1
|
Abdul Manan M. Progress in Probiotic Science: Prospects of Functional Probiotic-Based Foods and Beverages. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2025; 2025:5567567. [PMID: 40259922 PMCID: PMC12011469 DOI: 10.1155/ijfo/5567567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 03/27/2025] [Indexed: 04/23/2025]
Abstract
This comprehensive review explores the evolving role of probiotic-based foods and beverages, highlighting their potential as functional and "future foods" that could significantly enhance nutrition, health, and overall well-being. These products are gaining prominence for their benefits in gut health, immune support, and holistic wellness. However, their future success depends on addressing critical safety concerns and navigating administrative complexities. Ensuring that these products "do more good than harm" involves rigorous evaluations of probiotic strains, particularly those sourced from the human gastrointestinal tract. Lactic acid bacteria (LABs) serve as versatile and effective functional starter cultures for the development of probiotic foods and beverages. The review emphasizes the role of LABs as functional starter cultures and the development of precision probiotics in advancing these products. Establishing standardized guidelines and transparent practices is essential, requiring collaboration among regulatory bodies, industry stakeholders, and the scientific community. The review underscores the importance of innovation in developing "friendly bacteria," "super probiotics," precision fermentation, and effective safety assessments. The prospects of functional probiotic-based foods and beverages rely on refining these elements and adapting to emerging scientific advancements. Ultimately, empowering consumers with accurate information, fostering innovation, and maintaining stringent safety standards will shape the future of these products as trusted and beneficial components of a health-conscious society. Probiotic-based foods and beverages, often infused with LABs, a "friendly bacteria," are emerging as "super probiotics" and "future foods" designed to "do more good than harm" for overall health.
Collapse
Affiliation(s)
- Musaalbakri Abdul Manan
- Food Science and Technology Research Centre, Malaysian Agricultural Research and Development Institute (MARDI), MARDI Headquarters, Persiaran MARDI-UPM, Serdang, Selangor, Malaysia
| |
Collapse
|
2
|
Han J, Ren Y, Zhang P, Fang C, Yang L, Zhou S, Ji Z. The effectiveness of treatment with probiotics in preventing necrotizing enterocolitis and related mortality: results from an umbrella meta-analysis on meta-analyses of randomized controlled trials. BMC Gastroenterol 2025; 25:245. [PMID: 40217146 PMCID: PMC11987312 DOI: 10.1186/s12876-025-03788-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 03/17/2025] [Indexed: 04/15/2025] Open
Abstract
INTRODUCTION Probiotic supplementation has been proposed as a preventive measure for necrotizing enterocolitis (NEC) in preterm infants. This umbrella meta-analysis assesses the effects of probiotics, including single-strain and multi-strain formulations, on NEC and related mortality. METHODS A comprehensive search was conducted in PubMed, Scopus, ISI Web of Science, and Embase for studies up to August 2024. The AMSTAR2 tool assessed the quality of included studies. Meta-analysis studies were selected based on the PICOS framework, focusing on preterm neonates (< 37-week gestation), probiotic supplementation (single-strain or multi-strain), placebo or standard care comparison, and outcomes of NEC and mortality. Pooled relative risks (RR) and odds ratios (OR) with 95% confidence intervals (CI) were calculated using random-effects models. RESULTS Overall, 35 eligible studies were included into the study. Twenty-six and 32 probiotic intervention arms used single- and multi-strain probiotics, respectively. The findings revealed that probiotics decreased NEC significantly (ESRR: 0.51; 95% CI: 0.46, 0.55, p < 0.001, and ESOR: 0.59; 95%CI: 0.48, 0.72, P < 0.001), and mortality rate (ESRR: 0.72; 95% CI: 0.68, 0.76, P < 0.001, and ESOR: 0.77; 95%CI: 0.70, 0.84, p < 0.001). CONCLUSION The present review suggests that supplementation with probiotics reduced NEC and related mortality. Probiotic supplementation can be recognized as a NEC-preventing approach in preterm and very preterm infants, particularly Multi-strain probiotics.
Collapse
Affiliation(s)
- Jiaju Han
- Department of Gastrointestinal Surgery, Taizhou Hospital, Wenzhou Medical University, No.105 Westgate Street, Linhai, 317000, China
| | - Yufeng Ren
- Department of Gastrointestinal Surgery, Taizhou Hospital, Wenzhou Medical University, No.105 Westgate Street, Linhai, 317000, China.
| | - Peini Zhang
- Department of Gastrointestinal Surgery, Taizhou Hospital, Wenzhou Medical University, No.105 Westgate Street, Linhai, 317000, China
| | - Chengfeng Fang
- Department of Gastrointestinal Surgery, Taizhou Hospital, Wenzhou Medical University, No.105 Westgate Street, Linhai, 317000, China
| | - Leilei Yang
- Department of Gastrointestinal Surgery, Taizhou Hospital, Wenzhou Medical University, No.105 Westgate Street, Linhai, 317000, China
| | - Shenkang Zhou
- Department of Gastrointestinal Surgery, Taizhou Hospital, Wenzhou Medical University, No.105 Westgate Street, Linhai, 317000, China
| | - Zhiqing Ji
- Department of Gastrointestinal Surgery, Taizhou Hospital, Wenzhou Medical University, No.105 Westgate Street, Linhai, 317000, China
| |
Collapse
|
3
|
Mosiej W, Długosz E, Kruk M, Zielińska D. Immunomodulatory Properties of Live and Thermally-Inactivated Food-Origin Lactic Acid Bacteria-In Vitro Studies. Mol Nutr Food Res 2025:e70047. [PMID: 40166824 DOI: 10.1002/mnfr.70047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 03/03/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025]
Abstract
The study investigates the strain-specific immunomodulatory properties of live and thermally-inactivated (TI) lactic acid bacteria (LAB) derived from traditional Polish fermented foods, focusing on their potential as probiotics and postbiotics. LAB strains, known for their role in food fermentation, were assessed for their ability to influence cytokine production in THP-1 macrophages, maintain intestinal epithelial barrier integrity in Caco-2 monolayers, exhibit antioxidant activity, and produce specific organic acids and sugars. The research demonstrated that live LAB strains significantly upregulated the anti-inflammatory cytokine IL-10, particularly under inflammatory conditions, while TI strains exhibited notable antioxidant and anti-inflammatory properties. TI strains showed a greater ability to protect epithelial barrier function and reduce pro-inflammatory cytokine secretion than live strains, suggesting a promising role for postbiotics. The findings underscore the potential of LAB from fermented foods, demonstrating that postbiotic derivatives can differently influence inflammation compared to live bacteria, highlighting their potential as immune-enhancing agents, capable of modulating immune responses and offering therapeutic benefits against inflammation-related disorders. However, the limitations of in vitro models highlight the need for further in vivo and clinical studies to validate these effects and fully uncover the health benefits of these LAB strains for humans.
Collapse
Affiliation(s)
- Wioletta Mosiej
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Science - SGGW, Warsaw, Poland
| | - Ewa Długosz
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Science - SGGW, Warsaw, Poland
| | - Marcin Kruk
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Science - SGGW, Warsaw, Poland
| | - Dorota Zielińska
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Science - SGGW, Warsaw, Poland
| |
Collapse
|
4
|
Oyovwi MO, Udi OA. The Gut-Brain Axis and Neuroinflammation in Traumatic Brain Injury. Mol Neurobiol 2025; 62:4576-4590. [PMID: 39466574 DOI: 10.1007/s12035-024-04585-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024]
Abstract
Traumatic brain injury (TBI) is a major global disability and mortality cause, with the gut-brain axis playing a crucial role in its pathophysiology. Neuroinflammation, triggered by microglia and astrocytes, contributes to neuronal damage and cognitive impairment. This paper aims to explore the relationship between the gut-brain axis and neuroinflammation in TBI and its potential implications for therapeutic interventions. A comprehensive review of the literature was conducted using PubMed, MEDLINE, and Google Scholar databases. Studies investigating the gut-brain axis, neuroinflammation, and TBI were included. Evidence suggests that TBI disrupts the gut-brain axis, leading to alterations in gut microbiota composition, intestinal permeability, and immune responses. These gut-related changes promote the activation of microglia and astrocytes in the central nervous system, contributing to neuroinflammation and neuronal damage. Conversely, interventions that modulate gut microbiota or reduce intestinal permeability have been shown to attenuate neuroinflammation and improve cognitive outcomes in TBI models. The gut-brain axis plays a significant role in the pathogenesis of neuroinflammation following TBI. Targeting the gut-brain axis through interventions that restore gut homeostasis and reduce intestinal permeability holds promise as a novel therapeutic strategy for mitigating neuroinflammation and improving cognitive function in TBI patients. Further research is needed to elucidate the specific mechanisms involved and to develop effective therapies based on this understanding.
Collapse
Affiliation(s)
- Mega Obukohwo Oyovwi
- Department of Physiology, Faculty of Basic Medical Sciences, Adeleke University, Osun State, Ede, Nigeria.
| | - Onoriode Andrew Udi
- Department of Human Anatomy, Federal University Otuoke, Bayelsa State, Nigeria
| |
Collapse
|
5
|
Parkhill M, Salmaso N, D'Angiulli A, Lee V, Aguilar-Valles A. Emerging autism and Fragile X syndrome treatments. Trends Pharmacol Sci 2025; 46:357-371. [PMID: 40102109 DOI: 10.1016/j.tips.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/12/2025] [Accepted: 02/18/2025] [Indexed: 03/20/2025]
Abstract
The limitations of current symptom-focused treatments drive the urgent need for effective therapies for autism and Fragile X syndrome (FXS). Currently, no approved pharmacological interventions target the core symptoms of these disorders. Advances in understanding the underlying biology of autism and FXS make this an important time to explore novel options. Indeed, several treatments have recently been tested in clinical trials, with promising results in treating core symptoms of autism and FXS. We focus on emerging interventions, such as gut microbiome therapies, anti-inflammatory approaches, bumetanide, phosphodiesterase 4D inhibitors, and endocannabinoid modulators. We also discuss factors, such as disorder heterogeneity, which may have contributed to poor efficacy in previously failed late-phase trials and impact recent trials, emphasizing the need for personalized treatment approaches.
Collapse
Affiliation(s)
- Michael Parkhill
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Natalina Salmaso
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada; Department of Health Sciences, Carleton University, Ottawa, ON, Canada; Ottawa Brain and Mind Institute, Ottawa, ON, Canada
| | - Amedeo D'Angiulli
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada; Neurodevelopmental Health Unit, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Vivian Lee
- Department of Psychology, Carleton University, Ottawa, ON, Canada
| | | |
Collapse
|
6
|
Cercamondi CI, Bendik I, Eckhardt E, Mak T, Seifert N, Kuratli K, Richard N, Tamasi B, Mussler B, Wintergerst E. A Postbiotic Derived from Lactobacillaceae Protects Intestinal Barrier Function in a Challenge Model Using Colon Organoid Tubules. Foods 2025; 14:1173. [PMID: 40238399 PMCID: PMC11988720 DOI: 10.3390/foods14071173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/20/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
Postbiotics may help strengthen intestinal barrier function. This study assessed the effects of a postbiotic derived from Limosilactobacillus fermentum and Lactobacillus delbrueckii subsp. lactis on epithelial barrier and cytokine production. Human-derived colon tubules were cultured on chips for 15 days. On day 8, the epithelial barrier was disrupted with 0.7 μM afatinib. Postbiotic doses of 5, 10, or 20 mg/mL were added on days 6, 8, 11, and 13. Trans-epithelial electrical resistance (TEER) was measured on days 6, 8, 11, 13, and 15, along with phase contrast imaging. Cytokine levels were measured on day 13. All three postbiotic concentrations resulted in better TEER recovery on day 15 vs. the control (p < 0.001). On day 13, 10 and 20 mg/mL increased TEER (p < 0.001), but only 20 mg/mL did on day 11 (p < 0.05). Phase imaging confirmed the dose-dependent effect. The 20 mg/mL dose more effectively reduced CCL2, CX3CL1, CXCL1, CXCL5, IL-8, IL-11, and IL-4 than the other doses (p < 0.01), and 10 mg/mL more effectively reduced CCL2, CXCL1, CXCL10, IL-10, IL-11, and IL-23 than 5 mg/mL (p < 0.01). In a colonic organoid model, the Lactobacillaceae-derived postbiotic prevented drug-induced epithelial damage, enhanced recovery, and modulated cytokine secretion towards a more anti-inflammatory profile in a dose-dependent manner.
Collapse
Affiliation(s)
- Colin I. Cercamondi
- DSM-Firmenich AG, Wurmisweg 576, 4303 Kaiseraugst, Switzerland; (I.B.); (E.E.); (T.M.); (N.S.); (K.K.); (N.R.); (B.T.); (B.M.); (E.W.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Murgiano M, Bartocci B, Puca P, di Vincenzo F, Del Gaudio A, Papa A, Cammarota G, Gasbarrini A, Scaldaferri F, Lopetuso LR. Gut Microbiota Modulation in IBD: From the Old Paradigm to Revolutionary Tools. Int J Mol Sci 2025; 26:3059. [PMID: 40243712 PMCID: PMC11988433 DOI: 10.3390/ijms26073059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/18/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
Inflammatory bowel diseases (IBDs) are chronic inflammatory disorders primarily comprising two main conditions: ulcerative colitis and Crohn's disease. The gut microbiota's role in driving inflammation in IBD has garnered significant attention, yet the precise mechanisms through which the microbiota influences IBD pathogenesis remain largely unclear. Given the limited therapeutic options for IBD, alternative microbiota-targeted therapies-including prebiotics, probiotics, postbiotics, and symbiotics-have been proposed. While these approaches have shown promising results, microbiota modulation is still mainly considered an adjunct therapy to conventional treatments, with a demonstrated impact on patients' quality of life. Fecal microbiota transplantation (FMT), already approved for treating Clostridioides difficile infection, represents the first in a series of innovative microbiota-based therapies under investigation. Microbial biotherapeutics are emerging as personalized and cutting-edge tools for IBD management, encompassing next-generation probiotics, bacterial consortia, bacteriophages, engineered probiotics, direct metabolic pathway modulation, and nanotherapeutics. This review explores microbial modulation as a therapeutic strategy for IBDs, highlighting current approaches and examining promising tools under development to better understand their potential clinical applications in managing intestinal inflammatory disorders.
Collapse
Affiliation(s)
- Marco Murgiano
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (B.B.); (P.P.); (F.d.V.); (A.D.G.); (A.P.); (G.C.); (A.G.); (F.S.)
| | - Bianca Bartocci
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (B.B.); (P.P.); (F.d.V.); (A.D.G.); (A.P.); (G.C.); (A.G.); (F.S.)
| | - Pierluigi Puca
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (B.B.); (P.P.); (F.d.V.); (A.D.G.); (A.P.); (G.C.); (A.G.); (F.S.)
- Medicina Interna e Gastroenterologia, CEMAD Centro Malattie dell’Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
| | - Federica di Vincenzo
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (B.B.); (P.P.); (F.d.V.); (A.D.G.); (A.P.); (G.C.); (A.G.); (F.S.)
| | - Angelo Del Gaudio
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (B.B.); (P.P.); (F.d.V.); (A.D.G.); (A.P.); (G.C.); (A.G.); (F.S.)
| | - Alfredo Papa
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (B.B.); (P.P.); (F.d.V.); (A.D.G.); (A.P.); (G.C.); (A.G.); (F.S.)
- Medicina Interna e Gastroenterologia, CEMAD Centro Malattie dell’Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
| | - Giovanni Cammarota
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (B.B.); (P.P.); (F.d.V.); (A.D.G.); (A.P.); (G.C.); (A.G.); (F.S.)
- Medicina Interna e Gastroenterologia, CEMAD Centro Malattie dell’Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (B.B.); (P.P.); (F.d.V.); (A.D.G.); (A.P.); (G.C.); (A.G.); (F.S.)
- Medicina Interna e Gastroenterologia, CEMAD Centro Malattie dell’Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
| | - Franco Scaldaferri
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (B.B.); (P.P.); (F.d.V.); (A.D.G.); (A.P.); (G.C.); (A.G.); (F.S.)
- Medicina Interna e Gastroenterologia, CEMAD Centro Malattie dell’Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
| | - Loris Riccardo Lopetuso
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (B.B.); (P.P.); (F.d.V.); (A.D.G.); (A.P.); (G.C.); (A.G.); (F.S.)
- Dipartimento di Scienze della Vita, della Salute e delle Professioni Sanitarie, Università degli Studi Link, 00165 Rome, Italy
| |
Collapse
|
8
|
Abranches FF, Genova JL, Hu P, Santana JP, Rocha GC. Effects of monoglyceride blend on performance and intestinal health status of piglets fed diets without growth promoters. Sci Rep 2025; 15:10285. [PMID: 40133511 PMCID: PMC11937294 DOI: 10.1038/s41598-025-88587-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/29/2025] [Indexed: 03/27/2025] Open
Abstract
The study aimed to evaluate the effects of supplementing monoglyceride blend in diets without growth promoters on performance, diarrhea occurrence, blood profile, intestinal morphology and pH, mRNA expression of nutrient transporters, inflammatory markers, antioxidant enzymes, and junction proteins in weaned piglets. Forty piglets were randomly allocated to five groups fed the following diets: control (C), or supplemented with 0.75 g/kg of a blend of fatty acids in powder form (PA), or with 3.00 g/kg of a blend of fatty acids in powder form (HPA), or with 0.50 g/kg of a blend of fatty acids in liquid form (LA), or with 2.00 g/kg of a blend of fatty acids in liquid form (HLA). The LA and PA diets reduced (P < 0.05) the occurrence of diarrhea. The pH of intestinal contents was reduced (P < 0.05) in piglets fed monoglycerides blend. Fecal E. coli count tended (0.05 ≤ P < 0.1) to be reduced in piglets receiving all supplemented diets. LA diet increased (P < 0.05) villus height in the duodenum, while others tended to increase it (0.05 ≤ P < 0.1). In the jejunum, all supplemented diets increased (P < 0.05) the goblet cell proportion. In the ileum, PA diet reduced (P < 0.05) crypt depth and increased (P < 0.05) villus: crypt ratio, and PA, HPA, and HLA diets increased (P < 0.05) goblet cell proportion. In the ileum, HPA and LA diets tended to reduce (0.05 ≤ P < 0.1) crypt depth and Peyer's patch. In the jejunum, LA and HLA diets increased (P < 0.05) the expression of Occludin and HPA increased the expression of Interleukin-10. In conclusion, the supplementation with a monoglyceride blend improves intestinal health and morphology, and local immune response in piglets fed diets without growth promoters.
Collapse
Affiliation(s)
- F F Abranches
- Departament of Animal Science, Universidade Federal de Viçosa, Viçosa, 36570-900, MG, Brazil
- Muscle Biology and Nutrigenomics Laboratory, Universidade Federal de Viçosa, Viçosa, 36570-900, MG, Brazil
| | - J L Genova
- Departament of Animal Science, Universidade Federal de Viçosa, Viçosa, 36570-900, MG, Brazil
- Muscle Biology and Nutrigenomics Laboratory, Universidade Federal de Viçosa, Viçosa, 36570-900, MG, Brazil
| | - P Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - J P Santana
- Departament of Animal Science, Universidade Federal de Viçosa, Viçosa, 36570-900, MG, Brazil
- Muscle Biology and Nutrigenomics Laboratory, Universidade Federal de Viçosa, Viçosa, 36570-900, MG, Brazil
| | - G C Rocha
- Departament of Animal Science, Universidade Federal de Viçosa, Viçosa, 36570-900, MG, Brazil.
- Muscle Biology and Nutrigenomics Laboratory, Universidade Federal de Viçosa, Viçosa, 36570-900, MG, Brazil.
| |
Collapse
|
9
|
Ramesh A, Srinivasan D, Subbarayan R, Chauhan A, Krishnamoorthy L, Kumar J, Krishnan M, Shrestha R. Enhancing Colorectal Cancer Treatment: The Role of Bifidobacterium in Modulating Gut Immunity and Mitigating Capecitabine-Induced Toxicity. Mol Nutr Food Res 2025:e70023. [PMID: 40109200 DOI: 10.1002/mnfr.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/22/2025]
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer-related mortality globally and presents significant challenges in treatment and patient care. Capecitabine, a widely used prodrug of 5-fluorouracil (5-FU), offers targeted delivery with reduced systemic toxicity compared to traditional chemotherapies. However, capacitabine is associated with adverse effects, such as hand-foot syndrome, gastrointestinal issues, and mucositis. Emerging evidence suggests that probiotics, particularly Bifidobacterium, play a pivotal role in gut microbiota modulation, promoting anti-inflammatory cytokines and short-chain fatty acids, such as butyrate, which possess both intestinal protective and anti-cancer properties. In this review, we explored the potential of Bifidobacterium to improve chemotherapy outcomes by mitigating inflammation and enhancing mucosal immunity in CRC patients. Furthermore, we demonstrated in silico approaches, including molecular docking and protein-protein interaction analysis, for Bifidobacterium and Toll-like receptor 2 (TLR-2), a key mediator of intestinal immunity. Docking results revealed strong binding affinity, suggesting the activation of anti-inflammatory pathways. Notably, this interaction enhanced IL-10 production while reducing pro-inflammatory cytokines, such as IL-6 and TNF-α, fostering gut homeostasis and mitigating chronic inflammation, a key driver of CRC progression. Therefore, future research should focus on personalized probiotics and validating their synergy with chemotherapy and immunotherapy to improve CRC treatment outcomes.
Collapse
Affiliation(s)
- Aswathi Ramesh
- Centre for Advanced Biotherapeutics and Regenerative Medicine, Faculty of Research, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Dhasarathdev Srinivasan
- Centre for Advanced Biotherapeutics and Regenerative Medicine, Faculty of Research, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Rajasekaran Subbarayan
- Centre for Advanced Biotherapeutics and Regenerative Medicine, Faculty of Research, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Ankush Chauhan
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Loganathan Krishnamoorthy
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Jeevan Kumar
- Department of Biomedical Sciences, The Apollo University, Chittoor, Andhra Pradesh, India
| | - Madhan Krishnan
- Faculty of Research, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Rupendra Shrestha
- Department of Natural and Applied Sciences, Nexus Institute of Research and Innovation (NIRI), Lalitpur, Nepal
| |
Collapse
|
10
|
Ou H, Huang H, Xu Y, Lin H, Wang X. Systematic druggable genome-wide Mendelian randomization to identify therapeutic targets and dominant flora for ulcerative colitis. Pharmacol Res 2025; 213:107662. [PMID: 39978659 DOI: 10.1016/j.phrs.2025.107662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 02/03/2025] [Accepted: 02/14/2025] [Indexed: 02/22/2025]
Abstract
The relationship and mechanism among gut microbiota (GM), metabolites and active ulcerative colitis (UC) are unclear. This study aims to infer the causal relationship between druggable-genes and active UC using Mendelian randomization (MR) and bioinformatics methods. The "microbiota-target" and "microbiota- metabolite" network was constructed to screen the microorganisms and metabolites associated with active UC, and the mechanism of GM, metabolites and active-UC was analyzed. These findings were verified through molecular docking, molecular dynamics (MD) simulations and co-localization analysis. Subsequently, the effects of key GM and targets on mice with UC induced by dextran sulfate sodium (DSS) was investigated. Our findings indicated that four drug targets (IFN-γ, IL24, CXCR6, PRKCZ) are closely associated with the risk of active UC, with IL24 specifically found to be colocalized with UC. These four targets were significantly correlated with differences of immune cell infiltration in active-UC. Faecalibacterium prausnitzii (F. prausnitzii) was predicted to inhibit IFN-γ and promote the remission of active UC. Additionally, seven GM were identified to be associated with the risk of active UC. Molecular docking and MD further confirmed the stable interactions between IFN-γ and metabolites of F. prausnitzii. We also verified the alleviating effect of F. prausnitzii on DSS-induced UC mice. The result indicated that F. prausnitzii can reduce inflammatory cell infiltration and goblet cell death in the colon, lower myeloperoxidase activity, and downregulate IFN-γ expression levels. This study revealed that GM can modify the immune microenvironment of active UC, providing new ideas for the prevention and treatment of UC.
Collapse
Affiliation(s)
- Haiya Ou
- Department of Gastroenterology, Shenzhen Bao'an Chinese Medicine Hospital, the Seventh Clinical College of Guangzhou University of Chinese Medicine, Shenzhen 518133, China.
| | - Hongshu Huang
- Department of Gastroenterology, Shenzhen Bao'an Chinese Medicine Hospital, the Seventh Clinical College of Guangzhou University of Chinese Medicine, Shenzhen 518133, China.
| | - Yiqi Xu
- Department of Gastroenterology, Shenzhen Bao'an Chinese Medicine Hospital, the Seventh Clinical College of Guangzhou University of Chinese Medicine, Shenzhen 518133, China.
| | - Haixiong Lin
- School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, China; Center for Neuromusculoskeletal Restorative Medicine & Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, 999077, Hong Kong.
| | - Xiaotong Wang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
11
|
Javanshir N, Ebrahimi V, Mazhary Z, Saadaie Jahromi B, Zuo T, Fard NA. The antiviral effects and underlying mechanisms of probiotics on viral infections. Microb Pathog 2025; 200:107377. [PMID: 39952625 DOI: 10.1016/j.micpath.2025.107377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
In public health emergencies, viral diseases like influenza and COVID-19 have become a major concern. One of the proposed responses to this concern is the use of probiotics. Probiotics have a potent role in arming our bodies to combat viral infections. They affect the innate and adaptive immune systems in various ways. Accumulating studies has shown that probiotics can reduce the possibility of infection or the duration of respiratory symptoms by modulating the functions of the immune system. This review aims to summarize the impacts of probiotics on respiratory viral infections and their potential antiviral mechanisms. Therefore, we herein discussed probiotics in relation to lung immunity, distinct types of respiratory viral infections (VRIs), including influenza, rhinoviruses, respiratory syncytial virus, and upper respiratory viral infections, and lastly, probiotics and their effects on COVID-19. However, more studies are needed to explore the antiviral mechanisms of probiotics.
Collapse
Affiliation(s)
- Nahid Javanshir
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| | - Valimohammad Ebrahimi
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| | - Zakie Mazhary
- Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | | | - Tao Zuo
- Key Laboratory of Human Microbiome and Chronic Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, China; Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China.
| | - Najaf Allahyari Fard
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| |
Collapse
|
12
|
Kerezoudi EN, Saxami G, Zervakis GI, Pletsa V, Brummer RJ, Kyriacou A, Rangel I. Effects of In Vitro Fermented Pleurotus eryngii on Intestinal Barrier Integrity and Immunomodulation in a Lipopolysaccharide-Induced Colonic Model. Biomedicines 2025; 13:430. [PMID: 40002843 PMCID: PMC11853518 DOI: 10.3390/biomedicines13020430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/05/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Background: This study investigates the impact of fermentation supernatants (FSs) from Pleurotus eryngii whole mushrooms (PEWS), as well as its subcomponents, digested (PEWSD) and extracted (PEWSE) forms, on intestinal barrier function and immune modulation in lipopolysaccharide (LPS) -stimulated Caco-2 cells. Methods: Gene expression of tight junction (TJs) genes, cytokines, and key immune/metabolic receptors was assessed via qRT-PCR, while cytokine protein levels were measured using ELISA to explore post-transcriptional regulation. Results: LPS challenge significantly downregulated TJs zonula occludens-1 (ZO-1,) occludin, and claudin-1, compromising epithelial integrity. Treatment with FS-PEWS notably restored ZO-1 and occludin expression, outperforming FS-PEWSD and FS-PEWSE, which only partially mitigated the LPS-induced damage. FS-PEWS further demonstrated potent immunomodulatory effects, upregulating anti-inflammatory IL-10 and pro-inflammatory cytokines such as IL-8 and TNF-α. The activation of key receptors like TLR-2 and mTOR suggests that FS-PEWS modulates critical immune and metabolic pathways, such as NF-kB signaling, to maintain immune homeostasis. Although mRNA expression of pro-inflammatory cytokines was altered, no corresponding protein release was detected, suggesting potential post-transcriptional regulation. Conclusions: FS-PEWS preserves intestinal barrier integrity and modulates immune responses, particularly in low-grade inflammation, highlighting the whole food matrix's role in enhancing its bioactivity and functional food potential.
Collapse
Affiliation(s)
- Evangelia N. Kerezoudi
- Nutrition-Gut-Brain Interactions Research Centre, School of Medical Sciences, Örebro University, 70182 Örebro, Sweden; (R.J.B.); (I.R.)
- Department of Nutrition and Dietetics, Harokopio University, 17676 Athens, Greece; (G.S.); (A.K.)
| | - Georgia Saxami
- Department of Nutrition and Dietetics, Harokopio University, 17676 Athens, Greece; (G.S.); (A.K.)
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization—DIMITRA (ELGO-DIMITRA), Sof. Venizelou 1, 14123 Athens, Greece
| | - Georgios I. Zervakis
- Laboratory of General and Agricultural Microbiology, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece;
| | - Vasiliki Pletsa
- National Hellenic Research Foundation, Institute of Chemical Biology, 11635 Athens, Greece;
| | - Robert J. Brummer
- Nutrition-Gut-Brain Interactions Research Centre, School of Medical Sciences, Örebro University, 70182 Örebro, Sweden; (R.J.B.); (I.R.)
| | - Adamantini Kyriacou
- Department of Nutrition and Dietetics, Harokopio University, 17676 Athens, Greece; (G.S.); (A.K.)
| | - Ignacio Rangel
- Nutrition-Gut-Brain Interactions Research Centre, School of Medical Sciences, Örebro University, 70182 Örebro, Sweden; (R.J.B.); (I.R.)
| |
Collapse
|
13
|
Castellanos-Ruiz D, Ojeda-Borbolla JG, Ruiz-García OV, Peña-Corona SI, Martínez-Peña AA, Ibarra-Rubio ME, Gavilanes-Ruiz M, Mendoza-Rodríguez CA. Uterine Microbiota and Bisphenols: Novel Influencers in Reproductive Health. J Xenobiot 2025; 15:26. [PMID: 39997369 PMCID: PMC11856463 DOI: 10.3390/jox15010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/10/2025] [Accepted: 01/24/2025] [Indexed: 02/26/2025] Open
Abstract
Infertility affects 8-12% of couples worldwide, and 30-75% of preclinical pregnancy losses are due to a failure during the implantation process. Exposure to endocrine disruptors, like bisphenols, among others, has been associated with the increase in infertility observed in the past decades. An increase in infertility has correlated with exposure to endocrine disruptors like bisphenols. The uterus harbors its own microbiota, and changes in this microbiota have been linked to several gynecological conditions, including reproductive failure. There are no studies on the effects of bisphenols on the uterine-microbiota composition, but some inferences can be gleaned by looking at the gut. Bisphenols can alter the gut microbiota, and the molecular mechanism by which gut microbiota regulates intestinal permeability involves Toll-like receptors (TLRs) and tight junction (TJ) proteins. TJs participate in embryo implantation in the uterus, but bisphenol exposure disrupts the expression and localization of TJ proteins. The aim of this review is to summarize the current knowledge on the microbiota of the female reproductive tract (FRT), its association with different reproductive diseases-particularly reproductive failure-the effects of bisphenols on microbiota composition and reproductive health, and the molecular mechanisms regulating uterine-microbiota interactions crucial for embryo implantation. This review also highlights existing knowledge gaps and outlines research needs for future risk assessments regarding the effects of bisphenols on reproduction.
Collapse
Affiliation(s)
- Dafne Castellanos-Ruiz
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico (M.E.I.-R.)
| | - J. Gerardo Ojeda-Borbolla
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico (M.E.I.-R.)
| | - Olga V. Ruiz-García
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico (M.E.I.-R.)
| | - Sheila I. Peña-Corona
- Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Annia A. Martínez-Peña
- División de Ciencias de la Salud, Universidad Intercontinental, A. C., Ciudad de México 14420, Mexico
| | - María Elena Ibarra-Rubio
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico (M.E.I.-R.)
| | - Marina Gavilanes-Ruiz
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - C. Adriana Mendoza-Rodríguez
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico (M.E.I.-R.)
| |
Collapse
|
14
|
Marcari AB, Paiva AD, Simon CR, Dos Santos MESM. Leaky Gut Syndrome: An Interplay Between Nutrients and Dysbiosis. Curr Nutr Rep 2025; 14:25. [PMID: 39890659 DOI: 10.1007/s13668-025-00614-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2025] [Indexed: 02/03/2025]
Abstract
PURPOSE OF REVIEW The gut microbiota (GM) is directly related to health and disease. In this context, disturbances resulting from excessive stress, unbalanced diet, alcohol abuse, and antibiotic use, among other factors, can contribute to microbiota imbalance, with significant impacts on host health. This review provides a comprehensive examination of the literature on the influence of diet on dysbiosis and increased intestinal permeability over the past five years. RECENT FINDINGS Diet can be considered one of the main modulating factors of GM, impacting its composition and functionality. Excessive consumption of simple carbohydrates, saturated fats, and processed foods appears to be directly linked to dysbiosis, which can lead to intestinal hyperpermeability and leaky gut syndrome. On the other hand, diets primarily composed of food groups such as nuts, vegetables, fruits, fish, and poultry in moderate quantities, along with limited consumption of red and processed meats, are associated with a more diverse, healthier, and beneficial GM for the host. It is worth noticing that the use of prebiotics and probiotics, omega-3 supplementation, polyunsaturated fatty acids, and vitamins A, B, C, D, and E can positively modulate the intestinal microbiota by altering its metabolic activity, microbial composition, and improve intestinal barrier function. This review points to a new perspective regarding individualized dietary intervention and the need to integrate it into several aspects of cellular biology, biochemistry, and microbiology to prescribe more effective diets and thus contribute to patients' comprehensive health.
Collapse
Affiliation(s)
- Ana Beatriz Marcari
- Department of Biochemistry, Pharmacology and Physiology, Federal University of Triângulo Mineiro, Praça Manoel Terra, 330 - Abadia, Uberaba, MG, 38025-015, Brazil
| | - Aline Dias Paiva
- Department of Microbiology, Immunology and Parasitology, Federal University of Triângulo Mineiro, Praça Manoel Terra, 330 - Abadia, Uberaba, MG, 38025-015, Brazil
| | - Claudio Roberto Simon
- Department of Structural Biology, Federal University of Triângulo Mineiro, Praça Manoel Terra, 330 - Abadia, Uberaba, MG, 38025-015, Brazil
| | - Maria Emilia Soares Martins Dos Santos
- Department of Biochemistry, Pharmacology and Physiology, Federal University of Triângulo Mineiro, Praça Manoel Terra, 330 - Abadia, Uberaba, MG, 38025-015, Brazil.
| |
Collapse
|
15
|
Senthil Kumar KJ, Gokila Vani M, Dakpa G, Wang SY. Dietary limonene promotes gastrointestinal barrier function via upregulating tight/adherens junction proteins through cannabinoid receptor type-1 antagonistic mechanism and alters cellular metabolism in intestinal epithelial cells. Biofactors 2025; 51:e2106. [PMID: 39143845 DOI: 10.1002/biof.2106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 01/25/2024] [Indexed: 08/16/2024]
Abstract
Limonene, a dietary monocyclic monoterpene commonly found in citrus fruits and various aromatic plants, has garnered increasing interest as a gastrointestinal protectant. This study aimed to assess the effects of limonene on intestinal epithelial barrier function and investigate the involvement of cannabinoid receptor type-1 (CB1R) in vitro. Additionally, the study focused on examining the metabolomic changes induced by limonene in the intestinal epithelial cells (Caco-2). Initial analysis of transepithelial electrical resistance (TEER) revealed that both l-limonene and d-limonene, isomers of limonene, led to a dose- and time-dependent increase in TEER in normal cells and those inflamed by pro-inflammatory cytokines mixture (CytoMix). Furthermore, both types of limonene reduced CytoMix-induced paracellular permeability, as demonstrated by a decrease in Lucifer yellow flux. Moreover, d-limonene and l-limonene treatment increased the expression of tight junction molecules (TJs) such as occludin, claudin-1, and ZO-1, at both the transcriptional and translational levels. d-Limonene upregulates E-cadherin, a molecule involved in adherens junctions (AJs). Mechanistic investigations demonstrated that d-limonene and l-limonene treatment significantly inhibited CB1R at the protein, while the mRNA level remained unchanged. Notably, the inhibitory effect of d-limonene on CB1R was remarkably similar to that of pharmacological CB1R antagonists, such as rimonabant and ORG27569. d-limonene also alters Caco-2 cell metabolites. A substantial reduction in β-glucose and 2-succinamate was detected, suggesting limonene may impact intestinal epithelial cells' glucose uptake and glutamate metabolism. These findings suggest that d-limonene's CB1R antagonistic property could effectively aid in the recovery of intestinal barrier damage, marking it a promising gastrointestinal protectant.
Collapse
Affiliation(s)
- K J Senthil Kumar
- Bachelor Program of Biotechnology, National Chung Hsing University, Taichung, Taiwan
- Center for General Education, National Chung Hsing University, Taichung, Taiwan
| | - M Gokila Vani
- Department of Forestry, National Chung Hsing University, Taichung, Taiwan
| | - Gyaltsen Dakpa
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Sheng-Yang Wang
- Department of Forestry, National Chung Hsing University, Taichung, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- Special Crop and Metabolome Discipline Cluster, Academy of Circle Economy, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
16
|
Tsuji K, Uchida N, Nakanoh H, Fukushima K, Haraguchi S, Kitamura S, Wada J. The Gut-Kidney Axis in Chronic Kidney Diseases. Diagnostics (Basel) 2024; 15:21. [PMID: 39795549 PMCID: PMC11719742 DOI: 10.3390/diagnostics15010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
The gut-kidney axis represents the complex interactions between the gut microbiota and kidney, which significantly impact the progression of chronic kidney disease (CKD) and overall patient health. In CKD patients, imbalances in the gut microbiota promote the production of uremic toxins, such as indoxyl sulfate and p-cresyl sulfate, which impair renal function and contribute to systemic inflammation. Mechanisms like endotoxemia, immune activation and oxidative stress worsen renal damage by activating pro-inflammatory and oxidative pathways. Insights into these mechanisms highlight the impact of gut-derived metabolites, bacterial translocation, and immune response changes on kidney health, suggesting new potential approaches for CKD treatment. Clinical applications, such as dietary interventions, prebiotics, probiotics and fecal microbiota transplantation, are promising in adjusting the gut microbiota to alleviate CKD symptoms and slow disease progression. Current research highlights the clinical relevance of the gut-kidney axis, but further study is essential to clarify these mechanisms' diagnostic biomarkers and optimize therapeutic interventions. This review emphasizes the importance of an integrated approach to CKD management, focusing on the gut microbiota as a therapeutic target to limit kidney injury.
Collapse
Affiliation(s)
- Kenji Tsuji
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Naruhiko Uchida
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Hiroyuki Nakanoh
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Kazuhiko Fukushima
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Soichiro Haraguchi
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
- Department of Nephrology, Aoe Clinic, Okayama 700-8607, Japan
| | - Shinji Kitamura
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
- Department of Nursing Science, Faculty of Health and Welfare Science, Okayama Prefectural University, Okayama 719-1197, Japan
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| |
Collapse
|
17
|
Gao R, Yue B, Lv C, Geng X, Yu Z, Wang H, Zhang B, Ai F, Wang Z, Liu D, Wang Z, Chen K, Dou W. Targeted inhibition of Gus-expressing Enterococcus faecalis to promote intestinal stem cell and epithelial renovation contributes to the relief of irinotecan chemotoxicity by dehydrodiisoeugenol. Acta Pharm Sin B 2024; 14:5286-5304. [PMID: 39807321 PMCID: PMC11725075 DOI: 10.1016/j.apsb.2024.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/25/2024] [Accepted: 07/26/2024] [Indexed: 01/16/2025] Open
Abstract
Irinotecan (CPT11) chemotherapy-induced diarrhea affects a substantial cancer population due to β-glucuronidase (Gus) converting 10-O-glucuronyl-7-ethyl-10-hydroxycamptothecin (SN38G) to toxic 7-ethyl-10-hydroxycamptothecin (SN38). Existing interventions primarily address inflammation and Gus enzyme inhibition, neglecting epithelial repair and Gus-expressing bacteria. Herein, we discovered that dehydrodiisoeugenol (DDIE), isolated from nutmeg, alleviates CPT11-induced intestinal mucositis alongside a synergistic antitumor effect with CPT11 by improving weight loss, colon shortening, epithelial barrier dysfunction, goblet cells and intestinal stem cells (ISCs) loss, and wound-healing. The anti-mucositis effect of DDIE is gut microbiota-dependent. Analysis of microbiome profiling data from clinical patients and CPT11-induced mucositis mice reveals a strong correlation between CPT11 chemotoxicity and Gus-expressing bacteria, particularly Enterococcus faecalis (E. faecalis). DDIE counters CPT11-induced augmentation of E. faecalis, leading to decreased intestinal Gus and SN38 levels. The Partial Least Squares Path Model (PLS-PM) algorithm initially links E. faecalis to dysregulated epithelial renovation. This is further validated in a 3D intestinal organoid model, in which both SN38 and E. faecalis hinder the formation and differentiation of organoids. Interestingly, colonization of E. faecalis exacerbates CPT11-induced mucositis and disturbs epithelial differentiation. Our study unveils a microbiota-driven, epithelial reconstruction-mediated action of DDIE against mucositis, proposing the 'Gus bacteria-host-irinotecan axis' as a promising target for mitigating CPT11 chemotoxicity.
Collapse
Affiliation(s)
- Ruiyang Gao
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Bei Yue
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Cheng Lv
- Centre for Chinese Herbal Medicine Drug Development Limited, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Xiaolong Geng
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhilun Yu
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hao Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Beibei Zhang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fangbin Ai
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ziyi Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Donghui Liu
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhengtao Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Kaixian Chen
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
| | - Wei Dou
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
18
|
Basnet J, Eissa MA, Cardozo LLY, Romero DG, Rezq S. Impact of Probiotics and Prebiotics on Gut Microbiome and Hormonal Regulation. GASTROINTESTINAL DISORDERS 2024; 6:801-815. [PMID: 39649015 PMCID: PMC11623347 DOI: 10.3390/gidisord6040056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2024] Open
Abstract
The gut microbiome plays a crucial role in human health by influencing various physiological functions through complex interactions with the endocrine system. These interactions involve the production of metabolites, signaling molecules, and direct communication with endocrine cells, which modulate hormone secretion and activity. As a result, the microbiome can exert neuroendocrine effects and contribute to metabolic regulation, adiposity, and appetite control. Additionally, the gut microbiome influences reproductive health by altering levels of sex hormones such as estrogen and testosterone, potentially contributing to conditions like polycystic ovary syndrome (PCOS) and hypogonadism. Given these roles, targeting the gut microbiome offers researchers and clinicians novel opportunities to improve overall health and well-being. Probiotics, such as Lactobacillus and Bifidobacterium, are live beneficial microbes that help maintain gut health by balancing the microbiota. Prebiotics, non-digestible fibers, nourish these beneficial bacteria, promoting their growth and activity. When combined, probiotics and prebiotics form synbiotics, which work synergistically to enhance the gut microbiota balance and improve metabolic, immune, and hormonal health. This integrated approach shows promising potential for managing conditions related to hormonal imbalances, though further research is needed to fully understand their specific mechanisms and therapeutic potential.
Collapse
Affiliation(s)
- Jelina Basnet
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Women’s Health Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Manar A. Eissa
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Women’s Health Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Licy L. Yanes Cardozo
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Women’s Health Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Department of Medicine, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS 39216, USA
| | - Damian G. Romero
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Women’s Health Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Samar Rezq
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Women’s Health Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
19
|
Sivri D, Şeref B, Şare Bulut M, Gezmen Karadağ M. Evaluation of the Effect of Probiotic Supplementation on Intestinal Barrier Integrity and Epithelial Damage in Colitis Disease: A Systematic Review. Nutr Rev 2024:nuae180. [PMID: 39602817 DOI: 10.1093/nutrit/nuae180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024] Open
Abstract
CONTEXT Previous reviews have focused on the effects of probiotics on colitis, but there is a need to understand their impact on barrier integrity and tight junction protein improvement in colitis. OBJECTIVE This study aimed to systematically examine the effects of probiotic use on barrier integrity in colitis disease. This study was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. DATA SOURCES A systematic search in PubMed, Web of Science, Scopus, and Cochrane databases identified 2537 articles. DATA EXTRACTION As a result of the search, 2537 articles were accessed. Study results were summarized descriptively through discussions by intervention conditions, study population, measurement methods, and key findings. The included studies were independently reviewed and all authors reached consensus on the quality and major findings from the included articles. Forty-six studies that met the inclusion criteria were analyzed within the scope of the systematic review. RESULTS Although the study primarily utilized probiotics from the Lactobacillaceae family (notably, L casei, L reuteri, L rhamnosus, L plantarum, and L pentosus) and the Bifidobacteriaceae family (notably, B breve, B animalis, and B dentium), other probiotics also demonstrated positive effects on tight junction proteins. These effects are attributed to the production of bioactive and metabolic compounds, as well as short-chain fatty acids, which combat pathogens and reduce anti-inflammatory agents. However, it was observed that the effects of these probiotics on tight junction proteins varied depending on the strain and dose. CONCLUSION The beneficial effects of probiotics on remission in inflammatory bowel disease are well documented. Studies show that probiotics generally improve intestinal barrier function, but factors such as dose, duration, and bacterial species combinations need further clarification. Additionally, comprehensive studies are needed to understand how improved barrier function affects absorption in individuals. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42023452774.
Collapse
Affiliation(s)
- Dilek Sivri
- Department of Nutrition and Dietetics, Anadolu University, Eskişehir, Türkiye
| | - Betül Şeref
- Department of Nutrition and Dietetics, Karamanoğlu Mehmetbey University, Karaman, Türkiye
| | - Melike Şare Bulut
- Department of Nutrition and Dietetics, Biruni University, Istanbul, Türkiye
| | | |
Collapse
|
20
|
Li Z, Zhou H, Liu W, Wu H, Li C, Lin F, Yan L, Huang C. Beneficial effects of duck-derived lactic acid bacteria on growth performance and meat quality through modulation of gut histomorphology and intestinal microflora in Muscovy ducks. Poult Sci 2024; 103:104195. [PMID: 39191001 PMCID: PMC11395760 DOI: 10.1016/j.psj.2024.104195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024] Open
Abstract
Duck-derived lactic acid bacteria (DDL) are a crucial beneficial bacterium in the intestines, contributing significantly to the health of ducks. However, the mechanism by which these DDL improves the growth performance and meat quality of Muscovy duck is not clear. In this study, A total of 800 male Muscovy ducks, initially weighing 50.15 ± 5.37 g, were randomly allocated into 4 groups, each with 4 replicates, consisting of 50 ducks per replicate. The control group consumed deep well water, while the experimental groups were given water supplemented with 1%, 3%, and 5% DDL (1.59×108 CFU/mL). The study duration was 70 d. The results revealed that Muscovy ducks drinks with the DDL significant reduced the feed conversion ratio (FCR) (P < 0.05) and increased the sweetness and richness of duck meat, among which the 5% drinking group has the most significant difference. Further study finding, the DDL significantly increased the height of villi, the ratio of villi height/crypt depth (V/C) on jejunum and colon, and the ratio of acidic mucus, neutral mucus, and glycogen to tissue area in both the duodenum and ileum of Muscovy ducks, and significantly decreased the tunel positive cells. Moreover, DDL significantly enhanced the abundance of genus beneficial bacterium (Bacillus, lentilactobacillus, Bacterodies, Lactobacillus) on duodenum and ileum. Additionally, drink with the DDL elevated the level of IgG in blood and the immune indices of the thymus and the fabricius bursa (P<0.05). Meanwhile, the meat composition analysis demonstrated that Muscovy duck drinks with the DDL raised the level of the saturated fatty acid rate(C12:0), and polyunsaturated fatty acid (C18:2 n-6 and C20:5 n-3,), and the monounsaturated (C18:1 n-7, and C18:1 n-9). Furthermore, correlation analysis finding that the growth performance of Muscovy ducks was positively correlated with the height of villi, the ratio of villi height/crypt depth (V/C), the abundance of genus beneficial bacterium. And the meat quality of Muscovy ducks has positively correlated with genus beneficial bacterium in intestinal, glutamic acid, saturated fatty acid rate and polyunsaturated fatty acid. This finding suggest DDL is an effective strategy to improve the growth performance and meat quality of Muscovy ducks by gut histomorphology and intestinal microflora.
Collapse
Affiliation(s)
- Zhaolong Li
- Institute of Animal Husbandry and Veterinary Medicine of Fujian Academy of Agricultural Sciences, Fujian, Fuzhou 350013, China.
| | - Haiou Zhou
- Institute of Animal Husbandry and Veterinary Medicine of Fujian Academy of Agricultural Sciences, Fujian, Fuzhou 350013, China
| | - Wenjin Liu
- Center for Animal Disease Control and Prevention of Changji Hui Autonomous Prefecture, Xinjiang, Changji 09942339853, China
| | - Huini Wu
- Institute of Animal Husbandry and Veterinary Medicine of Fujian Academy of Agricultural Sciences, Fujian, Fuzhou 350013, China
| | - Cuiting Li
- Institute of Animal Husbandry and Veterinary Medicine of Fujian Academy of Agricultural Sciences, Fujian, Fuzhou 350013, China
| | - Fengqiang Lin
- Institute of Animal Husbandry and Veterinary Medicine of Fujian Academy of Agricultural Sciences, Fujian, Fuzhou 350013, China
| | - Lu Yan
- Institute of Animal Husbandry and Veterinary Medicine of Fujian Academy of Agricultural Sciences, Fujian, Fuzhou 350013, China
| | - Chenyu Huang
- Institute of Animal Husbandry and Veterinary Medicine of Fujian Academy of Agricultural Sciences, Fujian, Fuzhou 350013, China
| |
Collapse
|
21
|
Choi H, Kwak MJ, Kang AN, Mun D, Lee S, Park MR, Oh S, Kim Y. Limosilactobacillus fermentum SLAM 216-Derived Extracellular Vesicles Promote Intestinal Maturation in Mouse Organoid Models. J Microbiol Biotechnol 2024; 34:2091-2099. [PMID: 39252638 PMCID: PMC11540603 DOI: 10.4014/jmb.2405.05028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/23/2024] [Accepted: 07/31/2024] [Indexed: 09/11/2024]
Abstract
Probiotics, when consumed in adequate amounts, can promote the health of the host and beneficially modulate the host's immunity. Particularly during the host's early life, the gut intestine undergoes a period of epithelial maturation in which epithelial cells organize into specific crypt and villus structures. This process can be mediated by the gut microbiota. Recent studies have reported that the administration of probiotics can further promote intestinal maturation in the neonatal intestine. Therefore, in this study, we investigated the effects of extracellular vesicles derived from the Limosilactobacillus fermentum SLAM 216 strain, which is an established probiotic with known immune and anti-aging effects on intestinal epithelial maturation and homeostasis, using mouse small intestinal organoids. As per our findings, treatment with L. fermentum SLAM 216-derived LF216EV (LF216EV) has significantly increased the bud number and size of organoid buds. Furthermore, extracellular vesicle (EV) treatment upregulated the expression of maturation-related genes, including Ascl2, Ephb2, Lgr5, and Sox9. Tight junctions are known to have an important role in the intestinal immune barrier, and EV treatment has significantly increased the expression of genes associated with tight junctions, such as Claudin, Muc2, Occludin, and Zo-1, indicating that it can promote intestinal development. This was supported by RNA sequencing, which revealed the upregulation of genes associated with cAMP-mediated signaling, which is known to regulate cellular processes including cell differentiation. Additionally, organoids exposed to LF216EV exhibited upregulation of genes associated with maintaining brain memory and neurotransmission, suggesting possible future functional implications.
Collapse
Affiliation(s)
- Hyejin Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Min-Jin Kwak
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - An Na Kang
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Daye Mun
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Suengwon Lee
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Mi Ri Park
- Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Sangnam Oh
- Department of Functional Food and Biotechnology, Jeonju University, Jeonju 55069, Republic of Korea
| | - Younghoon Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
22
|
Seidler Y, Rimbach G, Lüersen K, Vinderola G, Ipharraguerre IR. The postbiotic potential of Aspergillus oryzae - a narrative review. Front Microbiol 2024; 15:1452725. [PMID: 39507340 PMCID: PMC11538067 DOI: 10.3389/fmicb.2024.1452725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
The filamentous fungus Aspergillus oryzae has a long tradition in East Asian food processing. It is therefore not surprising that in recent years fermentation products of A. oryzae have attracted attention in the emerging field of postbiotics. This review aims to provide a comprehensive summary of the potential postbiotic effects of fermentation products from A. oryzae, by discussing possible mechanisms of action against the background of the molecular composition determined so far. In particular, cell wall constituents, enzymes, extracellular polymeric substances, and various metabolites found in A. oryzae fermentation preparations are described in detail. With reference to the generally assumed key targets of postbiotics, their putative beneficial bioactivities in modulating the microbiota, improving epithelial barrier function, influencing immune responses, metabolic reactions and signaling through the nervous system are assessed. Drawing on existing literature and case studies, we highlight A. oryzae as a promising source of postbiotics, particularly in the context of animal health and nutrition. Challenges and opportunities in quality control are also addressed, with a focus on the necessity for standardized methods to fully harness the potential of fungal-based postbiotics. Overall, this article sheds light on the emerging field of A. oryzae-derived postbiotics and emphasizes the need for further research to fully realize their therapeutic potential.
Collapse
Affiliation(s)
- Yvonne Seidler
- Institute of Human Nutrition and Food Science, Division of Food Science, Faculty of Agricultural and Nutritional Sciences, University of Kiel, Kiel, Germany
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, Division of Food Science, Faculty of Agricultural and Nutritional Sciences, University of Kiel, Kiel, Germany
| | - Kai Lüersen
- Institute of Human Nutrition and Food Science, Division of Food Science, Faculty of Agricultural and Nutritional Sciences, University of Kiel, Kiel, Germany
| | - Gabriel Vinderola
- Instituto de Lactología Industrial (CONICET-UNL), Faculty of Chemical Engineering, National University of Litoral, Santa Fe, Argentina
| | - Ignacio R. Ipharraguerre
- Institute of Human Nutrition and Food Science, Division of Food Science, Faculty of Agricultural and Nutritional Sciences, University of Kiel, Kiel, Germany
| |
Collapse
|
23
|
Kramberger K, Bezek Kranjc K, Jenko Pražnikar Z, Barlič-Maganja D, Kenig S. Protective Capacity of Helichrysum italicum Infusion Against Intestinal Barrier Disruption and Translocation of Salmonella Infantis. Pharmaceuticals (Basel) 2024; 17:1398. [PMID: 39459037 PMCID: PMC11510356 DOI: 10.3390/ph17101398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Helichrysum italicum is a Mediterranean plant with well-known anti-inflammatory activity, but our previous whole transcriptome analysis has found that H. italicum infusion (HII) can also affect cytoskeletal rearrangement and tight junctions. The goal of the present study was to determine if HII improves the intestinal barrier (IB) dysfunction and by what mechanism. METHODS Caco-2 cells on Transwell inserts were used as a model of IB permeability. Heat-killed (HKB) or live Salmonella Infantis bacteria were used to induce IB integrity disruption upon three different testing conditions: pre-, co-, and post-treatment with 0.2 v/v% HII. Transepithelial electrical resistance values were used as an indicator of monolayer integrity before and after all treatments, and RT-PCR was used to assess the expression of tight junction proteins (TJPs) and inflammatory cytokines known to regulate intestinal permeability. RESULTS We found that all three treatments with HII improved the HKB-induced integrity disruption and decreased the down-regulation of TJP1, OCLN, and CLDN1, with the greatest effect observed in the pre-treated cells. Treatment with HII also decreased the up-regulation of CLDN2, TNF-α, IL-1β, and IL-6. In addition, pre-treatment of Caco-2 cells with HII prevented translocation of S. Infantis but did not prevent adhesion and invasion. CONCLUSION This study showed that HII can improve inflammation-disrupted IB function by indirect modulation of mRNA expression of TJPs, especially in a preventive manner.
Collapse
Affiliation(s)
| | | | | | | | - Saša Kenig
- Faculty of Health Sciences, University of Primorska, Polje 42, 6310 Izola, Slovenia; (K.K.); (K.B.K.); (Z.J.P.); (D.B.-M.)
| |
Collapse
|
24
|
Kearns R. Gut-Brain Axis and Neuroinflammation: The Role of Gut Permeability and the Kynurenine Pathway in Neurological Disorders. Cell Mol Neurobiol 2024; 44:64. [PMID: 39377830 PMCID: PMC11461658 DOI: 10.1007/s10571-024-01496-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/13/2024] [Indexed: 10/09/2024]
Abstract
The increasing prevalence of neurological disorders such as Alzheimer's, Parkinson's, and multiple sclerosis presents a significant global health challenge. Despite extensive research, the precise mechanisms underlying these conditions remain elusive, with current treatments primarily addressing symptoms rather than root causes. Emerging evidence suggests that gut permeability and the kynurenine pathway are involved in the pathogenesis of these neurological conditions, offering promising targets for novel therapeutic and preventive strategies. Gut permeability refers to the intestinal lining's ability to selectively allow essential nutrients into the bloodstream while blocking harmful substances. Various factors, including poor diet, stress, infections, and genetic predispositions, can compromise gut integrity, leading to increased permeability. This condition facilitates the translocation of toxins and bacteria into systemic circulation, triggering widespread inflammation that impacts neurological health via the gut-brain axis. The gut-brain axis (GBA) is a complex communication network between the gut and the central nervous system. Dysbiosis, an imbalance in the gut microbiota, can increase gut permeability and systemic inflammation, exacerbating neuroinflammation-a key factor in neurological disorders. The kynurenine pathway, the primary route for tryptophan metabolism, is significantly implicated in this process. Dysregulation of the kynurenine pathway in the context of inflammation leads to the production of neurotoxic metabolites, such as quinolinic acid, which contribute to neuronal damage and the progression of neurological disorders. This narrative review highlights the potential and progress in understanding these mechanisms. Interventions targeting the kynurenine pathway and maintaining a balanced gut microbiota through diet, probiotics, and lifestyle modifications show promise in reducing neuroinflammation and supporting brain health. In addition, pharmacological approaches aimed at modulating the kynurenine pathway directly, such as inhibitors of indoleamine 2,3-dioxygenase, offer potential avenues for new treatments. Understanding and targeting these interconnected pathways are crucial for developing effective strategies to prevent and manage neurological disorders.
Collapse
Affiliation(s)
- Rowan Kearns
- Ulster University, Life and Health Sciences, Belfast, UK.
| |
Collapse
|
25
|
Li Z, Zhang T, Liu Y, Huang Y, Liu J, Wang S, Sun P, Nie Y, Han Y, Li F, Xu H. A review in two classes of hypoglycemic compounds (prebiotics and flavonoids) intervening in type 2 diabetes mellitus: Unveiling their structural characteristics and gut microbiome as key mediator. FOOD BIOSCI 2024; 61:105010. [DOI: 10.1016/j.fbio.2024.105010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
26
|
Zhang L, Liu X, Liu Y, Cheng X, Xu M, Qu H, Wang W, Gu R, Chen D. Prebiotics enhance the immunomodulatory effect of Limosilactobacillus fermentum DALI02 by regulating intestinal homeostasis. Food Sci Nutr 2024; 12:7521-7532. [PMID: 39479622 PMCID: PMC11521649 DOI: 10.1002/fsn3.4361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 11/02/2024] Open
Abstract
The colonization ability of Limosilactobacillus fermentum DALI02 and the promoting effect of fermented prebiotics have been studied. This study aims to evaluate the systemic immunomodulatory effects of DALI02 and DALI02 + Prebiotics on cyclophosphamide-induced immunosuppressed rats. We found that DALI02 and DALI02 + Prebiotics, especially DALI02 + Prebiotics, exhibited significant restorative effects on the immunocompromised state in rats (p < .05). Specifically, both of them promoted the recovery of body weight and immune organ function, enhanced the proliferative capacity of immune cells, and effectively reduced the levels of interleukin 6 (IL-6) and tumor necrosis factor-α (TNF-α). Furthermore, both of them significantly reduced the levels of lipopolysaccharide (LPS) and D-lactic acid in the blood (p < .05). Principal coordinate analysis (PCoA), principal component analysis (PCA), and unsupervised cluster analysis revealed that DALI02 and DALI02 + Prebiotics group were more similar to the blank group at the genus level of the gut microbiota. At the level of short-chain fatty acids (SCFAs), DALI02 + Prebiotics and blank group belonged to Cluster 3. These results suggested that the intervention with DALI02 and DALI02 + Prebiotics effectively modulated the structure of the gut microbiota, and DALI02 + Prebiotics restored the dysregulation of SCFAs. In summary, DALI02 and DALI02 + Prebiotics possess immunomodulatory functions, with the latter showing superior effects.
Collapse
Affiliation(s)
- Longfei Zhang
- College of Food Science and TechnologyYangzhou UniversityYangzhouChina
- Key Laboratory of Dairy Biotechnology and Safety ControlYangzhouChina
| | - Xiaoxiao Liu
- College of Food Science and TechnologyYangzhou UniversityYangzhouChina
| | - Yang Liu
- College of Food Science and TechnologyYangzhou UniversityYangzhouChina
- Key Laboratory of Dairy Biotechnology and Safety ControlYangzhouChina
| | - Xinyi Cheng
- College of Food Science and TechnologyYangzhou UniversityYangzhouChina
- Key Laboratory of Dairy Biotechnology and Safety ControlYangzhouChina
| | - Mingze Xu
- College of Food Science and TechnologyYangzhou UniversityYangzhouChina
- Key Laboratory of Dairy Biotechnology and Safety ControlYangzhouChina
| | - Hengxian Qu
- College of Food Science and TechnologyYangzhou UniversityYangzhouChina
- Key Laboratory of Dairy Biotechnology and Safety ControlYangzhouChina
| | - Wenqiong Wang
- College of Food Science and TechnologyYangzhou UniversityYangzhouChina
- Key Laboratory of Dairy Biotechnology and Safety ControlYangzhouChina
| | - Ruixia Gu
- College of Food Science and TechnologyYangzhou UniversityYangzhouChina
- Key Laboratory of Dairy Biotechnology and Safety ControlYangzhouChina
| | - Dawei Chen
- College of Food Science and TechnologyYangzhou UniversityYangzhouChina
- Key Laboratory of Dairy Biotechnology and Safety ControlYangzhouChina
| |
Collapse
|
27
|
Yoon KN, Yang J, Yeom SJ, Kim SS, Park JH, Song BS, Eun JB, Park SH, Lee JH, Kim HB, Lee JH, Kim JK. Lactiplantibacillus argentoratensis AGMB00912 protects weaning mice from ETEC infection and enhances gut health. Front Microbiol 2024; 15:1440134. [PMID: 39318427 PMCID: PMC11420142 DOI: 10.3389/fmicb.2024.1440134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/30/2024] [Indexed: 09/26/2024] Open
Abstract
Maintaining a healthy intestinal environment, optimal epithelial barrier integrity, and balanced gut microbiota composition are essential for the growth performance of weaning pigs. We identified Lactiplantibacillus argentoratensis AGMB00912 (LA) in healthy porcine feces as having antimicrobial activity against pathogens and enhanced short-chain fatty acid (SCFA) production. Herein, we assess the protective role of LA using a weaning mouse model with enterotoxigenic Escherichia coli (ETEC) infection. LA treatment improves feed intake and weight gain and alleviates colon shortening. Furthermore, LA inhibits intestinal damage, increases the small intestine villus height compared with the ETEC group, and enhances SCFA production. Using the Kyoto Encyclopedia of Genes and Genomes and other bioinformatic tools, including InterProScan and COGNIZER, we validated the presence of SCFA-producing pathways of LA and Lactiplantibacillus after whole genome sequencing. LA mitigates ETEC-induced shifts in the gut microbiota, decreasing the proportion of Escherichia and Enterococcus and increasing SCFA-producing bacteria, including Kineothrix, Lachnoclostridium, Roseuburia, Lacrimispora, Jutongia, and Blautia. Metabolic functional prediction analysis revealed enhanced functions linked to carbohydrate, amino acid, and vitamin biosynthesis, along with decreased functions associated with infectious bacterial diseases compared to the ETEC group. LA mitigates the adverse effects of ETEC infection in weaning mice, enhances growth performance and intestinal integrity, rebalances gut microbiota, and promotes beneficial metabolic functions. These findings validate the functionality of LA in a small animal model, supporting its potential application in improving the health and growth performance of weaning pigs.
Collapse
Affiliation(s)
- Ki-Nam Yoon
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Republic of Korea
- Department of Food Science and Technology, Graduate School of Chonnam National University, Gwangju, Republic of Korea
| | - Jihye Yang
- Departments of Food and Animal Biotechnology and Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| | - Seo-Joon Yeom
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Republic of Korea
| | - Sang-Su Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Republic of Korea
| | - Jong-Heum Park
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Republic of Korea
| | - Beom-Seok Song
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Republic of Korea
| | - Jong-Bang Eun
- Department of Food Science and Technology, Graduate School of Chonnam National University, Gwangju, Republic of Korea
| | - Seung-Hwan Park
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Republic of Korea
| | - Ju Huck Lee
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Republic of Korea
| | - Hyeun Bum Kim
- Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea
| | - Ju-Hoon Lee
- Departments of Food and Animal Biotechnology and Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| | - Jae-Kyung Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Republic of Korea
| |
Collapse
|
28
|
Wu XQ, Chen XM, Pan YY, Sun C, Tian JX, Qian AD, Niu XT, Kong YD, Li M, Wang GQ. Changes of intestinal barrier in the process of intestinal inflammation induced by Aeromonas hydrophila in snakehead (Channa argus). FISH & SHELLFISH IMMUNOLOGY 2024; 152:109775. [PMID: 39019126 DOI: 10.1016/j.fsi.2024.109775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/19/2024]
Abstract
Bacterial intestinal inflammation frequently occurs in cultured fish. Nevertheless, research on intestinal barrier dysfunction in the process of intestinal inflammation is deficient. In this study, we explored the changes of intestinal inflammation induced by Aeromonas hydrophila (A. hydrophila) in snakehead and the relationship between intestinal barrier and inflammation. Snakehead [(13.05 ± 2.39) g] were infected via anus with A. hydrophila. Specimens were collected for analysis at 0, 1, 3, 7 and 21 d post-injection. The results showed that with the increase of exposure time, the hindgut underwent stages of normal function, damage, damage deterioration, repair and recovery. Relative to 0 d, the levels of IL-1β and TNF-α in serum, and the expression of nod1, tlr1, tlr5, nf-κb, tnf-α and il-1β in intestine were significantly increased, and showed an upward then downward pattern over time. However, the expression of tlr2 and il-10 were markedly decreased, and showed the opposite trend. In addition, with the development of intestinal inflammation, the diversity and richness of species, and the levels of phylum and genus in intestine were obviously altered. The levels of trypsin, LPS, AMS, T-SOD, CAT, GPx, AKP, LZM and C3 in intestine were markedly reduced, and displayed a trend of first decreasing and then rebounding. The ultrastructure observation showed that the microvilli and tight junction structure of intestinal epithelial cells experienced normal function initially, then damage, and finally recovery over time. The expression of claudin-3 and zo-1 in intestine were significantly decreased, and showed a trend of first decreasing and then rebounding. Conversely, the expression of mhc-i, igm, igt and pigr in intestine were markedly increased, and displayed a trend of increasing first and then decreasing. The above results revealed the changes in intestinal barrier during the occurrence and development of intestinal inflammation, which provided a theoretical basis for explaining the relationship between the two.
Collapse
Affiliation(s)
- Xue-Qin Wu
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Key Laboratory for Animal Production, Product Quality and Safety of Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Xiu-Mei Chen
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Key Laboratory for Animal Production, Product Quality and Safety of Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| | - Yi-Yu Pan
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Key Laboratory for Animal Production, Product Quality and Safety of Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Chuang Sun
- Fisheries Technology Extension Station of Baicheng, Jilin Province, Baicheng, 137000, China
| | - Jia-Xin Tian
- College of Life Sciences, Tonghua Normal University, Tonghua, 134002, China
| | - Ai-Dong Qian
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Key Laboratory for Animal Production, Product Quality and Safety of Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Xiao-Tian Niu
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Key Laboratory for Animal Production, Product Quality and Safety of Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Yi-di Kong
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Key Laboratory for Animal Production, Product Quality and Safety of Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Min Li
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Key Laboratory for Animal Production, Product Quality and Safety of Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Gui-Qin Wang
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Key Laboratory for Animal Production, Product Quality and Safety of Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
29
|
Liu Z, Bai P, Wang L, Zhu L, Zhu Z, Jiang L. Clostridium tyrobutyricum in Combination with Chito-oligosaccharides Modulate Inflammation and Gut Microbiota for Inflammatory Bowel Disease Treatment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18497-18506. [PMID: 39099138 DOI: 10.1021/acs.jafc.4c03486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Synbiotics, the combination of probiotics and prebiotics, are thought to be a pragmatic approach for the treatment of various diseases, including inflammatory bowel disease (IBD). The synergistic therapeutic effects of probiotics and prebiotics remain underexplored. Clostridium tyrobutyricum, a short-chain fatty acid (SCFA) producer, has been recognized as a promising probiotic candidate that can offer health benefits. In this study, the treatment effects of synbiotics containing C. tyrobutyricum and chitooligosaccharides (COSs) on IBD were evaluated. The results indicated that the synbiotic supplement effectively relieved inflammation and restored intestinal barrier function. Additionally, the synbiotic supplement could contribute to the elimination of reactive oxygen species (ROS) and improve the production of SCFAs through the SCFAs-producer of C. tyrobutyricum. Furthermore, such the synbiotic could also regulate the composition of gut microbiota. These findings underscore the potential of C. tyrobutyricum and COSs as valuable living biotherapeutics for the treatment of intestinal-related diseases.
Collapse
Affiliation(s)
- Zhenlei Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Pengfei Bai
- Nanjing Foreign Language School, Nanjing 210008, China
| | - Lefei Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Liying Zhu
- College of Chemical and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhengming Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
30
|
Victoria Obayomi O, Folakemi Olaniran A, Olugbemiga Owa S. Unveiling the role of functional foods with emphasis on prebiotics and probiotics in human health: A review. J Funct Foods 2024; 119:106337. [DOI: 10.1016/j.jff.2024.106337] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
31
|
Li S, Liu Z, Zhang Q, Su D, Wang P, Li Y, Shi W, Zhang Q. The Antidiabetic Potential of Probiotics: A Review. Nutrients 2024; 16:2494. [PMID: 39125375 PMCID: PMC11313988 DOI: 10.3390/nu16152494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Diabetes has become one of the most prevalent global epidemics, significantly impacting both the economy and the health of individuals. Diabetes is associated with numerous complications, such as obesity; hyperglycemia; hypercholesterolemia; dyslipidemia; metabolic endotoxemia; intestinal barrier damage; insulin-secretion defects; increased oxidative stress; and low-grade, systemic, and chronic inflammation. Diabetes cannot be completely cured; therefore, current research has focused on developing various methods to control diabetes. A promising strategy is the use of probiotics for diabetes intervention. Probiotics are a class of live, non-toxic microorganisms that can colonize the human intestine and help improve the balance of intestinal microbiota. In this review, we summarize the current clinical studies on using probiotics to control diabetes in humans, along with mechanistic studies conducted in animal models. The primary mechanism by which probiotics regulate diabetes is improved intestinal barrier integrity, alleviated oxidative stress, enhanced immune response, increased short-chain fatty acid production, etc. Therefore, probiotic supplementation holds great potential for the prevention and management of diabetes.
Collapse
Affiliation(s)
- Shiming Li
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (S.L.); (Z.L.); (Q.Z.); (P.W.); (Y.L.)
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100193, China
| | - Zichao Liu
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (S.L.); (Z.L.); (Q.Z.); (P.W.); (Y.L.)
| | - Qi Zhang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (S.L.); (Z.L.); (Q.Z.); (P.W.); (Y.L.)
| | - Dan Su
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, USA;
| | - Pengjie Wang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (S.L.); (Z.L.); (Q.Z.); (P.W.); (Y.L.)
| | - Yixuan Li
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (S.L.); (Z.L.); (Q.Z.); (P.W.); (Y.L.)
| | - Wenbiao Shi
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (S.L.); (Z.L.); (Q.Z.); (P.W.); (Y.L.)
| | - Qian Zhang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (S.L.); (Z.L.); (Q.Z.); (P.W.); (Y.L.)
| |
Collapse
|
32
|
Malinská N, Grobárová V, Knížková K, Černý J. Maternal-Fetal Microchimerism: Impacts on Offspring's Immune Development and Transgenerational Immune Memory Transfer. Physiol Res 2024; 73:315-332. [PMID: 39027950 PMCID: PMC11299782 DOI: 10.33549/physiolres.935296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/06/2024] [Indexed: 07/27/2024] Open
Abstract
Maternal-fetal microchimerism is a fascinating phenomenon in which maternal cells migrate to the tissues of the offspring during both pregnancy and breastfeeding. These cells primarily consist of leukocytes and stem cells. Remarkably, these maternal cells possess functional potential in the offspring and play a significant role in shaping their immune system development. T lymphocytes, a cell population mainly found in various tissues of the offspring, have been identified as the major cell type derived from maternal microchimerism. These T lymphocytes not only exert effector functions but also influence the development of the offspring's T lymphocytes in the thymus and the maturation of B lymphocytes in the lymph nodes. Furthermore, the migration of maternal leukocytes also facilitates the transfer of immune memory across generations. Maternal microchimerism has also been observed to address immunodeficiencies in the offspring. This review article focuses on investigating the impact of maternal cells transported within maternal microchimerism on the immune system development of the offspring, as well as elucidating the effector functions of maternal cells that migrate through the placenta and breast milk to reach the offspring.
Collapse
Affiliation(s)
- N Malinská
- Laboratory of Cell Immunology, Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic.
| | | | | | | |
Collapse
|
33
|
Sun Y, Liu P, Guo W, Guo J, Chen J, Xue X, Duan C, Wang Z, Yan X. Study on the alleviative effect of Lactobacillus plantarum on Eimeria falciformis infection. Infect Immun 2024; 92:e0013024. [PMID: 38842306 PMCID: PMC11324035 DOI: 10.1128/iai.00130-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/16/2024] [Indexed: 06/07/2024] Open
Abstract
Coccidia of the genus Eimeria are specialized intracellular parasitic protozoa that cause severe coccidiosis when they infect their hosts. Animals infected with Eimeria develop clinical symptoms, such as anorexia, diarrhea, and hematochezia, which can even cause death. Although the current preferred regimen for the treatment of coccidiosis is antibiotics, this treatment strategy is limited by the ban on antibiotics and the growing problem of drug resistance. Therefore, the exploration of alternative methods for controlling coccidiosis has attracted much attention. Lactobacillus plantarum has been shown to have many beneficial effects. In this study, L. plantarum M2 was used as a research object to investigate the effect of L. plantarum on intestinal inflammation induced by infection with Eimeria falciformis in mice by detecting indicators, such as oocyst output, serum cytokines, and the intestinal microbiota. Compared with that in the infection group, the percent weight loss of the mice that were administered with L. plantarum M2 was significantly reduced (P < 0.05). Supplemented L. plantarum M2 and probiotics combined with diclazuril can reduce the total oocyst output significantly (P < 0.05, P < 0.001). L. plantarum M2 had outstanding performance in maintaining intestinal barrier function, and the levels of the mucin MUC1 and the tight junction protein E-cadherin were significantly elevated (P < 0.01, P < 0.05). Studies have shown that probiotic supplementation can alleviate adverse reactions after infection and significantly improve intestinal barrier function. In addition, probiotics combined with diclazuril could optimize the partial efficacy of diclazuril, which not only enhanced the effect of antibiotics but also alleviated their adverse effects. This study expands the application of probiotics, provides new ideas for alternative strategies for coccidia control, and suggests a basis for related research on lactobacilli antagonizing intracellular pathogen infection.IMPORTANCECoccidia of the genus Eimeria are specialized intracellular parasitic protozoa, and the current preferred regimen for the treatment of coccidiosis is antibiotics. However, due to antibiotic bans and drug resistance, the exploration of alternative methods for controlling coccidiosis has attracted much attention. In this work, we focused on Lactobacillus plantarum M2 and found that probiotic supplementation can alleviate adverse reactions after infection and improve intestinal barrier function. This study proposes the possibility of using lactic acid bacteria to control coccidiosis, and its potential mechanism needs further exploration.
Collapse
Affiliation(s)
- Yufei Sun
- College of Food
Science and Engineering, Inner Mongolia Agricultural
University, Hohhot,
Inner Mongolia, China
| | - Pufang Liu
- College of Food
Science and Engineering, Inner Mongolia Agricultural
University, Hohhot,
Inner Mongolia, China
| | - Wenhui Guo
- College of Food
Science and Engineering, Inner Mongolia Agricultural
University, Hohhot,
Inner Mongolia, China
| | - Jun Guo
- College of Food
Science and Engineering, Inner Mongolia Agricultural
University, Hohhot,
Inner Mongolia, China
| | - Jia Chen
- College of Food
Science and Engineering, Inner Mongolia Agricultural
University, Hohhot,
Inner Mongolia, China
| | - Xinyu Xue
- College of Food
Science and Engineering, Inner Mongolia Agricultural
University, Hohhot,
Inner Mongolia, China
| | - Chao Duan
- College of Food
Science and Engineering, Inner Mongolia Agricultural
University, Hohhot,
Inner Mongolia, China
| | - Zixuan Wang
- College of Food
Science and Engineering, Inner Mongolia Agricultural
University, Hohhot,
Inner Mongolia, China
| | - Xinlei Yan
- College of Food
Science and Engineering, Inner Mongolia Agricultural
University, Hohhot,
Inner Mongolia, China
| |
Collapse
|
34
|
Dubey D, Kar B, Biswaroy P, Rath G, Mishra D, Ghosh G. The prospect of probiotics in -induced peptic ulcer disease: A perspective review. IP INTERNATIONAL JOURNAL OF MEDICAL MICROBIOLOGY AND TROPICAL DISEASES 2024; 10:87-94. [DOI: 10.18231/j.ijmmtd.2024.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/05/2024] [Indexed: 01/05/2025]
Abstract
The relationship between the human host and the intestinal microbiota is dynamic and symbiotic. This review examines whether there is a correlation between a disruption in host-microbial interactions caused by an alternative composition of gut microbiota and an increased susceptibility to peptic ulcer disease, mainly when hazardous bacteria are present in the coexistence. Peptic ulcers frequently arise from infections caused by (), a pathogen that evades the host's immune system and establishes a lifelong colony. This protracted infection gives rise to chronic inflammation, which substantially raises the risk of developing gastric ulcers and gastric cancer. One of the significant obstacles in the treatment of infection is antibiotic resistance, which develops as a result of improper antibiotic treatment for bacterial infections. Such misuse of antibiotics also results in dysbiosis. In such cases, probiotics become an essential tool that restores the balance of the normal flora in the body and eliminates critical infections. This results in probiotics being utilized extensively for ulcer treatment and potentially serving a dual purpose in combating infection; consequently, antibiotic usage will be reduced, and human health will advance.
Collapse
Affiliation(s)
| | - Biswakanth Kar
- Siksha O Anusandhan Deemed to be University, School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Odisha, India
| | - Prativa Biswaroy
- Siksha O Anusandhan Deemed to be University, School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Odisha, India
| | - Goutam Rath
- Siksha O Anusandhan Deemed to be University, School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Odisha, India
| | | | - Goutam Ghosh
- Siksha O Anusandhan Deemed to be University, School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Odisha, India
| |
Collapse
|
35
|
Hu Y, Tang J, Xie Y, Xu W, Zhu W, Xia L, Fang J, Yu D, Liu J, Zheng Z, Zhou Q, Shou Q, Zhang W. Gegen Qinlian decoction ameliorates TNBS-induced ulcerative colitis by regulating Th2/Th1 and Tregs/Th17 cells balance, inhibiting NLRP3 inflammasome activation and reshaping gut microbiota. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:117956. [PMID: 38428658 DOI: 10.1016/j.jep.2024.117956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chinese herbal medicine Gegen Qinlian Decoction (GQD) has been clinically shown to be an effective treatment of ulcerative colitis (UC) in China. However, the underlying mechanism of GQD's anti-ulcerative colitis properties and its effect on gut microbiota still deserve further exploration. AIM OF THE STUDY This study observed the regulatory effects of GQD on Th2/Th1 and Tregs/Th17 cells balance, the NOD-like receptor family pyrin domain containing 3 (NLRP3) infammasome and gut microbiota in TNBS-induced UC in BALB/c mice. MATERIALS AND METHODS 61 main chemical compounds in the GQD were determined by UPLC-Q-TOF/MS. The UC BALB/c model was established by intrarectal administration of trinitrobenzene sulfonic acid (TNBS), and GQD was orally administered at low and high dosages of 2.96 and 11.83 g/kg/day, respectively. The anti-inflammatory effects of GQD for ulcerative colitis were evaluated by survival rate, body weight, disease activity index (DAI) score, colonic weight and index, spleen index, hematoxylin-eosin (HE) staining and histopathological scores. Flow cytometry was used to detect the percentage of CD4, Th1, Th2, Th17 and Tregs cells. The levels of Th1-/Th2-/Th17-/Tregs-related inflammatory cytokines and additional proinflammatory cytokines (IL-1β, IL-18) were detected by CBA, ELISA, and RT-PCR. The expressions of GATA3, T-bet, NLRP3, Caspase-1, IL-Iβ, Occludin and Zonula occludens-1 (ZO-1) on colon tissues were detected by Western blot and RT-PCR. Transcriptome sequencing was performed using colon tissue and 16S rRNA gene sequencing was performed on intestinal contents. Fecal microbiota transplantation (FMT) was employed to assess the contribution of intestinal microbiota and its correlation with CD4 T cells and the NLRP3 inflammasome. RESULTS GQD increased the survival rate of TNBS-induced UC in BALB/c mice, and significantly improved their body weight, DAI score, colonic weight and index, spleen index, and histological characteristics. The intestinal barrier dysfunction was repaired after GQD administration through promoting the expression of tight junction proteins (Occludin and ZO-1). GQD restored the balance of Th2/Th1 and Tregs/Th17 cells immune response of colitis mice, primarily inhibiting the increase in Th2/Th1 ratio and their transcription factor production (GATA3 and T-bet). Morever, GQD changed the secretion of Th1-/Th2-/Th17-/Tregs-related cytokines (IL-2, IL-12, IL-5, IL-13, IL-6, IL-10, and IL-17A) and reduced the expressions of IL-1β, IL-18. Transcriptome results suggested that GQD could also remodel the immune inflammatory response of colitis by inhibiting NOD-like receptor signaling pathway, and Western blot, immunohistochemistry and RT-PCR further revealed that GQD exerted anti-inflammatory effects by inhibiting the NLRP3 inflammasome, such as down-regulating the expression of NLRP3, Caspase-1 and IL-1β. More interestingly, GQD regulated gut microbiota dysbiosis, suppressed the overgrowth of conditional pathogenic gut bacteria like Helicobacter, Proteobacteria, and Mucispirillum, while the probiotic gut microbiota, such as Lactobacillus, Muribaculaceae, Ruminiclostridium_6, Akkermansia, and Ruminococcaceae_unclassified were increased. We further confirmed that GQD-treated gut microbiota was sufficient to relieve TNBS-induced colitis by FMT, involving the modulation of Th2/Th1 and Tregs/Th17 balance, inhibition of NLRP3 inflammasome activation, and enhancement of colonic barrier function. CONCLUSIONS GQD might alleviate TNBS-induced UC via regulating Th2/Th1 and Tregs/Th17 cells Balance, inhibiting NLRP3 inflammasome and reshaping gut microbiota, which may provide a novel strategy for patients with colitis.
Collapse
Affiliation(s)
- Yingnan Hu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jingyi Tang
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yongfeng Xie
- Department of Burn Plastic Surgery, Huai'an Hospital Affiliated to Xuzhou Medical University, Jiangsu, 223001, China
| | - Wenjun Xu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Weihan Zhu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Linying Xia
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Jintao Fang
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Dian Yu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jingjing Liu
- Department of General Surgery, Haining City Central Hospital, Jiaxing, 314408, China
| | - Zhipeng Zheng
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China
| | - Qiujing Zhou
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China
| | - Qiyang Shou
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China.
| | - Wei Zhang
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, China; The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China.
| |
Collapse
|
36
|
Abdollahzadeh Baghaei T, Katebi K, Jafari Tayebpour M, Hashemi M. Effect of probiotics on pain and ulceration in patients undergoing fixed orthodontic treatment. J Dent Res Dent Clin Dent Prospects 2024; 18:152-156. [PMID: 39071213 PMCID: PMC11282199 DOI: 10.34172/joddd.41128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/26/2024] [Indexed: 07/30/2024] Open
Abstract
Background Ulcers caused by mucosal irritation of fixed orthodontic appliances remain an unsolved problem, and more research is needed to improve the pain caused by orthodontic appliances to provide more comfortable treatment for these patients. This study investigated the effect of probiotic Lactogum on pain and ulceration in patients undergoing fixed orthodontic treatment. Methods In this study, 64 patients over 12 years of age and candidates for fixed orthotic treatment were divided into case and control groups (n=32). The control group received orthodontic waxes, and the case group received the same orthodontic waxes and "Lactogum" probiotic lozenges from the beginning of the treatment. The number of ulcers, the amount of pain, and the location of the ulcer were recorded and compared between the two groups. An independent-sample t-test was used to compare the pain level and number of ulcers between the two groups. A significance level of 0.05 was considered for all tests. SPSS 17 was used for data analysis. Results The mean number of ulcers in the case group was significantly lower than the control group (P<0.001). The mean pain in the case group was significantly lower than in the control group (P<0.001). The most frequent location of ulcers was the buccal mucosa, followed by the labial mucosa. Conclusion Lactogum probiotic lozenges can reduce traumatic oral ulcers and pain levels in patients undergoing fixed orthodontic treatment. However, larger clinical trials are encouraged to confirm these findings.
Collapse
Affiliation(s)
| | - Katayoun Katebi
- Department of Oral and Maxillofacial Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohsen Hashemi
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
37
|
Wang Z, Huang Y, Yang T, Song L, Xiao Y, Chen Y, Chen M, Li M, Ren Z. Lactococcus cremoris D2022 alleviates hyperuricemia and suppresses renal inflammation via potential gut-kidney axis. Food Funct 2024; 15:6015-6027. [PMID: 38747642 DOI: 10.1039/d4fo00118d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Hyperuricemia (HUA) is a widespread metabolic disorder. Probiotics have drawn increasing attention as an adjunctive treatment with fewer side effects. However, thus far the effective strains are limited and the mechanisms for their serum uric acid (SUA)-lowering effect are not well understood. Along this line, we conducted the current study using a hyperuricemia mouse model induced by potassium oxonate and adenine. A novel strain of Lactococcus cremoris named D2022 was identified to have significant SUA-lowering capability. Lactococcus cremoris D2022 significantly reduced SUA levels by inhibiting uric acid synthesis and regulating uric acid transportation. It was also found that Lactococcus cremoris D2022 alleviated HUA-induced renal inflammatory injury involving multiple signaling pathways. By focusing on the expression of NLRP3-related inflammatory genes, we found correlations between the expression levels of these genes and free fatty acid receptors (FFARs). In addition, oral administration of Lactococcus cremoris D2022 increased short-chain fatty acids (SCFAs) in cecal samples, which may be one of the mechanisms by which oral probiotics alleviate renal inflammation. Serum untargeted metabolomics showed changes in a variety of serum metabolites associated with purine metabolism and inflammation after oral administration of Lactococcus cremoris D2022, further confirming its systemic bioactivity. Finally, it was proved that Lactococcus cremoris D2022 improved intestinal barrier function. In conclusion, Lactococcus cremoris D2022 can alleviate HUA and HUA-induced nephropathy by increasing the production of SCFAs in the gut and systemic metabolism.
Collapse
Affiliation(s)
- Zhihuan Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center of Disease Control and Prevention, Beijing, China.
| | - Yuanming Huang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center of Disease Control and Prevention, Beijing, China.
| | - Tao Yang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center of Disease Control and Prevention, Beijing, China.
| | - Liqiong Song
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center of Disease Control and Prevention, Beijing, China.
| | - Yuchun Xiao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center of Disease Control and Prevention, Beijing, China.
| | - Yulu Chen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center of Disease Control and Prevention, Beijing, China.
| | - Mengshan Chen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center of Disease Control and Prevention, Beijing, China.
- School of Medicine, Nankai University, Tianjin, China
| | - Mingding Li
- Maiyata Institute for Beneficial Bacteria, Shaoxing, Zhejiang, China
| | - Zhihong Ren
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center of Disease Control and Prevention, Beijing, China.
| |
Collapse
|
38
|
Zou X, Liu Y, Cui M, Wan Q, Chu X. The in vitro intestinal cell model: different co-cultured cells create different applications. J Drug Target 2024; 32:529-543. [PMID: 38537662 DOI: 10.1080/1061186x.2024.2333877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/16/2024] [Indexed: 06/20/2024]
Abstract
As a vitro absorption model, the Caco-2 cells originate from a human colon adenocarcinomas and can differentiate into a cell layer with enterocyte-like features. The Caco-2 cell model is popularly applied to explore drug transport mechanisms, to evaluate the permeability of drug and to predict the absorption of drugs or bioactive substances in the gut. However, there are limitations to the application of Caco-2 cell model due to lack of a mucus layer, the long culture period and the inability to accurately simulate the intestinal environment. The most frequent way to expand the Caco-2 cell model and address its limitations is by co-culturing it with other cells or substances. This article reviews the culture methods and applications of 3D and 2D co-culture cell models established around Caco-2 cells. It also concludes with a summary of model strengths and weaknesses.
Collapse
Affiliation(s)
- Xingyu Zou
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yue Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Mengyao Cui
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Qing Wan
- Tongling Institutes for Food and Drug Control, Tongling, China
| | - Xiaoqin Chu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China
- Engineering Technology Research Center of Modern Pharmaceutical Preparation, Anhui Province, Hefei, China
| |
Collapse
|
39
|
Correia AM, Genova JL, Kim SW, Abranches FF, Rocha GC. Autolyzed yeast and sodium butyrate supplemented alone to diets promoted improvements in performance, intestinal health and nutrient transporter in weaned piglets. Sci Rep 2024; 14:11885. [PMID: 38789563 PMCID: PMC11126410 DOI: 10.1038/s41598-024-62551-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
This study investigated the effects of supplemental nucleotides, autolyzed yeast (Saccharomyces cerevisiae), and sodium butyrate in diets for nursery pigs on growth performance, diarrhea incidence, blood profile, intestinal morphology, mRNA expression of nutrient transporters, inflammatory markers, antioxidant profile, and tight junction proteins in the small intestine. One hundred eighty 21-day-old pigs (5.17 ± 0.57 kg) were assigned in a randomized block design to 1 of 4 dietary treatments: (1) CON: control, basal diet, (2) NUC: CON + nucleotides, (3) YSC: CON + lysed yeast S. cerevisiae, (4) ASB: CON + acidifier sodium butyrate. Pigs were fed for 24 days, phase 1 (21-32 days) and 2 (32-45 days). During phase 1, YSC and ASB improved average daily gain (ADG) and feed conversion (FC) compared with CON. At the overall period, ASB improved ADG and YSC improved FC compared with CON. The NUC diet did not affect growth performance. The ASB increased ileal villus height compared to CON. The YSC and ASB reduced the number of Peyer's patches in the ileum compared with CON. The YSC increased mRNA expression of nutrient transporters (SMCT2, MCT1, and PepT1), tight junction proteins (OCL and ZO-1), antioxidants (GPX), and IL1-β in the jejunum compared with CON. The ASB increased mRNA expression of nutrient transporters (SGLT1 and MCT1), tight junction proteins (OCL and ZO-1), and antioxidants (GPX and SOD) compared with CON. In conclusion, autolyzed yeast and sodium butyrate promoted growth performance by improving the integrity of the intestinal barrier, the mRNA expression of nutrient transporters, and antioxidant enzymes in the jejunum of nursery pigs whereas supplementation of nucleotides did not show such effects.
Collapse
Affiliation(s)
- Amanda Medeiros Correia
- Muscle Biology and Nutrigenomics Laboratory, Department of Animal Science, Universidade Federal de Viçosa, Minas Gerais, Brazil
| | - Jansller Luiz Genova
- Muscle Biology and Nutrigenomics Laboratory, Department of Animal Science, Universidade Federal de Viçosa, Minas Gerais, Brazil
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Fernanda Fialho Abranches
- Muscle Biology and Nutrigenomics Laboratory, Department of Animal Science, Universidade Federal de Viçosa, Minas Gerais, Brazil
| | - Gabriel Cipriano Rocha
- Muscle Biology and Nutrigenomics Laboratory, Department of Animal Science, Universidade Federal de Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
40
|
Huang Y, Zhang P, Han S, Hu B, Zhang Q, He H. Effect of Enteromorpha polysaccharides on gut-lung axis in mice infected with H5N1 influenza virus. Virology 2024; 593:110031. [PMID: 38401339 DOI: 10.1016/j.virol.2024.110031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 02/11/2024] [Accepted: 02/16/2024] [Indexed: 02/26/2024]
Abstract
Enteromorpha polysaccharides (EPPs) have been reported to have antiviral and anti-inflammatory properties. To explore the effect of EPPs on H5N1-infected mice, mice were pretreated with EPPs before being infected with the H5N1 influenza virus intranasally. H5N1 infection resulted in body-weight loss, pulmonary and intestinal damage, and an imbalance of gut microbiota in mice. As a result of the inclusion of EPPs, the body weight of mice recovered and pathological damage to the lung and intestine was reduced. EPPs also diminished inflammation by drastically lowering the expression of proinflammatory cytokines in lungs and intestines. H5N1 infection reduced bacterial diversity, and the abundance of pathogenic bacteria such as Desulfovibrio increased. However, the beneficial bacteria Alistipes rebounded in the groups which received EPPs before the infection. The modulation of the gut-lung axis may be related to the mechanism of EPPs in antiviral and anti-inflammatory responses. EPPs have shown potential in protecting the host from the influenza A virus infection.
Collapse
Affiliation(s)
- Yanyi Huang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Peiyang Zhang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shuyi Han
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Bin Hu
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Qingxun Zhang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hongxuan He
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
41
|
Chen Y, Feng S, Li Y, Zhang C, Chao G, Zhang S. Gut microbiota and intestinal immunity-A crosstalk in irritable bowel syndrome. Immunology 2024; 172:1-20. [PMID: 38174581 DOI: 10.1111/imm.13749] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
Irritable bowel syndrome (IBS), one of the most prevalent functional gastrointestinal disorders, is characterized by recurrent abdominal pain and abnormal defecation habits, resulting in a severe healthcare burden worldwide. The pathophysiological mechanisms of IBS are multi-factorially involved, including food antigens, visceral hypersensitivity reactions, and the brain-gut axis. Numerous studies have found that gut microbiota and intestinal mucosal immunity play an important role in the development of IBS in crosstalk with multiple mechanisms. Therefore, based on existing evidence, this paper elaborates that the damage and activation of intestinal mucosal immunity and the disturbance of gut microbiota are closely related to the progression of IBS. Combined with the application prospect, it also provides references for further in-depth exploration and clinical practice.
Collapse
Affiliation(s)
- Yuxuan Chen
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuyan Feng
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ying Li
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chi Zhang
- Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, China
| | - Guanqun Chao
- Department of General Practice, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, China
| | - Shuo Zhang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
42
|
Huang X, Nie S, Fu X, Nan S, Ren X, Li R. Exploring the prebiotic potential of hydrolyzed fucoidan fermented in vitro with human fecal inocula: Impact on microbiota and metabolome. Int J Biol Macromol 2024; 267:131202. [PMID: 38556225 DOI: 10.1016/j.ijbiomac.2024.131202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/17/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Fucoidan is widely applied in food and pharmaceutical industry for the promising bioactivities. Low-molecular weight hydrolyzed fucoidan has gained attention for its beneficial health effects. Here, the modulation on microbiome and metabolome features of fucoidan and its acidolyzed derivatives (HMAF, 1.5-20 kDa; LMAF, <1.5 kDa) were investigated through human fecal cultures. Fucose is the main monosaccharide component in fucoidan and LMAF, while HMAF contains abundant glucuronic acid. LMAF fermentation resulted in the highest production of short-chain fatty acids, with acetate and propionate reaching maximum levels of 13.46 mmol/L and 11.57 mmol/L, respectively. Conversely, HMAF exhibited a maximum butyrate production of 9.28 mmol/L. Both fucoidan and acidolyzed derivatives decreased the abundance of Escherichia-Shigella and Klebsiella in human fecal cultures. Fucoidan and HMAF prefer to improve the abundance of Bacteroides. However, LMAF showed positive influence on Bifidobacterium, Lactobacillus, and Megamonas. Untargeted metabolome indicated that fucoidan and its derivatives mainly altered the metabolic level of lipids, indole, and their derivatives, with fucoidan and HMAF promoting higher level of indole-3-propionic acid and indole-3-carboxaldehyde compared to LMAF. Considering the chemical structural differences, this study suggested that hydrolyzed fucoidan can provide potential therapeutic applications for targeted regulation of microbial communities.
Collapse
Affiliation(s)
- Xinru Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang 330047, Jiangxi, People's Republic of China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Resources, Nanchang University, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang 330047, Jiangxi, People's Republic of China
| | - Xiaodan Fu
- State Key Laboratory of Food Science and Resources, Nanchang University, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang 330047, Jiangxi, People's Republic of China.
| | - Shihao Nan
- State Key Laboratory of Food Science and Resources, Nanchang University, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang 330047, Jiangxi, People's Republic of China
| | - Xinmiao Ren
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, People's Republic of China
| | - Rong Li
- Qingdao Women and Children's Hospital, Qingdao 266034, Shandong, People's Republic of China
| |
Collapse
|
43
|
Han J, McClements DJ, Liu X, Liu F. Oral delivery of probiotics using single-cell encapsulation. Compr Rev Food Sci Food Saf 2024; 23:e13322. [PMID: 38597567 DOI: 10.1111/1541-4337.13322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/01/2024] [Accepted: 02/28/2024] [Indexed: 04/11/2024]
Abstract
Adequate intake of live probiotics is beneficial to human health and wellbeing because they can help treat or prevent a variety of health conditions. However, the viability of probiotics is reduced by the harsh environments they experience during passage through the human gastrointestinal tract (GIT). Consequently, the oral delivery of viable probiotics is a significant challenge. Probiotic encapsulation provides a potential solution to this problem. However, the production methods used to create conventional encapsulation technologies often damage probiotics. Moreover, the delivery systems produced often do not have the required physicochemical attributes or robustness for food applications. Single-cell encapsulation is based on forming a protective coating around a single probiotic cell. These coatings may be biofilms or biopolymer layers designed to protect the probiotic from the harsh gastrointestinal environment, enhance their colonization, and introduce additional beneficial functions. This article reviews the factors affecting the oral delivery of probiotics, analyses the shortcomings of existing encapsulation technologies, and highlights the potential advantages of single-cell encapsulation. It also reviews the various approaches available for single-cell encapsulation of probiotics, including their implementation and the characteristics of the delivery systems they produce. In addition, the mechanisms by which single-cell encapsulation can improve the oral bioavailability and health benefits of probiotics are described. Moreover, the benefits, limitations, and safety issues of probiotic single-cell encapsulation technology for applications in food and beverages are analyzed. Finally, future directions and potential challenges to the widespread adoption of single-cell encapsulation of probiotics are highlighted.
Collapse
Affiliation(s)
- Jiaqi Han
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi, China
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi, China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi, China
| |
Collapse
|
44
|
Zhang Y, Anderson RC, You C, Purba A, Yan M, Maclean P, Liu Z, Ulluwishewa D. Lactiplantibacillus plantarum ST-III and Lacticaseibacillus rhamnosus KF7 Enhance the Intestinal Epithelial Barrier in a Dual-Environment In Vitro Co-Culture Model. Microorganisms 2024; 12:873. [PMID: 38792703 PMCID: PMC11124027 DOI: 10.3390/microorganisms12050873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Intestinal barrier hyperpermeability, which is characterised by impaired tight junction proteins, is associated with a variety of gastrointestinal and systemic diseases. Therefore, maintaining intestinal barrier integrity is considered one of the effective strategies to reduce the risk of such disorders. This study aims to investigate the potential benefits of two probiotic strains (Lactiplantibacillus plantarum ST-III and Lacticaseibacillus rhamnosus KF7) on intestinal barrier function by using a physiologically relevant in vitro model of the intestinal epithelium. Our results demonstrate that both strains increased transepithelial electrical resistance, a measure of intestinal barrier integrity. Immunolocalisation studies indicated that this improvement in barrier function was not due to changes in the co-localisation of the tight junction (TJ) proteins ZO-1 and occludin. However, we observed several modifications in TJ-related genes in response to the probiotics, including the upregulation of transmembrane and cytosolic TJ proteins, as well as TJ signalling proteins. Gene expression modulation was strain- and time-dependent, with a greater number of differentially expressed genes and higher fold-change being observed in the L. plantarum ST-III group and at the latter timepoint. Further studies to investigate how the observed gene expression changes can lead to enhanced barrier function will aid in the development of probiotic foods to help improve intestinal barrier function.
Collapse
Affiliation(s)
- Yilin Zhang
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China; (Y.Z.); (C.Y.); (M.Y.)
| | - Rachel C. Anderson
- AgResearch, Te Ohu Rangahau Kai, Palmerston North 4410, New Zealand; (R.C.A.); (A.P.)
| | - Chunping You
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China; (Y.Z.); (C.Y.); (M.Y.)
| | - Ajitpal Purba
- AgResearch, Te Ohu Rangahau Kai, Palmerston North 4410, New Zealand; (R.C.A.); (A.P.)
| | - Minghui Yan
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China; (Y.Z.); (C.Y.); (M.Y.)
| | - Paul Maclean
- AgResearch, Grasslands Research Centre, Palmerston North 4410, New Zealand;
| | - Zhenmin Liu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China; (Y.Z.); (C.Y.); (M.Y.)
| | - Dulantha Ulluwishewa
- AgResearch, Te Ohu Rangahau Kai, Palmerston North 4410, New Zealand; (R.C.A.); (A.P.)
| |
Collapse
|
45
|
Tang X, Xu S, Yang Z, Wang K, Dai K, Zhang Y, Hu B, Wang Y, Cao S, Huang X, Yan Q, Wu R, Zhao Q, Du S, Wen X, Wen Y. EspP2 Regulates the Adhesion of Glaesserella parasuis via Rap1 Signaling Pathway. Int J Mol Sci 2024; 25:4570. [PMID: 38674155 PMCID: PMC11050538 DOI: 10.3390/ijms25084570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/07/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Different levels of EspP2 expression are seen in strains of Glaesserella parasuis with high and low pathogenicity. As a potential virulence factor for G. parasuis, the pathogenic mechanism of EspP2 in infection of host cells is not clear. To begin to elucidate the effect of EspP2 on virulence, we used G. parasuis SC1401 in its wild-type form and SC1401, which was made EspP2-deficient. We demonstrated that EspP2 causes up-regulation of claudin-1 and occludin expression, thereby promoting the adhesion of G. parasuis to host cells; EspP2-deficiency resulted in significantly reduced adhesion of G. parasuis to cells. Transcriptome sequencing analysis of EspP2-treated PK15 cells revealed that the Rap1 signaling pathway is stimulated by EspP2. Blocking this pathway diminished occludin expression and adhesion. These results indicated that EspP2 regulates the adhesion of Glaesserella parasuis via Rap1 signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Yiping Wen
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
46
|
Chen Y, Chen Z, Zhu Y, Wen Y, Zhao C, Mu W. Recent Progress in Human Milk Oligosaccharides and Its Antiviral Efficacy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7607-7617. [PMID: 38563422 DOI: 10.1021/acs.jafc.3c09460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Gastrointestinal (GI)-associated viruses, including rotavirus (RV), norovirus (NV), and enterovirus, usually invade host cells, transmit, and mutate their genetic information, resulting in influenza-like symptoms, acute gastroenteritis, encephalitis, or even death. The unique structures of human milk oligosaccharides (HMOs) enable them to shape the gut microbial diversity and endogenous immune system of human infants. Growing evidence suggests that HMOs can enhance host resistance to GI-associated viruses but without a systematic summary to review the mechanism. The present review examines the lactose- and neutral-core HMOs and their antiviral effects in the host. The potential negative impacts of enterovirus 71 (EV-A71) and other GI viruses on children are extensive and include neurological sequelae, neurodevelopmental retardation, and cognitive decline. However, the differences in the binding affinity of HMOs for GI viruses are vast. Hence, elucidating the mechanisms and positive effects of HMOs against different viruses may facilitate the development of novel HMO derived oligosaccharides.
Collapse
Affiliation(s)
- Yihan Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Zhengxin Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Yuxi Wen
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, 32004 Ourense Spain
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
47
|
Tao T, Zhang L, Yu T, Ma J, Lu S, Ren J, Li X, Guo X. Exopolysaccharide production by Lactobacillus plantarum T10 is responsible for the probiotic activity in enhancing intestinal barrier function in vitro and in vivo. Food Funct 2024; 15:3583-3599. [PMID: 38469921 DOI: 10.1039/d4fo00526k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Lactobacillus probiotics exert their effects in a strain-specific and metabolite-specific manner. This study aims to identify lactobacilli that can effectively enhance the intestinal barrier function both in vitro and in vivo and to investigate the underlying metabolite and molecular mechanisms involved. Nine Lactobacillus isolates were evaluated for their ability to enhance the IPEC-J2 cellular barrier function and for their anti-inflammatory and anti-apoptotic effects in IPEC-J2 cells after an enterotoxigenic Escherichia coli challenge. Of the nine isolates, L. plantarum T10 demonstrated significant advantages in enhancing the cellular barrier function and displayed anti-inflammatory and anti-apoptotic activities in vitro. The bioactivities of L. plantarum T10 were primarily attributed to the production of exopolysaccharides, which exerted their effects through the TLR-mediated p38 MAPK pathway in ETEC-challenged IPEC-J2 cells. Furthermore, the production of EPS by L. plantarum T10 led to the alleviation of dextran sulfate sodium-induced colitis by reducing intestinal damage and enhancing the intestinal barrier function in mice. The EPS is classified as a heteropolysaccharide with an average molecular weight of 23.0 kDa. It is primarily composed of mannose, glucose, and ribose. These findings have practical implications for the targeted screening of lactobacilli used in the production of probiotics and postbiotics with strain-specific features of exopolysaccharides.
Collapse
Affiliation(s)
- Ting Tao
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan City, 430074, China.
| | - Li Zhang
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan City, 430074, China.
| | - Tianfei Yu
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan City, 430074, China.
| | - Jiaxue Ma
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan City, 430074, China.
| | - Shuang Lu
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan City, 430074, China.
| | - Jing Ren
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan City, 430074, China.
| | - Xiangyu Li
- Hubei Province Nutrition Chemicals Biosynthetic Engineering Technology Research Center, Wuhan 430073, China
| | - Xiaohua Guo
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan City, 430074, China.
| |
Collapse
|
48
|
Parfenov AI. The value of increased intestinal permeability in the pathogenesis of internal diseases. TERAPEVT ARKH 2024; 96:85-90. [DOI: 10.26442/00403660.2024.02.202587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
In the process of evolution in the gastrointestinal tract, a system of protection against bacterial and food antigens from getting into the blood was formed. The causes of increased intestinal permeability (IIP) can be microbiota imbalance, use of antibiotics, non-steroidal anti-inflammatory drugs, stress, diet rich in fructose, glucose, sucrose and long-chain fatty acids. The appearance of IIP may be of paramount importance in the pathogenesis of autoimmune diseases. A diet low in fermentable oligodimonosaccharides and polyols, pre- and probiotics, polyphenols, vitamins, short-chain fatty acids, dietary fiber, glutamine contributes to the reduction of IIP. It has been established that the cytoprotector rebamipide strengthens the barrier function throughout the gastrointestinal tract, which is reflected in practical recommendations for its use in diseases accompanied by IIP. The study of this direction will contribute to the emergence of a new strategy for the treatment of internal diseases.
Collapse
|
49
|
Huang Y, Wang X, Lv Z, Hu X, Xu B, Yang H, Xiao T, Liu Q. Comparative Transcriptomics Analysis Reveals Unique Immune Response to Grass Carp Reovirus Infection in Barbel Chub ( Squaliobarbus curriculus). BIOLOGY 2024; 13:214. [PMID: 38666826 PMCID: PMC11047996 DOI: 10.3390/biology13040214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/13/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024]
Abstract
Grass carp (Ctenopharyngodon idella) and barbel chub (Squaliobarbus curriculus)-both Leuciscinae subfamily species-demonstrate differences in grass carp reovirus (GCRV) infection resistance. We infected barbel chubs with type II GCRV and subjected their liver, spleen, head kidney, and trunk kidney samples to investigate anti-GCRV immune mechanisms via RNA sequencing and quantitative real-time polymerase chain reaction (qRT-PCR). We identified 139, 970, 867, and 2374 differentially expressed genes (DEGs) in the liver, spleen, head kidney, and trunk kidney, respectively. Across all four tissues, gene ontology analysis revealed significant immune response-related DEG enrichment, and the Kyoto Encyclopedia of Genes and Genomes analysis revealed pattern recognition receptor (PRR) and cytokine-related pathway enrichment. We noted autophagy pathway enrichment in the spleen, head kidney, and trunk kidney; apoptosis pathway enrichment in the spleen and trunk kidney; and complement- and coagulation-cascade pathway enrichment in only the spleen. Comparative transcriptome analysis between GCRV-infected barbel chubs and uninfected barbel chubs comprehensively revealed that PRR, cytokine-related, complement- and coagulation-cascade, apoptosis, and autophagy pathways are potential key factors influencing barbel chub resistance to GCRV infection. qRT-PCR validation of 11 immune-related DEGs confirmed our RNA-seq data's accuracy. These findings provide a theoretical foundation and empirical evidence for the understanding of GCRV infection resistance in barbel chub and hybrid grass carp-barbel chub breeding.
Collapse
Affiliation(s)
- Yuhong Huang
- Fisheries College, Hunan Agricultural University, Changsha 410128, China; (Y.H.); (X.W.); (Z.L.); (X.H.); (B.X.); (H.Y.)
| | - Xiaodong Wang
- Fisheries College, Hunan Agricultural University, Changsha 410128, China; (Y.H.); (X.W.); (Z.L.); (X.H.); (B.X.); (H.Y.)
| | - Zhao Lv
- Fisheries College, Hunan Agricultural University, Changsha 410128, China; (Y.H.); (X.W.); (Z.L.); (X.H.); (B.X.); (H.Y.)
- Yuelushan Lab, Changsha 410128, China
| | - Xudong Hu
- Fisheries College, Hunan Agricultural University, Changsha 410128, China; (Y.H.); (X.W.); (Z.L.); (X.H.); (B.X.); (H.Y.)
- Yuelushan Lab, Changsha 410128, China
| | - Baohong Xu
- Fisheries College, Hunan Agricultural University, Changsha 410128, China; (Y.H.); (X.W.); (Z.L.); (X.H.); (B.X.); (H.Y.)
- Yuelushan Lab, Changsha 410128, China
| | - Hong Yang
- Fisheries College, Hunan Agricultural University, Changsha 410128, China; (Y.H.); (X.W.); (Z.L.); (X.H.); (B.X.); (H.Y.)
| | - Tiaoyi Xiao
- Fisheries College, Hunan Agricultural University, Changsha 410128, China; (Y.H.); (X.W.); (Z.L.); (X.H.); (B.X.); (H.Y.)
- Yuelushan Lab, Changsha 410128, China
| | - Qiaolin Liu
- Fisheries College, Hunan Agricultural University, Changsha 410128, China; (Y.H.); (X.W.); (Z.L.); (X.H.); (B.X.); (H.Y.)
- Yuelushan Lab, Changsha 410128, China
| |
Collapse
|
50
|
Domene A, Orozco H, Rodríguez-Viso P, Monedero V, Zúñiga M, Vélez D, Devesa V. Lactobacillus strains reduce the toxic effects of a subchronic exposure to arsenite through drinking water. ENVIRONMENTAL RESEARCH 2024; 245:117989. [PMID: 38128596 DOI: 10.1016/j.envres.2023.117989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
The aim of the present study was to determine the efficacy of LAB strains in reducing the intestinal toxicity of arsenite [As(III)] and its tissue accumulation. For this purpose, Balb/c mice were randomly separated in four groups. One group received no treatment (control), one group received only As(III) (30 mg/L) via drinking water and the remaining two groups received As(III) via water and a daily dose of two LAB strains (Lactobacillus intestinalis LE1 and Lacticaseibacillus paracasei BL23) by gavage during 2 months. The results show that both strains reduce the pro-inflammatory and pro-oxidant response observed at the colonic level, partially restore the expression of the intercellular junction proteins (CLDN3 and OCLN) responsible for the maintenance of epithelial integrity, and increase the synthesis of the major mucin of the colonic mucus layer (MUC2), compared to animals treated with As(III) alone. Microbial metabolism of short-chain fatty acids also undergoes a recovery and the levels of fatty acids in the lumen reach values similar to those of untreated animals. All these positive effects imply the restoration of mucosal permeability, and a reduction of the marker of endotoxemia LPS binding protein (LBP). Treatment with the bacteria also has a direct impact on intestinal absorption, reducing the accumulation of As in the internal organs. The data suggest that the protective effect may be due to a reduced internalization of As(III) in intestinal tissues and to a possible antioxidant and anti-inflammatory activity of the bacteria through activation of pathways such as Nrf2 and IL-10. In vitro tests show that the protection may be the result of the combined action of structural and metabolic components of the LAB strains.
Collapse
Affiliation(s)
- A Domene
- Instituto de Agroquímica y Tecnología de Alimentos (IATA)-Consejo Superior de Investigaciones Científicas (CSIC), Calle Agustín Escardino 7, 46980, Paterna, Spain
| | - H Orozco
- Instituto de Agroquímica y Tecnología de Alimentos (IATA)-Consejo Superior de Investigaciones Científicas (CSIC), Calle Agustín Escardino 7, 46980, Paterna, Spain
| | - P Rodríguez-Viso
- Instituto de Agroquímica y Tecnología de Alimentos (IATA)-Consejo Superior de Investigaciones Científicas (CSIC), Calle Agustín Escardino 7, 46980, Paterna, Spain
| | - V Monedero
- Instituto de Agroquímica y Tecnología de Alimentos (IATA)-Consejo Superior de Investigaciones Científicas (CSIC), Calle Agustín Escardino 7, 46980, Paterna, Spain
| | - M Zúñiga
- Instituto de Agroquímica y Tecnología de Alimentos (IATA)-Consejo Superior de Investigaciones Científicas (CSIC), Calle Agustín Escardino 7, 46980, Paterna, Spain
| | - D Vélez
- Instituto de Agroquímica y Tecnología de Alimentos (IATA)-Consejo Superior de Investigaciones Científicas (CSIC), Calle Agustín Escardino 7, 46980, Paterna, Spain
| | - V Devesa
- Instituto de Agroquímica y Tecnología de Alimentos (IATA)-Consejo Superior de Investigaciones Científicas (CSIC), Calle Agustín Escardino 7, 46980, Paterna, Spain.
| |
Collapse
|