1
|
Ng CT, Fong LY, Tan JJ, Abdullah MNH. Endothelial barrier disruptive effect of IFN-Ƴ and TNF-α: Synergism of pro-inflammatory cytokines. Cytokine 2025; 190:156922. [PMID: 40158467 DOI: 10.1016/j.cyto.2025.156922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 03/13/2025] [Indexed: 04/02/2025]
Abstract
Crosstalk and synergy between interferon-γ (IFN-Ƴ) and tumor necrosis factor-α (TNF-α) in endothelial cells have previously been documented, however, there is an absence of articles reviewing the synergistic effect of IFN-Ƴ and TNF-α in regulating the endothelial barrier function. This review discusses the regulatory mechanisms and recent evidence of the synergism of IFN-γ and TNF-α in causing destabilization of endothelial junctions in various clinical studies and preclinical models. Articles were retrieved from electronic databases such as Web of Science, PubMed, Google Scholar, and Scopus. The search terms used were "interferon", "interferon-gamma", "tumor necrosis factor-α", "vascular inflammation", "endothelial barrier", "endothelial permeability" and "synergism". We selected articles published between 2004 and 2024. Through the Rho-associated protein kinase (ROCK) and p38 mitogen-activated protein (MAP) kinase pathways, our results showed that IFN-γ controls the remodeling of actin and the stability of junctions. In comparison to IFN-γ, the signaling cascades triggered by TNF-α involve a variety of pathways such as nuclear factor-kappa B (NF-κB), small GTPases, tyrosine kinases, integrin receptors, and barrier-stabilizing molecules such as Ras-related proteins 1A (Rap1A) and Rac family small GTPase 1 (Rac1). In the context of IFN-γ and TNF-α synergism, combined IFN-γ and TNF-α alter adherens and tight junctions. It is deduced that c-Jun N-terminal kinase (JNK), signal transducers and activators of transcription (STAT1), and caspase signaling pathways regulate endothelial barrier disruption caused by IFN-γ and TNF-α. Collectively, the mechanism underlying the synergistic action of IFN-γ and TNF-α is still lacking. Future work is needed to explore the crosstalk pathways of IFN-γ and TNF-α involved in the regulation of endothelial barrier function such as modulation of extracellular matrix (ECM) structure, involvement of tyrosine kinases and roles of small GTPases.
Collapse
Affiliation(s)
- Chin Theng Ng
- Unit of Physiology, Faculty of Medicine, AIMST University, Bedong 08100, Kedah, Malaysia.
| | - Lai Yen Fong
- Department of Pre-clinical Sciences, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang 43000, Selangor, Malaysia
| | - Jun Jie Tan
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang, Malaysia
| | - Muhammad Nazrul Hakim Abdullah
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
| |
Collapse
|
2
|
Hamdy H, Aly WA, Elkord E. Investigating the functional role of BUB1B in aflatoxin B1-associated hepatocarcinogenesis. Toxicology 2025; 514:154127. [PMID: 40147685 DOI: 10.1016/j.tox.2025.154127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/22/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality worldwide, stemming from a complex interplay of genetic, environmental, and lifestyle factors. Aflatoxin B1 (AFB1), a prevalent food contaminant, is a known HCC risk factor, but its molecular mechanisms remain incompletely understood. This study investigated the contribution of BUB1B, a crucial spindle assembly checkpoint regulator, in AFB1-induced hepatocyte malignant transformation, we assessed AFB1's impact on cell proliferation, viability, cell cycle regulation, and BUB1B expression. BUB1B knockdown via siRNA revealed its role in epithelial-mesenchymal transition (EMT), cell motility, and proliferation. AFB1 exposure significantly altered cell proliferation and cell cycle dynamics, correlating with increased BUB1B expression. Furthermore, we identified a significant interaction between BUB1B and the IL12A-JAK2/STAT4 signaling pathway, suggesting a mechanism for immune evasion and tumor progression. These findings highlight BUB1B's critical role in AFB1-induced hepatocarcinogenesis and establish its potential target for HCC. Further research is needed to fully elucidate the underlying molecular mechanisms and explore the therapeutic implications of BUB1B inhibition in HCC treatment.
Collapse
Affiliation(s)
- Hayam Hamdy
- Center for Life Sciences, School of Life Sciences, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Medicine, Yunnan University, Kunming, China; Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, New Valley University, New Valley, Egypt
| | - Wafaa A Aly
- Department of Environmental Health, Institute of Environmental Studies, Arish University, Egypt
| | - Eyad Elkord
- Department of Biosciences and Bioinformatics & Suzhou Municipal Key Lab of Biomedical Sciences and Translational Immunology, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China; College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates; Biomedical Research Center, School of Science, Engineering and Environment, University of Salford, Manchester, UK.
| |
Collapse
|
3
|
Wang X, Wang Z, Qi Z, Zhu Y. Potential therapeutic substances for hand-foot-and-mouth disease in the interplay of enteroviruses and type I interferon. Int J Antimicrob Agents 2025; 65:107464. [PMID: 39956531 DOI: 10.1016/j.ijantimicag.2025.107464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 12/15/2024] [Accepted: 02/10/2025] [Indexed: 02/18/2025]
Abstract
OBJECTIVES Hand-foot-and-mouth disease (HFMD) is widespread in the world. Severe HFMD can lead to complications like pneumonia, encephalitis, myocarditis, transverse myelitis and even death. Since HFMD is caused by at least 20 types of enteroviruses, there is an urgent need for broad-spectrum antiviral drugs to help control the spread of HFMD outbreaks. METHODS Type I interferon (IFN), as an indispensable part of the immune response, plays a key role in the inhibition of the enterovirus replication cycle without species specificity, and regulation of the innate immune system by inducing the activation of the IFN-stimulated genes. CONCLUSIONS Here, the interplay of enteroviruses and type I IFN was systematically summarized, including pathways for the activation and evasion of type I IFN. Besides, we proposed promising anti-enterovirus agents with therapeutic potential.
Collapse
Affiliation(s)
- Xinyu Wang
- Department of Infectious Diseases, First Hospital of Naval Medical University, Shanghai, China
| | - Ziyuan Wang
- School of Basic Medical Sciences, Naval Medical University, Shanghai, China
| | - Zhongtian Qi
- Department of Microbiology, Naval Medical University, Shanghai, China.
| | - Yongzhe Zhu
- Department of Microbiology, Naval Medical University, Shanghai, China.
| |
Collapse
|
4
|
Coffman JA. Enteroviruses Activate Cellular Innate Immune Responses Prior to Adaptive Immunity and Tropism Contributes to Severe Viral Pathogenesis. Microorganisms 2025; 13:870. [PMID: 40284705 PMCID: PMC12029620 DOI: 10.3390/microorganisms13040870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/26/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025] Open
Abstract
Numerous innate immune mechanisms have been shown to be activated during viral infections, including pattern recognition receptors (PRRs) functioning outside and inside the cell along with other sensors promoting the production of interferon and other cytokines. Innate cells, including NK cells, NKT cells, γδ T cells, dendritic cells, macrophages, and even neutrophils, have been shown to respond to viral infections. Several innate humoral responses to viral infections have also been identified. Adaptive immunity includes common cell-mediated immunity (CMI) and humoral responses. Th1, Th2, and Tfh CD4+ T cell responses have been shown to help activate cytotoxic T lymphocytes (CTLs) and to help promote the class switching of antiviral antibodies. Enteroviruses were shown to induce innate immune responses and the tropism of the virus that was mediated through viral attachment proteins (VAPs) and cellular receptors was directly related to the risk of severe disease in a primary infection. Adaptive immune responses include cellular and humoral immunity, and its delay in primary infections underscores the importance of vaccination in ameliorating or preventing severe viral pathogenesis.
Collapse
Affiliation(s)
- Jonathan A Coffman
- School of Pharmacy, American University of Health Sciences, Signal Hill, CA 90755, USA
| |
Collapse
|
5
|
Miyakawa R, Zhang H, Brooks WA, Prosperi C, Baggett HC, Feikin DR, Hammitt LL, Howie SRC, Kotloff KL, Levine OS, Madhi SA, Murdoch DR, O'Brien KL, Scott JAG, Thea DM, Antonio M, Awori JO, Bunthi C, Driscoll AJ, Ebruke B, Fancourt NS, Higdon MM, Karron RA, Moore DP, Morpeth SC, Mulindwa JM, Park DE, Rahman MZ, Rahman M, Salaudeen RA, Sawatwong P, Seidenberg P, Sow SO, Tapia MD, Deloria Knoll M. Epidemiology of human metapneumovirus among children with severe or very severe pneumonia in high pneumonia burden settings: the Pneumonia Etiology Research for Child Health (PERCH) study experience. Clin Microbiol Infect 2025; 31:441-450. [PMID: 39489292 DOI: 10.1016/j.cmi.2024.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/16/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
OBJECTIVES After respiratory syncytial virus (RSV), human metapneumovirus (hMPV) was the second-ranked pathogen attributed to severe pneumonia in the PERCH study. We sought to characterize hMPV-positive cases in high-burden settings, which have limited data, by comparing with RSV-positive and other cases. METHODS Children aged 1-59 months hospitalized with suspected severe pneumonia and age/season-matched community controls in seven African and Asian countries had nasopharyngeal/oropharyngeal swabs tested by multiplex PCR for 32 respiratory pathogens, among other clinical and lab assessments at admission. Odds ratios adjusted for age and site (adjusted OR [aOR]) were calculated using logistic regression. Aetiologic probability was estimated using Bayesian nested partial latent class analysis. Latent class analysis identified syndromic constellations of clinical characteristics. RESULTS hMPV was detected more frequently among cases (267/3887, 6.9%) than controls (115/4976, 2.3%), among cases with pneumonia chest X-ray findings (8.5%) than without (5.5%), and among controls with respiratory tract illness (3.8%) than without (1.8%; all p ≤ 0.001). HMPV-positive cases were negatively associated with the detection of other viruses (aOR, 0.18), especially RSV (aOR, 0.11; all p < 0.0001), and positively associated with the detection of bacteria (aORs, 1.77; p 0.03). No single clinical syndrome distinguished hMPV-positive from other cases. Among hMPV-positive cases, 65.2% were aged <1 year and 27.5% had pneumonia danger signs; positive predictive value for hMPV aetiology was 74.5%; mortality was 3.9%, similar to RSV-positive (2.4%) and lower than that among other cases (9.6%). DISCUSSION HMPV-associated severe paediatric pneumonia in high-burden settings was predominantly in young infants and clinically indistinguishable from RSV. HMPV-positives had low case fatality, similar to that in RSV-positives.
Collapse
Affiliation(s)
- Ryo Miyakawa
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Haijun Zhang
- International Vaccine Access Center, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Department of Health Policy and Management, School of Public Health, Peking University, Beijing, China.
| | - W Abdullah Brooks
- Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), Dhaka and Matlab, Bangladesh
| | - Christine Prosperi
- International Vaccine Access Center, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Henry C Baggett
- Division of Global Health Protection, Thailand Ministry of Public Health-U.S. Centers for Disease Control and Prevention Collaboration, Nonthaburi, Thailand; Division of Global Health Protection, Global Health Center, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Daniel R Feikin
- International Vaccine Access Center, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Division of Viral Diseases, National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Laura L Hammitt
- International Vaccine Access Center, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Stephen R C Howie
- Medical Research Council Unit at the London School of Hygiene and Tropical Medicine, Basse, The Gambia; Department of Paediatrics: Child & Youth Health, University of Auckland, Auckland, New Zealand; College of Medicine, Nursing and Health Sciences, Fiji National University, Suva, Fiji
| | - Karen L Kotloff
- Division of Infectious Disease and Tropical Pediatrics, Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Orin S Levine
- International Vaccine Access Center, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Shabir A Madhi
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Wits Infectious Diseases and Oncology Research Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - David R Murdoch
- Department of Pathology and Biomedical Sciences, University of Otago, Christchurch, New Zealand; Microbiology Unit, Canterbury Health Laboratories, Christchurch, New Zealand
| | - Katherine L O'Brien
- International Vaccine Access Center, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - J Anthony G Scott
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya; Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Donald M Thea
- Department of Global Health, Boston University School of Public Health, Boston, MA, USA
| | - Martin Antonio
- Medical Research Council Unit at the London School of Hygiene and Tropical Medicine, Basse, The Gambia; Department of Pathogen Molecular Biology, London School of Hygiene & Tropical Medicine, Microbiology and Infection Unit, Warwick Medical School, University of Warwick, Coventry, UK
| | - Juliet O Awori
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Charatdao Bunthi
- Division of Global Health Protection, Thailand Ministry of Public Health-U.S. Centers for Disease Control and Prevention Collaboration, Nonthaburi, Thailand
| | - Amanda J Driscoll
- International Vaccine Access Center, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bernard Ebruke
- Medical Research Council Unit at the London School of Hygiene and Tropical Medicine, Basse, The Gambia
| | - Nicholas S Fancourt
- Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia; Microbiology Laboratory, Middlemore Hospital, Counties Manukau District Health Board, Auckland, New Zealand
| | - Melissa M Higdon
- International Vaccine Access Center, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Ruth A Karron
- Department of International Health, Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - David P Moore
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Wits Infectious Diseases and Oncology Research Institute, University of the Witwatersrand, Johannesburg, South Africa; Department of Paediatrics & Child Health, Chris Hani Baragwanath Academic Hospital and University of the Witwatersrand, Johannesburg, South Africa
| | - Susan C Morpeth
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya; Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK; Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Justin M Mulindwa
- Department of Paediatrics and Child Health, University Teaching Hospital, Lusaka, Zambia
| | - Daniel E Park
- International Vaccine Access Center, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington, DC, USA
| | - Mohammed Ziaur Rahman
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), Dhaka and Matlab, Bangladesh
| | - Mustafizur Rahman
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), Dhaka and Matlab, Bangladesh
| | - Rasheed A Salaudeen
- Medical Research Council Unit at the London School of Hygiene and Tropical Medicine, Basse, The Gambia; Medical Microbiology Department, Lagos University Teaching Hospital, Lagos, Nigeria
| | - Pongpun Sawatwong
- Division of Global Health Protection, Thailand Ministry of Public Health-U.S. Centers for Disease Control and Prevention Collaboration, Nonthaburi, Thailand
| | - Phil Seidenberg
- Department of Global Health, Boston University School of Public Health, Boston, MA, USA; Department of Emergency Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Samba O Sow
- Centre pour le Développement des Vaccins (CVD-Mali), Bamako, Mali
| | - Milagritos D Tapia
- Division of Infectious Disease and Tropical Pediatrics, Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Maria Deloria Knoll
- International Vaccine Access Center, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
6
|
Plá N, Videla YP, Burucúa MM, Cheuquepán Valenzuela FA, Marin MS, Quintana S. Leptospira spp. is recognized by TLR2 and induces IFN-β and IFN-λ expression in smegma from naturally infected bulls. Comp Immunol Microbiol Infect Dis 2025; 117:102291. [PMID: 39793320 DOI: 10.1016/j.cimid.2024.102291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/18/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025]
Abstract
Leptospirosis, a zoonosis with a wide worldwide distribution, causes significant reproductive losses in cattle. The genital presentation of the disease has been reported, and its understanding is crucial for the implementation of adequate sanitary measures. Although Leptospira spp. modulate innate immunity, the response in the genital mucosa of bulls is unknown. The objective of this work was to evaluate the expression of innate immune receptors and cytokines in smegma from bulls with genital infection by Leptospira spp. To do so, routine preputial scraping samples were selected from breeding bulls from four establishments in the Azul District, Buenos Aires, Argentina with no reproductive problems, which were previously evaluated for the presence of Leptospira spp. DNA by qPCR detection of the secY gene. The relative gene expression of TLR2, TLR4, IFN-β and IFN-λ in the smegma samples of animals infected with Leptospira spp. was determined by RT-qPCR, with subsequent analysis of the results using REST software. The expression of TLR2 was significantly increased in animals infected with Leptospira spp. compared to uninfected control animals (4-fold), while TLR4 did not show differences. Likewise, both IFN-β and IFN-λ were significantly increased in smegma of infected animals (3.5 and 3.1-fold, respectively). Therefore, this work shows that genital infection of Leptospira spp. in bulls generates and modulates a local innate immune response, with an association between the presence of Leptospira spp. DNA and the expression levels of TLR2, IFN-β and IFN-λ.
Collapse
Affiliation(s)
- Natalia Plá
- Departamento de Producción Animal, Facultad de Ciencias Agrarias, UNMdP, Balcarce, Buenos Aires, Argentina; Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), Fondo para la Investigación Científica y Tecnológica (FONCyT), Buenos Aires, Argentina.
| | - Yanina Paola Videla
- Centro Regional de Estudio Sistémico de las Cadenas Agroalimentarias (CRESCA), Facultad de Agronomía, U.N.C.P.B.A., Azul, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - Mercedes María Burucúa
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Departamento de Biología, Facultad de Ciencias Exactas y Naturales, UNMdP, Mar del Plata, Buenos Aires, Argentina.
| | - Felipe Andrés Cheuquepán Valenzuela
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Departamento de Biología, Facultad de Ciencias Exactas y Naturales, UNMdP, Mar del Plata, Buenos Aires, Argentina.
| | - Maia Solange Marin
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Departamento de Biología, Facultad de Ciencias Exactas y Naturales, UNMdP, Mar del Plata, Buenos Aires, Argentina.
| | - Silvina Quintana
- Instituto de Investigaciones en Producción, Sanidad y Ambiente - IIPROSAM (CONICET-UNMdP). Facultad de Ciencias Exactas y Naturales-UNMdP Centro Científico Tecnológico Mar del Plata-CONICET Centro de Asociación Simple CIC-PBA, Mar del Plata, Buenos Aires, Argentina.
| |
Collapse
|
7
|
Kostas JC, Brainard CS, Cristea IM. A Primer on Proteomic Characterization of Intercellular Communication in a Virus Microenvironment. Mol Cell Proteomics 2025; 24:100913. [PMID: 39862905 PMCID: PMC11889360 DOI: 10.1016/j.mcpro.2025.100913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/10/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025] Open
Abstract
Intercellular communication is fundamental to multicellular life and a core determinant of outcomes during viral infection, where the common goals of virus and host for persistence and replication are generally at odds. Hosts rely on encoded innate and adaptive immune responses to detect and clear viral pathogens, while viruses can exploit or disrupt these pathways and other intercellular communication processes to enhance their spread and promote pathogenesis. While virus-induced signaling can result in systemic changes to the host, striking alterations are observed within the cellular microenvironment directly surrounding a site of infection, termed the virus microenvironment (VME). Mechanisms employed by viruses to condition their VMEs are emerging and are critical for understanding the biology and pathologies of viral infections. Recent advances in experimental approaches, including proteomic methods, have enabled study of the VME in unprecedented detail. In this review article, we provide a primer on proteomic approaches used to study how viral infections alter intercellular communication, highlighting the ways in which these approaches have been implemented and the exciting biology they have uncovered. First, we consider the different molecules secreted by an infected cell, including proteins, either soluble or contained within extracellular vesicles, and metabolites. We further discuss the modalities of interactions facilitated by alteration at the cell surface of infected cells, including immunopeptide presentation and interactions with the extracellular matrix. Finally, we review spatial profiling approaches that have allowed distinguishing how specific subpopulations of cells within a VME respond to infection and alter their protein composition, discussing valuable insights these methods have offered.
Collapse
Affiliation(s)
- James C Kostas
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Colter S Brainard
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA.
| |
Collapse
|
8
|
Cian RE, Tena-Garitaonaindia M, Sánchez de Medina F, Martínez-Augustin O. Casein Glycomacropeptide Regulates Gene Expression in Intestinal Epithelial Cells: Effect of Simulated Gastrointestinal Digestion and Peptide Microencapsulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4105-4115. [PMID: 39921639 DOI: 10.1021/acs.jafc.4c10146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2025]
Abstract
κ-Casein glycomacropeptide (GMP) exerts anti-inflammatory and immune modulatory effects. A bovine GMP concentrate and its in vitro digestion product were obtained. GMP was also microencapsulated with phycocolloids and further digested. These products were tested in three-dimensional (3D) and open monolayer two-dimensional (2D) mouse jejunal organoids. Almost no effect was observed on the 2D organoids. In 3D organoids, GMP induced intestinal proliferation (Axin2, Pcna) and differentiation (Vil1, Alpl) genes together with Muc3, antibacterial genes (Lyz1, Pla2g2a), and Cxcl1. GMP also induced interferon I defense genes (Ifnb1, Ifr3, Oas2, Oas3, Rnasel) under basal conditions and in TNF-stimulated organoids. In vitro digestion abrogated the effects of GMP and induced new genes (Lgr5, Olfm4, and Lct). In TNF-stimulated organoids, digested GMP repressed multiple genes. Encapsulation largely preserved the GMP effects. In conclusion, GMP showed differential effects in 3D and 2D organoids. The effects of digestion peptides were also different, suggesting distinct potential as functional foods.
Collapse
Affiliation(s)
- Raúl E Cian
- Instituto de Tecnología de Alimentos, CONICET, FIQ-UNL, Santa Fe 3000, Argentina
| | - Mireia Tena-Garitaonaindia
- Department of Biochemistry and Molecular Biology II, CIBERehd, School of Pharmacy, Instituto de Investigación, Biosanitaria (ibs.GRANADA), Instituto de Ciencia y Tecnología de los Alimentos José Mataix, University of Granada, Granada 18071, Spain
| | - Fermín Sánchez de Medina
- Department of Pharmacology, CIBERehd, School of Pharmacy, Instituto de Investigación Biosanitaria (ibs.GRANADA), University of Granada, Granada 18071, Spain
| | - Olga Martínez-Augustin
- Department of Biochemistry and Molecular Biology II, CIBERehd, School of Pharmacy, Instituto de Investigación, Biosanitaria (ibs.GRANADA), Instituto de Ciencia y Tecnología de los Alimentos José Mataix, University of Granada, Granada 18071, Spain
| |
Collapse
|
9
|
Sabit H, Arneth B, Altrawy A, Ghazy A, Abdelazeem RM, Adel A, Abdel-Ghany S, Alqosaibi AI, Deloukas P, Taghiyev ZT. Genetic and Epigenetic Intersections in COVID-19-Associated Cardiovascular Disease: Emerging Insights and Future Directions. Biomedicines 2025; 13:485. [PMID: 40002898 PMCID: PMC11852909 DOI: 10.3390/biomedicines13020485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/23/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
The intersection of COVID-19 and cardiovascular disease (CVD) has emerged as a significant area of research, particularly in understanding the impact of antiplatelet therapies like ticagrelor and clopidogrel. COVID-19 has been associated with acute cardiovascular complications, including myocardial infarction, thrombosis, and heart failure, exacerbated by the virus's ability to trigger widespread inflammation and endothelial dysfunction. MicroRNAs (miRNAs) play a critical role in regulating these processes by modulating the gene expressions involved in platelet function, inflammation, and vascular homeostasis. This study explores the potential of miRNAs such as miR-223 and miR-126 as biomarkers for predicting resistance or responsiveness to antiplatelet therapies in COVID-19 patients with cardiovascular disease. Identifying miRNA signatures linked to drug efficacy could optimize treatment strategies for patients at high risk of thrombotic events during COVID-19 infection. Moreover, understanding miRNA-mediated pathways offers new insights into how SARS-CoV-2 exacerbates CVD, particularly through mechanisms like cytokine storms and endothelial damage. The findings of this research could lead to personalized therapeutic approaches, improving patient outcomes and reducing mortality in COVID-19-associated cardiovascular events. With global implications, this study addresses the urgent need for effective management of CVD in the context of COVID-19, focusing on the integration of molecular biomarkers to enhance the precision of antiplatelet therapy.
Collapse
Affiliation(s)
- Hussein Sabit
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Borros Arneth
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg (UKGM), Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Afaf Altrawy
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Aysha Ghazy
- Department of Agri-Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Rawan M. Abdelazeem
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Amro Adel
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Shaimaa Abdel-Ghany
- Department of Environmental Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Amany I. Alqosaibi
- Department of Biology, College of Science, Imam Abdulrahman bin Faisal University, Dammam 31441, Saudi Arabia
| | - Panos Deloukas
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK;
| | - Zulfugar T. Taghiyev
- Department of Cardiovascular Surgery, Hospital of the Universities of Giessen and Marburg (UKGM), Justus Liebig University Giessen, 35392 Giessen, Germany
| |
Collapse
|
10
|
Maleka MN, Mbita Z, Morafo V. Regulation of Granzymes A and B by High-Risk HPV: Impact on Immune Evasion and Carcinogenesis. Viruses 2025; 17:221. [PMID: 40006976 PMCID: PMC11861749 DOI: 10.3390/v17020221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
The number of new cancer cases is soaring, and currently, there are 440.5 per 100,000 new cases reported every year. A quarter of these are related to human papillomavirus (HPV) infections, particularly types 16 and 18. These include oropharyngeal, anal, vaginal, and penile cancers. A critical aspect of their oncogenic potential lies in their ability to manipulate host immune responses, facilitating immune evasion and carcinogenesis. High-risk HPVs target key immune components like granzymes A and B and MHC-I, which are crucial for the elimination of virus-infected and transformed cells, thereby weakening immune surveillance. Evidence suggests that high-risk HPVs downregulate the expression of tumor suppressors, such as p53 and pRB, and the activity of these immune components, weakening CTL and NK cell responses, thus enabling persistent infection and carcinogenesis. We discuss the implications of granzyme and MHC-I dysregulation for immune evasion, tumor progression, and potential therapeutic strategies. This review further explores the regulation of granzyme A, B, and MHC-I by high-risk HPVs, focusing on how viral oncoproteins, E6 and E7, interfere with granzyme-mediated cytotoxicity and antigen presentation. The complex interplay between high-risk HPVs, granzyme A, granzyme B, and MHC-I may provide insights into novel approaches for targeting HPV-associated cancers.
Collapse
Affiliation(s)
| | | | - Vivian Morafo
- Department of Biochemistry, Microbiology and Biotechnology, School of Molecular and Life Sciences, Private Bag X 1106, Sovenga, Polokwane 0727, South Africa; (M.N.M.); (Z.M.)
| |
Collapse
|
11
|
Sen'kova AV, Bishani A, Savin IA, Zenkova MA, Chernolovskaya EL. Effect of immunostimulatory RNA on the fibrosis development in Bleomycin- or LPS-induced mouse models. Biochimie 2025; 229:9-18. [PMID: 39362399 DOI: 10.1016/j.biochi.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/19/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Previously, we described a 19-base pair double-stranded RNA with 3'-trinucleotide overhangs, acting as immunostimulatory RNA (isRNA). This molecule demonstrated notable antiproliferative effects on cancer cells, inhibited tumor growth, and elicited immunostimulatory and antiviral responses by inducing cytokine and interferon production. Within this study, we compared the efficiency of lung fibrosis development, initiated in mice by BLM or LPS using different schemes of induction. Then we compared the effect of isRNA used in a preventive or therapeutic regimen on the development of fibrosis in selected BLM- and LPS-induced mouse models and showed that isRNA can be used in pathological conditions accompanied by the development of inflammation and the risk of fibrosis formation, without adverse side effects. Prophylactic regimen of isRNA application is beneficial for prevention of the development of pulmonary fibrosis.
Collapse
Affiliation(s)
- Aleksandra V Sen'kova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Acad. Lavrentiev Ave. 8, 630090, Novosibirsk, Russia
| | - Ali Bishani
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Acad. Lavrentiev Ave. 8, 630090, Novosibirsk, Russia; Faculty of Natural Sciences, Novosibirsk State University, Pirogova Str., 1, 630090, Novosibirsk, Russia
| | - Innokenty A Savin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Acad. Lavrentiev Ave. 8, 630090, Novosibirsk, Russia
| | - Marina A Zenkova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Acad. Lavrentiev Ave. 8, 630090, Novosibirsk, Russia
| | - Elena L Chernolovskaya
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Acad. Lavrentiev Ave. 8, 630090, Novosibirsk, Russia.
| |
Collapse
|
12
|
Gambadauro A, Mollica S, Rosa E, Xerra F, Li Pomi A, Valenzise M, Messina MF, Vitale A, Gitto E, Wasniewska M, Zirilli G, Manti S. Bronchiolitis Severity Affects Blood Count and Inflammatory Marker Levels: A Real-Life Experience. Viruses 2025; 17:77. [PMID: 39861866 PMCID: PMC11769181 DOI: 10.3390/v17010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Bronchiolitis is the most common cause of lower respiratory tract infection (LRTI) in the first year of life. We analyzed the association between complete blood count (CBC), c-reactive protein (CRP), and novel inflammatory indexes (NLR, PLR, MLR, ELR, LMR, NPR, LPR, LNR, PNR, SII, SIRI) in predicting bronchiolitis severity at hospital admission. METHODS We retrospectively collected data from 95 infants hospitalized for bronchiolitis in a third-level hospital during three epidemic seasons. Five outcomes of severity were analyzed: BRAS; pediatric intensive care unit (PICU) admission; ventilatory support; intravenous (IV) rehydration; and length of stay (LOS). RESULTS Lower age and weight at admission were statistically associated with four of the five severity outcomes. Prolonged LOS (≥6 days) was associated with high values of total white blood cells, lymphocytes, and eosinophils. Only three inflammatory indexes (PLR, MLR, and PNR) showed a significant association with one outcome (prolonged LOS). A new index (RBC/AiW/1000) was statistically associated with each severity outcome for a value > 350. CONCLUSIONS We proposed a comprehensive analysis of the association between CBC, CRP, and novel inflammatory indexes and bronchiolitis severity. RBC/AiW/1000 could represent a future predictive marker of disease severity at hospital admission in infants with bronchiolitis.
Collapse
Affiliation(s)
- Antonella Gambadauro
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy; (S.M.); (F.X.); (M.V.); (M.F.M.); (A.V.); (M.W.); (G.Z.); (S.M.)
| | - Salvatore Mollica
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy; (S.M.); (F.X.); (M.V.); (M.F.M.); (A.V.); (M.W.); (G.Z.); (S.M.)
| | - Emanuela Rosa
- Faculty of Medicine and Surgery, University of Messina, Piazza Pugliatti 1, 98122 Messina, Italy;
| | - Federica Xerra
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy; (S.M.); (F.X.); (M.V.); (M.F.M.); (A.V.); (M.W.); (G.Z.); (S.M.)
| | - Alessandra Li Pomi
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy; (S.M.); (F.X.); (M.V.); (M.F.M.); (A.V.); (M.W.); (G.Z.); (S.M.)
| | - Mariella Valenzise
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy; (S.M.); (F.X.); (M.V.); (M.F.M.); (A.V.); (M.W.); (G.Z.); (S.M.)
| | - Maria Francesca Messina
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy; (S.M.); (F.X.); (M.V.); (M.F.M.); (A.V.); (M.W.); (G.Z.); (S.M.)
| | - Agata Vitale
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy; (S.M.); (F.X.); (M.V.); (M.F.M.); (A.V.); (M.W.); (G.Z.); (S.M.)
| | - Eloisa Gitto
- Neonatal and Pediatric Intensive Care Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy;
| | - Malgorzata Wasniewska
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy; (S.M.); (F.X.); (M.V.); (M.F.M.); (A.V.); (M.W.); (G.Z.); (S.M.)
| | - Giuseppina Zirilli
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy; (S.M.); (F.X.); (M.V.); (M.F.M.); (A.V.); (M.W.); (G.Z.); (S.M.)
| | - Sara Manti
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy; (S.M.); (F.X.); (M.V.); (M.F.M.); (A.V.); (M.W.); (G.Z.); (S.M.)
| |
Collapse
|
13
|
Kwon EB, Kim B, Kim YE, Na SJ, Han SM, Woo SO, Choi HM, Moon S, Kim YS, Choi JG. Hovenia dulcis Thunb. Honey Exerts Antiviral Effect Against Influenza A Virus Infection Through Mitochondrial Stress-Mediated Enhancement of Innate Immunity. Antioxidants (Basel) 2025; 14:71. [PMID: 39857405 PMCID: PMC11761272 DOI: 10.3390/antiox14010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/26/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
To combat influenza A virus (IAV) infection, it is vital to develop effective therapeutic strategies, including immunomodulators. In this study, we examined the antiviral effects of Hovenia dulcis Thunb. honey (HDH) against IAV using RAW 264.7 cells. HDH treatment significantly reduced IAV infection and viral protein expression. Moreover, it enhanced the production of interferon (IFN)-β, activated the innate immune response through the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway, and upregulated IFN signaling through signal transducer and activator of transcription (STAT)1/2 phosphorylation and interferon-stimulated gene (ISG) expression. In addition, HDH decreased IAV-induced intracellular and mitochondrial reactive oxygen species (ROS) production by upregulating the expression of antioxidant proteins, such as Sirt3 and SOD2. The results suggest that HDH is a potential therapeutic agent inhibiting viral replication and boosting host antiviral immunity.
Collapse
Affiliation(s)
- Eun-Bin Kwon
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea; (E.-B.K.); (B.K.); (Y.-E.K.)
| | - Buyun Kim
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea; (E.-B.K.); (B.K.); (Y.-E.K.)
| | - Young-Eun Kim
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea; (E.-B.K.); (B.K.); (Y.-E.K.)
| | - Sung-Joon Na
- Special Forest Resources Division, National Institute of Forest Science, Suwon 16631, Republic of Korea;
| | - Sang Mi Han
- Department of Agricultural Biology, National Academy of Agricultural Science, Rural Development Administration, Wanju 566-851, Republic of Korea; (S.M.H.); (S.O.W.); (H.M.C.); (S.M.)
| | - Soon Ok Woo
- Department of Agricultural Biology, National Academy of Agricultural Science, Rural Development Administration, Wanju 566-851, Republic of Korea; (S.M.H.); (S.O.W.); (H.M.C.); (S.M.)
| | - Hong Min Choi
- Department of Agricultural Biology, National Academy of Agricultural Science, Rural Development Administration, Wanju 566-851, Republic of Korea; (S.M.H.); (S.O.W.); (H.M.C.); (S.M.)
| | - Siwon Moon
- Department of Agricultural Biology, National Academy of Agricultural Science, Rural Development Administration, Wanju 566-851, Republic of Korea; (S.M.H.); (S.O.W.); (H.M.C.); (S.M.)
| | - Young Soo Kim
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea; (E.-B.K.); (B.K.); (Y.-E.K.)
| | - Jang-Gi Choi
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea; (E.-B.K.); (B.K.); (Y.-E.K.)
| |
Collapse
|
14
|
Wais N, Agrawal DK. Systemic Lupus Erythematous: Gene Polymorphisms, Epigenetics, Environmental, Hormonal and Nutritional Factors in the Consideration of Personalized Therapy. ARCHIVES OF INTERNAL MEDICINE RESEARCH 2024; 7:331-340. [PMID: 39866364 PMCID: PMC11759484 DOI: 10.26502/aimr.0188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Systemic Lupus Erythematosus (SLE) is a chronic illness that can affect many tissues through the production of autoantibodies. A definite etiology has not been conclusively established, but current research points to the influences which include genetic, hormonal and environmental factors. SLE is difficult to treat due to its multifactorial pathogenesis and heterogeneity in clinical manifestations. Current treatment mainly includes anti-malarial medications, glucocorticoids, and biologics, but many patients still struggle in achieving remission. Additionally, there is no definite cure for SLE as of now, which further emphasizes the need for personalized treatment approaches. We analyzed genetic polymorphisms, DNA methylation, and other environmental, hormonal and nutritional factors in the development of SLE. We considered how such factors affect the processes of the disease pathogenesis and may provide insight on targets for potential personalized therapy. In this article, we criticaly reviewed the literature for compelling evidence connecting SLE and specific genes and epigenetic changes. We also explored environmental triggers such as UV exposure, and hormonal influences on their connection to SLE, working toward understanding the disease's complex nature. A critical evaluation is presented on the use of already accredited biologics in SLE that are beneficial to patients, including anifrolumab and belimumab. The reports on many factors that may influence SLE pathophysiology, along with success with recent biologics/targeted therapies, suggest that precision medicine, tailored to individual genetic and environmental profiles, may hold promise for enhancing remission rates and quality of life for SLE patients. The findings contribute to the field by addressing the need for an integrative approach to SLE treatment and offer more evidence for the potential critical benefit of personalized management strategies that may provide long-term solutions in this challenging and complex disease.
Collapse
Affiliation(s)
- Nejma Wais
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California 91766 USA
| | - Devendra K Agrawal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California 91766 USA
| |
Collapse
|
15
|
Wei D, Liu J, Hu J, Zhang B, Pan Y, Xia Q, Wang F. An NF-κB-regulated cytokine enhances the antiviral resistance of silkworm, Bombyx mori. INSECT MOLECULAR BIOLOGY 2024. [PMID: 39680673 DOI: 10.1111/imb.12980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024]
Abstract
Insect NF-κB-like factor, Relish, is activated by viral infection and induces the production of antiviral proteins. In this study, we performed a transcriptomic analysis of BmE cells expressing the active form of BmRelish (BmRelishact) and identified BmVago-like as the most strongly-induced secreted-protein. Expression of BmVago-like was specifically triggered by Bombyx mori Nucleo Polyhedro Virus (BmNPV) infection and regulated by BmSTING-BmRelish pathway. Incubating the fresh culture of cells with supernatant medium of BmVago-like expressing cells or recombinant BmVago-like protein (rBmVago-like) significantly increased antiviral resistance. On the contrary, reducing the expression of Bmvago-like by RNA interference (RNAi) in BmE cells as well as in silkworm larvae impaired antiviral response. Furthermore, we constructed transgenic silkworm line over-expressing BmVago-like (BmVago-likeOV) and found they had markedly lower viral load and higher survival rate after BmNPV infection compared with the wild-type control. Co-immunoprecipitation assay showed Bmintegrin β1 interacts with BmVago-like and it was involved in BmVago-like mediated antiviral response. Finally, we found the expression level of signalling molecules in the JAK-STAT pathway increased in rBmVago-like-treated cells and BmVago-likeOV silkworm larvae but decreased in RNAi-treated cells. In summary, our research uncovered an inducible antiviral response in silkworm mediated by cytokine BmVago-like, which is the downstream effector of BmSTING-BmRelish pathway and functions as an antiviral cytokine.
Collapse
Affiliation(s)
- Dongmei Wei
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Jinming Liu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Jie Hu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Beilei Zhang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Yumeng Pan
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Fei Wang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| |
Collapse
|
16
|
Hendrix EK, Sha J, Kilgore PB, Neil BH, Chopra AK. Combination of live attenuated and adenovirus-based vaccines completely protects interferon gamma (IFNγ) knockout mice against pneumonic plague. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.06.627261. [PMID: 39713400 PMCID: PMC11661069 DOI: 10.1101/2024.12.06.627261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Two live attenuated vaccines (LAVs), LMA and LMP, were evaluated alone or in combination with a trivalent adenoviral vector-based vaccine (Ad5-YFV) for their efficacy and immune responses in wild type (WT) and interferon gamma (IFNγ) knockout (KO) mice in a C57BL/6 background. While LMA and LMP are triple deletion mutants of Yersinia pestis CO92 strain, Ad5-YFV incorporates three protective plague immunogens. An impressive 80-100% protection was observed in all vaccinated animals against highly lethal intranasal challenge doses of parental Y. pestis CO92. All vaccinated mice generated robust humoral and cellular immune responses. The immunized WT mice showed overall better antibody responses in both serum and bronchoalveolar lavage fluid with much higher percentages of polyfunctional T cell populations. On the other hand, vaccinated IFNγ KO mice displayed better B cell activity in germinal centers with higher percentages of activated antigen specific T cells and memory T cells. In addition, depletion of IFNγ and tumor necrosis factor alpha (TNFα) from immunized WT mice prior to and during infection did not reduce protection against pulmonary Y. pestis CO92 challenge. These data demonstrated a dispensable nature of IFNγ in mediating protection by the aforementioned vaccines. This is the first detailed immunogenicity study of two plague LAVs administered either alone or in combination with an Ad5-YFV vaccine in a prime-boost immunization strategy in IFNγ KO mice. Further, by combining advantages of live-attenuated and adenovirus-based vaccines, augmentation of generalized immune responses were observed which could be beneficial in providing long-lasting immunity in the host.
Collapse
|
17
|
Park ES, Shin CY, Jeon SJ, Ham BJ. Is There such a Thing as Post-Viral Depression?: Implications for Precision Medicine. Biomol Ther (Seoul) 2024; 32:659-684. [PMID: 39428555 PMCID: PMC11535299 DOI: 10.4062/biomolther.2024.170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/06/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024] Open
Abstract
Viral infections are increasingly recognized as triggers for depressive disorders, particularly following the SARS-CoV-2 pandemic and the rise of long COVID. Viruses such as Herpes Simplex Virus (HSV), Epstein-Barr Virus (EBV), Cytomegalovirus (CMV), and Human Immunodeficiency Virus (HIV) are linked to depression through complex neurobiological mechanisms. These include immune system dysregulation, chronic inflammation, and neurotransmitter imbalances that affect brain function and mood regulation. Viral activation of the immune system leads to the release of pro-inflammatory cytokines, resulting in neuroinflammation and associated depressive symptoms. Furthermore, specific viruses can disrupt neurotransmitter systems, including serotonin, dopamine, and glutamate, all of which are essential for mood stabilization. The unique interactions of different viruses with these systems underscore the need for virus-specific therapeutic approaches. Current broad-spectrum treatments often overlook the precise neurobiological pathways involved in post-viral depression, reducing their efficacy. This review emphasizes the need to understand these virus-specific interactions to create tailored interventions that directly address the neurobiological effects induced by each type of virus. These interventions may include immunomodulatory treatments that target persistent inflammation, antiviral therapies to reduce the viral load, or neuroprotective strategies that restore neurotransmitter balance. Precision medicine offers promising avenues for the effective management of virus-induced depression, providing patient-specific approaches that address the specific biological mechanisms involved. By focusing on the development of these targeted treatments, this review aims to pave the way for a new era in psychiatric care that fully addresses the root causes of depression induced by viral infections.
Collapse
Affiliation(s)
- Eun-Sook Park
- Institute of Biomedical Science and Technology, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Chan Young Shin
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Republic of Korea
- Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
- Institute of Biomedical Sciences & Technology, Konkuk University, Seoul 05029, Republic of Korea
| | - Se Jin Jeon
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea
| |
Collapse
|
18
|
Yao J, Yang Z, Guo X, Wang J, Yu B, Liu S, Hu X, Yang K, Yao L, Zhang T. Recombinant porcine interferon δ8 inhibited porcine deltacoronavirus infection in vitro and in vivo. Int J Biol Macromol 2024; 279:135375. [PMID: 39244115 DOI: 10.1016/j.ijbiomac.2024.135375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/16/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Porcine deltacoronavirus (PDCoV) poses a significant threat to both the pig industry and public safety, and has recently been identified in humans. Currently, there are no commercially available vaccines or antiviral treatments for PDCoV. In this study, recombinant porcine interferon δ8 (rINF-δ8) expressed by the HEK 293F expression system was used to evaluated its antiviral activity against PDCoV both in vitro and in vivo. Results demonstrated that rIFN-δ8 displayed non-toxic to ST cells and primary PAMs, and effectively inhibited PDCoV replication in a dose-dependent manner in vitro, with complete suppression of virus replication at a concentration of 2 μg/ml. Treatment of piglets with two doses of 25 μg/kg of rIFN-δ8 reduced clinical symptoms, decreased virus shedding, alleviated intestinal damage, and lowered the viral load in the jejunum and ileum. Furthermore, the levels of interferon-stimulated genes (ISGs) such as Viper, Mx1, ISG15, IFIT1, OSA, and IFITM1 were significantly increased both in vitro and in vivo, with elevated ISG levels sustained for at least 3 days in vivo. These findings suggest that rIFN-δ8 has the potential to serve as an effective antiviral agent for preventing PDCoV in pigs in the future.
Collapse
Affiliation(s)
- Jiale Yao
- Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, College of Life Science, Nanyang Normal University, Nanyang, Henan 473000, China.
| | - Zhuan Yang
- Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, College of Life Science, Nanyang Normal University, Nanyang, Henan 473000, China.
| | - Xinchun Guo
- Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, College of Life Science, Nanyang Normal University, Nanyang, Henan 473000, China.
| | - Jucai Wang
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, China.
| | - Bilin Yu
- Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, College of Life Science, Nanyang Normal University, Nanyang, Henan 473000, China.
| | - Saige Liu
- Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, College of Life Science, Nanyang Normal University, Nanyang, Henan 473000, China.
| | - Xiaomin Hu
- Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, College of Life Science, Nanyang Normal University, Nanyang, Henan 473000, China.
| | - Kankan Yang
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518000, China.
| | - Lunguang Yao
- Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, College of Life Science, Nanyang Normal University, Nanyang, Henan 473000, China.
| | - Teng Zhang
- Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, College of Life Science, Nanyang Normal University, Nanyang, Henan 473000, China.
| |
Collapse
|
19
|
Apatzidou DA, Violesti A, Konstantinidis A, Bao K, Silbereisen A, Bostanci N. Protein profile at newly restored implants compared to contralateral teeth over 12-months: a pilot study. Clin Oral Investig 2024; 28:590. [PMID: 39390228 DOI: 10.1007/s00784-024-05984-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
OBJECTIVES To determine crevicular fluid alterations in protein expression of newly restored implants during their first year of function and associate them with those of contralateral teeth. MATERIALS AND METHODS In ten non-smokers, successfully treated for periodontitis, one newly restored implant (baseline-T0) and one corresponding tooth were followed for 12-months (T1). Oral hygiene was monitored during the study. Periodontal clinical indices and crevicular fluid were collected from an implant-site (PICF) and a tooth-site (GCF). Total proteomic profiles of PICF and GCF were investigated using label-free quantitative proteomics. RESULTS Clinical recordings remained stable at 12-months on the tooth-/implant-site basis. The comparative analysis of protein enrichment between teeth and implants at T0 revealed 664 human proteins, with 93 found only in teeth and 217 exclusively in implants. Among the 354 overlapping proteins, 46 were upregulated (log2FC > 1) in teeth, while 61 in implants. At T1, 569 human proteins were exclusively identified, with 67 found only in teeth and 193 exclusively in implants. Of the 309 overlapping proteins, 22 were upregulated in teeth, while 48 were in implants. The over-representation enrichment analysis identified "interferon-alpha response" and "allograft rejection" pathways, as significantly regulated categories at T0, with the latter being over-represented at T1. CONCLUSIONS Peri-implant tissue maturation was evident during the study. Proteins expressed in crevicular fluid reflected unique patterns between implants and teeth that are worth studying. CLINICAL RELEVANCE Different proteomic patterns were observed at the implant-site compared to the contralateral tooth-site towards inflammatory processes that prevail within otherwise clinically healthy peri-implant tissues. CLINICAL TRIAL REGISTRATION NUMBER ClinicalTrials.gov ID: NCT06379022.
Collapse
Affiliation(s)
- Danae A Apatzidou
- Department of Preventive Dentistry, Periodontology and Implant Biology, Faculty of Dentistry, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Anastasia Violesti
- Department of Preventive Dentistry, Periodontology and Implant Biology, Faculty of Dentistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Antonis Konstantinidis
- Department of Preventive Dentistry, Periodontology and Implant Biology, Faculty of Dentistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Kai Bao
- Division of Oral Health and Periodontology, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Angelika Silbereisen
- Division of Oral Health and Periodontology, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Nagihan Bostanci
- Division of Oral Health and Periodontology, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
20
|
Doke R, Lamkhade GJ, Vinchurkar K, Singh S. Demystifying the Role of Neuroinflammatory Mediators as Biomarkers for Diagnosis, Prognosis, and Treatment of Alzheimer's Disease: A Review. ACS Pharmacol Transl Sci 2024; 7:2987-3003. [PMID: 39416969 PMCID: PMC11475310 DOI: 10.1021/acsptsci.4c00457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024]
Abstract
Neuroinflammatory mediators play a pivotal role in the pathogenesis of Alzheimer's Disease (AD), influencing its onset, progression, and severity. The precise mechanisms behind AD are still not fully understood, leading current treatments to focus mainly on managing symptoms rather than preventing or curing the condition. The amyloid and tau hypotheses are the most widely accepted explanations for AD pathology; however, they do not completely account for the neuronal degeneration observed in AD. Growing evidence underscores the crucial role of neuroinflammation in the pathology of AD. The neuroinflammatory hypothesis presents a promising new approach to understanding the mechanisms driving AD. This review examines the importance of neuroinflammatory biomarkers in the diagnosis, prognosis, and treatment of AD. It delves into the mechanisms underlying neuroinflammation in AD, highlighting the involvement of various mediators such as cytokines, chemokines, and ROS. Additionally, this review discusses the potential of neuroinflammatory biomarkers as diagnostic tools, prognostic indicators, and therapeutic targets for AD management. By understanding the intricate interplay between neuroinflammation and AD pathology, this review aims to help in the development of efficient diagnostic and treatment plans to fight this debilitating neurological condition. Furthermore, it elaborates recent advancements in neuroimaging techniques and biofluid analysis for the identification and monitoring of neuroinflammatory biomarkers in AD patients.
Collapse
Affiliation(s)
- Rohit
R. Doke
- Jaihind
College of Pharmacy, Vadgaon Sahani, Pune, Maharashtra 412401, India
| | | | - Kuldeep Vinchurkar
- Krishna
School of Pharmacy, Kiran and Pallavi Patel
Global University, Vadodara, Gujarat 391243, India
| | - Sudarshan Singh
- Office
of Research Administration, Chiang Mai University, Chaing Mai 50200, Thailand
- Faculty
of Pharmacy, Chiang Mai University, Chaing Mai 50200, Thailand
| |
Collapse
|
21
|
Suri C, Pande B, Sahithi LS, Sahu T, Verma HK. Interplay between Lung Diseases and Viral Infections: A Comprehensive Review. Microorganisms 2024; 12:2030. [PMID: 39458339 PMCID: PMC11510474 DOI: 10.3390/microorganisms12102030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/16/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
The intricate relationship between chronic lung diseases and viral infections is a significant concern in respiratory medicine. We explore how pre-existing lung conditions, including chronic obstructive pulmonary disease, asthma, and interstitial lung diseases, influence susceptibility, severity, and outcomes of viral infections. We also examine how viral infections exacerbate and accelerate the progression of lung disease by disrupting immune responses and triggering inflammatory pathways. By summarizing current evidence, this review highlights the bidirectional nature of these interactions, where underlying lung diseasesincrease vulnerability to viral infections, while these infections, in turn, worsen the clinical course. This review underscores the importance of preventive measures, such as vaccination, early detection, and targeted therapies, to mitigate adverse outcomes in patients with chronic lung conditions. The insights provided aim to inform clinical strategies that can improve patient management and reduce the burden of chronic lung diseases exacerbated by viral infections.
Collapse
Affiliation(s)
- Chahat Suri
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada;
| | - Babita Pande
- Department of Physiology, All India Institute of Medical Sciences, Raipur 492099, India; (B.P.); (T.S.)
| | | | - Tarun Sahu
- Department of Physiology, All India Institute of Medical Sciences, Raipur 492099, India; (B.P.); (T.S.)
| | - Henu Kumar Verma
- Department of Immunopathology, Institute of Lungs Health and Immunity, Comprehensive Pneumology Center, Helmholtz Zentrum, Neuherberg, 85764 Munich, Germany
| |
Collapse
|
22
|
Malik AA, Shariq M, Sheikh JA, Fayaz H, Srivastava G, Thakuri D, Ahuja Y, Ali S, Alam A, Ehtesham NZ, Hasnain SE. Regulation of Type I Interferon and Autophagy in Immunity against Mycobacterium Tuberculosis: Role of CGAS and STING1. Adv Biol (Weinh) 2024; 8:e2400174. [PMID: 38977406 DOI: 10.1002/adbi.202400174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/22/2024] [Indexed: 07/10/2024]
Abstract
Mycobacterium tuberculosis (M. tb) is a significant intracellular pathogen responsible for numerous infectious disease-related deaths worldwide. It uses ESX-1 T7SS to damage phagosomes and to enter the cytosol of host cells after phagocytosis. During infection, M. tb and host mitochondria release dsDNA, which activates the CGAS-STING1 pathway. This pathway leads to the production of type I interferons and proinflammatory cytokines and activates autophagy, which targets and degrades bacteria within autophagosomes. However, the role of type I IFNs in immunity against M. tb is controversial. While previous research has suggested a protective role, recent findings from cgas-sting1 knockout mouse studies have contradicted this. Additionally, a study using knockout mice and non-human primate models uncovered a new mechanism by which neutrophils recruited to lung infections form neutrophil extracellular traps. Activating plasmacytoid dendritic cells causes them to produce type I IFNs, which interfere with the function of interstitial macrophages and increase the likelihood of tuberculosis. Notably, M. tb uses its virulence proteins to disrupt the CGAS-STING1 signaling pathway leading to enhanced pathogenesis. Investigating the CGAS-STING1 pathway can help develop new ways to fight tuberculosis.
Collapse
Affiliation(s)
- Asrar Ahmad Malik
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, 201306, India
| | - Mohd Shariq
- ICMR-National Institute of Pathology, Ansari Nagar West, New Delhi, 110029, India
| | - Javaid Ahmad Sheikh
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Haleema Fayaz
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, 201306, India
| | - Gauri Srivastava
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, 201306, India
| | - Deeksha Thakuri
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, 201306, India
| | - Yashika Ahuja
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, 201306, India
| | - Saquib Ali
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, 201306, India
| | - Anwar Alam
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, 201306, India
| | - Nasreen Z Ehtesham
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, 201306, India
| | - Seyed E Hasnain
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, 201306, India
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi (IIT-D), Hauz Khas, New Delhi, 110 016, India
| |
Collapse
|
23
|
Delpino MV, Quarleri J. Aging mitochondria in the context of SARS-CoV-2: exploring interactions and implications. FRONTIERS IN AGING 2024; 5:1442323. [PMID: 39380657 PMCID: PMC11458564 DOI: 10.3389/fragi.2024.1442323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 09/16/2024] [Indexed: 10/10/2024]
Abstract
The coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has presented global challenges with a diverse clinical spectrum, including severe respiratory complications and systemic effects. This review explores the intricate relationship between mitochondrial dysfunction, aging, and obesity in COVID-19. Mitochondria are vital for cellular energy provision and resilience against age-related macromolecule damage accumulation. They manage energy allocation in cells, activating adaptive responses and stress signals such as redox imbalance and innate immunity activation. As organisms age, mitochondrial function diminishes. Aging and obesity, linked to mitochondrial dysfunction, compromise the antiviral response, affecting the release of interferons, and worsening COVID-19 severity. Furthermore, the development of post-acute sequelae of SARS-CoV-2 infection (PASC), also known as long COVID has been associated with altered energy metabolism, and chronic immune dysregulation derived from mitochondrial dysfunction. Understanding the interplay between mitochondria, aging, obesity, and viral infections provides insights into COVID-19 pathogenesis. Targeting mitochondrial health may offer potential therapeutic strategies to mitigate severe outcomes and address long-term consequences in infected individuals.
Collapse
|
24
|
Subbarayudu S, Namasivayam SKR, Arockiaraj J. Immunomodulation in Non-traditional Therapies for Methicillin-resistant Staphylococcus aureus (MRSA) Management. Curr Microbiol 2024; 81:346. [PMID: 39240286 DOI: 10.1007/s00284-024-03875-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
The rise of methicillin-resistant Staphylococcus aureus (MRSA) poses a significant challenge in clinical settings due to its ability to evade conventional antibiotic treatments. This overview explores the potential of immunomodulatory strategies as alternative therapeutic approaches to combat MRSA infections. Traditional antibiotics are becoming less effective, necessitating innovative solutions that harness the body's immune system to enhance pathogen clearance. Recent advancements in immunotherapy, including the use of antimicrobial peptides, phage therapy, and mechanisms of immune cells, demonstrate promise in enhancing the body's ability to clear MRSA infections. However, the exact interactions between these therapies and immunomodulation are not fully understood, underscoring the need for further research. Hence, this review aims to provide a broad overview of the current understanding of non-traditional therapeutics and their impact on immune responses, which could lead to more effective MRSA treatment strategies. Additionally, combining immunomodulatory agents with existing antibiotics may improve outcomes, particularly for immunocompromised patients or those with chronic infections. As the landscape of antibiotic resistance evolves, the development of effective immunotherapeutic strategies could play a vital role in managing MRSA infections and reducing reliance on traditional antibiotics. Future research must focus on optimizing these approaches and validating their efficacy in diverse clinical populations to address the urgent need for effective MRSA management strategies.
Collapse
Affiliation(s)
- Suthi Subbarayudu
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India
| | - S Karthick Raja Namasivayam
- Centre for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, 602105, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India.
| |
Collapse
|
25
|
Zhang X, Qiu W, Huang J, Pang X, Su Y, Ye J, Zhou S, Tang Z, Wang R, Su R. Insulin combined with N-acetylcysteine attenuates type 1 diabetes-induced splenic inflammatory injury in canines by inhibiting the MAPKs-NF-κB signaling pathway and pyroptosis. J Diabetes Complications 2024; 38:108805. [PMID: 39089052 DOI: 10.1016/j.jdiacomp.2024.108805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 08/03/2024]
Abstract
PURPOSE Type 1 diabetes (T1DM) is a chronic metabolic disorder that can cause damage to multiple organs including the spleen. Sole insulin therapy is not satisfactory. This study aims to investigate the effects and mechanisms of combined treatment with insulin and N-acetylcysteine (NAC) on spleen damage in T1DM canines, in order to identify drugs that may better assist patients in the management of diabetes and its complications. METHODS The canine model of T1DM was established by intravenous injection of alloxan (ALX) and streptozotocin (STZ). The therapeutic effects of insulin and NAC were evaluated by clinical manifestations, spleen protein and mRNA expression. RESULTS The results indicate that the combined treatment of insulin and NAC can alleviate hyperglycemia and hematologic abnormalities, improve splenic histopathological changes, prevent fibrous tissue proliferation, and glycogen deposition. In addition, we observed that this combination treatment significantly suppressed the protein expression of p-P65/P65 (17.6 %, P < 0.05), NLRP3 (46.8 %, P < 0.05), and p-P38/P38 (37.1 %, P < 0.05) induced by T1DM when compared to insulin treatment alone. Moreover, it also significantly decreased the mRNA expression of TLR4 (45.0 %, P < 0.01), TNF-α (30.3 %, P < 0.05), and NLRP3 (43.3 %, P < 0.05). CONCLUSIONS This combination has the potential to mitigate splenic inflammatory injury in T1DM canines by suppressing the activation of MAPKs-NF-κB pathway and pyroptosis. These findings provide a reference for the treatment strategies of diabetes and its complications.
Collapse
Affiliation(s)
- Xinting Zhang
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan road, Tianhe district, Guangzhou, 510642, People's Republic of China
| | - Wenyue Qiu
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan road, Tianhe district, Guangzhou, 510642, People's Republic of China
| | - Jianjia Huang
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan road, Tianhe district, Guangzhou, 510642, People's Republic of China
| | - Xiaoyue Pang
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan road, Tianhe district, Guangzhou, 510642, People's Republic of China
| | - Yiman Su
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan road, Tianhe district, Guangzhou, 510642, People's Republic of China
| | - Jiali Ye
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan road, Tianhe district, Guangzhou, 510642, People's Republic of China
| | - Shuilian Zhou
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan road, Tianhe district, Guangzhou, 510642, People's Republic of China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan road, Tianhe district, Guangzhou, 510642, People's Republic of China
| | - Rongmei Wang
- Henry Fok College of Biology and Agriculture, Shaoguan University, No. 288, Daxue Road, Zhenjiang District, Shaoguan, 512005, People's Republic of China
| | - Rongsheng Su
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan road, Tianhe district, Guangzhou, 510642, People's Republic of China.
| |
Collapse
|
26
|
García-Vicente EJ, Rey-Casero I, Martín M, Pérez A, Benito-Murcia M, Risco D. Oral supplementation with postbiotics modulates the immune response produced by myxomatosis vaccination in wild rabbits. Vaccine 2024; 42:125978. [PMID: 38760270 DOI: 10.1016/j.vaccine.2024.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Rabbits (Oryctolagus cuniculus) are vitally important species in the Iberian Peninsula ecosystem. However, since 1950, there has been a significant population decline, with major repercussions. This situation is mainly due to the presence of infectious diseases, such as myxomatosis, which is expanding and is characterized by severe and fatal clinical manifestations. Current control measures, mainly those based on vaccinations, are ineffective. Therefore, new strategies need to be developed and implemented. This study aimed to evaluate whether supplementation with postbiotic products modulates the immune response in wild rabbits vaccinated against myxomatosis. For this purpose, two groups of rabbits were established: a control group fed with standard feed ad libitum from weaning (28 days) until two months of age, and a treated group, which was fed under the same conditions but supplemented with postbiotics (3 kg/Tm). All the studied rabbits were vaccinated against this disease during weaning. In addition, a blood samples were obtained from all animals immediately before vaccination and 30 days later, which allowed us to evaluate the level of antibodies against myxomatosis virus (ELISA detection) and the relative expression of gene encoding to cytokines related to the immune response (IL6, TNFα and IFNγ), at both times of the experience. Weight and length measurements were also taken at both times to calculate body index and mean daily gain (MDG). No statistically significant differences in growth parameters were observed. There were also no differences in the serological response among groups. However, a relative underexpression of gene codifying to TNFα (p-value = 0.03683) and a higher expression on IFNγ (p-value = 0.045) were observed in the treated group. This modulation in cytokines could lead to less severe lesions in wild rabbit naturally infected with myxomatosis virus.
Collapse
Affiliation(s)
- E J García-Vicente
- Department of Animal Medicine, Facultad de Veterinaria, Universidad de Extremadura, Av. de la Universidad s/n, 10003 Cáceres, Spain; Neobeitar S.L., Av. Alemania 6, 1° B, 10001, Cáceres, Spain.
| | - I Rey-Casero
- Neobeitar S.L., Av. Alemania 6, 1° B, 10001, Cáceres, Spain
| | - M Martín
- Neobeitar S.L., Av. Alemania 6, 1° B, 10001, Cáceres, Spain
| | - A Pérez
- Neobeitar S.L., Av. Alemania 6, 1° B, 10001, Cáceres, Spain
| | - M Benito-Murcia
- Neobeitar S.L., Av. Alemania 6, 1° B, 10001, Cáceres, Spain.
| | - D Risco
- Department of Animal Medicine, Facultad de Veterinaria, Universidad de Extremadura, Av. de la Universidad s/n, 10003 Cáceres, Spain.
| |
Collapse
|
27
|
Hakami MA, Khan FR, Abdulaziz O, Alshaghdali K, Hazazi A, Aleissi AF, Abalkhail A, Alotaibi BS, Alhazmi AYM, Kukreti N, Binshaya AS. Varicella-zoster virus-related neurological complications: From infection to immunomodulatory therapies. Rev Med Virol 2024; 34:e2554. [PMID: 38862398 DOI: 10.1002/rmv.2554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/11/2024] [Accepted: 05/27/2024] [Indexed: 06/13/2024]
Abstract
The Varicella-zoster virus (VZV), classified as a neurotropic member of the Herpesviridae family, exhibits a characteristic pathogenicity, predominantly inducing varicella, commonly known as chickenpox, during the initial infectious phase, and triggering the reactivation of herpes zoster, more commonly recognized as shingles, following its emergence from a latent state. The pathogenesis of VZV-associated neuroinflammation involves a complex interplay between viral replication within sensory ganglia and immune-mediated responses that contribute to tissue damage and dysfunction. Upon primary infection, VZV gains access to sensory ganglia, establishing latent infection within neurons. During reactivation, the virus can spread along sensory nerves, triggering a cascade of inflammatory mediators, chemokines, and immune cell infiltration in the affected neural tissues. The role of both adaptive and innate immune reactions, including the contributions of T and B cells, macrophages, and dendritic cells, in orchestrating the immune-mediated damage in the central nervous system is elucidated. Furthermore, the aberrant activation of the natural defence mechanism, characterised by the dysregulated production of immunomodulatory proteins and chemokines, has been implicated in the pathogenesis of VZV-induced neurological disorders, such as encephalitis, myelitis, and vasculopathy. The intricate balance between protective and detrimental immune responses in the context of VZV infection emphasises the necessity for an exhaustive comprehension of the immunopathogenic mechanisms propelling neuroinflammatory processes. Despite the availability of vaccines and antiviral therapies, VZV-related neurological complications remain a significant concern, particularly in immunocompromised individuals and the elderly. Elucidating these mechanisms might facilitate the emergence of innovative immunomodulatory strategies and targeted therapies aimed at mitigating VZV-induced neuroinflammatory damage and improving clinical outcomes. This comprehensive understanding enhances our grasp of viral pathogenesis and holds promise for pioneering therapeutic strategies designed to mitigate the neurological ramifications of VZV infections.
Collapse
Affiliation(s)
- Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Farhan R Khan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Osama Abdulaziz
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Taif University, Taif, Makkah Province, Saudi Arabia
| | - Khalid Alshaghdali
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| | - Ali Hazazi
- Department of Pathology and Laboratory Medicine, Security Forces Hospital Program, Riyadh, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Awad F Aleissi
- Department of Pathology and Laboratory Medicine, Security Forces Hospital Program, Riyadh, Saudi Arabia
| | - Adil Abalkhail
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Buraydah, Qassim, Saudi Arabia
| | - Bader S Alotaibi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | | | - Neelima Kukreti
- Graphic Era Hill University, Clement Town, Dehradun, India
- Graphic Era (Deemed to be University), Clement Town, Dehradun, India
| | - Abdulkarim S Binshaya
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
28
|
Gruchot J, Reiche L, Werner L, Herrero F, Schira-Heinen J, Meyer U, Küry P. Molecular dissection of HERV-W dependent microglial- and astroglial cell polarization. Microbes Infect 2024:105382. [PMID: 38944109 DOI: 10.1016/j.micinf.2024.105382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 07/01/2024]
Abstract
The endogenous retrovirus type W (HERV-W) is a human-specific entity, which was initially discovered in multiple sclerosis (MS) patient derived cells. We initially found that the HERV-W envelope (ENV) protein negatively affects oligodendrogenesis and controls microglial cell polarization towards a myelinated axon associated and damaging phenotype. Such first functional assessments were conducted ex vivo, given the human-specific origin of HERV-W. Recent experimental evidence gathered on a novel transgenic mouse model, mimicking activation and expression of the HERV-W ENV protein, revealed that all glial cell types are impacted and that cellular fates, differentiation, and functions were changed. In order to identify HERV-W-specific signatures in glial cells, the current study analyzed the transcriptome of ENV protein stimulated microglial- and astroglial cells and compared the transcriptomic signatures to lipopolysaccharide (LPS) stimulated cells, owing to the fact that both ligands can activate toll-like receptor-4 (TLR-4). Additionally, a comparison between published disease associated glial signatures and the transcriptome of HERV-W ENV stimulated glial cells was conducted. We, therefore, provide here for the first time a detailed molecular description of specific HERV-W ENV evoked effects on those glial cell populations that are involved in smoldering neuroinflammatory processes relevant for progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Joel Gruchot
- Heinrich-Heine-University Düsseldorf, Medical Faculty and University Hospital Düsseldorf, Department of Neurology, D-40225 Düsseldorf, Germany
| | - Laura Reiche
- Heinrich-Heine-University Düsseldorf, Medical Faculty and University Hospital Düsseldorf, Department of Neurology, D-40225 Düsseldorf, Germany
| | - Luisa Werner
- Heinrich-Heine-University Düsseldorf, Medical Faculty and University Hospital Düsseldorf, Department of Neurology, D-40225 Düsseldorf, Germany
| | - Felisa Herrero
- Institute of Veterinary Pharmacology and Toxicology, University of Zürich, Vetsuisse, Zürich, Switzerland
| | - Jessica Schira-Heinen
- Heinrich-Heine-University Düsseldorf, Medical Faculty and University Hospital Düsseldorf, Department of Neurology, D-40225 Düsseldorf, Germany
| | - Urs Meyer
- Institute of Veterinary Pharmacology and Toxicology, University of Zürich, Vetsuisse, Zürich, Switzerland; Neuroscience Center Zürich, University of Zürich and ETH Zürich, Zürich, Switzerland
| | - Patrick Küry
- Heinrich-Heine-University Düsseldorf, Medical Faculty and University Hospital Düsseldorf, Department of Neurology, D-40225 Düsseldorf, Germany; Department of Neurology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland.
| |
Collapse
|
29
|
Giannessi F, Percario Z, Lombardi V, Sabatini A, Sacchi A, Lisi V, Battistini L, Borsellino G, Affabris E, Angelini DF. Macrophages treated with interferons induce different responses in lymphocytes via extracellular vesicles. iScience 2024; 27:109960. [PMID: 38832015 PMCID: PMC11144789 DOI: 10.1016/j.isci.2024.109960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/09/2024] [Accepted: 05/08/2024] [Indexed: 06/05/2024] Open
Abstract
Limited information exists regarding the impact of interferons (IFNs) on the information carried by extracellular vesicles (EVs). This study aimed at investigating whether IFN-α2b, IFN-β, IFN-γ, and IFN-λ1/2 modulate the content of EVs released by primary monocyte-derived macrophages (MDM). Small-EVs (sEVs) were purified by size exclusion chromatography from supernatants of MDM treated with IFNs. To characterize the concentration and dimensions of vesicles, nanoparticle tracking analysis was used. SEVs surface markers were examined by flow cytometry. IFN treatments induced a significant down-regulation of the exosomal markers CD9, CD63, and CD81 on sEVs, and a significant modulation of some adhesion molecules, major histocompatibility complexes and pro-coagulant proteins, suggesting IFNs influence biogenesis and shape the immunological asset of sEVs. SEVs released by IFN-stimulated MDM also impact lymphocyte function, showing significant modulation of lymphocyte activation and IL-17 release. Altogether, our results show that sEVs composition and activity are affected by IFN treatment of MDM.
Collapse
Affiliation(s)
- Flavia Giannessi
- Neuroimmunology Unit, IRCCS Santa Lucia Foundation, Via Ardeatina 306-354, 00179 Rome, Italy
- Laboratory of Molecular Virology and Antimicrobial Immunity, Department of Science, Roma Tre University, 00146 Rome, Italy
| | - Zulema Percario
- Laboratory of Molecular Virology and Antimicrobial Immunity, Department of Science, Roma Tre University, 00146 Rome, Italy
| | - Valentina Lombardi
- Laboratory of Molecular Virology and Antimicrobial Immunity, Department of Science, Roma Tre University, 00146 Rome, Italy
| | - Andrea Sabatini
- Laboratory of Molecular Virology and Antimicrobial Immunity, Department of Science, Roma Tre University, 00146 Rome, Italy
| | - Alessandra Sacchi
- Laboratory of Molecular Virology and Antimicrobial Immunity, Department of Science, Roma Tre University, 00146 Rome, Italy
| | - Veronica Lisi
- Laboratory of Molecular Virology and Antimicrobial Immunity, Department of Science, Roma Tre University, 00146 Rome, Italy
| | - Luca Battistini
- Neuroimmunology Unit, IRCCS Santa Lucia Foundation, Via Ardeatina 306-354, 00179 Rome, Italy
| | - Giovanna Borsellino
- Neuroimmunology Unit, IRCCS Santa Lucia Foundation, Via Ardeatina 306-354, 00179 Rome, Italy
| | - Elisabetta Affabris
- Laboratory of Molecular Virology and Antimicrobial Immunity, Department of Science, Roma Tre University, 00146 Rome, Italy
| | - Daniela F. Angelini
- Neuroimmunology Unit, IRCCS Santa Lucia Foundation, Via Ardeatina 306-354, 00179 Rome, Italy
| |
Collapse
|
30
|
Deligeorgakis D, Skouvaklidou E, Adamichou C. Interferon Inhibition in SLE: From Bench to Bedside. Mediterr J Rheumatol 2024; 35:354-364. [PMID: 39193183 PMCID: PMC11345605 DOI: 10.31138/mjr.010324.iis] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/15/2024] [Accepted: 05/15/2024] [Indexed: 08/29/2024] Open
Abstract
Despite advances in the management of systemic lupus erythematosus (SLE), it remains a chronic disease with frequent flares, requiring constant medical care, laboratory exams, hospitalisations, and the use of immunosuppressive drugs and corticosteroids, increasing the morbidity and mortality of these patients. The past decade of research has brought to light multiple observations on the role of interferons (IFNs) in the pathogenesis of SLE, which paved the way for the development of potential novel therapies targeting the interferon pathway. Following two phase III trials, anifrolumab, a monoclonal antibody which binds to the type I IFN receptor, blocking the activity of type I IFNs, was approved for active SLE. This review summarises the latest research on the role and mechanisms of type I IFNs in SLE and the development and advances on new therapeutic drugs based on IFN inhibition for SLE.
Collapse
Affiliation(s)
- Dimitrios Deligeorgakis
- Department of Rheumatology, 4th Department of Internal Medicine, Hippokration Hospital, Thessaloniki, Greece
| | - Elpida Skouvaklidou
- Department of Rheumatology, 4th Department of Internal Medicine, Hippokration Hospital, Thessaloniki, Greece
| | - Christina Adamichou
- Department of Rheumatology, 4th Department of Internal Medicine, Hippokration Hospital, Thessaloniki, Greece
| |
Collapse
|
31
|
Kundu A, Ghosh P, Bishayi B. Verapamil and tangeretin enhances the M1 macrophages to M2 type in lipopolysaccharide-treated mice and inhibits the P-glycoprotein expression by downregulating STAT1/STAT3 and upregulating SOCS3. Int Immunopharmacol 2024; 133:112153. [PMID: 38678669 DOI: 10.1016/j.intimp.2024.112153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
LPS induced sepsis is a complex process involving various immune cells and signaling molecules. Dysregulation of macrophage polarization and ROS production contributed to the pathogenesis of sepsis. PGP is a transmembrane transporter responsible for the efflux of a number of drugs and also expressed in murine macrophages. Natural products have been shown to decrease inflammation and expression of efflux transporters. However, no treatment is currently available to treat LPS induced sepsis. Verapamil and Tangeretin also reported to attenuate lipopolysaccharide-induced inflammation. However, the effects of verapamil or tangeretin on lipopolysaccharide (LPS)-induced sepsis and its detailed anti-inflammatory mechanism have not been reported. Here, we have determined that verapamil and tangeretin protects against LPS-induced sepsis by suppressing M1 macrophages populations and also through the inhibition of P-glycoprotein expression via downregulating STAT1/STAT3 and upregulating SOCS3 expression in macrophages. An hour before LPS (10 mg/kg) was administered; mice were given intraperitoneal injections of either verapamil (5 mg/kg) or tangeretin (5 mg/kg). The peritoneal macrophages from different experimental groups of mice were isolated. Hepatic, pulmonary and splenic morphometric analyses revealed that verapamil and tangeretin decreased the infiltration of neutrophils into the tissues. Verapamil and tangeritin also enhanced the activity of SOD, CAT, GRX and GSH level in all the tissues tested. verapamil or tangeretin pre-treated mice shifted M1 macrophages to M2 type possibly through the inhibition of P-glycoprotein expression via downregulating STAT1/STAT3 and upregulating SOCS3 expression. Hence, both these drugs have shown protective effects in sepsis via suppressing iNOS, COX-2, oxidative stress and NF-κB signaling in macrophages. Therefore, in our study we can summarize that mice were treated with either Vera or Tan before LPS administration cause an elevated IL-10 by the macrophages which enhances the SOCS3 expression, and thereby able to limits STAT1/STAT3 inter-conversion in the macrophages. As a result, NF-κB activity is also getting down regulated and ultimately mitigating the adverse effect of inflammation caused by LPS in resident macrophages. Whether verapamil or tangeretin offers such protection possibly through the inhibition of P-glycoprotein expression in macrophages needs clarification with the bio availability of these drugs under PGP inhibited conditions is a limitation of this study.
Collapse
Affiliation(s)
- Ayantika Kundu
- Department of Physiology, Immunology laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta 700009, West Bengal, INDIA
| | - Pratiti Ghosh
- Lab of Lifestyle and Stress Physiology, Head, Department of Physiology, West Bengal State University, North 24 Parganas, Malikapur, Berunanpukuria, Barasat, Kolkata, West Bengal 700126, INDIA.
| | - Biswadev Bishayi
- Professor, Department of Physiology, University of Calcutta. West Bengal, INDIA.
| |
Collapse
|
32
|
Sack KD, Eaton N, Tehrani MD, Flaumenhaft R. Interferons prime the endothelium for toll-like receptor-mediated thrombin generation. J Thromb Haemost 2024; 22:1215-1222. [PMID: 38159649 PMCID: PMC10960681 DOI: 10.1016/j.jtha.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Respiratory infection is associated with microvascular thrombus formation and marked elevation in cytokine levels. The role of cytokines elaborated by the pulmonary epithelium in thrombotic responses is poorly understood. OBJECTIVES Our goal was to identify cytokines of pulmonary epithelial cell origin that enhance thrombin generation in the endothelium at concentrations equal to or less than those found in the circulation during infection. METHODS We screened multiple cytokines produced by the pulmonary epithelium for the ability to enhance toll-like receptor (TLR)-mediated endothelial thrombin generation. Effects of cytokines on tissue factor and thrombomodulin expression, cytokine selectivity for different TLRs, and prothrombotic activity of endogenous cytokines in conditioned medium from pulmonary human epithelial cells were evaluated. RESULTS MIP-1β, MCP-1, IL-10, IL-6, IL-1β, TNFα, IFNα, IFNβ, and IFNγ were tested for their ability to enhance TLR3-mediated thrombin generation on endothelial cells. Only interferons (IFNs) and TNFα promoted TLR3-mediated thrombin generation at levels that circulate during infection. IFNs robustly enhanced tissue factor expression when used in conjunction with TLR agonists and reduced thrombomodulin expression in the endothelium independently of TLRs. IFNα, which is typically elevated with viral infection, only synergized with TLR3 agonists mimicking viral pathogen-associated molecular patterns. In contrast, IFNγ, which is typically observed in bacterial infection, synergized more effectively with TLR4 agonists released by bacteria. Conditioned media from inflamed pulmonary epithelial cells primed the endothelium for TLR-mediated thrombin generation. Anti-IFN type I antibodies blocked this effect, indicating that endogenous IFNs prime the endothelium for TLR-mediated thrombin generation. CONCLUSION IFNs elaborated by the pulmonary epithelium are necessary and sufficient to enhance TLR-mediated thrombin generation.
Collapse
Affiliation(s)
- Kelsey D Sack
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA. https://twitter.com/hemeThrombBIDMC
| | - Nathan Eaton
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Maneli Doroudian Tehrani
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
33
|
Gherlan GS, Lazar SD, Culinescu A, Smadu D, Vatafu AR, Popescu CP, Florescu SA, Ceausu E, Calistru PI. Results of Response-Guided Therapy with Pegylated Interferon Alpha 2a in Chronic Hepatitis B and D. Trop Med Infect Dis 2024; 9:73. [PMID: 38668534 PMCID: PMC11054492 DOI: 10.3390/tropicalmed9040073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/29/2024] Open
Abstract
Pegylated interferon alpha 2a continues to be used for the treatment of chronic hepatitis D. The reported on-treatment virologic response varies between 17 and 47%, with relapses in more than 50% of these patients. No stopping rules have been defined, and the duration of the treatment is not clearly established, but it should be between 48 and 96 weeks. In total, 76 patients with compensated liver disease treated with peg-interferon according to the Romanian National protocol for the treatment of hepatitis D were retrospectively included. The duration of treatment was up to 96 weeks, with the following stopping rules: less than a 2 log HDV RNA decrease by week 24 and less than a 1 log decrease every 6 months afterwards. Six months after stopping the treatment, it can be restarted for unlimited cycles. The inclusion criteria were aged above 18, HBs Ag-positive, HDV RNA detectable, ALT above ULN and/or liver fibrosis at least F1 at liver biopsy, or Fibrotest and/or Fibroscan higher than 7 KPa and/or inflammation at least A1 at liver biopsy or Fibrotest. We monitored our patients for a total period of 4 years (including those that repeated the cycle). After the first 6 months of treatment, 27 patients (35.5%) had a greater than 2 log HDV RNA decrease, 19 of them achieving undetectable HDV RNA. Seventeen patients (22.3%) had undetectable HDV RNA 24 weeks after stopping 96 weeks of treatment, and none relapsed in the following 2 years. Of these 17 patients, 6 were cirrhotic, and 4 had F3. Undetectable HDV RNA at 24 weeks was the only parameter that predicted a long-term suppression of HDV RNA. In 49 patients, the treatment was stopped after 6 months according to protocol, but it was restarted 6 months later. Five of these patients finished a 48-week course of treatment; none achieved undetectable HDV RNA. During the first course of therapy, 45 patients had at least one moderate adverse reaction to treatment. In one patient, the treatment was stopped due to a serious adverse event (osteomyelitis). Treatment doses had to be reduced in 29 patients. The virologic response at week 24 can select the patients who will benefit from continuing the treatment from those who should be changed to another type of medication when available.
Collapse
Affiliation(s)
- George S. Gherlan
- Infectious Diseases Department, Universitatea de Medicina si Farmacie ”Carol Davila”, 050474 Bucuresti, Romania (P.I.C.)
- Infectious Diseases Department, Spitalul Clinic de Boli Infectioase si Tropicale ”Dr. Victor Babes”, 030303 Bucuresti, Romania
| | - Stefan D. Lazar
- Infectious Diseases Department, Universitatea de Medicina si Farmacie ”Carol Davila”, 050474 Bucuresti, Romania (P.I.C.)
- Infectious Diseases Department, Spitalul Clinic de Boli Infectioase si Tropicale ”Dr. Victor Babes”, 030303 Bucuresti, Romania
| | - Augustina Culinescu
- Infectious Diseases Department, Spitalul Clinic de Boli Infectioase si Tropicale ”Dr. Victor Babes”, 030303 Bucuresti, Romania
| | - Dana Smadu
- Infectious Diseases Department, Spitalul Clinic de Boli Infectioase si Tropicale ”Dr. Victor Babes”, 030303 Bucuresti, Romania
| | - Andreea R. Vatafu
- Infectious Diseases Department, Universitatea de Medicina si Farmacie ”Carol Davila”, 050474 Bucuresti, Romania (P.I.C.)
- Infectious Diseases Department, Spitalul Clinic de Boli Infectioase si Tropicale ”Dr. Victor Babes”, 030303 Bucuresti, Romania
| | - Corneliu P. Popescu
- Infectious Diseases Department, Universitatea de Medicina si Farmacie ”Carol Davila”, 050474 Bucuresti, Romania (P.I.C.)
- Infectious Diseases Department, Spitalul Clinic de Boli Infectioase si Tropicale ”Dr. Victor Babes”, 030303 Bucuresti, Romania
| | - Simin A. Florescu
- Infectious Diseases Department, Universitatea de Medicina si Farmacie ”Carol Davila”, 050474 Bucuresti, Romania (P.I.C.)
- Infectious Diseases Department, Spitalul Clinic de Boli Infectioase si Tropicale ”Dr. Victor Babes”, 030303 Bucuresti, Romania
| | - Emanoil Ceausu
- Infectious Diseases Department, Universitatea de Medicina si Farmacie ”Carol Davila”, 050474 Bucuresti, Romania (P.I.C.)
- Infectious Diseases Department, Spitalul Clinic de Boli Infectioase si Tropicale ”Dr. Victor Babes”, 030303 Bucuresti, Romania
| | - Petre I. Calistru
- Infectious Diseases Department, Universitatea de Medicina si Farmacie ”Carol Davila”, 050474 Bucuresti, Romania (P.I.C.)
- Infectious Diseases Department, Spitalul Clinic de Boli Infectioase si Tropicale ”Dr. Victor Babes”, 030303 Bucuresti, Romania
| |
Collapse
|
34
|
Misiak B, Pawlak E, Rembacz K, Kotas M, Żebrowska-Różańska P, Kujawa D, Łaczmański Ł, Piotrowski P, Bielawski T, Samochowiec J, Samochowiec A, Karpiński P. Associations of gut microbiota alterations with clinical, metabolic, and immune-inflammatory characteristics of chronic schizophrenia. J Psychiatr Res 2024; 171:152-160. [PMID: 38281465 DOI: 10.1016/j.jpsychires.2024.01.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/31/2023] [Accepted: 01/22/2024] [Indexed: 01/30/2024]
Abstract
The present study had the following aims: 1) to compare gut microbiota composition in patients with schizophrenia and controls and 2) to investigate the association of differentially abundant bacterial taxa with markers of inflammation, intestinal permeability, lipid metabolism, and glucose homeostasis as well as clinical manifestation. A total of 115 patients with schizophrenia during remission of positive and disorganization symptoms, and 119 controls were enrolled. Altogether, 32 peripheral blood markers were assessed. A higher abundance of Eisenbergiella, Family XIII AD3011 group, Eggerthella, Hungatella, Lactobacillus, Olsenella, Coprobacillus, Methanobrevibacter, Ligilactobacillus, Eubacterium fissicatena group, and Clostridium innocuum group in patients with schizophrenia was found. The abundance of Paraprevotella and Bacteroides was decreased in patients with schizophrenia. Differentially abundant genera were associated with altered levels of immune-inflammatory markers, zonulin, lipid profile components, and insulin resistance. Moreover, several correlations of differentially abundant genera with cognitive impairment, higher severity of negative symptoms, and worse social functioning were observed. The association of Methanobrevibacter abundance with the level of negative symptoms, cognition, and social functioning appeared to be mediated by the levels of interleukin-6 and RANTES. In turn, the association of Hungatella with the performance of attention was mediated by the levels of zonulin. The findings indicate that compositional alterations of gut microbiota observed in patients with schizophrenia correspond with clinical manifestation, intestinal permeability, subclinical inflammation, lipid profile alterations, and impaired glucose homeostasis. Subclinical inflammation and impaired gut permeability might mediate the association of gut microbiota alterations with psychopathological symptoms and cognitive impairment.
Collapse
Affiliation(s)
- Błażej Misiak
- Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland.
| | - Edyta Pawlak
- Laboratory of Immunopathology, Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Krzysztof Rembacz
- Laboratory of Immunopathology, Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Marek Kotas
- Laboratory of Immunopathology, Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Paulina Żebrowska-Różańska
- Laboratory of Genomics & Bioinformatics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Dorota Kujawa
- Laboratory of Genomics & Bioinformatics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Łukasz Łaczmański
- Laboratory of Genomics & Bioinformatics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Patryk Piotrowski
- Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland
| | - Tomasz Bielawski
- Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University, Szczecin, Poland
| | - Agnieszka Samochowiec
- Department of Clinical Psychology, Institute of Psychology, University of Szczecin, Poland
| | - Paweł Karpiński
- Laboratory of Genomics & Bioinformatics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland; Department of Genetics, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
35
|
Mihaescu G, Chifiriuc MC, Filip R, Bleotu C, Ditu LM, Constantin M, Cristian RE, Grigore R, Bertesteanu SV, Bertesteanu G, Vrancianu CO. Role of interferons in the antiviral battle: from virus-host crosstalk to prophylactic and therapeutic potential in SARS-CoV-2 infection. Front Immunol 2024; 14:1273604. [PMID: 38288121 PMCID: PMC10822962 DOI: 10.3389/fimmu.2023.1273604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 12/29/2023] [Indexed: 01/31/2024] Open
Abstract
Mammalians sense antigenic messages from infectious agents that penetrate the respiratory and digestive epithelium, as well as signals from damaged host cells through membrane and cytosolic receptors. The transduction of these signals triggers a personalized response, depending on the nature of the stimulus and the host's genetics, physiological condition, and comorbidities. Interferons (IFNs) are the primary effectors of the innate immune response, and their synthesis is activated in most cells within a few hours after pathogen invasion. IFNs are primarily synthesized in infected cells, but their anti-infective effect is extended to the neighboring cells by autocrine and paracrine action. The emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic in 2019 was a stark reminder of the potential threat posed by newly emerging viruses. This pandemic has also triggered an overwhelming influx of research studies aiming to unveil the mechanisms of protective versus pathogenic host immune responses induced by SARS-CoV-2. The purpose of this review is to describe the role of IFNs as vital players in the battle against SARS-CoV-2 infection. We will briefly characterize and classify IFNs, present the inductors of IFN synthesis, their sensors, and signaling pathways, and then discuss the role of IFNs in controlling the evolution of SARS-CoV-2 infection and its clinical outcome. Finally, we will present the perspectives and controversies regarding the prophylactic and therapeutic potential of IFNs in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Grigore Mihaescu
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
- Department of Life, Medical and Agricultural Sciences, Biological Sciences Section, Academy of Romanian Scientists, Bucharest, Romania
| | - Roxana Filip
- Faculty of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, Suceava, Romania
- Microbiology Department, Suceava Emergency County Hospital, Suceava, Romania
| | - Coralia Bleotu
- The Research Institute of the University of Bucharest, Bucharest, Romania
- Cellular and Molecular Pathology Department, Stefan S. Nicolau Institute of Virology, Bucharest, Romania
| | - Lia Mara Ditu
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Marian Constantin
- The Research Institute of the University of Bucharest, Bucharest, Romania
- Institute of Biology of Romanian Academy, Bucharest, Romania
| | - Roxana-Elena Cristian
- The Research Institute of the University of Bucharest, Bucharest, Romania
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Raluca Grigore
- ENT Department, University of Medicine and Pharmacy Carol Davila and Coltea Clinical Hospital, Bucharest, Romania
| | - Serban Vifor Bertesteanu
- ENT Department, University of Medicine and Pharmacy Carol Davila and Coltea Clinical Hospital, Bucharest, Romania
| | - Gloria Bertesteanu
- ENT Department, University of Medicine and Pharmacy Carol Davila and Coltea Clinical Hospital, Bucharest, Romania
| | - Corneliu Ovidiu Vrancianu
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
- DANUBIUS Department, National Institute of Research and Development for Biological Sciences, Bucharest, Romania
| |
Collapse
|
36
|
James EA, Joglekar AV, Linnemann AK, Russ HA, Kent SC. The beta cell-immune cell interface in type 1 diabetes (T1D). Mol Metab 2023; 78:101809. [PMID: 37734713 PMCID: PMC10622886 DOI: 10.1016/j.molmet.2023.101809] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/01/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND T1D is an autoimmune disease in which pancreatic islets of Langerhans are infiltrated by immune cells resulting in the specific destruction of insulin-producing islet beta cells. Our understanding of the factors leading to islet infiltration and the interplay of the immune cells with target beta cells is incomplete, especially in human disease. While murine models of T1D have provided crucial information for both beta cell and autoimmune cell function, the translation of successful therapies in the murine model to human disease has been a challenge. SCOPE OF REVIEW Here, we discuss current state of the art and consider knowledge gaps concerning the interface of the islet beta cell with immune infiltrates, with a focus on T cells. We discuss pancreatic and immune cell phenotypes and their impact on cell function in health and disease, which we deem important to investigate further to attain a more comprehensive understanding of human T1D disease etiology. MAJOR CONCLUSIONS The last years have seen accelerated development of approaches that allow comprehensive study of human T1D. Critically, recent studies have contributed to our revised understanding that the pancreatic beta cell assumes an active role, rather than a passive position, during autoimmune disease progression. The T cell-beta cell interface is a critical axis that dictates beta cell fate and shapes autoimmune responses. This includes the state of the beta cell after processing internal and external cues (e.g., stress, inflammation, genetic risk) that that contributes to the breaking of tolerance by hyperexpression of human leukocyte antigen (HLA) class I with presentation of native and neoepitopes and secretion of chemotactic factors to attract immune cells. We anticipate that emerging insights about the molecular and cellular aspects of disease initiation and progression processes will catalyze the development of novel and innovative intervention points to provide additional therapies to individuals affected by T1D.
Collapse
Affiliation(s)
- Eddie A James
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Alok V Joglekar
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amelia K Linnemann
- Center for Diabetes and Metabolic Diseases, and Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Holger A Russ
- Diabetes Institute, University of Florida, Gainesville, FL, USA; Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Sally C Kent
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
37
|
Cavalcante-Silva LHA, Leite EG, Almeida FS, de Andrade AG, Comberlang FC, Lucena CKR, Pachá ASC, Csordas BG, Keesen TSL. T Cell Response in Tuberculosis-Infected Patients Vaccinated against COVID-19. Microorganisms 2023; 11:2810. [PMID: 38004820 PMCID: PMC10673403 DOI: 10.3390/microorganisms11112810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/01/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Many studies have focused on SARS-CoV-2 and Mycobacterium tuberculosis (Mtb) co-infection consequences. However, after a vaccination plan against COVID-19, the cases of severe disease and death are consistently controlled, although cases of asymptomatic and mild COVID-19 still happen together with tuberculosis (TB) cases. Thus, in this context, we sought to compare the T cell response of COVID-19-non-vaccinated and -vaccinated patients with active tuberculosis exposed to SARS-CoV-2 antigens. Flow cytometry was used to analyze activation markers (i.e., CD69 and CD137) and cytokines (IFN-γ, TNFα, IL-17, and IL-10) levels in CD4+ and CD8+ T cells upon exposure to SARS-CoV-2 peptides. The data obtained showed that CD8+ T cells from non-vaccinated TB patients present a high frequency of CD69 and TNF-α after viral challenge compared to vaccinated TB donors. Conversely, CD4+ T cells from vaccinated TB patients show a high frequency of IL-10 after spike peptide stimulus compared to non-vaccinated patients. No differences were observed in the other parameters analyzed. The results suggest that this reduced immune balance in coinfected individuals may have consequences for pathogen control, necessitating further research to understand its impact on clinical outcomes after COVID-19 vaccination in those with concurrent SARS-CoV-2 and Mtb infections.
Collapse
Affiliation(s)
- Luiz Henrique Agra Cavalcante-Silva
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil; (L.H.A.C.-S.); (E.G.L.); (F.S.A.); (A.G.d.A.); (F.C.C.); (B.G.C.)
| | - Ericka Garcia Leite
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil; (L.H.A.C.-S.); (E.G.L.); (F.S.A.); (A.G.d.A.); (F.C.C.); (B.G.C.)
| | - Fernanda Silva Almeida
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil; (L.H.A.C.-S.); (E.G.L.); (F.S.A.); (A.G.d.A.); (F.C.C.); (B.G.C.)
| | - Arthur Gomes de Andrade
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil; (L.H.A.C.-S.); (E.G.L.); (F.S.A.); (A.G.d.A.); (F.C.C.); (B.G.C.)
| | - Fernando Cézar Comberlang
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil; (L.H.A.C.-S.); (E.G.L.); (F.S.A.); (A.G.d.A.); (F.C.C.); (B.G.C.)
| | | | | | - Bárbara Guimarães Csordas
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil; (L.H.A.C.-S.); (E.G.L.); (F.S.A.); (A.G.d.A.); (F.C.C.); (B.G.C.)
| | - Tatjana S. L. Keesen
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil; (L.H.A.C.-S.); (E.G.L.); (F.S.A.); (A.G.d.A.); (F.C.C.); (B.G.C.)
| |
Collapse
|
38
|
Huldani H, Abdul-Jabbar Ali S, Al-Dolaimy F, Hjazi A, Denis Andreevich N, Oudaha KH, Almulla AF, Alsaalamy A, Kareem Oudah S, Mustafa YF. The potential role of interleukins and interferons in ovarian cancer. Cytokine 2023; 171:156379. [PMID: 37757536 DOI: 10.1016/j.cyto.2023.156379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023]
Abstract
Ovarian cancer poses significant challenges and remains a highly lethal disease with limited treatment options. In the context of ovarian cancer, interleukins (ILs) and interferons (IFNs), important cytokines that play crucial roles in regulating the immune system, have emerged as significant factors influencing its development. This article provides a comprehensive review of the involvement of various ILs, including those from the IL-1 family, IL-2 family, IL-6 family, IL-8 family, IL-10 family, and IL-17 family, in ovarian cancer. The focus is on their impact on tumor growth, metastasis, and their role in evading immune responses within the tumor microenvironment. Additionally, the article conducts an in-depth examination of the oncogenic or antitumor roles of each IL in the context of ovarian cancer pathogenesis and progression. Besides, we elucidated the enhancements in the treatment of ovarian cancer through the utilization of type-I IFN and type-II IFN. Recent research has shed light on the intricate mechanisms through which specific ILs and IFNs contribute to the advancement of the disease. By incorporating recent findings, this review also seeks to inspire further investigations into unexplored mechanisms, fostering ongoing research to develop more effective therapeutic strategies for ovarian cancer. Moreover, through an in-depth analysis of IL- and IFN-associated clinical trials, we have highlighted their promising potential of in the treatment of ovarian cancer. These clinical trials serve to reinforce the significant outlook for utilizing ILs and IFNs as therapeutic agents in combating this disease.
Collapse
Affiliation(s)
- Huldani Huldani
- Department of Physiology, Faculty of Medicine, Lambung Mangkurat University, Banjarmasin, South Kalimantan, Indonesia
| | | | | | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | | - Khulood H Oudaha
- Pharmaceutical Chemistry Department, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | - Abbas F Almulla
- College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Iraq; College of Technical Engineering, the Islamic University of Babylon, Iraq
| | - Ali Alsaalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| | - Shamam Kareem Oudah
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| |
Collapse
|
39
|
Pandey R, Bakay M, Hakonarson H. SOCS-JAK-STAT inhibitors and SOCS mimetics as treatment options for autoimmune uveitis, psoriasis, lupus, and autoimmune encephalitis. Front Immunol 2023; 14:1271102. [PMID: 38022642 PMCID: PMC10643230 DOI: 10.3389/fimmu.2023.1271102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023] Open
Abstract
Autoimmune diseases arise from atypical immune responses that attack self-tissue epitopes, and their development is intricately connected to the disruption of the JAK-STAT signaling pathway, where SOCS proteins play crucial roles. Conditions such as autoimmune uveitis, psoriasis, lupus, and autoimmune encephalitis exhibit immune system dysfunctions associated with JAK-STAT signaling dysregulation. Emerging therapeutic strategies utilize JAK-STAT inhibitors and SOCS mimetics to modulate immune responses and alleviate autoimmune manifestations. Although more research and clinical studies are required to assess their effectiveness, safety profiles, and potential for personalized therapeutic approaches in autoimmune conditions, JAK-STAT inhibitors and SOCS mimetics show promise as potential treatment options. This review explores the action, effectiveness, safety profiles, and future prospects of JAK inhibitors and SOCS mimetics as therapeutic agents for psoriasis, autoimmune uveitis, systemic lupus erythematosus, and autoimmune encephalitis. The findings underscore the importance of investigating these targeted therapies to advance treatment options for individuals suffering from autoimmune diseases.
Collapse
Affiliation(s)
- Rahul Pandey
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Marina Bakay
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, The University of Pennsylvania School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
40
|
Medina C, García AH, Crespo FI, Toro FI, Mayora SJ, De Sanctis JB. A Synopsis of Hepatitis C Virus Treatments and Future Perspectives. Curr Issues Mol Biol 2023; 45:8255-8276. [PMID: 37886964 PMCID: PMC10605161 DOI: 10.3390/cimb45100521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
Hepatitis C virus (HCV) infection is a worldwide public health problem. Chronic infection with HCV can lead to liver cirrhosis or cancer. Although some immune-competent individuals can clear the virus, others develop chronic HCV disease due to viral mutations or an impaired immune response. IFNs type I and III and the signal transduction induced by them are essential for a proper antiviral effect. Research on the viral cycle and immune escape mechanisms has formed the basis of therapeutic strategies to achieve a sustained virological response (SVR). The first therapies were based on IFNα; then, IFNα plus ribavirin (IFN-RBV); and then, pegylated-IFNα-RBV (PEGIFNα-RIV) to improve cytokine pharmacokinetics. However, the maximum SVR was 60%, and several significant side effects were observed, decreasing patients' treatment adherence. The development of direct-acting antivirals (DAAs) significantly enhanced the SVR (>90%), and the compounds were able to inhibit HCV replication without significant side effects, even in paediatric populations. The management of coinfected HBV-HCV and HCV-HIV patients has also improved based on DAA and PEG-IFNα-RBV (HBV-HCV). CD4 cells are crucial for an effective antiviral response. The IFNλ3, IL28B, TNF-α, IL-10, TLR-3, and TLR-9 gene polymorphisms are involved in viral clearance, therapeutic responses, and hepatic pathologies. Future research should focus on searching for strategies to circumvent resistance-associated substitution (RAS) to DAAs, develop new therapeutic schemes for different medical conditions, including organ transplant, and develop vaccines for long-lasting cellular and humoral responses with cross-protection against different HCV genotypes. The goal is to minimise the probability of HCV infection, HCV chronicity and hepatic carcinoma.
Collapse
Affiliation(s)
- Christian Medina
- Institute of Immunology Dr. Nicolás E. Bianco C., Faculty of Medicine, Universidad Central de Venezuela, Caracas 1040, Venezuela; (C.M.); (F.I.C.); (F.I.T.); (S.J.M.)
| | - Alexis Hipólito García
- Institute of Immunology Dr. Nicolás E. Bianco C., Faculty of Medicine, Universidad Central de Venezuela, Caracas 1040, Venezuela; (C.M.); (F.I.C.); (F.I.T.); (S.J.M.)
| | - Francis Isamarg Crespo
- Institute of Immunology Dr. Nicolás E. Bianco C., Faculty of Medicine, Universidad Central de Venezuela, Caracas 1040, Venezuela; (C.M.); (F.I.C.); (F.I.T.); (S.J.M.)
| | - Félix Isidro Toro
- Institute of Immunology Dr. Nicolás E. Bianco C., Faculty of Medicine, Universidad Central de Venezuela, Caracas 1040, Venezuela; (C.M.); (F.I.C.); (F.I.T.); (S.J.M.)
| | - Soriuska José Mayora
- Institute of Immunology Dr. Nicolás E. Bianco C., Faculty of Medicine, Universidad Central de Venezuela, Caracas 1040, Venezuela; (C.M.); (F.I.C.); (F.I.T.); (S.J.M.)
| | - Juan Bautista De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, 779 00 Olomouc, Czech Republic
- The Czech Advanced Technology and Research Institute (Catrin), Palacky University, 779 00 Olomouc, Czech Republic
| |
Collapse
|