1
|
Gillespie GM, Quastel MN, McMichael AJ. HLA-E: Immune Receptor Functional Mechanisms Revealed by Structural Studies. Immunol Rev 2025; 329:e13434. [PMID: 39753525 PMCID: PMC11698700 DOI: 10.1111/imr.13434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 12/10/2024] [Indexed: 01/06/2025]
Abstract
HLA-E is a nonclassical, nonpolymorphic, class Ib HLA molecule. Its primary function is to present a conserved nonamer peptide, termed VL9, derived from the signal sequence of classical MHC molecules to the NKG2x-CD94 receptors on NK cells and a subset of T lymphocytes. These receptors regulate the function of NK cells, and the importance of this role, which is conserved across mammalian species, probably accounts for the lack of genetic polymorphism. A second minor function is to present other, weaker binding, pathogen-derived peptides to T lymphocytes. Most of these peptides bind suboptimally to HLA-E, but this binding appears to be enabled by the relative stability of peptide-free, but receptive, HLA-E-β2m complexes. This, in turn, may favor nonclassical antigen processing that may be associated with bacteria infected cells. This review explores how the structure of HLA-E, bound to different peptides and then to NKG2-CD94 or T-cell receptors, relates to HLA-E cell biology and immunology. A detailed understanding of this molecule could open up opportunities for development of universal T-cell and NK-cell-based immunotherapies.
Collapse
MESH Headings
- Humans
- Histocompatibility Antigens Class I/metabolism
- Histocompatibility Antigens Class I/immunology
- Histocompatibility Antigens Class I/chemistry
- Animals
- HLA-E Antigens
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Protein Binding
- Antigen Presentation
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/chemistry
- NK Cell Lectin-Like Receptor Subfamily C/metabolism
- Structure-Activity Relationship
- Peptides/chemistry
- Peptides/immunology
- Peptides/metabolism
- NK Cell Lectin-Like Receptor Subfamily D/metabolism
- NK Cell Lectin-Like Receptor Subfamily D/chemistry
- NK Cell Lectin-Like Receptor Subfamily D/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/chemistry
- Protein Conformation
Collapse
Affiliation(s)
| | - Max N. Quastel
- Nuffield Department of Medicine, Center for Immuno‐OncologyUniversity of OxfordOxfordUK
| | - Andrew J. McMichael
- Nuffield Department of Medicine, Center for Immuno‐OncologyUniversity of OxfordOxfordUK
| |
Collapse
|
2
|
MacLachlan BJ, Sullivan LC, Brooks AG, Rossjohn J, Vivian JP. Structure of the murine CD94-NKG2A receptor in complex with Qa-1 b presenting an MHC-I leader peptide. FEBS J 2024; 291:1530-1544. [PMID: 38158698 DOI: 10.1111/febs.17050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/26/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
The heterodimeric natural killer cells antigen CD94 (CD94)-NKG2-A/NKG2-B type II integral membrane protein (NKG2A) receptor family expressed on human and mouse natural killer (NK) cells monitors global major histocompatibility complex (MHC) class I cell surface expression levels through binding to MHC class Ia-derived leader sequence peptides presented by HLA class I histocompatibility antigen, alpha chain E (HLA-E; in humans) or H-2 class I histocompatibility antigen, D-37 (Qa-1b; in mice). Although the molecular basis underpinning human CD94-NKG2A recognition of HLA-E is known, the equivalent interaction in the murine setting is not. By determining the high-resolution crystal structure of murine CD94-NKG2A in complex with Qa-1b presenting the Qa-1 determinant modifier peptide (QDM), we resolved the mode of binding. Compared to the human homologue, the murine CD94-NKG2A-Qa-1b-QDM displayed alterations in the distribution of interactions across CD94 and NKG2A subunits that coincide with differences in electrostatic complementarity of the ternary complex and the lack of cross-species reactivity. Nevertheless, we show that Qa-1b could be modified through W65R + N73I mutations to mimic HLA-E, facilitating binding with both human and murine CD94-NKG2A. These data underscore human and murine CD94-NKG2A cross-species heterogeneity and provide a foundation for humanising Qa-1b in immune system models.
Collapse
Affiliation(s)
- Bruce J MacLachlan
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Lucy C Sullivan
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia
| | - Andrew G Brooks
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
- Institute of Infection and Immunity, School of Medicine, Cardiff University, UK
| | - Julian P Vivian
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| |
Collapse
|
3
|
Grob NM, Remarcik C, Rössler SL, Wong JYK, Wang JCK, Tao J, Smith CL, Loas A, Buchwald SL, Eaton DL, López MP, Pentelute BL. Electrophile Scanning Reveals Reactivity Hotspots for the Design of Covalent Peptide Binders. ACS Chem Biol 2024; 19:101-109. [PMID: 38069818 DOI: 10.1021/acschembio.3c00538] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Protein-protein interactions (PPIs) are intriguing targets in drug discovery and development. Peptides are well suited to target PPIs, which typically present with large surface areas lacking distinct features and deep binding pockets. To improve binding interactions with these topologies and advance the development of PPI-focused therapeutics, potential ligands can be equipped with electrophilic groups to enable binding through covalent mechanisms of action. We report a strategy termed electrophile scanning to identify reactivity hotspots in a known peptide ligand and demonstrate its application in a model PPI. Cysteine mutants of a known ligand are used to install protein-reactive modifiers via a palladium oxidative addition complex (Pd-OAC). Reactivity hotspots are revealed by cross-linking reactions with the target protein under physiological conditions. In a model PPI with the 9-mer peptide antigen VL9 and major histocompatibility complex (MHC) class I protein HLA-E, we identify two reactivity hotspots that afford up to 87% conversion to the protein-peptide conjugate within 4 h. The reactions are specific to the target protein in vitro and dependent on the peptide sequence. Moreover, the cross-linked peptide successfully inhibits molecular recognition of HLA-E by CD94-NKG2A possibly due to structural changes enacted at the PPI interface. The results illustrate the potential application of electrophile scanning as a tool for rapid discovery and development of covalent peptide binders.
Collapse
Affiliation(s)
- Nathalie M Grob
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States of America
| | - Clint Remarcik
- Calico Life Sciences LLC, San Francisco, California 94080, United States of America
| | - Simon L Rössler
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States of America
| | - Jeffrey Y K Wong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States of America
| | - John C K Wang
- Calico Life Sciences LLC, San Francisco, California 94080, United States of America
| | - Jason Tao
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States of America
| | - Corey L Smith
- AbbVie Bioresearch Center, Worcester, Massachusetts 01605, United States of America
| | - Andrei Loas
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States of America
| | - Stephen L Buchwald
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States of America
| | - Dan L Eaton
- Calico Life Sciences LLC, San Francisco, California 94080, United States of America
| | | | - Bradley L Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States of America
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States of America
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States of America
| |
Collapse
|
4
|
Middelburg J, Ghaffari S, Schoufour TAW, Sluijter M, Schaap G, Göynük B, Sala BM, Al-Tamimi L, Scheeren F, Franken KLMC, Akkermans JJLL, Cabukusta B, Joosten SA, Derksen I, Neefjes J, van der Burg SH, Achour A, Wijdeven RHM, Weidanz J, van Hall T. The MHC-E peptide ligands for checkpoint CD94/NKG2A are governed by inflammatory signals, whereas LILRB1/2 receptors are peptide indifferent. Cell Rep 2023; 42:113516. [PMID: 38048225 DOI: 10.1016/j.celrep.2023.113516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/23/2023] [Accepted: 11/14/2023] [Indexed: 12/06/2023] Open
Abstract
The immune checkpoint NKG2A/CD94 is a promising target for cancer immunotherapy, and its ligand major histocompatibility complex E (MHC-E) is frequently upregulated in cancer. NKG2A/CD94-mediated inhibition of lymphocytes depends on the presence of specific leader peptides in MHC-E, but when and where they are presented in situ is unknown. We apply a nanobody specific for the Qdm/Qa-1b complex, the NKG2A/CD94 ligand in mouse, and find that presentation of Qdm peptide depends on every member of the endoplasmic reticulum-resident peptide loading complex. With a turnover rate of 30 min, the Qdm peptide reflects antigen processing capacity in real time. Remarkably, Qdm/Qa-1b complexes require inflammatory signals for surface expression in situ, despite the broad presence of Qa-1b molecules in homeostasis. Furthermore, we identify LILRB1 as a functional inhibition receptor for MHC-E in steady state. These data provide a molecular understanding of NKG2A blockade in immunotherapy and assign MHC-E as a convergent ligand for multiple immune checkpoints.
Collapse
Affiliation(s)
- Jim Middelburg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Soroush Ghaffari
- Department of Biology, College of Science, The University of Texas at Arlington, Arlington, TX, USA
| | - Tom A W Schoufour
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Marjolein Sluijter
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Gaby Schaap
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Büsra Göynük
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Benedetta M Sala
- Science for Life Laboratory, Department of Medicine, Karolinska Institute & Division of Infectious Diseases, Karolinska University Hospital, 171 65 Solna, Sweden
| | - Lejla Al-Tamimi
- Science for Life Laboratory, Department of Medicine, Karolinska Institute & Division of Infectious Diseases, Karolinska University Hospital, 171 65 Solna, Sweden
| | - Ferenc Scheeren
- Department of Dermatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Kees L M C Franken
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Jimmy J L L Akkermans
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Birol Cabukusta
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Simone A Joosten
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Ian Derksen
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Adnane Achour
- Science for Life Laboratory, Department of Medicine, Karolinska Institute & Division of Infectious Diseases, Karolinska University Hospital, 171 65 Solna, Sweden
| | - Ruud H M Wijdeven
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Jon Weidanz
- Abexxa Biologics, Inc., Arlington, TX, USA; College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX, USA
| | - Thorbald van Hall
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
5
|
Guan J, Peske JD, Manoharan Valerio M, Park C, Robey EA, Sadegh-Nasseri S. Commensal bacteria maintain a Qa-1 b-restricted unconventional CD8 + T population in gut epithelium. eLife 2023; 12:RP90466. [PMID: 38127067 PMCID: PMC10735220 DOI: 10.7554/elife.90466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Intestinal intraepithelial lymphocytes (IELs) are characterized by an unusual phenotype and developmental pathway, yet their specific ligands and functions remain largely unknown. Here by analysis of QFL T cells, a population of CD8+ T cells critical for monitoring the MHC I antigen processing pathway, we established that unconventional Qa-1b-restricted CD8+ T cells are abundant in intestinal epithelium. We found that QFL T cells showed a Qa-1b-dependent unconventional phenotype in the spleen and small intestine of naïve wild-type mice. The splenic QFL T cells showed innate-like functionality exemplified by rapid response to cytokines or antigens, while the gut population was refractory to stimuli. Microbiota was required for the maintenance, but not the initial gut homing of QFL T cells. Moreover, monocolonization with Pediococcus pentosaceus, which expresses a peptide that cross-activated QFL T cells, was sufficient to maintain QFL T cells in the intestine. Thus, microbiota is critical for shaping the Qa-1b-restricted IEL landscape.
Collapse
Affiliation(s)
- Jian Guan
- Department of Pathology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Institute of Cell Engineering, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - J David Peske
- Department of Pathology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Institute of Cell Engineering, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Michael Manoharan Valerio
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Chansu Park
- Department of Pathology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Institute of Cell Engineering, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Ellen A Robey
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | | |
Collapse
|
6
|
Manoharan Valerio M, Arana K, Guan J, Chan SW, Yang X, Kurd N, Lee A, Shastri N, Coscoy L, Robey EA. The promiscuous development of an unconventional Qa1b-restricted T cell population. Front Immunol 2023; 14:1250316. [PMID: 38022509 PMCID: PMC10644506 DOI: 10.3389/fimmu.2023.1250316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
MHC-E restricted CD8 T cells show promise in vaccine settings, but their development and specificity remain poorly understood. Here we focus on a CD8 T cell population reactive to a self-peptide (FL9) bound to mouse MHC-E (Qa-1b) that is presented in response to loss of the MHC I processing enzyme ERAAP, termed QFL T cells. We find that mature QFL thymocytes are predominantly CD8αβ+CD4-, show signs of agonist selection, and give rise to both CD8αα and CD8αβ intraepithelial lymphocytes (IEL), as well as memory phenotype CD8αβ T cells. QFL T cells require the MHC I subunit β-2 microglobulin (β2m), but do not require Qa1b or classical MHC I for positive selection. However, QFL thymocytes do require Qa1b for agonist selection and full functionality. Our data highlight the relaxed requirements for positive selection of an MHC-E restricted T cell population and suggest a CD8αβ+CD4- pathway for development of CD8αα IELs.
Collapse
Affiliation(s)
- Michael Manoharan Valerio
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, United States
| | - Kathya Arana
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, United States
| | - Jian Guan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Shiao Wei Chan
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, United States
| | - Xiaokun Yang
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, United States
| | - Nadia Kurd
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, United States
| | - Angus Lee
- Gene Targeting Facility Cancer Research Laboratory, University of California Berkeley, Berkeley, CA, United States
| | - Nilabh Shastri
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Laurent Coscoy
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, United States
| | - Ellen A. Robey
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, United States
| |
Collapse
|
7
|
Ghaffari S, Upchurch-Ange K, Gimlin S, Tripathi T, Sluijter M, Middelburg J, van Hall T, Weidanz J. A Single-Domain TCR-like Antibody Selective for the Qa-1 b/Qdm Peptide Complex Enhances Tumoricidal Activity of NK Cells via Blocking the NKG2A Immune Checkpoint. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2246-2255. [PMID: 35418467 DOI: 10.4049/jimmunol.2100790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
The NKG2A/HLA-E axis is an immune checkpoint that suppresses immune effector activity in the tumor microenvironment. In mice, the ligand for the NKG2A/CD94 inhibitory receptor is the nonclassical MHC molecule Qa-1b, the HLA-E ortholog, which presents the peptide AMAPRTLLL, referred to as Qdm (for Qa-1 determinant modifier). This dominant peptide is derived from the leader sequences of murine classical MHC class I encoded by the H-2D and -L loci. To broaden our understanding of Qa-1b/Qdm peptide complex biology and its tumor protective role, we identified a TCR-like Ab from a single domain VHH library using yeast surface display. The TCR-like Ab (EXX-1) binds only to the Qa-1b/Qdm peptide complex and not to Qa-1b alone or Qa-1b loaded with control peptides. Conversely, currently available Abs to Qa-1b bind independent of peptide loaded. Flow cytometric results revealed that EXX-1 selectively bound to Qa-1b/Qdm-positive B16F10, RMA, and TC-1 mouse tumor cells but only after pretreatment with IFN-γ; no binding was observed following genetic knockdown of Qa-1b or Qdm peptide. Furthermore, EXX-1 Ab blockade promoted NK cell-mediated tumor cell lysis in vitro. Our findings show that EXX-1 has exquisite binding specificity for the Qa-1b/Qdm peptide complex, making it a valuable research tool for further investigation of the Qa-1b/Qdm peptide complex expression and regulation in healthy and diseased cells and for evaluation as an immune checkpoint blocking Ab in syngeneic mouse tumor models.
Collapse
Affiliation(s)
- Soroush Ghaffari
- Department of Biology, College of Science, The University of Texas at Arlington, Arlington, TX
| | | | | | | | - Marjolein Sluijter
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands; and
| | - Jim Middelburg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands; and
| | - Thorbald van Hall
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands; and
| | - Jon Weidanz
- Abexxa Biologics, Inc., Arlington, TX;
- College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX
| |
Collapse
|
8
|
Ramifications of the HLA-I Allelic Reactivity of Anti-HLA-E*01:01 and Anti-HLA-E*01:03 Heavy Chain Monoclonal Antibodies in Comparison with Anti-HLA-I IgG Reactivity in Non-Alloimmunized Males, Melanoma-Vaccine Recipients, and End-Stage Renal Disease Patients. Antibodies (Basel) 2022; 11:antib11010018. [PMID: 35323192 PMCID: PMC8944535 DOI: 10.3390/antib11010018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/07/2022] [Accepted: 02/22/2022] [Indexed: 01/19/2023] Open
Abstract
Serum anti-HLA-I IgG are present in non-alloimmunized males, cancer patients, and transplant recipients. Anti-HLA-I antibodies are also present in intravenous immunoglobulin (IVIg), prepared from the plasma of thousands of healthy donors. However, the HLA-Ia reactivity of IVIg diminishes markedly after passing through HLA-E HC-affinity columns, suggesting that the HLA-I reactivity is due to antibodies formed against HLA-E. Hence, we examined whether anti-HLA-E antibodies can react to HLA-I alleles. Monoclonal IgG antibodies (mAbs) against HCs of two HLA-E alleles were generated in Balb/C mice. The antibodies were analyzed using multiplex bead assays on a Luminex platform for HLA-I reactivity. Beads coated with an array of HLA heterodimers admixed with HCs (LABScreen) were used to examine the binding of IgG to different HLA-Ia (31-HLA-A, 50-HLA-B, and 16-HLA-C) and Ib (2-HLA-E, one each of HLA-F and HLA-G) alleles. A striking diversity in the HLA-Ia and/or HLA-Ib reactivity of mAbs was observed. The number of the mAbs reactive to (1) only HLA-E (n = 25); (2) all HLA-Ib isomers (n = 8); (3) HLA-E and HLA-B (n = 5); (4) HLA-E, HLA-B, and HLA-C (n = 30); (5) HLA-E, HLA-A*1101, HLA-B, and HLA-C (n = 83); (6) HLA-E, HLA-A, HLA-B, and HLA-C (n = 54); and (7) HLA-Ib and HLA-Ia (n = 8), in addition to four other minor groups. Monospecificity and polyreactivity were corroborated by HLA-E monospecific and HLA-I shared sequences. The diverse HLA-I reactivity of the mAbs are compared with the pattern of HLA-I reactivity of serum-IgG in non-alloimmunized males, cancer patients, and ESKD patients. The findings unravel the diagnostic potential of the HLA-E monospecific-mAbs and immunomodulatory potentials of IVIg highly mimicking HLA-I polyreactive-mAbs.
Collapse
|
9
|
Ruibal P, Franken KLMC, van Meijgaarden KE, Walters LC, McMichael AJ, Gillespie GM, Joosten SA, Ottenhoff THM. Discovery of HLA-E-Presented Epitopes: MHC-E/Peptide Binding and T-Cell Recognition. Methods Mol Biol 2022; 2574:15-30. [PMID: 36087196 PMCID: PMC10508831 DOI: 10.1007/978-1-0716-2712-9_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Understanding the interactions involved during the immunological synapse between peptide, HLA-E molecules, and TCR is crucial to effectively target protective HLA-E-restricted T-cell responses in humans. Here we describe three techniques based on the generation of MHC-E/peptide complexes (MHC-E generically includes HLA-E-like molecules in human and nonhuman species, while HLA-E specifically refers to human molecules), which allow to investigate MHC-E/peptide binding at the molecular level through binding assays and by using peptide loaded HLA-E tetramers, to detect, isolate, and study peptide-specific HLA-E-restricted human T-cells.
Collapse
Affiliation(s)
- Paula Ruibal
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Kees L M C Franken
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Lucy C Walters
- Nuffield Department of Medicine Research Building, Old Road Campus, Roosevelt Drive, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Andrew J McMichael
- Nuffield Department of Medicine Research Building, Old Road Campus, Roosevelt Drive, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Geraldine M Gillespie
- Nuffield Department of Medicine Research Building, Old Road Campus, Roosevelt Drive, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Simone A Joosten
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
10
|
Dasgupta S, Maricic I, Tang J, Wandro S, Weldon K, Carpenter CS, Eckmann L, Rivera-Nieves J, Sandborn W, Knight R, Dorrestein P, Swafford AD, Kumar V. Class Ib MHC-Mediated Immune Interactions Play a Critical Role in Maintaining Mucosal Homeostasis in the Mammalian Large Intestine. Immunohorizons 2021; 5:953-971. [PMID: 34911745 PMCID: PMC10026853 DOI: 10.4049/immunohorizons.2100090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/09/2021] [Indexed: 11/19/2022] Open
Abstract
Lymphocytes within the intestinal epithelial layer (IEL) in mammals have unique composition compared with their counterparts in the lamina propria. Little is known about the role of some of the key colonic IEL subsets, such as TCRαβ+CD8+ T cells, in inflammation. We have recently described liver-enriched innate-like TCRαβ+CD8αα regulatory T cells, partly controlled by the non-classical MHC molecule, Qa-1b, that upon adoptive transfer protect from T cell-induced colitis. In this study, we found that TCRαβ+CD8αα T cells are reduced among the colonic IEL during inflammation, and that their activation with an agonistic peptide leads to significant Qa-1b-dependent protection in an acute model of colitis. Cellular expression of Qa-1b during inflammation and corresponding dependency in peptide-mediated protection suggest that Batf3-dependent CD103+CD11b- type 1 conventional dendritic cells control the protective function of TCRαβ+CD8αα T cells in the colonic epithelium. In the colitis model, expression of the potential barrier-protective gene, Muc2, is enhanced upon administration of a Qa-1b agonistic peptide. Notably, in steady state, the mucin metabolizing Akkermansia muciniphila was found in significantly lower abundance amid a dramatic change in overall microbiome and metabolome, increased IL-6 in explant culture, and enhanced sensitivity to dextran sulfate sodium in Qa-1b deficiency. Finally, in patients with inflammatory bowel disease, we found upregulation of HLA-E, a Qa-1b analog with inflammation and biologic non-response, in silico, suggesting the importance of this regulatory mechanism across species.
Collapse
Affiliation(s)
- Suryasarathi Dasgupta
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA
| | - Igor Maricic
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA
| | - Jay Tang
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Stephen Wandro
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA
| | - Kelly Weldon
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA
| | - Carolina S Carpenter
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA
| | - Lars Eckmann
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA
| | - Jesus Rivera-Nieves
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA
| | - William Sandborn
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA
| | - Rob Knight
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA; and
- Department of Bioengineering, University of California San Diego, La Jolla, CA
| | - Peter Dorrestein
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA
| | - Austin D Swafford
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA
| | - Vipin Kumar
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA;
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA
| |
Collapse
|
11
|
Ferez M, Knudson CJ, Lev A, Wong EB, Alves-Peixoto P, Tang L, Stotesbury C, Sigal LJ. Viral infection modulates Qa-1b in infected and bystander cells to properly direct NK cell killing. J Exp Med 2021; 218:e20201782. [PMID: 33765134 PMCID: PMC8006856 DOI: 10.1084/jem.20201782] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/13/2021] [Accepted: 02/19/2021] [Indexed: 11/12/2022] Open
Abstract
Natural killer (NK) cell activation depends on the signaling balance of activating and inhibitory receptors. CD94 forms inhibitory receptors with NKG2A and activating receptors with NKG2E or NKG2C. We previously demonstrated that CD94-NKG2 on NK cells and its ligand Qa-1b are important for the resistance of C57BL/6 mice to lethal ectromelia virus (ECTV) infection. We now show that NKG2C or NKG2E deficiency does not increase susceptibility to lethal ECTV infection, but overexpression of Qa-1b in infected cells does. We also demonstrate that Qa-1b is down-regulated in infected and up-regulated in bystander inflammatory monocytes and B cells. Moreover, NK cells activated by ECTV infection kill Qa-1b-deficient cells in vitro and in vivo. Thus, during viral infection, recognition of Qa-1b by activating CD94/NKG2 receptors is not critical. Instead, the levels of Qa-1b expression are down-regulated in infected cells but increased in some bystander immune cells to respectively promote or inhibit their killing by activated NK cells.
Collapse
Affiliation(s)
- Maria Ferez
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA
| | - Cory J. Knudson
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA
| | - Avital Lev
- Fox Chase Cancer Center, Philadelphia, PA
| | - Eric B. Wong
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA
| | - Pedro Alves-Peixoto
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/Research Group in Biomaterials, Biodegradables and Biomimetics-Portugal Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Lingjuan Tang
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA
| | - Colby Stotesbury
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA
| | - Luis J. Sigal
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
12
|
Ruibal P, Voogd L, Joosten SA, Ottenhoff THM. The role of donor-unrestricted T-cells, innate lymphoid cells, and NK cells in anti-mycobacterial immunity. Immunol Rev 2021; 301:30-47. [PMID: 33529407 PMCID: PMC8154655 DOI: 10.1111/imr.12948] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 12/15/2022]
Abstract
Vaccination strategies against mycobacteria, focusing mostly on classical T‐ and B‐cells, have shown limited success, encouraging the addition of alternative targets. Classically restricted T‐cells recognize antigens presented via highly polymorphic HLA class Ia and class II molecules, while donor‐unrestricted T‐cells (DURTs), with few exceptions, recognize ligands via genetically conserved antigen presentation molecules. Consequently, DURTs can respond to the same ligands across diverse human populations. DURTs can be activated either through cognate TCR ligation or via bystander cytokine signaling. TCR‐driven antigen‐specific activation of DURTs occurs upon antigen presentation via non‐polymorphic molecules such as HLA‐E, CD1, MR1, and butyrophilin, leading to the activation of HLA‐E–restricted T‐cells, CD1‐restricted T‐cells, mucosal‐associated invariant T‐cells (MAITs), and TCRγδ T‐cells, respectively. NK cells and innate lymphoid cells (ILCs), which lack rearranged TCRs, are activated through other receptor‐triggering pathways, or can be engaged through bystander cytokines, produced, for example, by activated antigen‐specific T‐cells or phagocytes. NK cells can also develop trained immune memory and thus could represent cells of interest to mobilize by novel vaccines. In this review, we summarize the latest findings regarding the contributions of DURTs, NK cells, and ILCs in anti–M tuberculosis, M leprae, and non‐tuberculous mycobacterial immunity and explore possible ways in which they could be harnessed through vaccines and immunotherapies to improve protection against Mtb.
Collapse
Affiliation(s)
- Paula Ruibal
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Linda Voogd
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Simone A Joosten
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
13
|
Peri SSS, Sabnani MK, Raza MU, Urquhart EL, Ghaffari S, Lee JS, Kim MJ, Weidanz J, Alexandrakis G. Quantification of low affinity binding interactions between natural killer cell inhibitory receptors and targeting ligands with a self-induced back-action actuated nanopore electrophoresis (SANE) sensor. NANOTECHNOLOGY 2021; 32:045501. [PMID: 33027774 PMCID: PMC8346883 DOI: 10.1088/1361-6528/abbf26] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A plasmonic nanopore sensor enabling detection of bimodal optical and electrical molecular signatures was fabricated and tested for its ability to characterize low affinity ligand-receptor interactions. This plasmonic nanosensor uses self-induced back-action (SIBA) for optical trapping to enable SIBA-actuated nanopore electrophoresis (SANE) through a nanopore located immediately below the optical trap volume. A natural killer (NK) cell inhibitory receptor heterodimer molecule CD94/NKG2A was synthesized to target a specific peptide-presenting Qa-1b Qdm ligand as a simplified model of low-affinity interactions between immune cells and peptide-presenting cancer cells that occurs during cancer immunotherapy. A cancer-irrelevant Qa-1b GroEL ligand was also targeted by the same receptor as a control experiment to test for non-specific binding. The analysis of different pairs of bimodal SANE sensor signatures enabled discrimination of ligand, receptor and their complexes and enabled differentiating between specific and non-specific ligand interactions. We were able to detect ligand-receptor complex binding at concentrations over 500 times lower than the free solution equilibrium binding constant (K D ). Additionally, SANE sensor measurements enabled estimation of the fast dissociation rate (k off) for this low-affinity specific ligand-receptor system, previously shown to be challenging to quantify with commercial technologies. The k off value of targeted peptide-presenting ligands is known to correlate with the subsequent activation of immune cells in vivo, suggesting the potential utility of the SANE senor as a screening tool in cancer immunotherapy.
Collapse
Affiliation(s)
- Sai Santosh Sasank Peri
- Department of Electrical Engineering, University of Texas at Arlington, Arlington, TX, United States of America
| | - Manoj Kumar Sabnani
- Department of Biology, University of Texas at Arlington, Arlington, TX, United States of America
| | - Muhammad Usman Raza
- Department of Electrical Engineering, University of Texas at Arlington, Arlington, TX, United States of America
| | - Elizabeth L Urquhart
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States of America
| | - Soroush Ghaffari
- Department of Biology, University of Texas at Arlington, Arlington, TX, United States of America
| | - Jung Soo Lee
- Department of Mechanical Engineering, Southern Methodist University, Dallas, TX, United States of America
| | - Min Jun Kim
- Department of Mechanical Engineering, Southern Methodist University, Dallas, TX, United States of America
| | - Jon Weidanz
- Department of Biology, University of Texas at Arlington, Arlington, TX, United States of America
| | - George Alexandrakis
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States of America
| |
Collapse
|
14
|
Ruibal P, Franken KLMC, van Meijgaarden KE, van Loon JJF, van der Steen D, Heemskerk MHM, Ottenhoff THM, Joosten SA. Peptide Binding to HLA-E Molecules in Humans, Nonhuman Primates, and Mice Reveals Unique Binding Peptides but Remarkably Conserved Anchor Residues. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:2861-2872. [PMID: 33020145 PMCID: PMC7653511 DOI: 10.4049/jimmunol.2000810] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/07/2020] [Indexed: 12/17/2022]
Abstract
Ag presentation via the nonclassical MHC class Ib molecule HLA-E, with nearly complete identity between the two alleles expressed in humans, HLA-E*01:01 and HLA-E*01:03, can lead to the activation of unconventional T cells in humans. Despite this virtual genetic monomorphism, differences in peptide repertoires binding to the two allelic variants have been reported. To further dissect and compare peptide binding to HLA-E*01:01 and HLA-E*01:03, we used an UV-mediated peptide exchange binding assay and an HPLC-based competition binding assay. In addition, we investigated binding of these same peptides to Mamu-E, the nonhuman primate homologue of human HLA-E, and to the HLA-E-like molecule Qa-1b in mice. We next exploited the differences and homologies in the peptide binding pockets of these four molecules to identify allele specific as well as common features of peptide binding motifs across species. Our results reveal differences in peptide binding preferences and intensities for each human HLA-E variant compared with Mamu-E and Qa-1b Using extended peptide libraries, we identified and refined the peptide binding motifs for each of the four molecules and found that they share main anchor positions, evidenced by conserved amino acid preferences across the four HLA-E molecules studied. In addition, we also identified differences in peptide binding motifs, which could explain the observed variations in peptide binding preferences and affinities for each of the four HLA-E-like molecules. Our results could help with guiding the selection of candidate pathogen-derived peptides with the capacity to target HLA-E-restricted T cells that could be mobilized in vaccination and immunotherapeutic strategies.
Collapse
Affiliation(s)
- Paula Ruibal
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; and
| | - Kees L M C Franken
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; and
| | - Krista E van Meijgaarden
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; and
| | - Joeri J F van Loon
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; and
| | - Dirk van der Steen
- Department of Hematology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Mirjam H M Heemskerk
- Department of Hematology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; and
| | - Simone A Joosten
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; and
| |
Collapse
|
15
|
Borst L, van der Burg SH, van Hall T. The NKG2A-HLA-E Axis as a Novel Checkpoint in the Tumor Microenvironment. Clin Cancer Res 2020; 26:5549-5556. [PMID: 32409305 DOI: 10.1158/1078-0432.ccr-19-2095] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/31/2020] [Accepted: 05/12/2020] [Indexed: 11/16/2022]
Abstract
The success of checkpoint blockade therapy revolutionized cancer treatment. However, we need to increase the fraction of responding patients and overcome acquired resistance to these therapies. Recently, the inhibitory receptor NKG2A received attention as a new kid on the block of immune checkpoints. This receptor is selectively expressed on cytotoxic lymphocytes, including natural killer cells and CD8 T cells, and NKG2A+ T cells are preferentially residing in tissues, like the tumor microenvironment. Its ligand, histocompatibility leucocyte antigen E (HLA-E), is a conserved nonclassical HLA class I molecule that binds a limited peptide repertoire and its expression is commonly detected in human cancer. NKG2A blockade as a standalone therapy appears poorly effective in mouse tumor models, however, in the presence of activated T cells, for example, induced by PD-1/PD-L1 blockade or cancer vaccines, exerts strongly enhanced efficacy. Clinical trials demonstrated safety of the humanized NKG2A-blocking antibody, monalizumab, and first results of phase II trials demonstrate encouraging durable response rates. Further development of this axis is clearly warranted.
Collapse
Affiliation(s)
- Linda Borst
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands.
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Thorbald van Hall
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
16
|
Goodall KJ, Nguyen A, McKenzie C, Eckle SBG, Sullivan LC, Andrews DM. The murine CD94/NKG2 ligand, Qa-1 b, is a high-affinity, functional ligand for the CD8αα homodimer. J Biol Chem 2020; 295:3239-3246. [PMID: 31992596 PMCID: PMC7062157 DOI: 10.1074/jbc.ra119.010509] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 01/22/2020] [Indexed: 11/06/2022] Open
Abstract
The immune co-receptor CD8 molecule (CD8) has two subunits, CD8α and CD8β, which can assemble into homo or heterodimers. Nonclassical (class-Ib) major histocompatibility complex (MHC) molecules (MHC-Ibs) have recently been identified as ligands for the CD8αα homodimer. This was demonstrated by the observation that histocompatibility 2, Q region locus 10 (H2-Q10) is a high-affinity ligand for CD8αα which also binds the MHC-Ib molecule H2-TL. This suggests that MHC-Ib proteins may be an extended source of CD8αα ligands. Expression of H2-T3/TL and H2-Q10 is restricted to the small intestine and liver, respectively, yet CD8αα-containing lymphocytes are present more broadly. Therefore, here we sought to determine whether murine CD8αα binds only to tissue-specific MHC-Ib molecules or also to ubiquitously expressed MHC-Ib molecules. Using recombinant proteins and surface plasmon resonance-based binding assays, we show that the MHC-Ib family furnishes multiple binding partners for murine CD8αα, including H2-T22 and the CD94/NKG2-A/B-activating NK receptor (NKG2) ligand Qa-1b We also demonstrate a hierarchy among MHC-Ib proteins with respect to CD8αα binding, in which Qa-1b > H2-Q10 > TL. Finally, we provide evidence that Qa-1b is a functional ligand for CD8αα, distinguishing it from its human homologue MHC class I antigen E (HLA-E). These findings provide additional clues as to how CD8αα-expressing cells are controlled in different tissues. They also highlight an unexpected immunological divergence of Qa-1b/HLA-E function, indicating the need for more robust studies of murine MHC-Ib proteins as models for human disease.
Collapse
Affiliation(s)
- Katharine Jennifer Goodall
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Australia.
| | - Angela Nguyen
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Australia
| | - Craig McKenzie
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Australia
| | - Sidonia Barbara Guiomar Eckle
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, 3000, Australia
| | - Lucy Catherine Sullivan
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, 3000, Australia
| | - Daniel Mark Andrews
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Australia
| |
Collapse
|
17
|
van Hall T, André P, Horowitz A, Ruan DF, Borst L, Zerbib R, Narni-Mancinelli E, van der Burg SH, Vivier E. Monalizumab: inhibiting the novel immune checkpoint NKG2A. J Immunother Cancer 2019; 7:263. [PMID: 31623687 PMCID: PMC6798508 DOI: 10.1186/s40425-019-0761-3] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/26/2019] [Indexed: 02/08/2023] Open
Abstract
The implementation of immune checkpoint inhibitors to the oncology clinic signified a new era in cancer treatment. After the first indication of melanoma, an increasing list of additional cancer types are now treated with immune system targeting antibodies to PD-1, PD-L1 and CTLA-4, alleviating inhibition signals on T cells. Recently, we published proof-of-concept results on a novel checkpoint inhibitor, NKG2A. This receptor is expressed on cytotoxic lymphocytes, including NK cells and subsets of activated CD8+ T cells. Blocking antibodies to NKG2A unleashed the reactivity of these effector cells resulting in tumor control in multiple mouse models and an early clinical trial. Monalizumab is inhibiting this checkpoint in human beings and future clinical trials will have to reveal its potency in combination with other cancer treatment options.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antineoplastic Agents, Immunological/pharmacology
- Antineoplastic Agents, Immunological/therapeutic use
- Disease Models, Animal
- Histocompatibility Antigens Class I/immunology
- Histocompatibility Antigens Class I/metabolism
- Humans
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Mice
- NK Cell Lectin-Like Receptor Subfamily C/antagonists & inhibitors
- NK Cell Lectin-Like Receptor Subfamily C/immunology
- NK Cell Lectin-Like Receptor Subfamily C/metabolism
- Neoplasms/drug therapy
- Neoplasms/immunology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- HLA-E Antigens
Collapse
Affiliation(s)
- Thorbald van Hall
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, 2333, ZA, Leiden, the Netherlands.
| | - Pascale André
- Innate Pharma Research Labs, Innate Pharma, Marseille, France
| | - Amir Horowitz
- Department of Oncological Sciences, Precision Immunology Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Dan Fu Ruan
- Department of Oncological Sciences, Precision Immunology Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Linda Borst
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, 2333, ZA, Leiden, the Netherlands
| | - Robert Zerbib
- Innate Pharma Research Labs, Innate Pharma, Marseille, France
| | - Emilie Narni-Mancinelli
- Aix Marseille Université, INSERM, CNRS, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, 2333, ZA, Leiden, the Netherlands
| | - Eric Vivier
- Innate Pharma Research Labs, Innate Pharma, Marseille, France.
- Aix Marseille Université, INSERM, CNRS, Centre d'Immunologie de Marseille-Luminy, Marseille, France.
- Service d'Immunologie, Marseille Immunopole, Hôpital de la Timone, Assistance Publique-Hôpitaux de Marseille, Marseille, France.
| |
Collapse
|
18
|
Goodall KJ, Nguyen A, Matsumoto A, McMullen JR, Eckle SB, Bertolino P, Sullivan LC, Andrews DM. Multiple receptors converge on H2-Q10 to regulate NK and γδT-cell development. Immunol Cell Biol 2019; 97:326-339. [PMID: 30537346 DOI: 10.1111/imcb.12222] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/03/2018] [Accepted: 12/06/2018] [Indexed: 01/10/2023]
Abstract
Class Ib major histocompatibility complex (MHC) is an extended family of molecules, which demonstrate tissue-specific expression and presentation of monomorphic antigens. These characteristics tend to imbue class Ib MHC with unique functions. H2-Q10 is potentially one such molecule that is overexpressed in the liver but its immunological function is not known. We have previously shown that H2-Q10 is a ligand for the natural killer cell receptor Ly49C and now, using H2-Q10-deficient mice, we demonstrate that H2-Q10 can also stabilize the expression of Qa-1b. In the absence of H2-Q10, the development and maturation of conventional hepatic natural killer cells is disrupted. We also provide evidence that H2-Q10 is a new high affinity ligand for CD8αα and controls the development of liver-resident CD8αα γδT cells. These data demonstrate that H2-Q10 has multiple roles in the development of immune subsets and identify an overlap of recognition within the class Ib MHC that is likely to be relevant to the regulation of immunity.
Collapse
Affiliation(s)
- Katharine J Goodall
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Angela Nguyen
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Aya Matsumoto
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Julie R McMullen
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Medicine, Monash University, Clayton, VIC, Australia.,Department of Physiology, Monash University, Clayton, VIC, Australia
| | - Sidonia B Eckle
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Patrick Bertolino
- Liver Immunology program Centenary Institute, AW Morrow Gastroenterology and Liver Centre and Royal Prince Alfred Hospital, University of Sydney, Sydney, NSW, Australia
| | - Lucy C Sullivan
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Daniel M Andrews
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
19
|
Barrow AD, Colonna M. Exploiting NK Cell Surveillance Pathways for Cancer Therapy. Cancers (Basel) 2019; 11:cancers11010055. [PMID: 30626155 PMCID: PMC6356551 DOI: 10.3390/cancers11010055] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 12/28/2018] [Accepted: 01/03/2019] [Indexed: 12/27/2022] Open
Abstract
Natural killer (NK) cells can evoke potent anti-tumour activity. This function is largely mediated through a battery of specialised cell-surface receptors which probe the tissue microenvironment for changes in surface and secretory phenotypes that may alert to the presence of infection or malignancy. These receptors have the potential to arouse the robust cytotoxic and cytokine-secreting functions of NK cells and so must be tightly regulated to prevent autoimmunity. However, such functions also hold great promise for clinical intervention. In this review, we highlight some of the latest breakthroughs in fundamental NK cell receptor biology that have illuminated our understanding of the molecular strategies NK cells employ to perceive malignant cells from normal healthy cells. Moreover, we highlight how these sophisticated tumour recognition strategies are being harnessed for cancer immunotherapies in the clinic.
Collapse
Affiliation(s)
- Alexander David Barrow
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia.
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
20
|
Jiang J, Natarajan K, Margulies DH. MHC Molecules, T cell Receptors, Natural Killer Cell Receptors, and Viral Immunoevasins-Key Elements of Adaptive and Innate Immunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1172:21-62. [PMID: 31628650 DOI: 10.1007/978-981-13-9367-9_2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Molecules encoded by the Major Histocompatibility Complex (MHC) bind self or foreign peptides and display these at the cell surface for recognition by receptors on T lymphocytes (designated T cell receptors-TCR) or on natural killer (NK) cells. These ligand/receptor interactions govern T cell and NK cell development as well as activation of T memory and effector cells. Such cells participate in immunological processes that regulate immunity to various pathogens, resistance and susceptibility to cancer, and autoimmunity. The past few decades have witnessed the accumulation of a huge knowledge base of the molecular structures of MHC molecules bound to numerous peptides, of TCRs with specificity for many different peptide/MHC (pMHC) complexes, of NK cell receptors (NKR), of MHC-like viral immunoevasins, and of pMHC/TCR and pMHC/NKR complexes. This chapter reviews the structural principles that govern peptide/MHC (pMHC), pMHC/TCR, and pMHC/NKR interactions, for both MHC class I (MHC-I) and MHC class II (MHC-II) molecules. In addition, we discuss the structures of several representative MHC-like molecules. These include host molecules that have distinct biological functions, as well as virus-encoded molecules that contribute to the evasion of the immune response.
Collapse
Affiliation(s)
- Jiansheng Jiang
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bldg. 10, Room 11D07, 10 Center Drive, Bethesda, MD, 20892-1892, USA.
| | - Kannan Natarajan
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bldg. 10, Room 11D07, 10 Center Drive, Bethesda, MD, 20892-1892, USA
| | - David H Margulies
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bldg. 10, Room 11D12, 10 Center Drive, Bethesda, MD, 20892-1892, USA
| |
Collapse
|
21
|
Evidence of functional Cd94 polymorphism in a free-living house mouse population. Immunogenetics 2018; 71:321-333. [PMID: 30535636 DOI: 10.1007/s00251-018-01100-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 11/30/2018] [Indexed: 02/06/2023]
Abstract
The CD94 receptor, expressed on natural killer (NK) and CD8+ T cells, is known as a relatively non-polymorphic receptor with orthologues in humans, other primates, cattle, and rodents. In the house mouse (Mus musculus), a single allele is highly conserved among laboratory strains, and reports of allelic variation in lab- or wild-living mice are lacking, except for deficiency in one lab strain (DBA/2J). The non-classical MHC-I molecule Qa-1b is the ligand for mouse CD94/NKG2A, presenting alternative non-americ fragment of leader peptides (Qa-1 determinant modifier (Qdm)) from classical MHC-I molecules. Here, we report a novel allele identified in free-living house mice captured in Norway, living among individuals carrying the canonical Cd94 allele. The novel Cd94LocA allele encodes 12 amino acid substitutions in the extracellular lectin-like domain. Flow cytometric analysis of primary NK cells and transfected cells indicates that the substitutions prevent binding of CD94 mAb and Qa-1b/Qdm tetramers. Our data further indicate correlation of Cd94 polymorphism with the two major subspecies of house mice in Europe. Together, these findings suggest that the Cd94LocA/NKG2A heterodimeric receptor is widely expressed among M. musculus subspecies musculus, with ligand-binding properties different from mice of subspecies domesticus, such as the C57BL/6 strain.
Collapse
|
22
|
Abstract
Regulatory T cells are central mediators of immune regulation and play an essential role in the maintenance of immune homeostasis in the steady state and under pathophysiological conditions. Disruption of CD8 Treg-dependent recognition of Qa-1-restricted self-antigens can result in dysregulated immune responses, tissue damage, autoimmune disease and cancer. Recent progress in studies on regulatory T cells of the CD8 lineage has provided new biological insight into this specialized regulatory T cell subpopulation. Identification of the Helios transcription factor as an essential control element for the differentiation and function of CD8 regulatory T cells has led to a better understanding of the unique genetic program of these cells. Recent analyses of T-cell receptor usage and antigen recognition by Qa-1-restricted CD8 Treg have provided additional insight into the unusual biological function of this regulatory CD8 lineage. Here we summarize recent advances in our understanding of CD8 regulatory T cells with emphasis on lineage commitment, differentiation and stability.
Collapse
Affiliation(s)
- Hidetoshi Nakagawa
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, United States; Department of Immunology, Harvard Medical School, Boston, MA, United States
| | - Lei Wang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, United States; Department of Immunology, Harvard Medical School, Boston, MA, United States
| | - Harvey Cantor
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, United States; Department of Immunology, Harvard Medical School, Boston, MA, United States.
| | - Hye-Jung Kim
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, United States; Department of Immunology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
23
|
Lymphocytes Negatively Regulate NK Cell Activity via Qa-1b following Viral Infection. Cell Rep 2018; 21:2528-2540. [PMID: 29186689 DOI: 10.1016/j.celrep.2017.11.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/02/2017] [Accepted: 10/30/2017] [Indexed: 01/26/2023] Open
Abstract
NK cells can reduce anti-viral T cell immunity during chronic viral infections, including infection with the lymphocytic choriomeningitis virus (LCMV). However, regulating factors that maintain the equilibrium between productive T cell and NK cell immunity are poorly understood. Here, we show that a large viral load resulted in inhibition of NK cell activation, which correlated with increased expression of Qa-1b, a ligand for inhibitory NK cell receptors. Qa-1b was predominantly upregulated on B cells following LCMV infection, and this upregulation was dependent on type I interferons. Absence of Qa-1b resulted in increased NK cell-mediated regulation of anti-viral T cells following viral infection. Consequently, anti-viral T cell immunity was reduced in Qa-1b- and NKG2A-deficient mice, resulting in increased viral replication and immunopathology. NK cell depletion restored anti-viral immunity and virus control in the absence of Qa-1b. Taken together, our findings indicate that lymphocytes limit NK cell activity during viral infection in order to promote anti-viral T cell immunity.
Collapse
|
24
|
Goodall KJ, Nguyen A, Sullivan LC, Andrews DM. The expanding role of murine class Ib MHC in the development and activation of Natural Killer cells. Mol Immunol 2018; 115:31-38. [PMID: 29789149 DOI: 10.1016/j.molimm.2018.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 04/21/2018] [Accepted: 05/02/2018] [Indexed: 12/12/2022]
Abstract
Major Histocompatibility Complex-I (MHC-I) molecules can be divided into class Ia and class Ib, with three distinct class Ib families found in the mouse. These families are designated as Q, T and M and are largely unexplored in terms of their immunological function. Among the class Ib MHC, H2-T23 (Qa-1b) has been a significant target for Natural Killer (NK) cell research, owing to its homology with the human class Ib human leukocyte antigen (HLA)-E. However, recent data has indicated that members of the Q and M family of class Ib MHC also play a critical role in the development and regulation NK cells. Here we discuss the recent advances in the control of NK cells by murine class Ib MHC as a means to stimulate further exploration of these molecules.
Collapse
Affiliation(s)
- Katharine J Goodall
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia
| | - Angela Nguyen
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia
| | - Lucy C Sullivan
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Daniel M Andrews
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia.
| |
Collapse
|
25
|
Parham P, Guethlein LA. Genetics of Natural Killer Cells in Human Health, Disease, and Survival. Annu Rev Immunol 2018; 36:519-548. [PMID: 29394121 DOI: 10.1146/annurev-immunol-042617-053149] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Natural killer (NK) cells have vital functions in human immunity and reproduction. In the innate and adaptive immune responses to infection, particularly by viruses, NK cells respond by secreting inflammatory cytokines and killing infected cells. In reproduction, NK cells are critical for genesis of the placenta, the organ that controls the supply of oxygen and nutrients to the growing fetus. Controlling NK cell functions are interactions of HLA class I with inhibitory NK cell receptors. First evolved was the conserved interaction of HLA-E with CD94:NKG2A; later established were diverse interactions of HLA-A, -B, and -C with killer cell immunoglobulin-like receptors. Characterizing the latter interactions is rapid evolution, which distinguishes human populations and all species of higher primate. Driving this evolution are the different and competing selections imposed by pathogens on NK cell-mediated immunity and by the constraints of human reproduction on NK cell-mediated placentation. Promoting rapid evolution is independent segregation of polymorphic receptors and ligands throughout human populations.
Collapse
Affiliation(s)
- Peter Parham
- Department of Structural Biology and Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, California 94305, USA; ,
| | - Lisbeth A Guethlein
- Department of Structural Biology and Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, California 94305, USA; ,
| |
Collapse
|
26
|
Doorduijn EM, Sluijter M, Querido BJ, Seidel UJE, Oliveira CC, van der Burg SH, van Hall T. T Cells Engaging the Conserved MHC Class Ib Molecule Qa-1 b with TAP-Independent Peptides Are Semi-Invariant Lymphocytes. Front Immunol 2018; 9:60. [PMID: 29422902 PMCID: PMC5788890 DOI: 10.3389/fimmu.2018.00060] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/10/2018] [Indexed: 12/12/2022] Open
Abstract
The HLA-E homolog in the mouse (Qa-1b) is a conserved MHC class Ib molecule presenting monomorphic peptides to germline-encoded natural killer receptor CD94/NKG2A. Previously, we demonstrated the replacement of this canonical peptide by a diverse peptidome upon deficiency of the TAP peptide transporter. Analysis of this Qa-1b-restricted T cell repertoire against these non-mutated neoantigens revealed characteristics of conventional hypervariable CD8+ T cells, but also of invariant T cell receptor (TCR)αβ T cells. A shared TCR Vα chain was used by this subset in combination with a variety of Vβ chains. The TCRs target peptide ligands that are conserved between mouse and man, like the identified peptide derived from the transcriptional cofactor Med15. The thymus selection was studied in a TCR-transgenic mouse and emerging naïve CD8+ T cells displayed a slightly activated phenotype, as witnessed by higher CD122 and Ly6C expression. Moreover, the Qa-1b protein was dispensable for thymus selection. Importantly, no self-reactivity was observed as reported for other MHC class Ib-restricted subsets. Naïve Qa-1b restricted T cells expanded, contracted, and formed memory cells in vivo upon peptide vaccination in a similar manner as conventional CD8+ T cells. Based on these data, the Qa-1b restricted T cell subset might be positioned closest to conventional CD8+ T cells of all MHC class Ib populations.
Collapse
Affiliation(s)
- Elien M Doorduijn
- Department of Medical Oncology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Marjolein Sluijter
- Department of Medical Oncology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Bianca J Querido
- Department of Medical Oncology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Ursula J E Seidel
- Department of Medical Oncology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Claudia C Oliveira
- Department of Medical Oncology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Thorbald van Hall
- Department of Medical Oncology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| |
Collapse
|
27
|
Ying G, Wang J, Kumar V, Zajonc DM. Crystal structure of Qa-1a with bound Qa-1 determinant modifier peptide. PLoS One 2017; 12:e0182296. [PMID: 28767728 PMCID: PMC5540586 DOI: 10.1371/journal.pone.0182296] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/14/2017] [Indexed: 11/29/2022] Open
Abstract
Qa-1 is a non-classical Major Histocompatibility (MHC) class I molecule that generally presents hydrophobic peptides including Qdm derived from the leader sequence of classical MHC I molecules for immune surveillance by NK cells. Qa-1 bound peptides derived from the TCR Vβ8.2 of activated T cells also activates CD8+ regulatory T cells to control autoimmunity and maintain self-tolerance. Four allotypes of Qa-1 (Qa-1a-d) are expressed that are highly conserved in sequence but have several variations that could affect peptide binding to Qa-1 or TCR recognition. Here, we determined the structure of Qa-1a with bound Qdm peptide. While the overall structure is very similar to that of Qa-1b, there are several amino acid differences around the peptide binding platform that could affect TCR recognition. Most notably, two amino acid substitutions are found in the pocket P2, which binds the anchor residue Met2 of the Qdm peptide. These residues affect both the size and shape of the binding pocket, as well as affect the charge at physiologic pH, suggesting Qa-1a and Qa-1b could present slightly distinct peptide reservoirs, which could presumably be recognized by different populations of CD8+ T cells.
Collapse
Affiliation(s)
- Ge Ying
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology (LJI), La Jolla, California, United States of America
| | - Jing Wang
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology (LJI), La Jolla, California, United States of America
| | - Vipin Kumar
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Dirk M. Zajonc
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology (LJI), La Jolla, California, United States of America
- Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- * E-mail:
| |
Collapse
|
28
|
Bian Y, Shang S, Siddiqui S, Zhao J, Joosten SA, Ottenhoff THM, Cantor H, Wang CR. MHC Ib molecule Qa-1 presents Mycobacterium tuberculosis peptide antigens to CD8+ T cells and contributes to protection against infection. PLoS Pathog 2017; 13:e1006384. [PMID: 28475642 PMCID: PMC5435364 DOI: 10.1371/journal.ppat.1006384] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 05/17/2017] [Accepted: 04/26/2017] [Indexed: 11/18/2022] Open
Abstract
A number of nonclassical MHC Ib molecules recognizing distinct microbial antigens have been implicated in the immune response to Mycobacterium tuberculosis (Mtb). HLA-E has been identified to present numerous Mtb peptides to CD8+ T cells, with multiple HLA-E-restricted cytotoxic T lymphocyte (CTL) and regulatory T cell lines isolated from patients with active and latent tuberculosis (TB). In other disease models, HLA-E and its mouse homolog Qa-1 can act as antigen presenting molecules as well as regulators of the immune response. However, it is unclear what precise role(s) HLA-E/Qa-1 play in the immune response to Mtb. In this study, we found that murine Qa-1 can bind and present Mtb peptide antigens to CD8+ T effector cells during aerosol Mtb infection. Further, mice lacking Qa-1 (Qa-1-/-) were more susceptible to high-dose Mtb infection compared to wild-type controls, with higher bacterial burdens and increased mortality. The increased susceptibility of Qa-1-/- mice was associated with dysregulated T cells that were more activated and produced higher levels of pro-inflammatory cytokines. T cells from Qa-1-/- mice also had increased expression of inhibitory and apoptosis-associated cell surface markers such as CD94/NKG2A, KLRG1, PD-1, Fas-L, and CTLA-4. As such, they were more prone to cell death and had decreased capacity in promoting the killing of Mtb in infected macrophages. Lastly, comparing the immune responses of Qa-1 mutant knock-in mice deficient in either Qa-1-restricted CD8+ Tregs (Qa-1 D227K) or the inhibitory Qa-1-CD94/NKG2A interaction (Qa-1 R72A) with Qa-1-/- and wild-type controls indicated that both of these Qa-1-mediated mechanisms were involved in suppression of the immune response in Mtb infection. Our findings reveal that Qa-1 participates in the immune response to Mtb infection by presenting peptide antigens as well as regulating immune responses, resulting in more effective anti-Mtb immunity. The disease tuberculosis (TB) is caused by the microbe Mycobacterium tuberculosis (Mtb), and remains a major public health concern. More research is needed to understand the diverse immune responses against Mtb to develop better vaccines. Mouse Qa-1 and its human counterpart HLA-E are nonclassical MHC I molecules that can activate or inhibit immune responses in a variety of diseases. However, their role during the immune response to Mtb remains unknown. We found that Qa-1 can present Mtb peptides to activate CD8+ T effector cells during aerosol Mtb infection. Further, Mtb-infected mice that lacked Qa-1 (Qa-1-/-) had higher numbers of bacteria and died more often than infected mice that expressed Qa-1 (Qa-1+/+). The lack of Qa-1 results in over-activation of the immune response upon infection, which is less efficient in controlling Mtb. Using mice expressing different mutant forms of Qa-1, we showed that Qa-1 can regulate immune responses against Mtb through the interaction with inhibitory CD94/NKG2A receptors as well as the activation of regulatory CD8+ T cells. We believe our study sheds light on the diverse mechanisms at play in generating protective immune responses against Mtb and will inform future mouse and human studies.
Collapse
Affiliation(s)
- Yao Bian
- Department of Microbiology and Immunology, Feinberg School of Medicine Northwestern University, Chicago, Illinois, United States of America
| | - Shaobin Shang
- Department of Microbiology and Immunology, Feinberg School of Medicine Northwestern University, Chicago, Illinois, United States of America
| | - Sarah Siddiqui
- Department of Microbiology and Immunology, Feinberg School of Medicine Northwestern University, Chicago, Illinois, United States of America
| | - Jie Zhao
- Department of Microbiology and Immunology, Feinberg School of Medicine Northwestern University, Chicago, Illinois, United States of America
| | - Simone A. Joosten
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom H. M. Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Harvey Cantor
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Department of Microbiology and Immunobiology, Division of Immunology, Harvard Medical School Boston, Massachusetts, United States of America
| | - Chyung-Ru Wang
- Department of Microbiology and Immunology, Feinberg School of Medicine Northwestern University, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
29
|
Gavlovsky PJ, Tonnerre P, Guitton C, Charreau B. Expression of MHC class I-related molecules MICA, HLA-E and EPCR shape endothelial cells with unique functions in innate and adaptive immunity. Hum Immunol 2016; 77:1084-1091. [PMID: 26916837 DOI: 10.1016/j.humimm.2016.02.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 02/03/2016] [Accepted: 02/18/2016] [Indexed: 10/22/2022]
Abstract
Endothelial cells (ECs) located at the interface of blood and tissues display regulatory activities toward coagulation, inflammation and vascular homeostasis. By expressing MHC class I and II antigens, ECs also contribute to immune responses. In transplantation, graft ECs are both trigger and target of alloimmune responses. ECs express a set of MHC class I-like or structural related molecules such as HLA-E, MHC class I related chain A (MICA) and the endothelial protein C receptor (EPCR) that provide multiple and unique functions to ECs. HLA-E is a low polymorphic ligand for the CD94/NKG2A/C receptors, and triggers HLA-E-restricted CD8+αβT cell responses against viral and bacterial peptides. MICA is a highly polymorphic ligand for NKG2D activating NK and costimulating CD8+T cells and a ligand for tissue-resident Vδ1 γδ T subsets. More intriguing is the role of EPCR, a key regulator of coagulation, as a ligand for a circulating subset of Vδ2- γδ T cells. Coexpression of this set of MHC class I-related molecules that allow ECs to activate a subtle array of immune responses upon stress and infection may also influence transplant outcome. Here, the respective structure, expression, and functions of HLA-E, MICA and EPCR as well as the impact of their polymorphism are reviewed.
Collapse
Affiliation(s)
- Pierre-Jean Gavlovsky
- INSERM, UMR1064, LabEx Transplantex, Nantes F44000, France; CHU Nantes, Institut de Transplantation et de Recherche en Transplantation-Urologie-Néphrologie, ITUN, Nantes F44000, France; LUNAM Université de Nantes, Faculté de Médecine, Nantes F44000, France; IHU-CESTI, Nantes F44000, France
| | - Pierre Tonnerre
- INSERM, UMR1064, LabEx Transplantex, Nantes F44000, France; LUNAM Université de Nantes, Faculté de Médecine, Nantes F44000, France
| | - Christophe Guitton
- INSERM, UMR1064, LabEx Transplantex, Nantes F44000, France; CHU Nantes, Institut de Transplantation et de Recherche en Transplantation-Urologie-Néphrologie, ITUN, Nantes F44000, France; LUNAM Université de Nantes, Faculté de Médecine, Nantes F44000, France
| | - Béatrice Charreau
- INSERM, UMR1064, LabEx Transplantex, Nantes F44000, France; CHU Nantes, Institut de Transplantation et de Recherche en Transplantation-Urologie-Néphrologie, ITUN, Nantes F44000, France; LUNAM Université de Nantes, Faculté de Médecine, Nantes F44000, France.
| |
Collapse
|
30
|
Basu S, Wallner B. DockQ: A Quality Measure for Protein-Protein Docking Models. PLoS One 2016; 11:e0161879. [PMID: 27560519 PMCID: PMC4999177 DOI: 10.1371/journal.pone.0161879] [Citation(s) in RCA: 213] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 08/12/2016] [Indexed: 01/26/2023] Open
Abstract
The state-of-the-art to assess the structural quality of docking models is currently based on three related yet independent quality measures: Fnat, LRMS, and iRMS as proposed and standardized by CAPRI. These quality measures quantify different aspects of the quality of a particular docking model and need to be viewed together to reveal the true quality, e.g. a model with relatively poor LRMS (>10Å) might still qualify as 'acceptable' with a descent Fnat (>0.50) and iRMS (<3.0Å). This is also the reason why the so called CAPRI criteria for assessing the quality of docking models is defined by applying various ad-hoc cutoffs on these measures to classify a docking model into the four classes: Incorrect, Acceptable, Medium, or High quality. This classification has been useful in CAPRI, but since models are grouped in only four bins it is also rather limiting, making it difficult to rank models, correlate with scoring functions or use it as target function in machine learning algorithms. Here, we present DockQ, a continuous protein-protein docking model quality measure derived by combining Fnat, LRMS, and iRMS to a single score in the range [0, 1] that can be used to assess the quality of protein docking models. By using DockQ on CAPRI models it is possible to almost completely reproduce the original CAPRI classification into Incorrect, Acceptable, Medium and High quality. An average PPV of 94% at 90% Recall demonstrating that there is no need to apply predefined ad-hoc cutoffs to classify docking models. Since DockQ recapitulates the CAPRI classification almost perfectly, it can be viewed as a higher resolution version of the CAPRI classification, making it possible to estimate model quality in a more quantitative way using Z-scores or sum of top ranked models, which has been so valuable for the CASP community. The possibility to directly correlate a quality measure to a scoring function has been crucial for the development of scoring functions for protein structure prediction, and DockQ should be useful in a similar development in the protein docking field. DockQ is available at http://github.com/bjornwallner/DockQ/.
Collapse
Affiliation(s)
- Sankar Basu
- Bioinformatics Division, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Björn Wallner
- Bioinformatics Division, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
- Swedish e-Science Research Center, Linköping University, Linköping, Sweden
| |
Collapse
|
31
|
Parasar P, Wilhelm A, Rutigliano HM, Thomas AJ, Teng L, Shi B, Davis WC, Suarez CE, New DD, White KL, Davies CJ. Expression of bovine non-classical major histocompatibility complex class I proteins in mouse P815 and human K562 cells. Res Vet Sci 2016; 107:161-170. [PMID: 27473990 DOI: 10.1016/j.rvsc.2016.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/20/2016] [Accepted: 06/06/2016] [Indexed: 11/16/2022]
Abstract
Major histocompatibility complex class I (MHC-I) proteins can be expressed as cell surface or secreted proteins. To investigate whether bovine non-classical MHC-I proteins are expressed as cell surface or secreted proteins, and to assess the reactivity pattern of monoclonal antibodies with non-classical MHC-I isoforms, we expressed the MHC proteins in murine P815 and human K562 (MHC-I deficient) cells. Following antibiotic selection, stably transfected cell lines were stained with H1A or W6/32 antibodies to detect expression of the MHC-I proteins by flow cytometry. Two non-classical proteins (BoLA-NC1*00501 and BoLA-NC3*00101) were expressed on the cell surface in both cell lines. Surprisingly, the BoLA-NC4*00201 protein was expressed on the cell membrane of human K562 but not mouse P815 cells. Two non-classical proteins (BoLA-NC1*00401, which lacks a transmembrane domain, and BoLA-NC2*00102) did not exhibit cell surface expression. Nevertheless, Western blot analyses demonstrated expression of the MHC-I heavy chain in all transfected cell lines. Ammonium-sulfate precipitation of proteins from culture supernatants showed that BoLA-NC1*00401 was secreted and that all surface expressed proteins where shed from the cell membrane by the transfected cells. Interestingly, the surface expressed MHC-I proteins were present in culture supernatants at a much higher concentration than BoLA-NC1*00401. This comprehensive study shows that bovine non-classical MHC-I proteins BoLA-NC1*00501, BoLA-NC3*00101, and BoLA-NC4*00201 are expressed as surface isoforms with the latter reaching the cell membrane only in K562 cells. Furthermore, it demonstrated that BoLA-NC1*00401 is a secreted isoform and that significant quantities of membrane associated MHC-I proteins can be shed from the cell membrane.
Collapse
Affiliation(s)
- Parveen Parasar
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, UT, USA; Center for Integrated BioSystems, 4700 Old Main Hill, Utah State University, Logan, UT, USA
| | - Amanda Wilhelm
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, UT, USA; Center for Integrated BioSystems, 4700 Old Main Hill, Utah State University, Logan, UT, USA
| | - Heloisa M Rutigliano
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, UT, USA; School of Veterinary Medicine, 4815 Old Main Hill, Utah State University, Logan, UT, USA
| | - Aaron J Thomas
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, UT, USA; Center for Integrated BioSystems, 4700 Old Main Hill, Utah State University, Logan, UT, USA
| | - Lihong Teng
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, UT, USA; Center for Integrated BioSystems, 4700 Old Main Hill, Utah State University, Logan, UT, USA
| | - Bi Shi
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, UT, USA; Center for Integrated BioSystems, 4700 Old Main Hill, Utah State University, Logan, UT, USA
| | - William C Davis
- Department of Veterinary Microbiology and Pathology, P.O. Box 647040, Washington State University, Pullman, WA, USA
| | - Carlos E Suarez
- USDA-ARS Animal Disease Research Unit, P.O. Box 646630, Washington State University, Pullman, WA, USA
| | - Daniel D New
- Department of Veterinary Microbiology and Pathology, P.O. Box 647040, Washington State University, Pullman, WA, USA
| | - Kenneth L White
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, UT, USA; School of Veterinary Medicine, 4815 Old Main Hill, Utah State University, Logan, UT, USA; Center for Integrated BioSystems, 4700 Old Main Hill, Utah State University, Logan, UT, USA
| | - Christopher J Davies
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, UT, USA; School of Veterinary Medicine, 4815 Old Main Hill, Utah State University, Logan, UT, USA; Center for Integrated BioSystems, 4700 Old Main Hill, Utah State University, Logan, UT, USA.
| |
Collapse
|
32
|
Sullivan LC, Berry R, Sosnin N, Widjaja JML, Deuss FA, Balaji GR, LaGruta NL, Mirams M, Trapani JA, Rossjohn J, Brooks AG, Andrews DM. Recognition of the Major Histocompatibility Complex (MHC) Class Ib Molecule H2-Q10 by the Natural Killer Cell Receptor Ly49C. J Biol Chem 2016; 291:18740-52. [PMID: 27385590 DOI: 10.1074/jbc.m116.737130] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Indexed: 01/15/2023] Open
Abstract
Murine natural killer (NK) cells are regulated by the interaction of Ly49 receptors with major histocompatibility complex class I molecules (MHC-I). Although the ligands for inhibitory Ly49 were considered to be restricted to classical MHC (MHC-Ia), we have shown that the non-classical MHC molecule (MHC-Ib) H2-M3 was a ligand for the inhibitory Ly49A. Here we establish that another MHC-Ib, H2-Q10, is a bona fide ligand for the inhibitory Ly49C receptor. H2-Q10 bound to Ly49C with a marginally lower affinity (∼5 μm) than that observed between Ly49C and MHC-Ia (H-2K(b)/H-2D(d), both ∼1 μm), and this recognition could be prevented by cis interactions with H-2K in situ To understand the molecular details underpinning Ly49·MHC-Ib recognition, we determined the crystal structures of H2-Q10 and Ly49C bound H2-Q10. Unliganded H2-Q10 adopted a classical MHC-I fold and possessed a peptide-binding groove that exhibited features similar to those found in MHC-Ia, explaining the diverse peptide binding repertoire of H2-Q10. Ly49C bound to H2-Q10 underneath the peptide binding platform to a region that encompassed residues from the α1, α2, and α3 domains, as well as the associated β2-microglobulin subunit. This docking mode was conserved with that previously observed for Ly49C·H-2K(b) Indeed, structure-guided mutation of Ly49C indicated that Ly49C·H2-Q10 and Ly49C·H-2K(b) possess similar energetic footprints focused around residues located within the Ly49C β4-stand and L5 loop, which contact the underside of the peptide-binding platform floor. Our data provide a structural basis for Ly49·MHC-Ib recognition and demonstrate that MHC-Ib represent an extended family of ligands for Ly49 molecules.
Collapse
Affiliation(s)
- Lucy C Sullivan
- From the Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Richard Berry
- the Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia, the ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Natasha Sosnin
- the Cancer Cell Death Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3000, Australia, The Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria 3010, Parkville, Australia
| | - Jacqueline M L Widjaja
- From the Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Felix A Deuss
- the Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia, the ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Gautham R Balaji
- the Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia, the ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Nicole L LaGruta
- From the Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia, the Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Michiko Mirams
- From the Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Joseph A Trapani
- the Cancer Cell Death Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3000, Australia, The Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria 3010, Parkville, Australia
| | - Jamie Rossjohn
- the Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia, the ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia, the Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, Wales, United Kingdom, and
| | - Andrew G Brooks
- From the Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia,
| | - Daniel M Andrews
- the Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| |
Collapse
|
33
|
Anderson CK, Brossay L. The role of MHC class Ib-restricted T cells during infection. Immunogenetics 2016; 68:677-91. [PMID: 27368413 DOI: 10.1007/s00251-016-0932-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/22/2016] [Indexed: 01/02/2023]
Abstract
Even though major histocompatibility complex (MHC) class Ia and many Ib molecules have similarities in structure, MHC class Ib molecules tend to have more specialized functions, which include the presentation of non-peptidic antigens to non-classical T cells. Likewise, non-classical T cells also have unique characteristics, including an innate-like phenotype in naïve animals and rapid effector functions. In this review, we discuss the role of MAIT and NKT cells during infection but also the contribution of less studied MHC class Ib-restricted T cells such as Qa-1-, Qa-2-, and M3-restricted T cells. We focus on describing the types of antigens presented to non-classical T cells, their response and cytokine profile following infection, as well as the overall impact of these T cells to the immune system.
Collapse
Affiliation(s)
- Courtney K Anderson
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Box G-B618, Providence, RI, 02912, USA
| | - Laurent Brossay
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Box G-B618, Providence, RI, 02912, USA.
| |
Collapse
|
34
|
Saunders PM, Vivian JP, O'Connor GM, Sullivan LC, Pymm P, Rossjohn J, Brooks AG. A bird's eye view of NK cell receptor interactions with their MHC class I ligands. Immunol Rev 2016; 267:148-66. [PMID: 26284476 DOI: 10.1111/imr.12319] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The surveillance of target cells by natural killer (NK) cells utilizes an ensemble of inhibitory and activating receptors, many of which interact with major histocompatibility complex (MHC) class I molecules. NK cell recognition of MHC class I proteins is important developmentally for the acquisition of full NK cell effector capacity and during target cell recognition, where the engagement of inhibitory receptors and MHC class I molecules attenuates NK cell activation. Human NK cells have evolved two broad strategies for recognition of human leukocyte antigen (HLA) class I molecules: (i) direct recognition of polymorphic classical HLA class I proteins by diverse receptor families such as the killer cell immunoglobulin-like receptors (KIRs), and (ii) indirect recognition of conserved sets of HLA class I-derived peptides displayed on the non-classical HLA-E for recognition by CD94-NKG2 receptors. In this review, we assess the structural basis for the interaction between these NK receptors and their HLA class I ligands and, using the suite of published KIR and CD94-NKG2 ternary complexes, highlight the features that allow NK cells to orchestrate the recognition of a range of different HLA class I proteins.
Collapse
Affiliation(s)
- Philippa M Saunders
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Julian P Vivian
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, VIC, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC, Australia
| | - Geraldine M O'Connor
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Lucy C Sullivan
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Phillip Pymm
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, VIC, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC, Australia
| | - Jamie Rossjohn
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, VIC, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC, Australia.,Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Andrew G Brooks
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
35
|
The Inhibitory Receptor NKG2A Sustains Virus-Specific CD8⁺ T Cells in Response to a Lethal Poxvirus Infection. Immunity 2015; 43:1112-24. [PMID: 26680205 DOI: 10.1016/j.immuni.2015.11.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 08/31/2015] [Accepted: 11/05/2015] [Indexed: 11/20/2022]
Abstract
CD8(+) T cells and NK cells protect from viral infections by killing virally infected cells and secreting interferon-γ. Several inhibitory receptors limit the magnitude and duration of these anti-viral responses. NKG2A, which is encoded by Klrc1, is a lectin-like inhibitory receptor that is expressed as a heterodimer with CD94 on NK cells and activated CD8(+) T cells. Previous studies on the impact of CD94/NKG2A heterodimers on anti-viral responses have yielded contrasting results and the in vivo function of NKG2A remains unclear. Here, we generated Klrc1(-/-) mice and found that NKG2A is selectively required for resistance to ectromelia virus (ECTV). NKG2A functions intrinsically within ECTV-specific CD8(+) T cells to limit excessive activation, prevent apoptosis, and preserve the specific CD8(+) T cell response. Thus, although inhibitory receptors often cause T cell exhaustion and viral spreading during chronic viral infections, NKG2A optimizes CD8(+) T cell responses during an acute poxvirus infection.
Collapse
|
36
|
Abstract
Natural killer (NK) cells are immune cells that play a crucial role against viral infections and tumors. To be tolerant against healthy tissue and simultaneously attack infected cells, the activity of NK cells is tightly regulated by a sophisticated array of germline-encoded activating and inhibiting receptors. The best characterized mechanism of NK cell activation is “missing self” detection, i.e., the recognition of virally infected or transformed cells that reduce their MHC expression to evade cytotoxic T cells. To monitor the expression of MHC-I on target cells, NK cells have monomorphic inhibitory receptors which interact with conserved MHC molecules. However, there are other NK cell receptors (NKRs) encoded by gene families showing a remarkable genetic diversity. Thus, NKR haplotypes contain several genes encoding for receptors with activating and inhibiting signaling, and that vary in gene content and allelic polymorphism. But if missing-self detection can be achieved by a monomorphic NKR system why have these polygenic and polymorphic receptors evolved? Here, we review the expansion of NKR receptor families in different mammal species, and we discuss several hypotheses that possibly underlie the diversification of the NK cell receptor complex, including the evolution of viral decoys, peptide sensitivity, and selective MHC-downregulation.
Collapse
|
37
|
Carrillo-Bustamante P, Kesmir C, de Boer RJ. Can Selective MHC Downregulation Explain the Specificity and Genetic Diversity of NK Cell Receptors? Front Immunol 2015; 6:311. [PMID: 26136746 PMCID: PMC4468891 DOI: 10.3389/fimmu.2015.00311] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 06/01/2015] [Indexed: 11/26/2022] Open
Abstract
Natural killer (NK) cells express inhibiting receptors (iNKRs), which specifically bind MHC-I molecules on the surface of healthy cells. When the expression of MHC-I on the cell surface decreases, which might occur during certain viral infections and cancer, iNKRs lose inhibiting signals and the infected cells become target for NK cell activation (missing-self detection). Although the detection of MHC-I deficient cells can be achieved by conserved receptor-ligand interactions, several iNKRs are encoded by gene families with a remarkable genetic diversity, containing many haplotypes varying in gene content and allelic polymorphism. So far, the biological function of this expansion within the NKR cluster has remained poorly understood. Here, we investigate whether the evolution of diverse iNKRs genes can be driven by a specific viral immunoevasive mechanism: selective MHC downregulation. Several viruses, including EBV, CMV, and HIV, decrease the expression of MHC-I to escape from T cell responses. This downregulation does not always affect all MHC loci in the same way, as viruses target particular MHC molecules. To study the selection pressure of selective MHC downregulation on iNKRs, we have developed an agent-based model simulating an evolutionary scenario of hosts infected with herpes-like viruses, which are able to selectively downregulate the expression of MHC-I molecules on the cell surface. We show that iNKRs evolve specificity and, depending on the similarity of MHC alleles within each locus and the differences between the loci, they can specialize to a particular MHC-I locus. The easier it is to classify an MHC allele to its locus, the lower the required diversity of the NKRs. Thus, the diversification of the iNKR cluster depends on the locus specific MHC structure.
Collapse
Affiliation(s)
- Paola Carrillo-Bustamante
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University , Utrecht , Netherlands
| | - Can Kesmir
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University , Utrecht , Netherlands
| | - Rob J de Boer
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University , Utrecht , Netherlands
| |
Collapse
|
38
|
Carrillo-Bustamante P, Keşmir C, de Boer RJ. A Coevolutionary Arms Race between Hosts and Viruses Drives Polymorphism and Polygenicity of NK Cell Receptors. Mol Biol Evol 2015; 32:2149-60. [PMID: 25911231 PMCID: PMC4833080 DOI: 10.1093/molbev/msv096] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Natural killer cell receptors (NKRs) monitor the expression of major histocompatibility class I (MHC-I) and stress molecules to detect unhealthy tissue, such as infected or tumor cells. The NKR gene family shows a remarkable genetic diversity, containing several genes encoding receptors with activating and inhibiting signaling, and varying in gene content and allelic polymorphism. The expansion of the NKR genes is species-specific, with different species evolving alternative expanded NKR genes, which encode structurally different proteins, yet perform comparable functions. So far, the biological function of this expansion within the NKR cluster has remained poorly understood. To study the evolution of NKRs, we have developed an agent-based model implementing a coevolutionary scenario between hosts and herpes-like viruses that are able to evade the immune response by downregulating the expression of MHC-I on the cell surface. We show that hosts evolve specific inhibitory NKRs, specialized to particular MHC-I alleles in the population. Viruses in our simulations readily evolve proteins mimicking the MHC molecules of their host, even in the absence of MHC-I downregulation. As a result, the NKR locus becomes polygenic and polymorphic, encoding both specific inhibiting and activating receptors to optimally protect the hosts from coevolving viruses.
Collapse
Affiliation(s)
- Paola Carrillo-Bustamante
- Theoretical Biology & Bioinformatics, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Can Keşmir
- Theoretical Biology & Bioinformatics, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Rob J de Boer
- Theoretical Biology & Bioinformatics, Department of Biology, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
39
|
Chen L, Reyes-Vargas E, Dai H, Escobar H, Rudd B, Fairbanks J, Ho A, Cusick MF, Kumánovics A, Delgado J, He X, Jensen PE. Expression of the mouse MHC class Ib H2-T11 gene product, a paralog of H2-T23 (Qa-1) with shared peptide-binding specificity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 193:1427-39. [PMID: 24958902 PMCID: PMC4211609 DOI: 10.4049/jimmunol.1302048] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The mouse MHC class Ib gene H2-T11 is 95% identical at the DNA level to H2-T23, which encodes Qa-1, one of the most studied MHC class Ib molecules. H2-T11 mRNA was observed to be expressed widely in tissues of C57BL/6 mice, with the highest levels in thymus. To circumvent the availability of a specific mAb, cells were transduced with cDNA encoding T11 with a substituted α3 domain. Hybrid T11D3 protein was expressed at high levels similar to control T23D3 molecules on the surface of both TAP(+) and TAP(-) cells. Soluble T11D3 was generated by folding in vitro with Qa-1 determinant modifier, the dominant peptide presented by Qa-1. The circular dichroism spectrum of this protein was similar to that of other MHC class I molecules, and it was observed to bind labeled Qa-1 determinant modifier peptide with rapid kinetics. By contrast to the Qa-1 control, T11 tetramers did not react with cells expressing CD94/NKG2A, supporting the conclusion that T11 cannot replace Qa-1 as a ligand for NK cell inhibitory receptors. T11 also failed to substitute for Qa-1 in the presentation of insulin to a Qa-1-restricted T cell hybridoma. Despite divergent function, T11 was observed to share peptide-loading specificity with Qa-1. Direct analysis by tandem mass spectrometry of peptides eluted from T11D3 and T23D3 isolated from Hela cells demonstrated a diversity of peptides with a clear motif that was shared between the two molecules. Thus, T11 is a paralog of T23 encoding an MHC class Ib molecule that shares peptide-binding specificity with Qa-1 but differs in function.
Collapse
Affiliation(s)
- Lili Chen
- Department of Pathology, University of Utah, Salt Lake City, UT 84112; and
| | | | - Hu Dai
- Department of Pathology, University of Utah, Salt Lake City, UT 84112; and
| | | | - Brant Rudd
- Department of Pathology, University of Utah, Salt Lake City, UT 84112; and
| | - Jared Fairbanks
- Department of Pathology, University of Utah, Salt Lake City, UT 84112; and
| | - Alexander Ho
- Department of Pathology, University of Utah, Salt Lake City, UT 84112; and
| | - Mathew F Cusick
- Department of Pathology, University of Utah, Salt Lake City, UT 84112; and
| | - Attila Kumánovics
- Department of Pathology, University of Utah, Salt Lake City, UT 84112; and ARUP Laboratories, Salt Lake City, UT 84112
| | - Julio Delgado
- Department of Pathology, University of Utah, Salt Lake City, UT 84112; and ARUP Laboratories, Salt Lake City, UT 84112
| | - Xiao He
- Department of Pathology, University of Utah, Salt Lake City, UT 84112; and
| | - Peter E Jensen
- Department of Pathology, University of Utah, Salt Lake City, UT 84112; and ARUP Laboratories, Salt Lake City, UT 84112
| |
Collapse
|
40
|
Berry R, Rossjohn J, Brooks AG. The Ly49 natural killer cell receptors: a versatile tool for viral self‐discrimination. Immunol Cell Biol 2014; 92:214-20. [DOI: 10.1038/icb.2013.100] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 11/10/2013] [Indexed: 12/16/2022]
Affiliation(s)
- Richard Berry
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash UniversityClaytonVictoriaAustralia
| | - Jamie Rossjohn
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash UniversityClaytonVictoriaAustralia
- Institute of Infection and Immunity, School of Medicine, Cardiff UniversityCardiffUK
| | - Andrew G Brooks
- Department of Microbiology and Immunology, University of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
41
|
Adams EJ, Luoma AM. The adaptable major histocompatibility complex (MHC) fold: structure and function of nonclassical and MHC class I-like molecules. Annu Rev Immunol 2013; 31:529-61. [PMID: 23298204 DOI: 10.1146/annurev-immunol-032712-095912] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The MHC fold is found in proteins that have a range of functions in the maintenance of an organism's health, from immune regulation to fat metabolism. Well adapted for antigen presentation, as seen for peptides in the classical MHC molecules and for lipids in CD1 molecules, the MHC fold has also been modified to perform Fc-receptor activity (e.g., FcRn) and for roles in host homeostasis (e.g., with HFE and ZAG). The more divergent MHC-like molecules, such as some of those that interact with the NKG2D receptor, represent the minimal MHC fold, doing away with the α3 domain and β2m while maintaining the α1/α2 platform domain for receptor engagement. Viruses have also co-opted the MHC fold for immune-evasive functions. The variations on the theme of a β-sheet topped by two semiparallel α-helices are discussed in this review, highlighting the fantastic adaptability of this fold for good and for bad.
Collapse
Affiliation(s)
- Erin J Adams
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, USA.
| | | |
Collapse
|
42
|
Yewdell JW, Lu X. Don't mess with ERAAP! Nat Immunol 2012; 13:526-8. [PMID: 22610241 DOI: 10.1038/ni.2306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|