1
|
Feron BKL, Gomez T, Youens NC, Mahmoud NAM, Abdelrahman HKS, Bugert JJ, Richardson SCW. Antiviral siRNA delivered using attenuated, anthrax toxin protects cells from the cytopathic effects of Zika virus. Virus Genes 2025; 61:342-354. [PMID: 40159353 PMCID: PMC12053335 DOI: 10.1007/s11262-025-02152-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/20/2025] [Indexed: 04/02/2025]
Abstract
Curative drugs are needed for the treatment of viral infections. Small interfering (si)RNA offer such a prospect but require the development of safe, effective and non-hepatotropic subcellular delivery systems. Here, 5 candidate siRNA molecules targeting defined sequences within the Zika Virus (ZIKV) genome were assayed for their ability to reduce ZIKV induced cytopathic effects in vitro. The protection of Huh-7 cells from ZIKV cytopathic effects was recorded after electroporation and the siRNA Feron-Zv2, resulting in 122.7 ± 5.3% cell viability (n = 3 ± standard error of the mean (SEM), 100 nM siRNA) after exposure to ZIKV relative to a virus treated control (35.2 ± 7.1% cell viability (n = 3 ± SEM)). Protection of BHK-21 cells was recorded after transfection with an attenuated anthrax toxin containing an RNA binding domain. Treatment with Feron-Zv4 resulted in 75.1 ± 2.9% cell viability (n = 3 ± SEM, 25 nM siRNA) after exposure to ZIKV. This protection was mirrored by a system containing octameric PA where a maximum of 86.2 ± 4.4% cell viability was reported (n = 3 ± SEM, 75 nM siRNA) after treatment with Feron-Zv2. Scrambled siRNA afforded no measurable protection. Here we report for the first time that siRNA delivered by either attenuated anthrax toxin or octamer forming ATx can protect mammalian cells from ZIKV cytopathic effects.
Collapse
Affiliation(s)
- Benedita K L Feron
- Exogenix Laboratory, School of Science, University of Greenwich, Central Avenue, Chatham, Kent, ME4 4TB, UK
| | - Timothy Gomez
- Exogenix Laboratory, School of Science, University of Greenwich, Central Avenue, Chatham, Kent, ME4 4TB, UK
| | - Natalie C Youens
- Exogenix Laboratory, School of Science, University of Greenwich, Central Avenue, Chatham, Kent, ME4 4TB, UK
| | - Nourhan A M Mahmoud
- Department of Biochemistry, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 12451, Egypt
| | - Hadeer K S Abdelrahman
- Department of Biochemistry, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 12451, Egypt
| | | | - Simon C W Richardson
- Exogenix Laboratory, School of Science, University of Greenwich, Central Avenue, Chatham, Kent, ME4 4TB, UK.
| |
Collapse
|
2
|
Cenci Dietrich V, Costa JMC, Oliveira MMGL, Aguiar CEO, Silva LGDO, Luz MS, Lemos FFB, de Melo FF. Pathogenesis and clinical management of arboviral diseases. World J Virol 2025; 14:100489. [PMID: 40134841 PMCID: PMC11612872 DOI: 10.5501/wjv.v14.i1.100489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/01/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Arboviral diseases are viral infections transmitted to humans through the bites of arthropods, such as mosquitoes, often causing a variety of pathologies associated with high levels of morbidity and mortality. Over the past decades, these infections have proven to be a significant challenge to health systems worldwide, particularly following the considerable geographic expansion of the dengue virus (DENV) and its most recent outbreak in Latin America as well as the difficult-to-control outbreaks of yellow fever virus (YFV), chikungunya virus (CHIKV), and Zika virus (ZIKV), leaving behind a substantial portion of the population with complications related to these infections. Currently, the world is experiencing a period of intense globalization, which, combined with global warming, directly contributes to wider dissemination of arbovirus vectors across the globe. Consequently, all continents remain on high alert for potential new outbreaks. Thus, this review aims to provide a comprehensive understanding of the pathogenesis of the four main arboviruses today (DENV, ZIKV, YFV, and CHIKV) discussing their viral characteristics, immune responses, and mechanisms of viral evasion, as well as important clinical aspects for patient management. This includes associated symptoms, laboratory tests, treatments, existing or developing vaccines and the main associated complications, thus integrating a broad historical, scientific and clinical approach.
Collapse
Affiliation(s)
- Victoria Cenci Dietrich
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Juan Marcos Caram Costa
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | | | | | - Marcel Silva Luz
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabian Fellipe Bueno Lemos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| |
Collapse
|
3
|
Johri M, Téhinian S, Pérez Osorio MC, Barış E, Wahl B. Vaccination for prevention of hearing loss: a scoping review. COMMUNICATIONS MEDICINE 2025; 5:85. [PMID: 40128310 PMCID: PMC11933380 DOI: 10.1038/s43856-025-00795-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 02/21/2025] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND Infectious diseases in childhood and adolescence are significant and often preventable causes of hearing loss, especially in low- and middle-income countries. We conducted a scoping review to examine the extent, range and nature of available evidence on the role of vaccination for prevention of hearing loss worldwide. METHODS We reviewed the published scientific literature to identify studies providing quantitative information on the relationship between vaccination and hearing loss. We searched four databases: MEDLINE, EMBASE, Cochrane Library and Global Index Medicus. No date, language, or geographical restrictions were imposed. Two independent reviewers assessed eligibility and charted data. RESULTS Here we show that vaccination may be a key, underexploited strategy for primary prevention of child and adolescent hearing loss. Although the important contributions of rubella and meningitis vaccinations to hearing loss prevention are widely recognised, we identify 26 distinct known or potential infectious causes of hearing loss that are preventable or possibly preventable through vaccination. Notwithstanding, we find a dearth of empirical evidence on the impacts of vaccination on hearing loss prevention. In addition, the review identifies no research from low- and middle-income countries, which bear the overwhelming burden of child and adolescent hearing loss. Finally, it shows that numerous vaccines that address priority infectious diseases relevant to hearing loss are in development and could be brought into use. CONCLUSIONS We recommend strategic investment in research concerning vaccination as a strategy for primary prevention of child and adolescent hearing loss.
Collapse
Affiliation(s)
- Mira Johri
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.
- Département de Gestion, d'évaluation, et de Politique de Santé, École de Santé Publique (ESPUM), Université de Montréal, Montréal, QC, Canada.
| | - Shoghig Téhinian
- Département de Gestion, d'évaluation, et de Politique de Santé, École de Santé Publique (ESPUM), Université de Montréal, Montréal, QC, Canada
| | - Myriam Cielo Pérez Osorio
- Pôle de Recherche de la Direction Recherche, Enseignement-Perfectionnement et Innovation, Centre Intégré de Santé et de Services Sociaux de la Montérégie-Ouest, Longueuil, QC, Canada
| | - Enis Barış
- Department of Health Metrics Sciences, University of Washington, Seattle, WA, USA
| | - Brian Wahl
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| |
Collapse
|
4
|
Singh N, Sharma A. India should invest in the expansion of genomic epidemiology for vector-borne diseases filariasis, malaria and visceral leishmaniasis that are targeted for elimination. IJID REGIONS 2024; 13:100453. [PMID: 39430599 PMCID: PMC11490900 DOI: 10.1016/j.ijregi.2024.100453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 10/22/2024]
Abstract
Genomic epidemiology (GE) is an integration of genomics and epidemiology. The field has evolved significantly in the past decade, enhancing our understanding of genetic susceptibility, drug resistance, disease transmission patterns, outbreak surveillance, and vaccine development. It employs an arsenal of advanced tools such as whole-genome sequencing and single-nucleotide polymorphisms for analysis, tracing pathogen evolution, mapping genetic variations, and tracking drug resistance. The role of GE in infectious disease management extends beyond outbreak control to routine public health practices, precision medicine, and determining treatment policies. The expansion of GE can significantly bolster global health defenses by effectively enabling the detection and response to emerging health threats. However, challenges such as sampling bias, data quality, integration, standardization of computational pipelines, and need for trained personnel remain. To tackle these challenges, we must invest in building capacity, improving infrastructure, providing training, and fostering collaborations between scientists and public health officials. Concerted efforts must focus on overcoming existing hurdles and promoting seamless integration of basic research into public health frameworks to fully realize its potential. It is timely for India to rapidly expand its base in GE to gain valuable insights into genetic variations and disease susceptibilities. This will provide a fillip towards eliminating the three dominant vector-borne diseases in India: filariasis, malaria, and visceral leishmaniasis.
Collapse
Affiliation(s)
- Nandini Singh
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Amit Sharma
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
5
|
Medina GN, Diaz San Segundo F. Virulence and Immune Evasion Strategies of FMDV: Implications for Vaccine Design. Vaccines (Basel) 2024; 12:1071. [PMID: 39340101 PMCID: PMC11436118 DOI: 10.3390/vaccines12091071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Foot-and-mouth disease (FMD) is globally recognized as a highly economically devastating and prioritized viral disease affecting livestock. Vaccination remains a crucial preventive measure against FMD. The improvement of current vaccine platforms could help control outbreaks, leading to the potential eradication of the disease. In this review, we describe the variances in virulence and immune responses among FMD-susceptible host species, specifically bovines and pigs, highlighting the details of host-pathogen interactions and their impact on the severity of the disease. This knowledge serves as an important foundation for translating our insights into the rational design of vaccines and countermeasure strategies, including the use of interferon as a biotherapeutic agent. Ultimately, in this review, we aim to bridge the gap between our understanding of FMDV biology and the practical approaches to control and potentially eradicate FMD.
Collapse
Affiliation(s)
- Gisselle N Medina
- National Bio and Agro-Defense Facility (NBAF), ARS, USDA, Manhattan, KS 66502, USA
- Plum Island Animal Disease Center (PIADC), ARS, USDA, Orient Point, NY 11957, USA
| | | |
Collapse
|
6
|
Rothen DA, Dutta SK, Krenger PS, Pardini A, Vogt ACS, Josi R, Lieknina I, Osterhaus ADME, Mohsen MO, Vogel M, Martina B, Tars K, Bachmann MF. Preclinical Development of a Novel Zika Virus-like Particle Vaccine in Combination with Tetravalent Dengue Virus-like Particle Vaccines. Vaccines (Basel) 2024; 12:1053. [PMID: 39340083 PMCID: PMC11435730 DOI: 10.3390/vaccines12091053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Declared as a Public Health Emergency in 2016 by the World Health Organization (WHO), the Zika virus (ZIKV) continues to cause outbreaks that are linked to increased neurological complications. Transmitted mainly by Aedes mosquitoes, the virus is spread mostly amongst several tropical regions with the potential of territorial expansion due to environmental and ecological changes. The ZIKV envelope protein's domain III, crucial for vaccine development due to its role in receptor binding and neutralizing antibody targeting, was integrated into sterically optimized AP205 VLPs to create an EDIII-based VLP vaccine. To increase the potential size of domains that can be accommodated by AP205, two AP205 monomers were fused into a dimer, resulting in 90 rather than 180 N-/C- termini amenable for fusion. EDIII displayed on AP205 VLPs has several immunological advantages, like a repetitive surface, a size of 20-200 nm (another PASP), and packaged bacterial RNA as adjuvants (a natural toll-like receptor 7/8 ligand). In this study, we evaluated a novel vaccine candidate for safety and immunogenicity in mice, demonstrating its ability to induce high-affinity, ZIKV-neutralizing antibodies without significant disease-enhancing properties. Due to the close genetical and structural characteristics, the same mosquito vectors, and the same ecological niche of the dengue virus and Zika virus, a vaccine covering all four Dengue viruses (DENV) serotypes as well as ZIKV would be of significant interest. We co-formulated the ZIKV vaccine with recently developed DENV vaccines based on the same AP205 VLP platform and tested the vaccine mix in a murine model. This combinatory vaccine effectively induced a strong humoral immune response and neutralized all five targeted viruses after two doses, with no significant antibody-dependent enhancement (ADE) observed. Overall, these findings highlight the potential of the AP205 VLP-based combinatory vaccine as a promising approach for providing broad protection against DENV and ZIKV infections. Further investigations and preclinical studies are required to advance this vaccine candidate toward potential use in human populations.
Collapse
Affiliation(s)
- Dominik A. Rothen
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
- Department of Immunology RIA, University Hospital Bern, 3010 Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | | | - Pascal S. Krenger
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
- Department of Immunology RIA, University Hospital Bern, 3010 Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Alessandro Pardini
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
- Department of Immunology RIA, University Hospital Bern, 3010 Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Anne-Cathrine S. Vogt
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
- Department of Immunology RIA, University Hospital Bern, 3010 Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Romano Josi
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
- Department of Immunology RIA, University Hospital Bern, 3010 Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Ilva Lieknina
- Latvian Biomedical Research & Study Centre, Ratsupites iela 1, 1067 Riga, Latvia
| | - Albert D. M. E. Osterhaus
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Mona O. Mohsen
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
- Department of Immunology RIA, University Hospital Bern, 3010 Bern, Switzerland
| | - Monique Vogel
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
- Department of Immunology RIA, University Hospital Bern, 3010 Bern, Switzerland
| | - Byron Martina
- Artemis Bio-Services, 2629 JD Delft, The Netherlands
| | - Kaspars Tars
- Latvian Biomedical Research & Study Centre, Ratsupites iela 1, 1067 Riga, Latvia
| | - Martin F. Bachmann
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
- Department of Immunology RIA, University Hospital Bern, 3010 Bern, Switzerland
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| |
Collapse
|
7
|
Miranda-López A, González-Ortega O, Govea-Alonso DO, Betancourt-Mendiola L, Comas-García M, Rosales-Mendoza S. Rational design and production of a chimeric antigen targeting Zika virus that induces neutralizing antibodies in mice. Vaccine 2024; 42:3674-3683. [PMID: 38749821 DOI: 10.1016/j.vaccine.2024.04.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/14/2024] [Accepted: 04/25/2024] [Indexed: 06/07/2024]
Abstract
The Zika virus (ZIKV) is considered a public health problem worldwide due to its association with the development of microcephaly and the Guillain-Barré syndrome. Currently, there is no specific treatment or vaccine approved to combat this disease, and thus, developing safe and effective vaccines is a relevant goal. In this study, a multi-epitope protein called rpZDIII was designed based on a series of ZIKV antigenic sequences, a bacterial carrier, and linkers. The analysis of the predicted 3D structure of the rpZDIII chimeric antigen was performed on the AlphaFold 2 server, and it was produced in E. coli and purified from inclusion bodies, followed by solubilization and refolding processes. The yield achieved for rpZDIII was 11 mg/L in terms of pure soluble recombinant protein per liter of fermentation. rpZDIII was deemed immunogenic since it induced serum IgG and IgM responses in mice upon subcutaneous immunization in a three-dose scheme. Moreover, sera from mice immunized with rpZDIII showed neutralizing activity against ZIKV. Therefore, this study reveals rpZDIII as a promising immunogen for the development of a rationally designed multi-epitope vaccine against ZIKV, and completion of its preclinical evaluation is guaranteed.
Collapse
Affiliation(s)
- Arleth Miranda-López
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, SLP 78210, México
| | - Omar González-Ortega
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, SLP 78210, México; Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2ª. Sección, San Luis Potosí 78210 México
| | - Dania O Govea-Alonso
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2ª. Sección, San Luis Potosí 78210 México
| | - Lourdes Betancourt-Mendiola
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, SLP 78210, México; Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2ª. Sección, San Luis Potosí 78210 México
| | - Mauricio Comas-García
- Sección de Microscopía de Alta Resolución, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2ª. Sección, San Luis Potosí 78210, México; Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Av. Parque Chapultepec 1570, San Luis, S.L.P., San Luis Potosí 78210, México.
| | - Sergio Rosales-Mendoza
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, SLP 78210, México; Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2ª. Sección, San Luis Potosí 78210 México.
| |
Collapse
|
8
|
Ponne S, Kumar R, Vanmathi SM, Brilhante RSN, Kumar CR. Reverse engineering protection: A comprehensive survey of reverse vaccinology-based vaccines targeting viral pathogens. Vaccine 2024; 42:2503-2518. [PMID: 38523003 DOI: 10.1016/j.vaccine.2024.02.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/30/2024] [Accepted: 02/27/2024] [Indexed: 03/26/2024]
Abstract
Vaccines have significantly reduced the impact of numerous deadly viral infections. However, there is an increasing need to expedite vaccine development in light of the recurrent pandemics and epidemics. Also, identifying vaccines against certain viruses is challenging due to various factors, notably the inability to culture certain viruses in cell cultures and the wide-ranging diversity of MHC profiles in humans. Fortunately, reverse vaccinology (RV) efficiently overcomes these limitations and has simplified the identification of epitopes from antigenic proteins across the entire proteome, streamlining the vaccine development process. Furthermore, it enables the creation of multiepitope vaccines that can effectively account for the variations in MHC profiles within the human population. The RV approach offers numerous advantages in developing precise and effective vaccines against viral pathogens, including extensive proteome coverage, accurate epitope identification, cross-protection capabilities, and MHC compatibility. With the introduction of RV, there is a growing emphasis among researchers on creating multiepitope-based vaccines aiming to stimulate the host's immune responses against multiple serotypes, as opposed to single-component monovalent alternatives. Regardless of how promising the RV-based vaccine candidates may appear, they must undergo experimental validation to probe their protection efficacy for real-world applications. The time, effort, and resources allocated to the laborious epitope identification process can now be redirected toward validating vaccine candidates identified through the RV approach. However, to overcome failures in the RV-based approach, efforts must be made to incorporate immunological principles and consider targeting the epitope regions involved in disease pathogenesis, immune responses, and neutralizing antibody maturation. Integrating multi-omics and incorporating artificial intelligence and machine learning-based tools and techniques in RV would increase the chances of developing an effective vaccine. This review thoroughly explains the RV approach, ideal RV-based vaccine construct components, RV-based vaccines designed to combat viral pathogens, its challenges, and future perspectives.
Collapse
Affiliation(s)
- Saravanaraman Ponne
- Department of Medical Biotechnology, Aarupadai Veedu Medical College and Hospital, Vinayaka Mission's Research Foundation (Deemed to be University), Kirumampakkam, Puducherry 607402, India
| | - Rajender Kumar
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, Stockholm 106 91, Sweden
| | - S M Vanmathi
- Mahatma Gandhi Medical Advanced Research Institute, Sri Balaji Vidyapeeth (Deemed to be University), Pondicherry 607402, India
| | - Raimunda Sâmia Nogueira Brilhante
- Medical Mycology Specialized Center, Department of Pathology and Legal Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Chinnadurai Raj Kumar
- Mahatma Gandhi Medical Advanced Research Institute, Sri Balaji Vidyapeeth (Deemed to be University), Pondicherry 607402, India.
| |
Collapse
|
9
|
Velazquez-Cervantes MA, López-Ortega O, Cruz-Holguín VJ, Herrera Moro-Huitron L, Flores-Pliego A, Lara-Hernandez I, Comas-García M, Villavicencio-Carrisoza O, Helguera-Reppeto AC, Arévalo-Romero H, Vázquez-Martínez ER, León-Juárez M. Metformin Inhibits Zika Virus Infection in Trophoblast Cell Line. Curr Microbiol 2024; 81:133. [PMID: 38592489 DOI: 10.1007/s00284-024-03651-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/26/2024] [Indexed: 04/10/2024]
Abstract
Zika virus (ZIKV) infections have been associated with severe clinical outcomes, which may include neurological manifestations, especially in newborns with intrauterine infection. However, licensed vaccines and specific antiviral agents are not yet available. Therefore, a safe and low-cost therapy is required, especially for pregnant women. In this regard, metformin, an FDA-approved drug used to treat gestational diabetes, has previously exhibited an anti-ZIKA effect in vitro in HUVEC cells by activating AMPK. In this study, we evaluated metformin treatment during ZIKV infection in vitro in a JEG3-permissive trophoblast cell line. Our results demonstrate that metformin affects viral replication and protein synthesis and reverses cytoskeletal changes promoted by ZIKV infection. In addition, it reduces lipid droplet formation, which is associated with lipogenic activation of infection. Taken together, our results indicate that metformin has potential as an antiviral agent against ZIKV infection in vitro in trophoblast cells.
Collapse
Affiliation(s)
- Manuel Adrían Velazquez-Cervantes
- Laboratorio de Virología Perinatal y Diseño Molecular de Antigenos y Biomarcadores, Departamento de Inmunobioquimica, Instituto Nacional de Perinatología, 11000, Mexico City, Mexico
| | - Orestes López-Ortega
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1151, Institut Necker Enfants Malades, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Victor Javier Cruz-Holguín
- Laboratorio de Virología Perinatal y Diseño Molecular de Antigenos y Biomarcadores, Departamento de Inmunobioquimica, Instituto Nacional de Perinatología, 11000, Mexico City, Mexico
| | - Luis Herrera Moro-Huitron
- Laboratorio de Virología Perinatal y Diseño Molecular de Antigenos y Biomarcadores, Departamento de Inmunobioquimica, Instituto Nacional de Perinatología, 11000, Mexico City, Mexico
| | - Arturo Flores-Pliego
- Departamento de Inmunobioquimica, Instituto Nacional de Perinatología, 11000, Mexico City, Mexico
| | - Ignacio Lara-Hernandez
- Sección de Microscopía de Alta Resolución, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Atunóma de San Luis Potrosí, San Luis Potosí, SLP, Mexico
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, Mexico
| | - Mauricio Comas-García
- Sección de Microscopía de Alta Resolución, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Atunóma de San Luis Potrosí, San Luis Potosí, SLP, Mexico
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, Mexico
| | | | - Addy Cecilia Helguera-Reppeto
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1151, Institut Necker Enfants Malades, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Haruki Arévalo-Romero
- Laboratorio de Inmunología y Microbiología Molecular, División Académica Multidisciplinaria de Jalpa de Méndez, Universidad Juárez Autónoma de Tabasco, Jalpa de Méndez, Mexico
| | - Edgar Ricardo Vázquez-Martínez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Universidad Nacional Autónoma de México, 11000, Mexico City, Mexico
| | - Moises León-Juárez
- Laboratorio de Virología Perinatal y Diseño Molecular de Antigenos y Biomarcadores, Departamento de Inmunobioquimica, Instituto Nacional de Perinatología, 11000, Mexico City, Mexico.
| |
Collapse
|
10
|
Ganji M, Bakhshi S, Ahmadi K, Shoari A, Moeini S, Ghaemi A. Rational design of B-cell and T-cell multi epitope-based vaccine against Zika virus, an in silico study. J Biomol Struct Dyn 2024; 42:3426-3440. [PMID: 37190978 DOI: 10.1080/07391102.2023.2213339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 05/06/2023] [Indexed: 05/17/2023]
Abstract
The Zika virus (ZKV) is a single-stranded positive-sense, enveloped RNA virus. Zika infection during pregnancy can cause congenital microcephaly, Guillain-Barré syndrome, miscarriage, and other CNS abnormalities. The world needs safe and effective vaccinations to fight against ZIKV infection since vaccination is generally regarded as one of the most effective ways to prevent infectious diseases. In the present work, we used immunoinformatics and docking studies to construct a vaccine containing multi-epitopes using the structural and non-structural proteins of ZKV. The structural models of ZKV proteins (PrE, PrM, NS1, and NS2A) were constructed using Pyre2 and RaptorX servers. The epitopes of B-cell, T-cell (HTL and CTL), and IFN-γ were predicted, and each epitope's immunogenic nature and physiochemical properties were confirmed. As an adjuvant, the CPG-Oligodeoxynucleotide, an agonist of Toll-like receptor 9 (TLR9), is associated to cytotoxic T-lymphocytes (CTL) epitopes via PAPAP linker. To assess the binding affinity and the tendency of the designed vaccine to induce an immune response through TLR9, molecular docking was done. In the next step, molecular dynamics (MD) simulation to 100 nanoseconds (ns) was used to evaluate the stability of the interaction of the designed vaccine with TLR9. The designed vaccine is predicted to be highly antigenic, non-toxic, soluble, and stable with low flexibility in MD simulation. MD studies indicated that the finalized vaccine-TLR9 docked complex was stable during simulation time. The vaccine construct is able to stimulate both humoral and cellular immune responses. We suppose that our constructed model of the vaccine may have the ability to induce the host immune response against ZKV. Further studies, including in vitro and in vivo experimental analyses, are needed to prove the constructed vaccine's efficacy with multi-epitopes.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mahmoud Ganji
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shohreh Bakhshi
- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Khadijeh Ahmadi
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Alireza Shoari
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Soheila Moeini
- Department of Surgery, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Amir Ghaemi
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
11
|
Parhiz H, Atochina-Vasserman EN, Weissman D. mRNA-based therapeutics: looking beyond COVID-19 vaccines. Lancet 2024; 403:1192-1204. [PMID: 38461842 DOI: 10.1016/s0140-6736(23)02444-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 07/06/2023] [Accepted: 10/30/2023] [Indexed: 03/12/2024]
Abstract
Recent advances in mRNA technology and its delivery have enabled mRNA-based therapeutics to enter a new era in medicine. The rapid, potent, and transient nature of mRNA-encoded proteins, without the need to enter the nucleus or the risk of genomic integration, makes them desirable tools for treatment of a range of diseases, from infectious diseases to cancer and monogenic disorders. The rapid pace and ease of mass-scale manufacturability of mRNA-based therapeutics supported the global response to the COVID-19 pandemic. Nonetheless, challenges remain with regards to mRNA stability, duration of expression, delivery efficiency, and targetability, to broaden the applicability of mRNA therapeutics beyond COVID-19 vaccines. By learning from the rapidly expanding preclinical and clinical studies, we can optimise the mRNA platform to meet the clinical needs of each disease. Here, we will summarise the recent advances in mRNA technology; its use in vaccines, immunotherapeutics, protein replacement therapy, and genomic editing; and its delivery to desired specific cell types and organs for development of a new generation of targeted mRNA-based therapeutics.
Collapse
Affiliation(s)
- Hamideh Parhiz
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Drew Weissman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
12
|
Gupta Y, Baranwal M, Chudasama B. Zika virus precursor membrane peptides induce immune response in peripheral blood mononuclear cells. Hum Immunol 2024; 85:110761. [PMID: 38272735 DOI: 10.1016/j.humimm.2024.110761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/25/2023] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Zika virus is a re-merging flavivirus allied to serious mental health conditions in the fetuses. There is currently no preventives or treatment available for Zika infection. In this work, we have extended the in silico analysis by performing the molecular docking of previous reported three conserved Zika virus precursor membrane (prM) peptides (MP1, MP2 and MP3) with HLA complex (pHLA) and T cell receptors (TCR) and also evaluated the peptide specific immune response in human peripheral blood mononuclear cells (PBMC). Most of the CD8+ and CD4+ T cell peptides-HLA complexes demonstrated good binding energies (ΔG) and HADDOCK scores in molecular docking analysis. Immunogenic response of peptides is measured as human peripheral blood mononuclear cell (PBMC) proliferation and interferon-gamma (IFN-γ) production using a 3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay and a sandwich enzyme-linked immunosorbent assay (ELISA) respectively on ten different healthy blood samples. Peptide MP3 exhibited significant results in eight (cell proliferation) and seven (IFN-γ secretion) healthy volunteers' blood samples out of ten. Additionally, peptides MP1 and MP2 presented significant cell proliferation and IFN-γ release in six healthy blood samples. Thus, the outcomes from in silico and in vitro studies showed the immunogenic potential of peptides which need to validated in different experimental system before considering as candidate vaccine against Zika virus infection.
Collapse
Affiliation(s)
- Yogita Gupta
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| | - Manoj Baranwal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India.
| | - Bhupendra Chudasama
- School of Physics & Materials Science, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| |
Collapse
|
13
|
Rajaganesh R, Murugan K. Anti-dengue potential and mosquitocidal effect of marine green algae-stabilized Mn-doped superparamagnetic iron oxide nanoparticles (Mn-SPIONs): an eco-friendly approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:19575-19594. [PMID: 38363508 DOI: 10.1007/s11356-024-32413-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 02/06/2024] [Indexed: 02/17/2024]
Abstract
Vector-borne diseases pose a significant public health challenge in economically disadvantaged nations. Malaria, dengue fever, chikungunya, Zika, yellow fever, Japanese encephalitis, and lymphatic filariasis are spread by mosquitoes. Consequently, the most effective method of preventing these diseases is to eliminate the mosquito population. Historically, the majority of control programs have depended on chemical pesticides, including organochlorines, organophosphates, carbamates, and pyrethroids. Synthetic insecticides used to eradicate pests have the potential to contaminate groundwater, surface water, beneficial soil organisms, and non-target species. Nanotechnology is an innovative technology that has the potential to be used in insect control with great precision. The goal of this study was to test the in vitro anti-dengue potential and mosquitocidal activity of Chaetomorpha aerea and C. aerea-synthesized Mn-doped superparamagnetic iron oxide nanoparticles (CA-Mn-SPIONs). The synthesis of CA-Mn-SPIONs using C. aerea extract was verified by the observable alteration in the colour of the reaction mixture, transitioning from a pale green colour to a brown. The study of UV-Vis spectra revealed absorbance peaks at approximately 290 nm, which can be attributed to the surface Plasmon resonance of the CA-Mn-SPIONs. The SEM, TEM, EDX, FTIR, vibrating sample magnetometry, and XRD analyses provided evidence that confirmed the presence of CA-Mn-SPIONs. In the present study, results revealed that C. aerea aqueous extract LC50 values against Ae. aegypti ranged from 222.942 (first instar larvae) to 349.877 ppm in bioassays (pupae). CA-Mn-SPIONs had LC50 ranging from 20.199 (first instar larvae) to 26.918 ppm (pupae). After treatment with 40 ppm CA-Mn-SPIONs and 500 ppm C. aerea extract in ovicidal tests, egg hatchability was lowered by 100%. Oviposition deterrence experiments showed that in Ae. aegypti, oviposition rates were lowered by more than 66% by 100 ppm of green algal extract and by more than 71% by 10 ppm of CA-Mn-SPIONs (oviposition activity index values were 0.50 and 0.55, respectively). Moreover, in vitro anti-dengue activity of CA-Mn-SPIONs has good anti-viral property against dengue viral cell lines. In addition, GC-MS analysis showed that 21 intriguing chemicals were discovered. Two significant phytoconstituents in the methanol extract of C. aerea include butanoic acid and palmitic acid. These two substances were examined using an in silico methodology against the NS5 methyltransferase protein and demonstrated good glide scores and binding affinities. Finally, we looked into the morphological damage and fluorescent emission of third instar Ae. aegypti larvae treated with CA-Mn-SPIONs. Fluorescent emission is consistent with ROS formation of CA-Mn-SPIONs against Ae. aegypti larvae. The present study determines that the key variables for the successful development of new insecticidal agents are rooted in the eco-compatibility and the provision of alternative tool for the pesticide manufacturing sector.
Collapse
Affiliation(s)
- Rajapandian Rajaganesh
- Division of Medical Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India.
| | - Kadarkarai Murugan
- Division of Medical Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| |
Collapse
|
14
|
Malik S, Muhammad K, Ahsan O, Khan MT, Sah R, Waheed Y. Advances in Zika virus vaccines and therapeutics: A systematic review. ASIAN PAC J TROP MED 2024; 17:97-109. [DOI: 10.4103/apjtm.apjtm_680_23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 03/15/2024] [Indexed: 12/06/2024] Open
Abstract
Zika virus (ZIKV) is the causative agent of a viral infection that causes neurological complications in newborns and adults worldwide. Its wide transmission route and alarming spread rates are of great concern to the scientific community. Numerous trials have been conducted to develop treatment options for ZIKV infection. This review highlights the latest developments in the fields of vaccinology and pharmaceuticals developments for ZIKV infection. A systematic and comprehensive approach was used to gather relevant and up-to-date data so that inferences could be made about the gaps in therapeutic development. The results indicate that several therapeutic interventions are being tested against ZIKV infection, such as DNA vaccines, subunit vaccines, live-attenuated vaccines, virus-vector-based vaccines, inactivated vaccines, virus-like particles, and mRNA-based vaccines. In addition, approved anti-ZIKV drugs that can reduce the global burden are discussed. Although many vaccine candidates for ZIKV are at different stages of development, none of them have received Food and Drug Authority approval for use up to now. The issue of side effects associated with these drugs in vulnerable newborns and pregnant women is a major obstacle in the therapeutic pathway.
Collapse
Affiliation(s)
- Shiza Malik
- Bridging Health Foundation, Rawalpindi 46000, Pakistan
| | - Khalid Muhammad
- Department of Biology, College of Sciences, UAE University, 15551, Al Ain, United Arab Emirates
| | - Omar Ahsan
- Department of Medicine, Foundation University Medical College, Foundation University Islamabad, Islamabad 44000, Pakistan
| | - Muhammad Tahir Khan
- INTI International University, Persiaran Perdana BBN Putra Nilai, 71800 Nilai, Negeri Sembilan, Malaysia
- Institute of Molecular Biology and Biotechnology, the University of Lahore, KM Defence Road, Lahore 58810, Pakistan
- Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Nanyang 473006, China
| | - Ranjit Sah
- Department of Microbiology, Tribhuvan University Teaching Hospital, Institute of Medicine, Kathmandu 44600, Nepal
- Department of Microbiology, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth, Pune 411018, Maharashtra, India
- Department of Public Health Dentistry, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pune 411018, Maharashtra, India
| | - Yasir Waheed
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos 1401, Lebanon
| |
Collapse
|
15
|
Phan LMT, Duong Pham TT, Than VT. RNA therapeutics for infectious diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 204:109-132. [PMID: 38458735 DOI: 10.1016/bs.pmbts.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Ribonucleic acids (RNAs), including the messenger RNA (mRNA), transfer RNA (tRNA), and ribosomal RNA (rRNA), play important roles in living organisms and viruses. In recent years, the RNA-based technologies including the RNAs inhibiting other RNA activities, the RNAs targeting proteins, the RNAs reprograming genetic information, and the RNAs encoding therapeutical proteins, are useful methods to apply in prophylactic and therapeutic vaccines. In this review, we summarize and highlight the current application of the RNA therapeutics, especially on mRNA vaccines which have potential for prevention and treatment against human and animal infectious diseases.
Collapse
Affiliation(s)
- Le Minh Tu Phan
- School of Medicine and Pharmacy, The University of Danang, Danang, Vietnam
| | - Thi Thuy Duong Pham
- Department of Intelligence Energy and Industry, School of Chemical Engineering and Materials Science, Chung-Ang University, Seoul, Republic of Korea
| | - Van Thai Than
- Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam; Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam.
| |
Collapse
|
16
|
STOKES CALEB, J. MELVIN ANN. Viral Infections of the Fetus and Newborn. AVERY'S DISEASES OF THE NEWBORN 2024:450-486.e24. [DOI: 10.1016/b978-0-323-82823-9.00034-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
17
|
Wijesundara DK, Yeow A, McMillan CL, Choo JJ, Todorovic A, Mekonnen ZA, Masavuli MG, Young PR, Gowans EJ, Grubor-Bauk B, Muller DA. Superior efficacy of a skin-applied microprojection device for delivering a novel Zika DNA vaccine. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102056. [PMID: 38028199 PMCID: PMC10630652 DOI: 10.1016/j.omtn.2023.102056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023]
Abstract
Zika virus (ZIKV) infections are spreading silently with limited global surveillance in at least 89 countries and territories. There is a pressing need to develop an effective vaccine suitable for equitable distribution globally. Consequently, we previously developed a proprietary DNA vaccine encoding secreted non-structural protein 1 of ZIKV (pVAX-tpaNS1) to elicit rapid protection in a T cell-dependent manner in mice. In the current study, we evaluated the stability, efficacy, and immunogenicity of delivering this DNA vaccine into the skin using a clinically effective and proprietary high-density microarray patch (HD-MAP). Dry-coating of pVAX-tpaNS1 on the HD-MAP device resulted in no loss of vaccine stability at 40°C storage over the course of 28 days. Vaccination of mice (BALB/c) with the HD-MAP-coated pVAX-tpaNS1 elicited a robust anti-NS1 IgG response in both the cervicovaginal mucosa and systemically and afforded protection against live ZIKV challenge. Furthermore, the vaccination elicited a significantly higher magnitude and broader NS1-specific T helper and cytotoxic T cell response in vivo compared with traditional needle and syringe intradermal vaccination. Overall, the study highlights distinctive immunological advantages coupled with an excellent thermostability profile of using the HD-MAP device to deliver a novel ZIKV DNA vaccine.
Collapse
Affiliation(s)
- Danushka K. Wijesundara
- Vaxxas Biomedical Facility, Hamilton, QLD 4007, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Arthur Yeow
- Discipline of Surgery, The University of Adelaide, Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5005, Australia
| | - Christopher L.D. McMillan
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jovin J.Y. Choo
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Aleksandra Todorovic
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Zelalem A. Mekonnen
- Discipline of Surgery, The University of Adelaide, Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5005, Australia
| | - Makutiro G. Masavuli
- Discipline of Surgery, The University of Adelaide, Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5005, Australia
| | - Paul R. Young
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Eric J. Gowans
- Discipline of Surgery, The University of Adelaide, Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5005, Australia
| | - Branka Grubor-Bauk
- Discipline of Surgery, The University of Adelaide, Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5005, Australia
| | - David A. Muller
- Vaxxas Biomedical Facility, Hamilton, QLD 4007, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
18
|
Liu Y, Guan W, Liu H. Subgenomic Flaviviral RNAs of Dengue Viruses. Viruses 2023; 15:2306. [PMID: 38140548 PMCID: PMC10747610 DOI: 10.3390/v15122306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Subgenomic flaviviral RNAs (sfRNAs) are produced during flavivirus infections in both arthropod and vertebrate cells. They are undegraded products originating from the viral 3' untranslated region (3' UTR), a result of the action of the host 5'-3' exoribonuclease, Xrn1, when it encounters specific RNA structures known as Xrn1-resistant RNAs (xrRNAs) within the viral 3' UTR. Dengue viruses generate three to four distinct species of sfRNAs through the presence of two xrRNAs and two dumbbell structures (DBs). The tertiary structures of xrRNAs have been characterized to form a ringlike structure around the 5' end of the viral RNA, effectively inhibiting the activity of Xrn1. The most important role of DENV sfRNAs is to inhibit host antiviral responses by interacting with viral and host proteins, thereby influencing viral pathogenicity, replicative fitness, epidemiological fitness, and transmission. In this review, we aimed to summarize the biogenesis, structures, and functions of DENV sfRNAs, exploring their implications for viral interference.
Collapse
Affiliation(s)
- Yi Liu
- Hubei Jiangxia Laboratory, Wuhan 430200, China
| | - Wuxiang Guan
- Hubei Jiangxia Laboratory, Wuhan 430200, China
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430207, China
| | - Haibin Liu
- Hubei Jiangxia Laboratory, Wuhan 430200, China
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430207, China
| |
Collapse
|
19
|
Tanelus M, López K, Smith S, Muller JA, Porier DL, Auguste DI, Stone WB, Paulson SL, Auguste AJ. Exploring the immunogenicity of an insect-specific virus vectored Zika vaccine candidate. Sci Rep 2023; 13:19948. [PMID: 37968443 PMCID: PMC10651913 DOI: 10.1038/s41598-023-47086-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/08/2023] [Indexed: 11/17/2023] Open
Abstract
Zika virus (ZIKV) is an important re-emerging flavivirus that presents a significant threat to human health worldwide. Despite its importance, no vaccines are approved for use in humans. Insect-specific flaviviruses (ISFVs) have recently garnered attention as an antigen presentation platform for vaccine development and diagnostic applications. Here, we further explore the safety, immunogenicity, and efficacy of a chimeric ISFV-Zika vaccine candidate, designated Aripo-Zika (ARPV/ZIKV). Our results show a near-linear relationship between increased dose and immunogenicity, with 1011 genome copies (i.e., 108 focus forming units) being the minimum dose required for protection from ZIKV-induced morbidity and mortality in mice. Including boosters did not significantly increase the short-term efficacy of ARPV/ZIKV-vaccinated mice. We also show that weanling mice derived from ARPV/ZIKV-vaccinated dams were completely protected from ZIKV-induced morbidity and mortality upon challenge, suggesting efficient transfer of maternally-derived protective antibodies. Finally, in vitro coinfection studies of ZIKV with Aripo virus (ARPV) and ARPV/ZIKV in African green monkey kidney cells (i.e., Vero-76) showed that ARPV and ARPV/ZIKV remain incapable of replication in vertebrate cells, despite the presence of active ZIKV replication. Altogether, our data continue to support ISFV-based vaccines, and specifically the ARPV backbone is a safe, immunogenic and effective vaccine strategy for flaviviruses.
Collapse
Affiliation(s)
- Manette Tanelus
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Krisangel López
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Shaan Smith
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - John A Muller
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Danielle L Porier
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Dawn I Auguste
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - William B Stone
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Sally L Paulson
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Albert J Auguste
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
| |
Collapse
|
20
|
Behera JK, Mishra P, Jena AK, Behera B, Bhattacharya M. Human health implications of emerging diseases and the current situation in India's vaccine industry. SCIENCE IN ONE HEALTH 2023; 2:100046. [PMID: 39077045 PMCID: PMC11262297 DOI: 10.1016/j.soh.2023.100046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/22/2023] [Indexed: 07/31/2024]
Abstract
Emerging diseases are infectious diseases that pose significant threat to human health, causing millions of deaths and disabilities in the upcoming days. Periodic epidemics of new infections and old reinfections increase the global burden of disease prevalence. They can be caused by new pathogens or evolving ones, which change human behavior and environmental factors. Researchers have studied the dynamic connections between microbes, hosts, and the environment, but new infectious diseases like coronavirus disease 2019 (COVID-19), re-emerging diseases, and deliberately disseminated diseases persist despite earlier hopes of elimination. With heavy privatesector investments, Indian pharmacology now provides core Expanded Programme on Immunization vaccines to United Nations International Children's Emergency Fund, producing previously unattainable vaccines for diseases like meningitis, hepatitis B, pneumococcal conjugate, rotavirus, influenza A (H1N1), and COVID-19. India's vaccine sector has emerged, among the oriented leaders of the Bharat Biotech, Serum Institute of India, Panacea Biotech and Biological E. Specifically, the technology transferred from Western countries has benefited the sector, which produces 1.3 billion doses annually. The Serum Institute is the world's largest manufacturer of vaccines, providing measles and diphtheria-tetanus-pertussis vaccines to United Nations. The Serum Institute has developed several vaccines, including Nasovac, MenAfriVac, Pentavac, and an inactivated polio vaccine. India's success in vaccinations can be attributed to attractive investment conditions, government assistance, international alliances, and rising domestic technical talent. Despite its booming economy and technical advances, India's disproportionate share of the world's child mortality rate remains unchanged. However, the growing production and distribution of vaccinations in developing nations has initiated a new era, leading to a worldwide decline in childhood death and disease.
Collapse
Affiliation(s)
- Jiban Kumar Behera
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore 756020, Odisha, India
| | - Pabitra Mishra
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore 756020, Odisha, India
| | - Anway Kumar Jena
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore 756020, Odisha, India
| | - Bhaskar Behera
- Department of Biosciences and Biotechnology, Fakir Mohan University, Vyasa Vihar, Balasore 756020, Odisha, India
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore 756020, Odisha, India
| |
Collapse
|
21
|
Valega-Mackenzie W, Ríos-Soto K, Lenhart S. Optimal control applied to Zika virus epidemics in Colombia and Puerto Rico. J Theor Biol 2023; 575:111647. [PMID: 39492547 DOI: 10.1016/j.jtbi.2023.111647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 09/22/2023] [Accepted: 10/16/2023] [Indexed: 11/05/2024]
Abstract
Zika virus (ZIKV) is a mostly non-lethal disease in humans transmitted by mosquitoes or humans that can produce severe brain defects such as microcephaly in babies and Guillain-Barré syndrome in elderly adults. The use of optimal control strategies involving information campaigns about insect repellents and condoms alongside an available safe and effective vaccine can prevent the number of infected humans with ZIKV. A system of nonlinear ordinary differential equations is formulated for the transmission dynamics of ZIKV in the presence of three control strategies to evaluate the impact of various scenarios during a ZIKV epidemic. In addition, we estimate parameters using weekly incidence data from previous ZIKV outbreaks in Colombia and Puerto Rico to capture the dynamics of an epidemic in each country when control measures are available. The basic reproduction number, R0, of each country is calculated using estimated parameters (without the controls). The vector-borne transmission threshold (Rv) is dominant in both countries , but the sexual transmission threshold (Rd) in Colombia is considerably higher than in Puerto Rico. Numerical simulations for Colombia show that the most effective strategies are to use three controls since the start of the outbreak. However, for Puerto Rico only information campaigns about mosquito repellents and vaccination are the most effective ways to mitigate the epidemic.
Collapse
Affiliation(s)
| | - Karen Ríos-Soto
- Department of Mathematics, University of Puerto Rico, Mayagüez, United States of America
| | - Suzanne Lenhart
- Department of Mathematics, University of Tennessee, Knoxville, United States of America
| |
Collapse
|
22
|
Gupta Y, Baranwal M, Chudasama B. Immunoinformatics-Based Identification of the Conserved Immunogenic Peptides Targeting of Zika Virus Precursor Membrane Protein. Viral Immunol 2023; 36:503-519. [PMID: 37486711 DOI: 10.1089/vim.2023.0015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023] Open
Abstract
Zika virus infections lead to neurological complications such as congenital Zika syndrome and Guillain-Barré syndrome. Rising Zika infections in newborns and adults have triggered the need for vaccine development. In the current study, the precursor membrane (prM) protein of the Zika virus is explored for its functional importance and design of epitopes enriched conserved peptides with the usage of different immunoinformatics approach. Phylogenetic and mutational analyses inferred that the prM protein is highly conserved. Three conserved peptides containing multiple T and B cell epitopes were designed by employing different epitope prediction algorithms. IEDB population coverage analysis of selected peptides in six different continents has shown the population coverage of 60-99.8% (class I HLA) and 80-100% (class II HLA). Molecular docking of selected peptides/epitopes was carried out with each of class I and II HLA alleles using HADDOCK. A majority of peptide-HLA complex (pHLA) have HADDOCK scores found to be comparable and more than native-HLA complex representing the good binding interaction of peptides to HLA. Molecular dynamics simulation with best docked pHLA complexes revealed that pHLA complexes are stable with RMSD <5.5Å. Current work highlights the importance of prM as a strong antigenic protein and selected peptides have the potential to elicit humoral and cell-mediated immune responses.
Collapse
Affiliation(s)
- Yogita Gupta
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| | - Manoj Baranwal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| | - Bhupendra Chudasama
- School of Physics & Materials Science, Thapar Institute of Engineering and Technology, Patiala, India
| |
Collapse
|
23
|
Zhang G, Tang T, Chen Y, Huang X, Liang T. mRNA vaccines in disease prevention and treatment. Signal Transduct Target Ther 2023; 8:365. [PMID: 37726283 PMCID: PMC10509165 DOI: 10.1038/s41392-023-01579-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/01/2023] [Accepted: 07/30/2023] [Indexed: 09/21/2023] Open
Abstract
mRNA vaccines have emerged as highly effective strategies in the prophylaxis and treatment of diseases, thanks largely although not totally to their extraordinary performance in recent years against the worldwide plague COVID-19. The huge superiority of mRNA vaccines regarding their efficacy, safety, and large-scale manufacture encourages pharmaceutical industries and biotechnology companies to expand their application to a diverse array of diseases, despite the nonnegligible problems in design, fabrication, and mode of administration. This review delves into the technical underpinnings of mRNA vaccines, covering mRNA design, synthesis, delivery, and adjuvant technologies. Moreover, this review presents a systematic retrospective analysis in a logical and well-organized manner, shedding light on representative mRNA vaccines employed in various diseases. The scope extends across infectious diseases, cancers, immunological diseases, tissue damages, and rare diseases, showcasing the versatility and potential of mRNA vaccines in diverse therapeutic areas. Furthermore, this review engages in a prospective discussion regarding the current challenge and potential direction for the advancement and utilization of mRNA vaccines. Overall, this comprehensive review serves as a valuable resource for researchers, clinicians, and industry professionals, providing a comprehensive understanding of the technical aspects, historical context, and future prospects of mRNA vaccines in the fight against various diseases.
Collapse
Affiliation(s)
- Gang Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Tianyu Tang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Yinfeng Chen
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Xing Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China.
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China.
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China.
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China.
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China.
| | - Tingbo Liang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China.
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China.
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China.
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China.
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China.
| |
Collapse
|
24
|
Durgam L, Pagag J, Indra Neela Y, Guruprasad L. Mutational analyses, pharmacophore-based inhibitor design and in silico validation for Zika virus NS3-helicase. J Biomol Struct Dyn 2023; 42:9873-9891. [PMID: 37712848 DOI: 10.1080/07391102.2023.2252929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/23/2023] [Indexed: 09/16/2023]
Abstract
Zika virus is responsible for causing Zika infections and was declared as a public health emergency of international concern in February 2016. The Zika virus NS3-helicase is a viable drug target for the design of inhibitors due to its essential role in the replication of viral genome. The viral RNA is unwound by the NS3-helicase in order to enable the reproduction of viral genome by the NS5 protein. Zika virus infections in humans are being reported for the last 15 years. We have therefore carried out amino acid mutational analyses of NS3-helicase. NS3-helicase has two crucial binding sites: the ATP and RNA binding sites. The cofactor-ATP based pharmacophore was generated for virtual screening of ZINC database using Pharmit server, that is followed by molecular docking and molecular dynamics simulations of potential hits as probable Zika virus NS3-helicase inhibitors at the cofactor binding site. The drug-like properties of the molecules were analysed and, DFT calculations were performed on the five best molecules to reveal their stability in solvent phase compared to gas phase, the HOMO and LUMO and electrostatic potential maps to analyze the electronic and geometric characteristics. These are significant findings towards the discovery of new inhibitors of Zika virus NS3-helicase, a promising drug target to treat the Zika virus infection.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Laxman Durgam
- School of Chemistry, University of Hyderabad, Hyderabad, India
| | - Jishu Pagag
- School of Chemistry, University of Hyderabad, Hyderabad, India
| | - Y Indra Neela
- School of Chemistry, University of Hyderabad, Hyderabad, India
| | | |
Collapse
|
25
|
Bhat EA, Ali T, Sajjad N, Kumar R, Bron P. Insights into the structure, functional perspective, and pathogenesis of ZIKV: an updated review. Biomed Pharmacother 2023; 165:115175. [PMID: 37473686 DOI: 10.1016/j.biopha.2023.115175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023] Open
Abstract
Zika virus (ZIKV) poses a serious threat to the entire world. The rapid spread of ZIKV and recent outbreaks since 2007 have caused worldwide concern about the virus. Diagnosis is complicated because of the cross-reactivity of the virus with other viral antibodies. Currently, the virus is diagnosed by molecular techniques such as RT-PCR and IgM-linked enzyme immunoassays (MAC-ELISA). Recently, outbreaks and epidemics have been caused by ZIKV, and severe clinical symptoms and congenital malformations have also been associated with the virus. Although most ZIKV infections present with a subclinical or moderate flu-like course of illness, severe symptoms such as Guillain-Barre syndrome in adults and microcephaly in children of infected mothers have also been reported. Because there is no reliable cure for ZIKV and no vaccine is available, the public health response has focused primarily on preventing infection, particularly in pregnant women. A comprehensive approach is urgently needed to combat this infection and stop its spread and imminent threat. In view of this, this review aims to present the current structural and functional viewpoints, structure, etiology, clinical prognosis, and measures to prevent this transmission based on the literature and current knowledge. Moreover, we provide thorough description of the current understanding about ZIKV interaction with receptors, and a comparative examination of its similarities and differences with other viruses.
Collapse
Affiliation(s)
- Eijaz Ahmed Bhat
- CBS (Centre de Biologie Structurale), Univ. Montpellier, CNRS, INSERM, 29 rue de Navacelles, 34090 Montpellier, France.
| | - Tufail Ali
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Nasreena Sajjad
- Department of Biochemistry, University of Kashmir, Hazratbal, Jammu and Kashmir 190006, India
| | - Rohit Kumar
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Patrick Bron
- CBS (Centre de Biologie Structurale), Univ. Montpellier, CNRS, INSERM, 29 rue de Navacelles, 34090 Montpellier, France.
| |
Collapse
|
26
|
Pattnaik A, Sahoo BR, Struble LR, Borgstahl GEO, Zhou Y, Franco R, Barletta RG, Osorio FA, Petro TM, Pattnaik AK. A Ferritin Nanoparticle-Based Zika Virus Vaccine Candidate Induces Robust Humoral and Cellular Immune Responses and Protects Mice from Lethal Virus Challenge. Vaccines (Basel) 2023; 11:821. [PMID: 37112733 PMCID: PMC10143468 DOI: 10.3390/vaccines11040821] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/02/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
The severe consequences of the Zika virus (ZIKV) infections resulting in congenital Zika syndrome in infants and the autoimmune Guillain-Barre syndrome in adults warrant the development of safe and efficacious vaccines and therapeutics. Currently, there are no approved treatment options for ZIKV infection. Herein, we describe the development of a bacterial ferritin-based nanoparticle vaccine candidate for ZIKV. The viral envelope (E) protein domain III (DIII) was fused in-frame at the amino-terminus of ferritin. The resulting nanoparticle displaying the DIII was examined for its ability to induce immune responses and protect vaccinated animals upon lethal virus challenge. Our results show that immunization of mice with a single dose of the nanoparticle vaccine candidate (zDIII-F) resulted in the robust induction of neutralizing antibody responses that protected the animals from the lethal ZIKV challenge. The antibodies neutralized infectivity of other ZIKV lineages indicating that the zDIII-F can confer heterologous protection. The vaccine candidate also induced a significantly higher frequency of interferon (IFN)-γ positive CD4 T cells and CD8 T cells suggesting that both humoral and cell-mediated immune responses were induced by the vaccine candidate. Although our studies showed that a soluble DIII vaccine candidate could also induce humoral and cell-mediated immunity and protect from lethal ZIKV challenge, the immune responses and protection conferred by the nanoparticle vaccine candidate were superior. Further, passive transfer of neutralizing antibodies from the vaccinated animals to naïve animals protected against lethal ZIKV challenge. Since previous studies have shown that antibodies directed at the DIII region of the E protein do not to induce antibody-dependent enhancement (ADE) of ZIKV or other related flavivirus infections, our studies support the use of the zDIII-F nanoparticle vaccine candidate for safe and enhanced immunological responses against ZIKV.
Collapse
Affiliation(s)
- Aryamav Pattnaik
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (A.P.); (B.R.S.); (Y.Z.); (R.F.); (R.G.B.); (F.A.O.)
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| | - Bikash R. Sahoo
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (A.P.); (B.R.S.); (Y.Z.); (R.F.); (R.G.B.); (F.A.O.)
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| | - Lucas R. Struble
- The Eppley Institute for Cancer and Allied Diseases, Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (L.R.S.); (G.E.O.B.)
| | - Gloria E. O. Borgstahl
- The Eppley Institute for Cancer and Allied Diseases, Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (L.R.S.); (G.E.O.B.)
| | - You Zhou
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (A.P.); (B.R.S.); (Y.Z.); (R.F.); (R.G.B.); (F.A.O.)
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Rodrigo Franco
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (A.P.); (B.R.S.); (Y.Z.); (R.F.); (R.G.B.); (F.A.O.)
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| | - Raul G. Barletta
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (A.P.); (B.R.S.); (Y.Z.); (R.F.); (R.G.B.); (F.A.O.)
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Fernando A. Osorio
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (A.P.); (B.R.S.); (Y.Z.); (R.F.); (R.G.B.); (F.A.O.)
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| | - Thomas M. Petro
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, NE 68583, USA
| | - Asit K. Pattnaik
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (A.P.); (B.R.S.); (Y.Z.); (R.F.); (R.G.B.); (F.A.O.)
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| |
Collapse
|
27
|
Khan MS, Baskoy SA, Yang C, Hong J, Chae J, Ha H, Lee S, Tanaka M, Choi Y, Choi J. Lipid-based colloidal nanoparticles for applications in targeted vaccine delivery. NANOSCALE ADVANCES 2023; 5:1853-1869. [PMID: 36998671 PMCID: PMC10044484 DOI: 10.1039/d2na00795a] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/15/2023] [Indexed: 06/19/2023]
Abstract
Bioactive molecules and their effects have been influenced by their solubility and administration route. In many therapeutic reagents, the performance of therapeutics is dependent on physiological barriers in the human body and delivery efficacy. Therefore, an effective and stable therapeutic delivery promotes pharmaceutical advancement and suitable biological usage of drugs. In the biological and pharmacological industries, lipid nanoparticles (LNPs) have emerged as a potential carrier to deliver therapeutics. Since studies reported doxorubicin-loaded liposomes (Doxil®), LNPs have been applied to numerous clinical trials. Lipid-based nanoparticles, including liposomes, solid lipid nanoparticles (SLNs), and nanostructured lipid nanoparticles, have also been developed to deliver active ingredients in vaccines. In this review, we present the type of LNPs used to develop vaccines with attractive advantages. We then discuss messenger RNA (mRNA) delivery for the clinical application of mRNA therapeutic-loaded LNPs and recent research trend of LNP-based vaccine development.
Collapse
Affiliation(s)
- Muhammad Saad Khan
- Department of Physics, Toronto Metropolitan University 350 Victoria Street Toronto M5B2K3 Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), St. Michael's Hospital 209 Victoria Street Toronto M5B1W8 Canada
| | - Sila Appak Baskoy
- Institute for Biomedical Engineering, Science and Technology (iBEST), St. Michael's Hospital 209 Victoria Street Toronto M5B1W8 Canada
- Department of Chemistry and Biology, Toronto Metropolitan University, Faculty of Science 350 Victoria Street Toronto M5B2K3 ON Canada
| | - Celina Yang
- Department of Physics, Toronto Metropolitan University 350 Victoria Street Toronto M5B2K3 Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), St. Michael's Hospital 209 Victoria Street Toronto M5B1W8 Canada
| | - Joohye Hong
- School of Integrative Engineering, Chung-Ang University Seoul 06974 Republic of Korea
| | - Jayoung Chae
- School of Integrative Engineering, Chung-Ang University Seoul 06974 Republic of Korea
| | - Heejin Ha
- School of Integrative Engineering, Chung-Ang University Seoul 06974 Republic of Korea
| | - Sungjun Lee
- School of Integrative Engineering, Chung-Ang University Seoul 06974 Republic of Korea
- Feynman Institute of Technology, Nanomedicine Corporation Seoul 06974 Republic of Korea
| | - Masayoshi Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama-shi 226-8503 Kanagawa Japan
| | - Yonghyun Choi
- School of Integrative Engineering, Chung-Ang University Seoul 06974 Republic of Korea
- Feynman Institute of Technology, Nanomedicine Corporation Seoul 06974 Republic of Korea
| | - Jonghoon Choi
- School of Integrative Engineering, Chung-Ang University Seoul 06974 Republic of Korea
- Feynman Institute of Technology, Nanomedicine Corporation Seoul 06974 Republic of Korea
| |
Collapse
|
28
|
You H, Jones MK, Gordon CA, Arganda AE, Cai P, Al-Wassiti H, Pouton CW, McManus DP. The mRNA Vaccine Technology Era and the Future Control of Parasitic Infections. Clin Microbiol Rev 2023; 36:e0024121. [PMID: 36625671 PMCID: PMC10035331 DOI: 10.1128/cmr.00241-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Despite intensive long-term efforts, with very few exceptions, the development of effective vaccines against parasitic infections has presented considerable challenges, given the complexity of parasite life cycles, the interplay between parasites and their hosts, and their capacity to escape the host immune system and to regulate host immune responses. For many parasitic diseases, conventional vaccine platforms have generally proven ill suited, considering the complex manufacturing processes involved and the costs they incur, the inability to posttranslationally modify cloned target antigens, and the absence of long-lasting protective immunity induced by these antigens. An effective antiparasite vaccine platform is required to assess the effectiveness of novel vaccine candidates at high throughput. By exploiting the approach that has recently been used successfully to produce highly protective COVID mRNA vaccines, we anticipate a new wave of research to advance the use of mRNA vaccines to prevent parasitic infections in the near future. This article considers the characteristics that are required to develop a potent antiparasite vaccine and provides a conceptual foundation to promote the development of parasite mRNA-based vaccines. We review the recent advances and challenges encountered in developing antiparasite vaccines and evaluate the potential of developing mRNA vaccines against parasites, including those causing diseases such as malaria and schistosomiasis, against which vaccines are currently suboptimal or not yet available.
Collapse
Affiliation(s)
- Hong You
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Malcolm K. Jones
- School of Veterinary Science, The University of Queensland, Brisbane, Australia
| | - Catherine A. Gordon
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Alexa E. Arganda
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Pengfei Cai
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Harry Al-Wassiti
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Colin W. Pouton
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Donald P. McManus
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| |
Collapse
|
29
|
Dahiya N, Yadav M, Singh H, Jakhar R, Sehrawat N. ZIKV: Epidemiology, infection mechanism and current therapeutics. FRONTIERS IN TROPICAL DISEASES 2023. [DOI: 10.3389/fitd.2022.1059283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The Zika virus (ZIKV) is a vector-borne flavivirus that has been detected in 87 countries worldwide. Outbreaks of ZIKV infection have been reported from various places around the world and the disease has been declared a public health emergency of international concern. ZIKV has two modes of transmission: vector and non-vector. The ability of ZIKV to vertically transmit in its competent vectors, such as Aedes aegypti and Aedes albopictus, helps it to cope with adverse conditions, and this could be the reason for the major outbreaks that occur from time to time. ZIKV outbreaks are a global threat and, therefore, there is a need for safe and effective drugs and vaccines to fight the virus. In more than 80% of cases, ZIKV infection is asymptomatic and leads to complications, such as microcephaly in newborns and Guillain–Barré syndrome (GBS) in adults. Drugs such as sofosbuvir, chloroquine, and suramin have been found to be effective against ZIKV infections, but further evaluation of their safety in pregnant women is needed. Although temoporfin can be given to pregnant women, it needs to be tested further for side effects. Many vaccine types based on protein, vector, DNA, and mRNA have been formulated. Some vaccines, such as mRNA-1325 and VRC-ZKADNA090-00-VP, have reached Phase II clinical trials. Some new techniques should be used for formulating and testing the efficacy of vaccines. Although there have been no recent outbreaks of ZIKV infection, several studies have shown continuous circulation of ZIKV in mosquito vectors, and there is a risk of re-emergence of ZIKV in the near future. Therefore, vaccines and drugs for ZIKV should be tested further, and safe and effective therapeutic techniques should be licensed for use during outbreaks.
Collapse
|
30
|
Essink B, Chu L, Seger W, Barranco E, Le Cam N, Bennett H, Faughnan V, Pajon R, Paila YD, Bollman B, Wang S, Dooley J, Kalidindi S, Leav B. The safety and immunogenicity of two Zika virus mRNA vaccine candidates in healthy flavivirus baseline seropositive and seronegative adults: the results of two randomised, placebo-controlled, dose-ranging, phase 1 clinical trials. THE LANCET. INFECTIOUS DISEASES 2023; 23:621-633. [PMID: 36682364 DOI: 10.1016/s1473-3099(22)00764-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/14/2022] [Accepted: 11/10/2022] [Indexed: 01/21/2023]
Abstract
BACKGROUND Developing a safe and immunogenic vaccine against Zika virus remains an unmet medical need. We did two phase 1 studies that evaluated the safety and immunogenicity of two mRNA-based Zika virus vaccines (mRNA-1325 and mRNA-1893) in adults. METHODS Two randomised, placebo-controlled, dose-ranging, multicentre, phase 1 trials, one of mRNA-1325 (mRNA-1325 trial) and one of mRNA-1893 (mRNA-1893 trial), were done. For both studies, eligible participants were healthy adults (aged 18-49 years) who were flavivirus seronegative or flavivirus seropositive at baseline. Participants in the mRNA-1325 trial, which was done at three centres in the USA, were randomly assigned centrally (1:4), using a randomisation table, to the placebo group or one of three mRNA-1325 dose groups (10, 25, or 100 μg). All participants received two doses. The mRNA-1325 vaccine encoded the premembrane and envelope E structural proteins (prME) from a Micronesia 2007 Zika virus isolate. Participants in the mRNA-1893 trial, which was done at three centres in the USA and one centre in Puerto Rico, were randomly assigned (1:4) to the placebo group or one of four mRNA-1893 dose groups (10, 30, 100, or 250 μg) using centralised interactive response technology. All participants in the mRNA-1893 trial received dose one on day 1 and then dose two on day 29. The mRNA-1893 vaccine encoded the prME from the RIO-U1 Zika virus isolate. Safety was the primary outcome of each study, which was evaluated in the respective safety populations (mRNA-1325 trial: participants who received at least one dose and provided safety data; mRNA-1893 trial: participants who received at least one dose) and the solicited safety population (mRNA-1893 trial only: received at least 1 dose and contributed solicited adverse reaction data). Endpoints in both trials included solicited adverse reactions within 7 days after vaccination and unsolicited adverse events within 28 days after vaccination. The secondary outcome of both trials was immunogenicity assessed by Zika virus-specific neutralising antibodies (nAbs) in the per-protocol populations in either trial (participants with no major protocol deviations received full dose[s] of assigned dose level within the acceptable time window, had samples drawn within acceptable time window, and had prevaccination and corresponding post-vaccination serum samples for testing). These were descriptive studies, with no formal hypothesis testing in either trial. Both trials are registered with ClinicalTrials.gov, NCT03014089 (mRNA-1325 trial) and NCT04064905 (mRNA-1893 trial). FINDINGS The mRNA-1325 trial was done from Dec 14, 2016, to Aug 16, 2018. 90 participants were enrolled: 53 (59%) participants were women and 37 (41%) were men; 84 (93%) were White; and 74 (82%) were not Hispanic or Latino. All three dose levels of mRNA-1325 (10, 25, and 100 μg) were generally well tolerated, but the vaccine elicited poor Zika virus-specific nAb responses. At 28 days after dose two, geometric mean titres (GMTs) were highest for mRNA-1325 10 μg (10·3 [95% CI 5·9-18·2]). The mRNA-1893 trial was done from July 23, 2019, to March 22, 2021. 120 participants (70 [58%] women and 50 [42%] men) were enrolled, most participants were White (89 [74%]), and not Hispanic or Latino (91 [76%]). In the mRNA-1893 trial, solicited adverse reactions in participants who received a vaccine were mostly grade 1 or 2 and occurred more frequently at higher dose levels and after dose two. No participants withdrew due to an unsolicited treatment-emergent adverse event and most of these events were not treatment related. On day 57, all evaluated mRNA-1893 dose levels induced robust Zika virus-specific nAb responses, independent of flavivirus serostatus, that persisted until month 13. At day 57 in participants who were flavivirus seronegative, plaque reduction neutralisation titre test nAb GMTs were highest for mRNA-1893 100 μg (454·2 [330·0-619·6]); in participants who were flavivirus seropositive, GMTs were highest for mRNA-1893 10 μg (224·1 [43·5-1153·5]) and mRNA-1893 100 μg (190·5 [19·2-1887·2]). INTERPRETATION These findings support the continued development of mRNA-1893 against Zika virus, which was well tolerated at all evaluated dose levels and induced strong Zika virus-specific serum nAb responses after two doses, regardless of baseline flavivirus serostatus. FUNDING Biomedical Advanced Research and Development Authority and Moderna.
Collapse
|
31
|
Yeasmin M, Molla MMA, Masud HMAA, Saif‐Ur‐Rahman KM. Safety and immunogenicity of Zika virus vaccine: A systematic review of clinical trials. Rev Med Virol 2023; 33:e2385. [PMID: 35986594 PMCID: PMC10077998 DOI: 10.1002/rmv.2385] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/01/2022] [Accepted: 08/03/2022] [Indexed: 01/28/2023]
Abstract
Several phase-1 clinical trials have been performed to evaluate the safety and efficacy of candidate anti-Zika vaccines. In this systematic review, we systematically evaluated the safety and immunogenicity of candidate vaccines, which would aid researchers in formulating an effective vaccination strategy for phase-2 trials based on current evidence. A literature search was conducted using the electronic databases MEDLINE through Pubmed, Web of Science, and Cochrane Database for relevant studies on candidate anti-zika vaccines. Studies on animal models were excluded from our study. Healthy individuals who were administered candidate Zika vaccines to evaluate the immune response and adverse events (AEs) compared to placebo were considered. Data were extracted, tabulated, and analysed using Microsoft Excel, while the risk of bias plots were generated using tidyverse and Robvis packages in R-studio. A total of five phase-1 clinical trials were included in our analysis comprising of studies on inactivated, viral vector, and DNA vaccines. Immunogenicity ranged from 10% to 100% after vaccination with the lowest seroconversion rate (10%) and geometric mean titre (GMT) (6.3; 95% confidence interval (CI):3.7-10.8) observed among recipients of single-dose inactivated anti-zika vaccine (ZPIV). For DNA vaccines, the seroconversion rate ranged from 60% to 100% with the highest seroconversion rate (100%) and GMT (2871; 95% CI:705.3-11688) observed among recipients of three shots of high dose GLS-5700 vaccine. For viral vector vaccine (Ad26.ZIKV.001) seroconversion rate (100%) and GMT peaked after two shots with both low and high-dose vaccines. In all those studies AEs were mostly local including injection site pain, erythema, and itching. The most common systemic AEs included fever, myalgia, nausea, and fatigue. In phase-1 clinical trials, all candidate vaccines were found to be highly immunogenic and relatively safe, especially when administered in higher doses and with the help of needle-free devices.
Collapse
Affiliation(s)
- Mahmuda Yeasmin
- Department of VirologyNational Institute of Laboratory Medicine and Referral CenterDhakaBangladesh
| | - Md. Maruf Ahmed Molla
- Department of VirologyNational Institute of Laboratory Medicine and Referral CenterDhakaBangladesh
- College of Graduate StudiesState University of New York Upstate Medical UniversitySyracuseNew YorkUSA
| | - H. M. Abdullah Al Masud
- Department of MicrobiologyFaculty of Biological SciencesUniversity of ChittagongChattogramBangladesh
| | - K. M. Saif‐Ur‐Rahman
- Health Systems and Population Studies Divisionicddr, bDhakaBangladesh
- Evidence Synthesis Ireland and Cochrane IrelandGalwayIreland
- College of MedicineNursing and Health SciencesNational University of IrelandGalwayIreland
| |
Collapse
|
32
|
Bhardwaj A, Sharma R, Grover A. Immuno-informatics guided designing of a multi-epitope vaccine against Dengue and Zika. J Biomol Struct Dyn 2023; 41:1-15. [PMID: 34796791 DOI: 10.1080/07391102.2021.2002720] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Dengue and zika are amongst the most prevalent mosquito-borne diseases caused by closely related members Dengue virus (DENV) and Zika virus (ZIKV), respectively, of the Flaviviridae family. DENV and ZIKV have been reported to co-infect several people, resulting in fatalities across the world. A vaccine that can safeguard against both these pathogens concurrently, can offer several advantages. This study has employed immuno-informatics for devising a multi-epitope, multi-pathogenic vaccine against both these viruses. Since, the two viruses share a common vector source, whose salivary components are reported to aid viral pathogenesis; antigenic salivary proteins from Aedes aegypti were also incorporated into the design of the vaccine along with conserved structural and non-structural viral proteins. Conserved B- and T-cell epitopes were identified for all the selected antigenic proteins. These epitopes were merged and further supplemented with β-defensin as an adjuvant, to yield an immunogenic vaccine construct. In-silico 3D modeling and structural validation of the vaccine construct was conducted, followed by its molecular docking and molecular dynamics simulation studies with human TLR2. Immune simulation study was also performed, and it further provided support that the designed vaccine can mount an effective immune response and hence provide protection against both DENV and ZIKV. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aditi Bhardwaj
- School of Biosciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Ritika Sharma
- School of Biotechnology, Jawaharlal Nehru University (JNU), Delhi, India
| | - Abhinav Grover
- School of Biotechnology, Jawaharlal Nehru University (JNU), Delhi, India
| |
Collapse
|
33
|
Antonelli AC, Almeida VP, da Fonseca SG. Immunoinformatics Vaccine Design for Zika Virus. Methods Mol Biol 2023; 2673:411-429. [PMID: 37258930 DOI: 10.1007/978-1-0716-3239-0_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Zika virus (ZIKV) is an emerging virus from the Flaviviridae family and Flavivirus genus that has caused important outbreaks around the world. ZIKV infection is associated with severe neuropathology in newborns and adults. Until now, there is no licensed vaccine available for ZIKV infection. Therefore, the development of a safe and effective vaccine against ZIKV is an urgent need. Recently, we designed an in silico multi-epitope vaccine for ZIKV based on immunoinformatics tools. To construct this in silico ZIKV vaccine, we used a consensus sequence generated from ZIKV sequences available in databank. Then, we selected CD4+ and CD8+ T cell epitopes from all ZIKV proteins based on the binding prediction to class II and class I human leukocyte antigen (HLA) molecules, promiscuity, and immunogenicity. ZIKV Envelope protein domain III (EDIII) was added to the construct and B cell epitopes were identified. Adjuvants were associated to increase immunogenicity. Distinct linkers were used for connecting the CD4+ and CD8+ T cell epitopes, EDIII, and adjuvants. Several analyses, such as antigenicity, population coverage, allergenicity, autoimmunity, and secondary and tertiary structures of the vaccine, were evaluated using various immunoinformatics tools and online web servers. In this chapter, we present the protocols with the rationale and detailed steps needed for this in silico multi-epitope ZIKV vaccine design.
Collapse
Affiliation(s)
- Ana Clara Antonelli
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Vinnycius Pereira Almeida
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Simone Gonçalves da Fonseca
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
34
|
Durgam L, Guruprasad L. Molecular mechanism of ATP and RNA binding to Zika virus NS3 helicase and identification of repurposed drugs using molecular dynamics simulations. J Biomol Struct Dyn 2022; 40:12642-12659. [PMID: 34516356 DOI: 10.1080/07391102.2021.1973909] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Congenital Zika virus syndrome has caused a public health emergency of international concern. So far, there are no drugs available to prevent or treat the infection caused by Zika virus. The Zika virus NS3 helicase is a potential protein target for drug discovery due to its vital role in viral genome replication. NS3 helicase unwinds the viral RNA to enable the reproduction of the viral genome by the NS5 protein. NS3 helicase has two crucial binding sites; the ATP binding site and the RNA binding site. We used molecular docking and molecular dynamics (MD) simulations to study the structural behavior of Zika virus NS3 helicase in its apo form and in the presence of ATP, single-stranded RNA, and both ATP-RNA to understand their potential implications in NS3 helicase activity. Further, we have carried out virtual screening of FDA approved drugs, followed by molecular docking to identify the ATP-competitive hit molecules as probable Zika virus NS3 helicase inhibitors. The MD simulations trajectories were analyzed using normal mode analysis and principal component analysis that reveals fluctuations in the R-loop. These findings aid in understanding the molecular mechanisms of the simultaneous binding of ATP and RNA, and guide the design and discovery of new inhibitors of the Zika virus NS3 helicase as a promising drug target to treat the Zika virus infection. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Laxman Durgam
- School of Chemistry, University of Hyderabad, Hyderabad, India
| | | |
Collapse
|
35
|
Muthuraj PG, Krishnamoorthy C, Anderson-Berry A, Hanson C, Natarajan SK. Novel Therapeutic Nutrients Molecules That Protect against Zika Virus Infection with a Special Note on Palmitoleate. Nutrients 2022; 15:124. [PMID: 36615782 PMCID: PMC9823984 DOI: 10.3390/nu15010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/11/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Zika virus (ZIKV) is a Flavivirus from the Flaviviridae family and a positive-sense single strand RNA virus. ZIKV infection can cause a mild infection to the mother but can be vertically transmitted to the developing fetus, causing congenital anomalies. The prevalence of ZIKV infections was relatively insignificant with sporadic outbreaks in the Asian and African continents until 2006. However, recent epidemic in the Caribbean showed significant increased incidence of Congenital Zika Syndrome. ZIKV infection results in placental pathology which plays a crucial role in disease transmission from mother to fetus. Currently, there is no Food and Drug Administration (FDA) approved vaccine or therapeutic drug against ZIKV. This review article summarizes the recent advances on ZIKV transmission and diagnosis and reviews nutraceuticals which can protect against the ZIKV infection. Further, we have reviewed recent advances related to the novel therapeutic nutrient molecules that have been shown to possess activity against Zika virus infected cells. We also review the mechanism of ZIKV-induced endoplasmic reticulum and apoptosis and the protective role of palmitoleate (nutrient molecule) against ZIKV-induced ER stress and apoptosis in the placental trophoblasts.
Collapse
Affiliation(s)
- Philma Glora Muthuraj
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Chandan Krishnamoorthy
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Ann Anderson-Berry
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Corrine Hanson
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Medical Nutrition Education, College of Allied Health Profession, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sathish Kumar Natarajan
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Medical Nutrition Education, College of Allied Health Profession, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
36
|
Hunter P. Combined measures: Progress against mosquito-borne diseases advances on three fronts: Progress against mosquito-borne diseases advances on three fronts. EMBO Rep 2022; 23:e56326. [PMID: 36330770 PMCID: PMC9724655 DOI: 10.15252/embr.202256326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
The fight against mosquito-borne diseases requires a combination of new vaccines, non-pharmaceutical interventions and novel strategies to target the mosquito vectors.
Collapse
|
37
|
Shin M, Kim K, Lee HJ, Jung YJ, Park J, Hahn TW. Vaccination with a Zika virus envelope domain III protein induces neutralizing antibodies and partial protection against Asian genotype in immunocompetent mice. Trop Med Health 2022; 50:91. [PMID: 36471432 PMCID: PMC9721077 DOI: 10.1186/s41182-022-00485-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Zika virus (ZIKV) is a mosquito-borne flavivirus classified in Flaviviridae family such as dengue (DENV), yellow fever, and West Nile virus. An outbreak of ZIKV infection can pose a major public health risk because the contagion is unpredictable and induces severe pathology such as Guillan-Barre syndrome and neonatal microcephaly. However, an authorized ZIKV vaccine is not yet available, while several vaccine candidates are under development. METHODS In this study, we constructed a recombinant ZIKV vaccine (Z_EDIII) that includes ZIKV envelope protein domain III using E. coli expression system. Then both humoral and cellular immunity were examined in C57BL/6 (female, 8-weeks-old) mice via Indirect ELISA assay, PRNT, ELISpot and cytokine detection for IFN-γ, TNF-α, and IL-12. In addition, the cross protection against DENV was evaluated in pups from Z_EDIII vaccinated and infected dam. RESULTS Mice immunized by Z_EDIII produced a significant amount of ZIKV EDIII-specific and neutralizing antibodies. Together with antibodies, effector cytokines, such as IFN-γ, TNF-α, and IL-12 were induced. Moreover, vaccinated females delivered the adaptive immunity to neonates who are protective against ZIKV and DENV challenge. CONCLUSIONS This study observed Z-EDIII-induced humoral and cellular immunity that protected hosts from both ZIKV and DENV challenges. The result suggests that our ZIKV EDIII recombinant vaccine has potential to provide a new preventive strategy against ZIKV infection.
Collapse
Affiliation(s)
- Minna Shin
- INNOVAC, Chuncheon, 24341 Republic of Korea
| | - Kiju Kim
- INNOVAC, Chuncheon, 24341 Republic of Korea ,grid.412010.60000 0001 0707 9039College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | - Hyo-Ji Lee
- grid.412010.60000 0001 0707 9039College of Biological Sciences, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | - Yu-Jin Jung
- grid.412010.60000 0001 0707 9039College of Biological Sciences, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | - Jeongho Park
- grid.412010.60000 0001 0707 9039College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | - Tae-Wook Hahn
- INNOVAC, Chuncheon, 24341 Republic of Korea ,grid.412010.60000 0001 0707 9039College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon, 24341 Republic of Korea
| |
Collapse
|
38
|
Vaziri S, Pour SH, Akrami-Mohajeri F. Zika virus as an emerging arbovirus of international public health concern. Osong Public Health Res Perspect 2022; 13:341-351. [DOI: 10.24171/j.phrp.2022.0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/29/2022] [Indexed: 11/05/2022] Open
Abstract
Zika virus (ZIKV) was identified in 1947 in a rhesus monkey during an investigation of the yellow fever virus in the Zika Forest of Uganda; it was also isolated later from humans in Nigeria. The main distribution areas of ZIKV were the African mainland and South-East Asia in the 1980s, Micronesia in 2007, and more recently the Americas in 2014. ZIKV belongs to the Flaviviridae family and Flavivirus genus. ZIKV infection, which is transmitted by Aedes mosquitoes, is an emerging arbovirus disease. The clinical symptoms of ZIKV infection are fever, headache, rashes, arthralgia, and conjunctivitis, which clinically resemble dengue fever syndrome. Sometimes, ZIKV infection has been associated with Guillain-Barré syndrome and microcephaly. At the end of 2015, following an increase in cases of ZIKV infection associated with Guillain-Barré syndrome and microcephaly in newborns in Brazil, the World Health Organization declared a global emergency. Therefore, considering the global distribution and pathogenic nature of this virus, the current study aimed at reviewing the virologic features, transmission patterns, clinical manifestations, diagnosis, treatment, and prevention of ZIKV infection.
Collapse
|
39
|
Serrato IM, Moreno-Aguilera D, Caicedo PA, Orobio Y, Ocampo CB, Maestre-Serrano R, Peláez-Carvajal D, Ahumada ML. Vector competence of lambda-cyhalothrin resistant Aedes aegypti strains for dengue-2, Zika and chikungunya viruses in Colombia. PLoS One 2022; 17:e0276493. [PMID: 36282839 PMCID: PMC9595557 DOI: 10.1371/journal.pone.0276493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 10/07/2022] [Indexed: 11/18/2022] Open
Abstract
Aedes aegypti is the primary vector of dengue, Zika, and chikungunya viruses. Studies have shown that insecticide resistance affects vector competence (VC) of some mosquito species. This study evaluates the effect of resistance to lambda-cyhalothrin and kdr V1016I mutation genotypes on the VC of Ae. aegypti strains for DENV-2, ZIKV, and CHIKV. Three Ae. aegypti strains with gradual lambda-cyhalothrin resistance (susceptible, resistant, and highly resistant) were infected with DENV-2, ZIKV, and CHIKV. Individual mosquitoes were tested to detect virus infection in the abdomen and head-salivary glands, using RT-PCR, and genotypes for V1016I mutations using allele-specific PCR. Recorded VC variables were midgut infection rate (MIR), dissemination rate (DIR), and dissemination efficiency (DIE). Lambda-cyhalothrin resistance affects differentially VC variables for ZIKV, DENV-2, and CHIKV. For ZIKV, an apparent gradual increase in DIR and DIE with the increase in insecticide resistance was observed. For DENV-2 the MIR and DIE were higher in insecticide resistant strains. For CHIKV, only MIR could be evaluated, this variable was higher in insecticide resistance strains. The presence of kdr V1016I mutation on mosquito resistant strains did not affect VC variables for three study viruses.
Collapse
Affiliation(s)
- Idalba M. Serrato
- Grupo de Entomología, Instituto Nacional de Salud, Bogotá, D.C., Colombia
- Fundación Salutia, Bogotá, D.C., Colombia
| | - Diana Moreno-Aguilera
- Grupo de Entomología, Instituto Nacional de Salud, Bogotá, D.C., Colombia
- Fundación Salutia, Bogotá, D.C., Colombia
| | - Paola A. Caicedo
- Natural Science Faculty, Universidad Icesi, Cali, Valle del Cauca, Colombia
| | - Yenifer Orobio
- Epidemiology and Biostatistics Unit, Centro Internacional de Entrenamiento e Investigaciones Médicas-CIDEIM, Cali, Colombia
| | - Clara B. Ocampo
- Vector, Biology and Control Unit. Centro Internacional de Entrenamiento e Investigaciones Médicas-CIDEIM, Cali, Colombia
- Dirección de Vocaciones y Formación, Ministerio de Ciencia y Tecnología e Innovación, Minciencias, Bogotá, D.C., Colombia
| | - Ronald Maestre-Serrano
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla, Atlántico, Colombia
| | | | - Martha L. Ahumada
- Grupo de Entomología, Instituto Nacional de Salud, Bogotá, D.C., Colombia
- * E-mail:
| |
Collapse
|
40
|
Pugliatti M, Hartung HP, Oreja-Guevara C, Pozzilli C, Airas L, Alkhawajah M, Grigoriadis N, Magyari M, Van Wijmeersch B, Zakaria M, Linker R, Chan A, Vermersch P, Berger T. Anti-SARS-CoV-2 vaccination in people with multiple sclerosis: Lessons learnt a year in. Front Immunol 2022; 13:1045101. [PMID: 36325318 PMCID: PMC9620960 DOI: 10.3389/fimmu.2022.1045101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 09/26/2022] [Indexed: 11/22/2022] Open
Abstract
It has been over a year since people with multiple sclerosis (pwMS) have been receiving vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). With a negligible number of cases in which vaccination led to a relapse or new onset MS, experts around the world agree that the potential consequences of COVID-19 in pwMS by far outweigh the risks of vaccination. This article reviews the currently available types of anti-SARS-CoV-2 vaccines and the immune responses they elicit in pwMS treated with different DMTs. Findings to date highlight the importance of vaccine timing in relation to DMT dosing to maximize protection, and of encouraging pwMS to get booster doses when offered.
Collapse
Affiliation(s)
- Maura Pugliatti
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
- Interdepartmental Center of Research for Multiple Sclerosis and Neuro-inflammatory and Degenerative Diseases, University of Ferrara, Ferrara, Italy
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Brain and Mind Center, University of Sydney, Sydney, NSW, Australia
- Department of Neurology, Palacky University Olomouc, Olomouc, Czechia
- *Correspondence: Hans-Peter Hartung,
| | - Celia Oreja-Guevara
- Department of Neurology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Faculty of Medicine, Complutense University of Madrid (UCM), Madrid, Spain
| | - Carlo Pozzilli
- Multiple Sclerosis Center, S. Andrea Hospital, Department of Human Neuroscience, University Sapienza, Rome, Italy
| | - Laura Airas
- Division of Clinical Neurosciences, University of Turku, Turku, Finland
- Neurocenter of Turku University Hospital, Turku, Finland
| | - Mona Alkhawajah
- Section of Neurology, Neurosciences Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- College of Medicine, Al Faisal University, Riyadh, Saudi Arabia
| | - Nikolaos Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology, American Hellenic Educational Progressive Association (AHEPA) University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Melinda Magyari
- Danish Multiple Sclerosis Center, Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Bart Van Wijmeersch
- Universitair Multiple Sclerosis (MS) Centrum, Hasselt-Pelt, Belgium
- Revalidatie & Multiple Sclerosis (MS), Noorderhart, Pelt, Belgium
- Rehabilitation Research Center (REVAL) & Biomedical Research Institute (BIOMED), Hasselt University, Hasselt, Belgium
| | - Magd Zakaria
- Department of Neurology, Ain Shams University, Cairo, Egypt
| | - Ralf Linker
- Clinic and Polyclinic for Neurology, Universitätsklinikum Regensburg, Regensburg, Germany
| | - Andrew Chan
- Department of Neurology, Inselspital Bern, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Patrick Vermersch
- University of Lille, Inserm U1172 LilNCog, CHU Lille, FHU Precise, Lille, France
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
41
|
Vaccines against Emerging and Neglected Infectious Diseases: An Overview. Vaccines (Basel) 2022; 10:vaccines10091385. [PMID: 36146463 PMCID: PMC9503027 DOI: 10.3390/vaccines10091385] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 12/25/2022] Open
Abstract
Neglected Tropical Diseases (NTDs) are a group of diseases that are highly prevalent in tropical and subtropical regions, and closely associated with poverty and marginalized populations. Infectious diseases affect over 1.6 billion people annually, and vaccines are the best prophylactic tool against them. Along with NTDs, emerging and reemerging infectious diseases also threaten global public health, as they can unpredictably result in pandemics. The recent advances in vaccinology allowed the development and licensing of new vaccine platforms that can target and prevent these diseases. In this work, we discuss the advances in vaccinology and some of the difficulties found in the vaccine development pipeline for selected NTDs and emerging and reemerging infectious diseases, including HIV, Dengue, Ebola, Chagas disease, malaria, leishmaniasis, zika, and chikungunya.
Collapse
|
42
|
Kumar A, Kumar D, Jose J, Giri R, Mysorekar IU. Drugs to limit Zika virus infection and implication for maternal-fetal health. FRONTIERS IN VIROLOGY 2022; 2. [PMID: 37064602 PMCID: PMC10104533 DOI: 10.3389/fviro.2022.928599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Although the placenta has robust defense mechanisms that protect the fetus from a viral infection, some viruses can manipulate or evade these mechanisms and disrupt physiology or cross the placental barrier. It is well established that the Zika virus is capable of vertical transmission from mother to fetus and can cause malformation of the fetal central nervous system (i.e., microcephaly), as well as Guillain-Barre syndrome in adults. This review seeks to gather and assess the contributions of translational research associated with Zika virus infection, including maternal-fetal vertical transmission of the virus. Nearly 200 inhibitors that have been evaluated in vivo and/or in vitro for their therapeutic properties against the Zika virus are summarized in this review. We also review the status of current vaccine candidates. Our main objective is to provide clinically relevant information that can guide future research directions and strategies for optimized treatment and preventive care of infections caused by Zika virus or similar pathogens.
Collapse
Affiliation(s)
- Ankur Kumar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, United States
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO-Kamand, Mandi, India
| | - Deepak Kumar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, United States
| | - Joyce Jose
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, State College, United States
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO-Kamand, Mandi, India
| | - Indira U. Mysorekar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
- CORRESPONDENCE Indira U. Mysorekar,
| |
Collapse
|
43
|
Victorio CBL, Ong J, Tham JY, Reolo MJ, Novera W, Msallam R, Watanabe S, Kalimuddin S, Low JG, Vasudevan SG, Chacko AM. Preclinical evaluation of [ 18F]FDG-PET as a biomarker of lymphoid tissue disease and inflammation in Zika virus infection. Eur J Nucl Med Mol Imaging 2022; 49:4516-4528. [PMID: 35876869 PMCID: PMC9309455 DOI: 10.1007/s00259-022-05892-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/25/2022] [Indexed: 11/05/2022]
Abstract
Purpose Zika (ZIKV) is a viral inflammatory disease affecting adults, children, and developing fetuses. It is endemic to tropical and sub-tropical countries, resulting in half the global population at risk of infection. Despite this, there are no approved therapies or vaccines against ZIKV disease. Non-invasive imaging biomarkers are potentially valuable tools for studying viral pathogenesis, prognosticating host response to disease, and evaluating in vivo efficacy of experimental therapeutic interventions. In this study, we evaluated [18F]fluorodeoxyglucose ([18F]FDG)-positron emission tomography (PET) as an imaging biomarker of ZIKV disease in a mouse model and correlated metabolic tracer tissue uptake with real-time biochemical, virological, and inflammatory features of tissue infection. Methods [18F]FDG-PET/CT imaging was performed in an acute, lethal ZIKV mouse infection model, at increasing stages of disease severity. [18F]FDG-PET findings were corroborated with ex vivo wholemount-tissue autoradiography and tracer biodistribution studies. Tracer uptake was also correlated with in situ tissue disease status, including viral burden and inflammatory response. Immune profiling of the spleen by flow cytometry was performed to identify the immune cell subsets driving tissue pathology and enhancing tracer uptake in ZIKV disease. Results Foci of increased [18F]FDG uptake were consistently detected in lymphoid tissues—particularly the spleen—of ZIKV-infected animals. Splenic uptake increased with disease severity, and corroborated findings in tissue pathology. Increased splenic uptake also correlated with increased viral replication and elevated expression of pro-inflammatory cytokines within these tissues. ZIKV-infected spleens were characterized by increased infiltration of myeloid cells, as well as increased proliferation of both myeloid and lymphoid cells. The increased cell proliferation correlated with increased tracer uptake in the spleen. Our findings support the use of [18F]FDG as an imaging biomarker to detect and track ZIKV disease in real time and highlight the dependency of affected tissue on the nature of the viral infection. Conclusion [18F]FDG uptake in the spleen is a useful surrogate for interrogating in situ tissue viral burden and inflammation status in this ZIKV murine model.
Supplementary Information The online version contains supplementary material available at 10.1007/s00259-022-05892-9.
Collapse
Affiliation(s)
- Carla Bianca Luena Victorio
- Laboratory for Translational and Molecular Imaging, Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Joanne Ong
- Laboratory for Translational and Molecular Imaging, Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Jing Yang Tham
- Laboratory for Translational and Molecular Imaging, Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Marie Jennifer Reolo
- Laboratory for Translational and Molecular Imaging, Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Wisna Novera
- Laboratory for Translational and Molecular Imaging, Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Rasha Msallam
- Laboratory for Translational and Molecular Imaging, Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Satoru Watanabe
- Programme in Emerging Infectious Disease, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Shirin Kalimuddin
- Programme in Emerging Infectious Disease, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.,Department of Infectious Diseases, Singapore General Hospital, 20 College Road, Singapore, 169856, Singapore
| | - Jenny G Low
- Programme in Emerging Infectious Disease, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.,Department of Infectious Diseases, Singapore General Hospital, 20 College Road, Singapore, 169856, Singapore
| | - Subhash G Vasudevan
- Programme in Emerging Infectious Disease, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Ann-Marie Chacko
- Laboratory for Translational and Molecular Imaging, Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.
| |
Collapse
|
44
|
Watts JL, Ralston A. The fetal lineage is susceptible to Zika virus infection within days of fertilization. Development 2022; 149:276104. [PMID: 35900100 PMCID: PMC9382896 DOI: 10.1242/dev.200501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 06/09/2022] [Indexed: 11/20/2022]
Abstract
Adults contracting Zika virus (ZIKV) typically exhibit mild symptoms, yet ZIKV infection of pregnant individuals can cause miscarriage or birth defects in their offspring. Many studies have focused on maternal-to-fetal ZIKV transmission via blood and placenta. Notably, however, ZIKV is also transmitted sexually, raising the possibility that ZIKV could infect the embryo shortly after fertilization, long before the placenta is established. Here, we evaluate the consequences of ZIKV infection in mouse embryos during the first few days of embryogenesis. We show that divergent strains of ZIKV can infect the fetal lineage and can cause developmental arrest, raising concern for the developmental consequences of sexual ZIKV transmission. This article has an associated ‘The people behind the papers’ interview. Summary: Mouse preimplantation embryos are vulnerable to Zika virus-induced lethality even in the presence of the zona pellucida, highlighting a potential risk of sexually transmitted infection in early pregnancy.
Collapse
Affiliation(s)
- Jennifer L. Watts
- Molecular, Cellular and Integrative Physiology Graduate Program, Michigan State University 1 , East Lansing , MI 48824 , USA
- Michigan State University 2 Reproductive and Developmental Biology Training Program , , East Lansing , MI 48824 , USA
- Michigan State University 3 Department of Biochemistry and Molecular Biology , , East Lansing , MI 48824 , USA
| | - Amy Ralston
- Michigan State University 2 Reproductive and Developmental Biology Training Program , , East Lansing , MI 48824 , USA
- Michigan State University 3 Department of Biochemistry and Molecular Biology , , East Lansing , MI 48824 , USA
| |
Collapse
|
45
|
Thompson D, Guenther B, Manayani D, Mendy J, Smith J, Espinosa DA, Harris E, Alexander J, Vang L, Morello CS. Zika virus-like particle vaccine fusion loop mutation increases production yield but fails to protect AG129 mice against Zika virus challenge. PLoS Negl Trop Dis 2022; 16:e0010588. [PMID: 35793354 PMCID: PMC9292115 DOI: 10.1371/journal.pntd.0010588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 07/18/2022] [Accepted: 06/15/2022] [Indexed: 11/26/2022] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus with maternal infection associated with preterm birth, congenital malformations, and fetal death, and adult infection associated with Guillain-Barré syndrome. Recent widespread endemic transmission of ZIKV and the potential for future outbreaks necessitate the development of an effective vaccine. We developed a ZIKV vaccine candidate based on virus-like-particles (VLPs) generated following transfection of mammalian HEK293T cells using a plasmid encoding the pre-membrane/membrane (prM/M) and envelope (E) structural protein genes. VLPs were collected from cell culture supernatant and purified by column chromatography with yields of approximately 1-2mg/L. To promote increased particle yields, a single amino acid change of phenylalanine to alanine was made in the E fusion loop at position 108 (F108A) of the lead VLP vaccine candidate. This mutation resulted in a modest 2-fold increase in F108A VLP production with no detectable prM processing by furin to a mature particle, in contrast to the lead candidate (parent). To evaluate immunogenicity and efficacy, AG129 mice were immunized with a dose titration of either the immature F108A or lead VLP (each alum adjuvanted). The resulting VLP-specific binding antibody (Ab) levels were comparable. However, geometric mean neutralizing Ab (nAb) titers using a recombinant ZIKV reporter were significantly lower with F108A immunization compared to lead. After virus challenge, all lead VLP-immunized groups showed a significant 3- to 4-Log10 reduction in mean ZIKV RNAemia levels compared with control mice immunized only with alum, but the RNAemia reduction of 0.5 Log10 for F108A groups was statistically similar to the control. Successful viral control by the lead VLP candidate following challenge supports further vaccine development for this candidate. Notably, nAb titer levels in the lead, but not F108A, VLP-immunized mice inversely correlated with RNAemia. Further evaluation of sera by an in vitro Ab-dependent enhancement assay demonstrated that the F108A VLP-induced immune sera had a significantly higher capacity to promote ZIKV infection in FcγR-expressing cells. These data indicate that a single amino acid change in the fusion loop resulted in increased VLP yields but that the immature F108A particles were significantly diminished in their capacity to induce nAbs and provide protection against ZIKV challenge. Zika virus (ZIKV) is transmitted by mosquitoes and is a serious health threat due to potential epidemic spread. Infection in adults may lead to Guillain-Barré syndrome, a neurological disorder, or may cause harm to a developing fetus resulting in preterm birth, fetal death, or devastating congenital malformations. There are currently no approved vaccines against ZIKV. We previously developed a lead candidate vaccine based on a virus-like particle (VLP) that was generated in tissue culture. This ZIKV shell is devoid of any viral genetic material. In previous studies, this lead VLP candidate generated neutralizing antibodies (nAbs) that recognized wild-type ZIKV and prevented viral replication in both mice and non-human primates. To increase production of the lead VLP candidate and decrease cost-of-goods, we introduced a single amino acid change, phenylalanine to alanine, in the envelope glycoprotein. This change resulted in a modest increase in VLP yield. However, this single amino acid change resulted in reduced induction of nAbs following immunization and no significant reduction of RNAemia following challenge compared to the lead candidate. The results of this study suggest this investigational vaccine candidate is not suitable for further vaccine development and that ZIKV VLP maturation may have an important role in protection.
Collapse
Affiliation(s)
- Danielle Thompson
- Emergent BioSolutions Inc., Gaithersburg, Maryland, United States of America
| | - Ben Guenther
- Emergent BioSolutions Inc., Gaithersburg, Maryland, United States of America
| | - Darly Manayani
- PaxVax Inc., San Diego, California, United States of America
| | - Jason Mendy
- Emergent BioSolutions Inc., Gaithersburg, Maryland, United States of America
| | - Jonathan Smith
- PaxVax Inc., San Diego, California, United States of America
| | - Diego A. Espinosa
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Jeff Alexander
- Emergent BioSolutions Inc., Gaithersburg, Maryland, United States of America
- PaxVax Inc., San Diego, California, United States of America
| | - Lo Vang
- Emergent BioSolutions Inc., Gaithersburg, Maryland, United States of America
| | | |
Collapse
|
46
|
Prates JWO, Xisto MF, Rodrigues JVDS, Colombari JPC, Meira JMA, Dias RS, da Silva CC, de Paula ESO. Zika Virus Envelope Protein Domain III Produced in K. phaffii Has the Potential for Diagnostic Applications. Diagnostics (Basel) 2022; 12:diagnostics12051198. [PMID: 35626353 PMCID: PMC9139701 DOI: 10.3390/diagnostics12051198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/29/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022] Open
Abstract
Zika virus (ZIKV) represents a global human health threat and it is related to severe diseases such as congenital Zika syndrome (CZS) and Guillain-Barré syndrome (GBS). There is no vaccine available nor specific antiviral treatment, so developing sensitive, specific, and low-cost diagnostic tests is necessary. Thus, the objective of this work was to produce the Zika virus envelope protein domain III (ZIKV-EDIII) in Komagataella phaffii KM71H and evaluate its potential for diagnostic applications. After the K. phaffii had been transformed with the pPICZαA-ZIKV-EDIII vector, an SDS-PAGE and Western Blot were performed to characterize the recombinant protein and an ELISA to evaluate the antigenic potential. The results show that ZIKV-EDIII was produced in the expected size, with a good purity grade and yield of 2.58 mg/L. The receiver operating characteristic (ROC) curve showed 90% sensitivity and 87.5% specificity for IgM, and 93.33% sensitivity and 82.76% specificity for IgG. The ZIKV-EDIII protein was efficiently produced in K. phaffi, and it has the potential for diagnostic applications.
Collapse
Affiliation(s)
- John Willians Oliveira Prates
- Department of Microbiology, Federal University of Viçosa, Viçosa 36570-900, Minas Gerais, Brazil; (J.W.O.P.); (J.V.d.S.R.); (C.C.d.S.)
| | - Mariana Fonseca Xisto
- Laboratory of Molecular Immunovirology, Department of General Biology, Federal University of Viçosa, Viçosa 36570-900, Minas Gerais, Brazil; (M.F.X.); (R.S.D.)
| | - João Vitor da Silva Rodrigues
- Department of Microbiology, Federal University of Viçosa, Viçosa 36570-900, Minas Gerais, Brazil; (J.W.O.P.); (J.V.d.S.R.); (C.C.d.S.)
| | - João Pedro Cruz Colombari
- Department of Medicine and Nursing, Federal University of Viçosa, Viçosa 36570-900, Minas Gerais, Brazil; (J.P.C.C.); (J.M.A.M.)
| | - Júlia Maria Alves Meira
- Department of Medicine and Nursing, Federal University of Viçosa, Viçosa 36570-900, Minas Gerais, Brazil; (J.P.C.C.); (J.M.A.M.)
| | - Roberto Sousa Dias
- Laboratory of Molecular Immunovirology, Department of General Biology, Federal University of Viçosa, Viçosa 36570-900, Minas Gerais, Brazil; (M.F.X.); (R.S.D.)
| | - Cynthia Canedo da Silva
- Department of Microbiology, Federal University of Viçosa, Viçosa 36570-900, Minas Gerais, Brazil; (J.W.O.P.); (J.V.d.S.R.); (C.C.d.S.)
| | - e Sérgio Oliveira de Paula
- Laboratory of Molecular Immunovirology, Department of General Biology, Federal University of Viçosa, Viçosa 36570-900, Minas Gerais, Brazil; (M.F.X.); (R.S.D.)
- Correspondence: ; Tel.: +55-31-36125015
| |
Collapse
|
47
|
Todorovski T, Mendonça DA, Fernandes-Siqueira LO, Cruz-Oliveira C, Guida G, Valle J, Cavaco M, Limas FIV, Neves V, Cadima-Couto Í, Defaus S, Veiga AS, Da Poian AT, Castanho MARB, Andreu D. Targeting Zika Virus with New Brain- and Placenta-Crossing Peptide-Porphyrin Conjugates. Pharmaceutics 2022; 14:738. [PMID: 35456572 PMCID: PMC9032516 DOI: 10.3390/pharmaceutics14040738] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/16/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Viral disease outbreaks affect hundreds of millions of people worldwide and remain a serious threat to global health. The current SARS-CoV-2 pandemic and other recent geographically- confined viral outbreaks (severe acute respiratory syndrome (SARS), Ebola, dengue, zika and ever-recurring seasonal influenza), also with devastating tolls at sanitary and socio-economic levels, are sobering reminders in this respect. Among the respective pathogenic agents, Zika virus (ZIKV), transmitted by Aedes mosquito vectors and causing the eponymous fever, is particularly insidious in that infection during pregnancy results in complications such as foetal loss, preterm birth or irreversible brain abnormalities, including microcephaly. So far, there is no effective remedy for ZIKV infection, mainly due to the limited ability of antiviral drugs to cross blood-placental and/or blood-brain barriers (BPB and BBB, respectively). Despite its restricted permeability, the BBB is penetrable by a variety of molecules, mainly peptide-based, and named BBB peptide shuttles (BBBpS), able to ferry various payloads (e.g., drugs, antibodies, etc.) into the brain. Recently, we have described peptide-porphyrin conjugates (PPCs) as successful BBBpS-associated drug leads for HIV, an enveloped virus in which group ZIKV also belongs. Herein, we report on several brain-directed, low-toxicity PPCs capable of targeting ZIKV. One of the conjugates, PP-P1, crossing both BPB and BBB, has shown to be effective against ZIKV (IC50 1.08 µM) and has high serum stability (t1/2 ca. 22 h) without altering cell viability at all tested concentrations. Peptide-porphyrin conjugation stands out as a promising strategy to fill the ZIKV treatment gap.
Collapse
Affiliation(s)
- Toni Todorovski
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (T.T.); (G.G.); (J.V.); (S.D.)
| | - Diogo A. Mendonça
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (D.A.M.); (C.C.-O.); (M.C.); (V.N.); (Í.C.-C.); (A.S.V.)
| | - Lorena O. Fernandes-Siqueira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.O.F.-S.); (F.I.V.L.)
| | - Christine Cruz-Oliveira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (D.A.M.); (C.C.-O.); (M.C.); (V.N.); (Í.C.-C.); (A.S.V.)
| | - Giuseppina Guida
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (T.T.); (G.G.); (J.V.); (S.D.)
| | - Javier Valle
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (T.T.); (G.G.); (J.V.); (S.D.)
| | - Marco Cavaco
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (D.A.M.); (C.C.-O.); (M.C.); (V.N.); (Í.C.-C.); (A.S.V.)
| | - Fernanda I. V. Limas
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.O.F.-S.); (F.I.V.L.)
| | - Vera Neves
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (D.A.M.); (C.C.-O.); (M.C.); (V.N.); (Í.C.-C.); (A.S.V.)
| | - Íris Cadima-Couto
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (D.A.M.); (C.C.-O.); (M.C.); (V.N.); (Í.C.-C.); (A.S.V.)
| | - Sira Defaus
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (T.T.); (G.G.); (J.V.); (S.D.)
| | - Ana Salomé Veiga
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (D.A.M.); (C.C.-O.); (M.C.); (V.N.); (Í.C.-C.); (A.S.V.)
| | - Andrea T. Da Poian
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.O.F.-S.); (F.I.V.L.)
| | - Miguel A. R. B. Castanho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (D.A.M.); (C.C.-O.); (M.C.); (V.N.); (Í.C.-C.); (A.S.V.)
| | - David Andreu
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (T.T.); (G.G.); (J.V.); (S.D.)
| |
Collapse
|
48
|
Low Immune Cross-Reactivity between West Nile Virus and a Zika Virus Vaccine Based on Modified Vaccinia Virus Ankara. Pharmaceuticals (Basel) 2022; 15:ph15030354. [PMID: 35337151 PMCID: PMC8955905 DOI: 10.3390/ph15030354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/04/2022] [Accepted: 03/12/2022] [Indexed: 02/01/2023] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus whose infection in pregnant women is associated with a spectrum of birth defects, which are together referred as Congenital Zika Syndrome. In addition, ZIKV can also induce Guillain–Barré syndrome, which is an autoimmune disease with neurological symptoms. The recent description of the first local infections of ZIKV in the European continent together with the expansion of one of its potential vectors, the Asian tiger mosquito (Aedes albopictus), invite us to be prepared for future outbreaks of ZIKV in this geographical region. However, the antigenic similarities of ZIKV with other flaviviruses can lead to an immune cross-reactivity with other circulating flaviviruses inducing, in some cases, flavivirus-disease exacerbation by antibody-dependent enhancement (ADE) of infection, which is a major concern for ZIKV vaccine development. Until now, West Nile virus (WNV) is the main medically relevant flavivirus circulating in the Mediterranean Basin. Therefore, anticipating the potential scenario of emergency vaccination against ZIKV in areas of Europe where WNV is endemic, in this investigation, we have evaluated the cross-reactivity between WNV and our previously developed ZIKV vaccine candidate based on modified vaccinia virus Ankara (MVA) vector expressing ZIKV structural proteins (MVA-ZIKV). To this end, mice were first immunized with MVA-ZIKV, subsequently challenged with WNV, and then, the ZIKV- and WNV-specific immune responses and protection against WNV were evaluated. Our results indicate low cross-reactivity between the MVA-ZIKV vaccine candidate and WNV and absence of ADE, supporting the safety of this ZIKV vaccine candidate in areas where the circulation of WNV is endemic.
Collapse
|
49
|
Le T, Sun C, Chang J, Zhang G, Yin X. mRNA Vaccine Development for Emerging Animal and Zoonotic Diseases. Viruses 2022; 14:401. [PMID: 35215994 PMCID: PMC8877136 DOI: 10.3390/v14020401] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
In the prevention and treatment of infectious diseases, mRNA vaccines hold great promise because of their low risk of insertional mutagenesis, high potency, accelerated development cycles, and potential for low-cost manufacture. In past years, several mRNA vaccines have entered clinical trials and have shown promise for offering solutions to combat emerging and re-emerging infectious diseases such as rabies, Zika, and influenza. Recently, the successful application of mRNA vaccines against COVID-19 has further validated the platform and opened the floodgates to mRNA vaccine's potential in infectious disease prevention, especially in the veterinary field. In this review, we describe our current understanding of the mRNA vaccines and the technologies used for mRNA vaccine development. We also provide an overview of mRNA vaccines developed for animal infectious diseases and discuss directions and challenges for the future applications of this promising vaccine platform in the veterinary field.
Collapse
Affiliation(s)
- Ting Le
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, China; (T.L.); (C.S.)
| | - Chao Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, China; (T.L.); (C.S.)
| | - Jitao Chang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, China; (T.L.); (C.S.)
| | - Guijie Zhang
- Departments of Animal Science, School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Xin Yin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, China; (T.L.); (C.S.)
| |
Collapse
|
50
|
Bancroft D, Power GM, Jones RT, Massad E, Iriat JB, Preet R, Kinsman J, Logan JG. Vector control strategies in Brazil: a qualitative investigation into community knowledge, attitudes and perceptions following the 2015-2016 Zika virus epidemic. BMJ Open 2022; 12:e050991. [PMID: 35105618 PMCID: PMC8808399 DOI: 10.1136/bmjopen-2021-050991] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVE The World Health Organization declared a Public Health Emergency of International Concern following the rapid emergence of neonatal microcephaly in Brazil during the 2015-2016 Zika virus (ZIKV) epidemic. In response, a national campaign sought to control Aedes mosquito populations and reduce ZIKV transmission. Achieving adherence to vector control or mosquito-bite reduction behaviours, including the use of topical mosquito repellents, is challenging. Coproduction of research at the community level is needed to understand and mitigate social determinants of lower engagement with Aedes preventive measures, particularly within disempowered groups. DESIGN In 2017, the Zika Preparedness Latin America Network (ZikaPLAN) conducted a qualitative study to understand individual and community level experiences of ZIKV and other mosquito-borne disease outbreaks. Presented here is a thematic analysis of 33 transcripts from community focus groups and semistructured interviews, applying the Health Belief Model (HBM) to elaborate knowledge, attitudes and perceptions of ZIKV and vector control strategies. PARTICIPANTS 120 purposively sampled adults of approximate reproductive age (18-45); 103 women participated in focus groups and 17 men in semistructured interviews. SETTING Two sociopolitically and epidemiologically distinct cities in Brazil: Jundiaí (57 km north of São Paolo) and Salvador (Bahia state capital). RESULTS Four key and 12 major themes emerged from the analysis: (1) knowledge and cues to action; (2) attitudes and normative beliefs (perceived threat, barriers, benefits and self-efficacy); (3) behaviour change (household prevention and community participation); and (4) community preferences for novel repellent tools, vector control strategies and ZIKV messaging. CONCLUSIONS Common barriers to repellent adherence were accessibility, appearance and effectiveness. A strong case is made for the transferability of the HBM to inform epidemic preparedness for mosquito-borne disease outbreaks at the community level. Nationally, a health campaign targeting men is recommended, in addition to local mobilisation of funding to strengthen surveillance, risk communication and community engagement.
Collapse
Affiliation(s)
- Dani Bancroft
- Department of Public Health, Environments and Society, London School of Hygiene and Tropical Medicine, London, UK
| | - Grace M Power
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, UK
| | - Robert T Jones
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, UK
| | - Eduardo Massad
- School of Medicine, University of São Paulo, São Paulo, SP, Brazil
- School of Applied Mathematics, Fundação Getulio Vargas, Rio de Janeiro, RJ, Brazil
| | | | - Raman Preet
- Department of Epidemiology and Global Health, Umeå University, Umeå, Sweden
| | - John Kinsman
- Department of Epidemiology and Global Health, Umeå University, Umeå, Sweden
| | - James G Logan
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|