1
|
Liu Y, Zhao T, Wang Z, Zhang Y, Shen J, Lu B. The microbiome- and metabolome-modulating activity of dietary cholesterol: insights from the small and large intestines. Food Funct 2025; 16:1872-1887. [PMID: 39931947 DOI: 10.1039/d4fo03049d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025]
Abstract
Cholesterol is an important lipid molecule that affects the gut microbiome upon ingestion. We systematically investigated the effects of cholesterol on the microbiota of the large and small intestines using ex vivo and in vivo models, combining flow cytometry, metabolomics, and metagenomics. The results showed that cholesterol directly causes a loss of bacterial membrane polarity and integrity, as well as a reduction in microbial metabolic activity. Cholesterol directly affected the global metabolism of the large and small intestinal microbiota, including amino acid, carbohydrate, and nucleotide metabolism. Ex vivo and in vivo studies shared similar results, showing that cholesterol increased the abundance of the primary bile acid-metabolizing bacteria Clostridium and Dorea in the large intestinal microbiota, confirming the enrichment effect of cholesterol on these bacteria. In the in vivo model, increased conjugated bile acids in the small intestine and decreased abundance of BSH-containing Bifidobacterium were observed due to cholesterol. Only in vivo models have demonstrated that cholesterol increases phosphatidylcholine levels in both the small and large intestines, which may be related to the effects of cholesterol on host metabolism. The pro-inflammatory capacity of the intestinal microbiota was enhanced by cholesterol, as evidenced by the increased levels of IL-1β and TNF-α in THP-1 cells upon stimulation with cholesterol-treated microbiota. This study comprehensively elucidates the effects of cholesterol on the composition and metabolic functions of the microbiota in both the large and small intestines. It offers a novel perspective on the ways in which cholesterol affects host metabolism via the gut microbiome.
Collapse
Affiliation(s)
- Yan Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, 310058, China.
| | - Tian Zhao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, 310058, China.
| | - Zhangtie Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, 310058, China.
| | - Yansong Zhang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, 310058, China.
| | - Jianfu Shen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, 310058, China.
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Taesuwan S, Kouvari M, McKune AJ, Panagiotakos DB, Khemacheewakul J, Leksawasdi N, Rachtanapun P, Naumovski N. Total choline intake, liver fibrosis and the progression of metabolic dysfunction-associated steatotic liver disease: Results from 2017 to 2020 NHANES. Maturitas 2025; 191:108150. [PMID: 39536658 DOI: 10.1016/j.maturitas.2024.108150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/07/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVES This study investigated the cross-sectional relationships of total choline intake with the prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) and its progression to liver fibrosis. STUDY DESIGN The study used data on total choline intake, hepatic steatosis, and liver fibrosis from the cross-sectional 2017-2020 National Health and Nutrition Examination Survey, including 24-h dietary recalls and liver ultrasound elastography (FibroScan®). MAIN OUTCOME MEASURES Steatosis was defined as a controlled attenuation parameter score ≥ 285dB/m. Fibrosis was defined as median liver stiffness ≥8 kPa. Complex survey-adjusted regression models were used in all analyses. Effect modification by sex, race, and cardiometabolic risk factors was investigated. RESULT Total choline intake was not associated with MASLD status (n = 5687; odds ratio per 100 mg/d [95 % confidence interval]: 0.96 [0.85,1.09]; P = 0.55). However, among people with MASLD, a higher total choline intake was associated with higher odds of fibrosis (n = 2019; 1.15 [1.01,1.30]; P = 0.03). This association was observed in men (P-interaction = 0.1; 1.23 [1.02,1.48]; P = 0.03), but not in women (1.05 [0.88,1.24]; P = 1.0). Choline intake also tended to be positively associated with fibrosis in people with MASLD who were overweight or had central obesity (P-interaction = 0.02; 1.15 [1.00,1.34]; P = 0.06). CONCLUSIONS Overall, no significant association was observed between total choline intake and the prevalence of MASLD. However, in people with MASLD, a higher choline intake was associated with higher odds of developing liver fibrosis. This association appeared to differ by sex and cardiometabolic risk factors.
Collapse
Affiliation(s)
- Siraphat Taesuwan
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Bruce, Ngunnawal Country, ACT 2617, Australia; Discipline of Nutrition and Dietetics, Faculty of Health, University of Canberra, Canberra, ACT 2601, Australia.
| | - Matina Kouvari
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Bruce, Ngunnawal Country, ACT 2617, Australia; Discipline of Nutrition and Dietetics, Faculty of Health, University of Canberra, Canberra, ACT 2601, Australia; Department of Medicine, Division of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Nutrition-Dietetics, Harokopio University, Athens, Greece
| | - Andrew J McKune
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Bruce, Ngunnawal Country, ACT 2617, Australia; Research Institute for Sport and Exercise, University of Canberra, Canberra, ACT 2601, Australia; School of Health Sciences, University of Kwazulu-Natal, Durban 4000, South Africa
| | - Demosthenes B Panagiotakos
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Bruce, Ngunnawal Country, ACT 2617, Australia; Discipline of Nutrition and Dietetics, Faculty of Health, University of Canberra, Canberra, ACT 2601, Australia; Department of Nutrition-Dietetics, Harokopio University, Athens, Greece
| | - Julaluk Khemacheewakul
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Noppol Leksawasdi
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Pornchai Rachtanapun
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Nenad Naumovski
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Bruce, Ngunnawal Country, ACT 2617, Australia; Discipline of Nutrition and Dietetics, Faculty of Health, University of Canberra, Canberra, ACT 2601, Australia; Department of Nutrition-Dietetics, Harokopio University, Athens, Greece; Research Institute for Sport and Exercise, University of Canberra, Canberra, ACT 2601, Australia.
| |
Collapse
|
3
|
Chen S, Inui S, Aisyah R, Nakashima R, Kawaguchi T, Hinomoto M, Nakagawa Y, Sakuma T, Sotomaru Y, Ohshima N, Kumrungsee T, Ohkubo T, Yamamoto T, Miura Y, Suzuki T, Yanaka N. Role of Gpcpd1 in intestinal alpha-glycerophosphocholine metabolism and trimethylamine N-oxide production. J Biol Chem 2024:107965. [PMID: 39510189 DOI: 10.1016/j.jbc.2024.107965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/25/2024] [Accepted: 10/27/2024] [Indexed: 11/15/2024] Open
Abstract
Glycerophosphocholine (GPC) is an intracellular metabolite in phosphatidylcholine metabolism and has been studied for endogenous choline supply in cells. GPC, as a water-soluble supplement, has been expected to play a role in preventing brain disorders; however, recent studies have shown that intake of high levels of choline-containing compounds is related to trimethylamine N-oxide (TMAO) production in the liver, which is reportedly associated with the progression of atherosclerosis. In this study, we aimed to explore the mechanisms underlying the intestinal absorption and metabolism of GPC. Caco-2 cell monolayer experiments showed that exogenously added GPC was hydrolyzed to choline in the apical medium, and the resulting choline was transported into the Caco-2 cells and further to the basolateral medium. Subsequently, we focused on glycerophosphodiesterase 1 (Gpcpd1/GDE5), which hydrolyzes GPC to choline in vitro and is widely expressed in the gastrointestinal epithelium. Our results revealed that the Gpcpd1 protein was located not only in cells but also in the medium in which Caco-2 cells were cultured. Gpcpd1 siRNA decreased the GPC-hydrolyzing activity both inside Caco-2 cells and in conditioned medium, suggesting the involvement of Gpcpd1 in luminal GPC metabolism. Finally, we generated intestinal epithelial-specific Gpcpd1-deficient mice and found that Gpcpd1 deletion in intestinal epithelial cells affected GPC metabolism in intestinal tissues and partially abolished the increase in blood TMAO levels induced by GPC administration. These observations demonstrate that Gpcpd1 triggers choline production from GPC in the intestinal lumen and is a key endogenous enzyme that regulates TMAO levels following GPC supplementation.
Collapse
Affiliation(s)
- Siyi Chen
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8528, Japan
| | - Shiho Inui
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8528, Japan
| | - Rahmawati Aisyah
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8528, Japan
| | - Ryoko Nakashima
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8528, Japan
| | - Tatsuya Kawaguchi
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8528, Japan
| | - Minori Hinomoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8528, Japan
| | - Yoshiko Nakagawa
- Center for Animal Resources and Development (CARD), Kumamoto University, Kumamoto 860-0811, Japan
| | - Tetsushi Sakuma
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8528, Japan
| | - Yusuke Sotomaru
- Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima 734-8553, Japan
| | - Noriyasu Ohshima
- Graduate School of Medicine, Gunma University, Gunma 371-8511, Japan
| | - Thanutchaporn Kumrungsee
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8528, Japan
| | - Takeshi Ohkubo
- Sendai Shirayuri Women's College, Sendai 981-3107, Japan
| | - Takashi Yamamoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8528, Japan
| | - Yutaka Miura
- Tokyo University of Agriculture and Technology, Tokyo 183-8538, Japan
| | - Takuya Suzuki
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8528, Japan
| | - Noriyuki Yanaka
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8528, Japan.
| |
Collapse
|
4
|
Sharifi-Zahabi E, Soltani S, Asiaei S, Dehesh P, Mohsenpour MA, Shidfar F. Higher dietary choline intake is associated with increased risk of all-cause and cause-specific mortality: A systematic review and dose-response meta-analysis of cohort studies. Nutr Res 2024; 130:48-66. [PMID: 39341000 DOI: 10.1016/j.nutres.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/01/2024] [Accepted: 09/01/2024] [Indexed: 09/30/2024]
Abstract
Evidence indicates that choline and betaine intakes are associated with mortality. Based on the available evidence, we hypothesized that dietary choline and betaine do not increase mortality risk. This meta-analysis was conducted to investigate the association of dietary choline and betaine with mortality from all causes, cardiovascular diseases, and stroke. Online databases including PubMed, Scopus, Web of Science, Embase, and Google Scholar were searched up to 9 March 2024. Six cohort studies comprising 482,778 total participants, 57,235 all-cause, 9351 cardiovascular disease, and 4,400 stroke deaths were included in this study. The linear dose-response analysis showed that each 100 mg/day increase in choline intake was significantly associated with 6% and 11% increases in risk of all-cause (RR = 1.06, 95% CI: 1.03, 1.10, I2 =83.7%, P < .001) and cardiovascular diseases mortality (RR = 1.11, 95% CI: 1.06, 1.16, I2 = 54.3%, P = .02) respectively. However, dietary betaine, was not associated with the risk of mortality. Furthermore, the result of the nonlinear dose-response analysis showed a significant relationship between betaine intake and stroke mortality at the dosages of 50 to 250 mg/day (Pnon-linearity= .0017). This study showed that each 100 mg/day increment in choline consumption was significantly associated with a 6% and 11% higher risk of all-cause and cardiovascular disease mortality respectively. In addition, a significant positive relationship between betaine intake and stroke mortality at doses of 50 to 250 mg/day was observed. Due to the small number of the included studies and heterogeneity among them more well-designed prospective observational studies considering potential confounding variables are required.
Collapse
Affiliation(s)
| | - Sepideh Soltani
- Yazd Cardiovascular Research Center, Noncommunicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sahar Asiaei
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Paria Dehesh
- Social Determinants of Health Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran; Department of Biostatistics and Epidemiology, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Ali Mohsenpour
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzad Shidfar
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Lei L, Zhu T, Cui TJ, Liu Y, Hocher JG, Chen X, Zhang XM, Cai KW, Deng ZY, Wang XH, Tang C, Lin L, Reichetzeder C, Zheng ZH, Hocher B, Lu YP. Renoprotective effects of empagliflozin in high-fat diet-induced obesity-related glomerulopathy by regulation of gut-kidney axis. Am J Physiol Cell Physiol 2024; 327:C994-C1011. [PMID: 39183639 PMCID: PMC11481992 DOI: 10.1152/ajpcell.00367.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024]
Abstract
The increasing prevalence of obesity-related glomerulopathy (ORG) poses a significant threat to public health. Sodium-glucose cotransporter-2 (SGLT2) inhibitors effectively reduce body weight and total fat mass in individuals with obesity and halt the progression of ORG. However, the underlying mechanisms of their reno-protective effects in ORG remain unclear. We established a high-fat diet-induced ORG model using C57BL/6J mice, which were divided into three groups: normal chow diet (NCD group), high-fat diet (HFD) mice treated with placebo (ORG group), and HFD mice treated with empagliflozin (EMPA group). We conducted 16S ribosomal RNA gene sequencing of feces and analyzed metabolites from kidney, feces, liver, and serum samples. ORG mice showed increased urinary albumin creatinine ratio, cholesterol, triglyceride levels, and glomerular diameter compared with NCD mice (all P < 0.05). EMPA treatment significantly alleviated these parameters (all P < 0.05). Multitissue metabolomics analysis revealed lipid metabolic reprogramming in ORG mice, which was significantly altered by EMPA treatment. MetOrigin analysis showed a close association between EMPA-related lipid metabolic pathways and gut microbiota alterations, characterized by reduced abundances of Firmicutes and Desulfovibrio and increased abundance of Akkermansia (all P < 0.05). The metabolic homeostasis of ORG mice, especially in lipid metabolism, was disrupted and closely associated with gut microbiota alterations, contributing to the progression of ORG. EMPA treatment improved kidney function and morphology by regulating lipid metabolism through the gut-kidney axis, highlighting a novel therapeutic approach for ORG. NEW & NOTEWORTHY Our study uncovered that empagliflozin (EMPA) potentially protects renal function and morphology in obesity-related glomerulopathy (ORG) mice by regulating the gut-kidney axis. EMPA's reno-protective effects in ORG mice are associated with the lipid metabolism, especially in glycerophospholipid metabolism and the pantothenate/CoA synthesis pathways. EMPA's modulation of gut microbiota appears to be pivotal in suppressing glycerol 3-phosphate and CoA synthesis. The insights into gut microbiota-host metabolic interactions offer a novel therapeutic approach for ORG.
Collapse
Affiliation(s)
- Lei Lei
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Ting Zhu
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Tian-Jiao Cui
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Yvonne Liu
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
- Medical Faculty of Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Johann-Georg Hocher
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Xin Chen
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Xue-Mei Zhang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Kai-Wen Cai
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Zi-Yan Deng
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Xiao-Hua Wang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Chun Tang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Lian Lin
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Christoph Reichetzeder
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
- Institute for Clinical Research and Systems Medicine, Health and Medical University, Potsdam, Germany
| | - Zhi-Hua Zheng
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Berthold Hocher
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
- Institute of Medical Diagnostics, IMD, Berlin, Germany
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, People's Republic of China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, People's Republic of China
| | - Yong-Ping Lu
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, People's Republic of China
- Department of Nephrology, the First Affiliated Hospital of Jinan University, Guangzhou, People's Republic of China
| |
Collapse
|
6
|
Jarmukhanov Z, Mukhanbetzhanov N, Kozhakhmetov S, Nurgaziyev M, Sailybayeva A, Bekbossynova M, Kushugulova A. The association between the gut microbiota metabolite trimethylamine N-oxide and heart failure. Front Microbiol 2024; 15:1440241. [PMID: 39391607 PMCID: PMC11464299 DOI: 10.3389/fmicb.2024.1440241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024] Open
Abstract
This systematic review explores the relationship between the gut microbiota metabolite trimethylamine N-oxide (TMAO) and heart failure (HF), given the significant impact of TMAO on cardiovascular health. A systematic search and meta-analysis of peer-reviewed studies published from 2013 to 2024 were conducted, focusing on adult patients with heart failure and healthy controls. The review found that elevated levels of TMAO are associated with atherosclerosis, endothelial dysfunction, and increased cardiovascular disease risk, all of which can exacerbate heart failure. The analysis also highlights that high TMAO levels are linked to reduced left ventricular ejection fraction (LVEF) and glomerular filtration rate (GFR), further supporting TMAO's role as a biomarker in heart failure assessment. The findings suggest that interventions targeting gut microbiota to reduce TMAO could potentially benefit patients with heart failure, although further research is needed to evaluate the effectiveness of such approaches.
Collapse
Affiliation(s)
- Zharkyn Jarmukhanov
- Laboratory of Microbiome, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Nurislam Mukhanbetzhanov
- Laboratory of Microbiome, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Samat Kozhakhmetov
- Laboratory of Microbiome, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Madiyar Nurgaziyev
- Laboratory of Microbiome, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | | | | | - Almagul Kushugulova
- Laboratory of Microbiome, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| |
Collapse
|
7
|
Datta S, Pasham S, Inavolu S, Boini KM, Koka S. Role of Gut Microbial Metabolites in Cardiovascular Diseases-Current Insights and the Road Ahead. Int J Mol Sci 2024; 25:10208. [PMID: 39337693 PMCID: PMC11432476 DOI: 10.3390/ijms251810208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of premature morbidity and mortality globally. The identification of novel risk factors contributing to CVD onset and progression has enabled an improved understanding of CVD pathophysiology. In addition to the conventional risk factors like high blood pressure, diabetes, obesity and smoking, the role of gut microbiome and intestinal microbe-derived metabolites in maintaining cardiovascular health has gained recent attention in the field of CVD pathophysiology. The human gastrointestinal tract caters to a highly diverse spectrum of microbes recognized as the gut microbiota, which are central to several physiologically significant cascades such as metabolism, nutrient absorption, and energy balance. The manipulation of the gut microbial subtleties potentially contributes to CVD, inflammation, neurodegeneration, obesity, and diabetic onset. The existing paradigm of studies suggests that the disruption of the gut microbial dynamics contributes towards CVD incidence. However, the exact mechanistic understanding of such a correlation from a signaling perspective remains elusive. This review has focused upon an in-depth characterization of gut microbial metabolites and their role in varied pathophysiological conditions, and highlights the potential molecular and signaling mechanisms governing the gut microbial metabolites in CVDs. In addition, it summarizes the existing courses of therapy in modulating the gut microbiome and its metabolites, limitations and scientific gaps in our current understanding, as well as future directions of studies involving the modulation of the gut microbiome and its metabolites, which can be undertaken to develop CVD-associated treatment options. Clarity in the understanding of the molecular interaction(s) and associations governing the gut microbiome and CVD shall potentially enable the development of novel druggable targets to ameliorate CVD in the years to come.
Collapse
Affiliation(s)
- Sayantap Datta
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Sindhura Pasham
- Department of Pharmaceutical Sciences, Irma Lerma College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA
| | - Sriram Inavolu
- Department of Pharmaceutical Sciences, Irma Lerma College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA
| | - Krishna M Boini
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Saisudha Koka
- Department of Pharmaceutical Sciences, Irma Lerma College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA
| |
Collapse
|
8
|
Vallianou NG, Kounatidis D, Psallida S, Panagopoulos F, Stratigou T, Geladari E, Karampela I, Tsilingiris D, Dalamaga M. The Interplay Between Dietary Choline and Cardiometabolic Disorders: A Review of Current Evidence. Curr Nutr Rep 2024; 13:152-165. [PMID: 38427291 PMCID: PMC11133147 DOI: 10.1007/s13668-024-00521-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2024] [Indexed: 03/02/2024]
Abstract
PURPOSE OF REVIEW Choline is an essential nutrient for human health and cellular homeostasis as it is necessary for the synthesis of lipid cell membranes, lipoproteins, and the synthesis of the neurotransmitter acetylcholine. The aim of this review is to analyze the beneficial effects of choline and its significance in cellular metabolism and various inflammatory pathways, such as the inflammasome. We will discuss the significance of dietary choline in cardiometabolic disorders, such as non-alcoholic fatty liver disease (NAFLD), cardiovascular disease (CVD), and chronic kidney disease (CKD) as well as in cognitive function and associated neuropsychiatric disorders. RECENT FINDINGS Choline deficiency has been related to the development of NAFLD and cognitive disability in the offspring as well as in adulthood. In sharp contrast, excess dietary intake of choline mediated via the increased production of trimethylamine by the gut microbiota and increased trimethylamine-N-oxide (TMAO) levels has been related to atherosclerosis in most studies. In this context, CVD and CKD through the accumulation of TMAO, p-Cresyl-sulfate (pCS), and indoxyl-sulfate (IS) in serum may be the result of the interplay between excess dietary choline, the increased production of TMAO by the gut microbiota, and the resulting activation of inflammatory responses and fibrosis. A balanced diet, with no excess nor any deficiency in dietary choline, is of outmost importance regarding the prevention of cardiometabolic disorders as well as cognitive function. Large-scale studies with the use of next-generation probiotics, especially Akkermansia muciniphila and Faecalibacterium prausnitzii, should further examine their therapeutic potential in this context.
Collapse
Affiliation(s)
- Natalia G Vallianou
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou str, Athens, Greece.
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias str, Athens, Greece.
| | - Dimitris Kounatidis
- Department of Internal Medicine, Hippokration General Hospital, 114 Vassilissis Sofias str, Athens, Greece
| | - Sotiria Psallida
- Department of Microbiology, KAT General Hospital of Attica, 2 Nikis str, Athens, Greece
| | - Fotis Panagopoulos
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou str, Athens, Greece
| | - Theodora Stratigou
- Department of Endocrinology and Metabolism, Evangelismos General Hospital, 45-47 Ipsilantou str, Athens, Greece
| | - Eleni Geladari
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou str, Athens, Greece
| | - Irene Karampela
- 2nd Department of Critical Care, Medical School, University of Athens, Attikon General University Hospital, 1 Rimini str, Athens, Greece
| | - Dimitrios Tsilingiris
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Dragana, 68100, Alexandroupoli, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias str, Athens, Greece.
| |
Collapse
|
9
|
Khan QA, Asad M, Ali AH, Farrukh AM, Naseem U, Semakieh B, Levin Carrion Y, Afzal M. Gut microbiota metabolites and risk of major adverse cardiovascular events and death: A systematic review and meta-analysis. Medicine (Baltimore) 2024; 103:e37825. [PMID: 39259062 PMCID: PMC11142832 DOI: 10.1097/md.0000000000037825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/28/2024] [Accepted: 03/15/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Gut microbial metabolites such as trimethylamine N-oxide (TMAO) and its precursors, namely betaine, L-carnitine, and choline, have been implicated as risk factors for cardiovascular events and mortality development. Therefore, we aim to perform a systematic review and meta-analysis to assess the validity of these associations. METHODS MEDLINE and Scopus were queried from their inception to August 2023 to identify studies that quantified estimates of the associations of TMAO with the development of major adverse cardiovascular events (MACE) or death. A random-effects meta-analysis was conducted to pool unadjusted or multivariable-adjusted hazard ratios (HR) and their 95% confidence intervals. The primary endpoint was the risk of MACE and all-cause death. RESULTS 30 prospective observational studies (n = 48 968) were included in the analysis. Elevated TMAO levels were associated with a significantly greater risk of MACE and all-cause death compared to low TMAO levels (HR: 1.41, 95% CI 1.2-1.54, P < .00001, I2 = 43%) and (HR: 1.55, 95% CI 1.37-1.75, P < .00001, I2 = 46%), respectively. Furthermore, high levels of either L-carnitine or choline were found to significantly increase the risk of MACE. However, no significant difference was seen in MACE in either high or low levels of betaine. CONCLUSION Elevated concentrations of TMAO were associated with increased risks of MACE and all-cause mortality. High levels of L-carnitine/choline were also significantly associated with an increased risk of MACE. However, no significant difference was found between high or low levels of betaine for the outcome of MACE.
Collapse
Affiliation(s)
| | | | | | | | - Usama Naseem
- Combined Military Hospital, CMH, Peshawar, Pakistan
| | - Bader Semakieh
- Arkansas College of Osteopathic Medicine, Fort Smith, AR
| | | | - Muhammad Afzal
- St. George’s University School of Medicine, True Blue, Grenada
| |
Collapse
|
10
|
Bogl LH, Strohmaier S, Hu FB, Willett WC, Eliassen AH, Hart JE, Sun Q, Chavarro JE, Field AE, Schernhammer ES. Maternal One-Carbon Nutrient Intake and Risk of Being Overweight or Obese in Their Offspring-A Transgenerational Prospective Cohort Study. Nutrients 2024; 16:1210. [PMID: 38674900 PMCID: PMC11054902 DOI: 10.3390/nu16081210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
We aimed to investigate the associations between maternal intake of folate, vitamin B12, B6, B2, methionine, choline, phosphatidylcholine and betaine during the period surrounding pregnancy and offspring weight outcomes from birth to early adulthood. These associations were examined among 2454 mother-child pairs from the Nurses' Health Study II and Growing Up Today Study. Maternal energy-adjusted nutrient intakes were derived from food frequency questionnaires. Birth weight, body size at age 5 and repeated BMI measurements were considered. Overweight/obesity was defined according to the International Obesity Task Force (<18 years) and World Health Organization guidelines (18+ years). Among other estimands, we report relative risks (RRs) for offspring ever being overweight with corresponding 95% confidence intervals across quintiles of dietary factors, with the lowest quintile as the reference. In multivariate-adjusted models, higher maternal intakes of phosphatidylcholine were associated with a higher risk of offspring ever being overweight (RRQ5vsQ1 = 1.16 [1.01-1.33] p-trend: 0.003). The association was stronger among offspring born to mothers with high red meat intake (high red meat RRQ5vsQ1 = 1.50 [1.14-1.98], p-trend: 0.001; low red meat RRQ5vsQ1 = 1.05 [0.87-1.27], p-trend: 0.46; p-interaction = 0.13). Future studies confirming the association between a higher maternal phosphatidylcholine intake during pregnancy and offspring risk of being overweight or obese are needed.
Collapse
Affiliation(s)
- Leonie H. Bogl
- Department of Epidemiology, Center for Public Health, Medical University of Vienna, 1090 Wien, Austria; (L.H.B.); (S.S.)
- School of Health Professions, Bern University of Applied Sciences, 3012 Bern, Switzerland
| | - Susanne Strohmaier
- Department of Epidemiology, Center for Public Health, Medical University of Vienna, 1090 Wien, Austria; (L.H.B.); (S.S.)
| | - Frank B. Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA (J.E.C.)
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA;
| | - Walter C. Willett
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA (J.E.C.)
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA;
| | - A. Heather Eliassen
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA (J.E.C.)
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA;
| | - Jaime E. Hart
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA;
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Qi Sun
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA (J.E.C.)
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA;
| | - Jorge E. Chavarro
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA (J.E.C.)
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA;
| | - Alison E. Field
- Department of Epidemiology, Brown University, Providence, RI 02903, USA
| | - Eva S. Schernhammer
- Department of Epidemiology, Center for Public Health, Medical University of Vienna, 1090 Wien, Austria; (L.H.B.); (S.S.)
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA;
| |
Collapse
|
11
|
Karlsson T, Winkvist A, Strid A, Lindahl B, Johansson I. Associations of dietary choline and betaine with all-cause mortality: a prospective study in a large Swedish cohort. Eur J Nutr 2024; 63:785-796. [PMID: 38175250 PMCID: PMC10948568 DOI: 10.1007/s00394-023-03300-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024]
Abstract
PURPOSE Investigate the association between choline and betaine intake and all-cause mortality in a large Swedish cohort. METHODS Women (52,246) and men (50,485) attending the Västerbotten Intervention Programme 1990-2016 were included. Cox proportional hazard regression models adjusted for energy intake, age, BMI, smoking, education, and physical activity were used to estimate mortality risk according to betaine, total choline, phosphatidylcholine, glycerophosphocholine, phosphocholine, sphingomyelin, and free choline intakes [continuous (per 50 mg increase) and in quintiles]. RESULTS During a median follow-up of 16 years, 3088 and 4214 deaths were registered in women and men, respectively. Total choline intake was not associated with all-cause mortality in women (HR 1.01; 95% CI 0.97, 1.06; P = 0.61) or men (HR 1.01; 95% CI 0.98, 1.04; P = 0.54). Betaine intake was associated with decreased risk of all-cause mortality in women (HR 0.95; 95% CI 0.91, 0.98; P < 0.01) but not in men. Intake of free choline was negatively associated with risk of all-cause mortality in women (HR 0.98; 95% CI 0.96, 1.00; P = 0.01). No other associations were found between intake of the different choline compounds and all-cause mortality. In women aged ≥ 55 years, phosphatidylcholine intake was positively associated with all-cause mortality. In men with higher folate intake, total choline intake was positively associated with all-cause mortality. CONCLUSION Overall, our results do not support that intake of total choline is associated with all-cause mortality. However, some associations were modified by age and with higher folate intake dependent on sex. Higher intake of betaine was associated with lower risk of all-cause mortality in women.
Collapse
Affiliation(s)
- Therese Karlsson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, P. O. Box 459, S-405 30, Gothenburg, Sweden.
- Department of Life Sciences, Division of Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden.
| | - Anna Winkvist
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, P. O. Box 459, S-405 30, Gothenburg, Sweden
- Department of Public Health and Clinical Medicine, Sustainable Health, Umeå University, Umeå, Sweden
| | - Anna Strid
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, P. O. Box 459, S-405 30, Gothenburg, Sweden
| | - Bernt Lindahl
- Department of Public Health and Clinical Medicine, Sustainable Health, Umeå University, Umeå, Sweden
| | | |
Collapse
|
12
|
Obeid R, Karlsson T. Choline - a scoping review for Nordic Nutrition Recommendations 2023. Food Nutr Res 2023; 67:10359. [PMID: 38187796 PMCID: PMC10770654 DOI: 10.29219/fnr.v67.10359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/15/2022] [Accepted: 11/10/2023] [Indexed: 01/09/2024] Open
Abstract
Choline is an essential nutrient with metabolic roles as a methyl donor in one carbon metabolism and as a precursor for membrane phospholipids and the neurotransmitter acetylcholine. Choline content is particularly high in liver, eggs, and wheat germ, although it is present in a variety of foods. The main dietary sources of choline in the Nordic and Baltic countries are meat, dairy, eggs, and grain. A diet that is devoid of choline causes liver and muscle dysfunction within 3 weeks. Choline requirements are higher during pregnancy and lactation than in non-pregnant women. Although no randomized controlled trials are available, observational studies in human, supported by coherence from interventional studies with neurodevelopmental outcomes and experimental studies in animals, strongly suggest that sufficient intake of choline during pregnancy is necessary for normal brain development and function in the child. Observational studies suggested that adequate intake of choline could have positive effects on cognitive function in older people. However, prospective data are lacking, and no intervention studies are available in the elderly.
Collapse
Affiliation(s)
- Rima Obeid
- Department of Clinical Chemistry and Laboratory Medicine, University Hospital of the Saarland, Homburg, Germany
| | - Therese Karlsson
- Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
13
|
Jia QQ, Yang ZF, Wang Q, Zhao Q, Jia YJ, Guo BH, Li XY, Wang W. Chemical Profiling of Nitraria roborowskii Kom. by UPLC-Q-Orbitrap-MS and Their Hypolipidemic Effects in Vivo. Chem Biodivers 2023; 20:e202300683. [PMID: 37801345 DOI: 10.1002/cbdv.202300683] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/01/2023] [Accepted: 10/05/2023] [Indexed: 10/07/2023]
Abstract
The Nitraria roborowskii Kom. (NRK) berries, as fruits of the genus Nitraria of the Zygophyllceae family, have been widely used as folk medicine. Modern pharmacological research has demonstrated that Nitraria berries had hypolipidemic, hypoglycemic, and immunomodulatory effects. However, more research needs to be reported on the chemical composition and biological activity of NRK. Hence, the phenolic compounds in the NRK berries were comprehensively analyzed and characterized by Ultra Performance Liquid Chromatography-Quadruple-Orbitrap MS system (UPLC-Q-Orbitrap MS) in this study. In total, 52 phenolics were identified, and all were reported for the first time. In addition, the hypolipidemic efficacy of NRK berries extract was studied in the hyperlipidemic mouse model. After treatment, the high dose group of NRK substantially reversed total cholesterol, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol levels. Through lipidomics technology, 27 potential biomarkers were characterized. And there was a significant callback at 25 of them after NRK treatment by using statistical analysis methods. Pathway analysis results demonstrated that NRK might exert therapeutic effects by regulating glycerophospholipid and glycerolipid metabolism pathways. This study could provide firsthand information on NRK berries for their phenolic compounds and potential application in preventing and treating hyperlipidemia.
Collapse
Affiliation(s)
- Qiangqiang Q Jia
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
| | - Zufan F Yang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
- Department of Pharmacy, Medical College of Qinghai University, Xining, 810001, China
| | - Qian Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
- Department of Pharmacy, Medical College of Qinghai University, Xining, 810001, China
| | - Qing Zhao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
- Department of Pharmacy, Medical College of Qinghai University, Xining, 810001, China
| | - Yujiao J Jia
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
| | - Banghao H Guo
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
| | - Xiangyang Y Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
- Department of Pharmacy, Medical College of Qinghai University, Xining, 810001, China
| | - Wen Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
| |
Collapse
|
14
|
Jia C, Qiu G, Wang H, Zhang S, An J, Cheng X, Li P, Li W, Zhang X, Yang H, Yang K, Jing T, Guo H, Zhang X, Wu T, He M. Lipid metabolic links between serum pyrethroid levels and the risk of incident type 2 diabetes: A mediation study in the prospective design. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132082. [PMID: 37473566 DOI: 10.1016/j.jhazmat.2023.132082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/24/2023] [Accepted: 07/16/2023] [Indexed: 07/22/2023]
Abstract
Emerging evidence revealed that pyrethroids and circulating lipid metabolites are involved in incident type 2 diabetes (T2D). However, the pyrethroid-associated lipid profile and its potential role in the association of pyrethroids with T2D remain unknown. Metabolome-wide association or mediation analyses were performed among 1006 pairs of T2D cases and matched controls nested within the prospective Dongfeng-Tongji cohort. We identified 59 lipid metabolites significantly associated with serum deltamethrin levels, of which eight were also significantly associated with serum fenvalerate (false discovery rate [FDR] < 0.05). Pathway enrichment analysis showed that deltamethrin-associated lipid metabolites were significantly enriched in the glycerophospholipid metabolism pathway (FDR = 0.02). Furthermore, we also found that several deltamethrin-associated lipid metabolites (i.e., phosphatidylcholine [PC] 32:0, PC 34:4, cholesterol ester 20:0, triacylglycerol 52:5 [18:2]), and glycerophosphoethanolamine-enriched latent variable mediated the association between serum deltamethrin levels and T2D risk, with the mediated proportions being 44.81%, 15.92%, 16.85%, 16.66%, and 22.86%, respectively. Serum pyrethroids, particularly deltamethrin, may lead to an altered circulating lipid profile primarily in the glycerophospholipid metabolism pathway represented by PCs and lysophosphatidylcholines, potentially mediating the association between serum deltamethrin and T2D. The study provides a new perspective in elucidating the potential mechanisms through which pyrethroid exposure might induce T2D.
Collapse
Affiliation(s)
- Chengyong Jia
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Gaokun Qiu
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Hao Wang
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Shiyang Zhang
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Jun An
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xu Cheng
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Peiwen Li
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Wending Li
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xin Zhang
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Handong Yang
- Department of Cardiovascular Diseases, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan 442008, Hubei, China
| | - Kun Yang
- Department of Endocrinology, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan 442008, Hubei, China
| | - Tao Jing
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Huan Guo
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Tangchun Wu
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Meian He
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| |
Collapse
|
15
|
Zhou R, Yang M, Yue C, Shi Y, Tan Y, Zha L, Zhang J, Chen S. Association between Dietary Choline Intake and Cardiovascular Diseases: National Health and Nutrition Examination Survey 2011-2016. Nutrients 2023; 15:4036. [PMID: 37764819 PMCID: PMC10534328 DOI: 10.3390/nu15184036] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Choline is an essential nutrient for human body, but dietary choline is metabolized into the hazard metabolite for the cardiovascular system. Because of the conflicting results between dietary choline intake and cardiovascular disease (CVD) risk in previous studies, we aimed to investigate this in US adults. Non-pregnant participants and those aged >20 years from National Health and Nutrition Examination Survey 2011-2016, with CVD assessment and reliable dietary recall status, were included. The dietary choline intake was assessed as a mean value of two total dietary choline intakes, including dietary choline intake and supplemental choline intake, in 24-h dietary recall interviews. The association between dietary choline intake and the presence of CVD was examined using logistic regression. We enrolled 14,323 participants. The participants without CVD had substantially higher dietary choline intakes (318.4 mg/d vs. 297.2 mg/d) compared to those with CVD (p < 0.05). After multivariable adjustments, the highest quartile of dietary choline intake was associated with a lower CVD risk, OR 0.693, 95%CI [0.520, 0.923], when compared to the lowest quartile. Consistent results were also found for stroke. Subgroup analyses also supported these, especially in participants aged ≥60 years and in those with BMI < 30 kg/m2. We found that a higher dietary choline intake was associated with a lower CVD risk, especially the risk of stroke. Further clinical trials are needed in order to confirm this finding and to provide dietary suggestions for the appropriate amount of choline intake.
Collapse
Affiliation(s)
- Rong Zhou
- Department of Intensive Medicine, Qujing First People’s Hospital, Qujing 655000, China; (R.Z.); (M.Y.); (C.Y.)
| | - Mei Yang
- Department of Intensive Medicine, Qujing First People’s Hospital, Qujing 655000, China; (R.Z.); (M.Y.); (C.Y.)
| | - Chaofu Yue
- Department of Intensive Medicine, Qujing First People’s Hospital, Qujing 655000, China; (R.Z.); (M.Y.); (C.Y.)
| | - Yi Shi
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China; (Y.S.); (Y.T.); (S.C.)
| | - Yanan Tan
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China; (Y.S.); (Y.T.); (S.C.)
| | - Lingfeng Zha
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Junxia Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China; (Y.S.); (Y.T.); (S.C.)
| | - Shaoliang Chen
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China; (Y.S.); (Y.T.); (S.C.)
| |
Collapse
|
16
|
Tate BN, Van Guilder GP, Aly M, Spence LA, Diaz-Rubio ME, Le HH, Johnson EL, McFadden JW, Perry CA. Changes in Choline Metabolites and Ceramides in Response to a DASH-Style Diet in Older Adults. Nutrients 2023; 15:3687. [PMID: 37686719 PMCID: PMC10489641 DOI: 10.3390/nu15173687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
This feeding trial evaluated the impact of the Dietary Approaches to Stop Hypertension diet on changes in plasma choline, choline metabolites, and ceramides in obese older adults; 28 adults consumed 3oz (n = 15) or 6oz (n = 13) of beef within a standardized DASH diet for 12 weeks. Plasma choline, betaine, methionine, dimethylglycine (DMG), phosphatidylcholine (PC), lysophosphotidylcholine (LPC), sphingomyelin, trimethylamine-N-oxide (TMAO), L-carnitine, ceramide, and triglycerides were measured in fasted blood samples. Plasma LPC, sphingomyelin, and ceramide species were also quantified. In response to the study diet, with beef intake groups combined, plasma choline decreased by 9.6% (p = 0.012); DMG decreased by 10% (p = 0.042); PC decreased by 51% (p < 0.001); total LPC increased by 281% (p < 0.001); TMAO increased by 26.5% (p < 0.001); total ceramide decreased by 22.1% (p < 0.001); and triglycerides decreased by 18% (p = 0.021). All 20 LPC species measured increased (p < 0.01) with LPC 16:0 having the greatest response. Sphingomyelin 16:0, 18:0, and 18:1 increased (all p < 0.001) by 10.4%, 22.5%, and 24%, respectively. In contrast, we observed that sphingomyelin 24:0 significantly decreased by 10%. Ceramide 22:0 and 24:0 decreased by 27.6% and 10.9% (p < 0.001), respectively, and ceramide 24:1 increased by 36.8% (p = 0.013). Changes in choline and choline metabolites were in association with anthropometric and cardiometabolic outcomes. These findings show the impact of the DASH diet on choline metabolism in older adults and demonstrate the influence of diet to modify circulating LPC, sphingomyelin, and ceramide species.
Collapse
Affiliation(s)
- Brianna N. Tate
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA; (B.N.T.); (J.W.M.)
| | - Gary P. Van Guilder
- High Altitude Exercise Physiology Department, Western Colorado University, Gunnison, CO 81231, USA;
| | - Marwa Aly
- Department of Applied Health Science, Indiana University School of Public Health, Bloomington, IN 47405, USA; (M.A.); (L.A.S.)
| | - Lisa A. Spence
- Department of Applied Health Science, Indiana University School of Public Health, Bloomington, IN 47405, USA; (M.A.); (L.A.S.)
| | - M. Elena Diaz-Rubio
- Proteomic and Metabolomics Facility, Cornell University, Ithaca, NY 14853, USA;
| | - Henry H. Le
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA; (H.H.L.); (E.L.J.)
| | - Elizabeth L. Johnson
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA; (H.H.L.); (E.L.J.)
| | - Joseph W. McFadden
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA; (B.N.T.); (J.W.M.)
| | - Cydne A. Perry
- Department of Applied Health Science, Indiana University School of Public Health, Bloomington, IN 47405, USA; (M.A.); (L.A.S.)
| |
Collapse
|
17
|
Clayton-Chubb D, Kemp W, Majeed A, Lubel JS, Hodge A, Roberts SK. Reply to Abenavoli et al. Comment on "Clayton-Chubb et al. Understanding NAFLD: From Case Identification to Interventions, Outcomes, and Future Perspectives. Nutrients 2023, 15, 687". Nutrients 2023; 15:2908. [PMID: 37447237 DOI: 10.3390/nu15132908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Thank you for your interesting comment [...].
Collapse
Affiliation(s)
- Daniel Clayton-Chubb
- Department of Gastroenterology, The Alfred Hospital, Melbourne, VIC 3004, Australia
- Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
- Department of Gastroenterology, Eastern Health, Box Hill, VIC 3128, Australia
| | - William Kemp
- Department of Gastroenterology, The Alfred Hospital, Melbourne, VIC 3004, Australia
- Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Ammar Majeed
- Department of Gastroenterology, The Alfred Hospital, Melbourne, VIC 3004, Australia
- Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - John S Lubel
- Department of Gastroenterology, The Alfred Hospital, Melbourne, VIC 3004, Australia
- Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Alex Hodge
- Department of Gastroenterology, Eastern Health, Box Hill, VIC 3128, Australia
- Eastern Health Clinical School, Monash University, Box Hill, VIC 3128, Australia
| | - Stuart K Roberts
- Department of Gastroenterology, The Alfred Hospital, Melbourne, VIC 3004, Australia
- Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| |
Collapse
|
18
|
Pistritu DV, Vasiliniuc AC, Vasiliu A, Visinescu EF, Visoiu IE, Vizdei S, Martínez Anghel P, Tanca A, Bucur O, Liehn EA. Phospholipids, the Masters in the Shadows during Healing after Acute Myocardial Infarction. Int J Mol Sci 2023; 24:8360. [PMID: 37176067 PMCID: PMC10178977 DOI: 10.3390/ijms24098360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Phospholipids are major components of cell membranes with complex structures, high heterogeneity and critical biological functions and have been used since ancient times to treat cardiovascular disease. Their importance and role were shadowed by the difficulty or incomplete available research methodology to study their biological presence and functionality. This review focuses on the current knowledge about the roles of phospholipids in the pathophysiology and therapy of cardiovascular diseases, which have been increasingly recognized. Used in singular formulation or in inclusive combinations with current drugs, phospholipids proved their positive and valuable effects not only in the protection of myocardial tissue, inflammation and fibrosis but also in angiogenesis, coagulation or cardiac regeneration more frequently in animal models as well as in human pathology. Thus, while mainly neglected by the scientific community, phospholipids present negligible side effects and could represent an ideal target for future therapeutic strategies in healing myocardial infarction. Acknowledging and understanding their mechanisms of action could offer a new perspective into novel therapeutic strategies for patients suffering an acute myocardial infarction, reducing the burden and improving the general social and economic outcome.
Collapse
Affiliation(s)
- Dan-Valentin Pistritu
- Victor Babes’ National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania
| | | | - Anda Vasiliu
- Victor Babes’ National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania
| | - Elena-Florentina Visinescu
- Faculty of Human Medicine, Carol Davila University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania
| | - Ioana-Elena Visoiu
- Faculty of Human Medicine, Carol Davila University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania
| | - Smaranda Vizdei
- Faculty of Human Medicine, Carol Davila University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania
| | - Paula Martínez Anghel
- Victor Babes’ National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania
- Business Academy Aarhus, 30 Sønderhøj, 8260 Viby J, Denmark
| | - Antoanela Tanca
- Victor Babes’ National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania
- Faculty of Human Medicine, Carol Davila University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania
| | - Octavian Bucur
- Victor Babes’ National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania
- Viron Molecular Medicine Institute, 201 Washington Street, Boston, MA 02108, USA
| | - Elisa Anamaria Liehn
- Victor Babes’ National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania
- Institute for Molecular Medicine, University of Southern Denmark, 25 J.B Winsløws Vej, 5230 Odense, Denmark
- National Heart Center Singapore, 5 Hospital Dr., Singapore 169609, Singapore
| |
Collapse
|
19
|
Shanmugham M, Bellanger S, Leo CH. Gut-Derived Metabolite, Trimethylamine-N-oxide (TMAO) in Cardio-Metabolic Diseases: Detection, Mechanism, and Potential Therapeutics. Pharmaceuticals (Basel) 2023; 16:ph16040504. [PMID: 37111261 PMCID: PMC10142468 DOI: 10.3390/ph16040504] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Trimethylamine N-oxide (TMAO) is a biologically active gut microbiome-derived dietary metabolite. Recent studies have shown that high circulating plasma TMAO levels are closely associated with diseases such as atherosclerosis and hypertension, and metabolic disorders such as diabetes and hyperlipidemia, contributing to endothelial dysfunction. There is a growing interest to understand the mechanisms underlying TMAO-induced endothelial dysfunction in cardio-metabolic diseases. Endothelial dysfunction mediated by TMAO is mainly driven by inflammation and oxidative stress, which includes: (1) activation of foam cells; (2) upregulation of cytokines and adhesion molecules; (3) increased production of reactive oxygen species (ROS); (4) platelet hyperreactivity; and (5) reduced vascular tone. In this review, we summarize the potential roles of TMAO in inducing endothelial dysfunction and the mechanisms leading to the pathogenesis and progression of associated disease conditions. We also discuss the potential therapeutic strategies for the treatment of TMAO-induced endothelial dysfunction in cardio-metabolic diseases.
Collapse
Affiliation(s)
- Meyammai Shanmugham
- Science, Math & Technology, Singapore University of Technology & Design, 8 Somapah Road, Singapore 487372, Singapore
| | - Sophie Bellanger
- A*STAR Skin Research Labs, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Chen Huei Leo
- Science, Math & Technology, Singapore University of Technology & Design, 8 Somapah Road, Singapore 487372, Singapore
- Correspondence: ; Tel.: +65-6434-8213
| |
Collapse
|
20
|
Barbaresko J, Lang A, Szczerba E, Baechle C, Beckhaus J, Schwingshackl L, Neuenschwander M, Schlesinger S. Dietary Factors and All-Cause Mortality in Individuals With Type 2 Diabetes: A Systematic Review and Meta-analysis of Prospective Observational Studies. Diabetes Care 2023; 46:469-477. [PMID: 36701598 DOI: 10.2337/dc22-1018] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 11/12/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Type 2 diabetes is a major health concern associated with mortality. Diet may influence the progression of diabetes; however, systematic reviews are lacking. PURPOSE This study systematically summarized the evidence on diet and all-cause mortality in individuals with type 2 diabetes. DATA SOURCES PubMed and Web of Science were searched until June 2022. STUDY SELECTION Prospective observational studies investigating dietary factors in association with all-cause mortality in individuals with type 2 diabetes were selected. DATA SYNTHESIS We identified 107 studies. Moderate certainty of evidence was found for inverse associations of higher intakes of fish (summary risk ratios per serving/week: 0.95; 95% CI 0.92, 0.99; n = 6 studies), whole grain (per 20 g/day: 0.84; 95% CI 0.71, 0.99; n = 2), fiber (per 5 g/day: 0.86; 95% CI 0.81, 0.91; n = 3), and n-3 polyunsaturated fatty acids (per 0.1 g/day: 0.87; 95% CI 0.82, 0.92; n = 2) and mortality. There was low certainty of evidence for inverse associations of vegetable consumption (per 100 g/day: 0.88; 95% CI 0.82, 0.94; n = 2), plant protein (per 10 g/day: 0.91; 95% CI 0.87, 0.96; n = 3), and for positive associations of egg consumption (per 10 g/day: 1.05; 95% CI 1.03, 1.08; n = 7) and cholesterol intake (per 300 mg/day: 1.19; 95% CI 1.13, 1.26; n = 2). For other dietary factors, evidence was uncertain or no association was observed. CONCLUSIONS Higher intake of fish, whole grain, fiber, and n-3 polyunsaturated fatty acids were inversely associated with all-cause mortality in individuals with type 2 diabetes. There is limited evidence for other dietary factors, and, thus, more research is needed.
Collapse
Affiliation(s)
- Janett Barbaresko
- German Diabetes Center, Institute for Biometrics and Epidemiology, Düsseldorf, Germany
| | - Alexander Lang
- German Diabetes Center, Institute for Biometrics and Epidemiology, Düsseldorf, Germany
| | - Edyta Szczerba
- German Diabetes Center, Institute for Biometrics and Epidemiology, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Christina Baechle
- German Diabetes Center, Institute for Biometrics and Epidemiology, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Julia Beckhaus
- German Diabetes Center, Institute for Biometrics and Epidemiology, Düsseldorf, Germany
- Department of Pediatrics and Pediatric Hematology/Oncology, University Children's Hospital, Klinikum Oldenburg AöR, Carl von Ossietzky University, Oldenburg, Germany
| | - Lukas Schwingshackl
- Institute for Evidence in Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Manuela Neuenschwander
- German Diabetes Center, Institute for Biometrics and Epidemiology, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Sabrina Schlesinger
- German Diabetes Center, Institute for Biometrics and Epidemiology, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
| |
Collapse
|
21
|
Zhang Q, Zhang L, Chen C, Li P, Lu B. The gut microbiota-artery axis: A bridge between dietary lipids and atherosclerosis? Prog Lipid Res 2023; 89:101209. [PMID: 36473673 DOI: 10.1016/j.plipres.2022.101209] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/09/2022]
Abstract
Atherosclerotic cardiovascular disease is one of the major leading global causes of death. Growing evidence has demonstrated that gut microbiota (GM) and its metabolites play a pivotal role in the onset and progression of atherosclerosis (AS), now known as GM-artery axis. There are interactions between dietary lipids and GM, which ultimately affect GM and its metabolites. Given these two aspects, the GM-artery axis may play a mediating role between dietary lipids and AS. Diets rich in saturated fatty acids (SFAs), omega-6 polyunsaturated fatty acids (n-6 PUFAs), industrial trans fatty acids (TFAs), and cholesterol can increase the levels of atherogenic microbes and metabolites, whereas monounsaturated fatty acids (MUFAs), ruminant TFAs, and phytosterols (PS) can increase the levels of antiatherogenic microbes and metabolites. Actually, dietary phosphatidylcholine (PC), sphingomyelin (SM), and omega-3 polyunsaturated fatty acids (n-3 PUFAs) have been demonstrated to affect AS via the GM-artery axis. Therefore, that GM-artery axis acts as a communication bridge between dietary lipids and AS. Herein, we will describe the molecular mechanism of GM-artery axis in AS and discuss the complex interactions between dietary lipids and GM. In particular, we will highlight the evidence and potential mechanisms of dietary lipids affecting AS via GM-artery axis.
Collapse
Affiliation(s)
- Qinjun Zhang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Liangxiao Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wubhan, China
| | - Cheng Chen
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peiwu Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wubhan, China
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
22
|
Wang K, Xiang Q, Hu L, Wang L, Zhang Y. Frequency of Egg Intake Associated with Mortality in Chinese Adults: An 8-Year Nationwide Cohort Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14777. [PMID: 36429496 PMCID: PMC9690384 DOI: 10.3390/ijerph192214777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/26/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Whether egg consumption plays a beneficial/detrimental role in affecting human health and longevity has been debated for decades. Large-scale cohort evidence from low- and middle-income populations are scarce. In this study, we aimed to assess the association of egg consumption with mortality in Chinese adults. A nationwide cohort of 30,835 participants ages 16-110 years were enrolled from 25 provincial regions in China's mainland. Dietary intake (e.g., egg, meat, vegetable) was assessed by a food-frequency questionnaire. Cox proportional hazards models were used to examine associations between egg consumption and mortality, adjusting for demographic characteristics, dietary factors and health status. Dose-response relationships were investigated using the smoothing function of restricted cubic splines. Several subgroup analyses were performed. A total of 1651 all-cause deaths occurred during a median follow-up of 8.1 years. Egg consumption was associated with lower risks of mortality, with the lowest risk occurring in the group of moderate egg intake (3-6 times/week). Compared with non-consumers, the hazard ratios (95% confidence intervals) for mortality were 0.84 (0.72-0.97) for 3-6 times/week and 0.82 (0.69-0.98) for ≥7 times/week, whereas no significant associations were observed among the lower egg intake group (1-2/week). An approximately inverted J-shaped association was observed in three models, while restricting our analysis in the multivariable model (model 3) did not identify a significant violation for the linear relationship (p for nonlinear = 0.122). There were no statistically significant effect modifications in the subgroup analyses. Egg consumption may be associated with lower risks of mortality in Chinese adults. Our findings found moderate-to-high egg consumption might be beneficial for improving long-term health and longevity.
Collapse
Affiliation(s)
- Ke Wang
- Department of Nursing, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Qianqian Xiang
- Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China
| | - Lan Hu
- Department of Nursing, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
- Department of Head and Neck Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430079, China
| | - Lu Wang
- School of Basic Medicine, Hubei University of Arts and Sciences, Xiangyang 441053, China
| | - Yunquan Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, China
| |
Collapse
|
23
|
Association of Choline Intake with Blood Pressure and Effects of Its Microbiota-Dependent Metabolite Trimethylamine-N-Oxide on Hypertension. Cardiovasc Ther 2022; 2022:9512401. [PMID: 36082192 PMCID: PMC9436605 DOI: 10.1155/2022/9512401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 12/01/2022] Open
Abstract
Background The association of total choline (TC) intake and its metabolite trimethylamine-N-oxide (TMAO) with hypertension and blood pressure (BP) has not been elucidated. Methods For the population study, the association of TC intake with hypertension, as well as blood pressure, was determined through logistic along with multiple linear regression analysis from the National Health and Nutrition Examination Survey 2007 to 2018, respectively. For the animal experimental study, spontaneously hypertensive rats (SHRs) were assigned to the water group or water containing 333 mg/L or 1 g/L TMAO group. After 22 weeks treatment of TMAO, blood pressure measurement, echocardiography, and histopathology of the heart and arteries were evaluated. Results No significant association of TC with hypertension was observed but the trend for ORs of hypertension was decreased with the increased level of TC. Negative association between TC and BP was significant in quintile 4 and quintile 5 range of TC, and the negative trend was significant. The SHR-TMAO groups showed significant higher urine output levels in contrast with the SHR-water group. No difference of diastolic BP was observed, but there was a trend towards lower systolic BP with the increase doses of TMAO in the SHR group. The SHR 1 g/L TMAO rats had a remarkably lower systolic blood pressure than the SHR-water group. Echocardiography showed a diastolic dysfunction alleviating effect in the 1 g/L TMAO group. Conclusion High TC intake was not linked to elevated risk of hypertension. An inverse relationship of choline intake with systolic BP was observed. The mechanism for the beneficial effect of TC might be associated with the diuretic effect of its metabolite TMAO.
Collapse
|
24
|
The heart and gut relationship: a systematic review of the evaluation of the microbiome and trimethylamine-N-oxide (TMAO) in heart failure. Heart Fail Rev 2022; 27:2223-2249. [PMID: 35726110 DOI: 10.1007/s10741-022-10254-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/31/2022] [Indexed: 02/08/2023]
Abstract
There is an expanding body of research on the bidirectional relationship of the human gut microbiome and cardiovascular disease, including heart failure (HF). Researchers are examining the microbiome and gut metabolites, primarily trimethylamine-N-oxide (TMAO), to understand clinically observed outcomes. This systematic review explored the current state of the science on the evaluation and testing of the gut biome in persons with HF. Using electronic search methods of Medline, Embase, CINAHL, and Web of Science, until December 2021, we identified 511 HF biome investigations between 2014 and 2021. Of the 30 studies included in the review, six were 16S rRNA and nineteen TMAO, and three both TMAO and 16S rRNA, and two bacterial cultures. A limited range of study designs were represented, the majority involving single cohorts (n = 10) and comparing individuals with HF to controls (n = 15). Patients with HF had less biodiversity in fecal samples compared to controls. TMAO is associated with age, BNP, eGFR, HF severity, and poor outcomes including hospitalizations and mortality. Inconsistent across studies was the ability of TMAO to predict HF development, the independent prognostic value of TMAO when controlling for renal indices, and the relationship of TMAO to LVEF and CRP. Gut microbiome dysbiosis is associated with HF diagnosis, disease severity, and prognostication related to hospitalizations and mortality. Gut microbiome research in patients with HF is developing. Further longitudinal and multi-centered studies are required to inform interventions to promote clinical decision-making and improved patient outcomes.
Collapse
|
25
|
Sieber-Ruckstuhl NS, Tham WK, Baumgartner F, Selva JJ, Wenk MR, Burla B, Boretti FS. Serum Lipidome Signatures of Dogs with Different Endocrinopathies Associated with Hyperlipidemia. Metabolites 2022; 12:306. [PMID: 35448493 PMCID: PMC9031822 DOI: 10.3390/metabo12040306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/01/2022] Open
Abstract
Hyperlipidemia (hypertriglyceridemia, hypercholesterolemia) is a common finding in human and veterinary patients with endocrinopathies (e.g., hypothyroidism and hypercortisolism (Cushing's syndrome; CS)). Despite emerging use of lipidomics technology in medicine, the lipid profiles of these endocrinopathies have not been evaluated and characterized in dogs. The aim of this study was to compare the serum lipidomes of dogs with naturally occurring CS or hypothyroidism with those of healthy dogs. Serum samples from 39 dogs with CS, 45 dogs with hypothyroidism, and 10 healthy beagle dogs were analyzed using a targeted lipidomics approach with liquid chromatography-mass spectrometry. There were significant differences between the lipidomes of dogs with CS, hypothyroidism, and the healthy dogs. The most significant changes were found in the lysophosphatidylcholines, lysophosphatidylethanolamines, lysophosphatidylinositols, phosphatidylcholines, phosphatidylethanolamines, phosphatidylglycerols, ceramides, and sphingosine 1-phosphates. Lipid alterations were especially pronounced in dogs with hypothyroidism. Several changes suggested a more atherogenic lipid profile in dogs with HT than in dogs with CS. In this study, we found so far unknown effects of naturally occurring hypothyroidism and CS on lipid metabolism in dogs. Our findings provide starting points to further examine differences in occurrence of atherosclerotic lesion formation between the two diseases.
Collapse
Affiliation(s)
- Nadja S. Sieber-Ruckstuhl
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, 8057 Zürich, Switzerland; (F.B.); (F.S.B.)
| | - Wai Kin Tham
- Precision Medicine Translational Research Program and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore; (W.K.T.); (J.J.S.); (M.R.W.)
- Agilent Technologies Singapore Pte. Ltd., 1 Yishun Ave 7, Singapore 768923, Singapore
| | - Franziska Baumgartner
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, 8057 Zürich, Switzerland; (F.B.); (F.S.B.)
| | - Jeremy John Selva
- Precision Medicine Translational Research Program and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore; (W.K.T.); (J.J.S.); (M.R.W.)
| | - Markus R. Wenk
- Precision Medicine Translational Research Program and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore; (W.K.T.); (J.J.S.); (M.R.W.)
- Singapore Lipidomics Incubator, Life Sciences Institute, 28 Medical Drive, National University of Singapore, Singapore 117456, Singapore
| | - Bo Burla
- Singapore Lipidomics Incubator, Life Sciences Institute, 28 Medical Drive, National University of Singapore, Singapore 117456, Singapore
| | - Felicitas S. Boretti
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, 8057 Zürich, Switzerland; (F.B.); (F.S.B.)
| |
Collapse
|
26
|
Omma T, Gulcelik NE, Zengin FH, Karahan I, Culha C. Dietary Acid Load is Associated with Hypertension and Diabetes in the Elderly. Curr Aging Sci 2022; 15:242-251. [PMID: 35346013 DOI: 10.2174/1874609815666220328123744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/15/2021] [Accepted: 01/24/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Diet can affect the body's acid-base balance due to its content of acid or base precursors. There is conflicting evidence for the role of metabolic acidosis in the development of cardiometabolic disorders, hypertension (HT), and insulin resistance (IR). OBJECTIVE We hypothesize that dietary acid load (DAL) is associated with adverse metabolic risk factors and we aimed to investigate this in the elderly. METHODS A total of 114 elderly participants were included in the study. The participants were divided into four groups such as HT, diabetes (DM), both HT and DM, and healthy controls. Anthropometric, biochemical, and clinical findings were recorded. Potential renal acid load (PRAL) and net endogenous acid production (NEAP) results were obtained from three-day, 24-hour dietary records via a nutrient database program. (BeBiS software program). RESULTS The groups were matched for age, gender, and BMI. There was a statistically significant difference between the groups in terms of NEAP (p=0.01) and no significant difference for PRAL (p=0.086). The lowest NEAP and PRAL levels were seen in the control group while the highest in the HT group. Both NEAP and PRAL were correlated with waist circumference (r=0,325, p=0.001; r=0,231, p=0,016, respectively). CONCLUSION Our data confirmed that subjects with HT and DM had diets with greater acid-forming potential. High NEAP may be a risk factor for chronic metabolic diseases, particularly HT. PRAL couldn't be shown as a significantly different marker in all participants. Dietary content has a significant contribution to the reduction of cardiovascular risk factors such as HT, DM, and obesity.
Collapse
Affiliation(s)
- Tulay Omma
- Department of Endocrinology and Metabolism, University of Health Sciences, Ankara Training and Research Hospital, 06230, Ankara, Turkey
| | - Nese Ersoz Gulcelik
- Department of Endocrinology and Metabolism, University of Health Sciences, Gulhane Training and Research Hospital, 06010, Ankara, Turkey
| | - Fatmanur Humeyra Zengin
- Department of Nutrition and Dietetics, University of Health Sciences, Ankara Training and Research Hospital, 06230, Ankara, Turkey
| | - Irfan Karahan
- Department of Internal Medicine, University of Kırıkkale, Faculty of Medicine, 71450, Kırıkkale, Turkey
| | - Cavit Culha
- Department of Endocrinology and Metabolism, University of Health Sciences, Ankara Training and Research Hospital, 06230, Ankara, Turkey
| |
Collapse
|
27
|
Golzarand M, Mirmiran P, Azizi F. Association between dietary choline and betaine intake and 10.6-year cardiovascular disease in adults. Nutr J 2022; 21:1. [PMID: 34986852 PMCID: PMC8728923 DOI: 10.1186/s12937-021-00755-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/09/2021] [Indexed: 01/12/2023] Open
Abstract
Background Several studies have assessed the association between dietary choline and betaine and cardiovascular disease (CVD), but their results are inconsistent. The present study aimed to determine the association between dietary intake of choline and betaine and the risk of CVD in the general population over a 10.6-year period of follow-up. Methods The present cohort study was conducted on participants in the third wave of the Tehran Lipid and Glucose Study (2006–2008) and was followed-up until March 2018. Dietary intake of choline and betaine was calculated using the United States Department of Agriculture (USDA) database. Patients’ medical records were used to collect data on CVD. Results In this study, 2606 subjects with no previous CVD participated and were followed-up for a median of 10.6 years. During the follow-up periods, 187 incidences of CVD were detected. Results of the Cox proportional hazards regression indicated that neither energy-adjusted total choline nor betaine was associated with the incidence of CVD. Among individual choline forms, only higher intake of free choline (FC) was associated with a lower risk of CVD (HR: 0.64, 95% CI: 0.42–0.98). There was no significant association between each 10 mg/d increase in choline and betaine content of each food category and CVD. Conclusion Our investigation indicates no association between energy-adjusted total choline and betaine and a 10.6-year risk of CVD among adults. Besides, we found no relationship between individual choline forms (except FC) and CVD. We also found energy-adjusted choline and betaine obtained from food categories were not associated with the risk of CVD.
Collapse
Affiliation(s)
- Mahdieh Golzarand
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Mirmiran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, No. 7, Shahid Hafezi St., Farahzadi Blvd., Shahrak-e-qods, Tehran, 1981619573, Iran.
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Song M, Xu BP, Liang Q, Wei Y, Song Y, Chen P, Zhou Z, Zhang N, He Q, Liu L, Liu T, Zhang K, Hu C, Wang B, Xu X, Shi H. Association of serum choline levels and all-cause mortality risk in adults with hypertension: a nested case-control study. Nutr Metab (Lond) 2021; 18:108. [PMID: 34930356 PMCID: PMC8686288 DOI: 10.1186/s12986-021-00637-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/08/2021] [Indexed: 11/13/2022] Open
Abstract
Background Serum choline levels were associated with multiple chronic diseases. However, the association between serum choline and all-cause mortality in Chinese adults with hypertension remains unclear. The purpose of this study is to explore the association between serum choline concentrations and all-cause mortality risk in Chinese adults with hypertension, a high-risk population. Methods A nested, case–control study was conducted that included 279 patients with all-cause death, and 279 matched, living controls, derived from the China Stroke Primary Prevention Trial (CSPPT). Baseline serum choline concentrations were measured by liquid chromatography with tandem quadrupole mass spectrometry (LC–MS/MS). Multivariate logistic regression analysis was used to assess the association of serum choline levels and all-cause mortality risk, with adjustment of pertinent covariables, including folic acid and homocysteine. Results The median age of all participants was 64.13 years [interquartile range (IQR), 57.33–70.59 years]. The median serum choline concentration for cases (9.51 μg/mL) was higher than that in controls (7.80 μg/mL) (P = 0.009). When serum choline concentration was assessed as a continuous variable (per SD increased), there was a positive relation between serum choline levels and all-cause mortality risk [odds ratios (OR), 1.29; 95% confidence intervals (95%CI), 1.06–1.57; P = 0.010]. There was an increased all-cause mortality risk for participants in quartiles 2–4 (≥ 4.00 μg/mL; OR, 1.79; 95%CI, 1.15–2.78 compared with quartile 1 (< 4.00 μg/mL). In addition, non-drinking was found to promote the incidence of all-cause mortality for those with high choline concentrations. Conclusions High serum choline concentrations were associated with increased all-cause mortality risk among Chinese adults with hypertension, compared to lower choline concentrations. Trial registration clinicaltrials.gov Identifier: NCT007948885; UTL: https://clinicaltrials.gov/ct2/show/NCT00794885?term=NCT00794885&draw=2&rank=1.
Collapse
Affiliation(s)
- Mengmeng Song
- Department of Gastrointestinal Surgery/Clinical Nutrition, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, 100038, China.,Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, 100038, China
| | - Benjamin P Xu
- Department of Epidemiology and Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, 02115, USA
| | - Qiongyue Liang
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yaping Wei
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Sciences and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yun Song
- Institute for Biomedicine, Anhui Medical University, Hefei, China.,Shenzhen Evergreen Medical Institute, Shenzhen, China
| | - Ping Chen
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Ziyi Zhou
- Shenzhen Evergreen Medical Institute, Shenzhen, China.,Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Nan Zhang
- Department of Epidemiology and Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, 02115, USA
| | - Qiangqiang He
- Shenzhen Evergreen Medical Institute, Shenzhen, China.,Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Lishun Liu
- Shenzhen Evergreen Medical Institute, Shenzhen, China.,Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Tong Liu
- Department of Gastrointestinal Surgery/Clinical Nutrition, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, 100038, China.,Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, 100038, China
| | - Kangping Zhang
- Department of Gastrointestinal Surgery/Clinical Nutrition, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, 100038, China.,Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, 100038, China
| | - Chunlei Hu
- Department of Gastrointestinal Surgery/Clinical Nutrition, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, 100038, China.,Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, 100038, China
| | - Binyan Wang
- Institute for Biomedicine, Anhui Medical University, Hefei, China.,Shenzhen Evergreen Medical Institute, Shenzhen, China
| | - Xiping Xu
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Sciences and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| | - Hanping Shi
- Department of Gastrointestinal Surgery/Clinical Nutrition, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, 100038, China. .,Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, 100038, China.
| |
Collapse
|
29
|
Konop M, Rybka M, Waraksa E, Laskowska AK, Nowiński A, Grzywacz T, Karwowski WJ, Drapała A, Kłodzińska EM. Electrophoretic Determination of Trimethylamine (TMA) in Biological Samples as a Novel Potential Biomarker of Cardiovascular Diseases Methodological Approach. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182312318. [PMID: 34886043 PMCID: PMC8656779 DOI: 10.3390/ijerph182312318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/05/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022]
Abstract
In competitive athletes, the differential diagnosis between nonpathological changes in cardiac morphology associated with training (commonly referred to as “athlete’s heart”) and certain cardiac diseases with the potential for sudden death is an important and not uncommon clinical problem. The use of noninvasive, fast, and cheap analytical techniques can help in making diagnostic differentiation and planning subsequent clinical strategies. Recent studies have demonstrated the role of gut microbiota and their metabolites in the onset and the development of cardiovascular diseases. Trimethylamine (TMA), a gut bacteria metabolite consisting of carnitine and choline, has recently emerged as a potentially toxic molecule to the circulatory system. The present work aims to develop a simple and cost-effective capillary electrophoresis-based method for the determination of TMA in biological samples. Analytical characteristics of the proposed method were evaluated through the study of its linearity (R2 > 0.9950) and the limit of detection and quantification (LOD = 1.2 µg/mL; LOQ = 3.6 µg/mL). The method shows great potential in high-throughput screening applications for TMA analysis in biological samples as a novel potential biomarker of cardiovascular diseases. The proposed electrophoretic method for the determination of TMA in biological samples from patients with cardiac disease is now in progress.
Collapse
Affiliation(s)
- Marek Konop
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-106 Warsaw, Poland; (M.R.); (A.N.); (A.D.)
- Correspondence: (M.K.); (E.M.K.)
| | - Mateusz Rybka
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-106 Warsaw, Poland; (M.R.); (A.N.); (A.D.)
| | - Emilia Waraksa
- Department of Analytical Chemistry and Instrumental Analysis, Institute of Sport—National Research Institute, 01-879 Warsaw, Poland;
| | - Anna K. Laskowska
- Department of Pharmaceutical Microbiology, Centre for Preclinical Research and Technology (CePT), Faculty of Pharmacy, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland;
| | - Artur Nowiński
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-106 Warsaw, Poland; (M.R.); (A.N.); (A.D.)
| | - Tomasz Grzywacz
- Department of Sport, Institute of Physical Culture, Kazimierz Wielki University, 85-064 Bydgoszcz, Poland;
| | - Wojciech J. Karwowski
- Department of Measurement and Electronics, Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, AGH University of Science and Technology, 02-106 Kraków, Poland;
| | - Adrian Drapała
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-106 Warsaw, Poland; (M.R.); (A.N.); (A.D.)
| | - Ewa Maria Kłodzińska
- Department of Analytical Chemistry and Instrumental Analysis, Institute of Sport—National Research Institute, 01-879 Warsaw, Poland;
- Correspondence: (M.K.); (E.M.K.)
| |
Collapse
|
30
|
Lee G, Choi S, Chang J, Choi D, Son JS, Kim K, Kim SM, Jeong S, Park SM. Association of L-α Glycerylphosphorylcholine With Subsequent Stroke Risk After 10 Years. JAMA Netw Open 2021; 4:e2136008. [PMID: 34817582 PMCID: PMC8613599 DOI: 10.1001/jamanetworkopen.2021.36008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
IMPORTANCE L-α glycerylphosphorylcholine (α-GPC, choline alphoscerate) is used globally by individuals older than 50 years based on its potential function as a precursor of acetylcholine. However, choline has previously been linked to a higher risk of cardiovascular disease via trimethylamine-N-oxide, a metabolite of choline by microbiota. OBJECTIVE To investigate the association between α-GPC use and subsequent 10-year stroke risk. DESIGN, SETTING, AND PARTICIPANTS A population-based, retrospective cohort study was conducted using data from the National Health Insurance Service of South Korea. Participants included men and women aged 50 years or older without underlying stroke or Alzheimer disease (N = 12 008 977). MAIN OUTCOMES AND MEASURES All participants were divided into whether they were prescribed α-GPC during 2006-2008. α-GPC users were matched with nonusers for all covariates to create a matched cohort. α-GPC use was further divided into durations less than 2, 2 to 6, 6 to 12, and more than 12 months of α-GPC prescriptions. The adjusted hazard ratios (aHRs) and 95% CIs for total stroke, ischemic stroke, and hemorrhagic stroke from January 1, 2009, to January 31, 2018, were calculated by multivariate Cox proportional hazards regression. RESULTS A total of 12 008 977 individuals (6 401 965 [53.3%] women) aged 50 years or older were included in the study. The mean (SD) age was 61.6 (9.4) years for nonusers and 68.3 (10.0) years for users, and that of the matching cohort was 68.2 (9.9) years for both groups. Compared with α-GPC nonusers (n = 11 900 100), users (n = 108 877) had a higher risk for total stroke (aHR, 1.46; 95% CI, 1.43-1.48), ischemic stroke (aHR 1.36; 95% CI, 1.33-1.39), and hemorrhagic stroke (aHR, 1.36; 95% CI, 1.28-1.44). After matching for all covariates, α-GPC users had a higher risk for total stroke (aHR, 1.43; 95% CI, 1.41-1.46), ischemic stroke (aHR, 1.34; 95% CI, 1.31-1.37), and hemorrhagic stroke (aHR, 1.37; 95% CI, 1.29-1.46). Increasing intake of α-GPC was associated with a higher risk for total stroke in a dose-response manner. CONCLUSIONS AND RELEVANCE In this cohort study, use of α-GPC was associated with a higher 10-year incident stroke risk in a dose-response manner after adjusting for traditional cerebrovascular risk factors. Future studies are needed to determine the possible mechanisms behind the potential cerebrovascular risk-elevating effects of α-GPC.
Collapse
Affiliation(s)
- Gyeongsil Lee
- Department of Family Medicine, Seoul National University Hospital, Seoul, Korea
| | - Seulggie Choi
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea
| | - Jooyoung Chang
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea
| | - Daein Choi
- Department of Medicine, Mount Sinai Beth Israel Icahn School of Medicine at Mount Sinai, New York, New York
| | - Joung Sik Son
- Department of Family Medicine, Korea University Guro Hospital, Seoul, Korea
| | - Kyuwoong Kim
- National Cancer Control Institute, National Cancer Center, Goyang-si, Gyeonggi-do, Korea
| | - Sung Min Kim
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea
| | - Seogsong Jeong
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea
| | - Sang Min Park
- Department of Family Medicine, Seoul National University Hospital, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea
| |
Collapse
|
31
|
Kochetkov AI, Klepikova MV, Ostroumova OD. Trimethylamine oxide and its possible role in the development and progression of cardiovascular disease. КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2021. [DOI: 10.15829/1728-8800-2021-3014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cardiovascular diseases continue to be the leading cause of death throughout the world and in Russia. Therefore, new possible risk factors for their development and progression are being studied. To date, information have been accumulated on unfavorable prognostic effect of elevated trimethylamine oxide (TMAO) levels on cardiovascular events, and the possible role of phospholipids (PLs) is being discussed. The aim of this review was to analyze the literature data on the potential relationship of TMAO and PLs with cardiovascular risk (CVR), as well as possible solutions to this problem. The search and analysis of publications was performed using Elibrary, PubMed, Medline, and Google Scholar databases in the period from their creation to 2021. It was found that high TMAO concentrations can have pro-inflammatory effects, stimulate atherogenesis and increase platelet aggregation. An increase in the blood TMAO levels increases the risk of cardiovascular events in patients with coronary artery disease, is associated with an increased risk of cardiovascular and all-cause death in patients with peripheral arterial disease and heart failure, and correlates with the extent of brain regions involved in stroke. The most important part in TMAO formation is taken by the gut microbiota, which metabolizes substrates, including PLs, to trimethylamine, which, when absorbed, is converted into TMAO in the liver. The analysis of available studies shows that the excessive intake of PLs into the gastrointestinal tract and the increased TMAO production are potentially interrelated with an increase in CVR. At the same time, PLs are currently used as drugs, in particular, as hepatoprotective agents. In view of this, large-scale randomized clinical trials are needed to study the CVR profile in patients receiving such therapy. Currently, other hepatoprotective agents are available that are devoid of such potential risks, since they do not contain PLs. One of these agents is ursodeoxycholic acid, which has proven its effectiveness and safety, including in patients with high CVR in routine clinical practice.
Collapse
Affiliation(s)
- A. I. Kochetkov
- Russian Medical Academy of Continuous Professional Education
| | - M. V. Klepikova
- Russian Medical Academy of Continuous Professional Education
| | - O. D. Ostroumova
- Russian Medical Academy of Continuous Professional Education; I.M. Sechenov First Moscow State Medical University
| |
Collapse
|
32
|
Identification of Potential Metabolic Markers of Hypertension in Chinese Children. Int J Hypertens 2021; 2021:6691734. [PMID: 34484817 PMCID: PMC8410451 DOI: 10.1155/2021/6691734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 07/14/2021] [Accepted: 08/16/2021] [Indexed: 11/17/2022] Open
Abstract
Background Studies in adults have shown that several metabolites across multiple pathways are strongly associated with hypertension. However, as yet, to our knowledge, no study has investigated such association in childhood. We, therefore, compared the serum metabolite profile of children with normal and elevated blood pressure (BP) to identify potential metabolic markers and pathways that could be useful for the assessment of pediatric hypertension. Methods The study included 26 hypertensive children (age range, 6-11 years) and 26 age- and sex-matched ones with normal BP, who were recruited from the baseline survey of the Huantai Childhood Cardiovascular Health Cohort Study. Ultrahigh-performance liquid chromatography-quadrupole time-of-flight-mass spectrometry was performed to assess the serum metabolite profile. Logistic regression analysis was used to select significant metabolites associated with hypertension after adjustment for body mass index, waist circumference, and lipid profile. Kyoto Encyclopedia of Genes and Genomes (KEGG) and MetaboAnalyst were utilized to search for the potential pathways of metabolites. Results A total of 45 and 34 metabolites were preliminarily screened in positive and negative modes, respectively (variable importance in the projection (VIP) > 1.0 and P < 0.05). After adjustment for the false discovery rate, 7 and 1 differential metabolites in the positive and negative modes, respectively, remained significant (VIP > 1.0 and q < 0.05). These metabolites were mainly involved in amino acid metabolism and glycerophospholipid metabolism. Among these, two significant metabolites including ethanolamine and 2-methyl-3-hydroxy-5-formylpyridine-4-carboxylate displayed an area under the curve value of 0.820 (95% confidence interval, 0.688-0.951), with a sensitivity of 0.846 and a specificity of 0.769. Conclusion The untargeted metabolomics approach effectively identified the differential serum metabolite profile in children with and without hypertension. Notably, two metabolites including ethanolamine and 2-methyl-3-hydroxy-5-formylpyridine-4-carboxylate exhibited a good discriminative ability to identify children with hypertension, providing new insights into potential mechanisms of pediatric hypertension.
Collapse
|
33
|
Wilcox J, Skye SM, Graham B, Zabell A, Li XS, Li L, Shelkay S, Fu X, Neale S, O'Laughlin C, Peterson K, Hazen SL, Tang WHW. Dietary Choline Supplements, but Not Eggs, Raise Fasting TMAO Levels in Participants with Normal Renal Function: A Randomized Clinical Trial. Am J Med 2021; 134:1160-1169.e3. [PMID: 33872583 PMCID: PMC8410632 DOI: 10.1016/j.amjmed.2021.03.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Choline is a dietary precursor to the gut microbial generation of the prothrombotic and proatherogenic metabolite trimethylamine-N-oxide (TMAO). Eggs are rich in choline, yet the impact of habitual egg consumption on TMAO levels and platelet function in human subjects remains unclear. METHODS Healthy volunteers (41% male, 81% Caucasian, median age 28 years) with normal renal function (estimated glomerular filtration rate >60) were recruited and assigned to 1 of 5 daily interventions for 4 weeks: 1) hardboiled eggs (n = 18); 2) choline bitartrate supplements (n = 20); 3) hardboiled eggs + choline bitartrate supplements (n = 16); 4) egg whites + choline bitartrate supplements (n = 18); 5) phosphatidylcholine supplements (n = 10). Fasting blood and urine samples were collected for quantification of TMAO, its precursors, and platelet aggregometry. RESULTS Participants' plasma TMAO levels increased significantly in all 3 intervention arms containing choline bitartrate (all P < .0001), but daily ingestion of 4 large eggs (P = .28) or phosphatidylcholine supplements (P = .27) failed to increase plasma TMAO levels. Platelet reactivity also significantly increased in the 3 intervention arms containing choline bitartrate (all P < .01), but not with eggs (P = .10) or phosphatidylcholine supplements (P = .79). CONCLUSIONS Despite high choline content in egg yolks, healthy participants consuming 4 eggs daily showed no significant increase in TMAO or platelet reactivity. However, choline bitartrate supplements providing comparable total choline raised both TMAO and platelet reactivity, demonstrating that the form and source of dietary choline differentially contributes to systemic TMAO levels and platelet responsiveness.
Collapse
Affiliation(s)
- Jennifer Wilcox
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute; Center for Microbiome and Human Health
| | - Sarah M Skye
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute
| | - Brett Graham
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute
| | - Allyson Zabell
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute
| | - Xinmin S Li
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute; Center for Microbiome and Human Health
| | - Lin Li
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute; Center for Microbiome and Human Health
| | - Shamanthika Shelkay
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute
| | - Xiaoming Fu
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute; Center for Microbiome and Human Health
| | - Sarah Neale
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute
| | - Cathy O'Laughlin
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute
| | - Kimberly Peterson
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute
| | - Stanley L Hazen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute; Center for Microbiome and Human Health; Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, Ohio
| | - W H Wilson Tang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute; Center for Microbiome and Human Health; Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, Ohio.
| |
Collapse
|
34
|
Golzarand M, Bahadoran Z, Mirmiran P, Azizi F. Dietary choline and betaine intake and risk of hypertension development: a 7.4-year follow-up. Food Funct 2021; 12:4072-4078. [PMID: 33977970 DOI: 10.1039/d0fo03208e] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The evidence for a linkage between dietary intake of choline and betaine, a choline metabolism product, and the risk of hypertension (HTN) is limited. The current population-based cohort study was designed to investigate the possible association between dietary intake of choline and betaine with the risk of HTN in adults. This cohort study was conducted on the participants of the Tehran Lipid and Glucose Study (TLGS). Dietary intake of choline and betaine was calculated using the United States Department of Agriculture (USDA) database. Hypertension was diagnosed as systolic blood pressure ≥140 mmHg or diastolic blood pressure ≥90 mmHg or used drugs to treat hypotension. In this study, 2865 subjects participated and followed-up for a median of 7.4 years. During the follow-up period, 623 patients with hypertension (22.1%) were detected. Our results revealed per every 100 mg increased dietary intake of choline, the risk of developing HTN decreased by 16% (0.84; 95% CI: 0.74 to 0.96, P for trend = 0.009). No significant association was observed between habitual dietary intake of betaine and the risk of HTN (1.10; 95% CI: 0.88 to 1.38, P for trend = 0.21). After stratification based on age, sex, and BMI, each 100 mg per d increase in dietary choline decreased the risk of HTN occurrence in subjects younger than 55 years old by 17% (0.83; 95% CI: 0.71 to 0.96) and men by 21% (0.79; 95% CI: 0.66 to 0.95). The current study's findings provide further support to confirm the protective properties of choline and choline-rich foods against HTN.
Collapse
Affiliation(s)
- Mahdieh Golzarand
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Bahadoran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Mirmiran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran and Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
McGranaghan P, Saxena A, Düngen HD, Rubens M, Appunni S, Salami J, Veledar E, Lacour P, Blaschke F, Obradovic D, Loncar G, Tahirovic E, Edelmann F, Pieske B, Trippel TD. Performance of a cardiac lipid panel compared to four prognostic scores in chronic heart failure. Sci Rep 2021; 11:8164. [PMID: 33854188 PMCID: PMC8046832 DOI: 10.1038/s41598-021-87776-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/05/2021] [Indexed: 02/02/2023] Open
Abstract
The cardiac lipid panel (CLP) is a novel panel of metabolomic biomarkers that has previously shown to improve the diagnostic and prognostic value for CHF patients. Several prognostic scores have been developed for cardiovascular disease risk, but their use is limited to specific populations and precision is still inadequate. We compared a risk score using the CLP plus NT-proBNP to four commonly used risk scores: The Seattle Heart Failure Model (SHFM), Framingham risk score (FRS), Barcelona bio-HF (BCN Bio-HF) and Meta-Analysis Global Group in Chronic Heart Failure (MAGGIC) score. We included 280 elderly CHF patients from the Cardiac Insufficiency Bisoprolol Study in Elderly trial. Cox Regression and hierarchical cluster analysis was performed. Integrated area under the curves (IAUC) was used as criterium for comparison. The mean (SD) follow-up period was 81 (33) months, and 95 (34%) subjects met the primary endpoint. The IAUC for FRS was 0.53, SHFM 0.61, BCN Bio-HF 0.72, MAGGIC 0.68, and CLP 0.78. Subjects were partitioned into three risk clusters: low, moderate, high with the CLP score showing the best ability to group patients into their respective risk cluster. A risk score composed of a novel panel of metabolite biomarkers plus NT-proBNP outperformed other common prognostic scores in predicting 10-year cardiovascular death in elderly ambulatory CHF patients. This approach could improve the clinical risk assessment of CHF patients.
Collapse
Affiliation(s)
- Peter McGranaghan
- grid.6363.00000 0001 2218 4662Department of Internal Medicine and Cardiology, Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany ,grid.418212.c0000 0004 0465 0852Baptist Health South Florida, 6855 Red Rd, Coral Gables, FL 33143 USA
| | - Anshul Saxena
- grid.418212.c0000 0004 0465 0852Baptist Health South Florida, 6855 Red Rd, Coral Gables, FL 33143 USA
| | - Hans-Dirk Düngen
- grid.6363.00000 0001 2218 4662Department of Internal Medicine and Cardiology, Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Muni Rubens
- grid.418212.c0000 0004 0465 0852Baptist Health South Florida, 6855 Red Rd, Coral Gables, FL 33143 USA
| | - Sandeep Appunni
- grid.253527.40000 0001 0705 6304Department of Biochemistry, Government Medical College, Kozhikode, Kerala 673008 India
| | - Joseph Salami
- grid.418212.c0000 0004 0465 0852Baptist Health South Florida, 6855 Red Rd, Coral Gables, FL 33143 USA
| | - Emir Veledar
- grid.418212.c0000 0004 0465 0852Baptist Health South Florida, 6855 Red Rd, Coral Gables, FL 33143 USA ,grid.65456.340000 0001 2110 1845Department of Biostatistics, Florida International University, Miami, FL USA ,grid.189967.80000 0001 0941 6502Division of Cardiology, Emory University School of Medicine, Atlanta, GA USA
| | - Philipp Lacour
- grid.6363.00000 0001 2218 4662Department of Internal Medicine and Cardiology, Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Florian Blaschke
- grid.6363.00000 0001 2218 4662Department of Internal Medicine and Cardiology, Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Danilo Obradovic
- grid.9647.c0000 0004 7669 9786Department of Cardiology and Internal Medicine, Heart Center Leipzig at the University of Leipzig, Russenstrasse 69A, 04289 Leipzig, Germany
| | - Goran Loncar
- grid.7149.b0000 0001 2166 9385Institute for Cardiovascular Diseases Dedinje, Department of Cardioloy, Faculty of Medicine, University of Belgrade, Heroja Milana Tepića br. 1, 11040 Belgrade, Serbia
| | - Elvis Tahirovic
- grid.11374.300000 0001 0942 1176Apostolovic Clinic for Cardiovascular Diseases, Clinical Centre Nis, University of Niš, Niš, Serbia
| | - Frank Edelmann
- grid.6363.00000 0001 2218 4662Department of Internal Medicine and Cardiology, Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany ,grid.452396.f0000 0004 5937 5237DZHK (German Centre for Cardiovascular Research), Berlin, Germany ,grid.484013.aBerlin Institute of Health (BIH), Berlin, Germany
| | - Burkert Pieske
- grid.6363.00000 0001 2218 4662Department of Internal Medicine and Cardiology, Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany ,grid.452396.f0000 0004 5937 5237DZHK (German Centre for Cardiovascular Research), Berlin, Germany ,grid.484013.aBerlin Institute of Health (BIH), Berlin, Germany ,Department of Internal Medicine and Cardiology, German Heart Centre Berlin, Berlin, Germany
| | - Tobias Daniel Trippel
- grid.6363.00000 0001 2218 4662Department of Internal Medicine and Cardiology, Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany ,grid.452396.f0000 0004 5937 5237DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| |
Collapse
|
36
|
Combined Lipidomics and Network Pharmacology Study of Protective Effects of Salvia miltiorrhiza against Blood Stasis Syndrome. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5526778. [PMID: 33790973 PMCID: PMC7997765 DOI: 10.1155/2021/5526778] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/01/2021] [Accepted: 03/11/2021] [Indexed: 12/23/2022]
Abstract
Blood stasis syndrome (BSS) is one of the most common symptoms of cardiovascular diseases (CVDs) in traditional Chinese medicine (TCM) theory. Previous studies have identified that Salvia miltiorrhiza (Danshen) has beneficial effects on BSS, but there is no relevant research from the perspective of lipidomics to study the mechanism of Danshen against BSS since hyperlipidemia has been the widely accepted risk factor of CVDs. In this study, lipidomics technology combined with network pharmacology was applied to investigate the pathological mechanism of BSS and the protective effects of Danshen. The lipidomics profiling based on the UPLC-QTOF-MS analysis method was applied to identify the differential metabolites in the plasma of blood stasis rats. The related pathway and potential targets involved in the anti-BSS effects of Danshen were predicted by pathway analysis and network pharmacology. The biochemical results showed that Danshen intervention significantly reduced whole blood viscosity (WBV) at all the shear rates and fibrinogen concentration (FIB) (p < 0.01) and increased activated partial thromboplastin time (APTT) effectively (p < 0.01). We also found that 52 lipid metabolites, including glycerophospholipid, sphingolipid, glycerolipid, plasmalogen, cholesterol ester, and testosterone, were associated with blood stasis. Moreover, Dgka, Hsd17b3, Hsd3b1, Inppl1, Lpl, Pik3ca, Pik3r1, Pla2g1b, Pla2g2a, Soat1, and Soat2 were predicted as potential targets, while glycerophospholipid metabolism, glycerolipid metabolism, steroid and steroid hormone biosynthesis, phosphatidylinositol signaling system, and ether lipid metabolism were involved as shared critical pathways of lipidomics analysis and network pharmacology. Collectively, this study offered a new understanding of the protection mechanism of Danshen against BSS, which provided new insight to explore the protective effects of Danshen.
Collapse
|
37
|
Winther SA, Øllgaard JC, Hansen TW, von Scholten BJ, Reinhard H, Ahluwalia TS, Wang Z, Gæde P, Parving HH, Hazen S, Pedersen O, Rossing P. Plasma trimethylamine N-oxide and its metabolic precursors and risk of mortality, cardiovascular and renal disease in individuals with type 2-diabetes and albuminuria. PLoS One 2021; 16:e0244402. [PMID: 33657115 PMCID: PMC7928450 DOI: 10.1371/journal.pone.0244402] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
AIMS The trimethylamine N-oxide (TMAO) pathway is related to intestinal microbiota and has been associated to risk of cardiovascular disease (CVD). We investigated associations between four plasma metabolites in the TMAO pathway and risk of all-cause mortality, CVD and deterioration in renal function in individuals with type 2-diabetes (T2D) and albuminuria. MATERIALS AND METHODS Plasma concentrations of TMAO, choline, carnitine, and betaine were measured by liquid chromatography-tandem mass spectrometry at baseline in 311 individuals with T2D and albuminuria. Information on all-cause mortality and fatal/non-fatal CVD during follow-up was obtained from registries. The association of each metabolite, and a weighted sum score of all four metabolites, with the endpoints were examined. Serum creatinine was measured at follow-up visits and the renal endpoint was defined as eGFR-decline of ≥30%. Associations were analysed using proportional hazards models adjusted for traditional risk factors. RESULTS Baseline mean(SD) age was 57.2(8.2) years and 75% were males. Follow-up was up to 21.9 years (median (IQR) follow-up 6.8 (6.1-15.5) years for mortality and 6.5 (5.5-8.1) years for CVD events). The individual metabolites and the weighted sum score were not associated with all-cause mortality (n = 106) or CVD (n = 116) (adjusted p≥0.09). Higher choline, carnitine and the weighted sum score of the four metabolites were associated with higher risk of decline in eGFR (n = 106) (adjusted p = 0.001, p = 0.03 and p<0.001, respectively). CONCLUSIONS In individuals with T2D and albuminuria, higher choline, carnitine and a weighted sum of four metabolites from the TMAO pathway were risk markers for deterioration in renal function during long-term follow-up. Metabolites from the TMAO pathway were not independently related to risk of all-cause mortality or CVD.
Collapse
Affiliation(s)
- Signe Abitz Winther
- Steno Diabetes Center, Copenhagen, Denmark
- Novo Nordisk A/S, Bagsvaerd, Denmark
- * E-mail:
| | | | | | | | | | | | - Zeneng Wang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America
| | - Peter Gæde
- Slagelse Hospital, Slagelse, Denmark
- Univeristy of Southern Denmark, Odense, Denmark
| | | | - Stanley Hazen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Copenhagen, Denmark
| | - Peter Rossing
- Steno Diabetes Center, Copenhagen, Denmark
- Univeristy of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
38
|
Ziegler D, Strom A, Straßburger K, Knebel B, Bönhof GJ, Kotzka J, Szendroedi J, Roden M. Association of cardiac autonomic dysfunction with higher levels of plasma lipid metabolites in recent-onset type 2 diabetes. Diabetologia 2021; 64:458-468. [PMID: 33084971 PMCID: PMC7801358 DOI: 10.1007/s00125-020-05310-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022]
Abstract
AIMS/HYPOTHESIS Emerging evidence suggests that in addition to hyperglycaemia, dyslipidaemia could represent a contributing pathogenetic factor to diabetic neuropathy, while obesity and insulin resistance play a role in the development of diabetic cardiac autonomic neuropathy (CAN) characterised by reduced heart rate variability (HRV), particularly in type 2 diabetes. We hypothesised that distinct lipid metabolites are associated with diminished HRV in recent-onset type 2 diabetes rather than type 1 diabetes. METHODS We analysed 127 plasma lipid metabolites (11 acylcarnitines, 39 NEFA, 12 sphingomyelins (SMs), 56 phosphatidylcholines and nine lysophosphatidylcholines) using MS in participants from the German Diabetes Study baseline cohort recently diagnosed with type 1 (n = 100) and type 2 diabetes (n = 206). Four time-domain HRV indices (number of normal-to-normal (NN) intervals >50 ms divided by the number of all NN intervals [pNN50]; root mean square of successive differences [RMSSD]; SD of NN intervals [SDNN]; and SD of differences between adjacent NN intervals) and three frequency-domain HRV indices (very-low-frequency [VLF], low-frequency [LF] and high-frequency [HF] power spectrum) were computed from NN intervals recorded during a 3 h hyperinsulinaemic-euglycaemic clamp at baseline and in subsets of participants with type 1 (n = 60) and type 2 diabetes (n = 95) after 5 years. RESULTS In participants with type 2 diabetes, after Bonferroni correction and rigorous adjustment, SDNN was inversely associated with higher levels of diacyl-phosphatidylcholine (PCaa) C32:0, PCaa C34:1, acyl-alkyl-phosphatidylcholine (PCae) C36:0, SM C16:0 and SM C16:1. SD of differences between NN intervals was inversely associated with PCaa C32:0, PCaa C34:1, PCaa C34:2, PCae C36:0 and SM C16:1, and RMSSD with PCae C36:0. For VLF power, inverse associations were found with PCaa C30:0, PCaa C32:0, PCaa C32:1, PCaa C34:2 and SM C16:1, and for LF power inverse associations were found with PCaa C32:0 and SM C16:1 (r = -0.242 to r = -0.349; p ≤ 0.0005 for all correlations). In contrast, no associations of lipid metabolites with measures of cardiac autonomic function were noted in participants recently diagnosed with type 1 diabetes. After 5 years, HRV declined due to ageing rather than diabetes, whereby prediction analyses for lipid metabolites were hampered. CONCLUSIONS/INTERPRETATION Higher plasma levels of specific lipid metabolites are closely linked to cardiac autonomic dysfunction in recent-onset type 2 diabetes but not type 1 diabetes, suggesting a role for perturbed lipid metabolism in the early development of CAN in type 2 diabetes. Graphical abstract.
Collapse
Affiliation(s)
- Dan Ziegler
- Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany.
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany.
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
| | - Alexander Strom
- Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Klaus Straßburger
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Birgit Knebel
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Gidon J Bönhof
- Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Jörg Kotzka
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Julia Szendroedi
- Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | | |
Collapse
|
39
|
Role of Gut Microbiota and Their Metabolites on Atherosclerosis, Hypertension and Human Blood Platelet Function: A Review. Nutrients 2021; 13:nu13010144. [PMID: 33401598 PMCID: PMC7824497 DOI: 10.3390/nu13010144] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/26/2020] [Accepted: 12/30/2020] [Indexed: 12/17/2022] Open
Abstract
Emerging data have demonstrated a strong association between the gut microbiota and the development of cardiovascular disease (CVD) risk factors such as atherosclerosis, inflammation, obesity, insulin resistance, platelet hyperactivity, and plasma lipid abnormalities. Several studies in humans and animal models have demonstrated an association between gut microbial metabolites such as trimethylamine-N-oxide (TMAO), short-chain fatty acids, and bile acid metabolites (amino acid breakdown products) with CVD. Human blood platelets are a critical contributor to the hemostatic process. Besides, these blood cells play a crucial role in developing atherosclerosis and, finally, contribute to cardiac events. Since the TMAO, and other metabolites of the gut microbiota, are asociated with platelet hyperactivity, lipid disorders, and oxidative stress, the diet-gut microbiota interactions have become an important research area in the cardiovascular field. The gut microbiota and their metabolites may be targeted for the therapeutic benefit of CVD from a clinical perspective. This review's main aim is to highlight the complex interactions between microbiota, their metabolites, and several CVD risk factors.
Collapse
|
40
|
Souza LM, Souza FR, Reynaud F, Pimentel AS. Tuning the hydrophobicity of a coarse grained model of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine using the experimental octanol-water partition coefficient. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
41
|
Dibaba DT, Johnson KC, Kucharska-Newton AM, Meyer K, Zeisel SH, Bidulescu A. The Association of Dietary Choline and Betaine With the Risk of Type 2 Diabetes: The Atherosclerosis Risk in Communities (ARIC) Study. Diabetes Care 2020; 43:2840-2846. [PMID: 32900787 PMCID: PMC7576425 DOI: 10.2337/dc20-0733] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/11/2020] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To examine the association between dietary intake of choline and betaine and the risk of type 2 diabetes. RESEARCH DESIGN AND METHODS Among 13,440 Atherosclerosis Risk in Communities (ARIC) study participants, the prospective longitudinal association between dietary choline and betaine intake and the risk of type 2 diabetes was assessed using interval-censored Cox proportional hazards and logistic regression models adjusted for baseline potential confounding variables. RESULTS Among 13,440 participants (55% women, mean age 54 [SD 7.4] years), 1,396 developed incident type 2 diabetes during median follow-up of 9 years from 1987 to 1998. There was no statistically significant association between every 1-SD increase in dietary choline and risk of type 2 diabetes (hazard ratio [HR] 1.01 [95% CI 0.87, 1.16]) nor between dietary betaine intake and the risk of type 2 diabetes (HR 1.01 [0.94, 1.10]). Those in the highest quartile of dietary choline intake did not have a statistically significant higher risk of type 2 diabetes than those in the lowest choline quartile (HR 1.09 [0.84, 1.42]); similarly, dietary betaine intake was not associated with the risk of type 2 diabetes comparing the highest quartile to the lowest (HR 1.06 [0.87, 1.29]). Among women, there was a higher risk of type 2 diabetes, comparing the highest to lowest dietary choline quartile (HR 1.54 [1.06, 2.25]), while in men, the association was null (HR 0.82 [0.57, 1.17]). Nevertheless, there was a nonsignificant interaction between high choline intake and sex on the risk of type 2 diabetes (P = 0.07). The results from logistic regression were similar. CONCLUSIONS Overall and among male participants, dietary choline or betaine intakes were not associated with the risk of type 2 diabetes. Among female participants, there was a trend for a modestly higher risk of type 2 diabetes among those with the highest as compared with the lowest quartile of dietary choline intake. Our study should inform clinical trials on dietary choline and betaine supplementation in relationship with the risk of type 2 diabetes.
Collapse
Affiliation(s)
- Daniel T Dibaba
- Tennessee Clinical and Translational Science Institute, University of Tennessee Health Science Center, Memphis, TN.,Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN
| | - Karen C Johnson
- Tennessee Clinical and Translational Science Institute, University of Tennessee Health Science Center, Memphis, TN.,Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN
| | - Anna M Kucharska-Newton
- Department of Epidemiology, College of Public Health, University of Kentucky, Lexington, KY.,Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Katie Meyer
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Steven H Zeisel
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC
| | - Aurelian Bidulescu
- Department of Epidemiology and Biostatistics, School of Public Health-Bloomington, Indiana University, Bloomington, IN
| |
Collapse
|
42
|
Wiese GN, Biruete A, Moorthi RN, Moe SM, Lindemann SR, Hill Gallant KM. Plant-Based Diets, the Gut Microbiota, and Trimethylamine N-Oxide Production in Chronic Kidney Disease: Therapeutic Potential and Methodological Considerations. J Ren Nutr 2020; 31:121-131. [PMID: 32616440 DOI: 10.1053/j.jrn.2020.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/01/2020] [Accepted: 04/19/2020] [Indexed: 01/08/2023] Open
Abstract
High circulating trimethylamine-N-oxide (TMAO) is associated with an increased risk of cardiovascular disease and mortality in people with chronic kidney disease (CKD). In individuals with CKD, reduced kidney function leads to decreased excretion of TMAO, which results in accumulation in the circulation. Higher circulating TMAO has been linked to higher intake of animal-based foods in omnivorous diets. Thus, plant-based diets have been suggested as an intervention to slow the progression of CKD and reduce cardiovascular risk, perhaps explained in part by reduced TMAO production. This article reviews the current evidence on plant-based diets as a dietary intervention to decrease gut-derived TMAO production in patients with CKD, while highlighting methodological issues that present challenges to advancing research and subsequent translation of this approach. Overall, we find that plant-based diets are promising for reducing gut-derived TMAO production in patients with CKD but that further interventional studies are warranted.
Collapse
Affiliation(s)
- Gretchen N Wiese
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana
| | - Annabel Biruete
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana; Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ranjani N Moorthi
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Sharon M Moe
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana; Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana; Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana
| | - Stephen R Lindemann
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana; Department of Food Science, Purdue University, West Lafayette, Indiana
| | - Kathleen M Hill Gallant
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana; Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
43
|
He WJ, Li C, Mi X, Shi M, Gu X, Bazzano LA, Razavi AC, Nierenberg JL, Dorans K, He H, Kelly TN. An untargeted metabolomics study of blood pressure: findings from the Bogalusa Heart Study. J Hypertens 2020; 38:1302-1311. [PMID: 32004207 PMCID: PMC8805288 DOI: 10.1097/hjh.0000000000002363] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVE To identify novel and confirm previously reported metabolites associated with SBP, DBP, and hypertension in a biracial sample of Bogalusa Heart Study (BHS) participants. METHODS We employed untargeted, ultra-high performance liquid chromatography tandem mass spectroscopy metabolomics profiling among 1249 BHS participants (427 African-Americans and 822 whites) with BP and covariable data collected during the 2013 to 2016 visit cycle. A total of 1202 metabolites were tested for associations with continuous and binary BP phenotypes using multiple linear and logistic regression models, respectively, in overall and race-stratified analyses. RESULTS A total of 24 novel metabolites robustly associated with BP, achieving Bonferroni-corrected P less than 4.16 × 10 in the overall analysis and consistent effect sizes across race groups. The identified metabolites included three amino acid and nucleotide metabolites from histidine, pyrimidine, or tryptophan metabolism sub-pathways, seven cofactor and vitamin or xenobiotic metabolites from the ascorbate and aldarate metabolism, bacterial/fungal, chemical, and food component sub-pathways, 10 lipid metabolites from the eicosanoid, phosphatidylcholine, phosphatidylethanolamine, and sphingolipid metabolism sub-pathways, and four still unnamed metabolites. Six previously described metabolites were robustly confirmed by our study (Bonferroni-corrected P < 4.95 × 10 and consistent effect directions across studies). Furthermore, previously reported metabolites for SBP, DBP, and hypertension demonstrated 5.92-fold, 4.77-fold, and 4.54-fold enrichment for nominally significant signals in the BHS (P = 3.08 × 10, 5.93 × 10, and 2.30 × 10, respectively). CONCLUSION In aggregate, our study provides new information about potential molecular mechanisms underlying BP regulation. We also demonstrate reproducibility of findings across studies despite differences in study populations and metabolite profiling methods.
Collapse
Affiliation(s)
- William J. He
- Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, Maryland
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana
| | - Changwei Li
- Department of Epidemiology and Biostatistics, University of Georgia College of Public Health, Athens, Georgia, USA
| | - Xuenan Mi
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana
| | - Mengyao Shi
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana
| | - Xiaoying Gu
- Institute of Clinical Medical Science, China-Japan Friendship Hospital, Beijing, China
| | - Lydia A. Bazzano
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana
- Tulane University Translational Sciences Institute, Tulane University, New Orleans, Louisiana, USA
| | - Alexander C. Razavi
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana
| | - Jovia L. Nierenberg
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana
| | - Kirsten Dorans
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana
- Tulane University Translational Sciences Institute, Tulane University, New Orleans, Louisiana, USA
| | - Hua He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana
- Tulane University Translational Sciences Institute, Tulane University, New Orleans, Louisiana, USA
| | - Tanika N. Kelly
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana
- Tulane University Translational Sciences Institute, Tulane University, New Orleans, Louisiana, USA
| |
Collapse
|
44
|
Chi ZC. Relationship between non-alcoholic fatty liver disease and cardiovascular disease. Shijie Huaren Xiaohua Zazhi 2020; 28:313-329. [DOI: 10.11569/wcjd.v28.i9.313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
With the in-depth study of non-alcoholic fatty liver disease (NAFLD), it has been found in recent years that NAFLD is closely related to cardiovascular disease (CVD). It has been proved that NAFLD is not only an important risk factor for CVD, but it is also an important mechanism of atherosclerosis, coronary heart disease, and hypertension in young people. This article reviews the recent progress in the understanding of the relationship between NAFLD and CVD, with an aim to improve the knowledge of CVD physicians on liver disease and provide reference for prevention and treatment of these conditions.
Collapse
Affiliation(s)
- Zhao-Chun Chi
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao 266011, Shandong Province, China
| |
Collapse
|
45
|
Yang JJ, Lipworth LP, Shu XO, Blot WJ, Xiang YB, Steinwandel MD, Li H, Gao YT, Zheng W, Yu D. Associations of choline-related nutrients with cardiometabolic and all-cause mortality: results from 3 prospective cohort studies of blacks, whites, and Chinese. Am J Clin Nutr 2020; 111:644-656. [PMID: 31915809 PMCID: PMC7049525 DOI: 10.1093/ajcn/nqz318] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/02/2019] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Choline-related nutrients are dietary precursors of a gut microbial metabolite, trimethylamine-N-oxide, which has been linked to cardiometabolic diseases and related death. However, epidemiologic evidence on dietary choline and mortality remains limited, particularly among nonwhite populations. OBJECTIVES This study aimed to investigate the associations of choline-related nutrients with cardiometabolic and all-cause mortality among black and white Americans and Chinese adults. METHODS Included were 49,858 blacks, 23,766 whites, and 134,001 Chinese, aged 40-79 y, who participated in 3 prospective cohorts and lived ≥1 y after enrollment. Cox regression models were used to estimate HRs and 95% CIs for cardiometabolic [e.g., ischemic heart disease (IHD), stroke, and diabetes] and all-cause deaths. To account for multiple testing, P values < 0.003 were considered significant. RESULTS Mean choline intake among blacks, whites, and Chinese was 404.1 mg/d, 362.0 mg/d, and 296.8 mg/d, respectively. During a median follow-up of 11.7 y, 28,673 deaths were identified, including 11,141 cardiometabolic deaths. After comprehensive adjustments, including for overall diet quality and disease history, total choline intake was associated with increased cardiometabolic mortality among blacks and Chinese (HR for highest compared with lowest quintile: 1.26; 95% CI: 1.13, 1.40 and HR: 1.23; 95% CI: 1.11, 1.38, respectively; both P-trend < 0.001); among whites, the association was weaker (HR: 1.12; 95% CI: 0.95, 1.33; P-trend = 0.02). Total choline intake was also associated with diabetes and all-cause mortality in blacks (HR: 1.66; 95% CI: 1.26, 2.19 and HR: 1.20; 95% CI: 1.12, 1.29, respectively), with diabetes mortality in Chinese (HR: 2.24; 95% CI: 1.68, 2.97), and with IHD mortality in whites (HR: 1.31; 95% CI: 1.02, 1.69) (all P-trend < 0.001). The choline-mortality association was modified by alcohol consumption and appeared stronger among individuals with existing cardiometabolic disease. Betaine intake was associated with increased cardiometabolic mortality in Chinese only (HR: 1.16; 95% CI: 1.08, 1.25; P-trend < 0.001). CONCLUSIONS High choline intake was associated with increased cardiometabolic mortality in racially diverse populations.
Collapse
Affiliation(s)
- Jae Jeong Yang
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Loren P Lipworth
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - William J Blot
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- International Epidemiology Field Station, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yong-Bing Xiang
- State Key Laboratory of Oncogene and Related Genes and Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Mark D Steinwandel
- International Epidemiology Field Station, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Honglan Li
- State Key Laboratory of Oncogene and Related Genes and Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yu-Tang Gao
- State Key Laboratory of Oncogene and Related Genes and Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Danxia Yu
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
46
|
Plasma Choline as a Diagnostic Biomarker in Slow Coronary Flow. Cardiol Res Pract 2020; 2020:7361434. [PMID: 32411450 PMCID: PMC7204336 DOI: 10.1155/2020/7361434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/28/2019] [Indexed: 12/17/2022] Open
Abstract
Aim The slow coronary flow (SCF) phenomenon was characterized by delayed perfusion of epicardial arteries, and no obvious coronary artery lesion in coronary angiography. The prognosis of patients with slow coronary flow was poor. However, there is lack of rapid, simple, and accurate method for SCF diagnosis. This study aimed to explore the utility of plasma choline as a diagnostic biomarker for SCF. Methods Patients with coronary artery stenosis <40% evaluated by the coronary angiogram method were recruited in this study and were grouped into normal coronary flow (NCF) and SCF by thrombolysis in myocardial infarction frame count (TFC). Plasma choline concentrations of patients with NCF and SCF were quantified by Ultra Performance Liquid Chromatography Tandem Mass Spectrometry. Correlation analysis was performed between plasma choline concentration and TFC. Receiver operating characteristic (ROC) curve analysis with or without confounding factor adjustment was applied to predict the diagnostic power of plasma choline in SCF. Results Forty-four patients with SCF and 21 patients with NCF were included in this study. TFC in LAD, LCX, and RCA and mean TFC were significantly higher in patients with SCF in comparison with patients with NCF (32.67 ± 8.37 vs. 20.66 ± 3.41, P < 0.01). Plasma choline level was obviously higher in patients with SCF when compared with patients with NCF (754.65 ± 238.18 vs. 635.79 ± 108.25, P=0.007). Plasma choline level had significantly positive correlation with Mean TFC (r = 0.364, P=0.002). Receiver operating characteristic (ROC) analysis showed that choline with or without confounding factor adjustment had an AUC score of 0.65 and 0.77, respectively. Conclusions TFC were closely related with plasma choline level, and plasma choline can be a suitable and stable diagnostic biomarker for SCF.
Collapse
|
47
|
Van Parys A, Lysne V, Svingen GFT, Ueland PM, Dhar I, Øyen J, Dierkes J, Nygård OK. Dietary choline is related to increased risk of acute myocardial infarction in patients with stable angina pectoris. Biochimie 2019; 173:68-75. [PMID: 31707100 DOI: 10.1016/j.biochi.2019.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/02/2019] [Indexed: 02/06/2023]
Abstract
High plasma choline has been associated with the metabolic syndrome and risk of chronic diseases, including cardiovascular disease. However, dietary choline is not correlated with choline plasma concentrations, and there are few studies and contradictory evidence regarding dietary choline and cardiovascular events. In addition, a recommended dietary allowance for choline has not been established and remains a point of contention. This study assessed the association between dietary choline, including choline forms, and risk of incident acute myocardial infarction (AMI) in patients with suspected stable angina pectoris (SAP). In total 1981 patients (80% men, median age 62) from the Western Norway B Vitamin Intervention Trial were included in this analysis. Information on dietary choline was obtained using a 169-item food frequency questionnaire. The Cardiovascular Disease in Norway project provided data on AMI. Risk associations were estimated using Cox-regression analysis using energy-adjusted choline intake. Median (25th, 75th percentile) total energy-adjusted choline intake was 288 (255, 326) mg/d. During a median (25th, 75th percentile) follow-up of 7.5 (6.3, 8.8) years, 312 (15.7%) patients experienced at least one AMI. Increased intakes of energy-adjusted choline (HR [95% CI] per 50 mg increase 1.11 [1.03, 1.20]), phosphatidylcholine (HR per 50 mg increase 1.24 [1.08, 1.42]) and sphingomyelin (HR per 5 mg increase 1.16 [1.02, 1.31]) were associated with higher AMI risk. In conclusion, higher dietary intakes of total choline, phosphatidylcholine and sphingomyelin were associated with increased risk of AMI in patients with SAP. Future studies are necessary to explore underlying mechanisms for this observation.
Collapse
Affiliation(s)
- Anthea Van Parys
- Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway.
| | - Vegard Lysne
- Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | | | - Indu Dhar
- Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | - Jutta Dierkes
- Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Laboratory Medicine and Pathology, Haukeland University Hospital, Bergen, Norway
| | - Ottar K Nygård
- Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
48
|
Dietary choline is positively related to overall and cause-specific mortality: results from individuals of the National Health and Nutrition Examination Survey and pooling prospective data. Br J Nutr 2019; 122:1262-1270. [DOI: 10.1017/s0007114519001065] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
AbstractLittle is known about the association between dietary choline intake and mortality. We evaluated the link between choline consumption and overall as well as cause-specific mortality by using both individual data and pooling prospective studies by meta-analysis and systematic review. Furthermore, adjusted means of cardiometabolic risk factors across choline intake quartiles were calculated. Data from the National Health and Nutrition Examination Survey (1999–2010) were collected. Adjusted Cox regression was performed to determine the risk ratio (RR) and 95 % CI, as well as random-effects models and generic inverse variance methods to synthesise quantitative and pooling data, followed by a leave-one-out method for sensitivity analysis. After adjustments, we found that individuals consuming more choline had worse lipid profile and glucose homeostasis, but lower C-reactive protein levels (P < 0·001 for all comparisons) with no significant differences in anthropometric parameters and blood pressure. Multivariable Cox regression models revealed that individuals in the highest quartile (Q4) of choline consumption had a greater risk of total (23 %), CVD (33 %) and stroke (30 %) mortality compared with the first quartile (Q1) (P < 0·001 for all comparison). These results were confirmed in a meta-analysis, showing that choline intake was positively and significantly associated with overall (RR 1·12, 95 % CI 1·08, 1·17, I2 = 2·9) and CVD (RR 1·28, 95 % CI 1·17, 1·39, I2 = 9·6) mortality risk. In contrast, the positive association between choline consumption and stroke mortality became non-significant (RR 1·18, 95 % CI 0·97, 1·43, P = 0·092, I2 = 1·1). Our findings shed light on the potential adverse effects of choline intake on selected cardiometabolic risk factors and mortality risk.
Collapse
|
49
|
Din AU, Hassan A, Zhu Y, Yin T, Gregersen H, Wang G. Amelioration of TMAO through probiotics and its potential role in atherosclerosis. Appl Microbiol Biotechnol 2019; 103:9217-9228. [PMID: 31655880 DOI: 10.1007/s00253-019-10142-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/09/2019] [Accepted: 09/12/2019] [Indexed: 02/08/2023]
Abstract
Atherosclerosis is a major cause of mortalities and morbidities worldwide. It is associated with hyperlipidemia and inflammation, and become chronic by triggering metabolites in different metabolic pathways. Disturbance in the human gut microbiota is now considered a critical factor in the atherosclerosis. Trimethylamine-N-oxide (TMAO) attracts attention and is regarded as a vital contributor in the development of atherosclerosis. TMAO is generated from its dietary precursors choline, carnitine, and phosphatidylcholine by gut microbiota into an intermediate compound known as trimethylamine (TMA), which is then oxidized into TMAO by hepatic flavin monooxygenases. The present review focus on advances in TMAO preventing strategies through probiotics, including, modulation of gut microbiome, metabolomics profile, miRNA, or probiotic antagonistic abilities. Furthermore, possible recommendations based on relevant literature have been presented, which could be applied in probiotics and atherosclerosis-preventing strategies.
Collapse
Affiliation(s)
- Ahmad Ud Din
- Key Laboratory for Bio-rheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Adil Hassan
- Key Laboratory for Bio-rheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Yuan Zhu
- Key Laboratory for Bio-rheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Tieying Yin
- Key Laboratory for Bio-rheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Hans Gregersen
- Key Laboratory for Bio-rheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Guixue Wang
- Key Laboratory for Bio-rheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
50
|
Nie J, Xie L, Zhao BX, Li Y, Qiu B, Zhu F, Li GF, He M, Wang Y, Wang B, Liu S, Zhang H, Guo H, Cai Y, Huo Y, Hou FF, Xu X, Qin X. Serum Trimethylamine N-Oxide Concentration Is Positively Associated With First Stroke in Hypertensive Patients. Stroke 2019; 49:2021-2028. [PMID: 30354996 DOI: 10.1161/strokeaha.118.021997] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background and Purpose- Trimethylamine N-oxide (TMAO)-a gut derived metabolite-has been shown to be atherogenic. It remains unknown whether TMAO is associated with the risk of first stroke. We aimed to determine the association between serum TMAO levels and first stroke in hypertensive patients without major cardiovascular diseases and examine any possible effect modifiers. Methods- We used a nested case-control design, using data from the CSPPT (China Stroke Primary Prevention Trial), including 622 patients with first stroke and 622 matched controls. The study was conducted from May 2008 to August 2013. The primary outcome was a first stroke. Results- After adjusting for choline, L-carnitine, and other important covariates, including baseline systolic blood pressure and time-averaged systolic blood pressure, during the treatment period, the risk of first stroke increased with each increment of TMAO level (per natural log [TMAO] increment: odds ratio, 1.22; 95% CI, 1.02-1.46). Consistently, compared with participants in the lowest tertile (<1.79 μmol/L) of serum TMAO levels, a significantly higher risk of first stroke was found in those in higher TMAO tertiles (≥1.79 μmol/L; odds ratio, 1.34; 95% CI, 1.00-1.81) or in TMAO tertile 3 (≥3.19 μmol/L; odds ratio, 1.43; 95% CI, 1.02-2.01). In the exploratory analysis, we observed an interaction between TMAO and folate levels (≥7.7 [median] versus <7.7 ng/mL) on first stroke ( P for interaction, 0.030). Conclusions- Higher TMAO levels were associated with increased risk of first stroke in hypertensive patients. Our finding, if further confirmed, calls for a carefully designed clinical trial to further evaluate the role of higher TMAO levels on outcomes in hypertensive patients. Clinical Trial Registration- URL: https://www.clinicaltrials.gov . Unique identifier: NCT00794885.
Collapse
Affiliation(s)
- Jing Nie
- From the Division of Nephrology, State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease (J.N., L.X., Y.L., B.Q., F.Z., Y.W., B.W., F.F.H., X.X., X.Q.)
| | - Liling Xie
- From the Division of Nephrology, State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease (J.N., L.X., Y.L., B.Q., F.Z., Y.W., B.W., F.F.H., X.X., X.Q.)
| | - Bo-Xin Zhao
- Department of Pharmacy, Rational Medication Evaluation and Drug Delivery Technology Lab, Guangdong Key Laboratory of New Drug Screening (B.-x.Z., G.-f.L.)
| | - Youbao Li
- From the Division of Nephrology, State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease (J.N., L.X., Y.L., B.Q., F.Z., Y.W., B.W., F.F.H., X.X., X.Q.)
| | - Bingbing Qiu
- From the Division of Nephrology, State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease (J.N., L.X., Y.L., B.Q., F.Z., Y.W., B.W., F.F.H., X.X., X.Q.)
| | - Fengxin Zhu
- From the Division of Nephrology, State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease (J.N., L.X., Y.L., B.Q., F.Z., Y.W., B.W., F.F.H., X.X., X.Q.)
| | - Guo-Feng Li
- Department of Pharmacy, Rational Medication Evaluation and Drug Delivery Technology Lab, Guangdong Key Laboratory of New Drug Screening (B.-x.Z., G.-f.L.)
| | - Mingli He
- Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Neurology, First People's Hospital, Lianyungang, China (M.H.)
| | - Yu Wang
- From the Division of Nephrology, State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease (J.N., L.X., Y.L., B.Q., F.Z., Y.W., B.W., F.F.H., X.X., X.Q.)
| | - Binyan Wang
- From the Division of Nephrology, State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease (J.N., L.X., Y.L., B.Q., F.Z., Y.W., B.W., F.F.H., X.X., X.Q.)
| | - Side Liu
- Guangdong Provincial Key Laboratory of Gastroenterology (S.L.).,Department of Gastroenterology (S.L.)
| | - Hao Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University (H.Z., H.G., X.X.)
| | - Huiyuan Guo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University (H.Z., H.G., X.X.)
| | - Yefeng Cai
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou (Y.C.)
| | - Yong Huo
- Department of Cardiology, Peking University First Hospital, Beijing, China (Y.H.)
| | - Fan Fan Hou
- From the Division of Nephrology, State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease (J.N., L.X., Y.L., B.Q., F.Z., Y.W., B.W., F.F.H., X.X., X.Q.)
| | - Xiping Xu
- From the Division of Nephrology, State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease (J.N., L.X., Y.L., B.Q., F.Z., Y.W., B.W., F.F.H., X.X., X.Q.).,Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University (H.Z., H.G., X.X.)
| | - Xianhui Qin
- From the Division of Nephrology, State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease (J.N., L.X., Y.L., B.Q., F.Z., Y.W., B.W., F.F.H., X.X., X.Q.)
| |
Collapse
|