1
|
Zhong YL, Xu CQ, Li J, Liang ZQ, Wang MM, Ma C, Jia CL, Cao YB, Chen J. Mitochondrial dynamics and metabolism in macrophages for cardiovascular disease: A review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156620. [PMID: 40068296 DOI: 10.1016/j.phymed.2025.156620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/18/2025] [Accepted: 03/05/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND Mitochondria regulate macrophage function, affecting cardiovascular diseases like atherosclerosis and heart failure. Their dynamics interact with macrophage cell death mechanisms, including apoptosis and necroptosis. PURPOSE This review explores how mitochondrial dynamics and metabolism influence macrophage inflammation and cell death in CVDs, highlighting therapeutic targets for enhancing macrophage resilience and reducing CVD pathology, while examining molecular pathways and pharmacological agents involved. STUDY DESIGN This is a narrative review that integrates findings from various studies on mitochondrial dynamics and metabolism in macrophages, their interactions with the endoplasmic reticulum (ER) and Golgi apparatus, and their implications for CVDs. The review also considers the potential therapeutic effects of pharmacological agents on these pathways. METHODS The review utilizes a comprehensive literature search to identify relevant studies on mitochondrial dynamics and metabolism in macrophages, their role in CVDs, and the effects of pharmacological agents on these pathways. The selected studies are analyzed and synthesized to provide insights into the complex relationships between mitochondria, the ER, and Golgi apparatus, and their implications for macrophage function and fate. RESULTS The review reveals that mitochondrial metabolism intertwines with cellular architecture and function, particularly through its intricate interactions with the ER and Golgi apparatus. Mitochondrial-associated membranes (MAMs) facilitate Ca2+ transfer from the ER to mitochondria, maintaining mitochondrial homeostasis during ER stress. The Golgi apparatus transports proteins crucial for inflammatory signaling, contributing to immune responses. Inflammation-induced metabolic reprogramming in macrophages, characterized by a shift from oxidative phosphorylation to glycolysis, underscores the multifaceted role of mitochondrial metabolism in regulating immune cell polarization and inflammatory outcomes. Notably, mitochondrial dysfunction, marked by heightened reactive oxygen species generation, fuels inflammatory cascades and promotes cell death, exacerbating CVD pathology. However, pharmacological agents such as Metformin, Nitazoxanide, and Galanin emerge as potential therapeutic modulators of these pathways, offering avenues for mitigating CVD progression. CONCLUSION This review highlights mitochondrial dynamics and metabolism in macrophage inflammation and cell death in CVDs, suggesting therapeutic targets to improve macrophage resilience and reduce pathology, with new pharmacological agents offering treatment opportunities.
Collapse
Affiliation(s)
- Yi-Lang Zhong
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Chen-Qin Xu
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Ji Li
- Department of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Zhi-Qiang Liang
- Department of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Miao-Miao Wang
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Chao Ma
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Cheng-Lin Jia
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Yong-Bing Cao
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Jian Chen
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; Anhui Province Rural Revitalization Collaborative Technical Service Center, Huangshan University, Huangshan 245041, China; Department of Public Health, International College, Krirk University, Bangkok, Thailand.
| |
Collapse
|
2
|
Park SJ, Cerella C, Kang JM, Byun J, Kum D, Orlikova-Boyer B, Lorant A, Schnekenburger M, Al-Mourabit A, Christov C, Lee J, Han BW, Diederich M. Tetrahydrobenzimidazole TMQ0153 targets OPA1 and restores drug sensitivity in AML via ROS-induced mitochondrial metabolic reprogramming. J Exp Clin Cancer Res 2025; 44:114. [PMID: 40197337 PMCID: PMC11974110 DOI: 10.1186/s13046-025-03372-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 03/20/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a highly aggressive cancer with a 5-year survival rate of less than 35%. It is characterized by significant drug resistance and abnormal energy metabolism. Mitochondrial dynamics and metabolism are crucial for AML cell survival. Mitochondrial fusion protein optic atrophy (OPA)1 is upregulated in AML patients with adverse mutations and correlates with poor prognosis. METHOD This study investigated targeting OPA1 with TMQ0153, a tetrahydrobenzimidazole derivative, to disrupt mitochondrial metabolism and dynamics as a novel therapeutic approach to overcome treatment resistance. Effects of TMQ0153 treatment on OPA1 and mitofusin (MFN)2 protein levels, mitochondrial morphology, and function in AML cells. In this study, we examined reactive oxygen species (ROS) production, oxidative phosphorylation (OXPHOS) inhibition, mitochondrial membrane potential (MMP) depolarization, and apoptosis. Additionally, metabolic profiling was conducted to analyze changes in metabolic pathways. RESULTS TMQ0153 treatment significantly reduced OPA1 and mitofusin (MFN)2 protein levels and disrupted the mitochondrial morphology and function in AML cells. This increases ROS production and inhibits OXPHOS, MMP depolarization, and caspase-dependent apoptosis. Metabolic reprogramming was observed, shifting from mitochondrial respiration to glycolysis and impaired respiratory chain activity. Profiling revealed reduced overall metabolism along with changes in the glutathione (GSH)/oxidized glutathione (GSSG) and NAD⁺/NADH redox ratios. TMQ0153 treatment reduces tumor volume and weight in MV4-11 xenografts in vivo. Combination therapies with TMQ0153 and other AML drugs significantly reduced the leukemic burden and prolonged survival in NOD scid gamma (NSG) mice xenografted with U937-luc and MOLM-14-luc cells. CONCLUSION TMQ0153 targets mitochondrial dynamics by inhibiting OPA1, inducing metabolic reprogramming, and triggering apoptosis in AML cells. It enhances the efficacy of existing AML therapies and provides a promising combination treatment approach that exploits mitochondrial vulnerability and metabolic reprogramming to improve treatment outcomes in AML.
Collapse
MESH Headings
- Humans
- GTP Phosphohydrolases/metabolism
- GTP Phosphohydrolases/antagonists & inhibitors
- GTP Phosphohydrolases/genetics
- Reactive Oxygen Species/metabolism
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/genetics
- Animals
- Mice
- Benzimidazoles/pharmacology
- Mitochondria/metabolism
- Mitochondria/drug effects
- Xenograft Model Antitumor Assays
- Cell Line, Tumor
- Apoptosis/drug effects
- Oxidative Phosphorylation/drug effects
- Drug Resistance, Neoplasm/drug effects
- Membrane Potential, Mitochondrial/drug effects
- Metabolic Reprogramming
Collapse
Affiliation(s)
- Su Jung Park
- Research Institute of Pharmaceutical Sciences & Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Claudia Cerella
- Laboratoire de Biologie Moléculaire du Cancer, BAM3 Pavillon 2, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg
- Present address: Department of Cancer Research, Luxembourg Institute of Health (LIH), BAM Pavillon 2, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg
| | - Jin Mo Kang
- Research Institute of Pharmaceutical Sciences & Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jinyoung Byun
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - David Kum
- Research Institute of Pharmaceutical Sciences & Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Barbora Orlikova-Boyer
- Laboratoire de Biologie Moléculaire du Cancer, BAM3 Pavillon 2, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg
- Present address: Department of Cancer Research, Luxembourg Institute of Health (LIH), BAM Pavillon 2, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg
| | - Anne Lorant
- Laboratoire de Biologie Moléculaire du Cancer, BAM3 Pavillon 2, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg
- Present address: Luxembourg Centre for Systems Biomedicine, Bioinformatics Core, Roudeneck, 1, Boulevard du Jazz, Esch-sur-Alzette, L-4370, Luxembourg
| | - Michael Schnekenburger
- Laboratoire de Biologie Moléculaire du Cancer, BAM3 Pavillon 2, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg
- Present address: Department of Cancer Research, Luxembourg Institute of Health (LIH), BAM Pavillon 2, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg
| | - Ali Al-Mourabit
- CNRS, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, Gif-Sur-Yvette, 91190, France
| | - Christo Christov
- Service d'Histologie, Faculté de Médicine, Université de Lorraine, and INSERM U1256 NGERE, 54000, Nancy, France
| | - Juyong Lee
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, College of Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea
| | - Byung Woo Han
- Research Institute of Pharmaceutical Sciences & Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Marc Diederich
- Research Institute of Pharmaceutical Sciences & Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
3
|
Miyazaki J, Wagatsuma R, Okamoto K. Photothermal imaging of cellular responses to glucose deprivation. RSC Chem Biol 2025; 6:571-582. [PMID: 39927218 PMCID: PMC11801213 DOI: 10.1039/d4cb00269e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 01/30/2025] [Indexed: 02/11/2025] Open
Abstract
In solid tumours, cancer cells modify their metabolic processes to endure environments with nutrient and oxygen scarcity due to inadequate blood flow. A thorough understanding of this adaptive mechanism, which requires reliable microscopic techniques, is crucial for developing effective cancer treatments. In the present study, we used multi-wavelength photothermal (PT) microscopy to visualise the cellular response to glucose deprivation in living cells derived from cervical cancer. We found increased mitochondrial PT signal intensity under glucose deprivation conditions, which is indicative of a correlation between mitochondrial crista density and PT signal intensity. Furthermore, PT microscopy revealed that the activity of the autophagy-lysosome system can be evaluated by detecting substances accumulated in lysosomes. Using this method, we confirmed that ferritin and denatured proteins from the endoplasmic reticulum were present within the lysosomes. The detectability of these substances using PT microscopy at visible wavelengths indicated the presence of iron ions. This method does not require labeling of molecules and provides reliable information and detailed insights into the cellular responses associated with the adaptation of cancer cell metabolism to nutrient stress conditions.
Collapse
Affiliation(s)
- Jun Miyazaki
- Faculty of Systems Engineering, Wakayama University Wakayama 640-8510 Japan
| | - Ryotaro Wagatsuma
- Faculty of Systems Engineering, Wakayama University Wakayama 640-8510 Japan
| | - Koji Okamoto
- Graduate School of Frontier Biosciences, Osaka University Osaka 565-0871 Japan
| |
Collapse
|
4
|
Kim M, Park W, Lim W, Song G, Park S. Amisulbrom induces mitochondrial dysfunction, leading apoptosis and cell cycle arrest in human trophoblast and endometrial cells. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 209:106347. [PMID: 40082038 DOI: 10.1016/j.pestbp.2025.106347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/16/2025]
Abstract
Amisulbrom, a triazole-based fungicide, is utilized in agriculture to increase agricultural production by controlling fungal infections. The long disappearance time of 50 % (DT50) and potential toxic effects of amisulbrom on nontarget organisms have been reported. However, the toxic effects on the pregnancy process remain unclear. This study aims to determine the cytotoxic responses of human trophoblast cells (HTR-8/SVneo) and human endometrial cells (T HESCs), which are associated with implantation upon amisulbrom exposure. Mitochondrial dysfunction and intracellular Ca2+ overload were determined in both cells that are exposed to amisulbrom. Additionally, amisulbrom arrested the cell cycle progression in the G2/M phase, causing apoptosis and reduced survival. Excessive reactive oxygen species (ROS) accumulation and dephosphorylation of PI3K/AKT signaling proteins by amisulbrom exposure mediated these toxic effects. Additionally, spheroid formation was inhibited by amisulbrom treatment in the three-dimensional hanging drop culture model. These results indicate that amisulbrom may pose an adverse effect on the implantation process. Further research is required to identify the toxicity of amisulbrom in vivo. This is the first study to raise concerns about possible toxicity mechanisms of amisulbrom in the implantation process.
Collapse
Affiliation(s)
- Miji Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Wonhyoung Park
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Whasun Lim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Gwonhwa Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Sunwoo Park
- Department of GreenBio Science, Gyeongsang National University, Jinju 52725, Republic of Korea.
| |
Collapse
|
5
|
Chen D, Tang H, Liu J, Zhang H, Rao K, Teng X, Yang F, Liu H. Luteolin-mediated phosphoproteomic changes in chicken splenic lymphocytes: Unraveling the detoxification mechanisms against ammonia-induced stress. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136931. [PMID: 39709809 DOI: 10.1016/j.jhazmat.2024.136931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
Long-term exposure to high ammonia concentrations could severely impact chicken health. On the other hand, luteolin has been shown to protect against ammonia poisoning. Although phosphorylation is critically involved in toxicity induction, the specific role of phosphorylated proteins in ammonia poisoning remains unclear. Herein, we constructed an in vitro model to study chicken ammonia poisoning and also analyzed the protective effects of luteolin. Specifically, a combined series of organic techniques such as protein extraction, enzyme digestion, modified peptide enrichment, Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) analysis, and bioinformatics analysis were employed for a quantitative omics study of phosphorylation modification in three groups of samples. Our findings revealed thousands of Differentially Expressed Proteins (DEPs). The differentially expressed modified proteins were subjected to GO classification, KEGG pathway analysis, cluster analysis, and protein interaction analysis, revealing the detoxification mechanism encompassed mitochondrial maintenance, signal transduction, transcriptional regulation, and cytoskeleton regulation. In the process, mitochondria and Golgi apparatus were the key organelles. Furthermore, the AKT1/FOXO signaling pathway and Heat Shock Proteins (HSPs) were the key core modifiers of the proteins. We hope that our findings will provide a theoretical basis and experimental support for future research on luteolin's detoxification mechanism against ammonia poisoning.
Collapse
Affiliation(s)
- Dechun Chen
- Key Laboratory of Animal Medicine in Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Haojinming Tang
- Key Laboratory of Animal Medicine in Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Jiahao Liu
- Key Laboratory of Animal Medicine in Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Huanrong Zhang
- Key Laboratory of Animal Medicine in Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Kaijing Rao
- Key Laboratory of Animal Medicine in Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Falong Yang
- Key Laboratory of Animal Medicine in Sichuan Province, Southwest Minzu University, Chengdu 610041, China.
| | - Haifeng Liu
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
6
|
Freyberg Z, Andreazza AC, McClung CA, Phillips ML. Linking Mitochondrial Dysfunction, Neurotransmitter, and Neural Network Abnormalities and Mania: Elucidating Neurobiological Mechanisms of the Therapeutic Effect of the Ketogenic Diet in Bipolar Disorder. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2025; 10:267-277. [PMID: 39053576 PMCID: PMC11754533 DOI: 10.1016/j.bpsc.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/25/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
There is growing interest in the ketogenic diet as a treatment for bipolar disorder (BD), and there are promising anecdotal and small case study reports of efficacy. However, the neurobiological mechanisms by which diet-induced ketosis might ameliorate BD symptoms remain to be determined, particularly in manic and hypomanic states-defining features of BD. Identifying these mechanisms will provide new markers to guide personalized interventions and provide targets for novel treatment developments for individuals with BD. In this critical review, we describe recent findings highlighting 2 types of neurobiological abnormalities in BD: 1) mitochondrial dysfunction and 2) neurotransmitter and neural network functional abnormalities. We link these abnormalities to mania/hypomania and depression in BD and then describe the biological underpinnings by which the ketogenic diet may have a beneficial effect in individuals with BD. We end the review by describing approaches that can be employed in future studies to elucidate the neurobiology that underlies the therapeutic effect of the ketogenic diet in BD. Doing this may provide marker predictors to identify individuals who will respond well to the ketogenic diet, as well as offer neural targets for novel treatment developments for BD.
Collapse
Affiliation(s)
- Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.
| | - Ana C Andreazza
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Colleen A McClung
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mary L Phillips
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
7
|
Bai R, Wang H, Yang T, Yan Y, Zhu S, Lv C, Pei Y, Guo J, Li J, Cui X, Lv X, Zheng M. Mechanisms of Mitochondria-Mediated Apoptosis During Eimeria tenella Infection. Animals (Basel) 2025; 15:577. [PMID: 40003058 PMCID: PMC11852116 DOI: 10.3390/ani15040577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/10/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
Coccidiosis in chickens is a parasitic disease caused by Eimeria species, resulting in significant economic losses to the poultry industry. Among these species, Eimeria tenella is considered the most virulent pathogen, with its infection strongly associated with the apoptotic response of host cells. Eimeria tenella modulates host cell apoptosis in a stage-specific manner, suppressing apoptosis in the early phase to promote its intracellular development and triggering apoptosis in later stages to facilitate parasite egress and disease progression. This study established an in vitro infection model using 60 fifteen-day-old chick embryo cecal epithelial cells and infecting the cells with Eimeria tenella sporozoites at a 1:1 ratio of host cells to sporozoites. The aim was to examine the relationship between parasitic infection and the apoptotic response of host cells in the chick embryo cecal epithelial cells infected with E. tenella. The roles of the mitochondrial permeability transition pore (MPTP) and cytochrome c in intrinsic apoptosis were examined through the application of cyclosporine A (CsA), N, N, N', N'-tetramethyl-1,4-phenylenediamine (TMPD), and ascorbate (Asc). TUNEL staining, ELISA, and flow cytometry were performed to evaluate apoptotic rates. CsA, TMPD, and Asc significantly (p < 0.01) decreased cytochrome c release, caspase-9 activation, and apoptotic rates from 24 to 120 h post-E. tenella infection. These findings highlight the significance of cytochrome c-mediated, mitochondria-dependent apoptotic pathways in parasitized chick embryo cecal epithelial cells.
Collapse
Affiliation(s)
- Rui Bai
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Hui Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Tiantian Yang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Yuqi Yan
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Shuying Zhu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Chenyang Lv
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Yang Pei
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Jiale Guo
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Jianhui Li
- College of Animal Science, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Xiaozhen Cui
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Xiaoling Lv
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Mingxue Zheng
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| |
Collapse
|
8
|
Wilson AM, Jacobs MM, Lambert TY, Valada A, Meloni G, Gilmore E, Murray J, Morgello S, Akbarian S. Transcriptional impacts of substance use disorder and HIV on human ventral midbrain neurons and microglia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.05.636667. [PMID: 39974894 PMCID: PMC11838593 DOI: 10.1101/2025.02.05.636667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
For people with HIV (PWH), substance use disorders (SUDs) are a prominent neurological risk factor, and the impacts of both on dopaminergic pathways are a potential point of deleterious convergence. Here, we profile, at single nucleus resolution, the substantia nigra (SN) transcriptomes of 90 postmortem donors in the context of chronic HIV and opioid/cocaine SUD, including 67 prospectively characterized PWH. We report altered microglial expression for hundreds of pro- and anti-inflammatory regulators attributable to HIV, and separately, to SUD. Stepwise, progressive microglial dysregulation, coupled to altered SN dopaminergic and GABAergic signaling, was associated with SUD/HIV dual diagnosis and further with lack of viral suppression in blood. In virologically suppressed donors, SUD comorbidity was associated with microglial transcriptional changes permissive for HIV infection. We report HIV-related downregulation of monoamine reuptake transporters specifically in dopaminergic neurons regardless of SUD status or viral load, and additional transcriptional signatures consistent with selective vulnerability of SN dopamine neurons.
Collapse
Affiliation(s)
- Alyssa M. Wilson
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michelle M. Jacobs
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tova Y. Lambert
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Aditi Valada
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gregory Meloni
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Evan Gilmore
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jacinta Murray
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Susan Morgello
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Schahram Akbarian
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
9
|
Jana S, Alayash AI. Exploring the Molecular Interplay Between Oxygen Transport, Cellular Oxygen Sensing, and Mitochondrial Respiration. Antioxid Redox Signal 2025. [PMID: 39846399 DOI: 10.1089/ars.2023.0428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Significance: The mitochondria play a key role in maintaining oxygen homeostasis under normal oxygen tension (normoxia) and during oxygen deprivation (hypoxia). This is a critical balancing act between the oxygen content of the blood, the tissue oxygen sensing mechanisms, and the mitochondria, which ultimately consume most oxygen for energy production. Recent Advances: We describe the well-defined role of the mitochondria in oxygen metabolism with a special focus on the impact on blood physiology and pathophysiology. Critical Issues: Fundamental questions remain regarding the impact of mitochondrial responses to changes in overall blood oxygen content under normoxic and hypoxic states and in the case of impaired oxygen sensing in various cardiovascular and pulmonary complications including blood disorders involving hemolysis and hemoglobin toxicity, ischemia reperfusion, and even in COVID-19 disease. Future Directions: Understanding the nature of the crosstalk among normal homeostatic pathways, oxygen carrying by hemoglobin, utilization of oxygen by the mitochondrial respiratory chain machinery, and oxygen sensing by hypoxia-inducible factor proteins, may provide a target for future therapeutic interventions. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Sirsendu Jana
- Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| | - Abdu I Alayash
- Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| |
Collapse
|
10
|
Sniezek Carney O, Harris KW, Wohlfarter Y, Lee K, Butschek G, Anzmann AF, Hamacher-Brady A, Keller MA, Vernon HJ. Stem cell models of TAFAZZIN deficiency reveal novel tissue-specific pathologies in Barth syndrome. Hum Mol Genet 2025; 34:101-115. [PMID: 39535077 PMCID: PMC11756277 DOI: 10.1093/hmg/ddae152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/30/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Barth syndrome (BTHS) is a rare mitochondrial disease caused by pathogenic variants in the gene TAFAZZIN, which leads to abnormal cardiolipin (CL) metabolism on the inner mitochondrial membrane. Although TAFAZZIN is ubiquitously expressed, BTHS involves a complex combination of tissue specific phenotypes including cardiomyopathy, neutropenia, skeletal myopathy, and growth delays, with a relatively minimal neurological burden. To understand both the developmental and functional effects of TAZ-deficiency in different tissues, we generated isogenic TAZ knockout (TAZ-KO) and WT cardiomyocytes (CMs) and neural progenitor cells (NPCs) from CRISPR-edited induced pluripotent stem cells (iPSCs). In TAZ-KO CMs we discovered evidence of dysregulated mitophagy including dysmorphic mitochondria and mitochondrial cristae, differential expression of key autophagy-associated genes, and an inability of TAZ-deficient CMs to properly initiate stress-induced mitophagy. In TAZ-deficient NPCs we identified novel phenotypes including a reduction in CIV abundance and CIV activity in the CIII2&CIV2 intermediate complex. Interestingly, while CL acyl chain manipulation was unable to alter mitophagy defects in TAZ-KO CMs, we found that linoleic acid or oleic acid supplementation was able to partially restore CIV abundance in TAZ-deficient NPCs. Taken together, our results have implications for understanding the tissue-specific pathology of BTHS and potential for tissue-specific therapeutic targeting. Moreover, our results highlight an emerging role for mitophagy in the cardiac pathophysiology of BTHS and reveal a potential neuron-specific bioenergetic phenotype.
Collapse
Affiliation(s)
- Olivia Sniezek Carney
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, MD 21205, United States
| | - Kodi W Harris
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, MD 21205, United States
| | - Yvonne Wohlfarter
- Institute of Human Genetics, Medical University of Innsbruck, Peter-Mayr-Str. 1/1.OG, Innsbruck 6020, Austria
| | - Kyuna Lee
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, MD 21205, United States
| | - Grant Butschek
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, United States
| | - Arianna F Anzmann
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, MD 21205, United States
| | - Anne Hamacher-Brady
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, United States
| | - Markus A Keller
- Institute of Human Genetics, Medical University of Innsbruck, Peter-Mayr-Str. 1/1.OG, Innsbruck 6020, Austria
| | - Hilary J Vernon
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, MD 21205, United States
| |
Collapse
|
11
|
Xu Y, Wang P, Hu T, Ning K, Bao Y. Notoginsenoside R1 Attenuates H/R Injury in H9c2 Cells by Maintaining Mitochondrial Homeostasis. Curr Issues Mol Biol 2025; 47:44. [PMID: 39852159 PMCID: PMC11763921 DOI: 10.3390/cimb47010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/04/2025] [Accepted: 01/08/2025] [Indexed: 01/26/2025] Open
Abstract
Mitochondrial homeostasis is crucial for maintaining cellular energy production and preventing oxidative stress, which is essential for overall cellular function and longevity. Mitochondrial damage and dysfunction often occur concomitantly in myocardial ischemia-reperfusion injury (MIRI). Notoginsenoside R1 (NGR1), a unique saponin from the traditional Chinese medicine Panax notoginseng, has been shown to alleviate MIRI in previous studies, though its precise mechanism remains unclear. This study aimed to elucidate the mechanisms of NGR1 in maintaining mitochondrial homeostasis in hypoxia/reoxygenation (H/R) H9c2 cells. The results showed that NGR1 pretreatment effectively increased cell survival rates post-H/R, reduced lactate dehydrogenase (LDH) leakage, and mitigated cell damage. Further investigation into mitochondria revealed that NGR1 alleviated mitochondrial structural damage, improved mitochondrial membrane permeability transition pore (mPTP) persistence, and prevented mitochondrial membrane potential (Δψm) depolarization. Additionally, NGR1 pretreatment enhanced ATP levels, increased the activity of mitochondrial respiratory chain complexes I-V after H/R, and reduced excessive mitochondrial reactive oxygen species (mitoROS) production, thereby protecting mitochondrial function. Further analysis indicated that NGR1 upregulated the expression of mitochondrial biogenesis-related proteins (PGC-1α, Nrf1, Nrf2) and mitochondrial fusion proteins (Opa1, Mfn1, Mfn2), while downregulating mitochondrial fission proteins (Fis1, Drp1) and reducing mitochondrial autophagy (mitophagy) levels, as well as the expression of mitophagy-related proteins (Pink1, Parkin, BNIP3) post-H/R. Therefore, this study showed that NGR1 can maintain mitochondrial homeostasis by regulating mitophagy, mitochondrial fission-fusion dynamics, and mitochondrial biogenesis, thereby alleviating H9c2 cell H/R injury and protecting cardiomyocytes.
Collapse
Affiliation(s)
| | | | | | | | - Yimin Bao
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.X.)
| |
Collapse
|
12
|
Jin H, He J, Wu M, Wang X, Jia L, Zhang L, Guo J. Resveratrol Alleviated T-2 Toxin-Induced Liver Injury via Preservation of Nrf2 Pathway and GSH Synthesis. ENVIRONMENTAL TOXICOLOGY 2025; 40:19-29. [PMID: 39225115 DOI: 10.1002/tox.24412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 03/20/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
T-2 toxin is a trichothecene mycotoxin and is considered as an extremely inevitable pollutant with potent hepatotoxicity. However, the approach to alleviation of T-2 toxin-triggered hepatotoxicity has been recognized as a serious challenge. Resveratrol (Res) is a polyphenol natural product isolated from various plant species, but its protective effect against T-2 toxin hepatotoxicity and detailed mechanism remains obscure. In the present study, the effect of Res against the hepatotoxicity was evaluated, and the underlying mechanisms were further revealed in mice. Functionally, Res inhibited liver injury, oxidative damage, and mitochondrial dysfunction induced by T-2 toxin. Mechanistically, Res modulated Nrf2-mediated antioxidant pathway and glutathione synthesis inhibition. Collectively, our findings first showed beyond doubt that Res ameliorated T-2 toxin-triggered liver injury by regulating Nrf2 pathways in mice.
Collapse
Affiliation(s)
- Hong Jin
- Department of Military Operation Medical Protection, Chinese PLA Center for Disease Control and Prevention, Beijing, Fengtai District, China
| | - Jun He
- Department of Military Operation Medical Protection, Chinese PLA Center for Disease Control and Prevention, Beijing, Fengtai District, China
| | - Min Wu
- School of Public Health, China Medical University, Shenyang, Shenbei New District, China
| | - Xiaohan Wang
- School of Public Health, China Medical University, Shenyang, Shenbei New District, China
| | - Li Jia
- Department of Military Operation Medical Protection, Chinese PLA Center for Disease Control and Prevention, Beijing, Fengtai District, China
| | - Li Zhang
- Department of Military Operation Medical Protection, Chinese PLA Center for Disease Control and Prevention, Beijing, Fengtai District, China
| | - Jiabin Guo
- Department of Military Operation Medical Protection, Chinese PLA Center for Disease Control and Prevention, Beijing, Fengtai District, China
| |
Collapse
|
13
|
Wu C, Hong YX, Zhang XC, Li JZ, Li YT, Xie J, Wang RY, Wang Y, Li G. SIRT1-dependent regulation of mitochondrial metabolism participates in miR-30a-5p-mediated cardiac remodeling post-myocardial infarction. Free Radic Biol Med 2025; 226:117-128. [PMID: 39557133 DOI: 10.1016/j.freeradbiomed.2024.11.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/25/2024] [Accepted: 11/14/2024] [Indexed: 11/20/2024]
Abstract
Myocardial infarction-triggered myocardial remodeling is fatal for therapies. The miR-30 family is an essential component of several physiological and pathological processes. Previous studies have proved that the miR-30 family may contribute to regulating myocardial infarction. This study aimed to demonstrate that the combination of miR-30a-5p and mitochondrial metabolism recapitulates the critical features for remodeling post-myocardial infarction. Using gain- and loss-of-function of miR-30a-5p in mice, we found miR-30a-5p is highly expressed in the heart and is reduced in infarcted hearts. Further evidence showed that miR-30a-5p acts as a protective molecule to maintain myocardial remodeling, fibrosis, and mitochondrial structure. Mitochondrial function, ATP production, and mitochondrial respiratory chain proteins were positively regulated by miR-30a-5p. Mechanistically, alterations in these properties depend on SIRT1, which modulates miR-30a-5p-regulated mitochondrial metabolism. Remarkably, reactivation of SIRT1 prevented miR-30a-5p deficiency-aggravated myocardial infarction-induced myocardial remodeling. These data identified miR-30a-5p as a critical modulator of mitochondrial function in cardiomyocytes and revealed that the miR-30a-5p-SIRT1-mitochondria network is essential for myocardial infarction-induced cardiac remodeling.
Collapse
Affiliation(s)
- Chan Wu
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361000, China
| | - Yi-Xiang Hong
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361000, China
| | - Xiao-Cheng Zhang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361000, China
| | - Jing-Zhou Li
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361000, China
| | - Yu-Ting Li
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361000, China
| | - Jun Xie
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Rui-Ying Wang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361000, China; Xiamen Key Laboratory of Cardiovascular Diseases, Xiamen, Fujian, 361000, China.
| | - Yan Wang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361000, China; Xiamen Key Laboratory of Cardiovascular Diseases, Xiamen, Fujian, 361000, China.
| | - Gang Li
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361000, China; Xiamen Key Laboratory of Cardiovascular Diseases, Xiamen, Fujian, 361000, China.
| |
Collapse
|
14
|
Yu JW, Lu WH. Melittin alleviates bleomycin-induced pulmonary fibrosis in vivo through regulating TGF-β1/Smad2/3 and AMPK/SIRT1/PGC-1α signaling pathways. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2025; 28:426-433. [PMID: 39968084 PMCID: PMC11831745 DOI: 10.22038/ijbms.2024.81986.17740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 09/28/2024] [Indexed: 02/20/2025]
Abstract
Objectives The present study investigated the protective effect of melittin (MEL) against bleomycin (BLM)- induced pulmonary fibrosis (PF) in mice and the mechanism underlying this effect. Materials and Methods A mouse model of PF was established by intratracheal injection of 3.5 mg/kg BLM. Twenty-four hours after the model was established, the mice in the treatment groups were intraperitoneally injected with MEL, and specimens were collected 28 days later. The body weight, survival rate, and pulmonary index (PI) of the mice were determined. Haematoxylin and eosin (HE) staining, Masson's trichrome staining, immunohistochemical staining, kit assays, and Western blot (WB) analysis were performed. Results Our study indicated that MEL significantly increased the body weight and survival rate, reduced PI, and improved lung histopathology in mice. In addition, MEL inhibited epithelial-mesenchymal transition (EMT) and extracellular matrix (ECM) deposition. Attenuated mitochondrial damage and reduced oxidative stress (OS) were also observed in MEL-treated mice. We further showed that MEL inhibited the TGF-β1/Smad2/3 pathway and activated the AMPK/SIRT1/PGC-1α pathway. Conclusion MEL is a promising future therapeutic agent for PF. Its multifaceted and complex mechanism of action inhibits both EMT and ECM production by modulating the TGF-β1/Smad2/3 pathway. It also improves mitochondrial function and reduces OS at least partially through the activation of the AMPK/SIRT1/PGC-1α signaling pathway.
Collapse
Affiliation(s)
- Jia-Wang Yu
- The Fifth Clinical Medical College of Anhui Medical University, Hefei, 230032, China
- EICU, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241000, China
| | - Wei-Hua Lu
- The Fifth Clinical Medical College of Anhui Medical University, Hefei, 230032, China
- ICU, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241000, China
| |
Collapse
|
15
|
Li P, Zhou M, Wang J, Tian J, Zhang L, Wei Y, Yang F, Xu Y, Wang G. Important Role of Mitochondrial Dysfunction in Immune Triggering and Inflammatory Response in Rheumatoid Arthritis. J Inflamm Res 2024; 17:11631-11657. [PMID: 39741752 PMCID: PMC11687318 DOI: 10.2147/jir.s499473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 12/15/2024] [Indexed: 01/03/2025] Open
Abstract
Rheumatoid arthritis (RA) is an inflammatory autoimmune disease, primarily characterized by chronic symmetric synovial inflammation and erosive bone destruction.Mitochondria, the primary site of cellular energy production, play a crucial role in energy metabolism and possess homeostatic regulation capabilities. Mitochondrial function influences the differentiation, activation, and survival of both immune and non-immune cells involved in RA pathogenesis. If the organism experiences hypoxia, genetic predisposition, and oxidative stress, it leads to mitochondrial dysfunction, which further affects immune cell energy metabolism, synovial cell proliferation, apoptosis, and inflammatory signaling, causing the onset and progression of RA; and, mitochondrial regulation is becoming increasingly important in the treatment of RA.In this review, we examine the structure and function of mitochondria, analyze the potential causes of mitochondrial dysfunction in RA, and focus on the mechanisms by which mitochondrial dysfunction triggers chronic inflammation and immune disorders in RA. We also explore the effects of mitochondrial dysfunction on RA immune cells and osteoblasts, emphasizing its key role in the immune response and inflammatory processes in RA. Furthermore, we discuss potential biological processes that regulate mitochondrial homeostasis, which are of great importance for the prevention and treatment of RA.
Collapse
Affiliation(s)
- Pingshun Li
- College of Integrative Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
- Department of Rheumatology and Bone Disease, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Mengru Zhou
- Department of Rheumatology and Bone Disease, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Jia Wang
- Department of Rheumatology and Bone Disease, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Jiexiang Tian
- Department of Rheumatology and Bone Disease, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Lihuan Zhang
- Department of Rheumatology and Bone Disease, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Yong Wei
- Department of Rheumatology and Bone Disease, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Fang Yang
- Department of Rheumatology and Bone Disease, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Yali Xu
- College of Integrative Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Gang Wang
- Department of Rheumatology and Bone Disease, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| |
Collapse
|
16
|
Wang S, Zou M, Zhu Z, Wang Z, Li K, Ruan J, Zhao B, Pan C, Lan X, Zhang S, Foulkes NS, Zhao H. Oseltamivir phosphate (Tamiflu) alters neurobehavior of zebrafish larvae by inducing mitochondrial dysfunction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177077. [PMID: 39461536 DOI: 10.1016/j.scitotenv.2024.177077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
Antiviral drugs are widely used, yet their potential risks during early development, particularly within the central nervous system, remain contentious. Oseltamivir phosphate (OSE), a commonly prescribed antiviral, is increasingly detected in various environments. However, its toxicity to organisms and the underlying mechanisms are not well understood. In this study, we employed the zebrafish model to evaluate the developmental neurotoxic effects of OSE at environmentally and therapeutically relevant doses, through high-throughput behavioral analysis, in vivo two-photon imaging, transcriptomic sequencing, pharmacological intervention, and biochemical and molecular assays. Our results indicated that OSE exposure increased heart rate and induced pericardial edema in zebrafish larvae. Additionally, OSE-exposed larvae exhibited hyperactive behavior, impaired social interactions, and reduced habitual learning capacity. Although OSE at our selected levels did not significantly affect neuron count in the brain, it activated neuroinflammatory responses, altered blood vessel morphology, modulated neurotransmitter levels and the expression of neurodevelopment-related genes. Transcriptomic analysis revealed upregulation of mitochondria-related genes associated with oxidative phosphorylation. Further assessments of mitochondrial function demonstrated altered activities of respiratory chain complexes, reduced mitochondrial membrane potential (MMP), and decreased ATP content. Notably, co-treatment with mitochondrial protectants acetyl-l-carnitine-hydrochloride (ALC) or nicotinamide riboside (NR) effectively mitigated OSE-induced neurobehavioral disorders. These findings suggest that overuse of OSE can pose neurodevelopmental risks for both humans and animals, potentially attributable to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Shuang Wang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China.
| | - Minjian Zou
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China.
| | - Zhirui Zhu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China.
| | - Zuo Wang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China.
| | - Kemin Li
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China.
| | - Jiayi Ruan
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China.
| | - Bixi Zhao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China.
| | - Chuanyin Pan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, Shaanxi Province, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, Shaanxi Province, China
| | - Shengxiang Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China.
| | - Nicholas S Foulkes
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - Haiyu Zhao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China.
| |
Collapse
|
17
|
Elfeky M, Tsubota A, Shimozuru M, Tsubota T, Kimura K, Okamatsu-Ogura Y. Regulation of mitochondrial metabolism by hibernating bear serum: Insights into seasonal metabolic adaptations. Biochem Biophys Res Commun 2024; 736:150510. [PMID: 39121671 DOI: 10.1016/j.bbrc.2024.150510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Hibernating animals undergo a unique and reversible decrease in their whole-body metabolism, which is often accompanied by a suppression of mitochondrial respiration. However, the precise mechanisms underlying these seasonal shifts in mitochondrial metabolism remain unclear. In this study, the effect of the serum from active and hibernating Japanese black bears on mitochondrial respiration was assessed. Stromal-vascular cells were obtained from bear white adipose tissue and cultured with or without an adipocyte differentiation cocktail. When the oxygen consumption was measured in the presence of bear serum, the hibernating bear serum reduced maximal respiration by 15.5 % (p < 0.05) and spare respiratory capacity by 46.0 % (p < 0.01) in the differentiated adipocytes in comparison to the active bear serum. Similar reductions of 23.4 % (p = 0.06) and 40.6 % (p < 0.05) respectively were observed in undifferentiated cells, indicating the effect is cell type-independent. Blue native PAGE analysis revealed that hibernating bear serum suppressed cellular metabolism independently of the assembly of mitochondrial respiratory chain complexes. RNA-seq analysis identified 1094 differentially expressed genes (fold change>1.5, FDR<0.05) related to insulin signaling and glucose metabolism pathways. These findings suggest that the rapid alterations in mitochondrial metabolism during hibernation are likely induced by a combination of reduced insulin signaling and suppressed mitochondrial function, rather than changes in respiratory complex assembly.
Collapse
Affiliation(s)
- Mohamed Elfeky
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan; Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 21526, Egypt.
| | - Ayumi Tsubota
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Michito Shimozuru
- Laboratory of Wildlife Biology and Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Toshio Tsubota
- Laboratory of Wildlife Biology and Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Kazuhiro Kimura
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Yuko Okamatsu-Ogura
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| |
Collapse
|
18
|
Kouam AF, Njingou I, Pekam Magoudjou NJ, Ngoumbe HB, Nfombouot Njitoyap PH, Zeuko'o EM, Njayou FN, Moundipa PF. Delayed treatment with hydro-ethanolic extract of Khaya grandifoliola protects mice from acetaminophen-hepatotoxicity through inhibition of c-Jun N-terminal kinase phosphorylation and mitochondrial dysfunction. PHARMACEUTICAL SCIENCE ADVANCES 2024; 2:100049. [DOI: 10.1016/j.pscia.2024.100049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
19
|
Uribe-Ramírez D, Romero-Aguilar L, Vázquez-Meza H, Cristiani-Urbina E, Pardo JP. Modifications of the respiratory chain of Bacillus licheniformis as an alkalophilic and cyanide-degrading microorganism. J Bioenerg Biomembr 2024; 56:591-605. [PMID: 39496989 PMCID: PMC11624218 DOI: 10.1007/s10863-024-10041-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 09/26/2024] [Indexed: 11/06/2024]
Abstract
Bacillus licheniformis can use cyanide as a nitrogen source for its growth. However, it can also carry out aerobic respiration in the presence of this compound, a classic inhibitor of mammalian cytochrome c oxidase, indicating that B. licheniformis has a branched respiratory chain with various terminal oxidases. Here, we studied the modifications in the respiratory chain of B. licheniformis when cells were cultured in Nutrient Broth, an alkaline medium with ammonium, or an alkaline medium with cyanide. Then, we measured oxygen consumption in intact cells and membranes, enzyme activities, carried out 1D and 2D-BN-PAGE, followed by mass spectrometry analysis of BN-PAGE bands associated with NADH, NADPH, and succinate dehydrogenase activities. We found that cell growth was favored in a nutrient medium than in an alkaline medium with cyanide. In parallel, respiratory activity progressively decreased in cells cultured in the rich medium, alkaline medium with ammonium, and the lowest activity was in the cells growing in the alkaline medium with cyanide. B. licheniformis membranes contain NADH, NADPH, and succinate dehydrogenases, and the proteomic analysis detected the nitrate reductase and the bc, caa3, aa3, and bd complexes. The succinate dehydrogenase migrated with a molecular mass of 375 kDa, indicating its association with the nitrate reductase (115 kDa + 241 kDa, respectively). The NADH dehydrogenase of B. licheniformis forms aggregates of different molecular mass.
Collapse
Affiliation(s)
- Daniel Uribe-Ramírez
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Unidad Profesional Adolfo López Mateos, Gustavo A. Madero, Ciudad de México, 07738, México
| | - Lucero Romero-Aguilar
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Interior S/N, Ciudad Universitaria, Coyoacán, Ciudad de México, 04510, México
| | - Héctor Vázquez-Meza
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Interior S/N, Ciudad Universitaria, Coyoacán, Ciudad de México, 04510, México
| | - Eliseo Cristiani-Urbina
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Unidad Profesional Adolfo López Mateos, Gustavo A. Madero, Ciudad de México, 07738, México
| | - Juan Pablo Pardo
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Interior S/N, Ciudad Universitaria, Coyoacán, Ciudad de México, 04510, México.
| |
Collapse
|
20
|
Cencelli G, Pedini G, Ricci C, Rosina E, Cecchetti G, Gentile A, Aiello G, Pacini L, Garrone B, Ombrato R, Coletta I, Prati F, Milanese C, Bagni C. Early dysregulation of GSK3β impairs mitochondrial activity in Fragile X Syndrome. Neurobiol Dis 2024; 203:106726. [PMID: 39510449 DOI: 10.1016/j.nbd.2024.106726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/03/2024] [Accepted: 11/03/2024] [Indexed: 11/15/2024] Open
Abstract
The finely tuned regulation of mitochondria activity is essential for proper brain development. Fragile X Syndrome (FXS), the leading cause of inherited intellectual disability, is a neurodevelopmental disorder in which mitochondrial dysfunction has been increasingly implicated. This study investigates the role of Glycogen Synthase Kinase 3β (GSK3β) in FXS. Several studies have reported the dysregulation of GSK3β in FXS, and its role in mitochondrial function is also well established. However, the link between disrupted GSK3β activity and mitochondrial dysfunction in FXS remains unexplored. Utilizing Fmr1 knockout (KO) mice and human cell lines from individuals with FXS, we uncovered a developmental window where dysregulated GSK3β activity disrupts mitochondrial function. Notably, a partial inhibition of GSK3β activity in FXS fibroblasts from young individuals rescues the observed mitochondrial defects, suggesting that targeting GSK3β in the early stages may offer therapeutic benefits for this condition.
Collapse
Affiliation(s)
- Giulia Cencelli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Giorgia Pedini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Carlotta Ricci
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Eleonora Rosina
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Giorgia Cecchetti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Antonietta Gentile
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Giuseppe Aiello
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland
| | - Laura Pacini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; Faculty of Medicine, UniCamillus, Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy
| | | | | | | | | | | | - Claudia Bagni
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland.
| |
Collapse
|
21
|
Huang L, Guan Q, Lu R, Zhang Z, Liu C, Tian Y, Li J. Mechanism underlying the therapeutic effects of effective component compatibility of Bufei Yishen formula III combined with exercise rehabilitation on chronic obstructive pulmonary disease. Ann Med 2024; 56:2403729. [PMID: 39276358 PMCID: PMC11404378 DOI: 10.1080/07853890.2024.2403729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024] Open
Abstract
OBJECTIVE To explore the mechanism underlying the therapeutic effect of Bufei Yishen Formula III combined with exercise rehabilitation (ECC-BYF III + ER) on chronic obstructive pulmonary disease (COPD) and further identify hub genes. MATERIALS AND METHODS Gene Set Enrichment Analysis was used to identify the COPD-associated pathways and reversal pathways after ECC-BYF III + ER treatment. Protein-protein interaction network analysis and cytoHubba were used to identify the hub genes. These genes were verified using independent datasets, molecular docking and quantitative real-time polymerase chain reaction experiment. RESULTS Using the high-throughput sequencing data of COPD rats from our laboratory, 49 significantly disturbed pathways were identified in COPD model compared with control group via gene set enrichment analysis (false discovery rate < 0.05). The 34 pathways were reversed after ECC-BYF III + ER treatment. In the 2306 genes of these 34 pathways, 121 of them were differentially expressed in COPD rats compared with control samples. A protein-protein interaction network comprising 111 nodes and 274 edges was created, and 34 candidate genes were identified. Finally, seven COPD hub genes (Il1b, Ccl2, Cxcl1, Apoe, Ccl7, Ccl12, and Ccl4) were well identified and verified in independent COPD rat data from our laboratory and the public dataset GSE178513. The area under the receiver operating characteristic curve values ranged from 0.86 to 1 and from 0.67 to 1, respectively. The reliability of the mentioned genes, which can bind to the active ingredients of ECC-BYF III through molecular docking, were further verified through qRT-PCR experiments. CONCLUSION Thirty-four COPD-related pathways and seven hub genes that may be regulated by ECC-BYF III + ER were identified and well verified. The findings of this study may provide insights into the treatment and mechanism underlying COPD.
Collapse
Affiliation(s)
- Lidong Huang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
| | - Qingzhou Guan
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ruilong Lu
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhenzhen Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
| | - Chunlei Liu
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yange Tian
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jiansheng Li
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
22
|
Liu W, Sun M, Wang WT, Song J, Wang CM, Mou NY, Shao TQ, Zhang ZH, Wang MY, Sun HM. Ginsenoside Rh4 Ameliorates Cisplatin-Induced Intestinal Toxicity via PGC-1[Formula: see text]-Mediated Mitochondrial Autophagy and Apoptosis Pathways. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:2187-2209. [PMID: 39562293 DOI: 10.1142/s0192415x24500848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Cisplatin-evoked profound gastrointestinal symptomatology is one of the most common side effects of chemotherapy drugs, causing further gastrointestinal cell and intestinal mucosal injury. Ginsenoside Rh4 (G-Rh4), an active component extracted from red ginseng, possesses beneficial anti-oxidative and anti-apoptosis effects. This study aimed to assess the effectiveness of pharmacological intervention with G-Rh4 mitigating intestinal toxicity evoked by cisplatin in a murine model and in IEC-6 cells in vitro. Following oral administration for 10 days, G-Rh4 (10[Formula: see text]mg/kg and 20[Formula: see text]mg/kg) significantly increased the indicators of diamine oxidase (DAO) affected by cisplatin (20[Formula: see text]mg/kg) in mice, and histopathological analysis further indicated that G-Rh4 could effectively improve intestinal tissue morphology, as well as the expression of peroxisome proliferator-activated receptor-gamma coactivator 1 [Formula: see text] (PGC-1[Formula: see text] pathway and autophagy-related proteins. Moreover, in vitro experiments demonstrated that G-Rh4 exerted a concentration-dependent increase in cell viability, while also inhibiting cytotoxicity and abnormal rise of reactive oxygen species (ROS). Notably, ROS also activate PGC-1[Formula: see text] protein and mediate the occurrence of mitochondrial autophagy and apoptosis pathways. The molecular docking approach was employed to dock G-Rh4 with PGC-1[Formula: see text] and AMPK, revealing a binding energy of [Formula: see text]7.3[Formula: see text]kcal/mol and [Formula: see text]8.1[Formula: see text]kcal/mol and indicating a tight interaction between the components and the target. G-Rh4 could reduce the expression of autophagy-related protein p62/p53, reduce the accumulation of autophagy products, and promote the flow of autophagy. In conclusion, G-Rh4 exerted protective effects against cisplatin-induced intestinal toxicity, at least partially through PGC-1[Formula: see text]-mediated autophagy and apoptosis.
Collapse
Affiliation(s)
- Wei Liu
- College of Pharmacy, Beihua University, Jilin 132013, P. R. China
| | - Meng Sun
- College of Pharmacy, Beihua University, Jilin 132013, P. R. China
| | - Wen-Ting Wang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, P. R. China
| | - Jian Song
- College of Pharmacy, Beihua University, Jilin 132013, P. R. China
| | - Chun-Mei Wang
- College of Pharmacy, Beihua University, Jilin 132013, P. R. China
| | - Neng-Yan Mou
- College of Pharmacy, Beihua University, Jilin 132013, P. R. China
| | - Tian-Qi Shao
- College of Pharmacy, Beihua University, Jilin 132013, P. R. China
| | - Zhi-Hong Zhang
- College of Pharmacy, Beihua University, Jilin 132013, P. R. China
| | - Meng-Yang Wang
- College of Pharmacy, Beihua University, Jilin 132013, P. R. China
| | - Hai-Ming Sun
- College of Pharmacy, Beihua University, Jilin 132013, P. R. China
| |
Collapse
|
23
|
Caruso G, Laera R, Ferrarotto R, Garcia Moreira CG, Kumar R, Ius T, Lombardi G, Caffo M. Mitochondrial Dysfunction: Effects and Therapeutic Implications in Cerebral Gliomas. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1888. [PMID: 39597073 PMCID: PMC11596904 DOI: 10.3390/medicina60111888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/08/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
Gliomas are the most common primary brain tumors, representing approximately 28% of all central nervous system tumors. These tumors are characterized by rapid progression and show a median survival of approximately 18 months. The therapeutic options consist of surgical resection followed by radiotherapy and chemotherapy. Despite the multidisciplinary approach and the biomolecular role of targeted therapies, the median progression-free survival is approximately 6-8 months. The incomplete tumor compliance with treatment is due to several factors such as the presence of the blood-brain barrier, the numerous pathways involved in tumor transformation, and the presence of intra-tumoral mutations. Among these, the interaction between the mutations of genes involved in tumor bio-energetic metabolism and the functional response of the tumor has become the protagonist of numerous studies. In this scenario, the main role is played by mitochondria, cellular organelles delimited by a double membrane and containing their own DNA (mtDNA), which participates in numerous cellular processes such as the regulation of cellular metabolism, cellular proliferation, and apoptosis and is also the main source of cellular energy production. Therefore, it is understood that the mitochondrion, specifically its functional alteration, is a leading figure in tumor transformation, including brain tumors. The acquisition of mutations in the mitochondrial DNA of tumor cells and the subsequent identification of the so-called mitochondria-related genes (MRGs), both functional (mutation of Complex I) and structural (mutations of Complex III/IV), have been seen to play an important role in metabolic reprogramming with increased proliferation, resistance to apoptosis, and the progression of tumorigenesis. This demonstrates that these mitochondrial alterations could have a role not only in the intrinsic tumor biology but also in the extrinsic one associated with the therapeutic response. We aim to summarize the main mitochondrial dysfunction interactions present in gliomas and how they might impact prognosis.
Collapse
Affiliation(s)
- Gerardo Caruso
- Unit of Neurosurgery, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (R.L.); (R.F.); (C.G.G.M.); (M.C.)
| | - Roberta Laera
- Unit of Neurosurgery, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (R.L.); (R.F.); (C.G.G.M.); (M.C.)
| | - Rosamaria Ferrarotto
- Unit of Neurosurgery, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (R.L.); (R.F.); (C.G.G.M.); (M.C.)
| | - Cristofer Gonzalo Garcia Moreira
- Unit of Neurosurgery, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (R.L.); (R.F.); (C.G.G.M.); (M.C.)
| | - Rajiv Kumar
- Faculty of Science, University of Delhi, New Delhi 110007, India;
| | - Tamara Ius
- Neurosurgery Unit, Head-Neck and NeuroScience Department, University Hospital of Udine, 33100 Udine, Italy;
| | - Giuseppe Lombardi
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 35128 Padua, Italy;
| | - Maria Caffo
- Unit of Neurosurgery, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (R.L.); (R.F.); (C.G.G.M.); (M.C.)
| |
Collapse
|
24
|
Jiao Q, Zhu S, Liao B, Liu H, Guo X, Wu L, Chen C, Peng L, Xie C. An NLR family member X1 mutation (p.Arg707Cys) suppresses hepatitis B virus infection in hepatocytes and favors the interaction of retinoic acid-inducible gene 1 with mitochondrial antiviral signaling protein. Arch Virol 2024; 169:238. [PMID: 39499386 PMCID: PMC11538211 DOI: 10.1007/s00705-024-06133-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/25/2024] [Indexed: 11/07/2024]
Abstract
NLR family member X1 (NLRX1) is an important member of the NOD-like receptor (NLR) family and plays unique roles in immune system regulation. Patients with hepatitis B virus (HBV) infection are more likely to have the NLRX1 mutation p.Arg707Cys than healthy individuals. It has been reported that NLRX1 increases the infection rate of HBV in HepG2 cells expressing sodium taurocholate cotransporting polypeptide (NTCP). However, the role of NLRX1 mutation (p.Arg707Cys) in hepatitis remains unclear. We constructed Huh7 cells that stably overexpressed NTCP, using LV003 lentivirus. First, wild-type (WT) and mutant (MT) NLRX1 overexpression plasmids were constructed. The MT plasmid contained a point mutation at position 707 of the WT overexpression plasmid. Then, Huh7-NTCP cells were transfected with the WT or MT NLRX1 overexpression plasmid, and subsequent NLRX1 expression was analyzed using real-time quantitative polymerase chain reaction (RT-qPCR) and western blot. HBV RNA levels were determined using RT-qPCR. HBsAg and HBcAg levels were confirmed immunohistochemically. Interferon alpha (IFN-α), interleukin 6 (IL-6), and type I interferon beta (IFN-β) levels were determined using enzyme-linked immunosorbent assay kits. p-p65, p-interferon regulatory factor (IRF) 3, and p-IRF7 expression levels were examined using western blot. The interaction of NLRX1 and retinoic acid-inducible gene (RIG)-1/mitochondrial antiviral signaling (MAVS) protein was confirmed by coimmunoprecipitation. The interaction of NLRX1 with IFN-α, IL-6, or IFN-β was analyzed by dual luciferase reporter gene assay. The levels of HBV RNA, HBsAg, and HBcAg in infected cells transfected with the WT NLRX1 or MT NLRX1 expression plasmid were higher than those in the untransfected control group; and these levels were lower in the cells transfected with MT NLRX1 than in those transfected with WT NLRX1. The levels of IFN-α, IFN-β, IL-6, p-p65, p-IRF3, and p-IRF7 were lower in cells transfected with WT NLRX1 or MT NLRX1 than in control cells. The levels of IFN-β, p-p65, p-IRF3, and p-IRF7 were higher in cells transfected with MT NLRX1 than in those transfected with WT NLRX1. Moreover, NLRX1 competitively inhibited RIG1 binding to MAVS, but the mutation in MT NLRX1 reduced this inhibitory effect. In addition, NLRX1 decreased the promoter activity of IFN-α, IFN-β, and IL-6. Our findings revealed that NLRX1 is a regulatory factor that inhibits the anti-HBV ability of hepatocytes and that the mutation p.Arg707Cys in NLRX1 suppresses HBV infection and activates the IFN/nuclear factor κB pathway.
Collapse
Affiliation(s)
- Qian Jiao
- Department of Hepatology, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510060, China
| | - Shu Zhu
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District Guangzhou, Guangzhou, Guangdong, 510630, China
| | - Baolin Liao
- Department of Hepatology, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510060, China
| | - Huiyuan Liu
- Department of Hepatology, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510060, China
| | - Xiaoyan Guo
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District Guangzhou, Guangzhou, Guangdong, 510630, China
| | - Lina Wu
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District Guangzhou, Guangzhou, Guangdong, 510630, China
| | - Chuming Chen
- Department of Infectious Diseases, Third People's Hospital of Shenzhen, Shenzhen, Guangdong, 518112, China
| | - Liang Peng
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District Guangzhou, Guangzhou, Guangdong, 510630, China.
| | - Chan Xie
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District Guangzhou, Guangzhou, Guangdong, 510630, China.
| |
Collapse
|
25
|
Wang P, Song CY, Lu X, Zhou JN, Lin LY, Li T, Zhang Q, Lu YQ. Diquat exacerbates oxidative stress and neuroinflammation by blocking the autophagic flux of microglia in the hippocampus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117188. [PMID: 39418722 DOI: 10.1016/j.ecoenv.2024.117188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
Diquat (DQ) is a widely utilized nonselective herbicide that is primarily used to control a wide range of weeds and crop residues. It also has significant environmental implications. DQ exposure can cause severe damage to the central nervous system (CNS), a critical symptom of acute poisoning that endangers patients. Despite its severity, the underlying mechanisms of DQ-induced toxic encephalopathy remain unclear, hindering the development of precise treatments. Our research demonstrated that acute DQ exposure in mice significantly increases oxidative stress and triggers neuroinflammation in the hippocampus. Furthermore, in vitro findings indicate that the detrimental effects of DQ are mediated by its disruption of autophagic processes, leading to exacerbated neural damage. DQ initially promotes autophagy in BV2 microglia for self-protection against oxidative stress and inflammation. However, this process is subsequently blocked, intensifying neural damage. Crucially, our results show that the activation of autophagy can reverse these adverse effects. This study not only sheds light on the intricate mechanisms of DQ neurotoxicity but also provides potential therapeutic targets for mitigating DQ-induced toxic encephalopathy.
Collapse
Affiliation(s)
- Ping Wang
- Department of Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Zhejiang Key Laboratory for Diagnosis and Treatment of Physic-chemical and Aging-related Injuries, Hangzhou, Zhejiang 310003, China
| | - Cong-Ying Song
- Department of Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Zhejiang Key Laboratory for Diagnosis and Treatment of Physic-chemical and Aging-related Injuries, Hangzhou, Zhejiang 310003, China
| | - Xuan Lu
- Zhejiang Key Laboratory for Diagnosis and Treatment of Physic-chemical and Aging-related Injuries, Hangzhou, Zhejiang 310003, China
| | - Jia-Ning Zhou
- Department of Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Zhejiang Key Laboratory for Diagnosis and Treatment of Physic-chemical and Aging-related Injuries, Hangzhou, Zhejiang 310003, China
| | - Li-Ying Lin
- Department of Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Zhejiang Key Laboratory for Diagnosis and Treatment of Physic-chemical and Aging-related Injuries, Hangzhou, Zhejiang 310003, China
| | - Ting Li
- Department of Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Zhejiang Key Laboratory for Diagnosis and Treatment of Physic-chemical and Aging-related Injuries, Hangzhou, Zhejiang 310003, China
| | - Qin Zhang
- Department of Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Zhejiang Key Laboratory for Diagnosis and Treatment of Physic-chemical and Aging-related Injuries, Hangzhou, Zhejiang 310003, China
| | - Yuan-Qiang Lu
- Department of Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Zhejiang Key Laboratory for Diagnosis and Treatment of Physic-chemical and Aging-related Injuries, Hangzhou, Zhejiang 310003, China.
| |
Collapse
|
26
|
Abed S, Ebrahimi A, Fattahi F, Kouchakali G, Shekari-Khaniani M, Mansoori-Derakhshan S. The Role of Non-Coding RNAs in Mitochondrial Dysfunction of Alzheimer's Disease. J Mol Neurosci 2024; 74:100. [PMID: 39466447 DOI: 10.1007/s12031-024-02262-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/25/2024] [Indexed: 10/30/2024]
Abstract
Although brain amyloid-β (Aβ) peptide buildup is the main cause of Alzheimer's disease (AD), mitochondrial abnormalities can also contribute to the illness's development, as either a primary or secondary factor, as programmed cell death and efficient energy generation depend on the proper operation of mitochondria. As a result, non-coding RNAs (ncRNAs) may play a crucial role in ensuring that nuclear genes related to mitochondria and mitochondrial genes function normally. Interestingly, a significant number of recent studies have focused on the impact of ncRNAs on the expression of nucleus and mitochondrial genes. Additionally, researchers have proposed some intriguing therapeutic approaches to treat and reduce the severity of AD by adjusting the levels of these ncRNAs. The goal of this work was to consolidate the existing knowledge in this field of study by systematically investigating ncRNAs, with a particular emphasis on microRNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and small nucleolar RNAs (snoRNAs). Therefore, the impact and processes by which ncRNAs govern mitochondrial activity in the onset and progression of AD are thoroughly reviewed in this article. Collectively, the effects of ncRNAs on physiological and molecular mechanisms associated with mitochondrial abnormalities that exacerbate AD are thoroughly reviewed in the current research, while also emphasizing the relationship between disturbed mitophagy in AD and ncRNAs.
Collapse
Affiliation(s)
- Samin Abed
- Department of Genetics, Tabriz University of Medical University, Tabriz, Iran
| | - Amir Ebrahimi
- Department of Genetics, Tabriz University of Medical University, Tabriz, Iran
| | - Fatemeh Fattahi
- Department of Genetics, Tabriz University of Medical University, Tabriz, Iran
| | - Ghazal Kouchakali
- Department of Genetics, Tabriz University of Medical University, Tabriz, Iran
| | | | | |
Collapse
|
27
|
Yu C, Luo Y, Shen C, Luo Z, Zhang H, Zhang J, Xu W, Xu J. Effects of microbe-derived antioxidants on growth performance, hepatic oxidative stress, mitochondrial function and cell apoptosis in weaning piglets. J Anim Sci Biotechnol 2024; 15:128. [PMID: 39354626 PMCID: PMC11445872 DOI: 10.1186/s40104-024-01088-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/14/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Weaning causes redox dyshomeostasis in piglets, which leads to hepatic oxidative damage. Microbe-derived antioxidants (MA) have great potential for anti-oxidation. This study aimed to investigate changes in hepatic redox system, mitochondrial function and apoptosis after weaning, and effects of MA on growth performance and liver health in weaning piglets. METHODS This study consisted of 2 experiments. In the both experiments, piglets were weaned at 21 days of age. In Exp. 1, at 21 (W0), 22 (W1), 25 (W4), 28 (W7), and 35 (W14) days of age, 6 piglets were slaughtered at each timepoint. In Exp. 2, piglets were divided into 2 groups: one received MA gavage (MA) and the other received saline gavage (CON). At 25 days of age, 6 piglets from each group were sacrificed. RESULTS In Exp. 1, weaning caused growth inhibition and liver developmental retardation from W0 to W4. The mRNA sequencing between W0 and W4 revealed that pathways related to "regulation of apoptotic process" and "reactive oxygen species metabolic process" were enriched. Further study showed that weaning led to higher hepatic content of reactive oxygen species (ROS), H2O2 and O2-. Weaning enhanced mitochondrial fission and suppressed their fusion, activated mitophagy, thus triggering cell apoptosis. In Exp. 2, MA improved growth performance of piglets with higher average daily gain (ADG) and average daily feed intake (ADFI). The hepatic ROS, as well as products of oxidative damage malonaldehyde (MDA) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) in the MA group decreased significantly than that of the CON group. The MA elevated mitochondrial membrane potential, increased activity of mitochondrial respiratory chain complexes (MRC) I and IV, enhanced mitochondrial fusion and reduced mitophagy, thus decreasing cell apoptosis. CONCLUSIONS The present study showed that MA improved the growth performance of weaning piglets and reversed weaning-induced oxidative damage, mitochondrial dysfunction, and apoptosis. Our results suggested that MA had promising prospects for maintaining liver health in weaning piglets and provided a reference for studies of liver diseases in humans.
Collapse
Affiliation(s)
- Chengbing Yu
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuxiao Luo
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Cheng Shen
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhen Luo
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongcai Zhang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jing Zhang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Weina Xu
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jianxiong Xu
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
28
|
Zou W, Li M, Wan S, Ma J, Lian L, Luo G, Zhou Y, Li J, Zhou B. Discovery of PRMT3 Degrader for the Treatment of Acute Leukemia. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405963. [PMID: 39120042 PMCID: PMC11481256 DOI: 10.1002/advs.202405963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/19/2024] [Indexed: 08/10/2024]
Abstract
Protein arginine methyltransferase 3 (PRMT3) plays an important role in gene regulation and a variety of cellular functions, thus, being a long sought-after therapeutic target for human cancers. Although a few PRMT3 inhibitors are developed to prevent the catalytic activity of PRMT3, there is little success in removing the cellular levels of PRMT3-deposited ω-NG,NG-asymmetric dimethylarginine (ADMA) with small molecules. Moreover, the non-enzymatic functions of PRMT3 remain required to be clarified. Here, the development of a first-in-class MDM2-based PRMT3-targeted Proteolysis Targeting Chimeras (PROTACs) 11 that selectively reduced both PRMT3 protein and ADMA is reported. Importantly, 11 inhibited acute leukemia cell growth and is more effective than PRMT3 inhibitor SGC707. Mechanism study shows that 11 induced global gene expression changes, including the activation of intrinsic apoptosis and endoplasmic reticulum stress signaling pathways, and the downregulation of E2F, MYC, oxidative phosphorylation pathways. Significantly, the combination of 11 and glycolysis inhibitor 2-DG has a notable synergistic antiproliferative effect by further reducing ATP production and inducing intrinsic apoptosis, thus further highlighting the potential therapeutic value of targeted PRMT3 degradation. These data clearly demonstrated that degrader 11 is a powerful chemical tool for investigating PRMT3 protein functions.
Collapse
Affiliation(s)
- Wanyi Zou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Mengna Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shili Wan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Jingkun Ma
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Linan Lian
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Guanghao Luo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Yubo Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Guangdong, 528400, China
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Guangdong, 528400, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Bing Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
29
|
Rivera-Rivas LA, Florencio-Martínez LE, Romero-Meza G, Ortega-Ortiz RC, Manning-Cela RG, Carrero JC, Nepomuceno-Mejía T, Martínez-Calvillo S. Transcriptome and proteome changes triggered by overexpression of the transcriptional regulator Maf1 in the human pathogen Leishmania major. FASEB J 2024; 38:e23888. [PMID: 39157983 DOI: 10.1096/fj.202400636rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 08/20/2024]
Abstract
Maf1, originally described as a repressor of RNA polymerase III (RNAP III) transcription in yeast, participates in multiple functions across eukaryotes. However, the knowledge about Maf1 in protozoan parasites is scarce. To initiate the study of Maf1 in Leishmania major, we generated a cell line that overexpresses this protein. Overexpression of Maf1 led to a significant reduction in the abundance of tRNAs, 5S rRNA, and U4 snRNA, demonstrating that Maf1 regulates RNAP III activity in L. major. To further explore the roles played by Maf1 in this microorganism, global transcriptomic and proteomic changes due to Maf1 overexpression were determined using RNA-sequencing and label-free quantitative mass spectrometry. Compared to wild-type cells, differential expression was observed for 1082 transcripts (615 down-regulated and 467 up-regulated) and 205 proteins (132 down-regulated and 73 up-regulated) in the overexpressing cells. A correlation of 44% was found between transcriptomic and proteomic results. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed that the differentially expressed genes and proteins are mainly involved in transcription, cell cycle regulation, lipid metabolism and transport, ribosomal biogenesis, carbohydrate metabolism, autophagy, and cytoskeleton modification. Thus, our results suggest the involvement of Maf1 in the regulation of all these processes in L. major, as reported in other species, indicating that the functions performed by Maf1 were established early in eukaryotic evolution. Notably, our data also suggest the participation of L. major Maf1 in mRNA post-transcriptional control, a role that, to the best of our knowledge, has not been described in other organisms.
Collapse
Affiliation(s)
- Luis A Rivera-Rivas
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Luis E Florencio-Martínez
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Gabriela Romero-Meza
- Department of Cell Biology, New York University School of Medicine, New York, New York, USA
| | - Roberto C Ortega-Ortiz
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Rebeca G Manning-Cela
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, Mexico
| | - Julio C Carrero
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Tomás Nepomuceno-Mejía
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Santiago Martínez-Calvillo
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| |
Collapse
|
30
|
Marx N, Ritter N, Disse P, Seebohm G, Busch KB. Detailed analysis of Mdivi-1 effects on complex I and respiratory supercomplex assembly. Sci Rep 2024; 14:19673. [PMID: 39187541 PMCID: PMC11347648 DOI: 10.1038/s41598-024-69748-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/08/2024] [Indexed: 08/28/2024] Open
Abstract
Several human diseases, including cancer and neurodegeneration, are associated with excessive mitochondrial fragmentation. In this context, mitochondrial division inhibitor (Mdivi-1) has been tested as a therapeutic to block the fission-related protein dynamin-like protein-1 (Drp1). Recent studies suggest that Mdivi-1 interferes with mitochondrial bioenergetics and complex I function. Here we show that the molecular mechanism of Mdivi-1 is based on inhibition of complex I at the IQ site. This leads to the destabilization of complex I, impairs the assembly of N- and Q-respirasomes, and is associated with increased ROS production and reduced efficiency of ATP generation. Second, the calcium homeostasis of cells is impaired, which for example affects the electrical activity of neurons. Given the results presented here, a potential therapeutic application of Mdivi-1 is challenging because of its potential impact on synaptic activity. Similar to the Complex I inhibitor rotenone, Mdivi-1 may lead to neurodegenerative effects in the long term.
Collapse
Affiliation(s)
- Nico Marx
- Department of Biology, Institute of Integrative Cell Biology and Physiology (IIZP), University of Münster, Schloßplatz 5, 48149, Münster, Germany
| | - Nadine Ritter
- Department of Cardiovascular Medicine, Institute for Genetics of Heart Diseases (IfGH), University Hospital Münster, 48149, Münster, Germany
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Paul Disse
- Department of Cardiovascular Medicine, Institute for Genetics of Heart Diseases (IfGH), University Hospital Münster, 48149, Münster, Germany
| | - Guiscard Seebohm
- Department of Cardiovascular Medicine, Institute for Genetics of Heart Diseases (IfGH), University Hospital Münster, 48149, Münster, Germany
| | - Karin B Busch
- Department of Biology, Institute of Integrative Cell Biology and Physiology (IIZP), University of Münster, Schloßplatz 5, 48149, Münster, Germany.
| |
Collapse
|
31
|
Benaroya H. Mitochondria and MICOS - function and modeling. Rev Neurosci 2024; 35:503-531. [PMID: 38369708 DOI: 10.1515/revneuro-2024-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 01/14/2024] [Indexed: 02/20/2024]
Abstract
An extensive review is presented on mitochondrial structure and function, mitochondrial proteins, the outer and inner membranes, cristae, the role of F1FO-ATP synthase, the mitochondrial contact site and cristae organizing system (MICOS), the sorting and assembly machinery morphology and function, and phospholipids, in particular cardiolipin. Aspects of mitochondrial regulation under physiological and pathological conditions are outlined, in particular the role of dysregulated MICOS protein subunit Mic60 in Parkinson's disease, the relations between mitochondrial quality control and proteins, and mitochondria as signaling organelles. A mathematical modeling approach of cristae and MICOS using mechanical beam theory is introduced and outlined. The proposed modeling is based on the premise that an optimization framework can be used for a better understanding of critical mitochondrial function and also to better map certain experiments and clinical interventions.
Collapse
Affiliation(s)
- Haym Benaroya
- Department of Mechanical and Aerospace Engineering, Rutgers University, 98 Brett Road, Piscataway, NJ 08854, USA
| |
Collapse
|
32
|
Kalvelage J, Rabus R. Multifaceted Dinoflagellates and the Marine Model Prorocentrum cordatum. Microb Physiol 2024; 34:197-242. [PMID: 39047710 DOI: 10.1159/000540520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Dinoflagellates are a monophyletic group within the taxon Alveolata, which comprises unicellular eukaryotes. Dinoflagellates have long been studied for their organismic and morphologic diversity as well as striking cellular features. They have a main size range of 10-100 µm, a complex "cell covering", exceptionally large genomes (∼1-250 Gbp with a mean of 50,000 protein-encoding genes) spread over a variable number of highly condensed chromosomes, and perform a closed mitosis with extranuclear spindles (dinomitosis). Photosynthetic, marine, and free-living Prorocentrum cordatum is a ubiquitously occurring, bloom-forming dinoflagellate, and an emerging model system, particularly with respect to systems biology. SUMMARY Focused ion beam/scanning electron microscopy (FIB/SEM) analysis of P. cordatum recently revealed (i) a flattened nucleus with unusual structural features and a total of 62 tightly packed chromosomes, (ii) a single, barrel-shaped chloroplast devoid of grana and harboring multiple starch granules, (iii) a single, highly reticular mitochondrion, and (iv) multiple phosphate and lipid storage bodies. Comprehensive proteomics of subcellular fractions suggested (i) major basic nuclear proteins to participate in chromosome condensation, (ii) composition of nuclear pores to differ from standard knowledge, (iii) photosystems I and II, chloroplast complex I, and chlorophyll a-b binding light-harvesting complex to form a large megacomplex (>1.5 MDa), and (iv) an extraordinary richness in pigment-binding proteins. Systems biology-level investigation of heat stress response demonstrated a concerted down-regulation of CO2-concentrating mechanisms, CO2-fixation, central metabolism, and monomer biosynthesis, which agrees with reduced growth yields. KEY MESSAGES FIB/SEM analysis revealed new insights into the remarkable subcellular architecture of P. cordatum, complemented by proteogenomic unraveling of novel nuclear structures and a photosynthetic megacomplex. These recent findings are put in the wider context of current understanding of dinoflagellates.
Collapse
Affiliation(s)
- Jana Kalvelage
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Ralf Rabus
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| |
Collapse
|
33
|
Xing Y, Xie SY, Deng W, Tang QZ. Cardiolipin in myocardial ischaemia-reperfusion injury: From molecular mechanisms to clinical strategies. Biomed Pharmacother 2024; 176:116936. [PMID: 38878685 DOI: 10.1016/j.biopha.2024.116936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 06/20/2024] Open
Abstract
Myocardial reperfusion injury occurs when blood flow is restored after ischemia, an essential process to salvage ischemic tissue. However, this phenomenon is intricate, characterized by various harmful effects. Tissue damage in ischemia-reperfusion injury arises from various factors, including the production of reactive oxygen species, the sequestration of proinflammatory immune cells in ischemic tissues, the induction of endoplasmic reticulum stress, and the occurrence of postischemic capillary no-reflow. Secretory phospholipase A2 (sPLA2) plays a crucial role in the eicosanoid pathway by releasing free arachidonic acid from membrane phospholipids' sn-2 position. This liberated arachidonic acid serves as a substrate for various eicosanoid biosynthetic enzymes, including cyclooxygenases, lipoxygenases, and cytochromes P450, ultimately resulting in inflammation and an elevated risk of reperfusion injury. Therefore, the activation of sPLA2 directly correlates with the heightened and accelerated damage observed in myocardial ischemia-reperfusion injury (MIRI). Presently, clinical trials are in progress for medications aimed at sPLA2, presenting promising avenues for intervention. Cardiolipin (CL) plays a crucial role in maintaining mitochondrial function, and its alteration is closely linked to mitochondrial dysfunction observed in MIRI. This paper provides a critical analysis of CL modifications concerning mitochondrial dysfunction in MIRI, along with its associated molecular mechanisms. Additionally, it delves into various pharmacological approaches to prevent or alleviate MIRI, whether by directly targeting mitochondrial CL or through indirect means.
Collapse
Affiliation(s)
- Yun Xing
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Sai-Yang Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China.
| |
Collapse
|
34
|
Ganhör C, Rezk M, Doppler C, Ruthmeier T, Wechselberger C, Müller M, Kotnik M, Puh Š, Messner B, Bernhard D. Aluminum, a colorful gamechanger: Uptake of an aluminum-containing food color in human cells and its implications for human health. Food Chem 2024; 442:138404. [PMID: 38237295 DOI: 10.1016/j.foodchem.2024.138404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/04/2024] [Accepted: 01/07/2024] [Indexed: 02/15/2024]
Abstract
Aluminum is added to many food colors to change their solubility. This study compares the aluminum-containing food color carmine with its aluminum-free version carminic acid (both E 120), hypothesizing that the addition of aluminum does not only change the color's solubility, but also its effects on human cells. We could show that carmine, but not carminic acid, is taken up by gastrointestinal Caco-2 and umbilical vein endothelial cells (HUVEC). Clear differences between gene expression profiles of Caco-2 cells exposed to carmine, carminic acid or control were shown. KEGG analysis revealed that carmine-specific genes suppress oxidative phosphorylation, and showed that this suppression is associated with neurodegenerative diseases such as Alzheimer and Parkinson disease. Furthermore, carmine, but not carminic acid, increased proliferation of Caco-2 cells. Our findings show that a food color containing aluminum induces different cellular effects compared to its aluminum-free form, which is currently not considered in EU legislation.
Collapse
Affiliation(s)
- Clara Ganhör
- Division of Pathophysiology, Institute of Physiology and Pathophysiology, Medical Faculty, Johannes Kepler University Linz, Krankenhausstrasse 5, 4020 Linz, Austria.
| | - Marlene Rezk
- Experimental Gynaecology, Obstetrics and Gynaecological Endocrinology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria.
| | - Christian Doppler
- Division of Pathophysiology, Institute of Physiology and Pathophysiology, Medical Faculty, Johannes Kepler University Linz, Krankenhausstrasse 5, 4020 Linz, Austria.
| | - Teresa Ruthmeier
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria.
| | - Christian Wechselberger
- Division of Pathophysiology, Institute of Physiology and Pathophysiology, Medical Faculty, Johannes Kepler University Linz, Krankenhausstrasse 5, 4020 Linz, Austria.
| | - Marina Müller
- Division of Pathophysiology, Institute of Physiology and Pathophysiology, Medical Faculty, Johannes Kepler University Linz, Krankenhausstrasse 5, 4020 Linz, Austria.
| | - Michaela Kotnik
- Division of Pathophysiology, Institute of Physiology and Pathophysiology, Medical Faculty, Johannes Kepler University Linz, Krankenhausstrasse 5, 4020 Linz, Austria.
| | - Špela Puh
- Division of Pathophysiology, Institute of Physiology and Pathophysiology, Medical Faculty, Johannes Kepler University Linz, Krankenhausstrasse 5, 4020 Linz, Austria.
| | - Barbara Messner
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria.
| | - David Bernhard
- Division of Pathophysiology, Institute of Physiology and Pathophysiology, Medical Faculty, Johannes Kepler University Linz, Krankenhausstrasse 5, 4020 Linz, Austria; Clinical Research Institute for Cardiovascular and Metabolic Diseases, Medical Faculty, Johannes Kepler University Linz, Linz, Austria.
| |
Collapse
|
35
|
De Blasi G, Lunetti P, Zara V, Ferramosca A. Mitochondrial citrate transporters Ctp1-Yhm2 and respiratory chain: A coordinated functional connection in Saccharomyces cerevisiae metabolism. Int J Biol Macromol 2024; 270:132364. [PMID: 38750837 DOI: 10.1016/j.ijbiomac.2024.132364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/18/2024]
Abstract
The mitochondrial inner membrane contains some hydrophobic proteins that mediate the exchange of metabolites between the mitochondrial matrix and the cytosol. Ctp1 and Yhm2 are two carrier proteins in the yeast Saccharomyces cerevisiae responsible for the transport of citrate, a tricarboxylate involved in several metabolic pathways. Since these proteins also contribute to respiratory metabolism, in this study we investigated for the first time whether changes in citrate transport can affect the structural organization and functional properties of respiratory complexes. Through experiments in yeast mutant cells in which the gene encoding Ctp1 or Yhm2 was deleted, we found that in the absence of either mitochondrial citrate transporter, mitochondrial respiration was impaired. Structural analysis of the respiratory complexes III and IV revealed different expression levels of the catalytic and supernumerary subunits in the Δctp1 and Δyhm2 strains. In addition, Δyhm2 mitochondria appeared to be more sensitive than Δctp1 to the oxidative damage. Our results provide the first evidence for a coordinated modulation of mitochondrial citrate transport and respiratory chain activity in S. cerevisiae metabolism.
Collapse
Affiliation(s)
- Gabriella De Blasi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, I-73100 Lecce, Italy
| | - Paola Lunetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, I-73100 Lecce, Italy; Department of Experimental Medicine, University of Salento, I-73100 Lecce, Italy
| | - Vincenzo Zara
- Department of Biological and Environmental Sciences and Technologies, University of Salento, I-73100 Lecce, Italy; Department of Experimental Medicine, University of Salento, I-73100 Lecce, Italy
| | - Alessandra Ferramosca
- Department of Biological and Environmental Sciences and Technologies, University of Salento, I-73100 Lecce, Italy; Department of Experimental Medicine, University of Salento, I-73100 Lecce, Italy.
| |
Collapse
|
36
|
Xiang J, Yang X, Tan M, Guo J, Ye Y, Deng J, Huang Z, Wang H, Su W, Cheng J, Zheng L, Liu S, Zhong J, Zhao J. NIR-enhanced Pt single atom/g-C 3N 4 nanozymes as SOD/CAT mimics to rescue ATP energy crisis by regulating oxidative phosphorylation pathway for delaying osteoarthritis progression. Bioact Mater 2024; 36:1-13. [PMID: 38425744 PMCID: PMC10900248 DOI: 10.1016/j.bioactmat.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/02/2024] Open
Abstract
Osteoarthritis (OA) progresses due to the excessive generation of reactive oxygen and nitrogen species (ROS/RNS) and abnormal ATP energy metabolism related to the oxidative phosphorylation pathway in the mitochondria. Highly active single-atom nanozymes (SAzymes) can help regulate the redox balance and have shown their potential in the treatment of inflammatory diseases. In this study, we innovatively utilised ligand-mediated strategies to chelate Pt4+ with modified g-C3N4 by π-π interaction to prepare g-C3N4-loaded Pt single-atom (Pt SA/C3N4) nanozymes that serve as superoxide dismutase (SOD)/catalase (CAT) mimics to scavenge ROS/RNS and regulate mitochondrial ATP production, ultimately delaying the progression of OA. Pt SA/C3N4 exhibited a high loading of Pt single atoms (2.45 wt%), with an excellent photothermal conversion efficiency (54.71%), resulting in tunable catalytic activities under near-infrared light (NIR) irradiation. Interestingly, the Pt-N6 active centres in Pt SA/C3N4 formed electron capture sites for electron holes, in which g-C3N4 regulated the d-band centre of Pt, and the N-rich sites transferred electrons to Pt, leading to the enhanced adsorption of free radicals and thus higher SOD- and CAT-like activities compared with pure g-C3N4 and g-C3N4-loaded Pt nanoparticles (Pt NPs/C3N4). Based on the use of H2O2-induced chondrocytes to simulate ROS-injured cartilage invitro and an OA joint model invivo, the results showed that Pt SA/C3N4 could reduce oxidative stress-induced damage, protect mitochondrial function, inhibit inflammation progression, and rebuild the OA microenvironment, thereby delaying the progression of OA. In particular, under NIR light irradiation, Pt SA/C3N4 could help reverse the oxidative stress-induced joint cartilage damage, bringing it closer to the state of the normal cartilage. Mechanistically, Pt SA/C3N4 regulated the expression of mitochondrial respiratory chain complexes, mainly NDUFV2 of complex 1 and MT-ATP6 of ATP synthase, to reduce ROS/RNS and promote ATP production. This study provides novel insights into the design of artificial nanozymes for treating oxidative stress-induced inflammatory diseases.
Collapse
Affiliation(s)
- Jianhui Xiang
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi 530021, PR China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi, 530021, PR China
| | - Xin Yang
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi 530021, PR China
| | - Manli Tan
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi 530021, PR China
| | - Jianfeng Guo
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi 530021, PR China
| | - Yuting Ye
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi 530021, PR China
| | - Jiejia Deng
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi 530021, PR China
| | - Zhangrui Huang
- Life Sciences Institute, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, Guangxi, 530021, PR China
| | - Hanjie Wang
- Life Sciences Institute, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, Guangxi, 530021, PR China
| | - Wei Su
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi 530021, PR China
| | - Jianwen Cheng
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi, 530021, PR China
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi 530021, PR China
| | - Sijia Liu
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi 530021, PR China
| | - Jingping Zhong
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi 530021, PR China
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi 530021, PR China
- Life Sciences Institute, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, Guangxi, 530021, PR China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi, 530021, PR China
| |
Collapse
|
37
|
Al Assi A, Posty S, Lamarche F, Chebel A, Guitton J, Cottet-Rousselle C, Prudent R, Lafanechère L, Giraud S, Dallemagne P, Suzanne P, Verney A, Genestier L, Castets M, Fontaine E, Billaud M, Cordier-Bussat M. A novel inhibitor of the mitochondrial respiratory complex I with uncoupling properties exerts potent antitumor activity. Cell Death Dis 2024; 15:311. [PMID: 38697987 PMCID: PMC11065874 DOI: 10.1038/s41419-024-06668-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 05/05/2024]
Abstract
Cancer cells are highly dependent on bioenergetic processes to support their growth and survival. Disruption of metabolic pathways, particularly by targeting the mitochondrial electron transport chain complexes (ETC-I to V) has become an attractive therapeutic strategy. As a result, the search for clinically effective new respiratory chain inhibitors with minimized adverse effects is a major goal. Here, we characterize a new OXPHOS inhibitor compound called MS-L6, which behaves as an inhibitor of ETC-I, combining inhibition of NADH oxidation and uncoupling effect. MS-L6 is effective on both intact and sub-mitochondrial particles, indicating that its efficacy does not depend on its accumulation within the mitochondria. MS-L6 reduces ATP synthesis and induces a metabolic shift with increased glucose consumption and lactate production in cancer cell lines. MS-L6 either dose-dependently inhibits cell proliferation or induces cell death in a variety of cancer cell lines, including B-cell and T-cell lymphomas as well as pediatric sarcoma. Ectopic expression of Saccharomyces cerevisiae NADH dehydrogenase (NDI-1) partially restores the viability of B-lymphoma cells treated with MS-L6, demonstrating that the inhibition of NADH oxidation is functionally linked to its cytotoxic effect. Furthermore, MS-L6 administration induces robust inhibition of lymphoma tumor growth in two murine xenograft models without toxicity. Thus, our data present MS-L6 as an inhibitor of OXPHOS, with a dual mechanism of action on the respiratory chain and with potent antitumor properties in preclinical models, positioning it as the pioneering member of a promising drug class to be evaluated for cancer therapy. MS-L6 exerts dual mitochondrial effects: ETC-I inhibition and uncoupling of OXPHOS. In cancer cells, MS-L6 inhibited ETC-I at least 5 times more than in isolated rat hepatocytes. These mitochondrial effects lead to energy collapse in cancer cells, resulting in proliferation arrest and cell death. In contrast, hepatocytes which completely and rapidly inactivated this molecule, restored their energy status and survived exposure to MS-L6 without apparent toxicity.
Collapse
Affiliation(s)
- Alaa Al Assi
- Université Grenoble Alpes, Inserm U1055, Laboratoire de Bioénergétique Fondamentale et Appliquée (LBFA), Grenoble, France
| | - Solène Posty
- Cell death and Childhood Cancers Laboratory, Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM U1052- CNRS UMR5286, Université Claude Bernard de Lyon1, Centre Léon Bérard, LabEx DEVweCAN, Institut Convergence Plascan, Lyon, France
| | - Frédéric Lamarche
- Université Grenoble Alpes, Inserm U1055, Laboratoire de Bioénergétique Fondamentale et Appliquée (LBFA), Grenoble, France
| | - Amel Chebel
- Centre International de Recherche en Infectiologie (Team LIB), Equipe labellisée La Ligue 2017 and 2023. Université Lyon, INSERM, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
| | - Jérôme Guitton
- Laboratoire de biochimie et pharmacologie-toxicologie, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, F-69495, Pierre Bénite, France. Laboratoire de Toxicologie, Faculté de pharmacie ISPBL, Université Lyon 1, 69373, Lyon, France
| | - Cécile Cottet-Rousselle
- Université Grenoble Alpes, Inserm U1055, Laboratoire de Bioénergétique Fondamentale et Appliquée (LBFA), Grenoble, France
| | - Renaud Prudent
- Université Grenoble Alpes, Inserm U1209, CNRS UMR5309, Institute for Advanced Biosciences, Grenoble, France
| | - Laurence Lafanechère
- Université Grenoble Alpes, Inserm U1209, CNRS UMR5309, Institute for Advanced Biosciences, Grenoble, France
| | - Stéphane Giraud
- Center for Drug Discovery and Development, Synergie Lyon Cancer Foundation, Lyon, Cancer Research Center, Centre Léon Bérard, Lyon, France
| | | | - Peggy Suzanne
- Normandie Univ., UNICAEN, CERMN, 14000, Caen, France
| | - Aurélie Verney
- Centre International de Recherche en Infectiologie (Team LIB), Equipe labellisée La Ligue 2017 and 2023. Université Lyon, INSERM, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
| | - Laurent Genestier
- Centre International de Recherche en Infectiologie (Team LIB), Equipe labellisée La Ligue 2017 and 2023. Université Lyon, INSERM, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
| | - Marie Castets
- Cell death and Childhood Cancers Laboratory, Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM U1052- CNRS UMR5286, Université Claude Bernard de Lyon1, Centre Léon Bérard, LabEx DEVweCAN, Institut Convergence Plascan, Lyon, France
| | - Eric Fontaine
- Université Grenoble Alpes, Inserm U1055, Laboratoire de Bioénergétique Fondamentale et Appliquée (LBFA), Grenoble, France.
| | - Marc Billaud
- Cell death and Childhood Cancers Laboratory, Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM U1052- CNRS UMR5286, Université Claude Bernard de Lyon1, Centre Léon Bérard, LabEx DEVweCAN, Institut Convergence Plascan, Lyon, France.
| | - Martine Cordier-Bussat
- Cell death and Childhood Cancers Laboratory, Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM U1052- CNRS UMR5286, Université Claude Bernard de Lyon1, Centre Léon Bérard, LabEx DEVweCAN, Institut Convergence Plascan, Lyon, France.
| |
Collapse
|
38
|
Sniezek Carney O, Harris KW, Wohlfarter Y, Lee K, Butschek G, Anzmann A, Claypool SM, Hamacher-Brady A, Keller M, Vernon HJ. Stem cell models of TAFAZZIN deficiency reveal novel tissue-specific pathologies in Barth Syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.28.591534. [PMID: 38746168 PMCID: PMC11092433 DOI: 10.1101/2024.04.28.591534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Barth syndrome (BTHS) is a rare mitochondrial disease caused by pathogenic variants in the gene TAFAZZIN, which leads to abnormal cardiolipin (CL) metabolism on the inner mitochondrial membrane. Although TAFAZZIN is ubiquitously expressed, BTHS involves a complex combination of tissue specific phenotypes including cardiomyopathy, neutropenia, skeletal myopathy, and growth delays, with a relatively minimal neurological burden. To understand both the developmental and functional effects of TAZ-deficiency in different tissues, we generated isogenic TAZ knockout (TAZ- KO) and WT cardiomyocytes (CMs) and neural progenitor cells (NPCs) from CRISPR-edited induced pluripotent stem cells (iPSCs). In TAZ-KO CMs we discovered evidence of dysregulated mitophagy including dysmorphic mitochondria and mitochondrial cristae, differential expression of key autophagy-associated genes, and an inability of TAZ-deficient CMs to properly initiate stress-induced mitophagy. In TAZ-deficient NPCs we identified novel phenotypes including a reduction in CIV abundance and CIV activity in the CIII2&CIV2 intermediate complex. Interestingly, while CL acyl chain manipulation was unable to alter mitophagy defects in TAZ-KO CMs, we found that linoleic acid or oleic acid supplementation was able to partially restore CIV abundance in TAZ-deficient NPCs. Taken together, our results have implications for understanding the tissue-specific pathology of BTHS and potential for tissue-specific therapeutic targeting. Moreover, our results highlight an emerging role for mitophagy in the cardiac pathophysiology of BTHS and reveal a potential neuron-specific bioenergetic phenotype.
Collapse
|
39
|
García-Carrillo R, Molina-Pelayo FA, Zarate-Lopez D, Cabrera-Aguilar A, Ortega-Domínguez B, Domínguez-López M, Chiquete-Félix N, Dagnino-Acosta A, Velasco-Loyden G, Chávez E, Castro-Sánchez L, de Sánchez VC. An adenosine derivative promotes mitochondrial supercomplexes reorganization and restoration of mitochondria structure and bioenergetics in a diethylnitrosamine-induced hepatocellular carcinoma model. Sci Rep 2024; 14:6348. [PMID: 38491051 PMCID: PMC10943223 DOI: 10.1038/s41598-024-56306-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/05/2024] [Indexed: 03/18/2024] Open
Abstract
Hepatocellular carcinoma (HCC) progression is associated with dysfunctional mitochondria and bioenergetics impairment. However, no data about the relationship between mitochondrial supercomplexes (hmwSC) formation and ATP production rates in HCC are available. Our group has developed an adenosine derivative, IFC-305, which improves mitochondrial function, and it has been proposed as a therapeutic candidate for HCC. We aimed to determine the role of IFC-305 on both mitochondrial structure and bioenergetics in a sequential cirrhosis-HCC model in rats. Our results showed that IFC-305 administration decreased the number and size of liver tumors, reduced the expression of tumoral markers, and reestablished the typical architecture of the hepatic parenchyma. The livers of treated rats showed a reduction of mitochondria number, recovery of the mtDNA/nDNA ratio, and mitochondrial length. Also, IFC-305 increased cardiolipin and phosphatidylcholine levels and promoted hmwSC reorganization with changes in the expression levels of hmwSC assembly-related genes. IFC-305 in HCC modified the expression of several genes encoding elements of electron transport chain complexes and increased the ATP levels by recovering the complex I, III, and V activity. We propose that IFC-305 restores the mitochondrial bioenergetics in HCC by normalizing the quantity, morphology, and function of mitochondria, possibly as part of its hepatic restorative effect.
Collapse
Grants
- Ciencia de Frontera-2019 project 501204 Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT)
- Ciencia de Frontera-2019 project 501204 Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT)
- Ciencia de Frontera-2019 project 501204 Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT)
- Ciencia de Frontera-2019 project 501204 Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT)
- Ciencia de Frontera-2019 project 501204 Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT)
- Ciencia de Frontera-2019 project 501204 Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT)
- FOP02-2022-02 project 321696 Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT)
- Ciencia de Frontera-2019 project 501204 Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT)
- Ciencia de Frontera-2019 project 501204 Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT)
- Ciencia de Frontera-2019 project 501204 Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT)
- Ciencia de Frontera-2019 project 501204 Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT)
- PAPIIT-UNAM project IN214419 Universidad Nacional Autónoma de México
- PAPIIT-UNAM project IN214419 Universidad Nacional Autónoma de México
- PAPIIT-UNAM project IN214419 Universidad Nacional Autónoma de México
- PAPIIT-UNAM project IN214419 Universidad Nacional Autónoma de México
- PAPIIT-UNAM project IN214419 Universidad Nacional Autónoma de México
- PAPIIT-UNAM project IN214419 Universidad Nacional Autónoma de México
Collapse
Affiliation(s)
- Rosendo García-Carrillo
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, 28045, Colima, México
| | | | - David Zarate-Lopez
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, 28045, Colima, México
| | - Alejandro Cabrera-Aguilar
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Ciudad de México, México
| | - Bibiana Ortega-Domínguez
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Ciudad de México, México
| | - Mariana Domínguez-López
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Ciudad de México, México
| | - Natalia Chiquete-Félix
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Ciudad de México, México
| | - Adan Dagnino-Acosta
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, 28045, Colima, México
- CONAHCYT-Universidad de Colima, 28045, Colima, México
| | - Gabriela Velasco-Loyden
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Ciudad de México, México
| | - Enrique Chávez
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Ciudad de México, México
| | - Luis Castro-Sánchez
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, 28045, Colima, México.
- CONAHCYT-Universidad de Colima, 28045, Colima, México.
| | - Victoria Chagoya de Sánchez
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Ciudad de México, México.
| |
Collapse
|
40
|
Mirra S, Marfany G. From Beach to the Bedside: Harnessing Mitochondrial Function in Human Diseases Using New Marine-Derived Strategies. Int J Mol Sci 2024; 25:834. [PMID: 38255908 PMCID: PMC10815353 DOI: 10.3390/ijms25020834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Mitochondria are double-membrane organelles within eukaryotic cells that act as cellular power houses owing to their ability to efficiently generate the ATP required to sustain normal cell function. Also, they represent a "hub" for the regulation of a plethora of processes, including cellular homeostasis, metabolism, the defense against oxidative stress, and cell death. Mitochondrial dysfunctions are associated with a wide range of human diseases with complex pathologies, including metabolic diseases, neurodegenerative disorders, and cancer. Therefore, regulating dysfunctional mitochondria represents a pivotal therapeutic opportunity in biomedicine. Marine ecosystems are biologically very diversified and harbor a broad range of organisms, providing both novel bioactive substances and molecules with meaningful biomedical and pharmacological applications. Recently, many mitochondria-targeting marine-derived molecules have been described to regulate mitochondrial biology, thus exerting therapeutic effects by inhibiting mitochondrial abnormalities, both in vitro and in vivo, through different mechanisms of action. Here, we review different strategies that are derived from marine organisms which modulate specific mitochondrial processes or mitochondrial molecular pathways and ultimately aim to find key molecules to treat a wide range of human diseases characterized by impaired mitochondrial function.
Collapse
Affiliation(s)
- Serena Mirra
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Villa Comunale, 80121 Naples, Italy;
| | - Gemma Marfany
- Departament of Genetics, Microbiology and Statistics, Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Universitat de Barcelona, 08028 Barcelona, Spain
- Institute of Biomedicine (IBUB, IBUB-IRSJD), Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
41
|
Yang X, Zhang Y, Zhao G. Artificial carbon assimilation: From unnatural reactions and pathways to synthetic autotrophic systems. Biotechnol Adv 2024; 70:108294. [PMID: 38013126 DOI: 10.1016/j.biotechadv.2023.108294] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/26/2023] [Accepted: 11/18/2023] [Indexed: 11/29/2023]
Abstract
Synthetic biology is being increasingly used to establish novel carbon assimilation pathways and artificial autotrophic strains that can be used in low-carbon biomanufacturing. Currently, artificial pathway design has made significant progress from advocacy to practice within a relatively short span of just over ten years. However, there is still huge scope for exploration of pathway diversity, operational efficiency, and host suitability. The accelerated research process will bring greater opportunities and challenges. In this paper, we provide a comprehensive summary and interpretation of representative one-carbon assimilation pathway designs and artificial autotrophic strain construction work. In addition, we propose some feasible design solutions based on existing research results and patterns to promote the development and application of artificial autotrophy.
Collapse
Affiliation(s)
- Xue Yang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China; Haihe Laboratory of Synthetic Biology, Tianjin 300308, China
| | - Yanfei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China.
| | - Guoping Zhao
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China; CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
42
|
Geng Y, Wang Z, Xu X, Sun X, Dong X, Luo Y, Sun X. Extensive therapeutic effects, underlying molecular mechanisms and disease treatment prediction of Metformin: a systematic review. Transl Res 2024; 263:73-92. [PMID: 37567440 DOI: 10.1016/j.trsl.2023.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023]
Abstract
Metformin (Met), a first-line management for type 2 diabetes mellitus, has been expansively employed and studied with results indicating its therapeutic potential extending beyond glycemic control. Beyond its established role, this therapeutic drug demonstrates a broad spectrum of action encompassing over 60 disorders, encompassing metabolic conditions, inflammatory disorders, carcinomas, cardiovascular diseases, and cerebrovascular pathologies. There is clear evidence of Met's action targeting specific nodes in the molecular pathways of these diseases and, intriguingly, interactions with the intestinal microbiota and epigenetic processes have been explored. Furthermore, novel Met derivatives with structural modifications tailored to diverse diseases have been synthesized and assessed. This manuscript proffers a comprehensive thematic review of the diseases amenable to Met treatment, elucidates their molecular mechanisms, and employs informatics technology to prospect future therapeutic applications of Met. These data and insights gleaned considerably contribute to enriching our understanding and appreciation of Met's far-reaching clinical potential and therapeutic applicability.
Collapse
Affiliation(s)
- Yifei Geng
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Zhen Wang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Xiaoyu Xu
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Xiao Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Xi Dong
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Yun Luo
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China.
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China.
| |
Collapse
|
43
|
Han H, Zhao C, Liu M, Zhu H, Meng F, Zhang Y, Wang G, Wang L, Di L, Mingyuen Lee S, Zhang Q, Cui G. Mitochondrial complex I inhibition by homoharringtonine: A novel strategy for suppression of chronic myeloid leukemia. Biochem Pharmacol 2023; 218:115875. [PMID: 37871881 DOI: 10.1016/j.bcp.2023.115875] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/20/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
Chronic myeloid leukemia (CML) is a hematologic malignancy predominantly driven by the BCR-ABL fusion gene. One of the significant challenges in treating CML lies in the emergence of resistance to tyrosine kinase inhibitors (TKIs), especially those associated with the T315I mutation. Homoharringtonine (HHT) is an FDA-approved, naturally-derived drug with known anti-leukemic properties, but its precise mechanisms of action remain incompletely understood. In this study, we rigorously evaluated the anti-CML activity of HHT through both in vitro and in vivo assays, observing substantial anti-CML effects. To elucidate the molecular mechanisms underpinning these effects, we performed proteomic analysis on BCR-ABL T315I mutation-bearing cells treated with HHT. Comprehensive pathway enrichment analysis identified oxidative phosphorylation (OXPHOS) as the most significantly disrupted, suggesting a key role in the mechanism of action of HHT. Further bioinformatics exploration revealed a substantial downregulation of proteins localized within mitochondrial complex I (MCI), a critical OXPHOS component. These results were validated through Western blot analysis and were supplemented by marked reductions in MCI activity, ATP level, and oxygen consumption rate (OCR) upon HHT exposure. Collectively, our results shed light on the potent anti-CML properties of HHT, particularly its effectiveness against T315I mutant cells through MCI inhibition. Our study underscores a novel therapeutic strategy to overcome BCR-ABL T315I mutation resistance, illuminating a previously uncharted mechanism of action for HHT.
Collapse
Affiliation(s)
- Han Han
- School of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Chen Zhao
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Mengchen Liu
- School of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Hongxuan Zhu
- School of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Fancheng Meng
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Ying Zhang
- School of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Guibin Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Li Wang
- Faculty of Health sciences, University of Macau, Macau SAR, China
| | - Lijun Di
- Faculty of Health sciences, University of Macau, Macau SAR, China
| | - Simon Mingyuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Qingwen Zhang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China.
| | - Guozhen Cui
- School of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, China.
| |
Collapse
|
44
|
Vámos E, Kálmán N, Sturm EM, Nayak BB, Teppan J, Vántus VB, Kovács D, Makszin L, Loránd T, Gallyas F, Radnai B. Highly Selective MIF Ketonase Inhibitor KRP-6 Diminishes M1 Macrophage Polarization and Metabolic Reprogramming. Antioxidants (Basel) 2023; 12:1790. [PMID: 37891870 PMCID: PMC10604361 DOI: 10.3390/antiox12101790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Macrophage polarization is highly involved in autoimmunity. M1 polarized macrophages drive inflammation and undergo metabolic reprogramming, involving downregulation of mitochondrial energy production and acceleration of glycolysis. Macrophage migration inhibitory factor (MIF), an enigmatic tautomerase (ketonase and enolase), was discovered to regulate M1 polarization. Here, we reveal that KRP-6, a potent and highly selective MIF ketonase inhibitor, reduces MIF-induced human blood eosinophil and neutrophil migration similarly to ISO-1, the most investigated tautomerase inhibitor. We equally discovered that KRP-6 prevents M1 macrophage polarization and reduces ROS production in IFN-γ-treated cells. During metabolic reprogramming, KRP-6 improved mitochondrial bioenergetics by ameliorating basal respiration, ATP production, coupling efficiency and maximal respiration in LPS+IFN-γ-treated cells. KRP-6 also reduced glycolytic flux in M1 macrophages. Moreover, the selective MIF ketonase inhibitor attenuated LPS+IFN-γ-induced downregulation of PARP-1 and PARP-2 mRNA expression. We conclude that KRP-6 represents a promising novel therapeutic compound for autoimmune diseases, which strongly involves M1 macrophage polarization.
Collapse
Affiliation(s)
- Eszter Vámos
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 12 Szigeti Str., 7624 Pécs, Hungary; (E.V.); (N.K.); (V.B.V.); (D.K.); (T.L.)
| | - Nikoletta Kálmán
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 12 Szigeti Str., 7624 Pécs, Hungary; (E.V.); (N.K.); (V.B.V.); (D.K.); (T.L.)
| | - Eva Maria Sturm
- Otto-Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; (E.M.S.); (B.B.N.); (J.T.)
| | - Barsha Baisakhi Nayak
- Otto-Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; (E.M.S.); (B.B.N.); (J.T.)
| | - Julia Teppan
- Otto-Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; (E.M.S.); (B.B.N.); (J.T.)
| | - Viola Bagóné Vántus
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 12 Szigeti Str., 7624 Pécs, Hungary; (E.V.); (N.K.); (V.B.V.); (D.K.); (T.L.)
| | - Dominika Kovács
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 12 Szigeti Str., 7624 Pécs, Hungary; (E.V.); (N.K.); (V.B.V.); (D.K.); (T.L.)
| | - Lilla Makszin
- Institute of Bioanalysis, Medical School, Szentágothai Research Center, University of Pécs, 7622 Pécs, Hungary;
| | - Tamás Loránd
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 12 Szigeti Str., 7624 Pécs, Hungary; (E.V.); (N.K.); (V.B.V.); (D.K.); (T.L.)
| | - Ferenc Gallyas
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 12 Szigeti Str., 7624 Pécs, Hungary; (E.V.); (N.K.); (V.B.V.); (D.K.); (T.L.)
| | - Balázs Radnai
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 12 Szigeti Str., 7624 Pécs, Hungary; (E.V.); (N.K.); (V.B.V.); (D.K.); (T.L.)
| |
Collapse
|
45
|
Chen M, Chen Y, Zhu W, Yan X, Xiao J, Zhang P, Liu P, Li P. Advances in the pharmacological study of Chinese herbal medicine to alleviate diabetic nephropathy by improving mitochondrial oxidative stress. Biomed Pharmacother 2023; 165:115088. [PMID: 37413900 DOI: 10.1016/j.biopha.2023.115088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/08/2023] Open
Abstract
Diabetic nephropathy (DN) is one of the serious complications of diabetes mellitus, primarily arising from type 2 diabetes (T2DM), and can progress to chronic kidney disease (CKD) and end stage renal disease (ESRD). The pathogenesis of DN involves various factors such as hemodynamic changes, oxidative stress, inflammatory response, and lipid metabolism disorders. Increasing attention is being given to DN caused by oxidative stress in the mitochondrial pathway, prompting researchers to explore drugs that can regulate these target pathways. Chinese herbal medicine, known for its accessibility, rich historical usage, and remarkable efficacy, has shown promise in ameliorating renal injury caused by DN by modulating oxidative stress in the mitochondrial pathway. This review aims to provide a reference for the prevention and treatment of DN. Firstly, we outline the mechanisms by which mitochondrial dysfunction impairs DN, focusing on outlining the damage to mitochondria by oxidative stress. Subsequently, we describe the process by which formulas, herbs and monomeric compounds protect the kidney by ameliorating oxidative stress in the mitochondrial pathway. Finally, the rich variety of Chinese herbal medicine, combined with modern extraction techniques, has great potential, and as we gradually understand the pathogenesis of DN and research techniques are constantly updated, there will be more and more promising therapeutic targets and herbal drug candidates. This paper aims to provide a reference for the prevention and treatment of DN.
Collapse
Affiliation(s)
- Ming Chen
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Yao Chen
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Wenhui Zhu
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Xiaoming Yan
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Jing Xiao
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Peiqing Zhang
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China.
| | - Peng Liu
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China.
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
46
|
Lazzarino G, Mangione R, Saab MW, Tavazzi B, Pittalà A, Signoretti S, Di Pietro V, Lazzarino G, Amorini AM. Traumatic Brain Injury Alters Cerebral Concentrations and Redox States of Coenzymes Q 9 and Q 10 in the Rat. Antioxidants (Basel) 2023; 12:antiox12050985. [PMID: 37237851 DOI: 10.3390/antiox12050985] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/14/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
To date, there is no information on the effect of TBI on the changes in brain CoQ levels and possible variations in its redox state. In this study, we induced graded TBIs (mild TBI, mTBI and severe TBI, sTBI) in male rats, using the weight-drop closed-head impact acceleration model of trauma. At 7 days post-injury, CoQ9, CoQ10 and α-tocopherol were measured by HPLC in brain extracts of the injured rats, as well as in those of a group of control sham-operated rats. In the controls, about the 69% of total CoQ was in the form of CoQ9 and the oxidized/reduced ratios of CoQ9 and CoQ10 were, respectively, 1.05 ± 0.07 and 1.42 ± 0.17. No significant changes in these values were observed in rats experiencing mTBI. Conversely, in the brains of sTBI-injured animals, an increase in reduced and a decrease in oxidized CoQ9 produced an oxidized/reduced ratio of 0.81 ± 0.1 (p < 0.001 compared with both controls and mTBI). A concomitant decrease in both reduced and oxidized CoQ10 generated a corresponding oxidized/reduced ratio of 1.38 ± 0.23 (p < 0.001 compared with both controls and mTBI). An overall decrease in the concentration of the total CoQ pool was also found in sTBI-injured rats (p < 0.001 compared with both controls and mTBI). Concerning α-tocopherol, whilst no differences compared with the controls were found in mTBI animals, a significant decrease was observed in rats experiencing sTBI (p < 0.01 compared with both controls and mTBI). Besides suggesting potentially different functions and intracellular distributions of CoQ9 and CoQ10 in rat brain mitochondria, these results demonstrate, for the first time to the best of knowledge, that sTBI alters the levels and redox states of CoQ9 and CoQ10, thus adding a new explanation to the mitochondrial impairment affecting ETC, OXPHOS, energy supply and antioxidant defenses following sTBI.
Collapse
Affiliation(s)
- Giacomo Lazzarino
- Departmental Faculty of Medicine and Surgery, UniCamillus-Saint Camillus International University of Health and Medical Sciences, Via di Sant'Alessandro 8, 00131 Rome, Italy
| | - Renata Mangione
- Department of Basic Biotechnological Sciences, Intensive and Perioperative Clinics, Catholic University of the Sacred Heart of Rome, Largo F. Vito 1, 00168 Rome, Italy
| | - Miriam Wissam Saab
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Via S. Sofia 97, 95123 Catania, Italy
| | - Barbara Tavazzi
- Departmental Faculty of Medicine and Surgery, UniCamillus-Saint Camillus International University of Health and Medical Sciences, Via di Sant'Alessandro 8, 00131 Rome, Italy
| | - Alessandra Pittalà
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Via S. Sofia 97, 95123 Catania, Italy
| | - Stefano Signoretti
- Departmental Faculty of Medicine and Surgery, UniCamillus-Saint Camillus International University of Health and Medical Sciences, Via di Sant'Alessandro 8, 00131 Rome, Italy
- Department of Emergency and Urgency, Division of Neurosurgery, S. Eugenio/CTO Hospital, A.S.L. Roma2 Piazzale dell'Umanesimo 10, 00144 Rome, Italy
| | - Valentina Di Pietro
- Neurotrauma and Ophthalmology Research Group, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Edgbaston, Birmingham B15 2TH, UK
| | - Giuseppe Lazzarino
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Via S. Sofia 97, 95123 Catania, Italy
| | - Angela Maria Amorini
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Via S. Sofia 97, 95123 Catania, Italy
| |
Collapse
|