1
|
Cui J, Li H, Zhang T, Lin F, Chen M, Zhang G, Feng Z. Research progress on the mechanism of curcumin anti-oxidative stress based on signaling pathway. Front Pharmacol 2025; 16:1548073. [PMID: 40260389 PMCID: PMC12009910 DOI: 10.3389/fphar.2025.1548073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/24/2025] [Indexed: 04/23/2025] Open
Abstract
Oxidative stress refers to an imbalance between oxidative capacity and antioxidant capacity, leading to oxidative damage to proteins, lipids, and DNA, which can result in cell senescence or death. It is closely associated with the occurrence and development of various diseases, including cardiovascular diseases, nephropathy, malignant tumors, neurodegenerative diseases, hypertension, diabetes, and inflammatory diseases. Curcumin is a natural polyphenol compound of β-diketone, which has a wide range of pharmacological activities such as anti-inflammatory, antibacterial, anti-oxidative stress, anti-tumor, anti-fibrosis, and hypolipidemic, demonstrating broad research and development value. It has a wide range of biological targets and can bind to various endogenous biomolecules. Additionally, it maintains the redox balance primarily by scavenging ROS, enhancing the activity of antioxidant enzymes, inhibiting lipid peroxidation, and chelating metal ions. This paper systematically describes the antioxidative stress mechanisms of curcumin from the perspective of signaling pathways, focusing on the Keap1-Nrf2/ARE, NF-κB, NOX, MAPK and other pathways. The study also discusses potential pathway targets and the complex crosstalk among these pathways, aiming to provide insights for further research on curcumin's antioxidant mechanisms and its clinical applications.
Collapse
Affiliation(s)
- Jie Cui
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haonan Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tianyi Zhang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fengli Lin
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Meiyun Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Guimin Zhang
- Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Zhong Feng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
- Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| |
Collapse
|
2
|
Chaudhari VS, White B, Dahiya A, Bose S. Gingerol-zinc complex loaded 3D-printed calcium phosphate for controlled release application. Drug Deliv Transl Res 2025; 15:1317-1329. [PMID: 39179707 DOI: 10.1007/s13346-024-01677-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2024] [Indexed: 08/26/2024]
Abstract
The therapeutic potential of natural medicines in treating bone disorders is well-established. Modifications in formulation or molecular structure can enhance their efficacy. Gingerol, an osteogenic active compound derived from ginger roots (Zingiber officinale), can form metal ion complexes. Zinc (Zn), a trace element that combats bacterial infections and promotes osteoblast proliferation, can be complexed with gingerol to form a G-Zn+2 complex. This study investigates a porous 3D-printed (3DP) calcium phosphate (CaP) scaffold loaded with the G-Zn+2 complex for drug release and cellular interactions. The scaffold is coated with polycaprolactone (PCL) to control the drug release. Diffusion-mediated kinetics results in 50% release of the G-Zn+2 complex over 6 weeks. The G-Zn+2 complex demonstrates cytotoxicity against MG-63 osteosarcoma cells, indicated by the formation of apoptotic bodies and ruptured cell morphology on the scaffolds. G-Zn+2 PCL-coated scaffolds show a 1.2 ± 0.1-fold increase in osteoblast cell viability, and an 11.6 ± 0.5% increase in alkaline phosphatase compared to untreated scaffolds. Treated scaffolds also exhibit reduced bacterial colonization against Staphylococcus aureus bacteria, highlighting the antibacterial potential of the G-Zn+2 complex. The functionalized 3DP CaP scaffold with the G-Zn+2 complex shows significant potential for enhancing bone regeneration and preventing infections in low-load-bearing applications.
Collapse
Affiliation(s)
- Vishal Sharad Chaudhari
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Bryson White
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Aditi Dahiya
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Susmita Bose
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
3
|
Zuo QY, Meng HQ, Ommati MM, Yang GD, Zhao WP, Zhao J, Zhou BH, Wang HW. Curcumin's protective role against fluoride-induced bone damage: Implications for pullet pathology and skeletal biomechanics. Poult Sci 2025; 104:104891. [PMID: 39970518 PMCID: PMC11879666 DOI: 10.1016/j.psj.2025.104891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 01/25/2025] [Accepted: 02/05/2025] [Indexed: 02/21/2025] Open
Abstract
This study aimed to investigate the effects of dietary fluoride (F) and curcumin (Cur) supplementation on the tibial biomechanical performance, histopathology, and behavior of pullets. Four dietary F levels (0, 400, 800, 1200 mg/kg) supplemented with CUR (0, 200 mg/kg) were used to create 8 experimental groups in Hyline Brown pullets. Behavioral study results showed that supplements of 1200 mg/kg F reduced the percentages of feeding, walking, standing, and preening behaviors while increasing the percentage of lying behavior (P < 0.05). This is associated with F-induced tibial elastic modulus, maximum stress, and stiffness coefficient were reduced and toughness coefficient was increased (P < 0.05). F-induced tibial cortical bone thickened, trabecular bone widened, and excessive accumulation of bone collagen fibers (P < 0.05) in the tibia explained the biomechanical properties reduction in Hyline Brown pullets. Additionally, the loss of antioxidant capacity was mediated by excessive F-accelerated pathological damage to the bone (P < 0.05). Supplementation with 200 mg/kg CUR alleviated abnormal behavior, expansion of the trabecular bone, accumulation of collagen fibers, and loss of antioxidant capacity (P < 0.05). In conclusion, F reduced the antioxidant level of the body, caused tibia histopathological damage, destroyed the tibia biomechanical properties, and caused abnormal behavior of pullets. Supplementation with 200 mg/kg CUR attenuates F-induced oxidative and tibia damage and rectifies abnormal behavioral traits.
Collapse
Affiliation(s)
- Qi-Yong Zuo
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, Henan 471000, PR China.
| | - Hai-Qiang Meng
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, Henan 471000, PR China.
| | - Mohammad Mehdi Ommati
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, Henan 471000, PR China.
| | - Guo-Dong Yang
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, Henan 471000, PR China.
| | - Wen-Peng Zhao
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, Henan 471000, PR China.
| | - Jing Zhao
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, Henan 471000, PR China.
| | - Bian-Hua Zhou
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, Henan 471000, PR China.
| | - Hong-Wei Wang
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, Henan 471000, PR China.
| |
Collapse
|
4
|
Birara S, Kumar Yadav V, Kumar Jena A, Bhattacharyya S, Metre RK. Antimicrobial Potential of a Formazanate-Based Mercury(II) Complex: In Vitro- and In Silico-Based Insights. Chempluschem 2025; 90:e202400696. [PMID: 39714804 DOI: 10.1002/cplu.202400696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
Herein, we present a distorted square pyramidal mercury complex, [HgII(L)Cl] (1), based on a quinoline-substituted formazan ligand LH[3-Cyano-1,5-(quinolin-8-yl)formazan], which was evaluated for its anti-bacterial activity in vitro. Complex 1 was prepared by refluxing 3-Cyano-1,5-(quinolin-8-yl)formazan ligand and mercury chloride(II) in equimolar quantity and was characterized utilizing a range of analytical methods, including single crystal X-ray diffraction (SCXRD) technique. The crystal packing in complex 1 has been elucidated using supramolecular investigations, which have shown the presence of fascinating Hg-Cl⋅⋅⋅Hg intermolecular spodium bonds of the order 3.348 Å. The antimicrobial activity of the formazanate-based mercury(II) complex (1) was assessed against Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacterial pathogens. In addition, the plausible therapeutic target of the formazanate-based mercury(II) complex was determined through in silico pharmacophore-guided rational drug designing approach. Based on the in silico results, a conceivable molecular mechanism of the observed bactericidal action of the newly synthesized [HgII(L)Cl] complex (1) has also been suggested.
Collapse
Affiliation(s)
- Sunita Birara
- Department of Chemistry, Indian Institute of Technology, Jodhpur, Rajasthan 342037, India
| | - Vinay Kumar Yadav
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342037, India
| | - Abinash Kumar Jena
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342037, India
| | - Sudipta Bhattacharyya
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342037, India
| | - Ramesh K Metre
- Department of Chemistry, Indian Institute of Technology, Jodhpur, Rajasthan 342037, India
| |
Collapse
|
5
|
Joshi P, Soares JM, Martins GM, Zucolotto Cocca LH, De Boni L, de Oliveira KT, Bagnato VS, Blanco KC. Enhancing the efficacy of antimicrobial photodynamic therapy through curcumin modifications. Photochem Photobiol 2025; 101:359-372. [PMID: 39049138 DOI: 10.1111/php.14000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/04/2024] [Accepted: 06/30/2024] [Indexed: 07/27/2024]
Abstract
Curcumin serves as a photosensitizer (PS) in the context of microbial inactivation when subjected to light exposure, to produce reactive oxygen species, which exhibit efficacy in eradicating microorganisms. This remarkable property underscores the growing potential of antimicrobial photodynamic therapy (aPDT) in the ongoing fight against bacterial infections. Considering this, we investigate the efficacy of various in vitro curcumin formulations within a PDT protocol designed to target Staphylococcus aureus. Specifically, we conduct a comparative analysis involving synthetic curcumin (Cur-Syn) and curcumin derivatives modified with chlorine (Cl), selenium (Se), and iodine (I) (Cur-Cl, Cur-Se, Cur-I). To assess the impact of aPDT, we subject S. aureus to incubation with curcumin, followed by irradiation at 450 nm with energy doses of 3.75, 7.5, and 15 J/cm2. Our investigation encompasses an evaluation of PS uptake and photobleaching across the various curcumin variants. Notably, all three modifications (Cur-Cl, Cur-Se, Cur-I) induce a significant reduction in bacterial viability, approximately achieving a 3-log reduction. Interestingly, the uptake kinetics of Cur-Syn and Cur-Se exhibit similarities, reaching saturation after 20 min. Our findings suggest that modifications to curcumin have a discernible impact on the photodynamic properties of the PS molecule.
Collapse
Affiliation(s)
- Priyanka Joshi
- PPGBiotec, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Jennifer M Soares
- São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo, Brazil
| | - Guilherme M Martins
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Leandro H Zucolotto Cocca
- São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo, Brazil
- Grupo de Fotônica, Institute of Physics, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Leonardo De Boni
- São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo, Brazil
| | - Kleber T de Oliveira
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Vanderlei S Bagnato
- PPGBiotec, Federal University of São Carlos, São Carlos, São Paulo, Brazil
- São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo, Brazil
- Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Kate C Blanco
- São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo, Brazil
| |
Collapse
|
6
|
Arenaza‐Corona A, Sánchez‐Portillo P, González‐Sebastián L, Sánchez‐Mora A, Monroy‐Torres B, Ramírez‐Apan T, Puentes‐Díaz N, Alí‐Torres J, Barba V, Reyes‐Marquez V, Morales‐Morales D. Water-Soluble Curcumin Derivatives Including Aza-Crown Ether Macrocycles as Enhancers of Their Cytotoxic Activity. Chem Biodivers 2025; 22:e202402083. [PMID: 39429102 PMCID: PMC11908749 DOI: 10.1002/cbdv.202402083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
The synthesis of three novel curcumin derivative compounds, featuring aza-crown ether macrocycles of various sizes (aza-12-crown-4, aza-15-crown-5, and aza-18-crown-6), is described. The incorporation of these aza-crown macrocycles significantly enhances their water solubility, positioning them as groundbreaking instances of curcumin derivatives that are fully soluble in aqueous environments. These curcumin ligands (L1, L2, and L3) were then reacted with zinc acetate to afford the coordination metal complexes (L1-Zn, L2-Zn, and L3-Zn). Comprehensive characterization of all compounds was achieved using various analytical techniques, including 1D and 2D NMR spectroscopy, ATR-FTIR spectroscopy, mass spectrometry (ESI+), elemental analysis and UV-Vis spectroscopy. The in vitro cytotoxic activity of both, ligands and complexes were evaluated on three human cancer cell lines (U-251, MCF-7, and SK-LU-1). Compared to conventional curcumin, these compounds demonstrated improved antiproliferative potential. Additionally, a wound healing assay was conducted to assess their antimigration properties. The obtained results suggest that these modifications to the curcumin structure represent a promising approach for developing therapeutic agents with enhanced cytotoxic properties.
Collapse
Affiliation(s)
- Antonino Arenaza‐Corona
- Instituto de QuímicaUniversidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad UniversitariaMexico CityC.P. 04510Mexico
| | - Paola Sánchez‐Portillo
- Centro de Investigaciones Químicas-IICBAUniversidad Autónoma del Estado de MorelosAv. Universidad 1001Col. Chamilpa, Cuernavaca, MorelosC. P. 62209Mexico
| | - Lucero González‐Sebastián
- Universidad Autónoma Metropolitana-IztapalapaAv. San Rafael Atlixco No. 186Ciudad de MéxicoC.P. 09340México
| | - Arturo Sánchez‐Mora
- Instituto de QuímicaUniversidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad UniversitariaMexico CityC.P. 04510Mexico
| | - Brian Monroy‐Torres
- Instituto de QuímicaUniversidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad UniversitariaMexico CityC.P. 04510Mexico
| | - Teresa Ramírez‐Apan
- Instituto de QuímicaUniversidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad UniversitariaMexico CityC.P. 04510Mexico
| | - Nicolás Puentes‐Díaz
- Departamento de QuímicaUniversidad Nacional de Colombia- Sede BogotáBogotá111321Colombia
| | - Jorge Alí‐Torres
- Departamento de QuímicaUniversidad Nacional de Colombia- Sede BogotáBogotá111321Colombia
| | - Victor Barba
- Centro de Investigaciones Químicas-IICBAUniversidad Autónoma del Estado de MorelosAv. Universidad 1001Col. Chamilpa, Cuernavaca, MorelosC. P. 62209Mexico
| | - Viviana Reyes‐Marquez
- Departamento de Ciencias Químico-BiológicasUniversidad de SonoraLuis Encinas y Rosales s/nHermosillo, SonoraC.P. 83000Mexico
| | - David Morales‐Morales
- Instituto de QuímicaUniversidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad UniversitariaMexico CityC.P. 04510Mexico
| |
Collapse
|
7
|
Sarkar T, Bera A, Upadhyay A, Jain N, Are V, Eedara A, Prakashchandra RD, Panneerselvam S, Nanubolu JB, Andugulapati SB, Biswas S, Babu BN. Photostable Mn(II) Complex of Curcumin for Effective Photodynamic Therapy and Precise Three-Dimensional In Vivo Tumor Imaging. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 39982010 DOI: 10.1021/acsami.4c22606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Photoactive complexes of first-row transition metals with emission properties offer a dual approach to cancer treatment, enabling precise optical tumor detection and subsequent eradication using light. We report a photostable and photoactive mixed-ligand Mn(II) complex, Mn4, featuring a naturally occurring curcumin ligand and dipyridophenazine base. Mn4 demonstrates significant visible and red light-triggered phototoxicity against cancer cells and precise tumor imaging capability in vivo. The complex exhibits an absorption band in the visible region, extending its tail into the red region, and shows excellent dark and photostability in solution. Mn4 induces significant phototoxicity against HeLa (cervical), A549 (lung), and MCF-7 (breast) cancer cells (IC50 ≈ 1.0 μM), as well as 3D multicellular tumor spheroids, under low-energy visible (400-700 nm) and red-light (660 nm). This effect is mediated by cytotoxic singlet oxygen and proceeds via an apoptotic mechanism. Importantly, Mn4 displays significantly lower toxicity toward normal HPL1D lung and HEK-293 kidney cells under similar conditions. Cellular uptake studies reveal selective accumulation of Mn4 in A549 cancer cells, with mitochondrial localization, and negligible accumulation in BEAS-2B normal lung cells. Furthermore, 3D optical tumor imaging demonstrated Mn4's selective tumor accumulation in a 4T1 breast tumor-bearing in vivo mouse model. In vivo efficacy studies using a 4T1 tumor-bearing orthotopic mouse model show that Mn4 significantly reduces tumor volume and weight in a dose-dependent manner under low-energy blue laser (450 nm) irradiation, highlighting its potential as an effective photodynamic therapy (PDT) agent. Toxicological studies confirm that Mn4 does not induce abnormal biochemical or hematological parameters in healthy mice. To our knowledge, this is the first report of a Mn(II) complex with curcumin and the first example of a metal complex with curcumin for combined in vivo PDT and noninvasive 3D optical tumor imaging, paving the way for nonmacrocyclic Mn-based cancer phototheranostics.
Collapse
Affiliation(s)
- Tukki Sarkar
- Department of Fluoro-Agrochemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Arpan Bera
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Aarti Upadhyay
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Naitik Jain
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad, Telangana 500078, India
| | - Varshini Are
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad, Telangana 500078, India
| | - Abhisheik Eedara
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India
| | | | - Suriya Panneerselvam
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India
| | - Jagadeesh Babu Nanubolu
- Centre for X-ray Crystallography, Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India
| | - Sai Balaji Andugulapati
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India
| | - Swati Biswas
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad, Telangana 500078, India
| | - Bathini Nagendra Babu
- Department of Fluoro-Agrochemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| |
Collapse
|
8
|
Hake G, Mhaske A, Shukla R, Flora SJS. Copper-Induced Neurodegenerative Disorders and Therapeutic Potential of Curcumin-Loaded Nanoemulsion. TOXICS 2025; 13:108. [PMID: 39997923 PMCID: PMC11862003 DOI: 10.3390/toxics13020108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/26/2025]
Abstract
Copper accumulation in neurons induces oxidative stress, disrupts mitochondrial activity, and accelerates neuronal death, which is central to the pathophysiology of neurodegenerative diseases like Wilson disease. Standard treatments for copper toxicity, such as D-penicillamine, trientine, and chloroquine, are frequently associated with severe side effects, creating a need for safer therapeutic alternatives. To address this, we developed a curcumin-loaded nanoemulsion (CUR-NE) using the spontaneous emulsification technique, aimed at enhancing the bioavailability and therapeutic efficacy of curcumin. The optimized nanoemulsion displayed a particle size of 76.42 nm, a zeta potential of -20.4 mV, and a high encapsulation efficiency of 93.69%, with a stable and uniform structure. The in vitro tests on SH-SY5Y neuroblastoma cells demonstrated that CUR-NE effectively protected against copper-induced toxicity, promoting significant cellular uptake. Pharmacokinetic studies revealed that CUR-NE exhibited a longer half-life and extended circulation time compared to free curcumin. Additionally, pharmacodynamic evaluations, including biochemical assays and histopathological analysis, confirmed that CUR-NE provided superior neuroprotection in copper overload conditions. These results emphasize the ability of CUR-NE to augment the therapeutic effects of curcumin, presenting a novel approach for managing copper-induced neurodegeneration. The study highlights the effectiveness of nanoemulsion-based delivery platforms in improving chelation treatments for neurological diseases.
Collapse
Affiliation(s)
- Govind Hake
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Near CRPF Base Camp, Bijnor-Sisendi Road, Sarojini Nagar, Lucknow 226002, India; (G.H.)
| | - Akshada Mhaske
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Near CRPF Base Camp, Bijnor-Sisendi Road, Sarojini Nagar, Lucknow 226002, India; (G.H.)
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Near CRPF Base Camp, Bijnor-Sisendi Road, Sarojini Nagar, Lucknow 226002, India; (G.H.)
| | - Swaran Jeet Singh Flora
- Era College of Pharmacy, Era Lucknow Medical University, Sarfarajgunj, Lucknow Hardoi Road, Lucknow 226002, India
| |
Collapse
|
9
|
Yoo J, Lee J, Ahn B, Han J, Lim MH. Multi-target-directed therapeutic strategies for Alzheimer's disease: controlling amyloid-β aggregation, metal ion homeostasis, and enzyme inhibition. Chem Sci 2025; 16:2105-2135. [PMID: 39810997 PMCID: PMC11726323 DOI: 10.1039/d4sc06762b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative dementia, marked by progressive cognitive decline and memory impairment. Despite advances in therapeutic research, single-target-directed treatments often fall short in addressing the complex, multifactorial nature of AD. This arises from various pathological features, including amyloid-β (Aβ) aggregate deposition, metal ion dysregulation, oxidative stress, impaired neurotransmission, neuroinflammation, mitochondrial dysfunction, and neuronal cell death. This review illustrates their interrelationships, with a particular emphasis on the interplay among Aβ, metal ions, and AD-related enzymes, such as β-site amyloid precursor protein cleaving enzyme 1 (BACE1), matrix metalloproteinase 9 (MMP9), lysyl oxidase-like 2 (LOXL2), acetylcholinesterase (AChE), and monoamine oxidase B (MAOB). We further underscore the potential of therapeutic strategies that simultaneously inhibit Aβ aggregation and address other pathogenic mechanisms. These approaches offer a more comprehensive and effective method for combating AD, overcoming the limitations of conventional therapies.
Collapse
Affiliation(s)
- Jeasang Yoo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Jimin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Byeongha Ahn
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Jiyeon Han
- Department of Applied Chemistry, University of Seoul Seoul 02504 Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| |
Collapse
|
10
|
Prasad S, Patel B, Kumar P, Mitra P, Lall R. Cranberry: A Promising Natural Product for Animal Health and Performance. Curr Issues Mol Biol 2025; 47:80. [PMID: 39996801 PMCID: PMC11854524 DOI: 10.3390/cimb47020080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 02/26/2025] Open
Abstract
Cranberries are a distinctive source of bioactive compounds, containing polyphenols such as flavonoids, anthocyanins, phenolic acids, and triterpenoids. Cranberries are often associated with potential health benefits for the urinary tract and digestive system due to their high antioxidant, anti-inflammatory, antimicrobial, and immunomodulatory properties. Cranberry induces the production of antioxidant enzymes, suppresses lipid peroxidation, reduces inflammatory cytokines, modulates immune cells, maintains gut microbiota, and inhibits bacterial adhesion and growth. Cranberry polyphenols also have metal-binding motifs that bind with metals, particularly zinc and iron. The combination of cranberry polyphenols and metals displays increased biological activity. In this review, an attempt is made to describe the physiological properties and health benefits of cranberries for livestock, including poultry, swine, canine, feline, and ruminant animals, as either feed/food or as supplements. Cranberry, and/or its components, has the capability to potentially control infectious diseases like diarrhea, urinary tract infection, gut integrity, and intestinal probiotic health. Moreover, cranberries show efficacy in suppressing the growth of pathogenic microorganisms such as Salmonella species, Campylobacter species, Streptococcus species, and Enterococcus species bacteria. Thus, cranberry could be considered as a potential natural feed additive or food supplement for animal health improvement.
Collapse
Affiliation(s)
- Sahdeo Prasad
- R&D LifeSciences LLC, 8801 Enterprise Blvd, Largo, FL 33773, USA
| | - Bhaumik Patel
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Science Center, Abilene, TX 79601, USA
| | - Prafulla Kumar
- R&D LifeSciences LLC, 8801 Enterprise Blvd, Largo, FL 33773, USA
| | - Pranabendu Mitra
- Department of Kinesiology, Health, Food & Nutritional Sciences, University of Wisconsin-Stout, Menomonie, WI 54751, USA
| | - Rajiv Lall
- R&D LifeSciences LLC, 8801 Enterprise Blvd, Largo, FL 33773, USA
| |
Collapse
|
11
|
Hasan AA, Kalinina E, Zhdanov D, Volodina Y, Tatarskiy V. Re-Sensitization of Resistant Ovarian Cancer SKOV3/CDDP Cells to Cisplatin by Curcumin Pre-Treatment. Int J Mol Sci 2025; 26:799. [PMID: 39859517 PMCID: PMC11765683 DOI: 10.3390/ijms26020799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
A major challenging problem facing effective ovarian cancer therapy is cisplatin resistance. Re-sensitization of cisplatin-resistant ovarian cancer cells to cisplatin (CDDP) has become a critical issue. Curcumin (CUR), the most abundant dietary polyphenolic curcuminoids derived from turmeric (Curcuma longa), has achieved previously significant anti-cancer effects against human ovarian adenocarcinoma SKOV-3/CDDP cisplatin-resistant cells by inhibition the gene expression of the antioxidant enzymes (SOD1, SOD2, GPX1, CAT and HO1), transcription factor NFE2L2 and signaling pathway (PIK3CA/AKT1/MTOR). However, the detailed mechanisms of curcumin-mediated re-sensitization to cisplatin in SKOV-3/CDDP cells still need further exploration. Here, a suggested curcumin pre-treatment therapeutic strategy has been evaluated to effectively overcome cisplatin-resistant ovarian cancer SKOV-3/CDDP and to improve our understanding of the mechanisms behind cisplatin resistance. The findings of the present study suggest that the curcumin pre-treatment significantly exhibited cytotoxic effects and inhibited the proliferation of the SKOV-3/CDDP cell line compared to the simultaneous addition of drugs. Precisely, apoptosis induced by curcumin pre-treatment in SKOV-3/CDDP cells is mediated by mitochondrial apoptotic pathway (cleaved caspases 9, 3 and cleaved PARP) activation as well as by inhibition of thioredoxin reductase (TRXR1) and mTOR/STAT3 signaling pathway. This current study could deepen our understanding of the anticancer mechanism of CUR pre-treatment, which not only facilitates the re-sensitization of ovarian cancer cells to cisplatin but may lead to the development of targeted and effective therapeutics to eradicate SKOV-3/CDDP cancer cells.
Collapse
Affiliation(s)
- Aseel Ali Hasan
- T.T. Berezov Department of Biochemistry, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (E.K.); (D.Z.)
| | - Elena Kalinina
- T.T. Berezov Department of Biochemistry, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (E.K.); (D.Z.)
| | - Dmitry Zhdanov
- T.T. Berezov Department of Biochemistry, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (E.K.); (D.Z.)
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia
| | - Yulia Volodina
- Laboratory of Tumor Cell Death, Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Shosse, 115478 Moscow, Russia;
| | - Victor Tatarskiy
- Laboratory of Molecular Oncobiology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia;
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Science, 34/5 Vavilov Street, 119334 Moscow, Russia
| |
Collapse
|
12
|
Awaeloh N, Limsuwan S, Na-Phatthalung P, Kaewmanee T, Chusri S. Novel Development and Sensory Evaluation of Extruded Snacks from Unripe Banana (Musa ABB cv. Kluai 'Namwa') and Rice Flour Enriched with Antioxidant-Rich Curcuma longa Microcapsules. Foods 2025; 14:205. [PMID: 39856872 PMCID: PMC11764956 DOI: 10.3390/foods14020205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/06/2024] [Accepted: 12/25/2024] [Indexed: 01/27/2025] Open
Abstract
With the growing consumer demand for natural functional ingredients that promote health and well-being while preventing age-related diseases, this study aimed to develop extruded snacks enriched with Curcuma longa (turmeric) microcapsules, recognized for their significant antioxidant properties. Unripe banana flour (Musa ABB cv. Kluai 'Namwa') and rice (Oryza sativa) flour were employed as a gluten-free base to create this novel extruded snack. Curcuma longa extract microcapsules were prepared using a spray-drying technique with varying core-to-wall ratios. Antioxidant capacities were assessed through DPPH, ABTS, superoxide radical scavenging, metal chelating, and ferric-reducing assays. The CM6 microcapsules, prepared at 140 °C with a 1:10 core-to-wall ratio, exhibited potent antioxidant activity, with 58.93 ± 3.31% inhibition for DPPH radicals, 87.58 ± 1.33% for ABTS, and 78.41 ± 1.40% for superoxide radicals. Snacks enriched with 0.25% CM6 microcapsules received high consumer acceptance, with an average liking score of 7.5 out of 9. These findings suggest that snacks made with these gluten-free flours and Curcuma longa microcapsules could be novel, convenient, and appealing functional food products that offer an attractive way to deliver antioxidant benefits with high consumer acceptance. Further research on evaluating the active constituents in the snack, its long-term health benefits, and shelf-life stability is recommended for commercialization.
Collapse
Affiliation(s)
- Nurulhusna Awaeloh
- Biomedical Technology Research Group for Vulnerable Populations and School of Health Science, Mae Fah Luang University, Muang, Chiang Rai 57100, Thailand;
| | - Surasak Limsuwan
- Traditional Thai Medical Research and Innovation Center, Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai 90110, Thailand;
| | - Pinanong Na-Phatthalung
- Division of Hematology and Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Thammarat Kaewmanee
- Department of Food Science and Nutrition, Faculty of Science and Technology, Prince of Songkla University, Muang, Pattani 94000, Thailand
| | - Sasitorn Chusri
- Biomedical Technology Research Group for Vulnerable Populations and School of Health Science, Mae Fah Luang University, Muang, Chiang Rai 57100, Thailand;
| |
Collapse
|
13
|
Lu X, Wang Z, Zhang Y, Meng T, Chen X, Yuan R, Liu B, He H, Ding X, Zhang S. A curcumin-based HDACs inhibitor for targeted sonodynamic therapy of breast cancer. Int J Biol Macromol 2025; 287:138616. [PMID: 39672420 DOI: 10.1016/j.ijbiomac.2024.138616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/06/2024] [Accepted: 12/08/2024] [Indexed: 12/15/2024]
Abstract
Histone Deacetylases (HDACs) have emerged as key therapeutic targets in cancer treatment. In this study, we designed CURSAHA, a multifunctional anticancer agent, through the pharmacophore fusion of Vorinostat and curcumin. CURSAHA demonstrates broad-spectrum inhibitory activity against HDACs, effectively suppressing tumor cells with overexpressed HDACs. Notably, CURSAHA generates reactive oxygen species (ROS) under ultrasonic conditions, exhibiting sonodynamic therapeutic activity. Additionally, CURSAHA downregulates HDACs through redox reactions involving ROS. These properties enable CURSAHA to exhibit robust antitumor activity in both in vitro and in vivo models, highlighting its potential as a promising candidate for further development in cancer therapy.
Collapse
Affiliation(s)
- Xing Lu
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou Engineering Laboratory for Synthetic Drugs, School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, PR China
| | - Ziwei Wang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou Engineering Laboratory for Synthetic Drugs, School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, PR China; College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Yu Zhang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou Engineering Laboratory for Synthetic Drugs, School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, PR China
| | - Ti Meng
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou Engineering Laboratory for Synthetic Drugs, School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, PR China
| | - Xuehua Chen
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou Engineering Laboratory for Synthetic Drugs, School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, PR China
| | - Rongmiao Yuan
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou Engineering Laboratory for Synthetic Drugs, School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, PR China
| | - Bing Liu
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou Engineering Laboratory for Synthetic Drugs, School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, PR China
| | - Huan He
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou Engineering Laboratory for Synthetic Drugs, School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, PR China; College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China.
| | - Xin Ding
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, Hubei Normal University, Huangshi 435002, PR China.
| | - Silong Zhang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou Engineering Laboratory for Synthetic Drugs, School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, PR China; College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China.
| |
Collapse
|
14
|
Gonzalez-Cano SI, Peña-Rosas U, Muñoz-Arenas G, Torres-Cinfuentes DM, Treviño S, Moran-Raya C, Flores G, Guevara J, Diaz A. Neuroprotective Effect of Curcumin-Metavanadate in the Hippocampus of Aged Rats. Synapse 2025; 79:e70008. [PMID: 39748146 DOI: 10.1002/syn.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 12/02/2024] [Accepted: 12/15/2024] [Indexed: 01/04/2025]
Abstract
Brain aging is a multifactorial process that includes a reduction in the biological and metabolic activity of individuals. Oxidative stress and inflammatory processes are characteristic of brain aging. Given the current problems, the need arises to implement new therapeutic approaches. Polyoxidovanadates (POV), as well as curcumin, have stood out for their participation in a variety of biological activities. This work aimed to evaluate the coupling of metavanadate and curcumin (Cuma-MV) on learning, memory, redox balance, neuroinflammation, and cell death in the hippocampal region (CA1 and CA3) and dentate gyrus (DG) of aged rats. Rats 18 months old were administered a daily dose of curcumin (Cuma), sodium metavanadate (MV), or Cuma-MV for two months. The results demonstrated that administration of Cuma-MV for 60 days in aged rats improved short- and long-term recognition memory, decreased reactive oxygen species, and substantially improved lipoperoxidation in the hippocampus. Furthermore, the activity of superoxide dismutase and catalase increased in animals treated with Cuma-MV. It is important to highlight that the treatment with Cuma-MV exhibited a significantly greater effect than the treatments with MV or Cuma in all the parameters evaluated. Finally, we conclude that Cuma-MV represents a potential therapeutic option in the prevention and treatment of cognitive decline associated with aging.
Collapse
Affiliation(s)
| | - Ulises Peña-Rosas
- Faculty of Chemical Sciences, Benemerita Autonomous University of Puebla, Puebla, Mexico
| | - Guadalupe Muñoz-Arenas
- Faculty of Chemical Sciences, Benemerita Autonomous University of Puebla, Puebla, Mexico
| | | | - Samuel Treviño
- Institute of Physiology, Benemerita Autonomous University of Puebla, Puebla, Mexico
| | - Carolina Moran-Raya
- Institute of Sciences, Benemerita Autonomous University of Puebla, Puebla, Mexico
| | - Gonzalo Flores
- Institute of Physiology, Benemerita Autonomous University of Puebla, Puebla, Mexico
| | - Jorge Guevara
- Department of Biochemistry, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Alfonso Diaz
- Institute of Physiology, Benemerita Autonomous University of Puebla, Puebla, Mexico
| |
Collapse
|
15
|
Davoodi A, Akhbari K, Alirezvani M. H2O2-sensitive release of curcumin and zinc in normal and infected simulated cell tissues from a curcumin-zinc coordination complex with prolonged antibacterial activity. INORG CHEM COMMUN 2025; 171:113599. [DOI: 10.1016/j.inoche.2024.113599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
16
|
Bjørklund G, Oliinyk P, Khavrona O, Lozynska I, Lysiuk R, Darmohray R, Antonyak H, Dub N, Zayachuk V, Antoniv O, Rybak O, Peana M. The Effects of Fisetin and Curcumin on Oxidative Damage Caused by Transition Metals in Neurodegenerative Diseases. Mol Neurobiol 2025; 62:1225-1246. [PMID: 38970766 DOI: 10.1007/s12035-024-04321-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/19/2024] [Indexed: 07/08/2024]
Abstract
Neurodegenerative diseases pose a significant health challenge for the elderly. The escalating presence of toxic metals and chemicals in the environment is a potential contributor to central nervous system dysfunction and the onset of neurodegenerative conditions. Transition metals play a crucial role in various pathophysiological mechanisms associated with prevalent neurodegenerative diseases such as Alzheimer's and Parkinson's. Given the ubiquitous exposure to metals from diverse sources in everyday life, the workplace, and the environment, most of the population faces regular contact with different forms of these metals. Disturbances in the levels and homeostasis of certain transition metals are closely linked to the manifestation of neurodegenerative disorders. Oxidative damage further exacerbates the progression of neurological consequences. Presently, there exists no curative therapy for individuals afflicted by neurodegenerative diseases, with treatment approaches primarily focusing on alleviating pathological symptoms. Within the realm of biologically active compounds derived from plants, flavonoids and curcuminoids stand out for their extensively documented antioxidant, antiplatelet, and neuroprotective properties. The utilization of these compounds holds the potential to formulate highly effective therapeutic strategies for managing neurodegenerative diseases. This review provides a comprehensive overview of the impact of abnormal metal levels, particularly copper, iron, and zinc, on the initiation and progression of neurodegenerative diseases. Additionally, it aims to elucidate the potential of fisetin and curcumin to inhibit or decelerate the neurodegenerative process.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Toften 24, 8610, Mo I Rana, Norway.
| | - Petro Oliinyk
- Department of Disaster Medicine and Military Medicine, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
| | - Oksana Khavrona
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
- Department of Biological Chemistry, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
| | - Iryna Lozynska
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
- Department of Biological Chemistry, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
| | - Roman Lysiuk
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
| | - Roman Darmohray
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
| | - Halyna Antonyak
- Department of Ecology, Ivan Franko National University of Lviv, Lviv, 79005, Ukraine
| | - Natalia Dub
- Andrei Krupynskyi Lviv Medical Academy, Lviv, 79000, Ukraine
| | - Vasyl Zayachuk
- Department of Botany, Ukrainian National Forestry University, Wood Science and Non-Wood Forest Products, Lviv, 79057, Ukraine
| | - Olha Antoniv
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
- Department of Pharmacology, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
| | - Oksana Rybak
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
| | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100, Sassari, Italy.
| |
Collapse
|
17
|
Katsipis G, Lavrentiadou SN, Geromichalos GD, Tsantarliotou MP, Halevas E, Litsardakis G, Pantazaki AA. Evaluation of the Anti-Amyloid and Anti-Inflammatory Properties of a Novel Vanadium(IV)-Curcumin Complex in Lipopolysaccharides-Stimulated Primary Rat Neuron-Microglia Mixed Cultures. Int J Mol Sci 2024; 26:282. [PMID: 39796150 PMCID: PMC11720140 DOI: 10.3390/ijms26010282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/22/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Lipopolysaccharides (LPS) are bacterial mediators of neuroinflammation that have been detected in close association with pathological protein aggregations of Alzheimer's disease. LPS induce the release of cytokines by microglia and mediate the upregulation of inducible nitric oxide synthase (iNOS)-a mechanism also associated with amyloidosis. Curcumin is a recognized natural medicine but has extremely low bioavailability. V-Cur, a novel hemocompatible Vanadium(IV)-curcumin complex with higher solubility and bioactivity than curcumin, is studied here. Co-cultures consisting of rat primary neurons and microglia were treated with LPS and/or curcumin or V-Cur. V-Cur disrupted LPS-induced overexpression of amyloid precursor protein (APP) and the in vitro aggregation of human insulin (HI), more effectively than curcumin. Cell stimulation with LPS also increased full-length, inactive, and total iNOS levels, and the inflammation markers IL-1β and TNF-α. Both curcumin and V-Cur alleviated these effects, with V-Cur reducing iNOS levels more than curcumin. Complementary insights into possible bioactivity mechanisms of both curcumin and V-Cur were provided by In silico molecular docking calculations on Aβ1-42, APP, Aβ fibrils, HI, and iNOS. This study renders curcumin-based compounds a promising anti-inflammatory intervention that may be proven a strong tool in the effort to mitigate neurodegenerative disease pathology and neuroinflammatory conditions.
Collapse
Affiliation(s)
- Georgios Katsipis
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.K.); (E.H.)
- Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), Thermi, 57001 Thessaloniki, Greece;
| | - Sophia N. Lavrentiadou
- Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), Thermi, 57001 Thessaloniki, Greece;
- Laboratory of Animal Physiology, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - George D. Geromichalos
- Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), Thermi, 57001 Thessaloniki, Greece;
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maria P. Tsantarliotou
- Laboratory of Animal Physiology, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Eleftherios Halevas
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.K.); (E.H.)
- Institute of Biosciences & Applications, National Centre for Scientific Research “Demokritos”, 15310 Athens, Greece
| | - George Litsardakis
- Laboratory of Materials for Electrotechnics, School of Electrical and Computer Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Anastasia A. Pantazaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.K.); (E.H.)
- Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), Thermi, 57001 Thessaloniki, Greece;
| |
Collapse
|
18
|
Alam MS, Anwar MJ, Maity MK, Azam F, Jaremko M, Emwas AH. The Dynamic Role of Curcumin in Mitigating Human Illnesses: Recent Advances in Therapeutic Applications. Pharmaceuticals (Basel) 2024; 17:1674. [PMID: 39770516 PMCID: PMC11679877 DOI: 10.3390/ph17121674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/02/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025] Open
Abstract
Herbal medicine, particularly in developing regions, remains highly popular due to its cost-effectiveness, accessibility, and minimal risk of adverse effects. Curcuma longa L., commonly known as turmeric, exemplifies such herbal remedies with its extensive history of culinary and medicinal applications across Asia for thousands of years. Traditionally utilized as a dye, flavoring, and in cultural rituals, turmeric has also been employed to treat a spectrum of medical conditions, including inflammatory, bacterial, and fungal infections, jaundice, tumors, and ulcers. Building on this longstanding use, contemporary biochemical and clinical research has identified curcumin-the primary active compound in turmeric-as possessing significant therapeutic potential. This review hypothesizes that curcumin's antioxidant properties are pivotal in preventing and treating chronic inflammatory diseases, which are often precursors to more severe conditions, such as cancer, and neurological disorders, like Parkinson's and Alzheimer's disease. Additionally, while curcumin demonstrates a favorable safety profile, its anticoagulant effects warrant cautious application. This article synthesizes recent studies to elucidate the molecular mechanisms underlying curcumin's actions and evaluates its therapeutic efficacy in various human illnesses, including cancer, inflammatory bowel disease, osteoarthritis, atherosclerosis, peptic ulcers, COVID-19, psoriasis, vitiligo, and depression. By integrating diverse research findings, this review aims to provide a comprehensive perspective on curcumin's role in modern medicine and its potential as a multifaceted therapeutic agent.
Collapse
Affiliation(s)
- Md Shamshir Alam
- Department of Pharmacy Practice, College of Pharmacy, National University of Science and Technology, P.O. Box 620, Bosher, Muscat 130, Oman
| | - Md Jamir Anwar
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Manish Kumar Maity
- Department of Pharmacy Practice, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, Haryana, India
| | - Faizul Azam
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| |
Collapse
|
19
|
Salama A, Elsherbiny N, Hetta HF, Safwat MA, Atif HM, Fathalla D, Almanzalawi WS, Almowallad S, Soliman GM. Curcumin-loaded gold nanoparticles with enhanced antibacterial efficacy and wound healing properties in diabetic rats. Int J Pharm 2024; 666:124761. [PMID: 39332460 DOI: 10.1016/j.ijpharm.2024.124761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Diabetic wounds pose a significant global health challenge. Although curcumin exhibits promising wound healing and antibacterial properties, its clinical potential is limited by low aqueous solubility, and poor tissue penetration. This study aimed to address these challenges and enhance the wound healing efficacy of curcumin by loading it onto gold nanoparticles (AuNPs). The properties of the AuNPs, including particle size, polydispersity index (PDI), zeta potential, percent drug entrapment efficiency (%EE) and UV-Vis spectra were significantly influenced by the curcumin/gold chloride molar ratio used in the synthesis of AuNPs. The optimal formulation (F2) exhibited the smallest particle size (41.77 ± 6.8 nm), reasonable PDI (0.59 ± 0.17), high %EE (94.43 ± 0.25 %), a moderate zeta potential (-8.44 ± 1.69 mV), and a well-defined surface Plasmon resonance peak at 526 nm. Formulation F2 was incorporated into Pluronic® F127 gel to facilitate its application to the skin. Both curcumin AuNPs solution and gel showed sustained drug release and higher skin permeation parameters compared with the free drug solution. AuNPs significantly enhanced curcumin's antibacterial efficacy by lowering the minimum inhibitory concentrations and enhancing antibacterial biofilm activity against various Gram-positive and Gram-negative bacterial strains. In a diabetic wound rat model, AuNPs-loaded curcumin exhibited superior wound healing attributes compared to the free drug. Specifically, it demonstrated improved wound healing percentage, reduced wound oxidative stress, increased wound collagen deposition, heightened anti-inflammatory effects, and enhanced angiogenesis. These findings underscore the potential of AuNPs as efficacious delivery systems of curcumin for improved wound healing applications.
Collapse
Affiliation(s)
- Ayman Salama
- Department of Pharmaceutics, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Nehal Elsherbiny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Helal F Hetta
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Mohamed A Safwat
- Department of Pharmaceutics, Faculty of Pharmacy, South Valley University, Qena 83523, Egypt
| | - Huda M Atif
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Egypt
| | - Dina Fathalla
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Wejdan S Almanzalawi
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Sanaa Almowallad
- Department of Biochemistry, Faculty of Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Ghareb M Soliman
- Department of Pharmaceutics, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia.
| |
Collapse
|
20
|
Chen LH, Chen T, Zhao RN, Wu D, Du YN, Hu JN. Physical properties and antioxidant activity of curcumin‑zinc metal-organic frameworks. Food Chem 2024; 460:140449. [PMID: 39067388 DOI: 10.1016/j.foodchem.2024.140449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024]
Abstract
Metal-organic frameworks (MOFs) offer diverse applications in the food industry, facilitating loading, protection, and controlled release of functional ingredients despite encountering loading capacity and functional activity limitations. This study focuses on curcumin‑zinc MOFs, harnessing curcumin's renowned health benefits and zinc to enhance pharmacological properties. We evaluated their synthesis efficiency, stability under varying conditions (pH, salt concentration, temperature), loading and antioxidant capacity. The results showed that microwave synthesis yielded MOFs with a 23.2 ± 4.5% yield, stable within pH 4-10, gradually decomposing in PBS. DPPH, ABTS, and H₂O₂ assays revealed varying free radical scavenging abilities. MOFs disintegrate in either acidic environments or contain H2O2 (at a concentration threshold of 10 μM). Post-disintegration, these MOFs significantly inhibiting the secretion of TNF-α by RAW264.7 cells induced by LPS. These findings highlight the potential of novel curcumin‑zinc MOF materials for nutrient delivery, addressing challenges in effectively delivering functional ingredients.
Collapse
Affiliation(s)
- Li-Hang Chen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Tao Chen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Ru-Nan Zhao
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Di Wu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yi-Nan Du
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jiang-Ning Hu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
21
|
Veselá K, Kejík Z, Masařík M, Babula P, Dytrych P, Martásek P, Jakubek M. Curcumin: A Potential Weapon in the Prevention and Treatment of Head and Neck Cancer. ACS Pharmacol Transl Sci 2024; 7:3394-3418. [PMID: 39539276 PMCID: PMC11555516 DOI: 10.1021/acsptsci.4c00518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024]
Abstract
Head and neck cancers (HNC) are aggressive, difficult-to-treat tumors that can be caused by genetic factors but mainly by lifestyle or infection caused by the human papillomavirus. As the sixth most common malignancy, it presents a formidable therapeutic challenge with limited therapeutic modalities. Curcumin, a natural polyphenol, is appearing as a promising multitarget anticancer and antimetastatic agent. Numerous studies have shown that curcumin and its derivatives have the potential to affect signaling pathways (NF-κB, JAK/STAT, and EGFR) and molecular mechanisms that are crucial for the growth and migration of head and neck tumors. Furthermore, its ability to interact with the tumor microenvironment and trigger the immune system may significantly influence the organism's immune response to the tumor. Combining curcumin with conventional therapies such as chemotherapy or radiotherapy may improve the efficacy of treatment and reduce the side effects of treatment, thereby increasing its therapeutic potential. This review is a comprehensive overview that discusses both the benefits and limitations of curcumin and its therapeutic effects in the context of tumor biology, with an emphasis on molecular mechanisms in the context of HNC. This review also includes possibilities to improve the limiting properties of curcumin both in terms of the development of new derivatives, formulations, or combinations with conventional therapies that have potential as a new type of therapy for the treatment of HNC and subsequent use in clinical practice.
Collapse
Affiliation(s)
- Kateřina Veselá
- BIOCEV,
First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague 2, Czech Republic
| | - Zdeněk Kejík
- BIOCEV,
First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague 2, Czech Republic
| | - Michal Masařík
- BIOCEV,
First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague 2, Czech Republic
- Department
of Physiology, Faculty of Medicine, Masaryk
University, Kamenice 5, 625 00 Brno, Czech Republic
- Department
of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Babula
- Department
of Physiology, Faculty of Medicine, Masaryk
University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Dytrych
- First
Department of Surgery-Department of Abdominal, Thoracic Surgery and
Traumatology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, 121
08 Prague, Czech
Republic
| | - Pavel Martásek
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague 2, Czech Republic
| | - Milan Jakubek
- BIOCEV,
First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague 2, Czech Republic
| |
Collapse
|
22
|
Liu Y, Ma J, Zhang Q, Wang Y, Sun Q. Mechanism of Metal Complexes in Alzheimer's Disease. Int J Mol Sci 2024; 25:11873. [PMID: 39595941 PMCID: PMC11593898 DOI: 10.3390/ijms252211873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Alzheimer's disease (AD) is a kind of neurodegenerative diseases characterized by beta-amyloid deposition and neurofibrillary tangles and is also the main cause of dementia. According to statistics, the incidence of AD is constantly increasing, bringing a great burden to individuals and society. Nonetheless, there is no cure for AD, and the available drugs are very limited apart from cholinesterase inhibitors and N-Methyl-D-aspartic acid (NMDA) antagonists, which merely alleviate symptoms without delaying the progression of the disease. Therefore, there is an urgent need to develop a medicine that can delay the progression of AD or cure it. In recent years, increasing evidence suggests that metal complexes have the enormous potential to treat AD through inhibiting the aggregation and cytotoxicity of Aβ, interfering with the congregation and hyperphosphorylation of tau, regulating dysfunctional synaptic and unbalanced neurotransmitters, etc. In this review, we summarize the current metal complexes and their mechanisms of action for treating AD, including ruthenium, platinum, zinc, vanadium, copper, magnesium, and other complexes.
Collapse
Affiliation(s)
- Yi Liu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, International Cancer Center, Department of Pharmacology, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China; (Y.L.); (J.M.)
| | - Jiaying Ma
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, International Cancer Center, Department of Pharmacology, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China; (Y.L.); (J.M.)
| | - Qianling Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China;
| | - Yi Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China;
| | - Qi Sun
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, International Cancer Center, Department of Pharmacology, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China; (Y.L.); (J.M.)
| |
Collapse
|
23
|
Zhou S, Li J, Lin D, Feng X, Zhang R, Wang D, Zhao A, Tian H, Yang X. Development of konjac glucomannan-based active-intelligent emulsion films loaded with different curcumin-metal chelates: Stability, antioxidant, fresh-keeping and freshness detection properties. Int J Biol Macromol 2024; 282:137231. [PMID: 39491698 DOI: 10.1016/j.ijbiomac.2024.137231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/30/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
The aim of this study was to develop konjac glucomannan (KGM)-based active-intelligent emulsion films loaded with different curcumin-metal chelates, where six types of films were prepared and their corresponding properties were investigated. The FTIR and XRD results showed that curcumin chelated with metal ions successfully. Moreover, curcumin-Ca chelate had the best thermal stability and antioxidant activity with the DPPH and ABTS radical-scavenging activity values of 38.28 % and 22.79 %, respectively. Furthermore, the results of microstructure and contact angle showed that chelation with metal ions improved the interfacial interactions between curcumin-metal chelates and film matrix. Interestingly, KGM-based active-intelligent emulsion films loaded with curcumin-Ca chelate (Type IV film) displayed the best thermal stability with the highest temperature of maximum weight loss at 380 °C, the best mechanical property, the highest total phenol content (17.31 mg gallic acid/g film), as well as the best antioxidant activity with DPPH and ABTS radical-scavenging activity values of 69.24 % and 58.66 %, respectively, and the best antibacterial activity. Consequently, Type IV film was used for the fresh-keeping and freshness detection of pork. The results showed that the pork packaged with Type IV film displayed excellent fresh-keeping properties, including reducing the increase rate of volatile basic nitrogen (TVB-N) and pH values and the decrease rate of hardness and elasticity of pork during storage time. Meanwhile, the color of Type IV film gradually changed from yellow to red. Therefore, this study suggested that KGM-based active-intelligent emulsion films have great potential application in the fresh-keeping and freshness detection of fresh meat.
Collapse
Affiliation(s)
- Siyu Zhou
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Juncong Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Dehui Lin
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China.
| | - Xinyi Feng
- Xi'an Supervision & Inspection Institute of Product Quality, Xi'an 710065, China
| | - Runguang Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Di Wang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China.
| | - Aiqing Zhao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Honglei Tian
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
24
|
Moar K, Yadav S, Pant A, Deepika, Maurya PK. Anti-tumor Effects of Polyphenols via Targeting Cancer Driving Signaling Pathways: A Review. Indian J Clin Biochem 2024; 39:470-488. [PMID: 39346722 PMCID: PMC11436542 DOI: 10.1007/s12291-024-01222-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/02/2024] [Indexed: 10/01/2024]
Abstract
The use of drugs in chemotherapy poses numerous side effects. Hence the use of natural substances that can help in the prevention and cure of the disease is a dire necessity. Cancer is a deadly illness and combination of diseases, the menace of which is rising with every passing year. The research community and scientists from all over the world are working towards finding a cure of the disease. The use of polyphenols which are naturally derived from plants have a great potential to be used as anti-cancer drugs and also the use of fruits and vegetables which are rich in these polyphenols can also help in the prevention of diseases. The study aims to compile the available literature and research studies on the anti-cancer effects of polyphenols and the signaling pathways that are affected by them. To review the anti-cancer effects of polyphenols, Google Scholar, PubMed and ScienceDirect were used to study the literature available. The article that have been used for literature review were filtered using keywords including cancer, polyphenols and signaling pathways. Majorly articles from the last 10 years have been considered for the review but relevant articles from earlier than 10 years have also been considered. Almost 400 articles were studied for the review and 200 articles have been cited. The current review shows the potential of polyphenols as anti-cancer compounds and how the consumption of a diet rich in polyphenols can help in the prevention of cancer. Because of their capacity to affect a variety of oncogenic and oncosuppressive signaling pathways, phytochemicals derived from plants have been effectively introduced as an alternative anticarcinogenic medicines. Graphical Abstract
Collapse
Affiliation(s)
- Kareena Moar
- Department of Biochemistry, Central University of Haryana, Mahendergarh, 123031 India
| | - Somu Yadav
- Department of Biochemistry, Central University of Haryana, Mahendergarh, 123031 India
| | - Anuja Pant
- Department of Biochemistry, Central University of Haryana, Mahendergarh, 123031 India
| | - Deepika
- Department of Biochemistry, Central University of Haryana, Mahendergarh, 123031 India
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana, Mahendergarh, 123031 India
| |
Collapse
|
25
|
Vadakkan K, Sathishkumar K, Mapranathukaran VO, Ngangbam AK, Nongmaithem BD, Hemapriya J, Nair JB. Critical review on plant-derived quorum sensing signaling inhibitors in pseudomonas aeruginosa. Bioorg Chem 2024; 151:107649. [PMID: 39029321 DOI: 10.1016/j.bioorg.2024.107649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/21/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
Pseudomonas aeruginosa, a biofilm-forming organism with complex quorum mechanisms (Las, Rhl, PQS, and IQS), poses an imminent danger to the healthcare sector and renders current treatment options for chemotherapy ineffectual. The pathogen's diverse pathogenicity, antibiotic resistance, and biofilms make it difficult to eradicate it effectively. Quorum sensing, a complex system reliant on cell density, controls P. aeruginosa's pathogenesis. Quorum-sensing genes are key components of P. aeruginosa's pathogenic arsenal, and their expression determines how severe the spread of infection becomes. Over the past ten years, there has been a noticeable increase in the quest for and development of new antimicrobial medications. Quorum sensing may be an effective treatment for infections triggered by bacteria. Introducing quorum-sensing inhibitors as an anti-virulent strategy might be an intriguing therapeutic method that can be effectively employed along with current medications. Amongst the several speculated processes, a unique anti-virulence strategy using anti-quorum sensing and antibiofilm medications for targeting pseudomonal infestations seems to be at the forefront. Due to their noteworthy quorum quenching capabilities, biologically active phytochemicals have become more well-known in the realm of science in this context. Recent research showed how different phytochemical quorum quenching actions affect P. aeruginosa's QS-dependent pathogenicity. This review focuses on the most current data supporting the implementation of plant bio-actives to treat P.aeruginosa-associated diseases, as well as the benefits and future recommendationsof employing them in anti-virulence therapies as a supplementary drug development approach towards conventional antibiotic approaches.
Collapse
Affiliation(s)
- Kayeen Vadakkan
- Department of Biotechnology, St. Mary's College (Autonomous), Thrissur, Kerala 680020, India; Manipur International University, Imphal, Manipur 795140, India.
| | - Kuppusamy Sathishkumar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Thandalam, Chennai, Tamil Nadu 602105, India
| | | | | | | | - Janarthanam Hemapriya
- Department of Microbiology, DKM College for Women, Vellore, Tamil Nadu 632001, India
| | - Jyotsna B Nair
- Department of Biotechnology, JDT Islam College of Arts and Science, Vellimadukunnu, Kozhikode, Kerala 673012, India
| |
Collapse
|
26
|
Hu S, Yue F, Peng F, Zhou X, Chen Y, Song T, Qi H. Lysine-mediated surface modification of cellulose nanocrystal films for multi-channel anti-counterfeiting. Carbohydr Polym 2024; 340:122315. [PMID: 38858028 DOI: 10.1016/j.carbpol.2024.122315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/12/2024]
Abstract
Utilizing advanced multiple channels for information encryption offers a powerful strategy to achieve high-capacity and highly secure data protection. Cellulose nanocrystals (CNCs) offer a sustainable resource for developing information protection materials. In this study, we present an approach that is easy to implement and adapt for the covalent attachment of various fluorescence molecules onto the surface of CNCs using the Mannich reaction in aqueous-based medium. Through the use of the Mannich reaction-based surface modification technique, we successfully achieved multi-color fluorescence in the resulting CNCs. The resulting CNC derivatives were thoroughly characterized by two dimensional heteronuclear single quantum coherence nuclear magnetic resonance (2D HSQC NMR) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy and X-ray photoelectron (XPS) spectroscopy. Notably, the optical properties of CNCs were well maintained after modification, resulting in films exhibiting blue and red structural colors. This enables the engineering of highly programmable and securely encoded anti-counterfeit labels. Moreover, subsequent coating of the modified CNCs with MXene yielded a highly secure encrypted matrix, offering advanced security and encryption capabilities under ultraviolet, visible, and near-infrared wavelengths. This CNC surface-modification enables the development of multimodal security labels with potential applications across various practical scenarios.
Collapse
Affiliation(s)
- Songnan Hu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Fengxia Yue
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Fang Peng
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xin Zhou
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yian Chen
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Tao Song
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Haisong Qi
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
27
|
Jakhmola A, Hornsby TK, Kashkooli FM, Kolios MC, Rod K, Tavakkoli JJ. Green synthesis of anti-cancer drug-loaded gold nanoparticles for low-intensity pulsed ultrasound targeted drug release. Drug Deliv Transl Res 2024; 14:2417-2432. [PMID: 38240946 DOI: 10.1007/s13346-024-01516-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2023] [Indexed: 11/01/2024]
Abstract
In the present work, we have designed a one-pot green protocol in which anti-cancer drugs (curcumin and doxorubicin) can be directly loaded on the surface of gold nanoparticles during their formation. We have further demonstrated that low-intensity pulsed ultrasound (LIPUS) can be used to effectively induce the release of anti-cancer drugs from the surface of gold nanoparticles in an ex vivo tissue model. With this protocol, gold nanoparticles can be easily loaded with different types of anticancer drugs, irrespective of their affinity towards water, and even hydrophobic molecules, like curcumin, can be attached onto the gold nanoparticles in an aqueous medium. The method is very simple and straightforward and does not require stirring or mechanical shaking. The drug molecules interact with the gold seeds formed during the reduction and growth process and modulate the final morphology into a spherical shape. A black-colored colloidal solution of gold nanowire networks is formed in the absence of these anti-cancer drug molecules in the reaction mixture. We used hyperspectral-enhanced dark field microscopy to examine the uptake of gold nanoparticles by breast cancer cells. Upon exposure to LIPUS, the release of the anti-cancer drug from the particle surface can be quantified by fluorescence measurements. This release of drug molecules along with trisodium citrate from the surface of gold nanoparticles by ultrasound resulted in their destabilization and subsequent aggregation, which could be visually observed through the change in the color of colloidal sol. Cancer cell viability was studied by MTT assay to examine the efficacy of this nanoparticle-based drug delivery system. Ultraviolet-visible spectroscopy, dynamic light scattering (DLS), and transmission electron microscope (TEM) analysis were used to characterize the nanoparticles and quantify anti-cancer drug release.
Collapse
Affiliation(s)
- Anshuman Jakhmola
- Department of Physics, Toronto Metropolitan University, Toronto, Canada
| | - Tyler K Hornsby
- Department of Physics, Toronto Metropolitan University, Toronto, Canada
| | | | - Michael C Kolios
- Department of Physics, Toronto Metropolitan University, Toronto, Canada
- iBEST, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada
| | - Kevin Rod
- Toronto Poly Clinic Inc., Toronto, Canada
| | - Jahangir Jahan Tavakkoli
- Department of Physics, Toronto Metropolitan University, Toronto, Canada.
- iBEST, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada.
| |
Collapse
|
28
|
Jiang Y, He S, Xiang N, Duan L, Lin Y, Huang W, Wu Z, Qi X. A copper missile-triggered power coalescence and death vortex within tumor cell mitochondria for synergistic cuproptosis/phototherapy/chemotherapy. NANOSCALE 2024; 16:15967-15983. [PMID: 39101331 DOI: 10.1039/d4nr02382j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
The importance of copper homeostasis in mitochondria and copper-triggered modality of mitochondrial cell death have been confirmed. However, the existing copper-based nanoplatforms are focused on synergistic therapies while the intracellular therapeutic targets are relatively scattered. Effective integration of all targets within mitochondria to generate power coalescence remains a challenge. Herein, we developed a novel copper-based delivery system to trigger power coalescence and death vortex within tumor cell mitochondria. Specifically, a mitochondrial targeting "copper missile" loaded with curcumin (termed as Cur@CuS-TPP-HA, CCTH) was designed for cuproptosis/phototherapy/chemotherapy synergistic anti-tumor therapy. Once the CCTH NPs are shuttled to the mitochondria, near-infrared (NIR) irradiation initiates the release of copper ions and curcumin for in situ drug accumulation in cancer cell mitochondria. An excess of copper ions and curcumin can activate cuproptosis and mitochondrial apoptosis pathways, respectively. When combined, they can cause an increase in reactive oxygen species (ROS), damage to mitochondrial DNA (mt-DNA), and a decrease in energy supply, thereby leading to a "vicious circle" of mitochondrial damage that further enhances the tumor-killing efficacy. As a consequence, this "copper missile" exhibits advanced anti-tumor effects as verified through in vitro assessments and in vivo evaluations using the 4T1 breast tumor model, providing a promising approach for cuproptosis-based synergistic anti-tumor therapy.
Collapse
Affiliation(s)
- Yicheng Jiang
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, PR China.
- Center of Advanced Pharmaceuticals and Biomaterials, Ningbo Institute of Marine Medicine, Peking University, Ningbo 315832, China
| | - Shuhan He
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Niu Xiang
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Linghui Duan
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Yuxiang Lin
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Wenyu Huang
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Zhenghong Wu
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Xiaole Qi
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, PR China.
- Industrial Technology Innovation Platform, Zhejiang Center for Safety Study of Drug Substances, Hangzhou 310018, China.
| |
Collapse
|
29
|
Liu Y, Yin R, Tian Y, Xu S, Meng X. Curcumin nanopreparations: recent advance in preparation and application. Biomed Mater 2024; 19:052009. [PMID: 39189065 DOI: 10.1088/1748-605x/ad6dc7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/09/2024] [Indexed: 08/28/2024]
Abstract
Curcumin is a natural polyphenolic compound extracted from turmeric with antibacterial, antioxidant, antitumor, preventive and therapeutic neurological disorders and a variety of bioactivities, which is widely used in the field of food and medicine. However, the drawbacks of curcumin such as poor aqueous solubility and stability have limited the practical application of curcumin. To overcome these defects and enhance its functional properties, various nanoscale systems (liposomes, polymer nanoparticles, protein nanoparticles, solid lipid nanoparticles, metal nanoparticles, etc) have been extensively employed for curcumin encapsulation and delivery. Despite the rapid development of curcumin nanoformulations, there is a lack of comprehensive reviews on their preparation and properties. This review provides an overview of the construction of curcumin nano-delivery systems, mechanisms of action, nanocarrier preparation methods and the applications of curcumin nanocarriers in the food and pharmaceutical fields to provide a theoretical basis and technological support for the efficient bio-utilization, product development and early clinical application of curcumin.
Collapse
Affiliation(s)
- Yan Liu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, NO.24 Heping Road, Harbin, 150040, People's Republic of China
| | - Rui Yin
- School of Pharmacy, Heilongjiang University of Chinese Medicine, NO.24 Heping Road, Harbin, 150040, People's Republic of China
| | - Yuan Tian
- School of Pharmacy, Heilongjiang University of Chinese Medicine, NO.24 Heping Road, Harbin, 150040, People's Republic of China
| | - Shujun Xu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, NO.24 Heping Road, Harbin, 150040, People's Republic of China
| | - Xin Meng
- School of Pharmacy, Heilongjiang University of Chinese Medicine, NO.24 Heping Road, Harbin, 150040, People's Republic of China
| |
Collapse
|
30
|
Yashmi F, Fakhri S, Shiri Varnamkhasti B, Amin MN, Khirehgesh MR, Mohammadi-Noori E, Hosseini M, Khan H. Defining the mechanisms behind the hepatoprotective properties of curcumin. Arch Toxicol 2024; 98:2331-2351. [PMID: 38837048 DOI: 10.1007/s00204-024-03758-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/09/2024] [Indexed: 06/06/2024]
Abstract
As a critical cause of human dysfunctionality, hepatic failure leads to approximately two million deaths per year and is on the rise. Considering multiple inflammatory, oxidative, and apoptotic mechanisms behind hepatotoxicity, it urges the need for finding novel multi-targeting agents. Curcumin is a phenolic compound with anti-inflammatory, antioxidant, and anti-apoptotic roles. Curcumin possesses auspicious health benefits and protects against several diseases with exceptional safety and tolerability. This review focused on the hepatoprotective mechanisms of curcumin. The need to develop novel delivery systems of curcumin (e.g., nanoparticles, self-micro emulsifying, lipid-based colloids, solid lipid nanoparticles, cyclodextrin inclusion, phospholipid complexes, and nanoemulsions) is also considered.
Collapse
Affiliation(s)
- Farinam Yashmi
- Department of Pharmacy, Acibadem University, Istanbul, Turkey
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Behrang Shiri Varnamkhasti
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammed Namiq Amin
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Reza Khirehgesh
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ehsan Mohammadi-Noori
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahsa Hosseini
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.
| |
Collapse
|
31
|
Chakraborty N, Sen B, Anindya R, Acharyya SG. Excellent adsorption of toxic Cd (II) ions from water with effective antibacterial activity by novel GO-ZnO-curcumin composite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:51971-51990. [PMID: 39136919 DOI: 10.1007/s11356-024-34685-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/07/2024] [Indexed: 09/06/2024]
Abstract
A significant health risk arises from the bioaccumulation of harmful Cd (II) in drinking water. Here, we report the unique Cd (II) remediation from drinking water by using novel GO-ZnO-curcumin composite. The composites were tailored by varying the ratio of GO-ZnO and curcumin. The composites followed Langmuir adsorption isotherm and pseudo-second-order kinetics. ZnO nano-rods were more effective in Cd (II) than ZnO nano-disks. A maximum adsorption capacity of 4580 ± 40 mg/gm was achieved for 21G-B with a removal efficiency of 87.5% at neutral pH under optimized conditions. The removal process was governed by ion exchange and electrostatic attraction, followed by cation exchange capacity (CEC). The lattice parameter increase was detected after adsorption of Cd (II) ions. The regeneration and reusability of the composite was studied. Also, the effect of presence of dyes such as methylene blue on Cd (II) adsorption was noted. The latter had negligible effect on Cd (II) removal efficiency from water. The composite showed high antibacterial activity against B. subtilis and P. aeruginosa with minimum inhibitory concentration (MIC) of 10 ± 0.75 µg/ml and 5 ± 1 µg/ml respectively due to the presence of zinc. Composite stability was confirmed through leaching and thermal gravimetric analysis (TGA) analysis. The study establishes the nanocomposite as a potential material for remediation of hazardous Cd (II) ions from real water samples under neutral conditions.
Collapse
Affiliation(s)
- Nabanita Chakraborty
- School of Engineering Sciences and Technology, University of Hyderabad, Telangana, India
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Hyderabad, India
| | - Bratati Sen
- School of Engineering Sciences and Technology, University of Hyderabad, Telangana, India
| | - Roy Anindya
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Hyderabad, India
| | - Swati Ghosh Acharyya
- School of Engineering Sciences and Technology, University of Hyderabad, Telangana, India.
| |
Collapse
|
32
|
Ishtiaq M, Manzoor H, Khan IU, Asghar S, Irfan M, Albekairi NA, Alshammari A, Alqahtani AF, Alotaibi S, Munir R, Shah PA, Hussain L, Saleem MA, Razzaq FA, Khalid SH. Curcumin-loaded soluplus® based ternary solid dispersions with enhanced solubility, dissolution and antibacterial, antioxidant, anti-inflammatory activities. Heliyon 2024; 10:e34636. [PMID: 39130422 PMCID: PMC11315136 DOI: 10.1016/j.heliyon.2024.e34636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024] Open
Abstract
Amorphous solid dispersion (ASD) has emerged to be an outstanding strategy among multiple options available for improving solubility and consequently biological activity. Interestingly several binary SD systems continue to exhibit insufficient solubility over time. Therefore, the goal of current research was to design ternary amorphous solid dispersions (ASDs) of hydrophobic model drug curcumin (CUR) to enhance the solubility and dissolution rate in turn, presenting enhanced anti-bacterial, antioxidant and anti-inflammatory activity. For this purpose several ternary solid dispersions (TSDs) consisting of Soluplus®, Syloid® XDP 3150, Syloid® 244 and Poloxamer® 188 in combination with HPMC E5 (binary carrier) were prepared using solvent evaporation method. Both solubility and dissolution testing of prepared solid dispersion were performed to determine the increase in solubility and dissolution. Solid state investigation was carried out utilizing infrared spectroscopy, also known as Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM),Differential scanning calorimetry (DSC) and X-ray diffraction (XRD).Optimized formulations were also tested for their biological effectiveness including anti-bacterial, anti-oxidant and anti-inflammatory activity. Amid all Ternary formulations F3 entailing 20 % soluplus® remarkably improved the solubility (186 μg/ml ± 3.95) and consequently dissolution (91 % ± 3.89 %) of curcumin by 3100 and 9 fold respectively. These finding were also supported by FTIR, SEM, XRD and DSC. In-vitro antibacterial investigation of F3 also demonstrated significant improvement in antibacterial activity against both gram positive (Staphylococcus aureus, Bacillus cereus) and gram negative (Pseudomonas aeruginosa, Escherichia coli) bacteria. Among all the tested strains Staphylococcus aureus was found to be most susceptible with a zone of inhibition of 24 mm ± 2.87. Antioxidant activity of F3 was also notably enhanced (93 % ± 5.30) in contrast to CUR (69 % ± 4.79). In vitro anti-inflammatory assessment also exhibited that F3 markedly protected BSA (bovine serum albumin) from denaturation with percent BSA inhibition of 80 % ± 3.16 in comparison to CUR (49 % ± 2.91). Hence, F3 could be an effective solid dispersion system for the delivery of model hydrophobic drug curcumin.
Collapse
Affiliation(s)
- Memoona Ishtiaq
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Hina Manzoor
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Ikram Ullah Khan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Sajid Asghar
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Irfan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
- College of Pharmacy, Freie Universitaet Berlin, Germany
| | - Norah A. Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abdulrahman F. Alqahtani
- Department of Pharmacy, Riyadh Security Forces Hospital, Ministry of Interior, Kingdom of Saudi Arabia
| | - Saad Alotaibi
- Department of Pharmacy, Riyadh Security Forces Hospital, Ministry of Interior, Kingdom of Saudi Arabia
| | - Rabia Munir
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Pervaiz A. Shah
- University College of Pharmacy, University of the Punjab, Lahore, 54590, Pakistan
| | - Liaqat Hussain
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Abubakar Saleem
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
- Unison Chemical Works, Post Office Araian 15 Km Raiwind Road, Lahore, Pakistan
| | - Fizza Abdul Razzaq
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Syed Haroon Khalid
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Puncak Alam, 42300 Bandar Puncak Alam, Selangor, Malaysia
| |
Collapse
|
33
|
Jacinto FE, de Oliveira LP, Batista AA, Oliveira KM, Correa RS. Ruthenium(II) complexes of curcumin and β-diketone derivatives: effect of structural modifications on their cytotoxicity. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240353. [PMID: 39086819 PMCID: PMC11289651 DOI: 10.1098/rsos.240353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/23/2024] [Accepted: 05/29/2024] [Indexed: 08/02/2024]
Abstract
Ruthenium(II) complexes (Ru1-Ru3) with the general formula [Ru(O-O)(PPh3)2(bipy)]PF6, bearing two triphenylphosphine (PPh3), bipyridine (bipy) and a series of natural and synthetic β-diketones (O,O) ligands were synthesized and characterized using various analytical techniques. The interaction between the complexes and calf thymus DNA (CT-DNA) was investigated and demonstrated a weak interaction. The cytotoxicity of the complexes was investigated against breast cancer cells (MDA-MB-231 and MCF-7), lung cancer cells (A549), cisplatin-resistant ovarian cancer cells (A2780cis), as well as non-tumour lung (MRC-5) and non-tumour breast (MCF-10A) cell lines. All complexes exhibited cytotoxic activity against all the cell lines studied, with half maximal inhibitory concentration (IC50) values ranging from 0.39 to 13 µM. Notably, the three complexes demonstrated selectivity against the A2780cis cell line, with IC50 ranging from 0.39 to 0.82 µM. Among them, Ru2 exhibited the highest cytotoxicity, with an IC50 value of 0.39 µM. Consequently, this new class of complexes shows good selectivity towards cisplatin-resistant ovarian cancer cells and it is promising for further investigation as anti-cancer agents.
Collapse
Affiliation(s)
- Flávia E. Jacinto
- Department of Chemistry, Institute of Biological and Exact Sciences, Campus Morro do Cruzeiro, Federal University of Ouro Preto (UFOP), Ouro Preto, MG35400-000, Brazil
| | - Letícia Pires de Oliveira
- Department of Chemistry, Federal University of São Carlos (UFSCar), CP 676, São Carlos, SP13561-901, Brazil
| | - Alzir A. Batista
- Department of Chemistry, Federal University of São Carlos (UFSCar), CP 676, São Carlos, SP13561-901, Brazil
| | - Katia M. Oliveira
- Department of Chemistry, Institute of Biological and Exact Sciences, Campus Morro do Cruzeiro, Federal University of Ouro Preto (UFOP), Ouro Preto, MG35400-000, Brazil
- Institute of Chemistry, University of Brasília (UnB) – Campus Darcy Ribeiro, Brasília, DF70910-900, Brazil
| | - Rodrigo S. Correa
- Department of Chemistry, Institute of Biological and Exact Sciences, Campus Morro do Cruzeiro, Federal University of Ouro Preto (UFOP), Ouro Preto, MG35400-000, Brazil
| |
Collapse
|
34
|
Samal RR, Subudhi U. Biochemical and biophysical interaction of rare earth elements with biomacromolecules: A comprehensive review. CHEMOSPHERE 2024; 357:142090. [PMID: 38648983 DOI: 10.1016/j.chemosphere.2024.142090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/06/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
The growing utilization of rare earth elements (REEs) in industrial and technological applications has captured global interest, leading to the development of high-performance technologies in medical diagnosis, agriculture, and other electronic industries. This accelerated utilization has also raised human exposure levels, resulting in both favourable and unfavourable impacts. However, the effects of REEs are dependent on their concentration and molecular species. Therefore, scientific interest has increased in investigating the molecular interactions of REEs with biomolecules. In this current review, particular attention was paid to the molecular mechanism of interactions of Lanthanum (La), Cerium (Ce), and Gadolinium (Gd) with biomolecules, and the biological consequences were broadly interpreted. The review involved gathering and evaluating a vast scientific collection which primarily focused on the impact associated with REEs, ranging from earlier reports to recent discoveries, including studies in human and animal models. Thus, understanding the molecular interactions of each element with biomolecules will be highly beneficial in elucidating the consequences of REEs accumulation in the living organisms.
Collapse
Affiliation(s)
- Rashmi R Samal
- Biochemistry & Biophysics Laboratory, Environment & Sustainability Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, 751013, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Umakanta Subudhi
- Biochemistry & Biophysics Laboratory, Environment & Sustainability Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, 751013, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
35
|
Raduly FM, Raditoiu V, Raditoiu A, Nicolae CA, Grapin M, Stan MS, Voinea IC, Vlasceanu RI, Nitu CD, Mihailescu DF, Avram S, Mernea M. Half-Curcuminoids Encapsulated in Alginate-Glucosamine Hydrogel Matrices as Bioactive Delivery Systems. Gels 2024; 10:376. [PMID: 38920923 PMCID: PMC11203298 DOI: 10.3390/gels10060376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/14/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
The therapeutic effects of curcumin and its derivatives, based on research in recent years, are limited by their low bioavailability. To improve bioavailability and develop the medical field of application, different delivery systems have been developed that are adapted to certain environments or the proposed target type. This study presents some half-curcuminoids prepared by the condensation of acetylacetone with 4-hydroxybenzaldehyde (C1), 4-hydroxy-3-methoxybenzaldehyde (C2), 4-acetamidobenzaldehyde (C3), or 4-diethylaminobenzaldehyde (C4), at microwaves as a simple, solvent-free, and eco-friendly method. The four compounds obtained were characterized in terms of morphostructural and photophysical properties. Following the predictions of theoretical studies on the biological activities related to the molecular structure, in vitro tests were performed for compounds C1-C3 to evaluate the antitumor properties and for C4's possible applications in the treatment of neurological diseases. The four compounds were encapsulated in two types of hydrogel matrices. First, the alginate-glucosamine network was generated and then the curcumin analogs were loaded (G1, G3, G5-G7, and G9). The second type of hydrogels was obtained by loading the active compound together with the generation of the hydrogel carrier matrices, by simply dissolving (G4 and G10) or by chemically binding half-curcuminoid derivatives to glucosamine (G2 and G8). Thus, two types of curcumin analog delivery systems were obtained, which could be applied in various types of medical treatments.
Collapse
Affiliation(s)
- Florentina Monica Raduly
- National Research and Development Institute for Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania; (F.M.R.); (A.R.); (C.A.N.); (M.G.)
| | - Valentin Raditoiu
- National Research and Development Institute for Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania; (F.M.R.); (A.R.); (C.A.N.); (M.G.)
| | - Alina Raditoiu
- National Research and Development Institute for Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania; (F.M.R.); (A.R.); (C.A.N.); (M.G.)
| | - Cristian Andi Nicolae
- National Research and Development Institute for Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania; (F.M.R.); (A.R.); (C.A.N.); (M.G.)
| | - Maria Grapin
- National Research and Development Institute for Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania; (F.M.R.); (A.R.); (C.A.N.); (M.G.)
| | - Miruna Silvia Stan
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (I.C.V.); (R.-I.V.)
| | - Ionela Cristina Voinea
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (I.C.V.); (R.-I.V.)
| | - Raluca-Ioana Vlasceanu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (I.C.V.); (R.-I.V.)
| | - Cristina Doina Nitu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (C.D.N.); (D.F.M.); (S.A.); (M.M.)
- Institute of Oncology “Prof. dr. Al. Trestioreanu”, 252, Fundeni, 022328 Bucharest, Romania
| | - Dan F. Mihailescu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (C.D.N.); (D.F.M.); (S.A.); (M.M.)
| | - Speranta Avram
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (C.D.N.); (D.F.M.); (S.A.); (M.M.)
| | - Maria Mernea
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (C.D.N.); (D.F.M.); (S.A.); (M.M.)
| |
Collapse
|
36
|
Yang Y, Sun X, Wang S, Tang Z, Luo S, Shi J, Zhuo X, Zhu J, Zhang H, Kong X. Yolk-shelled silver nanowire@amorphous metal-organic framework for controlled drug delivery and light-promoting infected wound healing. Regen Biomater 2024; 11:rbae056. [PMID: 38845853 PMCID: PMC11153340 DOI: 10.1093/rb/rbae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/28/2024] [Accepted: 05/10/2024] [Indexed: 06/09/2024] Open
Abstract
Bacteria-infected wounds healing has been greatly hindered by antibiotic resistance and persistent inflammation. It is crucial to develop multifunctional nanocomposites that possess effective antibacterial properties and can simultaneously accelerate the wound healing process to overcome the above challenges. Herein, we prepared a yolk-shell structured Ag nanowires (NWs)@amorphous hollow ZIF-67 by etching ZIF-67 onto the Ag NWs for infected wound healing for the first time. The etched hollow structure of amorphous ZIF-67 in the nanocomposite makes it a promising platform for loading healing-promoting drugs. We extensively studied the antibacterial and healing-promoting properties of the curcumin (CCM)-loaded nanocomposite (Ag NWs@C-HZ67). Ag NWs, being noble metal materials with plasmonic effects, can absorb a broad range of natural light and convert it to thermal energy. This photothermal conversion further improves the release of antibacterial components and wound healing drugs when exposed to light. During the healing process of an infected wound, Ag and Co ions were released from Ag NWs@C-HZ67 upon direct contact with the wound exudate and under the influence of light irradiation. Simultaneously, the loaded CCM leaked out to repair the infected wound. The minimum inhibitory concentrations of the Ag NWs@C-HZ67 groups against Escherichia coli and Staphylococcus aureus bacteria decreased to 3 and 3 μg ml-1 when exposed to white light. Furthermore, an in vivo assessment of infected wound healing demonstrated that combining Ag NWs@C-HZ67 with light significantly accelerated the wound healing process, achieving 70% healing by the 6th day and almost complete healing by the 8th day. This advanced nanocomposite, consisting of components that possess antibacterial and growth-promoting properties, offers a safe, effective and clinically-translatable solution for accelerating the healing process of infected wounds.
Collapse
Affiliation(s)
- Yueyan Yang
- Institute for Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Xu Sun
- Institute for Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Shengyan Wang
- School of Science Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, PR China
| | - Zhe Tang
- Institute for Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Siyuan Luo
- Institute for Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Jianjun Shi
- Institute for Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Xiaolu Zhuo
- School of Science Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, PR China
| | - Jinjin Zhu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang, Hangzhou 310016, PR China
| | - Han Zhang
- Institute for Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Xiangdong Kong
- Institute for Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| |
Collapse
|
37
|
Chen X, Xu J, Gafur A, Chen B, Han Y, Zhang L, Kong L, Wang G, Ye Z. Preparation and characterization of chitosan/polyvinyl alcohol antibacterial sponge materials. Biomed Mater 2024; 19:035032. [PMID: 38593822 DOI: 10.1088/1748-605x/ad3c87] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 04/09/2024] [Indexed: 04/11/2024]
Abstract
This study utilized the freeze-drying method to create a chitosan (CS) and polyvinyl alcohol (PVA) sponge. To enhance its antibacterial properties, curcumin and nano silver (Cur@Ag) were added for synergistic antibacterial. After adding curcumin and nano silver, the mechanical properties of the composite sponge dressing (CS-PVA-Cur@Ag) were improved. The porosity of the composite sponge dressing was closed to 80%, which was helpful for drug release, and it had good water absorption and water retention rate. The nano silver diameter was 50-80 nm, which was optimal for killing bacteria. Antibacterial tests usedEscherichia coliandStaphylococcus aureusdemonstrated that little nano silver was required to eliminate bacteria. Finally, in the rat full-thickness skin wound model, the composite sponge dressing can promote wound healing in a short time. In summary, CS-PVA-Cur@Ag wound dressing could protect from bacterial infection and accelerate wound healing. Thus, it had high potential application value for wound dressing.
Collapse
Affiliation(s)
- Xue Chen
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, People's Republic of China
| | - Jing Xu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, People's Republic of China
| | - Alidha Gafur
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, People's Republic of China
| | - Baoyu Chen
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, People's Republic of China
| | - Yibo Han
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, People's Republic of China
| | - Liyuan Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, People's Republic of China
- JinFeng Laboratory, Chongqing 401329, People's Republic of China
| | - Lingwen Kong
- Department of Cardiothoracic Surgery, Central Hospital of Chongqing University. Chongqing Emergency Medical Center, Chongqing 400014, People's Republic of China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, People's Republic of China
- JinFeng Laboratory, Chongqing 401329, People's Republic of China
| | - Zhiyi Ye
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, People's Republic of China
- JinFeng Laboratory, Chongqing 401329, People's Republic of China
| |
Collapse
|
38
|
Yang X, Meng D, Jiang N, Wang C, Zhang J, Hu Y, Lun J, Jia R, Zhang X, Sun W. Curcumin-loaded pH-sensitive carboxymethyl chitosan nanoparticles for the treatment of liver cancer. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:628-656. [PMID: 38284334 DOI: 10.1080/09205063.2024.2304949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/10/2023] [Indexed: 01/30/2024]
Abstract
In this study, the pH-responsive API-CMCS-SA (ACS) polymeric nanoparticles (NPs) based on 1-(3-amino-propyl) imidazole (API), stearic acid (SA), and carboxymethyl chitosan (CMCS) were fabricated for the effective transport of curcumin (CUR) in liver cancer. CUR-ACS-NPs with various degrees of substitution (DS) were employed to prepare through ultrasonic dispersion method. The effect of different DS on NPs formation was discussed. The obtained CUR-ACS-NPs (DSSA=12.4%) had high encapsulation rate (more than 85%) and uniform particle size (186.2 ± 1.42 nm). The CUR-ACS-NPs showed better stability than the other groups. Drug release from the CUR-ACS-NPs was pH-dependent, and more than 90% or 65% of CUR was released in 48 h in weakly acid medium (pH 5.0 or 6.0, respectively). Additionally, the CUR-ACS-NPs increased the intracellular accumulation of CUR and demonstrated high anticancer effect on HepG2 cells compared with the other groups. CUR-ACS-NPs prolonged the retention time of the drug, and the area under the curve (AUC) increased significantly in vivo. The in vivo antitumor study further revealed that the CUR-ACS-NPs exhibited the capability of inhibiting tumor growth and lower systemic toxicity. Meanwhile, CUR, CUR-CS-NPs, and CUR-ACS-NPs could be detected in the evaluated organs, including tumor, liver, spleen, lung, heart, and kidney in distribution studies. Among them, CUR-ACS-NPs reached the maximum concentration at the tumor site, indicating the tumor-targeting properties. In short, the results suggested that CUR-ACS-NPs could act a prospective drug transport system for effective delivery of CUR in cancer treatment.
Collapse
Affiliation(s)
- Xinyu Yang
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Dongdong Meng
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Ning Jiang
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Chaoxing Wang
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Jinbo Zhang
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Yanqiu Hu
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Jiaming Lun
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Rui Jia
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Xueyun Zhang
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Weitong Sun
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi, Heilongjiang 154007, PR China
| |
Collapse
|
39
|
Xu T, Ning X, Wu J, Wang Q, Wang Z, Chen Z, Tang X, Bai P, Pu K, Li L, Zhang R. Metabolic Nanoregulator Remodels Gut Microenvironment for Treatment of Inflammatory Bowel Disease. ACS NANO 2024; 18:7123-7135. [PMID: 38390866 DOI: 10.1021/acsnano.3c11496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Inflammatory bowel disease (IBD) is strongly related to the occurrence of accumulation of toxic reactive oxygen species (ROS), inflammation of the mucosa, and an imbalance of intestinal microbes. However, current treatments largely focus on a single factor, yielding unsatisfactory clinical outcomes. Herein, we report a biocompatible and IBD-targeted metabolic nanoregulator (TMNR) that synergistically regulates cellular and bacterial metabolism. The TMNR comprises a melanin-gallium complex (MNR) encapsulated within a thermosensitive and colitis-targeting hydrogel, all composed of natural and FDA-approved components. The TMNR confers superior broad-spectrum antioxidant properties, effectively scavenging reactive oxygen species (ROS) and blocking inflammatory signaling pathways. The presence of Ga3+ in TMNR selectively disrupts iron metabolism in pathogenic microorganisms due to its structural resemblance to the iron atom. Additionally, incorporating a thermosensitive injectable hydrogel enables targeted delivery of TMNR to inflammatory regions, prolonging their retention time and providing a physical barrier function for optimizing IBD treatment efficacy. Collectively, TMNR effectively modulates the redox balance of inflamed colonic epithelial tissue and disrupts iron metabolism in pathogenic microorganisms, thereby eliminating inflammation and restoring intestinal homeostasis against IBD. Hence, this work presents a comprehensive approach for precise spatiotemporal regulation of the intestinal microenvironmental metabolism for IBD treatment.
Collapse
Affiliation(s)
- Ting Xu
- The Radiology Department of Shanxi Provincial People's Hospital, The Fifth Hospital of Shanxi Medical University, Taiyuan, 030012, China
| | - Xiaogang Ning
- School of Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Jiayan Wu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637457, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 637457, Singapore
| | - Qian Wang
- The Radiology Department of Shanxi Provincial People's Hospital, The Fifth Hospital of Shanxi Medical University, Taiyuan, 030012, China
| | - Zhifei Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Zhiqing Chen
- The Radiology Department of Shanxi Provincial People's Hospital, The Fifth Hospital of Shanxi Medical University, Taiyuan, 030012, China
| | - Xiaoxian Tang
- The Radiology Department of Shanxi Provincial People's Hospital, The Fifth Hospital of Shanxi Medical University, Taiyuan, 030012, China
| | - Peirong Bai
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637457, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 637457, Singapore
| | - Liping Li
- The Fifth Hospital of Shanxi Medical University, Taiyuan, 030012, China
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China
| | - Ruiping Zhang
- The Radiology Department of Shanxi Provincial People's Hospital, The Fifth Hospital of Shanxi Medical University, Taiyuan, 030012, China
| |
Collapse
|
40
|
Pellei M, Del Gobbo J, Caviglia M, Gandin V, Marzano C, Karade DV, Noonikara Poyil A, Dias HVR, Santini C. Synthesis and Investigations of the Antitumor Effects of First-Row Transition Metal(II) Complexes Supported by Two Fluorinated and Non-Fluorinated β-Diketonates. Int J Mol Sci 2024; 25:2038. [PMID: 38396717 PMCID: PMC10889438 DOI: 10.3390/ijms25042038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
The 3d transition metal (Mn(II), Fe(II), Co(II), Ni(II), Cu(II) and Zn(II)) complexes, supported by anions of sterically demanding β-diketones, 1,3-dimesitylpropane-1,3-dione (HLMes) and 1,3-bis(3,5-bis(trifluoromethyl)phenyl)-3-hydroxyprop-2-en-1-one (HLCF3), were synthesized and evaluated for their antitumor activity. To assess the biological effects of substituents on phenyl moieties, we also synthesized and investigated the analogous metal(II) complexes of the anion of the less bulky 1,3-diphenylpropane-1,3-dione (HLPh) ligand. The compounds [Cu(LCF3)2], [Cu(LMes)2] and ([Zn(LMes)2]) were characterized by X-ray crystallography. The [Cu(LCF3)2] crystallizes with an apical molecule of solvent (THF) and features a rare square pyramidal geometry at the Cu(II) center. The copper(II) and zinc(II) complexes of diketonate ligands, derived from the deprotonated 1,3-dimesitylpropane-1,3-dione (HLMes), adopt a square planar or a tetrahedral geometry at the metal, respectively. We evaluated the antitumor properties of the newly synthesized (Mn(II), Fe(II), Co(II), Ni(II), Cu(II) and Zn(II)) complexes against a series of human tumor cell lines derived from different solid tumors. Except for iron derivatives, cellular studies revealed noteworthy antitumor properties, even towards cancer cells endowed with poor sensitivity to the reference drug cisplatin.
Collapse
Affiliation(s)
- Maura Pellei
- School of Science and Technology—Chemistry Division, University of Camerino, Via Madonna delle Carceri (ChIP), Camerino, 62032 Macerata, Italy; (J.D.G.); (C.S.)
| | - Jo’ Del Gobbo
- School of Science and Technology—Chemistry Division, University of Camerino, Via Madonna delle Carceri (ChIP), Camerino, 62032 Macerata, Italy; (J.D.G.); (C.S.)
| | - Miriam Caviglia
- School of Science and Technology—Chemistry Division, University of Camerino, Via Madonna delle Carceri (ChIP), Camerino, 62032 Macerata, Italy; (J.D.G.); (C.S.)
| | - Valentina Gandin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Cristina Marzano
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Deepika V. Karade
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, P.O. Box 19065, Arlington, TX 76019, USA; (D.V.K.); (H.V.R.D.)
| | - Anurag Noonikara Poyil
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, P.O. Box 19065, Arlington, TX 76019, USA; (D.V.K.); (H.V.R.D.)
| | - H. V. Rasika Dias
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, P.O. Box 19065, Arlington, TX 76019, USA; (D.V.K.); (H.V.R.D.)
| | - Carlo Santini
- School of Science and Technology—Chemistry Division, University of Camerino, Via Madonna delle Carceri (ChIP), Camerino, 62032 Macerata, Italy; (J.D.G.); (C.S.)
| |
Collapse
|
41
|
Dourado D, Miranda JA, de Oliveira MC, Freire DT, Xavier-Júnior FH, Paredes-Gamero EJ, Alencar ÉDN. Recent Trends in Curcumin-Containing Inorganic-Based Nanoparticles Intended for In Vivo Cancer Therapy. Pharmaceutics 2024; 16:177. [PMID: 38399238 PMCID: PMC10891663 DOI: 10.3390/pharmaceutics16020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Curcumin is a natural compound that has been widely investigated thanks to its various biological properties, including antiproliferative. This molecule acts on different cancers such as lung, breast, pancreatic, colorectal, etc. However, the bioactive actions of curcumin have limitations when its physicochemical properties compromise its pharmacological potential. As a therapeutic strategy against cancer, curcumin has been associated with inorganic nanoparticles. These nanocarriers are capable of delivering curcumin and offering physicochemical properties that synergistically enhance anticancer properties. This review highlights the different types of curcumin-based inorganic nanoparticles and discusses their physicochemical properties and in vivo anticancer activity in different models of cancer.
Collapse
Affiliation(s)
- Douglas Dourado
- Department of Immunology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), Recife 50670-420, PE, Brazil;
| | - Júlio Abreu Miranda
- Department of Pharmacy, Federal University of Rio Grande do Norte (UFRN), Natal 59010-180, RN, Brazil; (J.A.M.); (M.C.d.O.)
| | - Matheus Cardoso de Oliveira
- Department of Pharmacy, Federal University of Rio Grande do Norte (UFRN), Natal 59010-180, RN, Brazil; (J.A.M.); (M.C.d.O.)
| | - Danielle Teixeira Freire
- College of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil; (D.T.F.); (E.J.P.-G.)
| | - Francisco Humberto Xavier-Júnior
- Laboratory of Pharmaceutical Biotechnology (BioTecFarm), Department of Pharmacy, Federal University of Paraíba (UFPB), João Pessoa 58051-900, PB, Brazil;
| | - Edgar Julian Paredes-Gamero
- College of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil; (D.T.F.); (E.J.P.-G.)
| | - Éverton do Nascimento Alencar
- College of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil; (D.T.F.); (E.J.P.-G.)
| |
Collapse
|
42
|
Zarei A, Khazdooz L, Khojastegi A, Ali Altaf A, Abbaspourrad A. Oil soluble iron: Curcumin derivatives and their complex. Food Chem 2024; 431:137085. [PMID: 37567079 PMCID: PMC10566601 DOI: 10.1016/j.foodchem.2023.137085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/14/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023]
Abstract
Curcumin dibutanoate (CUDB) is a new oil soluble bidentate ligand which shows higher stability against heat and oxidation compared to curcumin. The oil solubility of this ligand increased an order of magnitude over curcumin. This biomolecule showed high digestibility in a simulated intestinal trial and was hydrolyzed in the presence of porcine pancreatin releasing ∼ 91% of the curcumin. When curcumin dibutanoate was complexed with Fe2+, Fe(CUDB)2 was formed as a new iron (II) complex. Due to the high hydrophobicity of the curcumin dibutanoate ligand, the solubility of Fe(CUDB)2 was found to be 2.8 mg/mL in canola oil. The steric hindrance afforded by the CUDB ligand, coupled with its hydrophobicity stabilized the iron (II) oxidation state within the complex compared to FeSO4·7H2O as measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical. Fe(CUDB)2 has potential to be a new form of oil-soluble iron supplement which co-delivers iron (II) and curcumin.
Collapse
Affiliation(s)
- Amin Zarei
- Department of Food Science, College of Agriculture & Life Sciences, Cornell University, Stocking Hall, Ithaca, NY 14853, United States
| | - Leila Khazdooz
- Department of Food Science, College of Agriculture & Life Sciences, Cornell University, Stocking Hall, Ithaca, NY 14853, United States
| | - Anahita Khojastegi
- Department of Food Science, College of Agriculture & Life Sciences, Cornell University, Stocking Hall, Ithaca, NY 14853, United States
| | - Ataf Ali Altaf
- Department of Food Science, College of Agriculture & Life Sciences, Cornell University, Stocking Hall, Ithaca, NY 14853, United States
| | - Alireza Abbaspourrad
- Department of Food Science, College of Agriculture & Life Sciences, Cornell University, Stocking Hall, Ithaca, NY 14853, United States.
| |
Collapse
|
43
|
Ahmad I, Ahmad S, Ahmad A, Zughaibi TA, Alhosin M, Tabrez S. Curcumin, its derivatives, and their nanoformulations: Revolutionizing cancer treatment. Cell Biochem Funct 2024; 42:e3911. [PMID: 38269517 DOI: 10.1002/cbf.3911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/27/2023] [Accepted: 12/13/2023] [Indexed: 01/26/2024]
Abstract
Curcumin is a natural compound derived from turmeric and can target malignant tumor molecules involved in cancer propagation. It has potent antioxidant activity, but its effectiveness is limited due to poor absorption and rapid elimination from the body. Various curcumin derivatives have also shown anticancer potential in in-vitro and in-vivo models. Curcumin can target multiple signaling pathways involved in cancer development/progression or induce cancer cell death through apoptosis. In addition, curcumin and its derivatives could also enhance the effectiveness of conventional chemotherapy, radiation therapy and reduce their associated side effects. Lately, nanoparticle-based delivery systems are being developed/explored to overcome the challenges associated with curcumin's delivery, increasing its overall efficacy. The use of an imaging system to track these formulations could also give beneficial information about the bioavailability and distribution of the nano-curcumin complex. In conclusion, curcumin holds significant promise in the fight against cancer, especially in its nanoform, and could provide precise delivery to cancer cells without affecting normal healthy cells.
Collapse
Affiliation(s)
- Iftikhar Ahmad
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sameer Ahmad
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biotechnology & Genetics, Faculty of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ausaf Ahmad
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
| | - Torki A Zughaibi
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahmoud Alhosin
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
44
|
Mittal A, Nagpal M, Vashistha VK, Arora R, Issar U. Recent advances in the antioxidant activity of metal-curcumin complexes: a combined computational and experimental review. Free Radic Res 2024; 58:11-26. [PMID: 38145454 DOI: 10.1080/10715762.2023.2298857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/01/2023] [Indexed: 12/26/2023]
Abstract
Curcumin, an extensively studied phytochemical compound, has gained attention for its potential therapeutic applications across a spectrum of diseases. Its notable attributes include its relatively high tolerability within the human body and its perceived absence of adverse side effects. This review article presents a comprehensive overview of the antioxidant effects exhibited by complexes formed by curcumin and curcumin derived ligands with metals like Mn, Cu, Fe, Zn, Ga and In, which leads to toxic effects beyond a certain limit, based on both experimental and theoretical findings. Additionally, the discussion delves into metal-curcumin complexes characterized by stoichiometries of 1:1 and 1:2, exploring their geometric arrangements and corresponding antioxidant activity, as highlighted in recent studies. These complexes hold the promise of improving curcumin's solubility, stability, and bioavailability, potentially augmenting its overall therapeutic potential and expanding its scope for medical applications.
Collapse
Affiliation(s)
- Ankit Mittal
- Department of Chemistry, Shyam Lal College, University of Delhi, Delhi, India
| | - Mudita Nagpal
- School of Engineering and Technology, Vivekananda Institute of Professional Studies - Technical Campus, Delhi, India
| | - Vinod Kumar Vashistha
- Department of Chemistry, Institute of Applied Sciences and Humanities, GLA University, Mathura, India
| | - Richa Arora
- Department of Chemistry, Shivaji College, University of Delhi, Delhi, India
| | - Upasana Issar
- Department of Chemistry, Kalindi College, University of Delhi, Delhi, India
| |
Collapse
|
45
|
Kushwaha R, Singh V, Peters S, Yadav AK, Dolui D, Saha S, Sarkar S, Dutta A, Koch B, Sadhukhan T, Banerjee S. Density Functional Theory-Guided Photo-Triggered Anticancer Activity of Curcumin-Based Zinc(II) Complexes. J Phys Chem B 2023; 127:10266-10278. [PMID: 37988143 DOI: 10.1021/acs.jpcb.3c02382] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Photodynamic therapy (PDT) has evolved as a new therapeutic modality for cancer treatment with fewer side effects and drug resistance. Curcumin exhibits PDT activity, but its low bioavailability restricts its clinical application. Here, the bioavailability of curcumin was increased by its complex formation with the Zn(II) center. For a structure-activity relationship study, Zn(II)-based complexes (1-3) comprising N^N-based ligands (2,2'-bipyridine in 1 and 2 or 1,10-phenanthroline in 3) and O^O-based ligands (acetylacetone in 1, monoanionic curcumin in 2 and 3) were synthesized and thoroughly characterized. The X-ray structure of the control complex, 1, indicated a square pyramidal shape of the molecules. Photophysical and TD-DFT studies indicated the potential of 2 and 3 as good visible light type-II photosensitizers for PDT. Guided by the TD-DFT studies, the low-energy visible light-triggered singlet oxygen (1O2) generation efficacy of 2 and 3 was explored in solution and in cancer cells. As predicted by the TD-DFT calculations, these complexes produced 1O2 efficiently in the cytosol of MCF-7 cancer cells and ultimately displayed excellent apoptotic anticancer activity in the presence of light. Moreover, the molecular docking investigation showed that complexes 2 and 3 have very good binding affinities with caspase-9 and p-53 proteins and could activate them for cellular apoptosis. Further molecular dynamics simulations confirmed the stability of 3 in the caspase-9 protein binding site.
Collapse
Affiliation(s)
- Rajesh Kushwaha
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Virendra Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Silda Peters
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Ashish K Yadav
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Dependu Dolui
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Maharashtra 400076, India
| | - Sukanta Saha
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Maharashtra 400076, India
| | - Sujit Sarkar
- Prescience Insilico Pvt. Ltd., Bengaluru, Karnataka 560066, India
| | - Arnab Dutta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Maharashtra 400076, India
| | - Biplob Koch
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Tumpa Sadhukhan
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Samya Banerjee
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
46
|
Wang L, Xie Y, Myrzagali S, Pu W, Liu E. Metal ions as effectual tools for cancer with traditional Chinese medicine. ACUPUNCTURE AND HERBAL MEDICINE 2023; 3:296-308. [DOI: 10.1097/hm9.0000000000000083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Malignant tumor has become a major threat affecting human health, and is one of the main causes of human death. Recent studies have shown that many traditional Chinese medicines (TCM) have good anti-tumor activity, which may improve the therapeutic effect of routine treatment and quality of life with lower toxicity. However, the efficacy of TCM alone for the treatment of tumors is limited. Metal ions are essential substances for maintaining normal physiological activities. This article summarized the multiple mechanisms in which metal ions are involved in the prevention and treatment of tumors in TCM.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yingqiu Xie
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| | - Sandugash Myrzagali
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| | - Weiling Pu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Erwei Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
47
|
Meza-Morales W, Alvarez-Ricardo Y, Pérez-González LL, Tavera-Hernández R, Ramírez-Apan MT, Toscano RA, Sánchez-Obregón R, Obregón-Mendoza MA, Enríquez RG. First Gallium and Indium Crystal Structures of Curcuminoid Homoleptic Complexes: All-Different Ligand Stereochemistry and Cytotoxic Potential. Int J Mol Sci 2023; 24:16324. [PMID: 38003515 PMCID: PMC10671313 DOI: 10.3390/ijms242216324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
The crystal structure determination of metal complexes of curcuminoids is a relevant topic to assess their unequivocal molecular structure. We report herein the first two X-ray crystal structures of homoleptic metal complexes of a curcuminoid, namely Dimethoxycurcumin (DiMeOC), with gallium and indium. Such successful achievement can be attributed to the suppression of interactions from the phenolic groups, which favor an appropriate molecular setup, rendering Dimethoxycurcumin gallium ((DiMeOC)2-Ga) and Dimethoxycurcumin indium ((DiMeOC)3-In) crystals. Surprisingly, the conformation of ligands in the crystal structures shows differences in each metal complex. Thus, the ligands in the (DiMeOC)2-Ga complex show two different conformers in the two molecules of the asymmetric unit. However, the ligands in the (DiMeOC)3-In complex exhibit three different conformations within the same molecule of the asymmetric unit, constituting the first such case described for an ML3 complex. The cytotoxic activity of the (DiMeOC)2-Ga complex is 4-fold higher than cisplatin against the K562 cell line and has comparable activity towards U251 and PC-3 cell lines. Interestingly, this complex exhibit three times lesser toxicity than cisplatin and even slightly lesser cytotoxicity than curcumin itself.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Marco A. Obregón-Mendoza
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (W.M.-M.); (Y.A.-R.); (L.L.P.-G.); (R.T.-H.); (M.T.R.-A.); (R.A.T.); (R.S.-O.)
| | - Raúl G. Enríquez
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (W.M.-M.); (Y.A.-R.); (L.L.P.-G.); (R.T.-H.); (M.T.R.-A.); (R.A.T.); (R.S.-O.)
| |
Collapse
|
48
|
Feng S, Tang D, Wang Y, Li X, Bao H, Tang C, Dong X, Li X, Yang Q, Yan Y, Yin Z, Shang T, Zheng K, Huang X, Wei Z, Wang K, Qi S. The mechanism of ferroptosis and its related diseases. MOLECULAR BIOMEDICINE 2023; 4:33. [PMID: 37840106 PMCID: PMC10577123 DOI: 10.1186/s43556-023-00142-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/23/2023] [Indexed: 10/17/2023] Open
Abstract
Ferroptosis, a regulated form of cellular death characterized by the iron-mediated accumulation of lipid peroxides, provides a novel avenue for delving into the intersection of cellular metabolism, oxidative stress, and disease pathology. We have witnessed a mounting fascination with ferroptosis, attributed to its pivotal roles across diverse physiological and pathological conditions including developmental processes, metabolic dynamics, oncogenic pathways, neurodegenerative cascades, and traumatic tissue injuries. By unraveling the intricate underpinnings of the molecular machinery, pivotal contributors, intricate signaling conduits, and regulatory networks governing ferroptosis, researchers aim to bridge the gap between the intricacies of this unique mode of cellular death and its multifaceted implications for health and disease. In light of the rapidly advancing landscape of ferroptosis research, we present a comprehensive review aiming at the extensive implications of ferroptosis in the origins and progress of human diseases. This review concludes with a careful analysis of potential treatment approaches carefully designed to either inhibit or promote ferroptosis. Additionally, we have succinctly summarized the potential therapeutic targets and compounds that hold promise in targeting ferroptosis within various diseases. This pivotal facet underscores the burgeoning possibilities for manipulating ferroptosis as a therapeutic strategy. In summary, this review enriched the insights of both investigators and practitioners, while fostering an elevated comprehension of ferroptosis and its latent translational utilities. By revealing the basic processes and investigating treatment possibilities, this review provides a crucial resource for scientists and medical practitioners, aiding in a deep understanding of ferroptosis and its effects in various disease situations.
Collapse
Affiliation(s)
- Shijian Feng
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Dan Tang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yichang Wang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiang Li
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Hui Bao
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Chengbing Tang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiuju Dong
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xinna Li
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Qinxue Yang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yun Yan
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zhijie Yin
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Tiantian Shang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Kaixuan Zheng
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiaofang Huang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zuheng Wei
- Chengdu Jinjiang Jiaxiang Foreign Languages High School, Chengdu, People's Republic of China
| | - Kunjie Wang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| | - Shiqian Qi
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
49
|
Bērziņa L, Mieriņa I. Antiradical and Antioxidant Activity of Compounds Containing 1,3-Dicarbonyl Moiety: An Overview. Molecules 2023; 28:6203. [PMID: 37687032 PMCID: PMC10488980 DOI: 10.3390/molecules28176203] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/12/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Free radicals and oxidants may cause various damages both to the lifeworld and different products. A typical solution for the prophylaxis of oxidation-caused conditions is the usage of various antioxidants. Among them, various classes are found-polyphenols, conjugated polyalkenes, and some sulfur and nitrogen derivatives. Regarding the active site in the molecules, a widely discussed group of compounds are 1,3-dicarbonyl compounds. Among them are natural (e.g., curcumin and pulvinic acids) and synthetic (e.g., 4-hydroxy coumarins, substituted Meldrum's acids) compounds. Herein, information about various compounds containing the 1,3-dicarbonyl moiety is covered, and their antiradical and antioxidant activity, depending on the structure, is discussed.
Collapse
Affiliation(s)
| | - Inese Mieriņa
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, LV-1048 Riga, Latvia;
| |
Collapse
|
50
|
Arenaza-Corona A, Obregón-Mendoza MA, Meza-Morales W, Ramírez-Apan MT, Nieto-Camacho A, Toscano RA, Pérez-González LL, Sánchez-Obregón R, Enríquez RG. The Homoleptic Curcumin-Copper Single Crystal (ML 2): A Long Awaited Breakthrough in the Field of Curcumin Metal Complexes. Molecules 2023; 28:6033. [PMID: 37630284 PMCID: PMC10458717 DOI: 10.3390/molecules28166033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
The first single crystal structure of the homoleptic copper (II) ML2 complex (M=Cu (II), L = curcumin) was obtained and its structure was elucidated by X-ray diffraction showing a square planar geometry, also confirmed by EPR. The supramolecular arrangement is supported by C-H···O interactions and the solvent (MeOH) plays an important role in stabilizing the crystal packing Crystallinity was additionally assessed by XRD patterns. The log P value of the complex (2.3 ± 0.15) was determined showing the improvement in water solubility. The cytotoxic activity of the complex against six cancer cell lines substantially surpasses that of curcumin itself, and it is particularly selective against leukemia (K562) and human glioblastoma (U251) cell lines, with similar antioxidant activity to BHT. This constitutes the first crystal structure of pristine curcumin complexed with a metal ion.
Collapse
Affiliation(s)
- Antonino Arenaza-Corona
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (A.A.-C.); (M.A.O.-M.); (M.T.R.-A.); (A.N.-C.); (R.A.T.); (L.L.P.-G.); (R.S.-O.)
| | - Marco A. Obregón-Mendoza
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (A.A.-C.); (M.A.O.-M.); (M.T.R.-A.); (A.N.-C.); (R.A.T.); (L.L.P.-G.); (R.S.-O.)
| | - William Meza-Morales
- Department of Chemical Engineering, University of Puerto Rico-Mayaguez, Mayagüez, PR 00680, USA;
| | - María Teresa Ramírez-Apan
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (A.A.-C.); (M.A.O.-M.); (M.T.R.-A.); (A.N.-C.); (R.A.T.); (L.L.P.-G.); (R.S.-O.)
| | - Antonio Nieto-Camacho
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (A.A.-C.); (M.A.O.-M.); (M.T.R.-A.); (A.N.-C.); (R.A.T.); (L.L.P.-G.); (R.S.-O.)
| | - Rubén A. Toscano
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (A.A.-C.); (M.A.O.-M.); (M.T.R.-A.); (A.N.-C.); (R.A.T.); (L.L.P.-G.); (R.S.-O.)
| | - Leidys L. Pérez-González
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (A.A.-C.); (M.A.O.-M.); (M.T.R.-A.); (A.N.-C.); (R.A.T.); (L.L.P.-G.); (R.S.-O.)
| | - Rubén Sánchez-Obregón
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (A.A.-C.); (M.A.O.-M.); (M.T.R.-A.); (A.N.-C.); (R.A.T.); (L.L.P.-G.); (R.S.-O.)
| | - Raúl G. Enríquez
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (A.A.-C.); (M.A.O.-M.); (M.T.R.-A.); (A.N.-C.); (R.A.T.); (L.L.P.-G.); (R.S.-O.)
| |
Collapse
|