1
|
Safaei S, Derakhshan-sefidi M, Karimi A. Wolbachia: A bacterial weapon against dengue fever- a narrative review of risk factors for dengue fever outbreaks. New Microbes New Infect 2025; 65:101578. [PMID: 40176883 PMCID: PMC11964561 DOI: 10.1016/j.nmni.2025.101578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/10/2025] [Accepted: 03/06/2025] [Indexed: 04/05/2025] Open
Abstract
Arboviruses constitute the largest known group of viruses and are responsible for various infections that impose significant socioeconomic burdens worldwide, particularly due to their link with insect-borne diseases. The increasing incidence of dengue fever in non-endemic regions underscores the urgent need for innovative strategies to combat this public health threat. Wolbachia, a bacterium, presents a promising biological control method against mosquito vectors, offering a novel approach to managing dengue fever. We systematically investigated biomedical databases (PubMed, Web of Science, Google Scholar, Science Direct, and Embase) using "AND" as a Boolean operator with keywords such as "dengue fever," "dengue virus," "risk factors," "Wolbachia," and "outbreak." We prioritized articles that offered significant insights into the risk factors contributing to the outbreak of dengue fever and provided an overview of Wolbachia's characteristics and functions in disease management, considering studies published until December 25, 2024. Field experiments have shown that introducing Wolbachia-infected mosquitoes can effectively reduce mosquito populations and lower dengue transmission rates, signifying its potential as a practical approach for controlling this disease.
Collapse
Affiliation(s)
- Sahel Safaei
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | |
Collapse
|
2
|
Thiono DJ, Samaras D, Phan TTN, Zhu DR, Shah RP, Castillo I, Forsberg LJ, Premkumar L, Baric RS, Tian S, Kuhlman B, de Silva AM. Stabilized dengue virus 2 envelope subunit vaccine redirects the neutralizing antibody response to all E-domains. J Virol 2025:e0022925. [PMID: 40237498 DOI: 10.1128/jvi.00229-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
The four dengue virus (DENV) serotypes cause several hundred million infections annually. Several live-attenuated tetravalent dengue vaccines (LAVs) are at different stages of clinical testing and regulatory approval. A major hurdle faced by the two leading LAVs is uneven replication of vaccine serotypes stimulating a dominant response to one serotype at the expense of the other three, leading to the potential for vaccine antibody (Ab)-enhanced, more severe infections by wild-type (WT) DENV serotypes that fail to replicate in the vaccine. Protein subunit vaccines are a promising alternative since antigen dosing can be precisely controlled. However, DENV envelope (E) protein subunit vaccines have not performed well to date, possibly due to differences between the monomeric structure of soluble E and the E homodimer of the viral surface. Previously, we have combined structure-guided computational and experimental approaches to design and produce DENV2 E antigens that are stable homodimers at 37℃ and stimulate higher levels of neutralizing Abs (NAbs) than the WT E antigen in mice. The goal of this study was to evaluate if DENV2 E homodimers stimulate NAbs that target different epitopes on E protein compared to the WT E monomer. Using DENV4/2 chimeric viruses and Ab depletion methods, we mapped the WT E-elicited NAbs to simple epitopes on domain III of E. In contrast, the stable E homodimer stimulated a more complex response toward all three surface-exposed domains of the E protein. Our findings highlight the impact of DENV2 E oligomeric state on the quality and specificity of DENV NAbs and the promise of DENV E homodimers as subunit vaccines.IMPORTANCEThe ideal dengue virus (DENV) vaccine should elicit a balanced and highly protective immune response against all four DENV serotypes. Current tetravalent live-attenuated DENV vaccines have faced challenges due to uneven replication of vaccine virus strains stimulating a strong immune response to one serotype and weak responses to the other three. Protein subunit vaccines provide novel opportunities to stimulate a balanced response because dosing can be precisely controlled and independent of vaccine virus replication. Here, we compare immune responses elicited by a new DENV serotype 2 protein vaccine designed to match the structure of proteins on the viral surface. We find that proteins designed to match the viral surface stimulate better immune responses targeting multiple sites on the viral surface compared to previous protein vaccines. Our results justify further testing and development of these second-generation DENV protein subunit vaccines.
Collapse
Affiliation(s)
- Devina J Thiono
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Demetrios Samaras
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Thanh T N Phan
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Deanna R Zhu
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Ruby P Shah
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Izabella Castillo
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Lawrence J Forsberg
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Lakshmanane Premkumar
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Ralph S Baric
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Shaomin Tian
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Brian Kuhlman
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Aravinda M de Silva
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
3
|
Lin MH, Maniam P, Li D, Tang B, Bishop CR, Suhrbier A, Earl LW, Tayyar Y, McMillan NA, Li L, Harrich D. Harnessing defective interfering particles and lipid nanoparticles for effective delivery of an anti-dengue virus RNA therapy. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102424. [PMID: 39817192 PMCID: PMC11733052 DOI: 10.1016/j.omtn.2024.102424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 12/10/2024] [Indexed: 01/18/2025]
Abstract
Currently, no approved antiviral drugs target dengue virus (DENV) infection, leaving treatment reliant on supportive care. DENV vaccine efficacy varies depending on the vaccine type, the circulating serotype, and vaccine coverage. We investigated defective interfering particles (DIPs) and lipid nanoparticles (LNPs) to deliver DI290, an anti-DENV DI RNA. Both DIPs and DI290-loaded LNPs (LNP-290) effectively suppressed DENV infection in human primary monocyte-derived macrophages (MDMs), THP-1 macrophages, and fibroblasts-natural DENV targets. Inhibiting interferon (IFN) signaling with a Janus kinase 1/2 inhibitor or an IFN-α/β receptor 1 (IFNAR1)-binding antibody blocked DIP and LNP-290 antiviral activity. LNP-290 demonstrated a greater than log10 inhibition of DENV viral loads in IFNAR-deficient (Ifnar -/- ) and IFN regulatory factor (IRF) 3 and 7 double knockout (Irf3/7 -/- ) mice. Pathway analysis of RNA sequencing data from LNP-treated C57BL/6J mice, Ifnar -/- mice, and human MDMs treated with LNPs or DENV DIPs indicated DI290 treatment enhanced IFN responses, suggesting IFN-λ and IFN-γ provided antiviral activity when IFN-α/β responses were diminished. While viral interference by DI290 is possible, results did not support RNA replication competition as an inhibition mechanism. These findings suggest that DI290 may be a promising DENV therapeutic by activating the innate immune system.
Collapse
Affiliation(s)
- Min-Hsuan Lin
- Program of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Pramila Maniam
- Program of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Dongsheng Li
- Program of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Bing Tang
- Program of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Cameron R. Bishop
- Program of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Andreas Suhrbier
- Program of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
- Global Virus Network (GVN) Center of Excellence, Australian Infectious Disease Research Centre, Brisbane, QLD 4072, Australia
| | - Lucy Wales- Earl
- Menzies Health Institute Queensland and School of Pharmacy and Medical Science, Griffith University, Gold Coast, QLD 4222, Australia
| | - Yaman Tayyar
- Menzies Health Institute Queensland and School of Pharmacy and Medical Science, Griffith University, Gold Coast, QLD 4222, Australia
- Prorenata Biotech, Molendinar, QLD 4214, Australia
| | - Nigel A.J. McMillan
- Menzies Health Institute Queensland and School of Pharmacy and Medical Science, Griffith University, Gold Coast, QLD 4222, Australia
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, St Lucia, QLD 4072, Australia
| | - David Harrich
- Program of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
- Global Virus Network (GVN) Center of Excellence, Australian Infectious Disease Research Centre, Brisbane, QLD 4072, Australia
| |
Collapse
|
4
|
Dong B, Feng S, Feng X. Advances in the Epidemiology, Pathogenesis, Diagnostic Methods, and Vaccine Development of Dengue Fever: A Comprehensive Review. Viral Immunol 2025; 38:53-60. [PMID: 39995247 DOI: 10.1089/vim.2024.0087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025] Open
Abstract
Dengue fever (DF) is a common mosquito-borne viral infection caused by any of the four dengue virus (DENV) serotypes. In recent years, the global incidence of DF has risen rapidly, which has widely threatened the health of millions of people in the United States, Southeast Asia, and the Western Pacific. The challenges for the prevention and control of DENV infection have become increasingly severe. Over the years, advances in the area of DF research have been continuously updating. In this review, we provide an updated and more in-depth overview of dengue epidemiology and pathogenesis, along with recent progress in diagnostic approaches (including methods to address cross-reactivity with other flaviviruses) and an expanded discussion of current dengue vaccine development, such as CYD-TDV (Dengvaxia), TV003/TV005, and the new TAK-003. This comprehensive perspective aims to offer references for the prevention, clinical diagnosis, and control of the disease.
Collapse
Affiliation(s)
- Boqi Dong
- Department of Pathogen Biology, School of Basic Medicine, Jilin Medical University, Jilin, China
| | - Sisi Feng
- Jilin Medical University, Jilin, China
| | | |
Collapse
|
5
|
Alfaro-García JP, Orozco-Castaño CA, Sánchez-Rendón JA, Casanova-Yépes HF, Vicente-Manzanares M, Gallego-Gómez JC. Characterization of the Temporal Dynamics of the Endothelial-Mesenchymal-like Transition Induced by Soluble Factors from Dengue Virus Infection in Microvascular Endothelial Cells. Int J Mol Sci 2025; 26:2139. [PMID: 40076764 PMCID: PMC11900998 DOI: 10.3390/ijms26052139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Dengue virus (DV) infection poses a severe life-threatening risk in certain cases. This is mainly due to endothelial dysregulation, which causes plasma leakage and hemorrhage. However, the etiology of DV-induced endothelial dysregulation remains incompletely understood. To identify the potential mechanisms of endothelial dysregulation caused by DV, the effects of conditioned media from Dengue virus (CMDV) on the mechanics and transcriptional profile of the endothelial cells were examined using permeability assays, atomic force microscopy, In-Cell Western blot and in silico transcriptomics. Exposure of HMEC-1 cells to the CMDV increased endothelial permeability and cellular stiffness. It also induced the expression of the key proteins associated with endothelial-to-mesenchymal transition (EndMT). These data support the notion that the DV promotes endothelial dysfunction by triggering transcriptional programs that compromise the endothelial barrier function. Understanding the molecular mechanisms underlying DV-induced endothelial dysregulation is crucial for developing targeted therapeutic strategies to mitigate the severe outcomes associated with dengue infection.
Collapse
Affiliation(s)
- Jenny Paola Alfaro-García
- Grupo Medicina de Translación—Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia;
| | | | - Julián Andrés Sánchez-Rendón
- Grupo de Coloides—Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellín 050010, Colombia; (J.A.S.-R.); (H.F.C.-Y.)
| | - Herley Fernando Casanova-Yépes
- Grupo de Coloides—Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellín 050010, Colombia; (J.A.S.-R.); (H.F.C.-Y.)
| | - Miguel Vicente-Manzanares
- Molecular Mechanisms Program, Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)—University of Salamanca, 37007 Salamanca, Spain
| | - Juan Carlos Gallego-Gómez
- Grupo Medicina de Translación—Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia;
| |
Collapse
|
6
|
Mandal S, Chanu WP, Natarajaseenivasan K. Development of a multi-epitope vaccine candidate to combat SARS-CoV-2 and dengue virus co-infection through an immunoinformatic approach. Front Immunol 2025; 16:1442101. [PMID: 40079004 PMCID: PMC11897530 DOI: 10.3389/fimmu.2025.1442101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 02/05/2025] [Indexed: 03/14/2025] Open
Abstract
Background Although the SARS-CoV-2 and dengue viruses seriously endanger human health, there is presently no vaccine that can stop a person from contracting both viruses at the same time. In this study, four antigens from SARS-CoV-2 and dengue virus were tested for immunogenicity, antigenicity, allergenicity, and toxicity and chosen to predict dominant T- and B-cell epitopes. Methods For designing a multi-epitope vaccine, the sequences were retrieved, and using bioinformatics and immunoinformatics, the physicochemical and immunological properties, as well as secondary structures, of the vaccine were predicted and studied. Additionally, the three-dimensional structure was estimated, improved upon, and confirmed using bioinformatics methods before being docked with TLR-2 and TLR-4. Eight helper T-cell lymphocyte (HTL) epitopes, ten cytotoxic T-cell lymphocyte (CTL) epitopes, nine B-cell epitopes, and TLR agonists were used to create a new multi-epitope vaccine. Furthermore, according to the immunological stimulation hypothesis, the vaccine could stimulate T and B cells to create large quantities of Th1 cytokines and antibodies. Results The study indicates that the developed vaccine is a favorable vaccine candidate with antigenicity, immunogenicity, non-toxicity, and non-allergenicity properties. The vaccine construct was made up of 460 amino acids, had an MW of 49391.51 Da, a theoretical pI of 9.86, and the formula C2203H3433N643O618S18, a lipid index of 39.84, a GRAVY of -0.473, an aliphatic index of 63.80, and an instability index of 39.84, which classifies the protein to be stable. Conclusion The acquired data showed that both vaccine designs had a considerable chance of preventing the co-infection of SARS-CoV-2 and dengue virus and that they demonstrate good results following in-silico testing. Furthermore, the vaccine may be an effective strategy in preventing SARS-CoV-2 and dengue since it can cause noticeably high levels of Th1 cytokines and antibodies.
Collapse
Affiliation(s)
- Saurav Mandal
- Division of Metabolomics, Proteomics & Imaging facility, Regional Medical Research Centre, Indian Council of Medical Research (ICMR), Dibrugarh, Assam, India
| | - Waribam Pratibha Chanu
- Department of Applied Physics, School of Vocational Studies and Applied Sciences (SoVSAS), Gautam Buddha University, Greater Noida, Uttar Pradesh, India
| | - Kalimuthusamy Natarajaseenivasan
- Division of Metabolomics, Proteomics & Imaging facility, Regional Medical Research Centre, Indian Council of Medical Research (ICMR), Dibrugarh, Assam, India
| |
Collapse
|
7
|
Thiono DJ, Samaras D, Phan TT, Zhu DR, Shah RP, Castillo I, Forsberg LJ, Premkumar L, Baric RS, Tian S, Kuhlman B, de Silva AM. Stabilized dengue virus 2 envelope subunit vaccine redirects the neutralizing antibody response to all E-domains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.18.604114. [PMID: 39990303 PMCID: PMC11844416 DOI: 10.1101/2024.07.18.604114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The four-dengue virus (DENV) serotypes cause several hundred million infections annually. Several live-attenuated tetravalent dengue vaccines (LAVs) are at different stages of clinical testing and regulatory approval. A major hurdle faced by the two leading LAVs is uneven replication of vaccine serotypes stimulating a dominant response to one serotype at the expense of the other three, leading to the potential for vaccine antibody (Ab) enhanced more severe infections by wild type DENV serotypes that fail to replicate in the vaccine. Protein subunit vaccines are a promising alternative since antigen dosing can be precisely controlled. However, DENV envelope (E) protein subunit vaccines have not performed well to date, possibly due to differences between the monomeric structure of soluble E and the E homodimer of the viral surface. Previously, we have combined structure-guided computational and experimental approaches to design and produce DENV2 E antigens that are stable homodimers at 37°C and stimulate higher levels of neutralizing Abs (NAbs) than the WT E antigen in mice. The goal of this study was to evaluate if DENV2 E homodimers stimulate NAbs that target different epitopes on E protein compared to the WT E monomer. Using DENV4/2 chimeric viruses and Ab depletion methods, we mapped the WT E-elicited NAbs to simple epitopes on domain III of E. In contrast, the stable E homodimer stimulated a more complex response towards all three surface-exposed domains of the E protein. Our findings highlight the impact of DENV2 E oligomeric state on the quality and specificity of DENV NAbs, and the promise of DENV E homodimers as subunit vaccines.
Collapse
Affiliation(s)
- Devina J. Thiono
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Demetrios Samaras
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Thanh T.N. Phan
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Deanna R. Zhu
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Ruby P. Shah
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Izabella Castillo
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Lawrence J. Forsberg
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Lakshmanane Premkumar
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Ralph S. Baric
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Shaomin Tian
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Brian Kuhlman
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Aravinda M. de Silva
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
8
|
Vorovitch MF, Tuchynskaya KK, Kruglov YA, Peunkov NS, Mostipanova GF, Kholodilov IS, Ivanova AL, Fedina MP, Gmyl LV, Morozkin ES, Roev GV, Karan LS, Karganova GG. An Inactivated West Nile Virus Vaccine Candidate Based on the Lineage 2 Strain. Vaccines (Basel) 2024; 12:1398. [PMID: 39772058 PMCID: PMC11680355 DOI: 10.3390/vaccines12121398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Background: West Nile virus (WNV) is a rapidly growing problem worldwide. The lack of emergency treatment and a safe licensed vaccine against WNV allows the virus to cause sporadic outbreaks of human disease, including fatal cases. Formalin-inactivated vaccines have been used for a long time and have been shown to be very safe and effective, especially in susceptible populations. Methods: By adapting tick-borne encephalitis vaccine production technology, we produced a laboratory-inactivated vaccine against WNV based on the strain SHUA, isolated from humans with a lethal WNV infection in the year 2021. Results: The potential vaccine was tested for safety in vitro and in vivo in outbred SHK mice of different ages, including PCR analysis of the brains of these mice to test for the absence of viral RNA after intracerebral injection. Conclusions: The inactivated whole-virion laboratory vaccine showed 100% seroconversion and immunogenicity against WNV strain SHUA-1, isolated from a lethal human case, and provided the mice with 100% protection from disease and death.
Collapse
Affiliation(s)
- Mikhail F. Vorovitch
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis), Moscow 108819, Russia; (M.F.V.); (Y.A.K.); (N.S.P.); (G.F.M.); (I.S.K.); (A.L.I.); (M.P.F.); (L.V.G.); (G.G.K.)
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Ksenia K. Tuchynskaya
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis), Moscow 108819, Russia; (M.F.V.); (Y.A.K.); (N.S.P.); (G.F.M.); (I.S.K.); (A.L.I.); (M.P.F.); (L.V.G.); (G.G.K.)
| | - Yuriy A. Kruglov
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis), Moscow 108819, Russia; (M.F.V.); (Y.A.K.); (N.S.P.); (G.F.M.); (I.S.K.); (A.L.I.); (M.P.F.); (L.V.G.); (G.G.K.)
| | - Nikita S. Peunkov
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis), Moscow 108819, Russia; (M.F.V.); (Y.A.K.); (N.S.P.); (G.F.M.); (I.S.K.); (A.L.I.); (M.P.F.); (L.V.G.); (G.G.K.)
| | - Guzal F. Mostipanova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis), Moscow 108819, Russia; (M.F.V.); (Y.A.K.); (N.S.P.); (G.F.M.); (I.S.K.); (A.L.I.); (M.P.F.); (L.V.G.); (G.G.K.)
| | - Ivan S. Kholodilov
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis), Moscow 108819, Russia; (M.F.V.); (Y.A.K.); (N.S.P.); (G.F.M.); (I.S.K.); (A.L.I.); (M.P.F.); (L.V.G.); (G.G.K.)
| | - Alla L. Ivanova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis), Moscow 108819, Russia; (M.F.V.); (Y.A.K.); (N.S.P.); (G.F.M.); (I.S.K.); (A.L.I.); (M.P.F.); (L.V.G.); (G.G.K.)
| | - Maria P. Fedina
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis), Moscow 108819, Russia; (M.F.V.); (Y.A.K.); (N.S.P.); (G.F.M.); (I.S.K.); (A.L.I.); (M.P.F.); (L.V.G.); (G.G.K.)
| | - Larissa V. Gmyl
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis), Moscow 108819, Russia; (M.F.V.); (Y.A.K.); (N.S.P.); (G.F.M.); (I.S.K.); (A.L.I.); (M.P.F.); (L.V.G.); (G.G.K.)
| | - Evgeny S. Morozkin
- Federal Budget Institute of Science «Central Research Institute of Epidemiology» of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Moscow 111123, Russia; (E.S.M.); (G.V.R.)
| | - German V. Roev
- Federal Budget Institute of Science «Central Research Institute of Epidemiology» of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Moscow 111123, Russia; (E.S.M.); (G.V.R.)
| | | | - Galina G. Karganova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis), Moscow 108819, Russia; (M.F.V.); (Y.A.K.); (N.S.P.); (G.F.M.); (I.S.K.); (A.L.I.); (M.P.F.); (L.V.G.); (G.G.K.)
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| |
Collapse
|
9
|
Aynekulu Mersha DG, van der Sterren I, van Leeuwen LPM, Langerak T, Hakim MS, Martina B, van Lelyveld SFL, van Gorp ECM. The role of antibody-dependent enhancement in dengue vaccination. Trop Dis Travel Med Vaccines 2024; 10:22. [PMID: 39482727 PMCID: PMC11529159 DOI: 10.1186/s40794-024-00231-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/31/2024] [Indexed: 11/03/2024] Open
Abstract
Dengue is the most rapidly spreading vector-borne disease worldwide, with over half the global population at risk for an infection. Antibody-dependent enhancement (ADE) is associated with increased disease severity and may also be attributable to the deterioration of disease in vaccinated people. Two dengue vaccines are approved momentarily, with more in development. The increasing use of vaccines against dengue, combined with the development of more, makes a thorough understanding of the processes behind ADE more important than ever. Above that, due to the lack of treatment options, this method of prevention is of great importance. This review aims to explore the impact of ADE in dengue vaccinations, with the goal of enhancing potential vaccination strategies in the fight against dengue.
Collapse
Affiliation(s)
- D G Aynekulu Mersha
- Department of Viroscience, Erasmus Medical Center, Dr. Molewaterplein 40, PO Box Ee-1722, Rotterdam, 3015 GD, the Netherlands.
| | - I van der Sterren
- Department of Viroscience, Erasmus Medical Center, Dr. Molewaterplein 40, PO Box Ee-1722, Rotterdam, 3015 GD, the Netherlands
| | - L P M van Leeuwen
- Department of Viroscience, Erasmus Medical Center, Dr. Molewaterplein 40, PO Box Ee-1722, Rotterdam, 3015 GD, the Netherlands
| | - T Langerak
- Department of Viroscience, Erasmus Medical Center, Dr. Molewaterplein 40, PO Box Ee-1722, Rotterdam, 3015 GD, the Netherlands
| | - M S Hakim
- Postgraduate School of Molecular Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - B Martina
- Artemis Bioservices and Athenavax B.V, Delft, the Netherlands
| | - S F L van Lelyveld
- Department of internal medicine, Spaarne Gasthuis, Haarlem/Hoofddorp, the Netherlands
| | - E C M van Gorp
- Department of Viroscience, Erasmus Medical Center, Dr. Molewaterplein 40, PO Box Ee-1722, Rotterdam, 3015 GD, the Netherlands
| |
Collapse
|
10
|
Satpathy R, Acharya S, Behera R. Computational design, docking, and molecular dynamics simulation study of RNA helicase inhibitors of dengue virus. J Vector Borne Dis 2024; 61:536-546. [PMID: 38712711 DOI: 10.4103/jvbd.jvbd_188_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 05/01/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND OBJECTIVES RNA viruses are complex pathogens in terms of their genetic makeup, mutation frequency, and transmission modes. They contain the RNA helicase enzyme, which plays a crucial role in the viral genome replication process. This work aims to develop and screen a potential molecule that could function as a dengue virus (DENV) RNA helicase inhibitor. METHODS The present study was performed by taking 26 potential derivatives of gedunin phytochemicals from the PubChem database as ligands. The binding of the compounds was analyzed by in silico docking considering DENV RNA helicase enzyme as the receptor. RESULTS After a thorough analysis of the docking scores, toxicity, and physicochemical properties, the compound tetrahydrogedunin was obtained as the best. Based on tetrahydrogedunin molecular structure, 100 drug-like molecules were designed using the Data Warrior tool. After screening for drug-likeness and ADMET properties, derivative number 42 was considered as promising. Further comparative docking of derivative 42 and a standard inhibitor molecule ST-610 with DENV RNA helicase enzyme showed binding affinity of 10.0 kcal/mol and -9.6 kcal/mol, respectively. The favorable interaction between DENV RNA helicase and derivative 42 was further validated by 50 nanoseconds molecular dynamics simulation and MM-GBSA analysis. INTERPRETATION CONCLUSION Since the antiviral activity of derivative 42 has not been reported till date, the compound was predicted as a novel therapeutic molecule that can act against the dengue virus (DENV) RNA helicase enzyme.
Collapse
Affiliation(s)
- Raghunath Satpathy
- School of Biotechnology, Gangadhar Meher University, Sambalpur, Odisha, India
| | - Sonali Acharya
- School of Biotechnology, Gangadhar Meher University, Sambalpur, Odisha, India
| | | |
Collapse
|
11
|
Triana MF, Melo N. Dynamics of Aedes aegypti mating behaviour. CURRENT OPINION IN INSECT SCIENCE 2024; 65:101237. [PMID: 39047975 DOI: 10.1016/j.cois.2024.101237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
The use of pheromones, while common, remains underexplored in mosquito research. Understanding Aedes aegypti's mating behaviour and pheromones is crucial for expanding knowledge and advancing vector control strategies. Unlike other species, Aedes mosquitoes have adaptable mating behaviour, complicating the study of their communication mechanisms. Current literature on Aedes communication is sparse, not due to lack of effort but because of its complexity. Ae. aegypti's mating behaviour is influenced by sensory cues and environmental factors. Swarming, which facilitates mating aggregation, is triggered by host odours, highlighting the role of semiochemicals alongside aggregation pheromones. Cuticular hydrocarbons may act as chemical signals in mating, though their roles are unclear. Acoustic signals significantly contribute to mate attraction and male fitness assessment, showcasing the multidimensional nature of Ae. aegypti sexual communication. Understanding these aspects can enhance targeted control strategies and reduce mosquito populations and disease transmission.
Collapse
Affiliation(s)
- Merybeth F Triana
- Department of Biology, Lund University, Sweden; Max Planck Center next Generation Chemical Ecology, Sweden
| | - Nadia Melo
- Department of Biology, Lund University, Sweden.
| |
Collapse
|
12
|
Zhao J, He J, Ding X, Zhou Y, Liu M, Chen X, Quan W, Hua D, Tong J, Li J. DENV Peptides Delivered as Spherical Nucleic Acid Constructs Enhance Antigen Presentation and Immunogenicity in vitro and in vivo. Int J Nanomedicine 2024; 19:9757-9770. [PMID: 39318604 PMCID: PMC11421446 DOI: 10.2147/ijn.s467427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/06/2024] [Indexed: 09/26/2024] Open
Abstract
Background The global prevalence of Dengue virus (DENV) infection poses a significant health risk, urging the need for effective vaccinations. Peptide vaccines, known for their capacity to induce comprehensive immunity against multiple virus serotypes, offer promise due to their stability, safety, and design flexibility. Spherical nucleic acid (SNA), particularly those with gold nanoparticle cores, present an attractive avenue for enhancing peptide vaccine efficacy due to their modularity and immunomodulatory properties. Methods The spherical nucleic acid-TBB (SNA-TBB), a novel nanovaccine construct, was fabricated through the co-functionalization process of SNA with epitope peptide, targeting all four serotypes of the DENV. This innovative approach aims to enhance immunogenicity and provide broad-spectrum protection against DENV infections. The physicochemical properties of SNA-TBB were characterized using dynamic light scattering, zeta potential measurement, and transmission electron microscopy. In vitro assessments included endocytosis studies, cytotoxicity evaluation, bone marrow-dendritic cells (BMDCs) maturation and activation analysis, cytokine detection, RNA sequencing, and transcript level analysis in BMDCs. In vivo immunization studies in mice involved evaluating IgG antibody titers, serum protection against DENV infection and safety assessment of nanovaccines. Results SNA-TBB demonstrated successful synthesis, enhanced endocytosis, and favorable physicochemical properties. In vitro assessments revealed no cytotoxicity and promoted BMDCs maturation. Cytokine analyses exhibited heightened IL-12p70, TNF-α, and IL-1β levels. Transcriptomic analysis highlighted genes linked to BMDCs maturation and immune responses. In vivo studies immunization with SNA-TBB resulted in elevated antigen-specific IgG antibody levels and conferred protection against DENV infection in neonatal mice. Evaluation of in vivo safety showed no signs of adverse effects in vital organs. Conclusion The study demonstrates the successful development of SNA-TBB as a promising nanovaccine platform against DENV infection and highlights the potential of SNA-based peptide vaccines as a strategy for developing safe and effective antiviral immunotherapy.
Collapse
Affiliation(s)
- Jing Zhao
- College of Basic Medicine, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Jiuxiang He
- College of Basic Medicine, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Xiaoyan Ding
- College of Basic Medicine, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Yuxin Zhou
- College of Basic Medicine, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Minchi Liu
- College of Basic Medicine, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Xiaozhong Chen
- College of Basic Medicine, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Wenxuan Quan
- College of Basic Medicine, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Dong Hua
- College of Basic Medicine, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Jun Tong
- College of Basic Medicine, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Jintao Li
- College of Basic Medicine, Army Medical University, Chongqing, 400038, People's Republic of China
| |
Collapse
|
13
|
Li S, Yan MQ, Wang ZY, Wang ZB, Kuang HX. Phytochemistry of Genus Buxus and Pharmacology of Cyclovirobuxine D. Chem Biodivers 2024; 21:e202400494. [PMID: 38744674 DOI: 10.1002/cbdv.202400494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Genus Buxus plants, commonly known as "boxwood", are widely distributed in China. The stems, branches, and leaves of the plant are traditionally used for rheumatism, toothache, chest pain, abdominal gas, and other diseases. However, an overview of the genus Buxus remains to be provided. PURPOSE To provide a scientific basis for the appropriate use and further research the recent advancements in the traditional usage, phytochemistry, and, pharmacology of Buxus. STUDY DESIGN Chemical composition and pharmacological correlation studies through a literature review. METHODS Between 1970 and 2023, the available data concerning Buxus was compiled from online scientific sources, such as Sci-Finder, PubMed, CNKI, Google Scholar, and the Chinese Pharmacopoeia. Plant names were verified from "The Plant List" (http://www.theplantlist.org/). RESULTS To date, 266 structurally diverse chemicals have been extracted and identified from the genus Buxus. Alkaloids constitute one of its primary bioactive phytochemicals. A summary of the channels of action of Cyclovirobuxine D on the cytotoxicity of a variety of cancers has been provided. CONCLUSION Numerous findings from contemporary phytochemical and pharmacological studies support the traditional use, facilitating its application. Further research is necessary to address various shortcomings, including the identification of the active ingredients and quality control of the genus Buxus.
Collapse
Affiliation(s)
- Sen Li
- Key Laboratory of Basic and Application Research of Beiyao, (Ministry of Education), Heilongjiang University of Chinese Medicine, 150040, Harbin, China
| | - Meng-Qi Yan
- Key Laboratory of Basic and Application Research of Beiyao, (Ministry of Education), Heilongjiang University of Chinese Medicine, 150040, Harbin, China
| | - Zhen-Yue Wang
- Key Laboratory of Basic and Application Research of Beiyao, (Ministry of Education), Heilongjiang University of Chinese Medicine, 150040, Harbin, China
| | - Zhi-Bin Wang
- Key Laboratory of Basic and Application Research of Beiyao, (Ministry of Education), Heilongjiang University of Chinese Medicine, 150040, Harbin, China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, (Ministry of Education), Heilongjiang University of Chinese Medicine, 150040, Harbin, China
| |
Collapse
|
14
|
Pelletier AN, Sanchez GP, Izmirly A, Watson M, Di Pucchio T, Carvalho KI, Filali-Mouhim A, Paramithiotis E, Timenetsky MDCST, Precioso AR, Kalil J, Diamond MS, Haddad EK, Kallas EG, Sekaly RP. A pre-vaccination immune metabolic interplay determines the protective antibody response to a dengue virus vaccine. Cell Rep 2024; 43:114370. [PMID: 38900640 PMCID: PMC11404042 DOI: 10.1016/j.celrep.2024.114370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 02/05/2024] [Accepted: 05/31/2024] [Indexed: 06/22/2024] Open
Abstract
Protective immunity to dengue virus (DENV) requires antibody response to all four serotypes. Systems vaccinology identifies a multi-OMICs pre-vaccination signature and mechanisms predictive of broad antibody responses after immunization with a tetravalent live attenuated DENV vaccine candidate (Butantan-DV/TV003). Anti-inflammatory pathways, including TGF-β signaling expressed by CD68low monocytes, and the metabolites phosphatidylcholine (PC) and phosphatidylethanolamine (PE) positively correlate with broadly neutralizing antibody responses against DENV. In contrast, expression of pro-inflammatory pathways and cytokines (IFN and IL-1) in CD68hi monocytes and primary and secondary bile acids negatively correlates with broad DENV-specific antibody responses. Induction of TGF-β and IFNs is done respectively by PC/PE and bile acids in CD68low and CD68hi monocytes. The inhibition of viral sensing by PC/PE-induced TGF-β is confirmed in vitro. Our studies show that the balance between metabolites and the pro- or anti-inflammatory state of innate immune cells drives broad and protective B cell response to a live attenuated dengue vaccine.
Collapse
Affiliation(s)
- Adam-Nicolas Pelletier
- RPM Bioinfo Solutions, Sainte-Thérèse, QC, Canada; Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Gabriela Pacheco Sanchez
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Abdullah Izmirly
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Tiziana Di Pucchio
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Karina Inacio Carvalho
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Abdelali Filali-Mouhim
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | | | | | | | - Jorge Kalil
- Laboratory of Immunology, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil; Institute for Investigation in Immunology-Instituto Nacional de Ciência e Tecnologia-iii-INCT, São Paulo, SP, Brazil
| | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, and Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Elias K Haddad
- Department of Medicine and Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Esper G Kallas
- Instituto Butantan, São Paulo, Brazil; Department of Infectious and Parasitic Diseases, Hospital das Clínicas, School of Medicine, University of Sao Paulo, São Paulo 01246-903, Brazil
| | - Rafick Pierre Sekaly
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
15
|
Carrillo MA, Gessler AM, Rivera Ramirez T, Cárdenas Sanchez R, Lindenmeier J, Kern WV, Kroeger A. WhatsApp-based intervention in urban Colombia to support the prevention of arboviral diseases: a feasibility study. Pathog Glob Health 2024; 118:334-347. [PMID: 38794811 PMCID: PMC11238608 DOI: 10.1080/20477724.2024.2358263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024] Open
Abstract
Arboviral diseases remain a significant health concern worldwide, with over half the world's population at risk for dengue alone. Without a vaccine or targeted treatment, the most effective strategy of prevention is vector management with community involvement. mHealth interventions, like WhatsApp, offer promising results for engaging communities and promoting healthier behaviors. This study explores the feasibility of integrating WhatsApp in vector control activities to improve arbovirus prevention in Colombia. A mixed-methods approach was employed to assess the WhatsApp-based intervention. WhatsApp messages were sent to 45 community women for 5 weeks to increase their knowledge and practices about dengue, Zika, and chikungunya. Pre-and-post surveys and focus group discussions were conducted in community settings to measure the feasibility and acceptability of this intervention. Chat reviews were done to assess the usability of users. A total of 1566 messages were exchanged in 45 WhatsApp chats. High acceptance and good usability (82% of users used the app for replying) were reported in this study. WhatsApp messages were perceived as short, clear, and enjoyable. Users liked the frequency, and design of messages. Pre- and post-surveys demonstrated improvements in the knowledge and practices of arboviral diseases. The intention to apply this knowledge in practice was reflected in a significant improvement, particularly in cleaning the laundry tank once a week (pre 62.1% to post 89.6%, p < 0.008). This study suggests that using WhatsApp as an additional tool could be a feasible, acceptable, and affordable strategy for improving the adoption of better practices in the prevention of arboviral diseases.
Collapse
Affiliation(s)
- Maria Angelica Carrillo
- Centre for Medicine and Society, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Research Group Geotecnia Ambiental (GIGA), University Francisco De Paula Santander, Cucuta, Colombia
| | - Alisa Maria Gessler
- Graduate Institute, Geneva and Université de Lausanne, Lausanne, Switzerland
| | - Tatiana Rivera Ramirez
- Centre for Medicine and Society, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Research Group Geotecnia Ambiental (GIGA), University Francisco De Paula Santander, Cucuta, Colombia
| | - Rocío Cárdenas Sanchez
- Centre for Medicine and Society, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Research Group Geotecnia Ambiental (GIGA), University Francisco De Paula Santander, Cucuta, Colombia
- Vector Control Programme, The Health Institute of Cucuta, Cucuta, Colombia
| | - Jörg Lindenmeier
- Corporate Governance und Ethik, Albert-Ludwigs University Freiburg, Freiburg im Breisgau, Germany
| | - Winfried V. Kern
- Center for Medicine, Universitätsklinikum Freiburg, Freiburg im Breisgau, Germany
| | - Axel Kroeger
- Centre for Medicine and Society, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
16
|
Drwiega EN, Danziger LH, Burgos RM, Michienzi SM. Commonly Reported Mosquito-Borne Viruses in the United States: A Primer for Pharmacists. J Pharm Pract 2024; 37:741-752. [PMID: 37018738 DOI: 10.1177/08971900231167929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Mosquito-borne diseases are a public health concern. Pharmacists are often a patient's first stop for health information and may be asked questions regarding transmission, symptoms, and treatment of mosquito borne viruses (MBVs). The objective of this paper is to review transmission, geographic location, symptoms, diagnosis and treatment of MBVs. We discuss the following viruses with cases in the US in recent years: Dengue, West Nile, Chikungunya, LaCrosse Encephalitis, Eastern Equine Encephalitis Virus, and Zika. Prevention, including vaccines, and the impact of climate change are also discussed.
Collapse
Affiliation(s)
- Emily N Drwiega
- College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Larry H Danziger
- College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
- College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Rodrigo M Burgos
- College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Sarah M Michienzi
- College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
17
|
Nasir M, Irfan J, Asif AB, Khan QU, Anwar H. Complexities of Dengue Fever: Pathogenesis, Clinical Features and Management Strategies. Discoveries (Craiova) 2024; 12:e189. [PMID: 40093849 PMCID: PMC11910338 DOI: 10.15190/d.2024.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/30/2024] [Accepted: 06/30/2024] [Indexed: 03/19/2025] Open
Abstract
Dengue fever, transmitted through the bite of infected Aedes mosquitos, poses a significant global threat, particularly in the tropical and subtropical region. In this review, we aim to summarize the existent literature on dengue virus infection and to enlighten the reader on recent advances and knowledge. Dengue virus infection can cause a spectrum of clinical manifestations, ranging from asymptomatic or mild illness to more severe and potentially life-threatening complications. Pathogenesis of dengue is based on viral and host factors. Viral factors include NS1 antigen and genomic factors. Host factors include antibody dependent enhancement, anti-NS1 antibodies, cytokines, cross reactive T-Cell response, HLA allele variation and non-HLA mediated polymorphisms. The clinical picture of dengue is described on the basis of WHO 1997 and 2009 criteria. It is classified into dengue fever, dengue hemorrhagic fever (DHF), and dengue shock syndrome (DSS). Life-threatening complications can develop in severe cases, and this includes renal complications such as acute kidney injury (AKI) and hepatic complications such as hepatic dysfunction and in rare cases, fulminant hepatic failure. Neurological complications, cardiac complications and respiratory distress syndrome have also been reported. Treatment methods include targeting the dengue vector and Carica papaya, a natural remedy with antiviral properties. Additionally, the role of corticosteroids, intravenous immunoglobulins, and mast cell inhibitors has been explored in dengue treatment, aiming to reduce severity. Novel approaches involve drugs targeting dengue proteins and host factors necessary for the virus's life cycle, offering potential avenues for more targeted therapeutic interventions. In recent years, significant progress has been made in the development of vaccines against dengue, with Sanofi Pasteur's Dengvaxia being the first licensed vaccine approved for use. Utilizing various approaches such as recombinant proteins, viral vectors and viral like particles, various alternatives have been provided which aim to be safer substitutes to Dengvaxia while maintaining the effectiveness. A review on dengue is essential for clinicians and healthcare professionals to stay updated on diagnostics, treatment protocols and prevention strategies.
Collapse
|
18
|
Akter R, Tasneem F, Das S, Soma MA, Georgakopoulos-Soares I, Juthi RT, Sazed SA. Approaches of dengue control: vaccine strategies and future aspects. Front Immunol 2024; 15:1362780. [PMID: 38487527 PMCID: PMC10937410 DOI: 10.3389/fimmu.2024.1362780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/08/2024] [Indexed: 03/17/2024] Open
Abstract
Dengue, caused by the dengue virus (DENV), affects millions of people worldwide every year. This virus has two distinct life cycles, one in the human and another in the mosquito, and both cycles are crucial to be controlled. To control the vector of DENV, the mosquito Aedes aegypti, scientists employed many techniques, which were later proved ineffective and harmful in many ways. Consequently, the attention shifted to the development of a vaccine; researchers have targeted the E protein, a surface protein of the virus and the NS1 protein, an extracellular protein. There are several types of vaccines developed so far, such as live attenuated vaccines, recombinant subunit vaccines, inactivated virus vaccines, viral vectored vaccines, DNA vaccines, and mRNA vaccines. Along with these, scientists are exploring new strategies of developing improved version of the vaccine by employing recombinant DNA plasmid against NS1 and also aiming to prevent the infection by blocking the DENV life cycle inside the mosquitoes. Here, we discussed the aspects of research in the field of vaccines until now and identified some prospects for future vaccine developments.
Collapse
Affiliation(s)
- Runa Akter
- Department of Pharmacy, Independent University Bangladesh, Dhaka, Bangladesh
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Faria Tasneem
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Shuvo Das
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | | | - Ilias Georgakopoulos-Soares
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Rifat Tasnim Juthi
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Saiful Arefeen Sazed
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
19
|
Plaça DR, Fonseca DLM, Marques AHC, Zaki Pour S, Usuda JN, Baiocchi GC, Prado CADS, Salgado RC, Filgueiras IS, Freire PP, Rocha V, Camara NOS, Catar R, Moll G, Jurisica I, Calich VLG, Giil LM, Rivino L, Ochs HD, Cabral-Miranda G, Schimke LF, Cabral-Marques O. Immunological signatures unveiled by integrative systems vaccinology characterization of dengue vaccination trials and natural infection. Front Immunol 2024; 15:1282754. [PMID: 38444851 PMCID: PMC10912564 DOI: 10.3389/fimmu.2024.1282754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/31/2024] [Indexed: 03/07/2024] Open
Abstract
Introduction Dengue virus infection is a global health problem lacking specific therapy, requiring an improved understanding of DENV immunity and vaccine responses. Considering the recent emerging of new dengue vaccines, here we performed an integrative systems vaccinology characterization of molecular signatures triggered by the natural DENV infection (NDI) and attenuated dengue virus infection models (DVTs). Methods and results We analyzed 955 samples of transcriptomic datasets of patients with NDI and attenuated dengue virus infection trials (DVT1, DVT2, and DVT3) using a systems vaccinology approach. Differential expression analysis identified 237 common differentially expressed genes (DEGs) between DVTs and NDI. Among them, 28 and 60 DEGs were up or downregulated by dengue vaccination during DVT2 and DVT3, respectively, with 20 DEGs intersecting across all three DVTs. Enriched biological processes of these genes included type I/II interferon signaling, cytokine regulation, apoptosis, and T-cell differentiation. Principal component analysis based on 20 common DEGs (overlapping between DVTs and our NDI validation dataset) distinguished dengue patients by disease severity, particularly in the late acute phase. Machine learning analysis ranked the ten most critical predictors of disease severity in NDI, crucial for the anti-viral immune response. Conclusion This work provides insights into the NDI and vaccine-induced overlapping immune response and suggests molecular markers (e.g., IFIT5, ISG15, and HERC5) for anti-dengue-specific therapies and effective vaccination development.
Collapse
Affiliation(s)
- Desirée Rodrigues Plaça
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Dennyson Leandro M. Fonseca
- Interunit Postgraduate Program on Bioinformatics, Institute of Mathematics and Statistics (IME), University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - Alexandre H. C. Marques
- Departament of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Shahab Zaki Pour
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Júlia Nakanishi Usuda
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Gabriela Crispim Baiocchi
- Departament of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Caroline Aliane de Souza Prado
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Ranieri Coelho Salgado
- Departament of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Igor Salerno Filgueiras
- Departament of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Paula Paccielli Freire
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
- Departament of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Vanderson Rocha
- Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), Department of Hematology and Cell Therapy, Hospital das Clínicas, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
- Instituto D’Or de Ensino e Pesquisa, São Paulo, Brazil
- Fundação Pró-Sangue-Hemocentro de São Paulo, São Paulo, Brazil
- Department of Hematology, Churchill Hospital, University of Oxford, Oxford, United Kingdom
| | - Niels Olsen Saraiva Camara
- Departament of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Rusan Catar
- Department of Nephrology and Internal Intensive Care Medicine, Charité University Hospital, Berlin, Germany
| | - Guido Moll
- Department of Nephrology and Internal Intensive Care Medicine, Charité University Hospital, Berlin, Germany
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (BCRT) and Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute and Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Departments of Medical Biophysics and Computer Science, University of Toronto, Toronto, ON, Canada
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Vera Lúcia Garcia Calich
- Departament of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Lasse M. Giil
- Department of Internal Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway
| | - Laura Rivino
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
- Emerging Infectious Diseases, Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| | - Hans D. Ochs
- Department of Pediatrics, University of Washington School of Medicine, and Seattle Children’s Research Institute, Seattle, WA, United States
| | - Gustavo Cabral-Miranda
- Departament of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Lena F. Schimke
- Departament of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
- Department of Medicine, Division of Molecular Medicine, Laboratory of Medical Investigation 29, University of São Paulo School of Medicine, Berlin, Germany
- Network of Immunity in Infection, Malignancy, Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), São Paulo, SP, Brazil
| | - Otavio Cabral-Marques
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
- Interunit Postgraduate Program on Bioinformatics, Institute of Mathematics and Statistics (IME), University of Sao Paulo (USP), Sao Paulo, SP, Brazil
- Departament of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
- Instituto D’Or de Ensino e Pesquisa, São Paulo, Brazil
- Department of Medicine, Division of Molecular Medicine, Laboratory of Medical Investigation 29, University of São Paulo School of Medicine, Berlin, Germany
- Network of Immunity in Infection, Malignancy, Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), São Paulo, SP, Brazil
| |
Collapse
|
20
|
Wang Y, Troutman MC, Hofmann C, Gonzalez A, Song L, Levin R, Pixley HY, Kearns K, DePhillips P, Loughney JW. Fully automated high-throughput immuno-µPlaque assay for live-attenuated tetravalent dengue vaccine development. Front Immunol 2024; 15:1356600. [PMID: 38410513 PMCID: PMC10895029 DOI: 10.3389/fimmu.2024.1356600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/29/2024] [Indexed: 02/28/2024] Open
Abstract
Dengue fever has remained a continuing global medical threat that impacts half of the world's population. Developing a highly effective dengue vaccine, with live-attenuated tetravalent vaccines as leading candidates, remains essential in preventing this disease. For the development of live virus vaccines (LVVs), potency measurements play a vital role in quantifying the active components of vaccine drug substance as well as drug product during various stages of research, development, and post-licensure evaluations. Traditional plaque-based assays are one of the most common potency test methods, but they generally take up to weeks to complete. Less labor and time-intensive potency assays are thus called for to aid in the acceleration of vaccine development, especially for multivalent LVVs. Here, we introduce a fully automated, 96-well format µPlaque assay that has been optimized as a high-throughput tool to evaluate process and formulation development of a live-attenuated tetravalent dengue vaccine. To the best of our knowledge, this is the first report of a miniaturized viral plaque method for dengue with full automation via an integrated robotic system. Compared to the traditional manual plaque assay, this newly developed method substantially reduces testing time by approximately half and allows for the evaluation of over ten times more samples per run. The fully automated workflow, from cell culture to plaque counting, significantly minimizes analyst hands-on time and improves assay repeatability. The study presents a pioneering solution for the rapid measurement of LVV viral titers, offering promising prospects for advancing vaccine development through high-throughput analytics.
Collapse
Affiliation(s)
- Yi Wang
- Analytical Research & Development, Merck & Co., Inc., Rahway, NJ, United States
| | - Matthew C. Troutman
- Analytical Research & Development, Merck & Co., Inc., Rahway, NJ, United States
| | - Carl Hofmann
- Analytical Research & Development, Merck & Co., Inc., Rahway, NJ, United States
| | - Ariel Gonzalez
- Analytical Research & Development, Merck & Co., Inc., Rahway, NJ, United States
| | - Liping Song
- Biostatistics, Merck & Co., Inc., Rahway, NJ, United States
| | - Robert Levin
- Vaccine Drug Product Development, Merck & Co., Inc, Rahway, NJ, United States
| | - Heidi Yoder Pixley
- Vaccine Drug Product Development, Merck & Co., Inc, Rahway, NJ, United States
| | - Kristine Kearns
- Analytical Research & Development, Merck & Co., Inc., Rahway, NJ, United States
| | - Pete DePhillips
- Analytical Research & Development, Merck & Co., Inc., Rahway, NJ, United States
| | - John W. Loughney
- Analytical Research & Development, Merck & Co., Inc., Rahway, NJ, United States
| |
Collapse
|
21
|
Sung J, Cheong Y, Kim YS, Ahn J, Sohn MH, Byun S, Seong BL. Harnessing Pentameric Scaffold of Cholera Toxin B (CTB) for Design of Subvirion Recombinant Dengue Virus Vaccine. Vaccines (Basel) 2024; 12:92. [PMID: 38250905 PMCID: PMC10819241 DOI: 10.3390/vaccines12010092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
Dengue virus is an enveloped virus with an icosahedral assembly of envelope proteins (E). The E proteins are arranged as a head-to-tail homodimer, and domain III (EDIII) is placed at the edge of the dimer, converging to a pentamer interface. For a structure-based approach, cholera toxin B (CTB) was harnessed as a structural scaffold for the five-fold symmetry of EDIII. Pivoted by an RNA-mediated chaperone for the protein folding and assembly, CTB-EDIII of dengue serotype 1 (DV1) was successfully produced as soluble pentamers in an E. coli host with a high yield of about 28 mg/L. Immunization of mice with CTB-DV1EDIII elicited increased levels of neutralizing antibodies against infectious viruses compared to the control group immunized with DV1EDIII without CTB fusion. IgG isotype switching into a balanced Th1/Th2 response was also observed, probably triggered by the intrinsic adjuvant activity of CTB. Confirming the immune-enhancing potential of CTB in stabilizing the pentamer assembly of EDIII, this study introduces a low-cost bacterial production platform designed to augment the soluble production of subunit vaccine candidates, particularly those targeting flaviviruses.
Collapse
Affiliation(s)
- Jemin Sung
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; (J.S.); (Y.-S.K.)
| | - Yucheol Cheong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; (J.S.); (Y.-S.K.)
| | - Young-Seok Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; (J.S.); (Y.-S.K.)
| | - Jina Ahn
- The Interdisciplinary Graduate Program in Integrative Biotechnology & Translational Medicine, Yonsei University, Incheon 21983, Republic of Korea;
| | - Myung Hyun Sohn
- Department of Pediatrics, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea;
| | - Sanguine Byun
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; (J.S.); (Y.-S.K.)
- POSTECH Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Baik-Lin Seong
- Department of Microbiology and Immunology, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
- Vaccine Innovative Technology ALliance (VITAL)-Korea, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
22
|
Loh SN, Anthony IR, Gavor E, Lim XS, Kini RM, Mok YK, Sivaraman J. Recognition of Aedes aegypti Mosquito Saliva Protein LTRIN by the Human Receptor LTβR for Controlling the Immune Response. BIOLOGY 2024; 13:42. [PMID: 38248473 PMCID: PMC10813304 DOI: 10.3390/biology13010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024]
Abstract
Salivary proteins from mosquitoes have received significant attention lately due to their potential to develop therapeutic treatments or vaccines for mosquito-borne diseases. Here, we report the characterization of LTRIN (lymphotoxin beta receptor inhibitor), a salivary protein known to enhance the pathogenicity of ZIKV by interrupting the LTβR-initiated NF-κB signaling pathway and, therefore, diminish the immune responses. We demonstrated that the truncated C-terminal LTRIN (ΔLTRIN) is a dimeric protein with a stable alpha helix-dominant secondary structure, which possibly aids in withstanding the temperature fluctuations during blood-feeding events. ΔLTRIN possesses two Ca2+ binding EF-hand domains, with the second EF-hand motif playing a more significant role in interacting with LTβR. Additionally, we mapped the primary binding regions of ΔLTRIN on LTβR using hydrogen-deuterium exchange mass spectrometry (HDX-MS) and identified that 91QEKAHIAEHMDVPIDTSKMSEQELQFHY118 from the N-terminal of ΔLTRIN is the major interacting region. Together, our studies provide insight into the recognition of LTRIN by LTβR. This finding may aid in a future therapeutic and transmission-blocking vaccine development against ZIKV.
Collapse
Affiliation(s)
- Su Ning Loh
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; (S.N.L.)
| | - Ian Russell Anthony
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; (S.N.L.)
| | - Edem Gavor
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; (S.N.L.)
| | - Xin Shan Lim
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; (S.N.L.)
| | - R. Manjunatha Kini
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; (S.N.L.)
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Yu Keung Mok
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; (S.N.L.)
| | - J. Sivaraman
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; (S.N.L.)
| |
Collapse
|
23
|
Ngwe Tun MM, Nwe KM, Balingit JC, Takamatsu Y, Inoue S, Pandey BD, Urano T, Kohara M, Tsukiyama-Kohara K, Morita K. A Novel, Comprehensive A129 Mouse Model for Investigating Dengue Vaccines and Evaluating Pathogenesis. Vaccines (Basel) 2023; 11:1857. [PMID: 38140260 PMCID: PMC10748371 DOI: 10.3390/vaccines11121857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/01/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
In search of a mouse model for use in evaluating dengue vaccines, we assessed A129 mice that lacked IFN-α/β receptors, rendering them susceptible to dengue virus (DENV) infection. To our knowledge, no reports have evaluated dengue vaccine efficiency using A129 mice. A129 mice were given a single intraperitoneal (IP) or subcutaneous (SC) injection of the vaccine, Dengvaxia. After 14 days of immunization via the IP or SC injection of Dengvaxia, the A129 mice exhibited notably elevated levels of anti-DENV immunoglobulin G and neutralizing antibodies (NAb) targeting all four DENV serotypes, with DENV-4 displaying the highest NAb levels. After challenge with DENV-2, Dengvaxia and mock-immunized mice survived, while only the mock group exhibited signs of morbidity. Viral genome levels in the serum and tissues (excluding the brain) were considerably lower in the immunized mice compared to those in the mock group. The SC administration of Dengvaxia resulted in lower viremia levels than IP administration did. Therefore, given that A129 mice manifest dengue-related morbidity, including viremia in the serum and other tissues, these mice represent a valuable model for investigating novel dengue vaccines and antiviral drugs and for exploring dengue pathogenesis.
Collapse
Affiliation(s)
- Mya Myat Ngwe Tun
- Department of Tropical Viral Vaccine Development, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; (J.C.B.); (Y.T.)
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan;
- Center for Vaccines and Therapeutic Antibodies for Emerging Infectious Diseases, Shimane University, Izumo 690-8504, Japan;
| | - Khine Mya Nwe
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan;
| | - Jean Claude Balingit
- Department of Tropical Viral Vaccine Development, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; (J.C.B.); (Y.T.)
| | - Yuki Takamatsu
- Department of Tropical Viral Vaccine Development, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; (J.C.B.); (Y.T.)
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan;
| | - Shingo Inoue
- Kenya Research Station, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan;
| | - Basu Dev Pandey
- Dejima Infectious Diseases Research Alliance, Nagasaki University, Nagasaki 852-8523, Japan;
| | - Takeshi Urano
- Center for Vaccines and Therapeutic Antibodies for Emerging Infectious Diseases, Shimane University, Izumo 690-8504, Japan;
| | - Michinori Kohara
- Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-0057, Japan;
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan;
| | - Kouichi Morita
- Department of Tropical Viral Vaccine Development, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; (J.C.B.); (Y.T.)
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan;
- Dejima Infectious Diseases Research Alliance, Nagasaki University, Nagasaki 852-8523, Japan;
| |
Collapse
|
24
|
Shi J, Shen A, Cheng Y, Zhang C, Yang X. 30-Year Development of Inactivated Virus Vaccine in China. Pharmaceutics 2023; 15:2721. [PMID: 38140062 PMCID: PMC10748258 DOI: 10.3390/pharmaceutics15122721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Inactivated vaccines are vaccines made from inactivated pathogens, typically achieved by using chemical or physical methods to destroy the virus's ability to replicate. This type of vaccine can induce the immune system to produce an immune response against specific pathogens, thus protecting the body from infection. In China, the manufacturing of inactivated vaccines has a long history and holds significant importance among all the vaccines available in the country. This type of vaccine is widely used in the prevention and control of infectious diseases. China is dedicated to conducting research on new inactivated vaccines, actively promoting the large-scale production of inactivated vaccines, and continuously improving production technology and quality management. These efforts enable China to meet the domestic demand for inactivated vaccines and gain a certain competitive advantage in the international market. In the future, China will continue to devote itself to the research and production of inactivated vaccines, further enhancing the population's health levels and contributing to social development. This study presents a comprehensive overview of the 30-year evolution of inactivated virus vaccines in China, serving as a reference for the development and production of such vaccines.
Collapse
Affiliation(s)
- Jinrong Shi
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China; (J.S.); (A.S.); (Y.C.)
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Ailin Shen
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China; (J.S.); (A.S.); (Y.C.)
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Yao Cheng
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China; (J.S.); (A.S.); (Y.C.)
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Chi Zhang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China; (J.S.); (A.S.); (Y.C.)
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Xiaoming Yang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China; (J.S.); (A.S.); (Y.C.)
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
- China National Biotech Group Company Limited, Beijing 100029, China
| |
Collapse
|
25
|
Munt JE, Henein S, Adams C, Young E, Hou YJ, Conrad H, Zhu D, Dong S, Kose N, Yount B, Meganck RM, Tse LPV, Kuan G, Balmaseda A, Ricciardi MJ, Watkins DI, Crowe JE, Harris E, DeSilva AM, Baric RS. Homotypic antibodies target novel E glycoprotein domains after natural DENV 3 infection/vaccination. Cell Host Microbe 2023; 31:1850-1865.e5. [PMID: 37909048 PMCID: PMC11221912 DOI: 10.1016/j.chom.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/31/2023] [Accepted: 10/04/2023] [Indexed: 11/02/2023]
Abstract
The envelope (E) glycoprotein is the primary target of type-specific (TS) neutralizing antibodies (nAbs) after infection with any of the four distinct dengue virus serotypes (DENV1-4). nAbs can be elicited to distinct structural E domains (EDs) I, II, or III. However, the relative contribution of these domain-specific antibodies is unclear. To identify the primary DENV3 nAb targets in sera after natural infection or vaccination, chimeric DENV1 recombinant encoding DENV3 EDI, EDII, or EDIII were generated. DENV3 EDII is the principal target of TS polyclonal nAb responses and encodes two or more neutralizing epitopes. In contrast, some were individuals vaccinated with a DENV3 monovalent vaccine-elicited serum TS nAbs targeting each ED in a subject-dependent fashion, with an emphasis on EDI and EDIII. Vaccine responses were also sensitive to DENV3 genotypic variation. This DENV1/3 panel allows the measurement of serum ED TS nAbs, revealing differences in TS nAb immunity after natural infection or vaccination.
Collapse
Affiliation(s)
- Jennifer E Munt
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Sandra Henein
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Cameron Adams
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Ellen Young
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Yixuan J Hou
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Helen Conrad
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Deanna Zhu
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Stephanie Dong
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Nurgun Kose
- Vanderbilt Vaccine Center, Nashville, TN, USA
| | - Boyd Yount
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Rita M Meganck
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Long Ping V Tse
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Guillermina Kuan
- Health Center Socrates Flores Vivas, Ministry of Health, Managua, Nicaragua; Sustainable Sciences Institute, Managua, Nicaragua
| | - Angel Balmaseda
- Sustainable Sciences Institute, Managua, Nicaragua; National Virology Laboratory, National Center for Diagnosis and Reference, Ministry of Health, Managua, Nicaragua
| | | | - David I Watkins
- University of Massachusetts Medical School, Worcester, MA, USA
| | | | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, CA, USA
| | - Aravinda M DeSilva
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA; Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
26
|
Parveen S, Riaz Z, Saeed S, Ishaque U, Sultana M, Faiz Z, Shafqat Z, Shabbir S, Ashraf S, Marium A. Dengue hemorrhagic fever: a growing global menace. JOURNAL OF WATER AND HEALTH 2023; 21:1632-1650. [PMID: 38017595 PMCID: wh_2023_114 DOI: 10.2166/wh.2023.114] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Dengue virus is an arthropod-borne virus, transmitted by Aedes aegypti among humans. In this review, we discussed the epidemiology of dengue hemorrhagic fever (DHF) as well as the disease's natural history, cycles of transmission, clinical diagnosis, aetiology, prevention, therapy, and management. A systematic literature search was done by databases such as PubMed and Google Scholar using search terms, 'dengue fever', 'symptoms and causes of dengue fever', 'dengue virus transmission', and 'strategies to control dengue'. We reviewed relevant literature to identify hazards related to DHF and the most recent recommendations for its management and prevention. Clinical signs and symptoms of dengue infection range from mild dengue fever (DF) to potentially lethal conditions like DHF or dengue shock syndrome (DSS). Acute-onset high fever, muscle and joint pain, myalgia, a rash on the skin, hemorrhagic episodes, and circulatory shock are among the most common symptoms. An early diagnosis is vital to lower mortality. As dengue virus infections are self-limiting, but in tropical and subtropical areas, dengue infection has become a public health concern. Hence, developing and executing long-term control policies that can reduce the global burden of DHF is a major issue for public health specialists everywhere.
Collapse
Affiliation(s)
- Shakeela Parveen
- Department of Zoology, The Government Sadiq College Women University, Bahawalpur 63100, Pakistan E-mail:
| | - Zainab Riaz
- Department of Zoology, The Government Sadiq College Women University, Bahawalpur 63100, Pakistan
| | - Saba Saeed
- Department of Zoology, The Government Sadiq College Women University, Bahawalpur 63100, Pakistan
| | - Urwah Ishaque
- Department of Zoology, The Government Sadiq College Women University, Bahawalpur 63100, Pakistan
| | - Mehwish Sultana
- Department of Zoology, The Government Sadiq College Women University, Bahawalpur 63100, Pakistan
| | - Zunaira Faiz
- Department of Zoology, The Government Sadiq College Women University, Bahawalpur 63100, Pakistan
| | - Zainab Shafqat
- Department of Zoology, The Government Sadiq College Women University, Bahawalpur 63100, Pakistan
| | - Saman Shabbir
- Department of Zoology, The Government Sadiq College Women University, Bahawalpur 63100, Pakistan
| | - Sana Ashraf
- Department of Zoology, The Government Sadiq College Women University, Bahawalpur 63100, Pakistan
| | - Amna Marium
- Department of Zoology, The Government Sadiq College Women University, Bahawalpur 63100, Pakistan
| |
Collapse
|
27
|
Orellano P, Reynoso J, Salomón OD, Vezzani D. Dengue vaccine acceptance and willingness to pay: a systematic review and meta-analysis. Public Health 2023; 224:74-81. [PMID: 37741155 DOI: 10.1016/j.puhe.2023.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/28/2023] [Accepted: 08/18/2023] [Indexed: 09/25/2023]
Abstract
OBJECTIVE Dengue is the most important human vector-borne disease in terms of disease burden. A first dengue vaccine has recently been licenced, and others are in advanced stages of development. However, to date, none of these vaccines has achieved balanced efficacy and safety for all dengue serotypes. The aim of this systematic review and meta-analysis was to assess the global acceptance and willingness to pay for unspecified dengue vaccines. METHODS This systematic review and meta-analysis included cross-sectional and cohort studies that reported values for vaccine acceptance (percentage) and willingness to pay for currently available or hypothetical vaccines. These values were pooled using random-effects models for the acceptance, while weighted linear regression was chosen for willingness to pay. Heterogeneity between studies was assessed using prediction intervals (PIs), and a domain-based tool was used to assess the risk of bias. Subgroup and sensitivity analyses were performed where appropriate. This study was registered with PROSPERO (CRD42021255784). RESULTS We included 19 studies from the Americas and Asia in the quantitative meta-analysis. The risk of bias was mainly related to the selection of participants and to the assumptions about the safety and efficacy of the vaccines. The percentage of vaccine acceptance was 88.3% (95% CI: 81.0%-93.0%), with some heterogeneity between studies (80% PI: 52.9%-98.1%). Willingness to pay was US$ 46.7 (95% CI: 25.9-67.5) per vaccine recipient. There were differences between continents, with higher acceptance in the Americas. CONCLUSIONS We were able to obtain global estimates of vaccine acceptance and willingness to pay and identify the associated factors that influence these values. This knowledge is relevant for the planning of future vaccination strategies.
Collapse
Affiliation(s)
- P Orellano
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Universidad Tecnológica Nacional, Facultad Regional San Nicolás, San Nicolás, Provincia de Buenos Aires, Argentina.
| | - J Reynoso
- Hospital Interzonal General de Agudos "San Felipe", San Nicolás, Provincia de Buenos Aires, Argentina
| | - O D Salomón
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Instituto Nacional de Medicina Tropical (INMeT), Ministerio de Salud de la Nación, Puerto Iguazú, Provincia de Misiones, Argentina
| | - D Vezzani
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Instituto Multidisciplinario sobre Ecosistemas y Desarrollo Sustentable, Facultad de Cs Exactas, UNCPBA-CIC, Tandil, Provincia de Buenos Aires, Argentina
| |
Collapse
|
28
|
Jain S, Vimal N, Angmo N, Sengupta M, Thangaraj S. Dengue Vaccination: Towards a New Dawn of Curbing Dengue Infection. Immunol Invest 2023; 52:1096-1149. [PMID: 37962036 DOI: 10.1080/08820139.2023.2280698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Dengue is an infectious disease caused by dengue virus (DENV) and is a serious global burden. Antibody-dependent enhancement and the ability of DENV to infect immune cells, along with other factors, lead to fatal Dengue Haemorrhagic Fever and Dengue Shock Syndrome. This necessitates the development of a robust and efficient vaccine but vaccine development faces a number of hurdles. In this review, we look at the epidemiology, genome structure and cellular targets of DENV and elaborate upon the immune responses generated by human immune system against DENV infection. The review further sheds light on various challenges in development of a potent vaccine against DENV which is followed by presenting a current account of different vaccines which are being developed or have been licensed.
Collapse
Affiliation(s)
- Sidhant Jain
- Independent Researcher, Institute for Globally Distributed Open Research and Education (IGDORE), Rewari, India
| | - Neha Vimal
- Bhaskaracharya College of Applied Sciences, University of Delhi, Delhi, India
| | - Nilza Angmo
- Maitreyi College, University of Delhi, Delhi, India
| | - Madhumita Sengupta
- Janki Devi Bajaj Government Girls College, University of Kota, Kota, India
| | - Suraj Thangaraj
- Swami Ramanand Teerth Rural Government Medical College, Maharashtra University of Health Sciences, Ambajogai, India
| |
Collapse
|
29
|
Sessions Z, Bobrowski T, Martin HJ, Beasley JMT, Kothari A, Phares T, Li M, Alves VM, Scotti MT, Moorman NJ, Baric R, Tropsha A, Muratov EN. Praemonitus praemunitus: can we forecast and prepare for future viral disease outbreaks? FEMS Microbiol Rev 2023; 47:fuad048. [PMID: 37596064 PMCID: PMC10532129 DOI: 10.1093/femsre/fuad048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 07/04/2023] [Accepted: 08/17/2023] [Indexed: 08/20/2023] Open
Abstract
Understanding the origins of past and present viral epidemics is critical in preparing for future outbreaks. Many viruses, including SARS-CoV-2, have led to significant consequences not only due to their virulence, but also because we were unprepared for their emergence. We need to learn from large amounts of data accumulated from well-studied, past pandemics and employ modern informatics and therapeutic development technologies to forecast future pandemics and help minimize their potential impacts. While acknowledging the complexity and difficulties associated with establishing reliable outbreak predictions, herein we provide a perspective on the regions of the world that are most likely to be impacted by future outbreaks. We specifically focus on viruses with epidemic potential, namely SARS-CoV-2, MERS-CoV, DENV, ZIKV, MAYV, LASV, noroviruses, influenza, Nipah virus, hantaviruses, Oropouche virus, MARV, and Ebola virus, which all require attention from both the public and scientific community to avoid societal catastrophes like COVID-19. Based on our literature review, data analysis, and outbreak simulations, we posit that these future viral epidemics are unavoidable, but that their societal impacts can be minimized by strategic investment into basic virology research, epidemiological studies of neglected viral diseases, and antiviral drug discovery.
Collapse
Affiliation(s)
- Zoe Sessions
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, 301 Pharmacy Ln, Chapel Hill, NC 27599, United States
| | - Tesia Bobrowski
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, 301 Pharmacy Ln, Chapel Hill, NC 27599, United States
| | - Holli-Joi Martin
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, 301 Pharmacy Ln, Chapel Hill, NC 27599, United States
| | - Jon-Michael T Beasley
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, 301 Pharmacy Ln, Chapel Hill, NC 27599, United States
| | - Aneri Kothari
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, 301 Pharmacy Ln, Chapel Hill, NC 27599, United States
| | - Trevor Phares
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, 301 Pharmacy Ln, Chapel Hill, NC 27599, United States
- School of Chemistry, University of Louisville, 2320 S Brook St, Louisville, KY 40208, United States
| | - Michael Li
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, 301 Pharmacy Ln, Chapel Hill, NC 27599, United States
| | - Vinicius M Alves
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, 301 Pharmacy Ln, Chapel Hill, NC 27599, United States
| | - Marcus T Scotti
- Department of Pharmaceutical Sciences, Federal University of Paraiba, Campus I Lot. Cidade Universitaria, PB, 58051-900, Brazil
| | - Nathaniel J Moorman
- Department of Microbiology and Immunology, University of North Carolina, 116 Manning Drive, Chapel Hill, NC 27599, United States
| | - Ralph Baric
- Department of Epidemiology, University of North Carolina, 401 Pittsboro St, Chapel Hill, NC 27599, United States
| | - Alexander Tropsha
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, 301 Pharmacy Ln, Chapel Hill, NC 27599, United States
| | - Eugene N Muratov
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, 301 Pharmacy Ln, Chapel Hill, NC 27599, United States
| |
Collapse
|
30
|
Nemirov K, Authié P, Souque P, Moncoq F, Noirat A, Blanc C, Bourgine M, Majlessi L, Charneau P. Preclinical proof of concept of a tetravalent lentiviral T-cell vaccine against dengue viruses. Front Immunol 2023; 14:1208041. [PMID: 37654495 PMCID: PMC10466046 DOI: 10.3389/fimmu.2023.1208041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/17/2023] [Indexed: 09/02/2023] Open
Abstract
Dengue virus (DENV) is responsible for approximately 100 million cases of dengue fever annually, including severe forms such as hemorrhagic dengue and dengue shock syndrome. Despite intensive vaccine research and development spanning several decades, a universally accepted and approved vaccine against dengue fever has not yet been developed. The major challenge associated with the development of such a vaccine is that it should induce simultaneous and equal protection against the four DENV serotypes, because past infection with one serotype may greatly increase the severity of secondary infection with a distinct serotype, a phenomenon known as antibody-dependent enhancement (ADE). Using a lentiviral vector platform that is particularly suitable for the induction of cellular immune responses, we designed a tetravalent T-cell vaccine candidate against DENV ("LV-DEN"). This vaccine candidate has a strong CD8+ T-cell immunogenicity against the targeted non-structural DENV proteins, without inducing antibody response against surface antigens. Evaluation of its protective potential in the preclinical flavivirus infection model, i.e., mice knockout for the receptor to the type I IFN, demonstrated its significant protective effect against four distinct DENV serotypes, based on reduced weight loss, viremia, and viral loads in peripheral organs of the challenged mice. These results provide proof of concept for the use of lentiviral vectors for the development of efficient polyvalent T-cell vaccine candidates against all DENV serotypes.
Collapse
Affiliation(s)
- Kirill Nemirov
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université de Paris, Virology Department, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Malik S, Ahsan O, Mumtaz H, Tahir Khan M, Sah R, Waheed Y. Tracing down the Updates on Dengue Virus-Molecular Biology, Antivirals, and Vaccine Strategies. Vaccines (Basel) 2023; 11:1328. [PMID: 37631896 PMCID: PMC10458802 DOI: 10.3390/vaccines11081328] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/29/2023] Open
Abstract
BACKGROUND Nearly half of the world is at risk of developing dengue infection. Dengue virus is the causative agent behind this public healthcare concern. Millions of dengue cases are reported every year, leading to thousands of deaths. The scientific community is working to develop effective therapeutic strategies in the form of vaccines and antiviral drugs against dengue. METHODS In this review, a methodological approach has been used to gather data from the past five years to include the latest developments against the dengue virus. RESULTS Different therapeutics and antiviral targets against the dengue virus are at different stages of development, but none have been approved by the FDA. Moreover, various vaccination strategies have also been discussed, including attenuated virus vaccines, recombinant subunit vaccines, viral vector vaccines, DNA vaccines, nanotechnology, and plant-based vaccines, which are used to develop effective vaccines for the dengue virus. Many dengue vaccines pass the initial phases of evaluation, but only two vaccines have been approved for public use. DENGVAXIA is the only FDA-approved vaccine against all four stereotypes of the dengue virus, but it is licensed for use only in individuals 6-16 years of age with laboratory-confirmed previous dengue infection and living in endemic countries. Takeda is the second vaccine approved for use in the European Union, the United Kingdom, Brazil, Argentina, Indonesia, and Thailand. It produced sustained antibody responses against all four serotypes of dengue virus, regardless of previous exposure and dosing schedule. Other dengue vaccine candidates at different stages of development are TV-003/005, TDENV PIV, V180, and some DNA vaccines. CONCLUSION There is a need to put more effort into developing effective vaccines and therapeutics for dengue, as already approved vaccines and therapeutics have limitations. DENGVAXIA is approved for use in children and teenagers who are 6-16 years of age and have confirmed dengue infection, while Takeda is approved for use in certain countries, and it has withdrawn its application for FDA approval.
Collapse
Affiliation(s)
- Shiza Malik
- Bridging Health Foundation, Rawalpindi 46000, Pakistan
| | - Omar Ahsan
- Department of Medicine, Foundation University Medical College, Foundation University Islamabad, Islamabad 44000, Pakistan
| | - Hassan Mumtaz
- Innovation, Implementation, and Partnership Unit, Association for Social Development, Islamabad 44000, Pakistan
- Health Services Academy, Islamabad 44000, Pakistan
| | - Muhammad Tahir Khan
- Institute of Molecular Biology and Biotechnology (IMBB), University of Lahore, 1KM Defence Road, Lahore 58810, Pakistan
- Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Meixi, Nanyang 473006, China
| | - Ranjit Sah
- Department of Microbiology, Tribhuvan University Teaching Hospital, Institute of Medicine, Kathmandu 44600, Nepal
- Department of Microbiology, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth, Pune 411018, Maharashtra, India
- Department of Public Health Dentistry, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pune 411018, Maharashtra, India
| | - Yasir Waheed
- Office of Research, Innovation and Commercialization (ORIC), Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU), Islamabad 44000, Pakistan
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos 1401, Lebanon
| |
Collapse
|
32
|
Sarkar MMH, Rahman MS, Islam MR, Rahman A, Islam MS, Banu TA, Akter S, Goswami B, Jahan I, Habib MA, Uddin MM, Mia MZ, Miah MI, Shaikh AA, Khan MS. Comparative phylogenetic analysis and transcriptomic profiling of Dengue (DENV-3 genotype I) outbreak in 2021 in Bangladesh. Virol J 2023; 20:127. [PMID: 37337232 PMCID: PMC10278332 DOI: 10.1186/s12985-023-02030-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 04/04/2023] [Indexed: 06/21/2023] Open
Abstract
Background The next-generation sequencing (NGS) technology facilitates in-depth study of host-pathogen metatranscriptome. We, therefore, implicated phylodynamic and transcriptomic approaches through NGS technology to know/understand the dengue virus (DENV) origin and host response with dengue fever. Methods In this study, blood serum RNA was extracted from 21 dengue patients and 3 healthy individuals. Total transcriptomic data were analyzed for phylogenetic, phylodynamic, differential express gene (DEG), and gene ontology (GO) using respective bioinformatics tools. Results The viral genome sequence revealed dengue viral genome size ranges 10647 to 10707 nucleotide. Phylogenetic and phylodynamic analysis showed that the 2021 epidemic isolates were DENV-3 genotype-I and maintained as a new clade in compared to 2019 epidemic. Transcriptome analysis showed a total of 2686 genes were DEG in dengue patients compared to control with a q-value < 0.05. DESeq2 plot counts function of the top 24 genes with the smallest q-values of differential gene expression of RNA-seq data showed that 11 genes were upregulated, whereas 13 genes were downregulated. GO analysis showed a significant upregulation (p = < 0.001) in a process of multicellular organismal, nervous system, sensory perception of chemical stimulus, and G protein-coupled receptor signaling pathways in the dengue patients. However, there were a significant downregulation (p = < 0.001) of intracellular component, cellular anatomical entity, and protein-containing complex in dengue patients. Most importantly, there was a significant increase of a class of immunoregulatory proteins in dengue patients in compared to the controls, with increased GO of immune system process. In addition, upregulation of toll receptor (TLR) signaling pathways were found in dengue patients. These TLR pathways were particularly involved for the activation of innate system coupled with adaptive immune system that probably involved the rapid elimination of dengue virus infected cells. These differentially expressed genes could be further investigated for target based prophylactic interventions for dengue. Conclusion This is a first report describing DENV complete genomic features and differentially expressed genes in patients in Bangladesh. These genes may have diagnostic and therapeutic values for dengue infection. Continual genomic surveillance is required to further investigate the shift in dominant genotypes in relation to viral pathogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12985-023-02030-1.
Collapse
Affiliation(s)
| | - M Shaminur Rahman
- Department of Microbiology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - M Rafiul Islam
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | - Arafat Rahman
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | | | - Tanjina Akhtar Banu
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Shahina Akter
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Barna Goswami
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Iffat Jahan
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Md Ahashan Habib
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Mohammad Mohi Uddin
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Md Zakaria Mia
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | - Md Ibrahim Miah
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | - Aftab Ali Shaikh
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Md Salim Khan
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh.
| |
Collapse
|
33
|
Tian C, Huang H, Zheng Y, He X, Yan L, Shi L, Yang T, Chen X, Yang J, Lu Z, Cao H, Zhao W, Qin Z, Yu J, Tang Q, Tong X, Liu J, Yu L. Identification of an effective fraction from Ampelopsis Radix with anti-dengue virus activities in vitro and in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2023; 309:116339. [PMID: 36870463 DOI: 10.1016/j.jep.2023.116339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/25/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dengue virus (DENV) infection is a global public health issue without effective therapeutic interventions. Chinese medicine with heat-clearing and detoxifying properties has been frequently used in the treatment of viral infection. Ampelopsis Radix (AR) is a traditional Chinese medicine for clearing heat and detoxification that has been widely used in the prevention and treatment of infectious diseases. However, no studies on the effects of AR against viral infection have been reported, thus far. AIM OF THE STUDY To explore the anti-DENV activities of the fraction (AR-1) obtained from AR both in vitro and in vivo. MATERIALS AND METHODS The chemical composition of AR-1 was identified by liquid chromatography-tandem MS (LC‒MS/MS). The antiviral activities of AR-1 were studied in baby hamster kidney fibroblast BHK-21 cells, ICR suckling mice and induction of interferon α/β (IFN-α/β) and IFN-γ R-/- (AG129) mice. RESULTS Based on LC‒MS/MS analysis, 60 compounds (including flavonoids, phenols, anthraquinones, alkaloids and other types) were tentatively characterized from AR-1. AR-1 inhibited the cytopathic effect, the production of progeny virus and the synthesis of viral RNA and proteins by blocking DENV-2 binding to BHK-21 cells. Moreover, AR-1 significantly attenuated weight loss, decreased clinical scores and prolonged the survival of DENV-infected ICR suckling mice. Critically, the viral load in blood, brain and kidney tissues and the pathological changes in brain were remarkably alleviated after AR-1 treatment. Further study on AG129 mice showed that AR-1 obviously improved the clinical manifestations and survival rate, reduced viremia, attenuated gastric distension and relieved the pathological lesions caused by DENV. CONCLUSIONS In summary, this is the first report that AR-1 exhibits anti-DENV effects both in vitro and in vivo, which suggests that AR-1 may be developed as a therapeutic candidate against DENV infection.
Collapse
Affiliation(s)
- Chunyang Tian
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China
| | - Hefei Huang
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China
| | - Yuanru Zheng
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China
| | - Xuemei He
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China
| | - Lijun Yan
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China
| | - Lingzhu Shi
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China
| | - Tangjia Yang
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China
| | - Xi Chen
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China
| | - Jiabin Yang
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China
| | - Zibin Lu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China
| | - Huihui Cao
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China
| | - Wei Zhao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, PR China
| | - Zhiran Qin
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, PR China
| | - Jianhai Yu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, PR China
| | - Qingfa Tang
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, PR China
| | - Xiankun Tong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, 201203, PR China
| | - Junshan Liu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, PR China; Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, PR China.
| | - Linzhong Yu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, PR China.
| |
Collapse
|
34
|
Sampei Z, Koo CX, Teo FJ, Toh YX, Fukuzawa T, Gan SW, Nambu T, Ho A, Honda K, Igawa T, Ahmed F, Wang CI, Fink K, Nezu J. Complement Activation by an Anti-Dengue/Zika Antibody with Impaired Fcγ Receptor Binding Provides Strong Efficacy and Abrogates Risk of Antibody-Dependent Enhancement. Antibodies (Basel) 2023; 12:antib12020036. [PMID: 37218902 DOI: 10.3390/antib12020036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/12/2023] [Accepted: 05/10/2023] [Indexed: 05/24/2023] Open
Abstract
To combat infectious diseases, vaccines are considered the best prophylactic strategy for a wide range of the population, but even when vaccines are effective, the administration of therapeutic antibodies against viruses could provide further treatment options, particularly for vulnerable groups whose immunity against the viruses is compromised. Therapeutic antibodies against dengue are ideally engineered to abrogate binding to Fcγ receptors (FcγRs), which can induce antibody-dependent enhancement (ADE). However, the Fc effector functions of neutralizing antibodies against SARS-CoV-2 have recently been reported to improve post-exposure therapy, while they are dispensable when administered as prophylaxis. Hence, in this report, we investigated the influence of Fc engineering on anti-virus efficacy using the anti-dengue/Zika human antibody SIgN-3C and found it affected the viremia clearance efficacy against dengue in a mouse model. Furthermore, we demonstrated that complement activation through antibody binding to C1q could play a role in anti-dengue efficacy. We also generated a novel Fc variant, which displayed the ability for complement activation but showed very low FcγR binding and an undetectable level of the risk of ADE in a cell-based assay. This Fc engineering approach could make effective and safe anti-virus antibodies against dengue, Zika and other viruses.
Collapse
Affiliation(s)
- Zenjiro Sampei
- Chugai Pharmaceutical Co., Ltd., Yokohama 244-8602, Japan
- Chugai Pharmabody Research Pte. Ltd., Singapore 138623, Singapore
| | | | - Frannie Jiuyi Teo
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Ying Xiu Toh
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Taku Fukuzawa
- Chugai Pharmaceutical Co., Ltd., Yokohama 244-8602, Japan
- Chugai Pharmabody Research Pte. Ltd., Singapore 138623, Singapore
| | - Siok Wan Gan
- Chugai Pharmabody Research Pte. Ltd., Singapore 138623, Singapore
| | - Takeru Nambu
- Chugai Pharmaceutical Co., Ltd., Yokohama 244-8602, Japan
- Chugai Pharmabody Research Pte. Ltd., Singapore 138623, Singapore
| | - Adrian Ho
- Chugai Pharmabody Research Pte. Ltd., Singapore 138623, Singapore
| | - Kiyofumi Honda
- Chugai Pharmaceutical Co., Ltd., Yokohama 244-8602, Japan
- Chugai Pharmabody Research Pte. Ltd., Singapore 138623, Singapore
| | - Tomoyuki Igawa
- Chugai Pharmaceutical Co., Ltd., Yokohama 244-8602, Japan
- Chugai Pharmabody Research Pte. Ltd., Singapore 138623, Singapore
| | - Fariyal Ahmed
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Cheng-I Wang
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Katja Fink
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Junichi Nezu
- Chugai Pharmaceutical Co., Ltd., Yokohama 244-8602, Japan
- Chugai Pharmabody Research Pte. Ltd., Singapore 138623, Singapore
| |
Collapse
|
35
|
Huang Z, Zhang Y, Li H, Zhu J, Song W, Chen K, Zhang Y, Lou Y. Vaccine development for mosquito-borne viral diseases. Front Immunol 2023; 14:1161149. [PMID: 37251387 PMCID: PMC10213220 DOI: 10.3389/fimmu.2023.1161149] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/13/2023] [Indexed: 05/31/2023] Open
Abstract
Mosquito-borne viral diseases are a group of viral illnesses that are predominantly transmitted by mosquitoes, including viruses from the Togaviridae and Flaviviridae families. In recent years, outbreaks caused by Dengue and Zika viruses from the Flaviviridae family, and Chikungunya virus from the Togaviridae family, have raised significant concerns for public health. However, there are currently no safe and effective vaccines available for these viruses, except for CYD-TDV, which has been licensed for Dengue virus. Efforts to control the transmission of COVID-19, such as home quarantine and travel restrictions, have somewhat limited the spread of mosquito-borne viral diseases. Several vaccine platforms, including inactivated vaccines, viral-vector vaccines, live attenuated vaccines, protein vaccines, and nucleic acid vaccines, are being developed to combat these viruses. This review analyzes the various vaccine platforms against Dengue, Zika, and Chikungunya viruses and provides valuable insights for responding to potential outbreaks.
Collapse
Affiliation(s)
- Zhiwei Huang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yuxuan Zhang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Hongyu Li
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jiajie Zhu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Wanchen Song
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Keda Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Yanjun Zhang
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Yongliang Lou
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
36
|
Figueredo MB, Monteiro RLS, do Nascimento Silva A, de Araújo Fontoura JR, da Silva AR, Alves CAP. Analysis of the correlation between climatic variables and Dengue cases in the city of Alagoinhas/BA. Sci Rep 2023; 13:7512. [PMID: 37160928 PMCID: PMC10169194 DOI: 10.1038/s41598-023-34349-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/27/2023] [Indexed: 05/11/2023] Open
Abstract
The Aedes aegypti mosquito is the main vector of dengue and is a synanthropic insect and due to its anthropophilic nature, it has specific reproductive needs. In addition to that, it also needs tropical regions that provide climate-prone conditions that favor vector development. In this article, we propose the cross-correlation analysis between the climatic variables air temperature, relative humidity, weekly average precipitation and dengue cases in the period from 2017 to early 2021 in the municipality of Alagoinhas, Bahia, Brazil. To do so, we apply the trend-free cross-correlation, [Formula: see text], being a generalization of the fluctuation analysis without trend, where we calculate the cross correlation between time series to establish the influence of these variables on the occurrence of dengue disease. The results obtained here were a moderate correlation between relative humidity and the incidence of dengue cases, and a low correlation for relative air temperature and precipitation. However, the predominant factor in the incidence of dengue cases in the city of Alagoinhas is relative humidity and not air temperature and precipitation.
Collapse
Affiliation(s)
- Marcos Batista Figueredo
- Departamento de Ciências Exatas e da Terra II, Universidade do Estado da Bahia, Alagoinhas, BA, Brasil.
| | - Roberto Luiz Souza Monteiro
- Departamento de Ciências Exatas e da Terra II, Universidade do Estado da Bahia, Alagoinhas, BA, Brasil
- Centro Universitário SENAI CIMATEC, Salvador, BA, Brasil
| | | | | | - Andreia Rita da Silva
- Departamento de Ciências Exatas e da Terra II, Universidade do Estado da Bahia, Alagoinhas, BA, Brasil
| | | |
Collapse
|
37
|
Meewan I, Shiryaev SA, Kattoula J, Huang CT, Lin V, Chuang CH, Terskikh AV, Abagyan R. Allosteric Inhibitors of Zika Virus NS2B-NS3 Protease Targeting Protease in "Super-Open" Conformation. Viruses 2023; 15:v15051106. [PMID: 37243192 DOI: 10.3390/v15051106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
The Zika virus (ZIKV), a member of the Flaviviridae family, is considered a major health threat causing multiple cases of microcephaly in newborns and Guillain-Barré syndrome in adults. In this study, we targeted a transient, deep, and hydrophobic pocket of the "super-open" conformation of ZIKV NS2B-NS3 protease to overcome the limitations of the active site pocket. After virtual docking screening of approximately seven million compounds against the novel allosteric site, we selected the top six candidates and assessed them in enzymatic assays. Six candidates inhibited ZIKV NS2B-NS3 protease proteolytic activity at low micromolar concentrations. These six compounds, targeting the selected protease pocket conserved in ZIKV, serve as unique drug candidates and open new opportunities for possible treatment against several flavivirus infections.
Collapse
Affiliation(s)
- Ittipat Meewan
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Sergey A Shiryaev
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Julius Kattoula
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Chun-Teng Huang
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Vivian Lin
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Chiao-Han Chuang
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Alexey V Terskikh
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Ruben Abagyan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
38
|
Hussain Z, Rani S, Ma F, Li W, Shen W, Gao T, Wang J, Pei R. Dengue determinants: Necessities and challenges for universal dengue vaccine development. Rev Med Virol 2023; 33:e2425. [PMID: 36683235 DOI: 10.1002/rmv.2425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 01/08/2023] [Accepted: 01/13/2023] [Indexed: 01/24/2023]
Abstract
Dengue illness can range from mild illness to life-threatening haemorrhage. It is an Aedes-borne infectious disease caused by the dengue virus, which has four serotypes. Each serotype acts as an independent infectious agent. The antibodies against one serotype confer homotypic immunity but temporary protection against heterotypic infection. Dengue has become a growing health concern for up to one third of the world's population. Currently, there is no potent anti-dengue medicine, and treatment for severe dengue relies on intravenous fluid management and pain medications. The burden of dengue dramatically increases despite advances in vector control measures. These factors underscore the need for a vaccine. Various dengue vaccine strategies have been demonstrated, that is, live attenuated vaccine, inactivated vaccine, DNA vaccine, subunit vaccine, and viral-vector vaccines, some of which are at the stage of clinical testing. Unfortunately, the forefront candidate vaccine is less than satisfactory, and its performance depends on serostatus and age factors. The lessons from clinical studies depicted ambiguity concerning the efficacy of dengue vaccine. Our study highlighted that viral structural heterogeneity, epitope accessibility, autoimmune complications, genetic variants, genetic diversities, antigen competition, virulence variation, host-pathogen specific interaction, antibody-dependent enhancement, cross-reactive immunity among Flaviviruses, and host-susceptibility determinants not only influence infection outcomes but also hampered successful vaccine development. This review integrates dengue determinants allocated necessities and challenges, which would provide insight for universal dengue vaccine development.
Collapse
Affiliation(s)
- Zahid Hussain
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, China.,CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, China.,Molecular Virology Laboratory, Department of Biosciences, Comsats University Islamabad (CUI), Islamabad, Pakistan
| | - Saima Rani
- Molecular Virology Laboratory, Department of Biosciences, Comsats University Islamabad (CUI), Islamabad, Pakistan
| | - Fanshu Ma
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, China
| | - Wenjing Li
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, China.,CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, China
| | - Wenqi Shen
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, China
| | - Tian Gao
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, China
| | - Jine Wang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, China.,CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, China
| | - Renjun Pei
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, China.,CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, China
| |
Collapse
|
39
|
Wang LM, Li N, Ren CP, Peng ZY, Lu HZ, Li D, Wu XY, Zhou ZX, Deng JY, Zheng ZH, Wang RQ, Du YN, Wang DQ, Deng SQ. Sterility of Aedes albopictus by X-ray Irradiation as an Alternative to γ-ray Irradiation for the Sterile Insect Technique. Pathogens 2023; 12:102. [PMID: 36678450 PMCID: PMC9867157 DOI: 10.3390/pathogens12010102] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/21/2022] [Accepted: 01/05/2023] [Indexed: 01/10/2023] Open
Abstract
The mosquito Aedes albopictus can transmit various arboviral diseases, posing a severe threat to human health. As an environmentally friendly method, sterile insect technology (SIT) is considered an alternative to traditional methods such as chemical pesticides to control Ae. albopictus. In SIT, the sterility of male mosquitoes can be achieved by γ-ray or X-ray radiation. Compared with γ-rays, X-rays are easier to obtain, cheaper, and less harmful. However, there is a lack of comparative assessment of these two types of radiation for SIT under the same controlled conditions. Here, we compared the effects of X-ray and γ-ray radiation on the sterility of Ae. albopictus males under laboratory-controlled conditions. Neither type of radiation affected the number of eggs but significantly reduced the survival time and hatch rate. The same dose of γ-rays caused a higher sterility effect on males than X-rays but had a more significant impact on survival. However, X-rays could achieve the same sterility effect as γ-rays by increasing the radiation dose. For example, X-rays of 60 Gy induced 99% sterility, similar to γ-rays of 40 Gy. In the test of male mating competitiveness, the induced sterility and the male mating competitiveness index were also identical at the same release ratio (sterile males/fertile males). At a release ratio of 7:1, nearly 80% of eggs failed to hatch. Sterile males produced by X-ray and γ-ray radiation had similar male competitiveness in competition with field males. In conclusion, a higher dose of X-rays is required to achieve the same sterility effect, compared to γ-rays. When γ-rays are not readily available, high-dose X-rays can be used instead. This study provides data supporting the selection of more suitable radiation for the field release of sterile male mosquitoes.
Collapse
Affiliation(s)
- Lin-Min Wang
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoonoses of High Institutions in Anhui, Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Ni Li
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoonoses of High Institutions in Anhui, Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Cui-Ping Ren
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoonoses of High Institutions in Anhui, Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Zhe-Yu Peng
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoonoses of High Institutions in Anhui, Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Hong-Zheng Lu
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoonoses of High Institutions in Anhui, Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Dong Li
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoonoses of High Institutions in Anhui, Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Xin-Yu Wu
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoonoses of High Institutions in Anhui, Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Zi-Xin Zhou
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoonoses of High Institutions in Anhui, Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Jian-Yi Deng
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoonoses of High Institutions in Anhui, Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Zi-Han Zheng
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoonoses of High Institutions in Anhui, Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Ruo-Qing Wang
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoonoses of High Institutions in Anhui, Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Yi-Nan Du
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoonoses of High Institutions in Anhui, Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Duo-Quan Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), National Health Commission Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China
| | - Sheng-Qun Deng
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoonoses of High Institutions in Anhui, Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
40
|
Kayesh MEH, Khalil I, Kohara M, Tsukiyama-Kohara K. Increasing Dengue Burden and Severe Dengue Risk in Bangladesh: An Overview. Trop Med Infect Dis 2023; 8:tropicalmed8010032. [PMID: 36668939 PMCID: PMC9866424 DOI: 10.3390/tropicalmed8010032] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/24/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Dengue is a prevalent and rapidly spreading mosquito-borne viral disease affecting humans. The geographic range of dengue is expanding, and much like in many other tropical regions of the world, dengue has become a major public health issue in Bangladesh. Until a large epidemic dengue outbreak in 2000, sporadic outbreaks have occurred in Bangladesh since 1964. After 2000, varying intensities of dengue activity were observed each year until 2018. However, in 2019, Bangladesh experienced the largest dengue epidemic in its history, with 101,354 dengue cases and 164 dengue-related deaths. Notably, this outbreak occurred in many regions that were previously considered free of the disease. As of 10 December 2022, a total of 60,078 dengue cases and 266 dengue-related deaths were reported in Bangladesh, with the 2022 outbreak being the second largest since 2000. There is an increased genetic diversity of the dengue virus (DENV) in Bangladesh and all four DENV serotypes are prevalent and co-circulating, which increases the risk for severe dengue owing to the antibody-dependent enhancement effect. Vector control remains the mainstay of dengue outbreak prevention; however, the vector control programs adopted in Bangladesh seem inadequate, requiring improved vector control strategies. In this review, we provide an overview of the epidemiology of DENV infection and the risks for a severe dengue outbreak in Bangladesh. Additionally, we discuss different dengue vector control strategies, from which the most suitable and effective measures can be applied in the context of Bangladesh for tackling future dengue epidemics.
Collapse
Affiliation(s)
- Mohammad Enamul Hoque Kayesh
- Department of Microbiology and Public Health, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal 8210, Bangladesh
- Correspondence: (M.E.H.K.); (K.T.-K.); Tel.: +88-025-506-1677 (M.E.H.K.); +81-99-285-3589 (K.T.-K.)
| | - Ibrahim Khalil
- Department of Livestock Services, Ministry of Fisheries & Livestock, Government of the Peoples Republic of Bangladesh, Dhaka 1215, Bangladesh
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
- Correspondence: (M.E.H.K.); (K.T.-K.); Tel.: +88-025-506-1677 (M.E.H.K.); +81-99-285-3589 (K.T.-K.)
| |
Collapse
|
41
|
Bhardwaj A, Sharma R, Grover A. Immuno-informatics guided designing of a multi-epitope vaccine against Dengue and Zika. J Biomol Struct Dyn 2023; 41:1-15. [PMID: 34796791 DOI: 10.1080/07391102.2021.2002720] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Dengue and zika are amongst the most prevalent mosquito-borne diseases caused by closely related members Dengue virus (DENV) and Zika virus (ZIKV), respectively, of the Flaviviridae family. DENV and ZIKV have been reported to co-infect several people, resulting in fatalities across the world. A vaccine that can safeguard against both these pathogens concurrently, can offer several advantages. This study has employed immuno-informatics for devising a multi-epitope, multi-pathogenic vaccine against both these viruses. Since, the two viruses share a common vector source, whose salivary components are reported to aid viral pathogenesis; antigenic salivary proteins from Aedes aegypti were also incorporated into the design of the vaccine along with conserved structural and non-structural viral proteins. Conserved B- and T-cell epitopes were identified for all the selected antigenic proteins. These epitopes were merged and further supplemented with β-defensin as an adjuvant, to yield an immunogenic vaccine construct. In-silico 3D modeling and structural validation of the vaccine construct was conducted, followed by its molecular docking and molecular dynamics simulation studies with human TLR2. Immune simulation study was also performed, and it further provided support that the designed vaccine can mount an effective immune response and hence provide protection against both DENV and ZIKV. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aditi Bhardwaj
- School of Biosciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Ritika Sharma
- School of Biotechnology, Jawaharlal Nehru University (JNU), Delhi, India
| | - Abhinav Grover
- School of Biotechnology, Jawaharlal Nehru University (JNU), Delhi, India
| |
Collapse
|
42
|
Engineering Modified mRNA-Based Vaccine against Dengue Virus Using Computational and Reverse Vaccinology Approaches. Int J Mol Sci 2022; 23:ijms232213911. [PMID: 36430387 PMCID: PMC9698390 DOI: 10.3390/ijms232213911] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Dengue virus belonging to the family Flaviviridae and its four serotypes are responsible for dengue infections, which extend over 60 countries in tropical and subtropical areas of the world including Pakistan. During the ongoing dengue outbreak in Pakistan (2022), over 30,000 cases have been reported, and over 70 lives have been lost. The only commercialized vaccine against DENV, Dengvaxia, cannot be administered as a prophylactic measure to cure this infection due to various complications. Using machine learning and reverse vaccinology approaches, this study was designed to develop a tetravalent modified nucleotide mRNA vaccine using NS1, prM, and EIII sequences of dengue virus from Pakistani isolates. Based on high antigenicity, non-allergenicity, and toxicity profiling, B-cell epitope, cytotoxic T lymphocyte (CTL), and helper T lymphocyte (HTL) putative vaccine targets were predicted. Molecular docking confirmed favorable interactions between T-cell epitopes and their respective HLA alleles, while normal mode analysis validated high-affinity interactions of vaccine proteins with immune receptors. In silico immune simulations confirmed adequate immune responses to eliminate the antigen and generate memory. Codon optimization, physicochemical features, nucleotide modifications, and suitable vector availability further ensured better antigen expression and adaptive immune responses. We predict that this vaccine construct may prove to be a good vaccinal candidate against dengue virus in vitro as well.
Collapse
|
43
|
Krokovsky L, Guedes DRD, Santos FCF, Sales KGDS, Bandeira DA, Pontes CR, Leal WS, Ayres CFJ, Paiva MHS. Potential Nosocomial Infections by the Zika and Chikungunya Viruses in Public Health Facilities in the Metropolitan Area of Recife, Brazil. Trop Med Infect Dis 2022; 7:tropicalmed7110351. [PMID: 36355893 PMCID: PMC9694620 DOI: 10.3390/tropicalmed7110351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Since 2015, the Dengue, Zika, and Chikungunya viruses gained notoriety for their impact in public health in many parts of the globe, including Brazil. In Recife, the capital of Pernambuco State, the introduction of ZIKV impacted human population tremendously, owing to the increase in the number of neurological cases, such as the Guillain−Barré and congenital Zika disorders. Later, Recife was considered to be the epicenter for ZIKV epidemics in Brazil. For arboviral diseases, there are some risk factors, such as climate changes, low socioeconomic conditions, and the high densities of vectors populations, that favor the broad and rapid dispersion of these three viruses in the city. Therefore, continuous arbovirus surveillance provides an important tool for detecting these arboviruses and predicting new outbreaks. The purpose of the present study was to evaluate the circulation of DENV, ZIKV, and CHIKV by RT-qPCR in mosquitoes collected in health care units from the metropolitan area of Recife (MAR), during 2018. A total of 2321 female mosquitoes (357 pools) belonging to two species, Aedes aegypti and Culex quinquefasciatus, were collected from 18 different healthcare units, distributed in five cities from the MAR. Twenty-three pools were positive for ZIKV, out of which, seventeen were of C. quinquefasciatus and six were of A. aegypti. Positive pools were collected in 11/18 health care units screened, with Cq values ranging from 30.0 to 37.4 and viral loads varying from 1.88 × 107 to 2.14 × 109 RNA copies/mL. Nosocomial Aedes- and Culex-borne transmission of arbovirus are widely ignored by surveillance and vector control programs, even though healthcare-associated infections (HAI) are considered a serious threat to patient safety worldwide. Although the results presented here concern only the epidemiological scenario from 2018 in MAR, the potential of hospital-acquired transmission through mosquito bites is being overlooked by public health authorities. It is, therefore, of the ultimate importance to establish specific control programs for these locations.
Collapse
Affiliation(s)
- Larissa Krokovsky
- Entomology Department, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife 50740-465, Brazil
| | | | | | | | | | | | - Walter Soares Leal
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | | | - Marcelo Henrique Santos Paiva
- Entomology Department, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife 50740-465, Brazil
- Life Sciences Center, Agreste Academic Center, Federal University of Pernambuco, Caruaru 55002-970, Brazil
- Correspondence: ; Tel.: +55-81-21012552
| |
Collapse
|
44
|
Characterization of B-cell and T-cell responses to a tetravalent dengue purified inactivated vaccine in healthy adults. NPJ Vaccines 2022; 7:132. [PMID: 36316335 PMCID: PMC9622737 DOI: 10.1038/s41541-022-00537-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/08/2022] [Indexed: 11/07/2022] Open
Abstract
The increasing global impact of dengue underscores the need for a dengue virus (DENV) vaccine. We assessed B-cell and T-cell responses following vaccination with four formulations of a tetravalent dengue purified inactivated vaccine (DPIV) in dengue-primed and dengue-naive adults from two studies (NCT01666652, NCT01702857). Frequencies of DPIV-induced memory B cells specific to each DENV serotype remained high up to 12 months post-vaccination, and were higher in the dengue-primed than dengue-naive adults. A subsequent DPIV booster dose induced strong anamnestic B-cell responses. Multifunctional CD4+ T cells (predominantly expressing IL-2) were induced by DPIV, with higher frequencies in dengue-primed adults. DPIV-induced CD4+ T cells also demonstrated in vitro proliferative capacity and antigen-specific production of GM-CSF, IFN-γ, and IL-13. CD8+ T-cell responses were undetectable in dengue-naive adults and low in dengue-primed individuals. B- and T-cell responses persisted up to 12 months post-vaccination in both dengue-primed and dengue-naive adults.
Collapse
|
45
|
Marten AD, Tift CT, Tree MO, Bakke J, Conway MJ. Chronic depletion of vertebrate lipids in Aedes aegypti cells dysregulates lipid metabolism and inhibits innate immunity without altering dengue infectivity. PLoS Negl Trop Dis 2022; 16:e0010890. [PMID: 36279305 PMCID: PMC9632908 DOI: 10.1371/journal.pntd.0010890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/03/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Aedes aegypti is the primary vector of dengue virus (DENV) and other arboviruses. Previous literature suggests that vertebrate and invertebrate lipids and the nutritional status of mosquitoes modify virus infection. Here, we developed a vertebrate lipid-depleted Ae. aegypti cell line to investigate if chronic depletion of vertebrate lipids normally present in a blood meal and insect cell culture medium would impact cell growth and virus infection. Chronic depletion of vertebrate lipids reduced cell size and proliferation, although cells retained equivalent total intracellular lipids per cell by reducing lipolysis and modifying gene expression related to sugar and lipid metabolism. Downregulation of innate immunity genes was also observed. We hypothesized that chronic depletion of vertebrate lipids would impact virus infection; however, the same amount of DENV was produced per cell. This study reveals how Ae. aegypti cells adapt in the absence of vertebrate lipids, and how DENV can replicate equally well in cells that contain predominately vertebrate or invertebrate lipids. Aedes aegypti is a major threat to public health. Ae. aegypti is the primary vector of dengue virus types 1–4 (DENV 1–4), zika virus (ZIKV), chikungunya virus (CHIKV), and yellow fever virus (YFV). Ae. aegypti acquires arboviruses from a vertebrate host during blood feeding. Blood feeding introduces vertebrate-specific factors into the mosquito that may be important for both mosquito and virus. This study reveals that Ae. aegypti adapts to depletion of vertebrate lipids by inhibiting lipolysis and promoting de novo synthesis of invertebrate lipids, and that DENV can replicate equally well without high concentrations of cholesterol and other vertebrate lipid species. Understanding how disease vectors adapt to nutritional changes will identify novel strategies for vector control and disease mitigation.
Collapse
Affiliation(s)
- Andrew D. Marten
- Foundational Sciences, Central Michigan University College of Medicine, Mt. Pleasant, Michigan, United States of America
| | - Clara T. Tift
- Foundational Sciences, Central Michigan University College of Medicine, Mt. Pleasant, Michigan, United States of America
| | - Maya O. Tree
- Foundational Sciences, Central Michigan University College of Medicine, Mt. Pleasant, Michigan, United States of America
| | - Jesse Bakke
- Foundational Sciences, Central Michigan University College of Medicine, Mt. Pleasant, Michigan, United States of America
| | - Michael J. Conway
- Foundational Sciences, Central Michigan University College of Medicine, Mt. Pleasant, Michigan, United States of America
- * E-mail:
| |
Collapse
|
46
|
Song H, Yuan Z, Liu S, Jin Z, Sun G. Mathematical modeling the dynamics of SARS-CoV-2 infection with antibody-dependent enhancement. NONLINEAR DYNAMICS 2022; 111:2943-2958. [PMID: 36246668 PMCID: PMC9540275 DOI: 10.1007/s11071-022-07939-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
The advent and swift global spread of the novel coronavirus (COVID-19) transmitted by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have caused massive deaths and economic devastation worldwide. Antibody-dependent enhancement (ADE) is a common phenomenon in virology that directly affects the effectiveness of the vaccine, and there is no fully effective vaccine for diseases. In order to study the potential role of ADE on SARS-CoV-2 infection, we establish the SARS-CoV-2 infection dynamics model with ADE. The basic reproduction number is computed. We prove that when R 0 < 1 , the infection-free equilibrium is globally asymptotically stable, and the system is uniformly persistent when R 0 > 1 . We carry out the sensitivity analysis by the partial rank correlation coefficients and the extended version of the Fourier amplitude sensitivity test. Numerical simulations are implemented to illustrate the theoretical results. The potential impact of ADE on SARS-CoV-2 infection is also assessed. Our results show that ADE may accelerate SARS-CoV-2 infection. Furthermore, our findings suggest that increasing antibody titers can have the ability to control SARS-CoV-2 infection with ADE, but enhancing the neutralizing power of antibodies may be ineffective to control SARS-CoV-2 infection with ADE. Our study presumably contributes to a better understanding of the dynamics of SARS-CoV-2 infection with ADE.
Collapse
Affiliation(s)
- Haitao Song
- Complex Systems Research Center, Shanxi University, Taiyuan, 030006 China
- Shanxi Key Laboratory of Mathematical Techniques and Big Data Analysis on Disease Control and Prevention, Shanxi University, Taiyuan, 030006 China
| | - Zepeng Yuan
- Complex Systems Research Center, Shanxi University, Taiyuan, 030006 China
- Shanxi Key Laboratory of Mathematical Techniques and Big Data Analysis on Disease Control and Prevention, Shanxi University, Taiyuan, 030006 China
- School of Mathematical Sciences, Shanxi University, Taiyuan, 030006 China
| | - Shengqiang Liu
- School of Mathematical Sciences, Tiangong University, Tianjin, 300387 China
| | - Zhen Jin
- Complex Systems Research Center, Shanxi University, Taiyuan, 030006 China
- Shanxi Key Laboratory of Mathematical Techniques and Big Data Analysis on Disease Control and Prevention, Shanxi University, Taiyuan, 030006 China
| | - Guiquan Sun
- Complex Systems Research Center, Shanxi University, Taiyuan, 030006 China
- Department of Mathematics, North University of China, Taiyuan, 030051 China
| |
Collapse
|
47
|
Mao ZQ, Minakawa N, Moi ML. Novel Antiviral Efficacy of Hedyotis diffusa and Artemisia capillaris Extracts against Dengue Virus, Japanese Encephalitis Virus, and Zika Virus Infection and Immunoregulatory Cytokine Signatures. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11192589. [PMID: 36235456 PMCID: PMC9571899 DOI: 10.3390/plants11192589] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 05/25/2023]
Abstract
Currently, there are no specific therapeutics for flavivirus infections, including dengue virus (DENV) and Zika virus (ZIKV). In this study, we evaluated extracts from the plants Hedyotis diffusa (HD) and Artemisia capillaris (AC) to determine the antiviral activity against DENV, ZIKV, and Japanese encephalitis virus (JEV). HD and AC demonstrated inhibitory activity against JEV, ZIKV, and DENV replication and reduced viral RNA levels in a dose-responsive manner, with non-cytotoxic concentration ranging from 0.1 to 10 mg/mL. HD and AC had low cytotoxicity to Vero cells, with CC50 values of 33.7 ± 1.6 and 30.3 ± 1.7 mg/mL (mean ± SD), respectively. The anti-flavivirus activity of HD and AC was also consistent in human cell lines, including human glioblastoma (T98G), human chronic myeloid leukemia (K562), and human embryonic kidney (HEK-293T) cells. Viral-infected, HD-treated cells demonstrated downregulation of cytokines including CCR1, CCL26, CCL15, CCL5, IL21, and IL17C. In contrast, CCR1, CCL26, and AIMP1 were elevated following AC treatment in viral-infected cells. Overall, HD and AC plant extracts demonstrated flavivirus replication inhibitory activity, and together with immunoregulatory cytokine signatures, these results suggest that HD and AC possess bioactive compounds that may further be refined as promising candidates for clinical applications.
Collapse
Affiliation(s)
- Zhan Qiu Mao
- Institute of Tropical Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Noboru Minakawa
- Institute of Tropical Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Meng Ling Moi
- Institute of Tropical Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
- School of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
48
|
Choy RKM, Bourgeois AL, Ockenhouse CF, Walker RI, Sheets RL, Flores J. Controlled Human Infection Models To Accelerate Vaccine Development. Clin Microbiol Rev 2022; 35:e0000821. [PMID: 35862754 PMCID: PMC9491212 DOI: 10.1128/cmr.00008-21] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The timelines for developing vaccines against infectious diseases are lengthy, and often vaccines that reach the stage of large phase 3 field trials fail to provide the desired level of protective efficacy. The application of controlled human challenge models of infection and disease at the appropriate stages of development could accelerate development of candidate vaccines and, in fact, has done so successfully in some limited cases. Human challenge models could potentially be used to gather critical information on pathogenesis, inform strain selection for vaccines, explore cross-protective immunity, identify immune correlates of protection and mechanisms of protection induced by infection or evoked by candidate vaccines, guide decisions on appropriate trial endpoints, and evaluate vaccine efficacy. We prepared this report to motivate fellow scientists to exploit the potential capacity of controlled human challenge experiments to advance vaccine development. In this review, we considered available challenge models for 17 infectious diseases in the context of the public health importance of each disease, the diversity and pathogenesis of the causative organisms, the vaccine candidates under development, and each model's capacity to evaluate them and identify correlates of protective immunity. Our broad assessment indicated that human challenge models have not yet reached their full potential to support the development of vaccines against infectious diseases. On the basis of our review, however, we believe that describing an ideal challenge model is possible, as is further developing existing and future challenge models.
Collapse
Affiliation(s)
- Robert K. M. Choy
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | - A. Louis Bourgeois
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | | | - Richard I. Walker
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | | | - Jorge Flores
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| |
Collapse
|
49
|
Ismail S, Fildes R, Ahmad R, Wan Mohamad Ali WN, Omar T. The practicality of Malaysia dengue outbreak forecasting model as an early warning system. Infect Dis Model 2022; 7:510-525. [PMID: 36091345 PMCID: PMC9418377 DOI: 10.1016/j.idm.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/07/2022] [Accepted: 07/30/2022] [Indexed: 11/26/2022] Open
Abstract
Dengue is a harmful tropical disease that causes death to many people. Currently, the dengue vaccine development is still at an early stage, and only intervention methods exist after dengue cases increase. Thus, previously, two scientific experimental field studies were conducted in producing a dengue outbreak forecasting model as an early warning system. Successfully, an Autoregressive Distributed Lag (ADL) Model was developed using three factors: the epidemiological, entomological, and environmental with an accuracy of 85%; but a higher percentage is required in minimizing the error for the model to be useful. Hence, this study aimed to develop a practical and cost-effective dengue outbreak forecasting model with at least 90% accuracy to be embedded in an early warning computer system using the Internet of Things (IoT) approach. Eighty-one weeks of time series data of the three factors were used in six forecasting models, which were Autoregressive Distributed Lag (ADL), Hierarchical Forecasting (Bottom-up and Optimal combination) and three Machine Learning methods: (Artificial Neural Network (ANN), Support Vector Machine (SVM) and Random Forest). Five error measures were used to evaluate the consistency performance of the models in order to ensure model performance. The findings indicated Random Forest outperformed the other models with an accuracy of 95% when including all three factors. But practically, collecting mosquito related data (the entomological factor) was very costly and time consuming. Thus, it was removed from the model, and the accuracy dropped to 92% but still high enough to be of practical use, i.e., beyond 90%. However, the practical ground operationalization of the early warning system also requires several rain gauges to be located at the dengue hot spots due to localized rainfall. Hence, further analysis was conducted in determining the location of the rain gauges. This has led to the recommendation that the rain gauges should be located about 3–4 km apart at the dengue hot spots to ensure the accuracy of the rainfall data to be included in the dengue outbreak forecasting model so that it can be embedded in the early warning system. Therefore, this early warning system can save lives, and prevention is better than cure.
Collapse
|
50
|
Sadanandane C, Gunasekaran K, Panneer D, Subbarao SK, Rahi M, Vijayakumar B, Athithan V, Sakthivel A, Dinesh S, Jambulingam P. Studies on the fitness characteristics of wMel- and wAlbB-introgressed Aedes aegypti (Pud) lines in comparison with wMel- and wAlbB-transinfected Aedes aegypti (Aus) and wild-type Aedes aegypti (Pud) lines. Front Microbiol 2022; 13:947857. [PMID: 35992676 PMCID: PMC9389317 DOI: 10.3389/fmicb.2022.947857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Wolbachia, an intracellular maternally transmitted endosymbiont, has been shown to interfere with the replication of dengue virus in Aedes aegypti mosquitoes. The Wolbachia-transinfected Ae. aegypti has been currently released in many countries to test its effectiveness in preventing the transmission of dengue virus. ICMR-Vector Control Research Centre in collaboration with World Mosquito Program Monash University, Australia, has generated two new Wolbachia-introgressed Ae. aegypti Puducherry (Pud) lines via backcrossing Ae. aegypti females of Australian (Aus) strains, infected with wMel and wAlbB Wolbachia with wild-type Ae. aegypti Puducherry (Pud) males. Wolbachia infections are known to induce a fitness cost and confer benefit on the host mosquito populations that will influence spread of the Wolbachia into native wild mosquito populations during the field release. Hence, the induced fitness cost or benefit/advantage in the two newly generated Ae. aegypti (Pud) lines was assessed in the laboratory in comparison with the wild-type Ae. aegypti (Pud) strain. In addition, maternal transmission (MT) efficiency, induced cytoplasmic incompatibility (CI), and insecticide resistance status of the two (Pud) lines were determined to assess the likely frequency of wMel and wAlbB infections in the native wild population after field invasion. The study shows that wMel and wAlbB infections did not induce any fitness cost on the two newly generated (Pud) lines. Rather, in terms of wing length, fecundity, egg hatch rate, and adult survival, the Wolbachia introgression conferred fitness benefits on the (Pud) lines compared to uninfected Wolbachia free wild Ae. aegypti population. wMel and wAlbB exhibited a high maternal transmission (99–100%) and induced nearly complete (98–100%) cytoplasmic incompatibility. Both the (Pud) lines were resistant to deltamethrin, malathion, DDT, and temephos, and the level of resistance was almost the same between the two lines as in the wild type. Overall, the stable association of wMel and wAlbB established with Ae. aegypti and the reproductive advantages of the (Pud) lines encourage a pilot release in the field for population replacement potential.
Collapse
Affiliation(s)
- Candasamy Sadanandane
- ICMR-Vector Control Research Centre, Medical Complex, Puducherry, India
- *Correspondence: Candasamy Sadanandane,
| | | | - Devaraju Panneer
- ICMR-Vector Control Research Centre, Medical Complex, Puducherry, India
| | - Sarala K. Subbarao
- Indian Council of Medical Research, Ramalingaswami Bhawan, New Delhi, India
| | - Manju Rahi
- Indian Council of Medical Research, Ramalingaswami Bhawan, New Delhi, India
- Manju Rahi,
| | | | - Velan Athithan
- ICMR-Vector Control Research Centre, Medical Complex, Puducherry, India
| | | | - Sundaram Dinesh
- ICMR-Vector Control Research Centre, Medical Complex, Puducherry, India
| | | |
Collapse
|