1
|
Dev S, Dong Y, Hamilton JP. Hepatic microtubule destabilization facilitates liver fibrosis in the mouse model of Wilson disease. J Mol Med (Berl) 2025; 103:531-545. [PMID: 40140071 PMCID: PMC12078373 DOI: 10.1007/s00109-025-02535-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/24/2025] [Accepted: 03/18/2025] [Indexed: 03/28/2025]
Abstract
Wilson disease (WD) is a potentially fatal metabolic disorder caused by the inactivation of the copper (Cu) transporter ATP7B, resulting in systemic Cu overload and fibroinflammatory liver disease. The molecular mechanism and effects of elevated Cu on cytoskeletal dynamics in liver fibrogenesis are not clear. Here, we tested the regulation of hepatic cytoskeleton and fibrogenesis with respect to Cu overload in WD. Atp7b-/- (knockout) mice with established liver disease, hepatocyte-specific Atp7b△Hep knockout mice without fibroinflammatory disease, and the age-and sex-matched controls were compared using Western blotting, real-time quantitative reverse transcription PCR (qRT-PCR), immunohistochemical (IHC) staining and transcriptomics (RNA-sequencing) analysis. In Atp7b-/- mice with developed liver disease, there is a significant increase in cytoskeletal protein expression with a reduction in α-tubulin acetylation. In these mice before the onset of liver pathology, no significant changes in cytoskeletal nor hepatic stellate cell activation are observed. As hepatic copper levels rise, an increase in cytoskeletal proteins with a decrease in acetylated-α-tubulin/α-tubulin ratio occurs. RNA-sequencing, qRT-PCR, and immunostaining confirm that the tubulin is upregulated at the transcriptional level and hepatocytes are the primary source of early tubulin increases before fibrosis. An increase in α-tubulin with a decrease in α-tubulin acetylation via Hdac6 and Sirt2 induction facilitates fibrosis as reflected by concomitant increases in desmin and α-SMA immunostaining in Atp7b-/- mice at 20 weeks. Moreover, strongly positive correlations between α-tubulin and α-tubulin deacetylase with the expression of liver fibrosis markers are observed in animal and human WD. Hepatocyte-specific Atp7b△Hep mice lack significant changes in tubulin as well as fibrosis despite hepatic steatosis. This study provides evidence that microtubule destabilization causes cytoskeletal rearrangement and facilitates hepatic stellate cell (HSC) activation and fibrosis in the murine model of WD. KEY MESSAGES: Hepatic cytoskeleton system is induced in Wilson disease. Hepatic microtubules acetylation is dysregulated in murine Wilson disease. Microtubules destabilization is positively associated with liver fibrosis in Wilson disease. Microtubules destabilization concomitant with fibrogenesis exacerbates WD progression.
Collapse
Affiliation(s)
- Som Dev
- Department of Biochemistry, All India Institute of Medical Sciences, Kalyani, West Bengal, 741245, India.
- Department of Physiology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.
| | - Yixuan Dong
- Department of Physiology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - James P Hamilton
- Department of Physiology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Division of Gastroenterology and Hepatology, Johns Hopkins University, School of Medicine, 725 North Wolfe St, Baltimore, MD, 21205, USA
| |
Collapse
|
2
|
Gao P, Liu Q, Luo Z, Pu W. Transcriptomic and metabolomic analyses reveal the spatial role of carnitine metabolism in the progression of hepatitis B virus cirrhosis to hepatocellular carcinoma. Front Microbiol 2024; 15:1461456. [PMID: 39735192 PMCID: PMC11671487 DOI: 10.3389/fmicb.2024.1461456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/05/2024] [Indexed: 12/31/2024] Open
Abstract
Introduction Liver cirrhosis (LC) and hepatocellular carcinoma (HCC) resulting from chronic hepatitis B virus (HBV) infection are major health concerns. Identifying critical biomarkers and molecular targets is needed for early diagnosis, prognosis, and therapy of these diseases. Methods In this study, we explored the gene expression and metabolism in the liver tissues of LC, HCC, and healthy controls, to analyse and identify potential biomarkers of disease progression. Mass spectrometry imaging was used to evaluate the spatial distribution of key metabolites. Results and discussion The results revealed significant changes in gene expression and metabolic pathways along with disease progression. The upregulated genes were associated with extracellular matrix remodeling and cancer pathways, including LAMC1-3, COL9A2, COL1A1, MYL9, MYH11, and KAT2A. The downregulated genes were linked to immune response and fatty acid metabolism. Metabolomic analysis showed major changes in lipid and choline metabolism. Consistent changes in the expression of specific genes and metabolites were correlated with clinical data. Notably, metabolites such as L-acetylcarnitine, histamine, and 4-trimethylammoniobutanoic acid demonstrated high accuracy (AUC > 0.85) in distinguishing between healthy, LC, and HCC groups. This study identifies key gene and metabolite changes in HBV related LC and HCC, highlighting critical pathways involved in disease progression. Biomarkers like L-acetylcarnitine and KAT2A show promise for early diagnosis and prognosis, potentially improving outcomes for hepatitis liver disease patients.
Collapse
Affiliation(s)
- Pengxiang Gao
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Qiuping Liu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Ziye Luo
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Wenjun Pu
- Clinical Medical Research Center, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong, China
- Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College, Nanchong, Sichuan, China
| |
Collapse
|
3
|
Huang Y, Zhou Z, Liu T, Tang S, Xin X. Exploring heterogeneous cell population dynamics in different microenvironments by novel analytical strategy based on images. NPJ Syst Biol Appl 2024; 10:129. [PMID: 39505883 PMCID: PMC11542073 DOI: 10.1038/s41540-024-00459-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024] Open
Abstract
Understanding the dynamic states and transitions of heterogeneous cell populations is crucial for addressing fundamental biological questions. High-content imaging provides rich datasets, but it remains increasingly difficult to integrate and annotate high-dimensional and time-resolved datasets to profile heterogeneous cell population dynamics in different microenvironments. Using hepatic stellate cells (HSCs) LX-2 as model, we proposed a novel analytical strategy for image-based integration and annotation to profile dynamics of heterogeneous cell populations in 2D/3D microenvironments. High-dimensional features were extracted from extensive image datasets, and cellular states were identified based on feature profiles. Time-series clustering revealed distinct temporal patterns of cell shape and actin cytoskeleton reorganization. We found LX-2 showed more complex membrane dynamics and contractile systems with an M-shaped actin compactness trend in 3D culture, while they displayed rapid spreading in early 2D culture. This image-based integration and annotation strategy enhances our understanding of HSCs heterogeneity and dynamics in complex extracellular microenvironments.
Collapse
Affiliation(s)
- Yihong Huang
- Laboratory of Biophysics, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Zidong Zhou
- Laboratory of Biophysics, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Tianqi Liu
- Laboratory of Biophysics, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Shengnan Tang
- Laboratory of Biophysics, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Xuegang Xin
- Laboratory of Biophysics, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
Mohammad N, Oshins R, Gu T, Clark V, Lascano J, Assarzadegan N, Marek G, Brantly M, Khodayari N. Liver Characterization of a Cohort of Alpha-1 Antitrypsin Deficiency Patients with and without Lung Disease. J Clin Transl Hepatol 2024; 12:845-856. [PMID: 39440224 PMCID: PMC11491504 DOI: 10.14218/jcth.2024.00201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/20/2024] [Accepted: 08/25/2024] [Indexed: 10/25/2024] Open
Abstract
Background and Aims Alpha-1 antitrypsin deficiency (AATD) is a genetic disorder characterized by the misfolding and accumulation of the mutant variant of alpha-1 antitrypsin (AAT) within hepatocytes, which limits its access to the circulation and exposes the lungs to protease-mediated tissue damage. This results in progressive liver disease secondary to AAT polymerization and accumulation, and chronic obstructive pulmonary disease (COPD) due to deficient levels of AAT within the lungs. Our goal was to characterize the unique effects of COPD secondary to AATD on liver disease and gene expression. Methods A subcohort of AATD individuals with COPD (n = 33) and AATD individuals without COPD (n = 14) were evaluated in this study from our previously reported cross-sectional cohort. We used immunohistochemistry to assess the AATD liver phenotype, and RNA sequencing to explore liver transcriptomics. We observed a distinct transcriptomic profile in liver tissues from AATD individuals with COPD compared to those without. Results A total of 339 genes were differentially expressed. Canonical pathways related to fibrosis, extracellular matrix remodeling, collagen deposition, hepatocellular damage, and inflammation were significantly upregulated in the livers of AATD individuals with COPD. Histopathological analysis also revealed higher levels of fibrosis and hepatocellular damage in these individuals. Conclusions Our data supports a relationship between the development of COPD and liver disease in AATD and introduces genes and pathways that may play a role in AATD liver disease when COPD is present. We believe addressing lung impairment and airway inflammation may be an approach to managing AATD-related liver disease.
Collapse
Affiliation(s)
- Naweed Mohammad
- Division of Pulmonary, Critical Care and Sleep Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Regina Oshins
- Division of Pulmonary, Critical Care and Sleep Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Tongjun Gu
- Interdisciplinary Center for Biotechnology Research, Bioinformatics Core, University of Florida, Gainesville, FL, USA
| | - Virginia Clark
- Division of Gastroenterology, Hepatology and Nutrition, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Jorge Lascano
- Division of Pulmonary, Critical Care and Sleep Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Naziheh Assarzadegan
- Division of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - George Marek
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Mark Brantly
- Division of Pulmonary, Critical Care and Sleep Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Nazli Khodayari
- Division of Pulmonary, Critical Care and Sleep Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
5
|
Niu C, Hu Y, Xu K, Pan X, Wang L, Yu G. The role of the cytoskeleton in fibrotic diseases. Front Cell Dev Biol 2024; 12:1490315. [PMID: 39512901 PMCID: PMC11540670 DOI: 10.3389/fcell.2024.1490315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024] Open
Abstract
Fibrosis is the process whereby cells at a damaged site are transformed into fibrotic tissue, comprising fibroblasts and an extracellular matrix rich in collagen and fibronectin, following damage to organs or tissues that exceeds their repair capacity. Depending on the affected organs or tissues, fibrosis can be classified into types such as pulmonary fibrosis, hepatic fibrosis, renal fibrosis, and cardiac fibrosis. The primary pathological features of fibrotic diseases include recurrent damage to normal cells and the abnormal activation of fibroblasts, leading to excessive deposition of extracellular matrix and collagen in the intercellular spaces. However, the etiology of certain specific fibrotic diseases remains unclear. Recent research increasingly suggests that the cytoskeleton plays a significant role in fibrotic diseases, with structural changes in the cytoskeleton potentially influencing the progression of organ fibrosis. This review examines cytoskeletal remodeling and its impact on the transformation or activation of normal tissue cells during fibrosis, potentially offering important insights into the etiology and therapeutic strategies for fibrotic diseases.
Collapse
Affiliation(s)
- Caoyuan Niu
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, College of Life Science, Henan Normal University, Xinxiang, China
| | - Yanan Hu
- Department of Reproductive Medicine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Kai Xu
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, College of Life Science, Henan Normal University, Xinxiang, China
| | - Xiaoyue Pan
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, College of Life Science, Henan Normal University, Xinxiang, China
| | - Lan Wang
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, College of Life Science, Henan Normal University, Xinxiang, China
| | - Guoying Yu
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, College of Life Science, Henan Normal University, Xinxiang, China
| |
Collapse
|
6
|
Gong Y, Wang J, Pan M, Zhao Y, Zhang H, Zhang F, Liu J, Yang J, Hu J. Harmine inhibits pulmonary fibrosis through regulating DNA damage repair-related genes and activation of TP53-Gadd45α pathway. Int Immunopharmacol 2024; 138:112542. [PMID: 38924867 DOI: 10.1016/j.intimp.2024.112542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Harmine has many pharmacological activities and has been found to significantly inhibit the fibrosis of keloid fibroblasts. DNA damage repair (DDR) is essential to prevent fibrosis. This study aimed to investigate the effects of harmine on pulmonary fibrosis and its underlying mechanisms. METHODS Bleomycin and TGF-β1 were used to construct pulmonary fibrosis models in vivo and in vitro, then treated with harmine to explore harmine's effects in treating experimental pulmonary fibrosis and its related mechanisms. Then, RNA sequencing was applied to investigate further the crucial DDR-related genes and drug targets of harmine against pulmonary fibrosis. Finally, the expression levels of DDR-related genes were verified by real-time quantitative PCR (RT-qPCR) and western blot. RESULTS Our in vivo experiments showed that harmine treatment could improve weight loss and lung function and reduce tissue fibrosis in mice with pulmonary fibrosis. The results confirmed that harmine could inhibit the viability and migration of TGF-β1-induced MRC-5 cells, induce their apoptosis, and suppress the F-actin expression, suggesting that harmine could suppress the phenotypic transition from lung fibroblasts to lung myoblasts. In addition, RNA sequencing identified 1692 differential expressed genes (DEGs), and 10 DDR-related genes were screened as critical DDR-related genes. RT-qPCR and western blotting showed that harmine could down-regulate the expression of CHEK1, ERCC1, ERCC4, POLD1, RAD51, RPA1, TOP1, and TP53, while up-regulate FEN1, H2AX and GADD45α expression. CONCLUSIONS Harmine may inhibit pulmonary fibrosis by regulating DDR-related genes and activating the TP53-Gadd45α pathway.
Collapse
Affiliation(s)
- Yuehong Gong
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, China; Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Key Laboratory of Clinical Drug Research, Urumqi, Xinjiang 830011, China
| | - Jie Wang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, China; Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Key Laboratory of Clinical Drug Research, Urumqi, Xinjiang 830011, China
| | - Meichi Pan
- Department of Pharmacognosy, School of Pharmacy, Xinjiang Medical University, Urumqi 830017, China
| | - Yicong Zhao
- Department of Pharmacognosy, School of Pharmacy, Xinjiang Medical University, Urumqi 830017, China
| | - Haibo Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, China; Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Key Laboratory of Clinical Drug Research, Urumqi, Xinjiang 830011, China
| | - Fei Zhang
- Department of Medicine, School of Pharmacy, Xinjiang Medical University, Urumqi 830017, China
| | - Jiangyun Liu
- Soochow Univ, College of Pharmaceutic Science, Suzhou 215123, China
| | - Jianhua Yang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, China; Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Key Laboratory of Clinical Drug Research, Urumqi, Xinjiang 830011, China.
| | - Junping Hu
- Department of Pharmacognosy, School of Pharmacy, Xinjiang Medical University, Urumqi 830017, China.
| |
Collapse
|
7
|
Park S, Kim J, Yang S, Kang SH, Kang W, Paik YH. Exogenous S1P via S1P receptor 2 induces CTGF expression through Src-RhoA-ROCK-YAP pathway in hepatic stellate cells. Mol Biol Rep 2024; 51:950. [PMID: 39222158 DOI: 10.1007/s11033-024-09868-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Hepatic fibrosis, a prevalent chronic liver condition, involves excessive extracellular matrix production associated with aberrant wound healing. Hepatic stellate cells (HSCs) play a pivotal role in liver fibrosis, activated by inflammatory factors such as sphingosine 1-phosphate (S1P). Despite S1P's involvement in fibrosis, its specific role and downstream pathway in HSCs remain controversial. METHODS In this study, we investigated the regulatory role of S1P/S1P receptor (S1PR) in Hippo-YAP activation in both LX-2 cell lines and primary HSCs. Real-time PCR, western blot, pharmacological inhibitors, siRNAs, and Rho activity assays were adopted to address the molecular mechanisms of S1P mediated YAP activation. RESULTS Serum and exogenous S1P significantly increased the expression of YAP target genes in HSCs. Pharmacologic inhibitors and siRNA-mediated knockdowns of S1P receptors showed S1P receptor 2 (S1PR2) as the primary mediator for S1P-induced CTGF expression in HSCs. Results using siRNA-mediated knockdown, Verteporfin, and Phospho-Tag immunoblots showed that S1P-S1PR2 signaling effectively suppressed the Hippo kinases cascade, thereby activating YAP. Furthermore, S1P increased RhoA activities in cells and ROCK inhibitors effectively blocked CTGF induction. Cytoskeletal-perturbing reagents were shown to greatly modulate CTGF induction, suggesting the important role of actin cytoskeleton in S1P-induced YAP activation. Exogeneous S1P treatment was enough to increase the expression of COL1A1 and α-SMA, that were blocked by YAP specific inhibitor. CONCLUSIONS Our data demonstrate that S1P/S1PR2-Src-RhoA-ROCK axis leads to Hippo-YAP activation, resulting in the up-regulation of CTGF, COL1A1 and α-SMA expression in HSCs. Therefore, S1PR2 may represent a potential therapeutic target for hepatic fibrosis.
Collapse
Affiliation(s)
- Suhyun Park
- Department of Health Science and Technology, SAIHST, Sungkyunkwan University, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, South Korea
| | - Jonghwa Kim
- Samsung Medical Center, 81 Irwon- Ro, Gangnam-Gu, Seoul, 06351, South Korea.
| | - Sera Yang
- Samsung Medical Center, 81 Irwon- Ro, Gangnam-Gu, Seoul, 06351, South Korea
| | - So Hee Kang
- Samsung Medical Center, 81 Irwon- Ro, Gangnam-Gu, Seoul, 06351, South Korea
| | - Wonseok Kang
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, South Korea
- Samsung Medical Center, 81 Irwon- Ro, Gangnam-Gu, Seoul, 06351, South Korea
| | - Yong-Han Paik
- Department of Health Science and Technology, SAIHST, Sungkyunkwan University, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, South Korea.
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, South Korea.
- Samsung Medical Center, 81 Irwon- Ro, Gangnam-Gu, Seoul, 06351, South Korea.
| |
Collapse
|
8
|
Xie L, Chen H, Zhang L, Ma Y, Zhou Y, Yang YY, Liu C, Wang YL, Yan YJ, Ding J, Teng X, Yang Q, Liu XP, Wu J. JCAD deficiency attenuates activation of hepatic stellate cells and cholestatic fibrosis. Clin Mol Hepatol 2024; 30:206-224. [PMID: 38190829 PMCID: PMC11016487 DOI: 10.3350/cmh.2023.0506] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND/AIMS Cholestatic liver diseases including primary biliary cholangitis (PBC) are associated with active hepatic fibrogenesis, which ultimately progresses to cirrhosis. Activated hepatic stellate cells (HSCs) are the main fibrogenic effectors in response to cholangiocyte damage. JCAD regulates cell proliferation and malignant transformation in nonalcoholic steatoheaptitis-associated hepatocellular carcinoma (NASH-HCC). However, its participation in cholestatic fibrosis has not been explored yet. METHODS Serial sections of liver tissue of PBC patients were stained with immunofluorescence. Hepatic fibrosis was induced by bile duct ligation (BDL) in wild-type (WT), global JCAD knockout mice (JCAD-KO) and HSC-specific JCAD knockout mice (HSC-JCAD-KO), and evaluated by histopathology and biochemical tests. In situ-activated HSCs isolated from BDL mice were used to determine effects of JCAD on HSC activation. RESULTS In consistence with staining of liver sections from PBC patients, immunofluorescent staining revealed that JCAD expression was identified in smooth muscle α-actin (α-SMA)-positive fibroblast-like cells and was significantly up-regulated in WT mice with BDL. JCAD deficiency remarkably ameliorated BDL-induced hepatic injury and fibrosis, as documented by liver hydroxyproline content, when compared to WT mice with BDL. Histopathologically, collagen deposition was dramatically reduced in both JCAD-KO and HSC-JCAD-KO mice compared to WT mice, as visualized by Trichrome staining and semi-quantitative scores. Moreover, JCAD deprivation significantly attenuated in situ HSC activation and reduced expression of fibrotic genes after BDL. CONCLUSION JCAD deficiency effectively suppressed hepatic fibrosis induced by BDL in mice, and the underlying mechanisms are largely through suppressed Hippo-YAP signaling activity in HSCs.
Collapse
Affiliation(s)
- Li Xie
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Hui Chen
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Li Zhang
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Yue Ma
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Yuan Zhou
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Yong-Yu Yang
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Chang Liu
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Yu-Li Wang
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Ya-Jun Yan
- Department of Pathology, Shanghai Fifth People’s Hospital, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jia Ding
- Department of Gastroenterology, Jing’an District Central Hospital, Fudan University, Shanghai, China
| | - Xiao Teng
- HistoIndex Pte Ltd, Singapore, Singapore
| | - Qiang Yang
- Hangzhou Choutu Technology Co., Ltd., Hangzhou, China
| | - Xiu-Ping Liu
- Department of Pathology, Shanghai Fifth People’s Hospital, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jian Wu
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
- Department of Gastroenterology & Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China
- Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai, China
| |
Collapse
|
9
|
Barreto II, Gonçalves LR, Corrêa AF, Marin-Morales MA, Moraes KCM. Predictive toxicological effects of Artemisia absinthium essential oil on hepatic stellate cells. Toxicol In Vitro 2024; 95:105738. [PMID: 38000518 DOI: 10.1016/j.tiv.2023.105738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/08/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
Medicinal plants are important worldwide, considering their properties for treating diseases; however, few studies have evaluated their toxicological potential. Among them, Artemisia absinthium is frequently used to treat liver diseases, because its essential oil has several popular therapeutic properties. Based on this information, in the present study, we investigated molecular connectors of physiological effects of the Artemisia absinthium essential oil on human hepatic stellate cell line, LX-2, to explore the potential toxicity of the plant on liver cells. LX-2 is a cellular model to investigate mechanisms of liver fibrosis; then, to analyze the essential oil effects LX-2 was cultured under different conditions, treated or not with the essential oil at 0.4 μg/μL for 24 h. Next, fluorescence microscopy analyses, gene expression measurements, and biochemical approaches revealed that the essential oil reduced pro-fibrogenic markers; however, disrupt lipid metabolism, and cause cellular stress, by the activation of cellular detoxification and pro-inflammatory processes. In conclusion, the hepatic stellate cells incubated with the essential oil present an antifibrotic potential, supporting its popular use; however, the combined results suggest that the essential oil of Artemisia absinthium should be used with caution.
Collapse
Affiliation(s)
- I I Barreto
- Universidade Estadual Paulista "Júlio de Mesquita Filho" - Programa de Pós-Graduação em Biotecnologia, Campus Araraquara, Instituto de Química, Araraquara, SP, Brazil; Laboratório de Sinalização Celular e Expressão Gênica, Universidade Estadual Paulista "Júlio de Mesquita Filho" - Campus Rio Claro, Instituto de Biociências, Departamento de Biologia Geral e Aplicada, Rio Claro, SP, Brazil
| | - L R Gonçalves
- Laboratório de Mutagênese Ambiental, Universidade Estadual Paulista "Júlio de Mesquita Filho" - Campus Rio Claro, Instituto de Biociências, Departamento de Biologia Geral e Aplicada, Rio Claro, SP, Brazil
| | - A F Corrêa
- Laboratório de Mutagênese Ambiental, Universidade Estadual Paulista "Júlio de Mesquita Filho" - Campus Rio Claro, Instituto de Biociências, Departamento de Biologia Geral e Aplicada, Rio Claro, SP, Brazil
| | - M A Marin-Morales
- Laboratório de Mutagênese Ambiental, Universidade Estadual Paulista "Júlio de Mesquita Filho" - Campus Rio Claro, Instituto de Biociências, Departamento de Biologia Geral e Aplicada, Rio Claro, SP, Brazil
| | - K C M Moraes
- Universidade Estadual Paulista "Júlio de Mesquita Filho" - Programa de Pós-Graduação em Biotecnologia, Campus Araraquara, Instituto de Química, Araraquara, SP, Brazil; Laboratório de Sinalização Celular e Expressão Gênica, Universidade Estadual Paulista "Júlio de Mesquita Filho" - Campus Rio Claro, Instituto de Biociências, Departamento de Biologia Geral e Aplicada, Rio Claro, SP, Brazil.
| |
Collapse
|
10
|
Chang Z, Zhang L, Hang JT, Liu W, Xu GK. Viscoelastic Multiscale Mechanical Indexes for Assessing Liver Fibrosis and Treatment Outcomes. NANO LETTERS 2023; 23:9618-9625. [PMID: 37793647 PMCID: PMC10603793 DOI: 10.1021/acs.nanolett.3c03341] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/28/2023] [Indexed: 10/06/2023]
Abstract
Understanding liver tissue mechanics, particularly in the context of liver pathologies like fibrosis, cirrhosis, and carcinoma, holds pivotal significance for assessing disease severity and prognosis. Although the static mechanical properties of livers have been gradually studied, the intricacies of their dynamic mechanics remain enigmatic. Here, we characterize the dynamic creep responses of healthy, fibrotic, and mesenchymal stem cells (MSCs)-treated fibrotic lives. Strikingly, we unearth a ubiquitous two-stage power-law rheology of livers across different time scales with the exponents and their distribution profiles highly correlated to liver status. Moreover, our self-similar hierarchical theory effectively captures the delicate changes in the dynamical mechanics of livers. Notably, the viscoelastic multiscale mechanical indexes (i.e., power-law exponents and elastic stiffnesses of different hierarchies) and their distribution characteristics prominently vary with liver fibrosis and MSCs therapy. This study unveils the viscoelastic characteristics of livers and underscores the potential of proposed mechanical criteria for assessing disease evolution and prognosis.
Collapse
Affiliation(s)
- Zhuo Chang
- Laboratory
for Multiscale Mechanics and Medical Science, Department of Engineering
Mechanics, State Key Laboratory for Strength and Vibration of Mechanical
Structures, School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Liqiang Zhang
- Institute
for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Jiu-Tao Hang
- Laboratory
for Multiscale Mechanics and Medical Science, Department of Engineering
Mechanics, State Key Laboratory for Strength and Vibration of Mechanical
Structures, School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Wenjia Liu
- Institute
for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Guang-Kui Xu
- Laboratory
for Multiscale Mechanics and Medical Science, Department of Engineering
Mechanics, State Key Laboratory for Strength and Vibration of Mechanical
Structures, School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
11
|
Ryaboshapkina M, Azzu V. Sample size calculation for a NanoString GeoMx spatial transcriptomics experiment to study predictors of fibrosis progression in non-alcoholic fatty liver disease. Sci Rep 2023; 13:8943. [PMID: 37268815 DOI: 10.1038/s41598-023-36187-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/29/2023] [Indexed: 06/04/2023] Open
Abstract
Sample size calculation for spatial transcriptomics is a novel and understudied research topic. Prior publications focused on powering spatial transcriptomics studies to detect specific cell populations or spatially variable expression patterns on tissue slides. However, power calculations for translational or clinical studies often relate to the difference between patient groups, and this is poorly described in the literature. Here, we present a stepwise process for sample size calculation to identify predictors of fibrosis progression in non-alcoholic fatty liver disease as a case study. We illustrate how to infer study hypothesis from prior bulk RNA-sequencing data, gather input requirements and perform a simulation study to estimate required sample size to evaluate gene expression differences between patients with stable fibrosis and fibrosis progressors with NanoString GeoMx Whole Transcriptome Atlas assay.
Collapse
Affiliation(s)
- Maria Ryaboshapkina
- Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| | - Vian Azzu
- Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| |
Collapse
|
12
|
Lu Y, Wang M, Zhao M, Zhang Q, Qian R, Hu Z, Ke Q, Yu L, Wang L, Lai Q, Liu Z, Jiang X, Zhang B, Yang J, Yao Y. Filamin A is overexpressed in non-alcoholic steatohepatitis and contributes to the progression of inflammation and fibrosis. Biochem Biophys Res Commun 2023; 653:93-101. [PMID: 36863213 DOI: 10.1016/j.bbrc.2023.02.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/15/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023]
Abstract
Non-alcoholic steatohepatitis (NASH) is a chronic and progressive liver disease characterized by steatosis, inflammation, and fibrosis. Filamin A (FLNA), an actin-binding protein, is involved in various cell functions, including the regulation of immune cells and fibroblasts. However, its role in the development of NASH through inflammation and fibrogenesis is not fully understood. In this study, we found that FLNA expression was increased in liver tissues of patients with cirrhosis and mice with non-alcoholic fatty liver disease (NAFLD)/NASH and fibrosis. Immunofluorescence analysis showed that FLNA was primarily expressed in macrophages and hepatic stellate cells (HSCs). Knocking down of FLNA by specific shRNA in phorbol-12-myristate-13-acetate (PMA)-derived THP-1 macrophages reduced lipopolysaccharide (LPS)-stimulated inflammatory response. The decreased mRNA levels of inflammatory cytokines and chemokines and suppression of the STAT3 signaling were observed in FLNA-downregulated macrophages. In addition, knockdown of FLNA in immortalized human hepatic stellate cells (LX-2 cells) resulted in decreased mRNA levels of fibrotic cytokines and enzymes involved in collagen synthesis, as well as increased levels of metalloproteinases and pro-apoptotic proteins. Overall, these results suggest that FLNA may contribute to the pathogenesis of NASH through its role in the regulation of inflammatory and fibrotic mediators.
Collapse
Affiliation(s)
- Ying Lu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Mengzhu Wang
- Molecular Toxicology Laboratory of Sichuan Provincial Education Office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Manyu Zhao
- Molecular Toxicology Laboratory of Sichuan Provincial Education Office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Qianru Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China; Molecular Toxicology Laboratory of Sichuan Provincial Education Office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Rui Qian
- Molecular Toxicology Laboratory of Sichuan Provincial Education Office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Zan Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Qi Ke
- Department of Pathology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, China
| | - Lin Yu
- Department of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, China
| | - Liqun Wang
- Molecular Toxicology Laboratory of Sichuan Provincial Education Office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Qinhuai Lai
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhenmi Liu
- Molecular Toxicology Laboratory of Sichuan Provincial Education Office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Xia Jiang
- Molecular Toxicology Laboratory of Sichuan Provincial Education Office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Ben Zhang
- Molecular Toxicology Laboratory of Sichuan Provincial Education Office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinliang Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yuqin Yao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China; Molecular Toxicology Laboratory of Sichuan Provincial Education Office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
13
|
Zhao YQ, Deng XW, Xu GQ, Lin J, Lu HZ, Chen J. Mechanical homeostasis imbalance in hepatic stellate cells activation and hepatic fibrosis. Front Mol Biosci 2023; 10:1183808. [PMID: 37152902 PMCID: PMC10157180 DOI: 10.3389/fmolb.2023.1183808] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/12/2023] [Indexed: 05/09/2023] Open
Abstract
Chronic liver disease or repeated damage to hepatocytes can give rise to hepatic fibrosis. Hepatic fibrosis (HF) is a pathological process of excessive sedimentation of extracellular matrix (ECM) proteins such as collagens, glycoproteins, and proteoglycans (PGs) in the hepatic parenchyma. Changes in the composition of the ECM lead to the stiffness of the matrix that destroys its inherent mechanical homeostasis, and a mechanical homeostasis imbalance activates hepatic stellate cells (HSCs) into myofibroblasts, which can overproliferate and secrete large amounts of ECM proteins. Excessive ECM proteins are gradually deposited in the Disse gap, and matrix regeneration fails, which further leads to changes in ECM components and an increase in stiffness, forming a vicious cycle. These processes promote the occurrence and development of hepatic fibrosis. In this review, the dynamic process of ECM remodeling of HF and the activation of HSCs into mechanotransduction signaling pathways for myofibroblasts to participate in HF are discussed. These mechanotransduction signaling pathways may have potential therapeutic targets for repairing or reversing fibrosis.
Collapse
Affiliation(s)
- Yuan-Quan Zhao
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xi-Wen Deng
- Graduate School of Youjiang Medical University for Nationalities, Baise, China
| | - Guo-Qi Xu
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jie Lin
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Hua-Ze Lu
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jie Chen
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
14
|
2-Hexadecenal Regulates ROS Production and Induces Apoptosis in Polymorphonuclear Leucocytes. Cell Biochem Biophys 2023; 81:77-86. [PMID: 36418741 DOI: 10.1007/s12013-022-01117-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 10/30/2022] [Indexed: 11/27/2022]
Abstract
2-Hexadecenal (2-HD)-a biologically active long-chain fatty aldehyde formed in organism enzymatically or nonenzymatically in the reaction of free-radical destruction of sphingolipids under the action of hypochlorous acid, producing by myeloperoxidase. This research aimed to study 2-HD effects on polymorphonuclear leukocytes' (PMNLs) functions. It has been shown that at submicromolar concentrations, 2-HD causes an elevation in ROS production by PMNLs. It has been found that such effect is associated with signal transduction pathways modification and expressed in elevation of NADPH oxidase, MPO, and JNK-MAPK contributions to this process. At higher concentrations, 2-HD induces apoptosis, which correlates with a significant increase in free Ca2+ in the cytoplasm, a decrease in ROS production, and a decline in mitochondrial potential. Both of these processes are accompanied by cytoskeleton reorganization.
Collapse
|
15
|
Kaur R, Jain R, Budholiya N, Rathore AS. Long term culturing of CHO cells: phenotypic drift and quality attributes of the expressed monoclonal antibody. Biotechnol Lett 2023; 45:357-370. [PMID: 36707452 DOI: 10.1007/s10529-023-03346-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 12/13/2022] [Accepted: 01/05/2023] [Indexed: 01/29/2023]
Abstract
OBJECTIVE Establishing cell lines with enhanced protein production requires a deep understanding of the cellular dynamics and cell line stability. The aim of the study is to investigate the impact of long term culturing (LTC) on cell morphology and altered cellular functions possibly leading to phenotypic drift, impacting product yield and quality. Study highlights the orthogonal cellular and analytical assay toolbox to define cell line stability for optimal culture performance and product quality. METHODS We investigated recombinant monoclonal antibody (mAb) expressing CHO cells for 60 passages or 180 generations and assessed the cell growth characteristics and morphology by confocal and scanning electron microscopy. Quality attributes of expressed mAb is accessed by performing charge variants, glycan, and host cell protein analysis. RESULTS We observed a 1.65-fold increase in viable cell population and 1.3-fold increase in cell specific growth rate. A 2.5-fold decrease in antibody titer and abatement of actin filament indicate cellular phenotypic drift. Mitochondrial membrane potential (∆ΨM) signified cell health and metabolic activity during LTC. Host cell protein production is reduced by 1.8-fold. Charge heterogeneity was perturbed with 12.5% and 43% reduction in abundance of acidic and basic charge variants respectively. Glycan profile indicated a decline in fucosylation with 17% increase in galactosylated species as compared with early passaged cells. CONCLUSION LTC impinges on cellular phenotype as well as the quality of the expressed antibody, suggesting a defined subculturing limit to retain stable protein expression and cell morphology to achieve consistent product quality. Study signifies the changes in cellular and metabolic markers, suggesting cellular and analytical toolbox which could play a significant role in defining cell characteristics and ensured product quality.
Collapse
Affiliation(s)
- Rajinder Kaur
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Ritu Jain
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Niharika Budholiya
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India.
| |
Collapse
|
16
|
Nanda I, Steinlein C, Haaf T, Buhl EM, Grimm DG, Friedman SL, Meurer SK, Schröder SK, Weiskirchen R. Genetic Characterization of Rat Hepatic Stellate Cell Line HSC-T6 for In Vitro Cell Line Authentication. Cells 2022; 11:1783. [PMID: 35681478 PMCID: PMC9179542 DOI: 10.3390/cells11111783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 02/04/2023] Open
Abstract
Immortalized hepatic stellate cells (HSCs) established from mouse, rat, and humans are valuable in vitro models for the biomedical investigation of liver biology. These cell lines are homogenous, thereby providing consistent and reproducible results. They grow more robustly than primary HSCs and provide an unlimited supply of proteins or nucleic acids for biochemical studies. Moreover, they can overcome ethical concerns associated with the use of animal and human tissue and allow for fostering of the 3R principle of replacement, reduction, and refinement proposed in 1959 by William M. S. Russell and Rex L. Burch. Nevertheless, working with continuous cell lines also has some disadvantages. In particular, there are ample examples in which genetic drift and cell misidentification has led to invalid data. Therefore, many journals and granting agencies now recommend proper cell line authentication. We herein describe the genetic characterization of the rat HSC line HSC-T6, which was introduced as a new in vitro model for the study of retinoid metabolism. The consensus chromosome markers, outlined primarily through multicolor spectral karyotyping (SKY), demonstrate that apart from the large derivative chromosome 1 (RNO1), at least two additional chromosomes (RNO4 and RNO7) are found to be in three copies in all metaphases. Additionally, we have defined a short tandem repeat (STR) profile for HSC-T6, including 31 species-specific markers. The typical features of these cells have been further determined by electron microscopy, Western blotting, and Rhodamine-Phalloidin staining. Finally, we have analyzed the transcriptome of HSC-T6 cells by mRNA sequencing (mRNA-Seq) using next generation sequencing (NGS).
Collapse
Affiliation(s)
- Indrajit Nanda
- Institute of Human Genetics, Julius Maximilians University of Würzburg, D-97074 Würzburg, Germany; (I.N.); (C.S.); (T.H.)
| | - Claus Steinlein
- Institute of Human Genetics, Julius Maximilians University of Würzburg, D-97074 Würzburg, Germany; (I.N.); (C.S.); (T.H.)
| | - Thomas Haaf
- Institute of Human Genetics, Julius Maximilians University of Würzburg, D-97074 Würzburg, Germany; (I.N.); (C.S.); (T.H.)
| | - Eva M. Buhl
- Electron Microscopy Facility, Institute of Pathology, RWTH University Hospital Aachen, D-52074 Aachen, Germany;
| | - Domink G. Grimm
- TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich & Weihenstephan-Triesdorf University of Applied Sciences, D-94315 Straubing, Germany;
| | - Scott L. Friedman
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Steffen K. Meurer
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany; (S.K.M.); (S.K.S.)
| | - Sarah K. Schröder
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany; (S.K.M.); (S.K.S.)
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany; (S.K.M.); (S.K.S.)
| |
Collapse
|
17
|
Huang Z, Khalifa MO, Gu W, Li TS. Hydrostatic pressure induces pro-fibrotic properties in hepatic stellate cells via the RhoA/ROCK signaling pathway. FEBS Open Bio 2022; 12:1230-1240. [PMID: 35357779 PMCID: PMC9157409 DOI: 10.1002/2211-5463.13405] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/28/2022] [Accepted: 03/29/2022] [Indexed: 11/11/2022] Open
Abstract
Elevated interstitial fluid hydrostatic pressure is commonly observed in diseased livers. We herein examined the hypothesis that hydrostatic pressure induces hepatic stellate cells to acquire pro-fibrotic properties under pathological conditions. Human hepatic stellate cells were exposed to 50 mmHg pressure for 24 hours. Although we observed few changes of cell growth and morphology, PCR array data on the expression of fibrosis-associated genes suggested the acquisition of pro-fibrotic properties. The exposure of hepatic stellate cells to 50 mmHg pressure for 24 hours also significantly enhanced the expression of RhoA, ROCK1, α-SMA, TGF-β1 , p-MLC and p-Smad2, and this was effectively attenuated by ROCK inhibitor Y-27632. Our ex vivo experimental data suggests that elevated interstitial fluid hydrostatic pressure under pathological conditions may promote liver fibrosis by inducing acquisition of pro-fibrotic properties of hepatic stellate cells through the RhoA/ROCK signaling pathway.
Collapse
Affiliation(s)
- Zisheng Huang
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, 852-8523, Japan.,Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Mahmoud Osman Khalifa
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, 852-8523, Japan.,Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Weili Gu
- Department of Hepatopancreatobiliary Surgery, Guangzhou First People's Hospital, Guangzhou, 510180, China
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, 852-8523, Japan.,Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| |
Collapse
|
18
|
Pessoa J, Teixeira J. Cytoskeleton alterations in non-alcoholic fatty liver disease. Metabolism 2022; 128:155115. [PMID: 34974078 DOI: 10.1016/j.metabol.2021.155115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/08/2021] [Accepted: 12/21/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Due to its extremely high prevalence and severity, non-alcoholic fatty liver disease (NALFD) is a serious health and economic concern worldwide. Developing effective methods of diagnosis and therapy demands a deeper understanding of its molecular basis. One of the strategies in such an endeavor is the analysis of alterations in the morphology of liver cells. Such alterations, widely reported in NAFLD patients and disease models, are related to the cytoskeleton. Therefore, the fate of the cytoskeleton components is useful to uncover the molecular basis of NAFLD, to further design innovative approaches for its diagnosis and therapy. MAIN FINDINGS Several cytoskeleton proteins are up-regulated in liver cells of NAFLD patients. Under pathological conditions, keratin 18 is released from hepatocytes and its detection in the blood emerges as a non-invasive diagnosis tool. α-Smooth muscle actin is up-regulated in hepatic stellate cells and its down-regulation has been widely tested as a potential NALFD therapeutic approach. Other cytoskeleton proteins, such as vimentin, are also up-regulated. CONCLUSIONS NAFLD progression involves alterations in expression levels of proteins that build the liver cytoskeleton or associate with it. These findings provide a timely opportunity of developing novel approaches for NAFLD diagnosis and therapy.
Collapse
Affiliation(s)
- João Pessoa
- CNC - Center for Neuroscience and Cell Biology, CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.
| | - José Teixeira
- CNC - Center for Neuroscience and Cell Biology, CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
19
|
Nair PR, Sreeja S, Sailaja GS. Early biomineralizing chitosan–collagen hybrid scaffold with Cissus quadrangularis extract for regenerative bone tissue engineering. NEW J CHEM 2021. [DOI: 10.1039/d1nj03687d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study demonstrates the strategic fabrication of CQ hexane extract integrated porous, biodegradable CH–CO–HE scaffold crosslinked with biocompatible glyoxal enabling sufficient mechanical stability and assists early biomineralization (day 7).
Collapse
Affiliation(s)
- Praseetha R. Nair
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kerala, 682022, India
| | - S. Sreeja
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kerala, 682022, India
| | - G. S. Sailaja
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kerala, 682022, India
- Inter-University Centre for Nanomaterials and Devices (IUCND), Cochin University of Science and Technology, Kerala, 682022, India
- Centre of Excellence in Advanced Materials, Cochin University of Science and Technology, Kerala, 682022, India
| |
Collapse
|
20
|
Xie X, Mahmood SR, Gjorgjieva T, Percipalle P. Emerging roles of cytoskeletal proteins in regulating gene expression and genome organization during differentiation. Nucleus 2020; 11:53-65. [PMID: 32212905 PMCID: PMC7289583 DOI: 10.1080/19491034.2020.1742066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In the eukaryotic cell nucleus, cytoskeletal proteins are emerging as essential players in nuclear function. In particular, actin regulates chromatin as part of ATP-dependent chromatin remodeling complexes, it modulates transcription and it is incorporated into nascent ribonucleoprotein complexes, accompanying them from the site of transcription to polyribosomes. The nuclear actin pool is undistinguishable from the cytoplasmic one in terms of its ability to undergo polymerization and it has also been implicated in the dynamics of chromatin, regulating heterochromatin segregation at the nuclear lamina and maintaining heterochromatin levels in the nuclear interiors. One of the next frontiers is, therefore, to determine a possible involvement of nuclear actin in the functional architecture of the cell nucleus by regulating the hierarchical organization of chromatin and, thus, genome organization. Here, we discuss the repertoire of these potential actin functions and how they are likely to play a role in the context of cellular differentiation.
Collapse
Affiliation(s)
- Xin Xie
- Science Division, Biology Program, New York University Abu Dhabi (NYUAD), Abu Dhabi, United Arab Emirates
| | - S Raza Mahmood
- Science Division, Biology Program, New York University Abu Dhabi (NYUAD), Abu Dhabi, United Arab Emirates.,Department of Biology, New York University, New York, NY, USA
| | - Tamara Gjorgjieva
- Science Division, Biology Program, New York University Abu Dhabi (NYUAD), Abu Dhabi, United Arab Emirates
| | - Piergiorgio Percipalle
- Science Division, Biology Program, New York University Abu Dhabi (NYUAD), Abu Dhabi, United Arab Emirates.,Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
21
|
Eubanks HB, Lavoie EG, Goree J, Kamykowski JA, Gokden N, Fausther M, Dranoff JA. Reduction in SNAP-23 Alters Microfilament Organization in Myofibrobastic Hepatic Stellate Cells. Gene Expr 2020; 20:25-37. [PMID: 31757226 PMCID: PMC7284106 DOI: 10.3727/105221619x15742818049365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Hepatic stellate cells (HSC) are critical effector cells of liver fibrosis. In the injured liver, HSC differentiate into a myofibrobastic phenotype. A critical feature distinguishing myofibroblastic from quiescent HSC is cytoskeletal reorganization. Soluble NSF attachment receptor (SNARE) proteins are important in trafficking of newly synthesized proteins to the plasma membrane for release into the extracellular environment. The goals of this project were to determine the expression of specific SNARE proteins in myofibroblastic HSC and to test whether their alteration changed the HSC phenotype in vitro and progression of liver fibrosis in vivo. We found that HSC lack the t-SNARE protein, SNAP-25, but express a homologous protein, SNAP-23. Downregulation of SNAP-23 in HSC induced reduction in polymerization and disorganization of the actin cytoskeleton associated with loss of cell movement. In contrast, reduction in SNAP-23 in mice by monogenic deletion delayed but did not prevent progression of liver fibrosis to cirrhosis. Taken together, these findings suggest that SNAP-23 is an important regular of actin dynamics in myofibroblastic HSC, but that the role of SNAP-23 in the progression of liver fibrosis in vivo is unclear.
Collapse
Affiliation(s)
- Haleigh B. Eubanks
- *Division of Gastroenterology and Hepatology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Elise G. Lavoie
- *Division of Gastroenterology and Hepatology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jessica Goree
- *Division of Gastroenterology and Hepatology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jeffrey A. Kamykowski
- †Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Neriman Gokden
- ‡Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Michel Fausther
- *Division of Gastroenterology and Hepatology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jonathan A. Dranoff
- *Division of Gastroenterology and Hepatology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
22
|
Silva CM, Ferrari GD, Alberici LC, Malaspina O, Moraes KCM. Cellular and molecular effects of silymarin on the transdifferentiation processes of LX-2 cells and its connection with lipid metabolism. Mol Cell Biochem 2020; 468:129-142. [PMID: 32185674 DOI: 10.1007/s11010-020-03717-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/06/2020] [Indexed: 12/17/2022]
Abstract
Fibrosis process in the liver is a clinical condition established in response to chronic lesions and may be reversible in many situations. In this process, hepatic stellate cells (HSCs) activate and produce extracellular matrix compounds. During fibrosis, the lipid metabolism is also altered and contributes to the transdifferentiation of the HSCs. Thus, controlling lipid metabolism in HSCs is suggested as a method to control or reverse the fibrotic condition. In the search for therapies that modulate lipid metabolism and treat liver diseases, silymarin has been identified as a relevant natural compound to treat liver pathologies. The present study aimed to evaluate the cellular and molecular effects of silymarin in the transdifferentiation process of HSCs (LX-2) from activated phenotype to a more quiesced-like cells , also focusing on understanding the modulatory effects of silymarin on lipid metabolism of HSCs. In our analyses, 100 µM of silymarin reduced the synthesis of actin filaments in activated cells, the synthesis of the protein level of α-SMA, and other pro-fibrotic factors such as CTGF and PFGF. The concentration of 150 µM silymarin did not reverse the activation aspects of LX-2 cells. However, both evaluated concentrations of the natural compound protected the cells from the negative effects of dimethyl sulfoxide (DMSO). Furthermore, we evaluated lipid-related molecules correlated to the transdifferentiation process of LX-2, and 100 µM of silymarin demonstrated to control molecules associated with lipid metabolism such as FASN, MLYCD, ACSL4, CPTs, among others. In contrast, cellular incubation with 150 µM of silymarin increased the synthesis of long-chain fatty acids and triglycerides, regarding the higher presence of DMSO (v/v) in the solvent. In conclusion, silymarin acts as a hepatoprotective agent and modulates the pro-fibrogenic stimuli of LX-2 cells, whose effects depend on stress levels in the cellular environment.
Collapse
Affiliation(s)
- Caio Mateus Silva
- Laboratório de Biologia Molecular, Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista, UNESP, Rio Claro, SP, 13506-900, Brazil
| | - Gustavo Duarte Ferrari
- Departamento de Bioquímica E Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, USP, Ribeirão Preto, SP, Brazil
| | - Luciane Carla Alberici
- Departamento de Física E Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, USP, Ribeirão Preto, SP, Brazil
| | - Osmar Malaspina
- Centro de Estudos de Insetos Sociais, Instituto de Biociências, Universidade Estadual Paulista, UNESP, Rio Claro, SP, Brazil
| | - Karen C M Moraes
- Laboratório de Biologia Molecular, Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista, UNESP, Rio Claro, SP, 13506-900, Brazil.
| |
Collapse
|
23
|
da Silva CM, Caetano FH, Pereira FDC, Morales MAM, Sakane KK, Moraes KCM. Cellular and molecular effects of Baccharis dracunculifolia D.C. and Plectranthus barbatus Andrews medicinal plant extracts on retinoid metabolism in the human hepatic stellate cell LX-2. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:222. [PMID: 31438947 PMCID: PMC6704496 DOI: 10.1186/s12906-019-2591-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 07/02/2019] [Indexed: 12/14/2022]
Abstract
Background Chronic hepatic diseases are serious problems worldwide, which may lead to the development of fibrosis and eventually cirrhosis. Despite the significant number of people affected by hepatic fibrosis, no effective treatment is available. In the liver, hepatic stellate cells are the major fibrogenic cell type that play a relevant function in chronic liver diseases. Thus, the characterization of components that control the fibrogenesis in the hepatic stellate cells is relevant in supporting the development of innovative therapies to treat and/or control liver fibrosis. The present study investigated the effects of Baccharis dracunculifolia D.C. and Plectranthus barbatus Andrews medicinal plant extracts in LX-2 transdifferentiation. Methods LX-2 is a human immortalized hepatic stellate cell that can transdifferentiate in vitro from a quiescent-like phenotype to a more proliferative and activated behavior, and it provides a useful platform to assess antifibrotic drugs. Then, the antifibrotic effects of hydroalcoholic extracts of Baccharis dracunculifolia and Plectranthus barbatus medicinal plants on LX-2 were evaluated. Results The results in our cellular analyses, under the investigated concentrations of the plant extracts, indicate no deleterious effects on LX-2 metabolism, such as toxicity, genotoxicity, or apoptosis. Moreover, the extracts induced changes in actin filament distribution of activated LX-2, despite not affecting the cellular markers of transdifferentiation. Consistent effects in cellular retinoid metabolism were observed, supporting the presumed activity of the plant extracts in hepatic lipids metabolism, which corroborated the traditional knowledge about their uses for liver dysfunction. Conclusion The combined results suggested a potential hepatoprotective effect of the investigated plant extracts reinforcing their safe use as coadjuvants in treating imbalanced liver lipid metabolism.
Collapse
|
24
|
Amaegberi NV, Semenkova GN, Kvacheva ZB, Lisovskaya AG, Pinchuk SV, Shadyro OI. 2‐Hexadecenal
inhibits growth of
C6
glioma cells. Cell Biochem Funct 2019; 37:281-289. [DOI: 10.1002/cbf.3400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/02/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Nadezda V. Amaegberi
- Faculty of Chemistry, Department of Radiation Chemistry and Chemical‐Pharmaceutical TechnologiesBelarusian State University Minsk Belarus
| | - Galina N. Semenkova
- Faculty of Chemistry, Department of Radiation Chemistry and Chemical‐Pharmaceutical TechnologiesBelarusian State University Minsk Belarus
| | - Zinaida B. Kvacheva
- Institute of Biophysics and Cell Engineering of NAS of Belarus Minsk Belarus
| | - Alexandra G. Lisovskaya
- Faculty of Chemistry, Department of Radiation Chemistry and Chemical‐Pharmaceutical TechnologiesBelarusian State University Minsk Belarus
| | - Serge V. Pinchuk
- Institute of Biophysics and Cell Engineering of NAS of Belarus Minsk Belarus
| | - Oleg I. Shadyro
- Faculty of Chemistry, Department of Radiation Chemistry and Chemical‐Pharmaceutical TechnologiesBelarusian State University Minsk Belarus
| |
Collapse
|
25
|
Abstract
The term blood-bile barrier (BBlB) refers to the physical structure within a hepatic lobule that compartmentalizes and hence segregates sinusoidal blood from canalicular bile. Thus, this barrier provides physiological protection in the liver, shielding the hepatocytes from bile toxicity and restricting the mixing of blood and bile. BBlB is primarily composed of tight junctions; however, adherens junction, desmosomes, gap junctions, and hepatocyte bile transporters also contribute to the barrier function of the BBlB. Recent findings also suggest that disruption of BBlB is associated with major hepatic diseases characterized by cholestasis and aberrations in BBlB thus may be a hallmark of many chronic liver diseases. Several molecular signaling pathways have now been shown to play a role in regulating the structure and function and eventually contribute to regulation of the BBlB function within the liver. In this review, we will discuss the structure and function of the BBlB, summarize the methods to assess the integrity and function of BBlB, discuss the role of BBlB in liver pathophysiology, and finally, discuss the mechanisms of BBlB regulation. Collectively, this review will demonstrate the significance of the BBlB in both liver homeostasis and hepatic dysfunction.
Collapse
Affiliation(s)
- Tirthadipa Pradhan-Sundd
- *Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- †Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Satdarshan Pal Monga
- *Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- †Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- ‡Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
26
|
Cortes E, Lachowski D, Rice A, Chronopoulos A, Robinson B, Thorpe S, Lee DA, Possamai LA, Wang H, Pinato DJ, Del Río Hernández AE. Retinoic Acid Receptor-β Is Downregulated in Hepatocellular Carcinoma and Cirrhosis and Its Expression Inhibits Myosin-Driven Activation and Durotaxis in Hepatic Stellate Cells. Hepatology 2019; 69:785-802. [PMID: 30055117 DOI: 10.1002/hep.30193] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/25/2018] [Indexed: 01/17/2023]
Abstract
Hepatic stellate cells (HSCs) are essential perisinusoidal cells in both healthy and diseased liver. HSCs modulate extracellular matrix (ECM) homeostasis when quiescent, but in liver fibrosis, HSCs become activated and promote excess deposition of ECM molecules and tissue stiffening via force generation and mechanosensing. In hepatocellular carcinoma (HCC), activated HSCs infiltrate the stroma and migrate to the tumor core to facilitate paracrine signaling with cancer cells. Because the function of HSCs is known to be modulated by retinoids, we investigated the expression profile of retinoic acid receptor beta (RAR-β) in patients with cirrhosis and HCC, as well as the effects of RAR-β activation in HSCs. We found that RAR-β expression is significantly reduced in cirrhotic and HCC tissues. Using a comprehensive set of biophysical methods combined with cellular and molecular biology, we have elucidated the biomechanical mechanism by which all trans-retinoic acid promotes HSC deactivation via RAR-β-dependent transcriptional downregulation of myosin light chain 2 expression. Furthermore, this also abrogated mechanically driven migration toward stiffer substrates. Conclusion: Targeting mechanotransduction in HSCs at the transcriptional level may offer therapeutic options for a range of liver diseases.
Collapse
Affiliation(s)
- Ernesto Cortes
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Dariusz Lachowski
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Alistair Rice
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Antonios Chronopoulos
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Benjamin Robinson
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Stephen Thorpe
- School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - David A Lee
- School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Lucia A Possamai
- Division of Integrative Systems Medicine and Digestive Disease, Imperial College London, London, United Kingdom
| | - Haiyun Wang
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - David J Pinato
- Department of Surgery and Cancer, Hammersmith Hospital Campus, Imperial College London, London, United Kingdom
| | - Armando E Del Río Hernández
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, United Kingdom
| |
Collapse
|
27
|
Verma A, Bennett J, Örme AM, Polycarpou E, Rooney B. Cocaine addicted to cytoskeletal change and a fibrosis high. Cytoskeleton (Hoboken) 2019; 76:177-185. [PMID: 30623590 DOI: 10.1002/cm.21510] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/05/2018] [Accepted: 12/18/2018] [Indexed: 12/17/2022]
Abstract
Cocaine is one of the most widely abused illicit drugs due to its euphoric and addictive properties. Cocaine-mediated cognitive impairments are the result of dynamic cytoskeletal rearrangements involved in mediating structural and behavioural plasticity. Cytoskeletal changes initiated following cocaine abuse are regulated by the Rho family of GTPases with significant downstream activity in key actin binding proteins. Moreover, signalling via the endoplasmic reticulum chaperone protein, sigma-1 receptor has highlighted the possibility of cocaine regulated pathology in other organ systems. However, the question of whether upstream stimulation of such a high affinity binding receptor is directly involved in cocaine-mediated cytoskeletal changes at present remains unknown. In this review, we describe the functional role of key cytoskeletal regulators in response to cocaine-induced signalling cues. In addition, we ascertain the extent of whether global cytoskeletal modulators involved in cocaine-induced neurological stimulation can be used as a platform for future studies into elucidating its fibrotic potential within the hepatic microenvironment. A focus on aspects still poorly understood relating to the nonneuronal pathological impact of cocaine is discussed in the sphere of hepatic dysregulation. Lastly, we suggest that cocaine may mediate its pathological capacity via the sigma1 receptor in regulating hepatoxicity, hepatic stellate cells activity, cytoskeletal dynamics, and the transcriptional regulation of key hepato-fibrogenic modulators.
Collapse
Affiliation(s)
- Avnish Verma
- Kingston University, Department of Applied and Human Sciences, School of Life Sciences, Pharmacy and Chemistry, Surrey, United Kingdom
| | - Jason Bennett
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, London, United Kingdom
| | - Ayşe Merve Örme
- Kingston University, Department of Applied and Human Sciences, School of Life Sciences, Pharmacy and Chemistry, Surrey, United Kingdom
| | - Elena Polycarpou
- Kingston University, Department of Applied and Human Sciences, School of Life Sciences, Pharmacy and Chemistry, Surrey, United Kingdom
| | - Brian Rooney
- Kingston University, Department of Applied and Human Sciences, School of Life Sciences, Pharmacy and Chemistry, Surrey, United Kingdom
| |
Collapse
|
28
|
Tamoxifen mechanically deactivates hepatic stellate cells via the G protein-coupled estrogen receptor. Oncogene 2018; 38:2910-2922. [PMID: 30575816 PMCID: PMC6755965 DOI: 10.1038/s41388-018-0631-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 11/12/2018] [Accepted: 11/28/2018] [Indexed: 02/07/2023]
Abstract
Tamoxifen has been used for many years to target estrogen receptor signalling in breast cancer cells. Tamoxifen is also an agonist of the G protein-coupled estrogen receptor (GPER), a GPCR ubiquitously expressed in tissues that mediates the acute response to estrogens. Here we report that tamoxifen promotes mechanical quiescence in hepatic stellate cells (HSCs), stromal fibroblast-like cells whose activation triggers and perpetuates liver fibrosis in hepatocellular carcinomas. This mechanical deactivation is mediated by the GPER/RhoA/myosin axis and induces YAP deactivation. We report that tamoxifen decreases the levels of hypoxia-inducible factor-1 alpha (HIF-1α) and the synthesis of extracellular matrix proteins through a mechanical mechanism that involves actomyosin-dependent contractility and mechanosensing of tissue stiffness. Our results implicate GPER-mediated estrogen signalling in the mechanosensory-driven activation of HSCs and put forward estrogenic signalling as an option for mechanical reprogramming of myofibroblast-like cells in the tumour microenvironment. Tamoxifen, with half a century of safe clinical use, might lead this strategy of drug repositioning.
Collapse
|
29
|
Cheng B, Zhu Q, Lin W, Wang L. MicroRNA-122 inhibits epithelial-mesenchymal transition of hepatic stellate cells induced by the TGF-β1/Smad signaling pathway. Exp Ther Med 2018; 17:284-290. [PMID: 30651793 PMCID: PMC6307443 DOI: 10.3892/etm.2018.6962] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 09/06/2018] [Indexed: 12/12/2022] Open
Abstract
Transforming growth factor (TGF)-β1 may stimulate the activation of hepatic stellate cells (HSCs), resulting in the development of liver fibrosis. As micro RNA (miRNA)-122 is known to be associated with liver inflammation, its effects on the epithelial-mesenchymal transition (EMT) of HSCs through the inhibition of the TGF-β1/drosophila mothers against decapentaplegic protein 4 (Smad4) signaling pathway were investigated. The MTT assay was performed to explore the optimum TGF-β1 concentration suitable for HSC stimulation. Fluorescence microscopy was used to observe the transfection efficiency and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis were used to observe gene and protein expression levels of α-smooth muscle actin (α-SMA), E-cadherin, N-cadherin and Smad4, respectively, in HSCs treated with TGF-β1 or TGF-β1 and miRNA-122. MTT assay results indicated that the concentration of 10 µg/l TGF-β1 was suitable for maximum growth and survival of HSCs. Notably, the mRNA expression levels of N-cadherin and α-SMA were significantly increased (each, P<0.05), but the expression levels of E-cadherin were decreased following 10 µg/l TGF-β1 treatment. Similar results were observed regarding the protein expression levels of N-cadherin, α-SMA and E-cadherin. Furthermore, the expression of F-actin was increased in the 10 µg/l TGF-β1 treated group compared with the 0 µg/l TGF-β1 treaded group and stretching of the muscle fiber filament was observed. miRNA-122 lentiviral vector transfection significantly decreased the mRNA expression of N-cadherin and increased the mRNA expression of E-cadherin in HSCs stimulated with TGF-β1, as evident from RT-qPCR results. Similar results were also observed regarding the protein expression levels of N-cadherin and E-cadherin. The expression levels of Smad4, the primary component of the TGF-β1 signaling pathway, were significantly lower in cells treated with TGF-β1 and miRNA-122 (P<0.01) compared those treated with TGF-β1. Thus, miRNA-122 may inhibit the activation and EMT of HSCs stimulated by TGF-β1.
Collapse
Affiliation(s)
- Bianqiao Cheng
- Department of Hepatology, The Second Hospital of Fuzhou Affiliated Xiamen University, Fuzhou, Fujian 350007, P.R. China
| | - Qi Zhu
- Department of Hepatology, The Second Hospital of Fuzhou Affiliated Xiamen University, Fuzhou, Fujian 350007, P.R. China
| | - Weiguo Lin
- Department of Hepatology, The Second Hospital of Fuzhou Affiliated Xiamen University, Fuzhou, Fujian 350007, P.R. China
| | - Lihui Wang
- Department of Hepatology, The Second Hospital of Fuzhou Affiliated Xiamen University, Fuzhou, Fujian 350007, P.R. China
| |
Collapse
|
30
|
Cui X, Zhang X, Bu H, Liu N, Li H, Guan X, Yan H, Wang Y, Zhang H, Ding Y, Cheng M. Shear stress-mediated changes in the expression of complement regulatory protein CD59 on human endothelial progenitor cells by ECM-integrinα Vβ 3-F-actin pathway in vitro. Biochem Biophys Res Commun 2017; 494:416-421. [PMID: 28943429 DOI: 10.1016/j.bbrc.2017.09.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 09/06/2017] [Indexed: 01/27/2023]
Abstract
Membrane regulatory proteins, such as CD46, CD55, and CD59, prevent excess complement activation and to protect cells from damage. Previous investigations confirmed that shear stress in the physiological range was more favorable for endothelial progenitor cells (EPCs) to repair injured vascular endothelial cells and operates mainly in atheroprotective actions. However, detailed events that contribute to shear stress-induced protection in EPCs, particularly the mechanisms of signal transduction, remain poorly understood. In this study, we observed shear stress-mediated changes in the expression of complement regulatory proteins CD46, CD55, and CD59 on human EPCs and focused on the mechanical transmission mechanism in transformed cells in response to the ECM-F-actin pathway in vitro. Shear stress was observed to promote the expression of complement regulatory protein CD59, but not CD46 or CD55, on EPCs. In addition, the shear stress-induced CD59 expression was confirmed to be associated with the ECM components and was alleviated in EPCs pretreated with GRGDSP, which inhibits ECM components-integrin interaction. Furthermore, shear stress also promotes the rearrangement and polymerization of F-actin. However, shear stress-induced CD59 expression was reduced when the F-actin stress fiber formation process was delayed by Gly-Arg-Gly-Asp-Ser-Pro (GRGDSP) or destroyed by cytochalasin D (Cyto D), while Jasplakinolide (JAS) reversed the expression of CD59 through promotion of F-actin polymerization and its stabilizing capacities. Our results indicates that shear stress is an important mediator in EPC expression of CD59 regulated by the ECM-F-actin pathway, which is a key factor in preventing membrane attack complex (MAC) -mediated cell autolysis.
Collapse
Affiliation(s)
- Xiaodong Cui
- Clinical Medical School, Weifang Medical University, Weifang, Shandong, 261053, PR China
| | - Xiaoyun Zhang
- Clinical Medical School, Weifang Medical University, Weifang, Shandong, 261053, PR China
| | - Hongnan Bu
- Department of Gynaecology and Obstetrics, The 89 Hospital of Chinese PLA, Weifang, Shandong, 261021, China
| | - Na Liu
- Clinical Medical School, Weifang Medical University, Weifang, Shandong, 261053, PR China
| | - Hong Li
- Clinical Medical School, Weifang Medical University, Weifang, Shandong, 261053, PR China
| | - Xiumei Guan
- Clinical Medical School, Weifang Medical University, Weifang, Shandong, 261053, PR China
| | - Hong Yan
- Clinical Medical School, Weifang Medical University, Weifang, Shandong, 261053, PR China
| | - Yuzhen Wang
- Medical Research Center, Weifang Medical University, Weifang, Shandong, 261053, PR China
| | - Hua Zhang
- Department of Gynaecology and Obstetrics, The 89 Hospital of Chinese PLA, Weifang, Shandong, 261021, China
| | - Yuzhen Ding
- Clinical Medical School, Weifang Medical University, Weifang, Shandong, 261053, PR China
| | - Min Cheng
- Clinical Medical School, Weifang Medical University, Weifang, Shandong, 261053, PR China.
| |
Collapse
|
31
|
Benedicto A, Romayor I, Arteta B. Role of liver ICAM-1 in metastasis. Oncol Lett 2017; 14:3883-3892. [PMID: 28943897 DOI: 10.3892/ol.2017.6700] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 07/07/2017] [Indexed: 12/15/2022] Open
Abstract
Intercellular adhesion molecule (ICAM)-1, is a transmembrane glycoprotein of the immunoglobulin (Ig)-like superfamily, consisting of five extracellular Ig-like domains, a transmembrane domain and a short cytoplasmic tail. ICAM-1 is expressed in various cell types, including endothelial cells and leukocytes, and is involved in several physiological processes. Furthermore, it has additionally been reported to be expressed in various cancer cells, including melanoma, colorectal cancer and lymphoma. The majority of studies to date have focused on the expression of the ICAM-1 on the surface of tumor cells, without research into ICAM-1 expression at sites of metastasis. Cancer cells frequently metastasize to the liver, due to its unique physiology and specialized liver sinusoid capillary network. Liver sinusoidal endothelial cells constitutively express ICAM-1, which is upregulated under inflammatory conditions. Furthermore, liver ICAM-1 may be important during the development of liver metastasis. Therefore, it is necessary to improve the understanding of the mechanisms mediated by this adhesion molecule in order to develop host-directed anticancer therapies.
Collapse
Affiliation(s)
- Aitor Benedicto
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of The Basque Country, UPV/EHU, Leioa, E-48940 Vizcaya, Spain
| | - Irene Romayor
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of The Basque Country, UPV/EHU, Leioa, E-48940 Vizcaya, Spain
| | - Beatriz Arteta
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of The Basque Country, UPV/EHU, Leioa, E-48940 Vizcaya, Spain
| |
Collapse
|
32
|
Kikuchi A, Pradhan-Sundd T, Singh S, Nagarajan S, Loizos N, Monga SP. Platelet-Derived Growth Factor Receptor α Contributes to Human Hepatic Stellate Cell Proliferation and Migration. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2273-2287. [PMID: 28734947 DOI: 10.1016/j.ajpath.2017.06.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/19/2017] [Accepted: 06/08/2017] [Indexed: 02/06/2023]
Abstract
Platelet-derived growth factor receptor α (PDGFRα), a tyrosine kinase receptor, is up-regulated in hepatic stellate cells (HSCs) during chronic liver injury. HSCs mediate hepatic fibrosis through their activation from a quiescent state partially in response to profibrotic growth factors. HSC activation entails enhanced expression of profibrotic genes, increase in proliferation, and increase in motility, which facilitates migration within the hepatic lobule. We show colocalization of PDGFRα in murine carbon tetrachloride, bile duct ligation, and 0.1% 3,5-diethoxycarbonyl-1,4-dihydrocollidine models of chronic liver injury, and investigate the role of PDGFRα on proliferation, profibrotic gene expression, and migration in primary human HSCs (HHSteCs) using the PDGFRα-specific inhibitory monoclonal antibody olaratumab. Although lacking any effects on HHSteC transdifferentiation assessed by gene expression of ACTA2, TGFB1, COL1A1, SYP1, and FN1, olaratumab specifically reduced HHSteC proliferation (AlamarBlue assay) and cell migration (transwell migration assays). Using phospho-specific antibodies, we show that olaratumab attenuates PDGFRα activation in response to PDGF-BB, and reduced phosphorylation of extracellular signal-regulated kinase 1 and 2, Elk-1, p38, Akt, focal adhesion kinase, mechanistic target of rapamycin, C10 regulator of kinase II, and C10 regulator of kinase-like, suggesting that PDGFRα contributes to mitogenesis and actin reorganization through diverse downstream effectors. Our findings support a distinct contribution of PDGFRα signaling to HSC proliferation and migration and provide evidence that inhibition of PDGFRα signaling could alter the pathogenesis of hepatic fibrosis.
Collapse
Affiliation(s)
- Alexander Kikuchi
- Department of Pathology and Medicine and Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Tirthadipa Pradhan-Sundd
- Department of Pathology and Medicine and Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Sucha Singh
- Department of Pathology and Medicine and Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Shanmugam Nagarajan
- Department of Pathology and Medicine and Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Nick Loizos
- Department of Immunology, Eli Lilly and Company, New York, New York
| | - Satdarshan P Monga
- Department of Pathology and Medicine and Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
33
|
de Oliveira da Silva B, Ramos LF, Moraes KCM. Molecular interplays in hepatic stellate cells: apoptosis, senescence, and phenotype reversion as cellular connections that modulate liver fibrosis. Cell Biol Int 2017; 41:946-959. [PMID: 28498509 DOI: 10.1002/cbin.10790] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 05/08/2017] [Indexed: 12/18/2022]
Abstract
Liver fibrosis is a pathophysiological process correlated with intense repair and cicatrization mechanisms in injured liver, and over the past few years, the characterization of the fine-tuning of molecular interconnections that support the development of liver fibrosis has been investigated. In this cellular process, the hepatic stellate cells (HSCs) support the organ fibrogenesis. The HSCs are found in two distinct morpho-physiological states: quiescent and activated. In normal liver, most HSCs are found in quiescent state, presenting a considerable amount of lipid droplets in the cytoplasm, while in injured liver, the activated phenotype of HSCs is a myofibroblast, that secrete extracellular matrix elements and contribute to the establishment of the fibrotic process. Studies on the molecular mechanisms by which HSCs try to restore their quiescent state have been performed; however, no effective treatment to reverse fibrosis has been so far prescribed. Therefore, the elucidation of the cellular and molecular mechanisms of apoptosis, senescence, and the cell reversion phenotype process from activate to quiescent state will certainly contribute to the development of effective therapies to treat hepatic fibrosis. In this context, this review aimed to address central elements of apoptosis, senescence, and reversal of HSC phenotype in the control of hepatic fibrogenesis, as a guide to future development of therapeutic strategies.
Collapse
Affiliation(s)
- Brenda de Oliveira da Silva
- Universidade Federal de Ouro Preto, Núcleo de Pesquisa em Ciências Biológicas, Programa de Pós-Graduação em Biotecnologia, Ouro Preto, Minas Gerais, Brazil.,Molecular Biology Laboratory, Departamento de Biologia, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho"-Campus Rio Claro, Rio Claro, São Paulo, Brazil
| | - Letícia Ferrreira Ramos
- Molecular Biology Laboratory, Departamento de Biologia, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho"-Campus Rio Claro, Rio Claro, São Paulo, Brazil
| | - Karen C M Moraes
- Molecular Biology Laboratory, Departamento de Biologia, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho"-Campus Rio Claro, Rio Claro, São Paulo, Brazil
| |
Collapse
|
34
|
Lew WZ, Huang YC, Huang KY, Lin CT, Tsai MT, Huang HM. Static magnetic fields enhance dental pulp stem cell proliferation by activating the p38 mitogen-activated protein kinase pathway as its putative mechanism. J Tissue Eng Regen Med 2017; 12:19-29. [PMID: 27688068 DOI: 10.1002/term.2333] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/02/2016] [Accepted: 09/26/2016] [Indexed: 01/09/2023]
Abstract
Dental pulp stem cells (DPSCs) can be a potential stem cell resource for clinical cell therapy and tissue engineering. However, obtaining a sufficient number of DPSCs for repairing defects is still an issue in clinical applications. Static magnetic fields (SMFs) enhance the proliferation of several cell types. Whether or not SMFs have a positive effect on DPSC proliferation is unknown. Therefore, the aim of this study was to investigate the effect of SMFs on DPSC proliferation and its possible intracellular mechanism of action. For methodology, isolated DPSCs were cultured with a 0.4-T SMF. Anisotropy of the lipid bilayer was examined using a fluorescence polarization-depolarization assay. The intracellular calcium ions of the SMF-treated cells were analysed using Fura-2 acetoxymethyl ester labelling. The cytoskeletons of exposed and unexposed control cells were labelled with actin fluorescence dyes. Cell viability was checked when the tested cells were cultured with inhibitors of ERK, JNK and p38 to discern the possible signalling cascade involved in the proliferative effect of the SMF on the DPSCs. Our results showed that SMF-treated cells demonstrated a higher proliferation rate and anisotropy value. The intracellular calcium ions were activated by SMFs. In addition, fluorescence microscopy images demonstrated that SMF-treated cells exhibit higher fluorescence intensity of the actin cytoskeletal structure. Cell viability and real-time polymerase chain reaction suggested that the p38 signalling cascade was activated when the DPSCs were exposed to a 0.4-T SMF. F-actin intensity tests showed that SB203580-treated cells decreased even with SMF exposure. Additionally, the F-/G-actin ratio increased due to slowing of the cytoskeleton reorganization by p38 mitogen-activated protein kinase inhibition. According to these results, we suggest that a 0.4-T SMF affected the cellular membranes of the DPSCs and activated intracellular calcium ions. This effect may activate p38 mitogen-activated protein kinase signalling, and thus reorganize the cytoskeleton, which contributes to the increased cell proliferation of the DPSCs. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Wei-Zhen Lew
- School of Dentistry, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chih Huang
- School of Dentistry, Taipei Medical University, Taipei, Taiwan
| | - Kuen-Yu Huang
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei, Taiwan
| | - Che-Tong Lin
- School of Dentistry, Taipei Medical University, Taipei, Taiwan
| | - Ming-Tzu Tsai
- Department of Biomedical Engineering, Hungkuang University, Taichung, Taiwan
| | - Haw-Ming Huang
- School of Dentistry, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
35
|
Stempien-Otero A, Kim DH, Davis J. Molecular networks underlying myofibroblast fate and fibrosis. J Mol Cell Cardiol 2016; 97:153-61. [PMID: 27167848 PMCID: PMC5482716 DOI: 10.1016/j.yjmcc.2016.05.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/02/2016] [Accepted: 05/05/2016] [Indexed: 01/06/2023]
Abstract
Fibrotic remodeling is a hallmark of most forms of cardiovascular disease and a strong prognostic indicator of the advancement towards heart failure. Myofibroblasts, which are a heterogeneous cell-type specialized for extracellular matrix (ECM) secretion and tissue contraction, are the primary effectors of the heart's fibrotic response. This review is focused on defining myofibroblast physiology, its progenitor cell populations, and the core signaling network that orchestrates myofibroblast differentiation as a way of understanding the basic determinants of fibrotic disease in the heart and other tissues.
Collapse
Affiliation(s)
- April Stempien-Otero
- Division of Cardiology, University of Washington School of Medicine, Seattle, WA, USA
| | - Deok-Ho Kim
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Jennifer Davis
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA; Department of Bioengineering, University of Washington, Seattle, WA, USA.
| |
Collapse
|
36
|
Parrish AR. The cytoskeleton as a novel target for treatment of renal fibrosis. Pharmacol Ther 2016; 166:1-8. [PMID: 27343756 DOI: 10.1016/j.pharmthera.2016.06.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/07/2016] [Indexed: 12/23/2022]
Abstract
The incidence of chronic kidney disease (CKD) is increasing, with an estimated prevalence of 12% in the United States (Synder et al., 2009). While CKD may progress to end-stage renal disease (ESRD), which necessitates renal replacement therapy, i.e. dialysis or transplantation, most CKD patients never reach ESRD due to the increased risk of death from cardiovascular disease. It is well-established that regardless of the initiating insult - most often diabetes or hypertension - fibrosis is the common pathogenic pathway that leads to progressive injury and organ dysfunction (Eddy, 2014; Duffield, 2014). As such, there has been extensive research into the molecular and cellular mechanisms of renal fibrosis; however, translation to effective therapeutic strategies has been limited. While a role for the disruption of the cytoskeleton, most notably the actin network, has been established in acute kidney injury over the past two decades, a role in regulating renal fibrosis and CKD is only recently emerging. This review will focus on the role of the cytoskeleton in regulating pro-fibrotic pathways in the kidney, as well as data suggesting that these pathways represent novel therapeutic targets to manage fibrosis and ultimately CKD.
Collapse
Affiliation(s)
- Alan R Parrish
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65212, USA.
| |
Collapse
|
37
|
Gan DK, Zhu X. Role of RhoA in occurrence and development of liver fibrosis. Shijie Huaren Xiaohua Zazhi 2016; 24:1682-1687. [DOI: 10.11569/wcjd.v24.i11.1682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis is a pathophysiologic process resulting from a variety of chronic liver injuries, characterized by the excessive accumulation of extracellular matrix or the formation of scar. The transdifferentiation from quiescent hepatic stellate cells (HSCs) or portal fibroblasts (PFs) to activated myofibroblasts (MFBs) is a key step of producing extracellular matrix. RhoA can regulate the cell cytoskeleton and is involved in activating HSCs/PFs, thus having a significant fibrogenic effect. In this paper, we review the recent advances in understanding the role of RhoA in the occurrence and development of liver fibrosis.
Collapse
|
38
|
Yang JJ, Tao H, Deng ZY, Lu C, Li J. Non-coding RNA-mediated epigenetic regulation of liver fibrosis. Metabolism 2015; 64:1386-94. [PMID: 26362725 DOI: 10.1016/j.metabol.2015.08.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/06/2015] [Accepted: 08/08/2015] [Indexed: 12/27/2022]
Abstract
Hepatic stellate cells (HSC) activation plays a key role in liver fibrosis. Numerous studies have indicated that non-coding RNAs (ncRNAs) control liver fibrosis and fibroblasts proliferation. Greater knowledge of the role of the ncRNAs-mediated epigenetic mechanism in liver fibrosis could improve understanding of the liver fibrosis pathogenesis. The aim of this review is to describe the present knowledge about the ncRNAs significantly participating in liver fibrosis and HSC activation, and look ahead on new perspectives of ncRNAs-mediated epigenetic mechanism research. Moreover, we will discuss examples of non-coding RNAs that interact with histone modification or DNA methylation to regulate gene expression in liver fibrosis. Diverse classes of ncRNAs, ranging from microRNAs (miRs) to long non-coding RNAs (LncRNAs), have emerged as key regulators of several important aspects of function, including cell proliferation, activation, etc. In addition, recent advances suggest the important role of ncRNAs transcripts in epigenetic gene regulation. Targeting the miRs and LncRNAs can be a promising direction in liver fibrosis treatment. We discuss new perspectives of miRs and LncRNAs in liver fibrosis and HSC activation, mainly including interaction with histone modification or DNA methylation to regulate gene expression. These epigenetic mechanisms form powerful ncRNAs surveillance systems that may represent new targets for liver fibrosis therapeutic intervention.
Collapse
Affiliation(s)
- Jing-Jing Yang
- Department of Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China, 230601
| | - Hui Tao
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei, China, 230601
| | - Zi-Yu Deng
- Department of Scientific and Educational, The Second Hospital of Anhui Medical University, Hefei, China, 230601.
| | - Chao Lu
- Department of Scientific and Educational, The Second Hospital of Anhui Medical University, Hefei, China, 230601
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Hefei, China, 230032.
| |
Collapse
|
39
|
Zenger K, Dutta S, Wolff H, Genton MG, Kraus B. In vitro structure-toxicity relationship of chalcones in human hepatic stellate cells. Toxicology 2015. [DOI: 10.1016/j.tox.2015.07.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Ng CT, Fong LY, Sulaiman MR, Moklas MAM, Yong YK, Hakim MN, Ahmad Z. Interferon-Gamma Increases Endothelial Permeability by Causing Activation of p38 MAP Kinase and Actin Cytoskeleton Alteration. J Interferon Cytokine Res 2015; 35:513-22. [PMID: 25830506 DOI: 10.1089/jir.2014.0188] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Chin Theng Ng
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Lai Yen Fong
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Mohd Roslan Sulaiman
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Mohamad Aris Mohd Moklas
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Yoke Keong Yong
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Muhammad Nazrul Hakim
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Zuraini Ahmad
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| |
Collapse
|