pigs. Changes in intestinal stem cells (ISCs) are still unclear among various breeds of piglets after early weaning. In the current study, Taoyuan Black and Duroc piglets were slaughtered at 21 days of age (early weaning day) and 24 days of age (3 days after early weaning) for 10 piglets in each group. The results showed that the rate of ISC-driven epithelial renewal in local Taoyuan Black pigs hardly changed after weaning for 3 days. However, weaning stress significantly reduced the weight of the duodenum and jejunum in Duroc piglets. Meanwhile, the jejunal villus height, tight junction-related proteins (ZO-1, Occludin, and Claudin1), as well as the trans-epithelial electrical resistance (TEER) values, were down-regulated after weaning for 3 days in Duroc piglets. Moreover, compared with Unweaned Duroc piglets, the numbers of Olfm4+ ISC cells, PCNA+ mitotic cells, SOX9+ secretory progenitor cells, and Villin+ absorptive cells in the jejunum were reduced significantly 3 days after weaning. And ex vivo jejunal crypt-derived organoids exhibited growth disadvantages in weaned Duroc piglets. Notably, the Keap1/Nrf2 signaling activities and the expression of HO-1 were significantly depressed in weaned Duroc piglets compared to Unweaned Duroc piglets. Thus, we can conclude that ISCs of Duroc piglets were more sensitive to weaning stress injury than Taoyuan Black piglets, and Keap1/Nrf2 signaling is involved in this process.
Collapse
Affiliation(s)
- Ying-Chao Qin
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.-C.Q.); (T.-C.H.); (J.-Y.Z.); (X.-F.W.); (X.-Q.W.)
| | - Cheng-Long Jin
- Key Laboratory of Animal Nutrition and Feed Science in South China, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China;
| | - Ting-Cai Hu
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.-C.Q.); (T.-C.H.); (J.-Y.Z.); (X.-F.W.); (X.-Q.W.)
| | - Jia-Yi Zhou
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.-C.Q.); (T.-C.H.); (J.-Y.Z.); (X.-F.W.); (X.-Q.W.)
| | - Xiao-Fan Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.-C.Q.); (T.-C.H.); (J.-Y.Z.); (X.-F.W.); (X.-Q.W.)
| | - Xiu-Qi Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.-C.Q.); (T.-C.H.); (J.-Y.Z.); (X.-F.W.); (X.-Q.W.)
| | - Xiang-Feng Kong
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Hui-Chao Yan
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.-C.Q.); (T.-C.H.); (J.-Y.Z.); (X.-F.W.); (X.-Q.W.)
| |
Collapse
|
35
|
Guo J, Meng F, Hu R, Chen L, Chang J, Zhao K, Ren H, Liu Z, Hu P, Wang G, Tai J. Inhibition of the NF-κB/HIF-1α signaling pathway in colorectal cancer by tyrosol: a gut microbiota-derived metabolite. J Immunother Cancer 2024; 12:e008831. [PMID: 39343509 PMCID: PMC11440206 DOI: 10.1136/jitc-2024-008831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND The development and progression of colorectal cancer (CRC) are influenced by the gut environment, much of which is modulated by microbial-derived metabolites. Although some research has been conducted on the gut microbiota, there have been limited empirical investigations on the role of the microbial-derived metabolites in CRC. METHODS In this study, we used LC-MS and 16S rRNA sequencing to identify gut microbiome-associated fecal metabolites in patients with CRC and healthy controls. Moreover, we examined the effects of Faecalibacterium prausnitzii and tyrosol on CRC by establishing orthotopic and subcutaneous tumor mouse models. Additionally, we conducted in vitro experiments to investigate the mechanism through which tyrosol inhibits tumor cell growth. RESULTS Our study revealed changes in the gut microbiome and metabolome that are linked to CRC. We observed that Faecalibacterium prausnitzii, a bacterium known for its multiple anti-CRC properties, is significantly more abundant in the intestines of healthy individuals than in those of individuals with CRC. In mouse tumor models, our study illustrated that Faecalibacterium prausnitzii has the ability to inhibit tumor growth by reducing inflammatory responses and enhancing tumor immunity. Additionally, research investigating the relationship between CRC-associated features and microbe-metabolite interactions revealed a correlation between Faecalibacterium prausnitzii and tyrosol, both of which are less abundant in the intestines of tumor patients. Tyrosol demonstrated antitumor activity in vivo and specifically targeted CRC cells without affecting intestinal epithelial cells in cell experiments. Moreover, tyrosol treatment effectively reduced the levels of reactive oxygen species (ROS) and inflammatory cytokines in MC38 cells. Western blot analysis further revealed that tyrosol inhibited the activation of the NF-κB and HIF-1 signaling pathways. CONCLUSIONS This study investigated the relationship between CRC development and changes in the gut microbiota and microbial-derived metabolites. Specifically, the intestinal metabolite tyrosol exhibits antitumor effects by inhibiting HIF-1α/NF-κB signaling pathway activation, leading to a reduction in the levels of ROS and inflammatory factors. These findings indicate that manipulating the gut microbiota and its metabolites could be a promising approach for preventing and treating CRC and could provide insights for the development of anticancer drugs.
Collapse
Affiliation(s)
- Jian Guo
- Department of Colorectal&anal surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Fanqi Meng
- Department of Colorectal&anal surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Ruixue Hu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Lei Chen
- Department of Colorectal&anal surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jiang Chang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Ke Zhao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Honglin Ren
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Zengshan Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Pan Hu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Guangyi Wang
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Jiandong Tai
- Department of Colorectal&anal surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
36
|
Duan T, Alim A, Tian H, Li T. Roundup-Induced Gut Dysbiosis, Irrelevant to Aromatic Amino Acid Deficiency, Impairs the Gut Function in Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39302074 DOI: 10.1021/acs.jafc.4c04045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Glyphosate, the most popular herbicide globally, has long been considered safe for mammals. However, whether glyphosate can disturb gut microbiota via inhibiting aromatic amino acid (AAA) synthesis has been under debate recently. Here, we evaluated the impacts of chronic exposure to Roundup on gut health with the addition of AAA and explored the mechanism behind Roundup-induced gut dysfunction by performing fecal microbiota transplantation. 500 mg/kg·bw of Roundup, independent of AAA deficiency, caused severe damage to gut function, as characterized by gut microbial dysbiosis, oxidative stress damage, intestinal inflammation, and histopathological injury, particularly in female rats. Notably, similar to Roundup, Roundup-shaped gut microbiome evidently damaged serum, cecum, and colon profiling of oxidative stress biomarkers (malonaldehyde (MDA), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), glutathione (GSH), and H2O2). Moreover, it induced 0.65-, 3.29-, and 2.36-fold increases in colonic IL-1β, IL-6, and TNF-α levels, and 0.34-fold decreases in the IL-10 level. Upon transplanting healthy fecal microbiota to Roundup-treated rats, they exhibited a healthier gut microenvironment with mitigated inflammation, oxidative damage, and intestinal injury. Overall, our findings provide new insights into the safety of Roundup, highlight the crucial role of gut microbiota in Roundup-induced gut dysfunction, and pave the way for developing gut-microbiota-based strategies to address Roundup-related safety issues.
Collapse
Affiliation(s)
- Tianchi Duan
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Aamina Alim
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Honglei Tian
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Ting Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
37
|
Zowczak-Drabarczyk M, Białecki J, Grzelak T, Michalik M, Formanowicz D. Selenium, Zinc, and Plasma Total Antioxidant Status and the Risk of Colorectal Adenoma and Cancer. Metabolites 2024; 14:486. [PMID: 39330493 PMCID: PMC11433807 DOI: 10.3390/metabo14090486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/21/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024] Open
Abstract
Selenium (Se), zinc (Zn), and copper (Cu) are known to be involved in carcinogenesis and participate in the defence against reactive oxygen species (ROS). This study aimed to evaluate the clinical utility of serum Se, Zn, and Cu concentrations and plasma total antioxidant status (TAS) in the diagnosis of colorectal cancer (CRC) and colorectal adenoma (CRA) in a population of low Se and borderline Zn status. Based on clinical examination and colonoscopy/histopathology, the patients (n = 79) were divided into three groups: colorectal cancer (n = 30), colorectal adenoma (n = 19), and controls (CONTROL, n = 30). The serum Se concentration was lower in the CRC group than in the CRA group (by 9.1%, p < 0.0001) and the CONTROL group (by 7.9%, p < 0.0001). In turn, the serum Zn concentration was decreased in the CRA group (by 17.9%, p = 0.019) when compared to the CONTROL group. Plasma TAS was lower in the CRC group (by 27.8%, p = 0.017) than in the CONTROL group. In turn, the serum Zn concentration was decreased in the CRA group when compared to the CONTROL group. Plasma TAS was lower in the CRC group than in the CONTROL group. ROC (receiver operating characteristic) curve analysis revealed that the Se level was of the highest diagnostic utility for the discrimination of the CRC group from both the CRA group (area under ROC curve (AUC) 0.958, sensitivity 84.21%, specificity 100%) and the CONTROL group (AUC 0.873, sensitivity 100%, specificity 66.67%). The Zn and TAS levels were significantly accurate in the differentiation between the groups. An individualised risk of colorectal adenoma and cancer approach could comprise Se, Zn, and TAS assays in the population.
Collapse
Affiliation(s)
- Miłosława Zowczak-Drabarczyk
- Chair and Department of Medical Chemistry and Laboratory Medicine, Poznan University of Medical Sciences, Rokietnicka 8, 60-806 Poznan, Poland; (M.Z.-D.); (D.F.)
| | - Jacek Białecki
- Department of General and Minimally Invasive and Trauma Surgery, Franciszek Raszeja Municipal Hospital, Mickiewicza 2, 60-834 Poznan, Poland;
| | - Teresa Grzelak
- Chair and Department of Physiology, Poznan University of Medical Sciences, Święcickiego 6, 60-781 Poznan, Poland
| | | | - Dorota Formanowicz
- Chair and Department of Medical Chemistry and Laboratory Medicine, Poznan University of Medical Sciences, Rokietnicka 8, 60-806 Poznan, Poland; (M.Z.-D.); (D.F.)
| |
Collapse
|
38
|
Hu M, Yuan L, Zhu J. The Dual Role of NRF2 in Colorectal Cancer: Targeting NRF2 as a Potential Therapeutic Approach. J Inflamm Res 2024; 17:5985-6004. [PMID: 39247839 PMCID: PMC11380863 DOI: 10.2147/jir.s479794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024] Open
Abstract
Colorectal cancer (CRC), as the third most common bisexual cancer worldwide, requires urgent research on its underlying mechanisms and intervention methods. NRF2 is an important transcription factor involved in the regulation of redox homeostasis, protein degradation, DNA repair, and other cancer processes, playing an important role in cancer. In recent years, the complex role of NRF2 in CRC has been continuously revealed: on the one hand, it exhibits a chemopreventive effect on cancer by protecting normal cells from oxidative stress, and on the other hand, it also exhibits a protective effect on malignant cells. Therefore, this article explores the dual role of NRF2 and its related signaling pathways in CRC, including their chemical protective properties and promoting effects in the occurrence, development, metastasis, and chemotherapy resistance of CRC. In addition, this article focuses on exploring the regulation of NRF2 in CRC ferroptosis, as well as NRF2 drug modulators (activators and inhibitors) targeting CRC, including natural products, compounds, and traditional Chinese medicine formulations.
Collapse
Affiliation(s)
- Mengyun Hu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Lingling Yuan
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Jie Zhu
- Hospital of Chengdu University of Traditional Chinese Medicine, Oncology Department II, Chengdu, People's Republic of China
| |
Collapse
|
39
|
Madej M, Kruszniewska-Rajs C, Kimsa-Dudek M, Synowiec-Wojtarowicz A, Chrobak E, Bębenek E, Boryczka S, Głuszek S, Adamska J, Kubica S, Matykiewicz J, Gola JM. The Influence of Betulin and Its Derivatives on Selected Colorectal Cancer Cell Lines' Viability and Their Antioxidant Systems. Cells 2024; 13:1368. [PMID: 39195258 PMCID: PMC11352258 DOI: 10.3390/cells13161368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/08/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024] Open
Abstract
Oxidative stress is considered one of the main reasons for the development of colorectal cancer (CRC). Depending on the stage of the disease, variable activity of the main antioxidant enzymes, i.e., superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), is observed. Due to limited treatment methods for CRC, new substances with potential antitumor activity targeting pathways related to oxidative stress are currently being sought, with substances of natural origin, including betulin, leading the way. The betulin molecule is chemically modified to obtain new derivatives with improved pharmacokinetic properties and higher biological activity. The aim of this study was to evaluate the effects of betulin and its new derivatives on viability and major antioxidant systems in colorectal cancer cell lines. The study showed that betulin and its derivative EB5 affect the antioxidant enzyme activity to varying degrees at both the protein and mRNA levels. The SW1116 cell line is more resistant to the tested compounds than RKO, which may be due to differences in the genetic and epigenetic profiles of these lines.
Collapse
Affiliation(s)
- Marcel Madej
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (C.K.-R.); (J.A.); (S.K.)
| | - Celina Kruszniewska-Rajs
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (C.K.-R.); (J.A.); (S.K.)
| | - Magdalena Kimsa-Dudek
- Department of Nutrigenomics and Bromatology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (M.K.-D.); (A.S.-W.)
| | - Agnieszka Synowiec-Wojtarowicz
- Department of Nutrigenomics and Bromatology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (M.K.-D.); (A.S.-W.)
| | - Elwira Chrobak
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (E.C.); (E.B.); (S.B.)
| | - Ewa Bębenek
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (E.C.); (E.B.); (S.B.)
| | - Stanisław Boryczka
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (E.C.); (E.B.); (S.B.)
| | - Stanisław Głuszek
- Department of Surgical Medicine with the Laboratory of Medical Genetics, Institute of Medical Sciences, Collegium Medicum, Jan Kochanowski University, 25-317 Kielce, Poland; (S.G.); (J.M.)
- Department of Clinic Oncological Surgery Holycross Center, 25-317 Kielce, Poland
| | - Jolanta Adamska
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (C.K.-R.); (J.A.); (S.K.)
| | - Sebastian Kubica
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (C.K.-R.); (J.A.); (S.K.)
| | - Jarosław Matykiewicz
- Department of Surgical Medicine with the Laboratory of Medical Genetics, Institute of Medical Sciences, Collegium Medicum, Jan Kochanowski University, 25-317 Kielce, Poland; (S.G.); (J.M.)
- Department of Clinic Oncological Surgery Holycross Center, 25-317 Kielce, Poland
| | - Joanna Magdalena Gola
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (C.K.-R.); (J.A.); (S.K.)
| |
Collapse
|
40
|
Yaghoubi N, Gholamzad A, Naji T, Gholamzad M. In vitro evaluation of PLGA loaded hesperidin on colorectal cancer cell lines: an insight into nano delivery system. BMC Biotechnol 2024; 24:52. [PMID: 39095760 PMCID: PMC11297711 DOI: 10.1186/s12896-024-00882-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Colorectal cancer is a common disease worldwide with non-specific symptoms such as blood in the stool, bowel movements, weight loss and fatigue. Chemotherapy drugs can cause side effects such as nausea, vomiting and a weakened immune system. The use of antioxidants such as hesperidin could reduce the side effects, but its low bioavailability is a major problem. In this research, we aimed to explore the drug delivery and efficiency of this antioxidant on the HCT116 colorectal cancer cell line by loading hesperidin into PLGA nanoparticles. MATERIALS AND METHODS Hesperidin loaded PLGA nanoparticles were produced by single emulsion evaporation method. The physicochemical properties of the synthesized hesperidin-loaded nanoparticles were determined using SEM, AFM, FT-IR, DLS and UV-Vis. Subsequently, the effect of the PLGA loaded hesperidin nanoparticles on the HCT116 cell line after 48 h was investigated by MTT assay at three different concentrations of the nanoparticles. RESULT The study showed that 90% of hesperidin were loaded in PLGA nanoparticles by UV-Vis spectrophotometry and FT-IR spectrum. The nanoparticles were found to be spherical and uniform with a hydrodynamic diameter of 76.2 nm in water. The release rate of the drug was about 93% after 144 h. The lowest percentage of cell viability of cancer cells was observed at a concentration of 10 µg/ml of PLGA nanoparticles loaded with hesperidin. CONCLUSION The results indicate that PLGA nanoparticles loaded with hesperidin effectively reduce the survival rate of HCT116 colorectal cancer cells. However, further studies are needed to determine the appropriate therapeutic dosage and to conduct animal and clinical studies.
Collapse
Affiliation(s)
- Narges Yaghoubi
- Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amir Gholamzad
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Tahere Naji
- Department of Basic Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Gholamzad
- Department of Microbiology and Immunology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
41
|
Jiang Z, Ye S, Wu Y, Zhou C, Cao F, Tan N. Cyclopeptide RA-V from Rubia yunnanensis restores activity of Adagrasib against colorectal cancer by reducing the expression of Nrf2. Pharmacol Res 2024; 206:107252. [PMID: 38945380 DOI: 10.1016/j.phrs.2024.107252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 07/02/2024]
Abstract
Adagrasib (MRTX849), an approved and promising KRAS G12C inhibitor, has shown the promising results for treating patients with advanced non-small cell lung cancer (NSCLC) or colorectal cancer (CRC) harboring KRAS-activating mutations. However, emergence of the acquired resistance limits its long-term efficacy and clinical application. Further understanding of the mechanism of the acquired resistance is crucial for developing more new effective therapeutic strategies. Herein, we firstly found a new connection between the acquired resistance to MRTX849 and nuclear factor erythroid 2-related factor 2 (Nrf2). The expression levels of Nrf2 and GLS1 proteins were substantially elevated in different CRC cell lines with the acquired resistance to MRTX849 in comparison with their corresponding parental cell lines. Next, we discovered that RA-V, one of natural cyclopeptides isolated from the roots of Rubia yunnanensis, could restore the response of resistant CRC cells to MRTX849. The results of molecular mechanisms showed that RA-V suppressed Nrf2 protein through the ubiquitin-proteasome-dependent degradation, leading to the induction of oxidative and ER stress, and DNA damage in CRC cell lines. Consequently, RA-V reverses the resistance to MRTX849 by inhibiting the Nrf2/GLS1 axis, which shows the potential for further developing into one of novel adjuvant therapies of MRTX849.
Collapse
Affiliation(s)
- Zhuangzhuang Jiang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Shuqing Ye
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yingwei Wu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Chen Zhou
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Feng Cao
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ninghua Tan
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
42
|
Bakrim S, El Hachlafi N, Khalid A, Abdalla AN, El Omari N, Aboulaghras S, Sakran AM, Goh KW, Ming LC, Razi P, Bouyahya A. Recent advances and molecular mechanisms of TGF-β signaling in colorectal cancer, with focus on bioactive compounds targeting. Biomed Pharmacother 2024; 177:116886. [PMID: 38945700 DOI: 10.1016/j.biopha.2024.116886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 07/02/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most significant forms of human cancer. It is characterized by its heterogeneity because several molecular factors are involved in contiguity and can link it to others without having a linear correlation. Among the factors influencing tumor transformation in CRC, transforming growth factor-beta (TGF-β) plays a key promoter role. This factor is associated with human colorectal tumors with a very high prognosis: it increases the survival, invasion, and metastasis of CRC cells, thus functioning as an oncogene. The inhibition of this factor can constitute a major therapeutic route for CRC treatment. Various chemical drugs including synthetic molecules and biotherapies have been developed as TGF-β inhibitors. Moreover, the scientific community has recently shown a major interest in screening natural drugs inhibiting TGF-β in CRC. In this context, we carried out this review article using computerized databases, such as PubMed, Google Scholar, Springer Link, Science Direct, Cochrane Library, Embase, Web of Science, and Scopus, to highlight the molecular mechanism of TGF-β in CRC induction and progression and current advances in the pharmacodynamic effects of natural bioactive substances targeting TGF-β in CRC.
Collapse
Affiliation(s)
- Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnology and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco
| | - Naoufal El Hachlafi
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technologies Faculty, Sidi Mohmed Ben Abdellah University, P.O.Box-2002, Imouzzer Road, Fez, Morocco
| | - Asaad Khalid
- Health Research Center, Jazan University, P.O. Box: 114, Jazan 45142, Saudi Arabia.
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Nasreddine El Omari
- High Institute of Nursing Professions and Health Techniques of Tetouan, Tetouan, Morocco
| | - Sara Aboulaghras
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Ashraf M Sakran
- Department of Anatomy, Faculty of Medicine, Umm Alqura University, Makkah 21955, Saudi Arabia
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia
| | - Long Chiau Ming
- School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia.
| | - Pakhrur Razi
- Center of Disaster Monitoring and Earth Observation, Universitas Negeri Padang, Padang, Indonesia.
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
| |
Collapse
|
43
|
Munteanu C, Schwartz B. Interactions between Dietary Antioxidants, Dietary Fiber and the Gut Microbiome: Their Putative Role in Inflammation and Cancer. Int J Mol Sci 2024; 25:8250. [PMID: 39125822 PMCID: PMC11311432 DOI: 10.3390/ijms25158250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
The intricate relationship between the gastrointestinal (GI) microbiome and the progression of chronic non-communicable diseases underscores the significance of developing strategies to modulate the GI microbiota for promoting human health. The administration of probiotics and prebiotics represents a good strategy that enhances the population of beneficial bacteria in the intestinal lumen post-consumption, which has a positive impact on human health. In addition, dietary fibers serve as a significant energy source for bacteria inhabiting the cecum and colon. Research articles and reviews sourced from various global databases were systematically analyzed using specific phrases and keywords to investigate these relationships. There is a clear association between dietary fiber intake and improved colon function, gut motility, and reduced colorectal cancer (CRC) risk. Moreover, the state of health is reflected in the reciprocal and bidirectional relationships among food, dietary antioxidants, inflammation, and body composition. They are known for their antioxidant properties and their ability to inhibit angiogenesis, metastasis, and cell proliferation. Additionally, they promote cell survival, modulate immune and inflammatory responses, and inactivate pro-carcinogens. These actions collectively contribute to their role in cancer prevention. In different investigations, antioxidant supplements containing vitamins have been shown to lower the risk of specific cancer types. In contrast, some evidence suggests that taking antioxidant supplements can increase the risk of developing cancer. Ultimately, collaborative efforts among immunologists, clinicians, nutritionists, and dietitians are imperative for designing well-structured nutritional trials to corroborate the clinical efficacy of dietary therapy in managing inflammation and preventing carcinogenesis. This review seeks to explore the interrelationships among dietary antioxidants, dietary fiber, and the gut microbiome, with a particular focus on their potential implications in inflammation and cancer.
Collapse
Affiliation(s)
- Camelia Munteanu
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Betty Schwartz
- The Institute of Biochemistry, Food Science and Nutrition, The School of Nutritional Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| |
Collapse
|
44
|
Wang D, Sheng X, Shao J, Ding CF, Yan Y. Exploitation of porphyrin-based titanium-rich porous organic polymers for targeted phosphopeptide enrichment from the serum of colorectal cancer individuals. Mikrochim Acta 2024; 191:487. [PMID: 39060411 DOI: 10.1007/s00604-024-06561-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
A porphyrin-based titanium-rich porous organic polymer (Th-PPOPs@Ti4+) was designed based on immobilized metal ion affinity chromatography technique and successfully applied to phosphopeptide enrichment with 5,10,15,20-tetrakis(4-carboxyphenyl) porphine tetramethyl ester (TCPTE), 2,3-dihydroxyterephthalaldehyde (DHTA), and 2,3,4-trihydroxybenzaldehyde (THBA) as raw materials. Th-PPOPs@Ti4+ exhibited remarkable sensitivity (0.5 fmol), high selectivity (β-casein: BSA = 1:2000, molar ratio), outstanding recovery (95.0 ± 1.9%), reusability (10 times), and superior loading capacity (143 mg·g-1). In addition, Th-PPOPs@Ti4+ exhibited excellent ability to specifically capture phosphopeptides from the serum of colorectal cancer (CRC) individuals and normal subjects. Sixty phosphopeptides assigned to 35 phosphoproteins were obtained from the serum of CRC individuals, and 43 phosphopeptides allocated to 28 phosphoproteins were extracted in the serum of healthy individuals via nano-LC-MS/MS. Gene ontology assays revealed that the detected phosphoproteins may be inextricably tied to CRC-associated events, including response to estrogen, inflammatory response, and heparin binding, suggesting that it is possible that these correlative pathways may be implicated in the pathogenesis of CRC.
Collapse
Affiliation(s)
- Danni Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, China
| | - Xiuqin Sheng
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, China
| | - Jiahui Shao
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, China
| | - Chuan-Fan Ding
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, China.
| | - Yinghua Yan
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
45
|
Wang R, Zhao Y, Zhou L, Lin F, Wan M, Gan A, Wu B, Yan T, Jia Y. Costunolide ameliorates MNNG-induced chronic atrophic gastritis through inhibiting oxidative stress and DNA damage via activation of Nrf2. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155581. [PMID: 38810553 DOI: 10.1016/j.phymed.2024.155581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/27/2024] [Accepted: 04/01/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Chronic atrophic gastritis (CAG) is a chronic digestive disease. Modern research has revealed substantial evidence indicating that the progression of CAG is closely linked to the occurrence of oxidative stress-induced DNA damage and apoptosis in the gastric mucosa. Additionally, research has indicated that Costunolide (COS), the primary active compound found in Aucklandiae Radix, a traditional herb, exhibits antioxidant properties. Nevertheless, the therapeutic potential of COS in treating CAG and its molecular targets have not yet been determined. PURPOSE The objective of this research was to explore the potential gastric mucosal protective effects and mechanisms of COS against N-Methyl-N´-nitro-N-nitrosoguanidine (MNNG)-induced CAG. METHODS Firstly, the MNNG-induced rat CAG model was established in vivo. Occurrence of CAG was detected through macroscopic examination of the stomachs and H&E staining. Additionally, we assessed oxidative stress, DNA damage, and apoptosis using biochemical detection, Western blot, immunohistochemistry and immunofluorescence. Then, an in vitro model was developed to induce MNNG-induced damage in GES-1 cells, and the occurrence of cell damage was determined by Hoechst 33,342 staining and flow cytometry. Finally, the key targets of COS for the treatment of CAG were identified through molecular docking, cellular thermal shift assay (CETSA), and inhibitor ML385. RESULTS In vivo studies demonstrated that COS promotes the expression of Nrf2 in gastric tissues. This led to an increased expression of SOD, GSH, HO-1, while reducing the production of MDA. Furthermore, COS inhibited DNA damage and apoptosis by suppressing the expression of γH2AX and PARP1 in gastric tissues. In vitro studies showed that COS effectively reversed apoptosis induced by MNNG in GES-1 cells. Additionally, COS interacted with Nrf2 to promote its expression. Furthermore, the expression levels of SOD, GSH, and HO-1 were augmented, while the generation of ROS and MDA was diminished. CONCLUSIONS Our results indicate that COS exhibits therapeutic effects on CAG through the promotion of Nrf2 expression and inhibition of oxidative stress and DNA damage. Therefore, COS has the potential to provide new drugs for the treatment of CAG.
Collapse
Affiliation(s)
- Ruixuan Wang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, 110016, China
| | - Youdong Zhao
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, 110016, China
| | - Lei Zhou
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, 110016, China
| | - Fei Lin
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, 110016, China
| | - Meiqi Wan
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, 110016, China
| | - Anna Gan
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, 110016, China
| | - Bo Wu
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, 110016, China
| | - Tingxu Yan
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, 110016, China.
| | - Ying Jia
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, 110016, China.
| |
Collapse
|
46
|
An S, Gunathilake M, Lee J, Kim M, Oh JH, Chang HJ, Sohn DK, Shin A, Kim J. Relationship Between Aspirin Use and Site-Specific Colorectal Cancer Risk Among Individuals With Metabolic Comorbidity. J Korean Med Sci 2024; 39:e199. [PMID: 38978486 PMCID: PMC11231443 DOI: 10.3346/jkms.2024.39.e199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/22/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND The relationship between aspirin usage and the risk of colorectal cancer (CRC) among individuals with both hypertension (HTN) and diabetes mellitus (DM) remains unclear. This study aims to explore the impact of aspirin use on the site-specific CRC risk in patients with metabolic comorbidity. METHODS A case-control study was conducted among 1,331 CRC patients and 2,771 controls recruited from the Nation Cancer Center in Korea. Multinomial logistic regression analyses were used to calculate the odds ratios (ORs) and 95% confidence intervals (CIs) for the association between aspirin use, metabolic disease status, and site-specific CRC risk. RESULTS Among the 4,102 participants, 1,191 individuals had neither HTN nor DM, 2,044 were diagnosed with HTN, 203 with DM, and 664 presented with HTN and DM comorbidity. An increasing number of HTN and DM was associated with an increased risk of overall CRC (HTN or DM: OR, 1.70; 95% CI, 1.39-2.07; HTN and DM: OR, 8.43; 95% CI, 6.37-11.16), while aspirin use was associated with a decreased risk of overall CRC (OR, 0.31; 95% CI, 0.21-0.46). These results remained consistent across anatomical sites. Among individuals with HTN and DM comorbidity, aspirin use notably associated with lower risk of overall CRC (OR, 0.39; 95% CI, 0.21-0.72), proximal colon (OR, 0.32; 95% CI, 0.13-0.71) and rectal cancer (OR, 0.27; 95% CI, 0.08-0.97), but not distal colon cancer (OR, 0.58; 95% CI, 0.27-1.24). CONCLUSION This study showed that aspirin use is negatively associated with overall and site-specific CRC, even among individuals with HTN and DM comorbidity.
Collapse
Affiliation(s)
- Seokyung An
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Madhawa Gunathilake
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Jeonghee Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Minji Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Jae Hwan Oh
- Center for Colorectal Cancer, National Cancer Center Hospital, National Cancer Center, Goyang, Korea
| | - Hee Jin Chang
- Center for Colorectal Cancer, National Cancer Center Hospital, National Cancer Center, Goyang, Korea
| | - Dae Kyung Sohn
- Center for Colorectal Cancer, National Cancer Center Hospital, National Cancer Center, Goyang, Korea
| | - Aesun Shin
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jeongseon Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea.
| |
Collapse
|
47
|
Abdullah NA, Md Hashim NF, Muhamad Zakuan N, Chua JX. Thioredoxin system in colorectal cancer: Its role in carcinogenesis, disease progression, and response to treatment. Life Sci 2024; 348:122711. [PMID: 38734065 DOI: 10.1016/j.lfs.2024.122711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/27/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
The thioredoxin system is essential for many physiological processes, including the maintenance of redox signalling pathways. Alterations in the activity, expression and interactions with other signalling pathways can lead to protective or pathophysiological responses. Thioredoxin and thioredoxin reductase, the two main components of this system, are often overexpressed in cancer, including colorectal cancer. This overexpression is often linked with tumour progression and poor outcomes. This review discusses the role of the Trx system in driving colorectal carcinogenesis and disease progression, as well as the challenges of targeting this system. Additionally, the recent advancements in the development of novel and effective thioredoxin inhibitors for colorectal cancer are also explored.
Collapse
Affiliation(s)
- Nurul Akmaryanti Abdullah
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Nur Fariesha Md Hashim
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Noraina Muhamad Zakuan
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Jia Xin Chua
- Department of Pre-clinical Sciences, University Tunku Abdul Rahman, 43000, Selangor, Malaysia.
| |
Collapse
|
48
|
Niu Z, Du H, Ma L, Zhou J, Yuan Z, Sun R, Liu G, Zhang F, Zeng Y. Wavelength Division Multiplexing-Based High-Sensitivity Surface Plasmon Resonance Imaging Biosensor for High-Throughput Real-Time Molecular Interaction Analysis. Molecules 2024; 29:2811. [PMID: 38930876 PMCID: PMC11206673 DOI: 10.3390/molecules29122811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
In this study, we report the successful development of a novel high-sensitivity intensity-based Surface Plasmon Resonance imaging (SPRi) biosensor and its application for detecting molecular interactions. By optimizing the excitation wavelength and employing a wavelength division multiplexing (WDM) algorithm, the system can determine the optimal excitation wavelength based on the initial refractive index of the sample without adjusting the incidence angle. The experimental results demonstrate that the refractive index resolution of the system reaches 1.77×10-6 RIU. Moreover, it can obtain the optimal excitation wavelength for samples with an initial refractive index in the range of 1.333 to 1.370 RIU and accurately monitor variations within the range of 0.0037 RIU without adjusting the incidence angle. Additionally, our new SPRi technique realized real-time detection of high-throughput biomolecular binding processes, enabling analysis of kinetic parameters. This research is expected to advance the development of more accurate SPRi technologies for molecular interaction analysis.
Collapse
Affiliation(s)
- Zhenxiao Niu
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China; (Z.N.); (H.D.); (L.M.); (G.L.); (F.Z.)
- Guangdong Provincial Key Laboratory of Sensing Physics and System Integration Applications, Guangdong University of Technology, Guangzhou 510006, China
| | - Hao Du
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China; (Z.N.); (H.D.); (L.M.); (G.L.); (F.Z.)
- Guangdong Provincial Key Laboratory of Sensing Physics and System Integration Applications, Guangdong University of Technology, Guangzhou 510006, China
| | - Lin Ma
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China; (Z.N.); (H.D.); (L.M.); (G.L.); (F.Z.)
- Guangdong Provincial Key Laboratory of Sensing Physics and System Integration Applications, Guangdong University of Technology, Guangzhou 510006, China
| | - Jie Zhou
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan 430065, China;
- Hubei Shizhen Laboratory, Wuhan 430065, China
| | - Zhengqiang Yuan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; (Z.Y.); (R.S.)
| | - Ronghui Sun
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; (Z.Y.); (R.S.)
| | - Guanyu Liu
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China; (Z.N.); (H.D.); (L.M.); (G.L.); (F.Z.)
- Guangdong Provincial Key Laboratory of Sensing Physics and System Integration Applications, Guangdong University of Technology, Guangzhou 510006, China
| | - Fangteng Zhang
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China; (Z.N.); (H.D.); (L.M.); (G.L.); (F.Z.)
- Guangdong Provincial Key Laboratory of Sensing Physics and System Integration Applications, Guangdong University of Technology, Guangzhou 510006, China
| | - Youjun Zeng
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China; (Z.N.); (H.D.); (L.M.); (G.L.); (F.Z.)
- Guangdong Provincial Key Laboratory of Sensing Physics and System Integration Applications, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
49
|
Zhang H, Xin H, Zhao M, Bi C, Xiao Y, Li Y, Qin C. Global research trends on the relationship between IBD and CRC: a bibliometric analysis from 2000 to 2023. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2024; 43:83. [PMID: 38867343 PMCID: PMC11170923 DOI: 10.1186/s41043-024-00577-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024]
Abstract
OBJECTIVE This study aimed to conduct a bibliometric analysis of research articles on the relationship between inflammatory bowel disease (IBD) and colorectal cancer (CRC) using CiteSpace to summarize the current research status, hotspots, and trends in this field and present the results visually. METHOD Research articles on the relationship between IBD and CRC published from 2000 to 2023 and in English were selected from the Web of Science Core Collection (Woscc) database. The articles were downloaded as "full record and references". CiteSpace was used to conduct cooperative, cluster, co-citation, and burst analyses. RESULTS The literature search revealed 4244 articles; of which, 5 duplicates were removed, resulting in the inclusion of 4239 articles in this study. The United States of America had the highest number of publications, with Mayo Clinic and Harvard University being the most active institutions, and Bas Oldenburg being the most active author. Collaboration among core authors was inadequate. JA Eaden was the most cited author, and CRC was the most common keyword. Burst analysis indicated that Sun Yat-sen University might be one of the institutions with a large contribution to this research field in the future. Cluster analysis showed that earlier research focused more on microsatellite instability, whereas "gut microbiota" and "oxidative stress" are considered current research hotspots and trends. CONCLUSION At present, the primary focus areas of research are "gut microbiota" and "oxidative stress". With the improvement of healthcare policies and standards, regular endoscopic monitoring of patients with IBD has become an indispensable diagnostic and therapeutic practice. More drugs will be developed to reduce the risk of progression from IBD to CRC. The findings of this study provide valuable insights into the relationship between IBD and CRC for researchers in the same field.
Collapse
Affiliation(s)
- Hao Zhang
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Huiru Xin
- Department of Cardiothoracic Surgery, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Mengqi Zhao
- Department of Gastroenterology, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Chenyang Bi
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Yafei Xiao
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Yifan Li
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Changjiang Qin
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, 475000, China.
| |
Collapse
|
50
|
Jabbar AAJ, Alamri ZZ, Abdulla MA, Salehen NA, Ibrahim IAA, Hassan RR, Almaimani G, Bamagous GA, Almaimani RA, Almasmoum HA, Ghaith MM, Farrash WF, Almutawif YA. Boric Acid (Boron) Attenuates AOM-Induced Colorectal Cancer in Rats by Augmentation of Apoptotic and Antioxidant Mechanisms. Biol Trace Elem Res 2024; 202:2702-2719. [PMID: 37770673 DOI: 10.1007/s12011-023-03864-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/12/2023] [Indexed: 09/30/2023]
Abstract
Boric acid (BA) is a naturally occurring weak Lewis acid containing boron, oxygen, and hydrogen elements that can be found in water, soil, and plants. Because of its numerous biological potentials including anti-proliferation actions, the present investigates the chemopreventive possessions of BA on azoxymethane (AOM)-induced colonic aberrant crypt foci (ACF) in rats. Thirty laboratory rats were divided into 5 groups: negative control (A) received two subcutaneous inoculations of normal saline and nourished on 10% Tween 20; groups B-E had two injections of 15 mg/kg azoxymethane followed by ingestion of 10% Tween 20 (B, cancer control), inoculation with intraperitoneal 35 mg/kg 5-fluorouracil injection (C, reference group), or ingested with boric acid 30 mg/kg (D) and 60 mg/kg (E). The gross morphology results showed significantly increased total colonic ACF in cancer controls, while BA treatment caused a significant reduction of ACF values. Histopathological evaluation of colons from cancer controls showed bizarrely elongated nuclei, stratified cells, and higher depletion of the submucosal glands than that of BA-treated groups. Boric acid treatment up-surged the pro-apoptotic (Bax) expression and reduced anti-apoptotic (Bcl-2) protein expressions. Moreover, BA ingestion caused upregulation of antioxidant enzymes (GPx, SOD, CAT), and lowered MDA contents in colon tissue homogenates. Boric acid-treated rats had significantly lower pro-inflammatory cytokines (TNF-α and IL-6) and higher anti-inflammatory cytokines (IL-10) based on serum analysis. The colorectal cancer attenuation by BA is shown by the reduced ACF numbers, anticipated by its regulatory potentials on the apoptotic proteins, antioxidants, and inflammatory cytokines originating from AOM-induced oxidative damage.
Collapse
Affiliation(s)
- Ahmed A J Jabbar
- Department of Medical Laboratory Technology, Erbil Technical Health and Medical College, Erbil Polytechnic University, Erbil, 44001, Iraq.
| | - Zaenah Zuhair Alamri
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Mahmood Ameen Abdulla
- Department of Medical Microbiology, College of Science, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Nur Ain Salehen
- Department of Biomedical Sciences, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ibrahim Abdel Aziz Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Rawaz Rizgar Hassan
- Department of Medical Laboratory Science, College of Science, Knowledge University, Kirkuk Road, Erbil, 44001, Iraq
| | - Ghassan Almaimani
- Department of surgery, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia
| | - Ghazi A Bamagous
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Riyad A Almaimani
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hussain A Almasmoum
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al- Qura University, Makkah, Saudi Arabia
| | - Mazen M Ghaith
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al- Qura University, Makkah, Saudi Arabia
| | - Wesam F Farrash
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al- Qura University, Makkah, Saudi Arabia
| | - Yahya A Almutawif
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Madinah, 42353, Saudi Arabia
| |
Collapse
|