1
|
Xu Y, Gao Z, Liu J, Yang Q, Xu S. Role of gut microbiome in suppression of cancers. Gut Microbes 2025; 17:2495183. [PMID: 40254597 PMCID: PMC12013426 DOI: 10.1080/19490976.2025.2495183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 03/23/2025] [Accepted: 04/14/2025] [Indexed: 04/22/2025] Open
Abstract
The pathogenesis of cancer is closely related to the disruption of homeostasis in the human body. The gut microbiome plays crucial roles in maintaining the homeostasis of its host throughout lifespan. In recent years, a large number of studies have shown that dysbiosis of the gut microbiome is involved in the entire process of cancer initiation, development, and prognosis by influencing the host immune system and metabolism. Some specific intestinal bacteria promote the occurrence and development of cancers under certain conditions. Conversely, some other specific intestinal bacteria suppress the oncogenesis and progression of cancers, including inhibiting the occurrence of cancers, delaying the progression of cancers and boosting the therapeutic effect on cancers. The promoting effects of the gut microbiome on cancers have been comprehensively discussed in the previous review. This article will review the latest advances in the roles and mechanisms of gut microbiome in cancer suppression, providing a new perspective for developing strategies of cancer prevention and treatment.
Collapse
Affiliation(s)
- Yao Xu
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P. R. China
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, P. R. China
| | - Zhaoyu Gao
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P. R. China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, P. R. China
- Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, P. R. China
| | - Jiaying Liu
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P. R. China
| | - Qianqian Yang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P. R. China
| | - Shunjiang Xu
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P. R. China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, P. R. China
- Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, P. R. China
| |
Collapse
|
2
|
Mojadadi A, Au A, Ortiz Cerda T, Shao JY, O'Neil T, Bell-Anderson K, Andersen JW, Webb J, Salah W, Ahmad G, Harris HH, Witting PK. Dietary supplementation of male mice with inorganic, organic or nanoparticle selenium preparations: evidence supporting a putative gut-thyroid-male fertility axis. Redox Rep 2025; 30:2495367. [PMID: 40277453 DOI: 10.1080/13510002.2025.2495367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025] Open
Abstract
Selenium (Se) is linked to physiological homeostasis. Male mice (n = 8/group) were fed control (AIN93G) or diets enriched in sodium selenite (NaSe, 5.6 ppm), methylselenocysteine (Met, 4.7 ppm), diphenyl diselenide (DPDS, 14.2 ppm), or nanoselenium (NanoSe, 2.7 ppm); dietary Se ascertained by inductively-coupled plasma mass spectrometry. At 4 weeks testes, sperm, thyroids, blood and stool were collected to assess histoarchitecture, circulating hormones (thyroxine, T4; triiodothyronine, T3; thyroid stimulating hormone, TSH) and gut microbiome (16S rRNAV3-V4 amplicon sequencing). Supplemented NaSe, Met, and NanoSe increased plasma testosterone and testis glutathione peroxidases (GPx-1/4) while testicular superoxide dismutase and catalase increased slightly in the NanoSe group indicating a selective antioxidant response. Overall, NanoSe and NaSe enhanced male reproductive factors. All thyroids isolated from Se-supplemented mice contained marginal vacuoles and a lower follicle area vs control. Nano-Se enhanced thyroidiodothyronine deiodinase-1 (DIO1) expression however, thyroid GPx-1/4 remained unchanged. Supplemented NaSe and DPDSl increased plasma T3/T4 ratio, while plasma TSH was unchanged. Microbiome analyses showed that NanoSe was most efficacious in altering composition (judged by α-diversity, Shannon index and taxon richness) while the NaSe diet showed the greatest overall change in α-diversity. Dietary Se supplementation, particularly encapsulated NanoSe, may improve male fertility factors by enhancing the gut-thyroid-fertility axis.
Collapse
Affiliation(s)
- A Mojadadi
- Redox Biology Group, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - A Au
- Redox Biology Group, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - T Ortiz Cerda
- Departamento de Citología e Histología Normal y Patológica, Facultad de medicina, Universidad de Sevilla, Seville, Spain
| | - J-Y Shao
- Redox Biology Group, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - T O'Neil
- Redox Biology Group, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - K Bell-Anderson
- Discipline of Nutrition, School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - J W Andersen
- School of Chemistry and Physics, The University of Adelaide, Adelaide, Australia
| | - J Webb
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, Australia
| | - W Salah
- Redox Biology Group, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - G Ahmad
- Redox Biology Group, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - H H Harris
- Discipline of Nutrition, School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - P K Witting
- Redox Biology Group, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| |
Collapse
|
3
|
Hetta HF, Ahmed R, Ramadan YN, Fathy H, Khorshid M, Mabrouk MM, Hashem M. Gut virome: New key players in the pathogenesis of inflammatory bowel disease. World J Methodol 2025; 15:92592. [DOI: 10.5662/wjm.v15.i2.92592] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/28/2024] [Accepted: 07/23/2024] [Indexed: 11/27/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory illness of the intestine. While the mechanism underlying the pathogenesis of IBD is not fully understood, it is believed that a complex combination of host immunological response, environmental exposure, particularly the gut microbiota, and genetic susceptibility represents the major determinants. The gut virome is a group of viruses found in great frequency in the gastrointestinal tract of humans. The gut virome varies greatly among individuals and is influenced by factors including lifestyle, diet, health and disease conditions, geography, and urbanization. The majority of research has focused on the significance of gut bacteria in the progression of IBD, although viral populations represent an important component of the microbiome. We conducted this review to highlight the viral communities in the gut and their expected roles in the etiopathogenesis of IBD regarding published research to date.
Collapse
Affiliation(s)
- Helal F Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
- Division of Microbiology, Immunology and Biotechnology, Faculty of pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Rehab Ahmed
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Yasmin N Ramadan
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Hayam Fathy
- Department of Internal Medicine, Division Hepatogastroenterology, Assiut University, Assiut 71515, Egypt
| | - Mohammed Khorshid
- Department of Clinical Research, Egyptian Developers of Gastroenterology and Endoscopy Foundation, Cairo 11936, Egypt
| | - Mohamed M Mabrouk
- Department of Internal Medicine, Faculty of Medicine. Tanta University, Tanta 31527, Egypt
| | - Mai Hashem
- Department of Tropical Medicine, Gastroenterology and Hepatology, Assiut University Hospital, Assiut 71515, Egypt
| |
Collapse
|
4
|
Sathitkowitchai W, Mok K, Udomsri P, Nitisinprasert S, Nakphaichit M. Synergistic activity of synbiotic blend between Lactococcus lactis KAFF 1-4 and fibersol-2 on gut microbiota modulation and anti-VRE properties. 3 Biotech 2025; 15:133. [PMID: 40255450 PMCID: PMC12006641 DOI: 10.1007/s13205-025-04298-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 04/03/2025] [Indexed: 04/22/2025] Open
Abstract
The study evaluated the effectiveness of a synbiotic blend containing Lactococcus lactis KA-FF 1-4 and Fibersol-2 in modulating gut microbiota and inhibiting vancomycin-resistant Enterococcus (VRE). Compared to probiotic or prebiotic treatments alone, the synbiotic blend significantly altered the gut microbiota composition, increasing beneficial bacteria like Blautia, Clostridium, Parabacteroides, Prevotella, and Roseburia, while reducing VRE abundance. Moreover, the synbiotic treatment showed an increase in short-chain fatty acid (SCFA) concentrations, particularly acetate, propionate, and butyrate. Correlation analysis revealed that enriched taxa in the synbiotic treatment were positively associated with higher SCFA levels. These findings highlight the potential of synbiotic formulations in improving gut microbiota balance and combating antibiotic-resistant pathogens like VRE.
Collapse
Affiliation(s)
- Witida Sathitkowitchai
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, 10900 Thailand
| | - Kevin Mok
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, 10900 Thailand
- Center of Excellence for Microbiota Innovation, Faculty of Agro-Industry, Kasetsart University, Bangkok, 10900 Thailand
| | - Patkakorn Udomsri
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, 10900 Thailand
| | - Sunee Nitisinprasert
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, 10900 Thailand
- Center of Excellence for Microbiota Innovation, Faculty of Agro-Industry, Kasetsart University, Bangkok, 10900 Thailand
- Center for Advanced Studies for Agriculture and Food, Kasetsart University Institute for Advanced Studies, Kasetsart University (CASAF, NRU-KU), Bangkok, 10900 Thailand
| | - Massalin Nakphaichit
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, 10900 Thailand
- Center of Excellence for Microbiota Innovation, Faculty of Agro-Industry, Kasetsart University, Bangkok, 10900 Thailand
- Center for Advanced Studies for Agriculture and Food, Kasetsart University Institute for Advanced Studies, Kasetsart University (CASAF, NRU-KU), Bangkok, 10900 Thailand
| |
Collapse
|
5
|
Zare MJ, Ahmadi A, Dehbozorgi S, Zare M, Hejazi N. The Association Between Children's Dietary Inflammatory Index (C-DII) and Nutrient Adequacy with Gastrointestinal Symptoms, Sleep Habits, and Autistic Traits. J Autism Dev Disord 2025; 55:1727-1736. [PMID: 38607471 DOI: 10.1007/s10803-024-06328-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 04/13/2024]
Affiliation(s)
- Mohammad Javad Zare
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Science, Shiraz, Iran
| | - Afsane Ahmadi
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Science, Shiraz, Iran.
| | - Sara Dehbozorgi
- Research Center for Psychiatry and Behavior Science, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Morteza Zare
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Science, Shiraz, Iran
| | - Najmeh Hejazi
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Science, Shiraz, Iran
| |
Collapse
|
6
|
Zhao Y, Ma Y, Li H, Chen M, Yang S, Xu Y, Zhang Q, Jiao B, Tan Y. An atlas of transcriptomic changes in human immune cells driven by 364 endogenous and gut-microbiota-derived metabolites. Sci Rep 2025; 15:13814. [PMID: 40258971 PMCID: PMC12012035 DOI: 10.1038/s41598-025-98781-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 04/15/2025] [Indexed: 04/23/2025] Open
Abstract
Metabolites, particularly those derived from gut microbiota, play crucial roles in modulating immune responses, but the impact of most metabolites on immune cells remains unexplored. To systematically investigate the effect of metabolites on immune cells, we treated peripheral blood mononuclear cells (PBMCs) with 364 endogenous and gut microbiota metabolites and analyzed their impact on the PBMC transcriptome using RNA sequencing (RNA-seq). Clustering analysis revealed three distinct metabolite groups (Cluster 0, 1, 2), each exerting unique immunomodulatory effects. Cluster 1 metabolites, enhanced inflammatory pathways (e.g., cytokine signaling, neutrophil migration) and suppressed ferroptosis, potentially prolonging immune cell activity. In contrast, Cluster 0 metabolites promoted antigen presentation and extracellular matrix repair, while Cluster 2 metabolites upregulated autophagy-related pathways (e.g., GTPase signaling, ubiquitin-protein regulation), suggesting anti-inflammatory and tissue-homeostatic functions. Immune deconvolution highlighted Cluster 1-driven monocyte-to-M0 macrophage differentiation and elevated activated dendritic/mast cells, aligning with pro-inflammatory outcomes. Metabolites in Clusters 0/2 were enriched in the TCA cycle and alanine/aspartate metabolism, whereas Cluster 1 metabolites correlated with beta-alanine and branched-chain amino acid pathways. Gut microbiota analysis identified 23 species overrepresented in Cluster 1, linking dysbiosis to inflammatory metabolite profiles. Together, this high-throughput atlas elucidates how bloodborne metabolites shape PBMC function, offering insights into metabolic-immune crosstalk and potential therapeutic targets for inflammatory and autoimmune disorders.
Collapse
Affiliation(s)
- Yiheng Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yuhua Ma
- Department of Nephrology, Traditional Chinese Medicine Hospital of Kunshan, Kunshan, Jiangsu, 215300, China
| | - Huimin Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Meng Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Sizhe Yang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yiyang Xu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qianqian Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Bo Jiao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Yun Tan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
7
|
Nemati MH, Yazdanpanah E, Kazemi R, Orooji N, Dadfar S, Oksenych V, Haghmorad D. Microbiota-Driven Mechanisms in Multiple Sclerosis: Pathogenesis, Therapeutic Strategies, and Biomarker Potential. BIOLOGY 2025; 14:435. [PMID: 40282300 PMCID: PMC12025160 DOI: 10.3390/biology14040435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/11/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025]
Abstract
Multiple sclerosis (MS) is a well-known, chronic autoimmune disorder of the central nervous system (CNS) involving demyelination and neurodegeneration. Research previously conducted in the area of the gut microbiome has highlighted it as a critical contributor to MS pathogenesis. Changes in the commensal microbiota, or dysbiosis, have been shown to affect immune homeostasis, leading to elevated levels of pro-inflammatory cytokines and disruption of the gut-brain axis. In this review, we provide a comprehensive overview of interactions between the gut microbiota and MS, especially focusing on the immunomodulatory actions of microbiota, such as influencing T-cell balance and control of metabolites, e.g., short-chain fatty acids. Various microbial taxa (e.g., Prevotella and Faecalibacterium) were suggested to lay protective roles, whereas Akkermansia muciniphila was associated with disease aggravation. Interventions focusing on microbiota, including probiotics, prebiotics, fecal microbiota transplantation (FMT), and dietary therapies to normalize gut microbial homeostasis, suppress inflammation and are proven to improve clinical benefits in MS patients. Alterations in gut microbiota represent opportunities for identifying biomarkers for early diagnosis, disease progression and treatment response monitoring. Further studies need to be conducted to potentially address the interplay between genetic predispositions, environmental cues, and microbiota composition to get the precise mechanisms of the gut-brain axis in MS. In conclusion, the gut microbiota plays a central role in MS pathogenesis and offers potential for novel therapeutic approaches, providing a promising avenue for improving clinical outcomes in MS management.
Collapse
Affiliation(s)
- Mohammad Hosein Nemati
- Student Research Committee, Semnan University of Medical Sciences, Semnan 3514799442, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 3514799442, Iran
| | - Esmaeil Yazdanpanah
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Roya Kazemi
- Student Research Committee, Semnan University of Medical Sciences, Semnan 3514799442, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 3514799442, Iran
| | - Niloufar Orooji
- Student Research Committee, Semnan University of Medical Sciences, Semnan 3514799442, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 3514799442, Iran
| | - Sepehr Dadfar
- Student Research Committee, Semnan University of Medical Sciences, Semnan 3514799442, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 3514799442, Iran
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Dariush Haghmorad
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 3514799442, Iran
| |
Collapse
|
8
|
Alsakarneh S, Camilleri M, Farraye FA, Hashash JG. Comparative Effectiveness of Bile Acid Sequestrants and Antibiotics in the Management of Acute Pouchitis: A Matched Cohort Study from the United States. Dig Dis Sci 2025:10.1007/s10620-025-09039-2. [PMID: 40237906 DOI: 10.1007/s10620-025-09039-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 04/01/2025] [Indexed: 04/18/2025]
Abstract
BACKGROUND AND AIMS Bile acid sequestrants (BAS) are an emerging option for treatment of pouchitis. We aimed to compare BAS monotherapy, antibiotics, and combination therapy with both in the treatment of pouchitis after ileal pouch-anal anastomosis (IPAA) for ulcerative colitis (UC). METHODS We conducted a retrospective cohort study using the US-Collaborative TriNetX database to identify patients with acute pouchitis and UC. Treatment groups were divided into BAS (cholestyramine, colesevelam, colestipol), antibiotics (ciprofloxacin and/or metronidazole), and combination therapy of both BAS and antibiotics. Primary outcomes were failure of initial therapy (early relapse or nonresponse) and the development of recurrent pouchitis in the first 12 months after an initial episode of pouchitis. RESULTS Our analysis included 1,136 patients (mean age: 37.8 ± 15.4 years, and 45.9% female) of whom 727 (64%) were diagnosed with recurrent pouchitis. After adjusting for confounders by propensity-score matching, there was no significant difference in the odds of early relapse or nonresponse with BAS compared with antibiotic monotherapy (aOR: 0.74; 95% CI: 0.40-1.38; p = 0.34) or combination therapy (aOR: 0.94; 95% CI: 0.47-1.88; p = 0.86). Patients treated with BAS had a statistically significant lower recurrent pouchitis rate (aHR: 0.57; 95% CI: 0.42-0.79; p < 0.001) compared with patients treated with antibiotics. Patients treated with BAS had a statistically significant longer time (median: 225 days) to recurrent pouchitis (p < 0.001) compared to antibiotics (median: 99 days). CONCLUSION Using real-world evidence regarding treatment of pouchitis compared to standard antibiotic therapy, BAS monotherapy was not inferior for initial treatment response and significantly prolonged time to recurrent pouchitis.
Collapse
Affiliation(s)
- Saqr Alsakarneh
- Department of Medicine, University of Missouri-Kansas City, Kansas City, MO, USA.
| | - Michael Camilleri
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Francis A Farraye
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL, USA
| | - Jana G Hashash
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
9
|
Song Q, Meng Q, Meng X, Wang X, Zhang Y, Zhao T, Cong J. Size- and duration-dependent toxicity of heavy vehicle tire wear particles in zebrafish. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138299. [PMID: 40253784 DOI: 10.1016/j.jhazmat.2025.138299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 04/09/2025] [Accepted: 04/14/2025] [Indexed: 04/22/2025]
Abstract
Tire wear particles (TWPs), as a pervasive environmental pollutant, pose significant risks to aquatic ecosystems. This study investigates the effects of small (HS) and large (HL) TWPs produced by heavy vehicles on zebrafish, focusing on physiological, microbial, and transcriptomic levels, as well as their intergenerational consequences, under short-term (15 days) and long-term (90 days) exposure. Short-term exposure to small particles (HS15) significantly reduced body width and triggered widespread oxidative stress, while long-term exposure to large particles (HL90) increased gut weight and decreased gill weight, reflecting respiratory and digestive disruptions. Tissue-level analyses revealed that smaller particles accumulated more readily in internal organs, whereas larger particles caused localized physiological stress. Gut microbiota profiling indicated a marked decline in microbial diversity, compositional shifts, and network simplification, with HL15 enriched in Acinetobacter and xenobiotic metabolism pathways, and HS15 exhibiting Proteobacteria-dominated dysbiosis and enrichment of LPS biosynthesis genes. Liver transcriptomics revealed group-specific responses: HL15 exposure activated innate immunity via the NOD-MAPK axis, while HS15 induced atypical PI3K-NF-κB signaling, potentially linked to microbial LPS. Notably, all TWP-exposed groups showed enrichment of the herpes simplex virus 1 (HSV-1) infection pathway, suggesting a conserved antiviral-like host response. Transgenerational effects were evidenced by impaired growth and significant downregulation of GH/IGF signaling and upregulation of apoptotic genes in offspring, despite only subtle transcriptomic changes in long-term exposed parents. These findings underscore the importance of particle size, exposure duration, and microbiota-gut-liver axis interactions in mediating TWP toxicity and highlight potential transgenerational risks associated with environmental microplastic exposure.
Collapse
Affiliation(s)
- Qianqian Song
- College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China
| | - Qingxuan Meng
- College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China
| | - Xinrui Meng
- College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China
| | - Xiaolong Wang
- College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China
| | - Yun Zhang
- College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China
| | - Tianyu Zhao
- College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China
| | - Jing Cong
- College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China.
| |
Collapse
|
10
|
Schneider S, Biggerstaff D, Barber TM. Dietary Guidelines Post Kidney Transplant: Is This the Missing Link in Recovery and Graft Survival? Transpl Int 2025; 38:14288. [PMID: 40248508 PMCID: PMC12004285 DOI: 10.3389/ti.2025.14288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/11/2025] [Indexed: 04/19/2025]
Abstract
The physiology of a transplanted kidney is affected from the moment it is separated from the donor. The risk of complications arising from surgery are highly associated with ischemic-reperfusion injury (IRI) due to the effects of hypoxia and oxidative stress during the procurement, preservation and reperfusion procedures. Hypoxia promotes the formation of reactive oxygen species (ROS) and it seems apparent that finding ways of optimising the metabolic milieu for the transplanted kidney would improve recovery and graft survival. Studies have demonstrated the benefits of nutrition and antioxidant compounds in mitigating the disturbance of energy supply to cells post-transplant and at improving long-term graft survival. Particularly in patients who may be nutritionally deficient following long-term dialysis. Despite the high incidence of allograft failure, a search of the literature and grey literature reveals no medical nutriti on therapy guidelines on beneficial nutrient intake to aid transplant recovery and survival. This narrative review aims to summarise current knowledge of specific macro and micronutrients and their effect on allograft recovery and survival in the perioperative period, up to 1-year post transplant, to optimise the metabolic environment and mitigate risk to graft injury.
Collapse
Affiliation(s)
- Suzanne Schneider
- Directorate Applied Health, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Deborah Biggerstaff
- Directorate Applied Health, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Thomas M. Barber
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire, Coventry, United Kingdom
| |
Collapse
|
11
|
Yoshimura Y, Wakabayashi H, Nagano F, Matsumoto A, Shimazu S, Shiraishi A, Kido Y, Bise T, Hamada T, Yoneda K, Maeda K. Systemic inflammation is associated with gut microbiota diversity in post-stroke patients. Eur Geriatr Med 2025; 16:689-699. [PMID: 39934474 DOI: 10.1007/s41999-025-01159-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/21/2025] [Indexed: 02/13/2025]
Abstract
BACKGROUND There is growing interest in gut microbiota and health outcomes. However, the relationship between systemic inflammation and gut microbiota diversity in hospitalized patients remains unclear. This study aimed to investigate the association in post-stroke rehabilitation patients. METHODS A cross-sectional study was conducted on post-stroke patients admitted to a rehabilitation hospital. Systemic inflammation was assessed using the modified Glasgow Prognostic Score (mGPS). Gut microbiota diversity was evaluated using three indices: Shannon index, Operational Taxonomic Unit (OTU) richness, and Faith's Phylogenetic Diversity (PD). Multiple linear regression analyses were performed to examine the relationship between mGPS and gut microbiota diversity indices, adjusting for potential confounders. RESULTS A total of 156 patients (mean age 78.4 years; 55.7% men) were analyzed. The median mGPS was 0 (interquartile range: 0-1), with GPS distribution: 61.8% scored 0, 25.7% scored 1, and 12.5% scored 2. After adjusting for confounders, mGPS was significantly and negatively associated with the Shannon index (B = -0.143, 95% CI -0.288 to -0.002, β = -0.177) and OTU richness (B = -17.832, 95% CI -24.349 to -3.951, β = -0.208). However, no significant association was observed between mGPS and Faith's PD (B = -1.155, 95% CI -2.464 to 0.189, β = -0.155). CONCLUSION This study demonstrates a significant negative association between systemic inflammation and both quantitative and qualitative gut microbiota diversity in post-stroke patients.
Collapse
Affiliation(s)
- Yoshihiro Yoshimura
- Center for Sarcopenia and Malnutrition Research, Kumamoto Rehabilitation Hospital, 760 Magate, Kikuyo, Kikuchi, Kumamoto, 869-1106, Japan.
| | - Hidetaka Wakabayashi
- Department of Rehabilitation Medicine, Tokyo Women's Medical University Hospital, Shinjuku, Tokyo, Japan
| | - Fumihiko Nagano
- Center for Sarcopenia and Malnutrition Research, Kumamoto Rehabilitation Hospital, 760 Magate, Kikuyo, Kikuchi, Kumamoto, 869-1106, Japan
| | - Ayaka Matsumoto
- Center for Sarcopenia and Malnutrition Research, Kumamoto Rehabilitation Hospital, 760 Magate, Kikuyo, Kikuchi, Kumamoto, 869-1106, Japan
| | - Sayuri Shimazu
- Center for Sarcopenia and Malnutrition Research, Kumamoto Rehabilitation Hospital, 760 Magate, Kikuyo, Kikuchi, Kumamoto, 869-1106, Japan
| | - Ai Shiraishi
- Center for Sarcopenia and Malnutrition Research, Kumamoto Rehabilitation Hospital, 760 Magate, Kikuyo, Kikuchi, Kumamoto, 869-1106, Japan
| | - Yoshifumi Kido
- Center for Sarcopenia and Malnutrition Research, Kumamoto Rehabilitation Hospital, 760 Magate, Kikuyo, Kikuchi, Kumamoto, 869-1106, Japan
| | - Takahiro Bise
- Center for Sarcopenia and Malnutrition Research, Kumamoto Rehabilitation Hospital, 760 Magate, Kikuyo, Kikuchi, Kumamoto, 869-1106, Japan
| | - Takenori Hamada
- Center for Sarcopenia and Malnutrition Research, Kumamoto Rehabilitation Hospital, 760 Magate, Kikuyo, Kikuchi, Kumamoto, 869-1106, Japan
| | - Kouki Yoneda
- Center for Sarcopenia and Malnutrition Research, Kumamoto Rehabilitation Hospital, 760 Magate, Kikuyo, Kikuchi, Kumamoto, 869-1106, Japan
| | - Keisuke Maeda
- Nutrition Therapy Support Center, Aichi Medical University Hospital, Nagakute, Aichi, Japan
- Department of Geriatric Medicine, Hospital, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| |
Collapse
|
12
|
Fusco EM, Bower L, Polidoro R, Minns AM, Lindner SE, Schmidt NW. Microbiome-mediated modulation of immune memory to P. yoelii affects the resistance to secondary cerebral malaria challenge. Immunohorizons 2025; 9:vlaf009. [PMID: 40193560 DOI: 10.1093/immhor/vlaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/29/2025] [Indexed: 04/09/2025] Open
Abstract
Malaria is caused by protozoan parasites in the genus Plasmodium. Over time individuals slowly develop clinical immunity to malaria, but this process occurs at variable rates, and the mechanism of protection is not fully understood. We have recently demonstrated that in genetically identical C57BL/6N mice, gut microbiota composition dramatically impacts the quality of the humoral immune response to Plasmodium yoelii and subsequent protection against a lethal secondary challenge with Plasmodium berghei ANKA in C57BL/6N mice. Here, we utilize this genetically identical, gut microbiome-dependent model to investigate how the gut microbiota modulate immunological memory, hypothesizing that the gut microbiome impacts the formation and functionality of immune memory. In support of this hypothesis, P. yoelii hyperparasitemia-resistant C57BL/6N mice exhibit increased protection against P. berghei ANKA-induced experimental cerebral malaria (ECM) compared to P. yoelii hyperparasitemia-susceptible C57BL/6N mice. Despite differences in protection against ECM, P. yoelii-resistant and -susceptible mice accumulate similar numbers of memory B cells (MBCs) and memory T cells. Following challenge with P. berghei ANKA, P. yoelii-resistant mice generated more rapid germinal center reactions; however, P. yoelii-resistant and -susceptible mice had similar titers of P. yoelii- and P. berghei-specific antibodies. In contrast, P. yoelii-resistant mice had an increased number of regulatory T cells in response to secondary challenge with P. berghei ANKA, which may dampen the immune-mediated breakdown of the blood-brain barrier and susceptibility to P. berghei-induced ECM. These findings demonstrate the ability of the gut microbiome to shape immune memory and the potential to enhance resistance to severe malaria outcomes.
Collapse
Affiliation(s)
- Elizabeth M Fusco
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Layne Bower
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Rafael Polidoro
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Allen M Minns
- The Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA, United States
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
- The Huck Center for Malaria Research, University Park, PA, United States
| | - Scott E Lindner
- The Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA, United States
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
- The Huck Center for Malaria Research, University Park, PA, United States
| | - Nathan W Schmidt
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
13
|
Mohamed ZS, Wu Q, Jacome MA, Chen J, Etame AB. The Role of Gut Microbiome on Glioblastoma Oncogenesis and Malignant Evolution. Int J Mol Sci 2025; 26:2935. [PMID: 40243570 PMCID: PMC11989184 DOI: 10.3390/ijms26072935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/18/2025] [Accepted: 03/21/2025] [Indexed: 04/18/2025] Open
Abstract
Glioblastoma (GBM) remains the most aggressive primary brain tumor, with poor survival outcomes and treatment limited to maximal safe surgical resection, chemotherapy with temozolomide, and radiotherapy. While immunotherapy and targeted treatments show promise, therapeutic resistance and disease progression remain major challenges. This is partly due to GBM's classification as a "cold tumor" with low mutational burden and a lack of distinct molecular targets for drug delivery that selectively spare healthy tissue. Emerging evidence highlights the gut microbiota as a key player in cancer biology, influencing both glioma development and treatment response. This review explores the intersectionality between the gut microbiome and GBM, beginning with an overview of microbiota composition and its broader implications in cancer pathophysiology. We then examine how specific microbial populations contribute to glioma oncogenesis, modulating immune responses, inflammation, and metabolic pathways that drive tumor initiation and progression. Additionally, we discuss the gut microbiome's role in glioma therapeutic resistance, including its impact on chemotherapy, radiotherapy, and immunotherapy efficacy. Given its influence on treatment outcomes, we evaluate emerging strategies to modulate gut flora, such as probiotics, dietary interventions, and microbiota-based therapeutics, to enhance therapy response in GBM patients. Finally, we address key challenges and future directions, emphasizing the need for standardized methodologies, mechanistic studies, and clinical trials to validate microbiota-targeted interventions in neuro-oncology. By integrating gut microbiome research into GBM treatment paradigms, we may unlock novel therapeutic avenues to improve patient survival and outcomes.
Collapse
Affiliation(s)
| | - Qiong Wu
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (Q.W.); (J.C.)
| | - Maria A. Jacome
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA;
| | - Jianan Chen
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (Q.W.); (J.C.)
| | - Arnold B. Etame
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (Q.W.); (J.C.)
| |
Collapse
|
14
|
Yoshimura Y, Wakabayashi H, Nagano F, Matsumoto A, Shimazu S, Shiraishi A, Kido Y, Bise T, Hamada T, Yoneda K, Maeda K. Gut microbiome diversity is associated with muscle mass, strength and quality in post-stroke patients. Clin Nutr ESPEN 2025; 67:25-33. [PMID: 40049396 DOI: 10.1016/j.clnesp.2025.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 02/20/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025]
Abstract
BACKGROUND The gut microbiome has emerged as a potential influencer of muscle health; however, its role in hospitalized patients remains unclear. This study aimed to investigate the association between gut microbiome diversity and skeletal muscle mass, strength, and quality in hospitalized post-stroke patients. METHODS We conducted a cross-sectional study of post-stroke patients admitted to a rehabilitation facility. Gut microbiome diversity was assessed using 16S ribosomal ribonucleic acid (rRNA) gene sequencing, calculating Operational Taxonomic Unit (OTU) Richness, Faith's Phylogenetic Diversity (PD), and Shannon index. Muscle health was evaluated using skeletal muscle index (SMI) for muscle mass, handgrip strength (HGS) for muscle strength, and bioimpedance analysis-derived phase angle (PhA) for muscle quality. Multiple linear regression analyses were performed, adjusting for potential confounders. RESULTS A total of 156 patients (mean age 78.4 years; 55.7 % male) were analyzed. OTU Richness showed significant positive associations with SMI (β = 0.197, p = 0.025), HGS (β = 0.180, p = 0.005), and PhA (β = 0.178, p = 0.022). The Shannon index was also positively associated with SMI (β = 0.120, p = 0.041), HGS (β = 0.140, p = 0.028), and PhA (β = 0.164, p = 0.032). Faith's PD did not demonstrate significant associations with muscle health parameters. CONCLUSIONS Higher gut microbiome diversity, assessed by OTU Richness and Shannon index, is associated with better muscle mass, strength, and quality in post-stroke patients. These findings suggest a potential role for gut microbiota in muscle health during stroke rehabilitation.
Collapse
Affiliation(s)
- Yoshihiro Yoshimura
- Center for Sarcopenia and Malnutrition Research, Kumamoto Rehabilitation Hospital, Kumamoto, Japan.
| | - Hidetaka Wakabayashi
- Department of Rehabilitation Medicine, Tokyo Women's Medical University Hospital, Japan.
| | - Fumihiko Nagano
- Center for Sarcopenia and Malnutrition Research, Kumamoto Rehabilitation Hospital, Kumamoto, Japan.
| | - Ayaka Matsumoto
- Center for Sarcopenia and Malnutrition Research, Kumamoto Rehabilitation Hospital, Kumamoto, Japan.
| | - Sayuri Shimazu
- Center for Sarcopenia and Malnutrition Research, Kumamoto Rehabilitation Hospital, Kumamoto, Japan.
| | - Ai Shiraishi
- Center for Sarcopenia and Malnutrition Research, Kumamoto Rehabilitation Hospital, Kumamoto, Japan.
| | - Yoshifumi Kido
- Center for Sarcopenia and Malnutrition Research, Kumamoto Rehabilitation Hospital, Kumamoto, Japan.
| | - Takahiro Bise
- Center for Sarcopenia and Malnutrition Research, Kumamoto Rehabilitation Hospital, Kumamoto, Japan.
| | - Takenori Hamada
- Center for Sarcopenia and Malnutrition Research, Kumamoto Rehabilitation Hospital, Kumamoto, Japan.
| | - Kouki Yoneda
- Center for Sarcopenia and Malnutrition Research, Kumamoto Rehabilitation Hospital, Kumamoto, Japan.
| | - Keisuke Maeda
- Nutrition Therapy Support Center, Aichi Medical University Hospital, Japan; Department of Geriatric Medicine, Hospital, National Center for Geriatrics and Gerontology, Japan.
| |
Collapse
|
15
|
Nguyen HD, Kim WK. Disrupted microbial cross-feeding and altered L-phenylalanine consumption in people living with HIV. Brief Bioinform 2025; 26:bbaf111. [PMID: 40072847 PMCID: PMC11899578 DOI: 10.1093/bib/bbaf111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/18/2024] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
This work aims to (1) identify microbial and metabolic alterations and (2) reveal a shift in phenylalanine production-consumption equilibrium in individuals with HIV. We conducted extensive searches in multiple databases [MEDLINE, Web of Science (including Cell Press, Oxford, HighWire, Science Direct, IOS Press, Springer Nature, PNAS, and Wiley), Google Scholar, and Embase] and selected two case-control 16S data sets (GenBank IDs: SRP039076 and EBI ID: ERP003611) for analysis. We assessed alpha and beta diversity, performed univariate tests on genus-level relative abundances, and identified significant microbiome features using random forest. We also utilized the MICOM model to simulate growth and metabolic exchanges within the microbiome, focusing on the Metabolite Exchange Score (MES) to determine key metabolic interactions. We found that L-phenylalanine had a higher MES in HIV-uninfected individuals compared with their infected counterparts. The flux of L-phenylalanine consumption was significantly lower in HIV-infected individuals compared with healthy controls, correlating with a decreased number of consuming species in the chronic HIV stage. Prevotella, Roseburia, and Catenibacterium were demonstrated as the most important microbial species involving an increase in L-phenylalanine production in HIV patients, whereas Bacteroides, Faecalibacterium, and Blautia contributed to a decrease in L-phenylalanine consumption. We also found significant alterations in both microbial diversity and metabolic exchanges in people living with HIV. Our findings shed light on why HIV-1 patients have elevated levels of phenylalanine. The impact on essential amino acids like L-phenylalanine underscores the effect of HIV on gut microbiome dynamics. Targeting the restoration of these interactions presents a potential therapeutic avenue for managing HIV-related dysbiosis.
Collapse
Affiliation(s)
- Hai Duc Nguyen
- Division of Microbiology, Tulane National Primate Research Center, Tulane University, Covington, LA 70433, United States
| | - Woong-Ki Kim
- Division of Microbiology, Tulane National Primate Research Center, Tulane University, Covington, LA 70433, United States
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70118, United States
| |
Collapse
|
16
|
Berzack S, Galor A. Microbiome-based therapeutics for ocular diseases. Clin Exp Optom 2025; 108:115-122. [PMID: 39617011 PMCID: PMC11875938 DOI: 10.1080/08164622.2024.2422479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 12/08/2024] Open
Abstract
The relationship between the gut microbiome and ocular health has garnered increasing attention within the scientific community. Recent research has focused on the gut-eye axis, examining whether imbalances within the gut microbiome can influence the development, progression and severity of ocular diseases, including dry eye disease, uveitis, and glaucoma. Dysbiosis within the gut microbiome is linked to immune dysregulation, chronic inflammation, and epithelial barrier dysfunction, all of which contribute to ocular pathology. This review synthesises current evidence on these associations, exploring how gut microbiome alterations drive disease mechanisms. Furthermore, it examines the therapeutic potential of microbiome-targeted interventions, including antibiotics, prebiotics, probiotics, and faecal microbiota transplantation, all of which aim to restore microbial balance and modulate immune responses. As the prevalence of these conditions continues to rise, a deeper understanding of the gut-eye axis may facilitate the development of novel, targeted therapies to address unmet needs in the management of ocular diseases.
Collapse
Affiliation(s)
- Shannan Berzack
- Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Anat Galor
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
17
|
Bhadani JS, Agashe VM, Shyam A, Mukhopadhaya J. The Gut Feeling: The Role of Gut Microbiome in Orthopedics. J Orthop Case Rep 2025; 15:308-311. [PMID: 40092263 PMCID: PMC11907122 DOI: 10.13107/jocr.2025.v15.i03.5418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/27/2025] [Indexed: 03/19/2025] Open
Abstract
Introduction:
Advancements in microbiome-targeted therapies, including probiotics, prebiotics, and fecal microbial transplantation, offer exciting possibilities for orthopedic care. Probiotics, live beneficial microorganisms found in fermented foods, such as yogurt, kefir, sauerkraut, kimchi, and cheese, help maintain a healthy gut microbiome. Prebiotics and fiber-rich foods such as onions, garlic, and whole grains, nourish these bacteria, supporting their growth and activity. Together, these therapies regulate gut health, promote immune resilience, reduce infection risks, and accelerate healing – key factors in orthopedic outcomes [1, 2]. The gut microbiome, a diverse ecosystem of microorganisms, plays a pivotal role in maintaining overall health [3]. Beyond digestion, it influences immune regulation, inflammation control, and musculoskeletal well-being [4]. Gut health significantly impacts orthopedic outcomes, including infection control, bone healing, and maintaining bone density. An imbalance in this ecosystem, known as dysbiosis, can compromise recovery and increase infection risks [5]. Supporting gut health through dietary modifications, probiotics, or prebiotics holds the potential to enhance patient outcomes [6].
Orthopedic Infections and Gut Health:
Periprosthetic joint infections and fracture-related infections remain formidable challenges in orthopedic care. Biofilm formation on implants can protect bacteria from antibiotics and immune responses, complicating treatment [7]. Dysbiosis can further exacerbate these risks by allowing bacteria to enter the bloodstream and colonize surgical sites [8]. Maintaining a balanced gut microbiome can enhance the body’s immune defenses, limit bacterial migration, and promote implant longevity.
Fracture Healing and Microbial Influence:
Bone repair is a finely regulated process involving inflammation, new bone formation, and remodeling [9]. A healthy gut microbiome plays an essential role in managing this process by moderating inflammation and promoting bone cell activity. Disruptions to the microbial ecosystem can lead to excessive inflammation and hinder the body’s ability to heal effectively [10]. Supporting microbial health may improve healing outcomes for patients prone to delayed recovery or complications.
Autoimmune Conditions and Increased Susceptibility to Infection:
Autoimmune diseases, such as rheumatoid arthritis, heighten susceptibility to infections due to weakened immune function [11]. Dysbiosis can further worsen immune imbalance, increasing the risk of bacterial migration to surgical sites. Ensuring gut health may help fortify immune resilience and reduce post-surgical complications for patients with these conditions [12].
Pain Management and Microbiome Modulation:
The gut microbiome affects pain perception by influencing the production of neurotransmitters that regulate pain pathways. An imbalance in gut bacteria can lead to heightened pain sensitivity, posing challenges for managing chronic conditions such as osteoarthritis [13]. Optimizing gut health may offer an additional approach to complement traditional pain management strategies and reduce dependency on medications.
Bone Density and Mineral Absorption
The gut microbiome plays a critical role in absorbing minerals vital for maintaining bone strength and density. Disruptions in microbial balance can impair this absorption process, contributing to conditions such as osteoporosis [14]. Emerging research suggests that specific probiotics may help enhance mineral absorption, providing a supportive therapy for improving bone health and reducing fracture risk [15].
Post-Surgical Recovery and Systemic Health:
The influence of the gut microbiome extends beyond local sites, playing a key role in systemic recovery following surgery. A balanced microbiome supports faster healing, reduced inflammation, and fewer post-operative complications. Conversely, microbial imbalances can delay recovery and increase the risk of infections [16]. Strategies to maintain microbial health in the perioperative period may improve surgical outcomes and accelerate rehabilitation.
Innovative Approaches in Orthopedic Care:
Screening for microbial imbalances before surgery could allow for timely interventions, minimizing complications and improving outcomes. While some therapies remain experimental, they represent promising avenues for future developments in personalized orthopedic treatment strategies [17]. Recent research has revealed that gut microbial alterations, particularly those affecting arginine metabolism, play a significant role in influencing bone structural remodeling [18]. Mechanical loading is crucial for maintaining bone health, but its effectiveness is often hampered by high variability in bone mechanoreceptor activity influenced by gut microbes. Studies have shown that microbial depletion can profoundly influence this responsiveness, indicating a possible pathway for future therapeutic strategies. The gut-bone axis, a concept gaining increasing attention, connects the state of the microbiome with bone health [19]. This relationship opens up the potential for microbiome-targeted interventions, such as dietary changes or probiotics, to enhance bone strength and treat conditions such as osteoporosis and inflammatory arthritis. By understanding the microbial factors that influence bone metabolism, researchers are uncovering new mechanisms for improving bone health, offering hope for more effective treatments in the future. To summarize the diverse and critical roles of the gut microbiome in orthopedic practice, the following table highlights key conditions and their implications for patient care (Table 1).
Conclusion:
The gut microbiome’s influence on infection, healing, and overall orthopedic outcomes presents an exciting area of exploration. For orthopedic surgeons and clinicians, understanding the gut microbiome’s role offers new preventive and therapeutic pathways, particularly in managing infection risks associated with implants and fractures. Future research may bring even more microbiome-targeted therapies, transforming orthopedic practices and improving patient care in ways that extend beyond traditional approaches. By integrating gut health into orthopedic treatment strategies, health-care providers can foster stronger, more resilient recovery for their patients, advancing the field toward more holistic and effective care.
Collapse
Affiliation(s)
| | - Vikas M Agashe
- Department of Orthopaedics, P.D. Hinduja Hospital, Mahim, Dr. Agashe’s Nursing Home, Mumbai, Maharashtra, India
| | - Ashok Shyam
- Department of Orthopaedics, Sancheti Institute for Orthopaedics and Rehabilitation, Pune, Maharashtra, India
| | - John Mukhopadhaya
- Department of Orthopaedics, Paras HMRI Hospital, Patna, Bihar, India
| |
Collapse
|
18
|
Jans M, Vereecke L. A guide to germ-free and gnotobiotic mouse technology to study health and disease. FEBS J 2025; 292:1228-1251. [PMID: 38523409 DOI: 10.1111/febs.17124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/17/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024]
Abstract
The intestinal microbiota has major influence on human physiology and modulates health and disease. Complex host-microbe interactions regulate various homeostatic processes, including metabolism and immune function, while disturbances in microbiota composition (dysbiosis) are associated with a plethora of human diseases and are believed to modulate disease initiation, progression and therapy response. The vast complexity of the human microbiota and its metabolic output represents a great challenge in unraveling the molecular basis of host-microbe interactions in specific physiological contexts. To increase our understanding of these interactions, functional microbiota research using animal models in a reductionistic setting are essential. In the dynamic landscape of gut microbiota research, the use of germ-free and gnotobiotic mouse technology, in which causal disease-driving mechanisms can be dissected, represents a pivotal investigative tool for functional microbiota research in health and disease, in which causal disease-driving mechanisms can be dissected. A better understanding of the health-modulating functions of the microbiota opens perspectives for improved therapies in many diseases. In this review, we discuss practical considerations for the design and execution of germ-free and gnotobiotic experiments, including considerations around germ-free rederivation and housing conditions, route and timing of microbial administration, and dosing protocols. This comprehensive overview aims to provide researchers with valuable insights for improved experimental design in the field of functional microbiota research.
Collapse
Affiliation(s)
- Maude Jans
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Lars Vereecke
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Belgium
| |
Collapse
|
19
|
Blok L, Hanssen N, Nieuwdorp M, Rampanelli E. From Microbes to Metabolites: Advances in Gut Microbiome Research in Type 1 Diabetes. Metabolites 2025; 15:138. [PMID: 39997763 PMCID: PMC11857261 DOI: 10.3390/metabo15020138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/26/2025] Open
Abstract
Background: Type 1 diabetes (T1D) is a severe chronic T-cell mediated autoimmune disease that attacks the insulin-producing beta cells of the pancreas. The multifactorial nature of T1D involves both genetic and environmental components, with recent research focusing on the gut microbiome as a crucial environmental factor in T1D pathogenesis. The gut microbiome and its metabolites play an important role in modulating immunity and autoimmunity. In recent years, studies have revealed significant alterations in the taxonomic and functional composition of the gut microbiome associated with the development of islet autoimmunity and T1D. These changes include reduced production of short-chain fatty acids, altered bile acid and tryptophan metabolism, and increased intestinal permeability with consequent perturbations of host (auto)immune responses. Methods/Results: In this review, we summarize and discuss recent observational, mechanistic and etiological studies investigating the gut microbiome in T1D and elucidating the intricate role of gut microbes in T1D pathogenesis. Moreover, we highlight the recent advances in intervention studies targeting the microbiota for the prevention or treatment of human T1D. Conclusions: A deeper understanding of the evolution of the gut microbiome before and after T1D onset and of the microbial signals conditioning host immunity may provide us with essential insights for exploiting the microbiome as a prognostic and therapeutic tool.
Collapse
Affiliation(s)
- Lente Blok
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, 1105 AZ Amsterdam, The Netherlands; (N.H.); (M.N.)
| | - Nordin Hanssen
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, 1105 AZ Amsterdam, The Netherlands; (N.H.); (M.N.)
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, 1105 AZ Amsterdam, The Netherlands; (N.H.); (M.N.)
| | - Elena Rampanelli
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, 1105 AZ Amsterdam, The Netherlands; (N.H.); (M.N.)
- Amsterdam Institute for Infection and Immunity (AII), Amsterdam, The Netherlands
| |
Collapse
|
20
|
Wu S, Chen H, Yu R, Li H, Zhao J, Stanton C, Paul Ross R, Chen W, Yang B. Human milk oligosaccharides 2'-fucosyllactose and 3-fucosyllactose attenuate ovalbumin-induced food allergy through immunoregulation and gut microbiota modulation. Food Funct 2025; 16:1267-1283. [PMID: 39918321 DOI: 10.1039/d4fo04638b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
The prebiotic properties of human milk oligosaccharides (HMOs) and emerging evidence of immunomodulatory effects suggest their potential therapeutic value in allergy management. 2'-Fucosyllactose (2'-FL) has been reported to alleviate food allergies, while the effect of other fucosylated HMOs on food allergy remains unclear. In this study, we assess the effect of two HMOs, 2'-FL and 3-fucosyllactose (3-FL), on symptomatology and immunological responses in an ovalbumin (OVA)-sensitized mouse model of food allergy as well as their influence on gut microbiota. The assessment of allergic symptoms, specific immunoglobulin E (IgE), and related gene expression levels in sensitized mice indicated that 3-FL was as effective as 2'-FL in alleviating food allergy. 2'-FL and 3-FL significantly decreased serum levels of OVA-specific IgE, mouse mast cell protease (mMCP-1) and IL-4 while increasing the levels of IFN-γ. Additionally, 2'-FL and 3-FL down-regulated gene expression of allergy-related cytokines in the small intestine and improved intestinal barrier damage. Furthermore, both 2'-FL and 3-FL treatment positively influenced the gut microbial profiles, in particular by enhancing the proportion of beneficial bacteria such as Lactobacillus and Bifidobacterium and decreasing the percentage of Turicibacter and Lachnospiraceae NK4A136 group, thereby modulating the immune system. Therefore, this study can provide insights into 2'-FL and 3-FL to alleviate OVA-induced allergy.
Collapse
Affiliation(s)
- Siya Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Renqiang Yu
- Department of Neonatology, Affiliated Women's Hospital of Jiangnan University, Wuxi 214002, China.
| | - Huizhen Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Research Laboratory for Maternal-Infant Microbiota and Health, Jiangnan University, Wuxi 214122, China
| | - Catherine Stanton
- International Joint Research Laboratory for Maternal-Infant Microbiota and Health, Jiangnan University, Wuxi 214122, China
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Co. Cork, Ireland
| | - R Paul Ross
- International Joint Research Laboratory for Maternal-Infant Microbiota and Health, Jiangnan University, Wuxi 214122, China
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Bo Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Research Laboratory for Maternal-Infant Microbiota and Health, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
21
|
Li X, Wu Y, Chen S, Deng C, Cheng S, Yan Z, Qiu G. CD8 + T cells may mediate the effect of gut microbiota on psoriasis: evidence from two-step mendelian randomization and bayesian weighting. Arch Dermatol Res 2025; 317:370. [PMID: 39921729 DOI: 10.1007/s00403-025-03857-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/04/2025] [Accepted: 01/18/2025] [Indexed: 02/10/2025]
Abstract
Emerging research indicates that gut microbiota and the associated immune responses are crucial in the development of chronic inflammatory skin diseases. This investigation employs Mendelian Randomization (MR) and Bayesian weighting to elucidate the causal links between gut microbiota, immune cells, and psoriasis, with a specific emphasis on CD8 + T cells. We leveraged summary statistics from genome-wide association studies (GWAS) related to gut microbiota, immune cells, and psoriasis. Single nucleotide polymorphisms (SNPs) were chosen as instrumental variables (IVs) to evaluate causal relationships through various MR methods, such as inverse variance weighted (IVW), MR Egger, weighted median, and simple mode. Additionally, Bayesian weighting was used to validate results and account for potential pleiotropy. The IVW analysis revealed significant associations between certain gut microbiota and psoriasis, notably identifying a protective link between Escherichia coli and psoriasis. Further MR analysis demonstrated that Escherichia coli had a causal relationship with CD8 + T cells. Increased levels of CD8 + T cells were associated with a higher risk of psoriasis. BWMR analysis confirmed these findings, showing that CD8 + T cells mediated 10.09% of the protective effect of Escherichia coli on psoriasis. This study underscores the significant role of Escherichia coli and CD8 + T cells in psoriasis, suggesting both protective and exacerbating effects. Understanding these microbiota-immune interactions can lead to the development of more effective, personalized treatments and preventative strategies, ultimately improving patient outcomes and quality of life.
Collapse
Affiliation(s)
- Xiaojian Li
- Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Yunbo Wu
- Jiangxi University of Chinese Medicine, Nanchang, 330004, China
- Dermatology Department, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Shiyu Chen
- Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Chenwei Deng
- Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Shiping Cheng
- Jiangxi University of Chinese Medicine, Nanchang, 330004, China
- Dermatology Department, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Zhangren Yan
- Jiangxi University of Chinese Medicine, Nanchang, 330004, China
- Dermatology Department, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Guirong Qiu
- Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
- Dermatology Department, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, 330006, China.
| |
Collapse
|
22
|
Paul JK, Azmal M, Haque ANMSNB, Meem M, Talukder OF, Ghosh A. Unlocking the secrets of the human gut microbiota: Comprehensive review on its role in different diseases. World J Gastroenterol 2025; 31:99913. [PMID: 39926224 PMCID: PMC11718612 DOI: 10.3748/wjg.v31.i5.99913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/25/2024] [Accepted: 12/05/2024] [Indexed: 12/30/2024] Open
Abstract
The human gut microbiota, a complex and diverse community of microorganisms, plays a crucial role in maintaining overall health by influencing various physiological processes, including digestion, immune function, and disease susceptibility. The balance between beneficial and harmful bacteria is essential for health, with dysbiosis - disruption of this balance - linked to numerous conditions such as metabolic disorders, autoimmune diseases, and cancers. This review highlights key genera such as Enterococcus, Ruminococcus, Bacteroides, Bifidobacterium, Escherichia coli, Akkermansia muciniphila, Firmicutes (including Clostridium and Lactobacillus), and Roseburia due to their well-established roles in immune regulation and metabolic processes, but other bacteria, including Clostridioides difficile, Salmonella, Helicobacter pylori, and Fusobacterium nucleatum, are also implicated in dysbiosis and various diseases. Pathogenic bacteria, including Escherichia coli and Bacteroides fragilis, contribute to inflammation and cancer progression by disrupting immune responses and damaging tissues. The potential for microbiota-based therapies, such as probiotics, prebiotics, fecal microbiota transplantation, and dietary interventions, to improve health outcomes is examined. Future research directions in the integration of multi-omics, the impact of diet and lifestyle on microbiota composition, and advancing microbiota engineering techniques are also discussed. Understanding the gut microbiota's role in health and disease is essential for formulating personalized, efficacious treatments and preventive strategies, thereby enhancing health outcomes and progressing microbiome research.
Collapse
Affiliation(s)
- Jibon Kumar Paul
- Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Mahir Azmal
- Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - ANM Shah Newaz Been Haque
- Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Meghla Meem
- Faculty of Medicine, Dhaka University, Dhaka 1000, Bangladesh
| | - Omar Faruk Talukder
- Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Ajit Ghosh
- Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| |
Collapse
|
23
|
Krupka WM, Motyl G, Dmowska-Chalaba J. The gut microbiome and osteoarthritis. Reumatologia 2025; 63:54-60. [PMID: 40206228 PMCID: PMC11977504 DOI: 10.5114/reum/197061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 12/08/2024] [Indexed: 04/11/2025] Open
Abstract
Osteoarthritis (OA) is one of the most common degenerative diseases, and the number of patients has been constantly increasing. Non-steroidal anti-inflammatory drugs, glucocorticosteroids, opioids, etc., and surgical procedures, e.g. arthroplasty, are among the most common methods of treatment. There are reasons to believe that the gut microbiome (GMB) may influence inflammatory processes occurring in the pathomechanism of OA. The inflammatory processes occurring in the intestines may lead to disruption of tight junctions and increased concentrations of pro-inflammatory cytokines, resulting in increased permeability of intestines, causing low-grade inflammation, including in the joints. Methods of altering the GMB composition to reduce the inflammatory and joint degenerative processes are known only to some extent, and long-term research is required. Osteoarthritis, a particularly well-known and very widespread disease due to the aging population, is characterized by moderate and local inflammation. It occurs due to the effects of biomechanical cartilage wear with damage of joint structures, primarily through degenerative processes. OA represents a therapeutic challenge, and any element that can influence its inhibition is highly sought after. Therefore, these methods seem to offer a promising additional approach to treatment.
Collapse
Affiliation(s)
- Wiktoria Maria Krupka
- Medical University of Warsaw, Poland
- Rheumatology Student Research Group at the National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Gabriela Motyl
- Medical University of Warsaw, Poland
- Rheumatology Student Research Group at the National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Joanna Dmowska-Chalaba
- Early Arthritis Clinic, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| |
Collapse
|
24
|
Kumar P, Kumar A, Kumar V. Role of Microbiota-Derived Metabolites in Prostate Cancer Inflammation and Progression. Cell Biochem Funct 2025; 43:e70050. [PMID: 39891389 DOI: 10.1002/cbf.70050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/25/2024] [Accepted: 01/20/2025] [Indexed: 02/03/2025]
Abstract
Prostate cancer (PCa) is the most commonly detected malignancy in men worldwide. PCa is a slow-growing cancer with the absence of symptoms at early stages. The pathogenesis has not been entirely understood including the key risk factors related to PCa development like diet and microbiota derived metabolites. Microbiota may influence the host's immunological responses, inflammatory responses, and metabolic pathways, which may be crucial for the development and metastasis. Similarly, short-chain fatty acids, methylamines, hippurate, bile acids, and other metabolites generated by microbiota may have potential roles in cancer inflammation and progression of cancer. Most studies have focused on the role of metabolites and their pathways involved in chronic inflammation, tumor initiation, proliferation, and progression. In summary, the review discusses the role of microbiota and microbial-derived metabolite-built strategies in inflammation and progression of the PCa.
Collapse
Affiliation(s)
- Pradeep Kumar
- Department of NMR, All India Institute of Medical Sciences, New Delhi, India
| | - Anil Kumar
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, India
| | - Virendra Kumar
- Department of NMR, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
25
|
Habibi A, Letafatkar N, Sattari N, Nobakht S, Rafat Z, Soltani Moghadam S, Mirdamadi A, Javid M, Jamilian P, Hassanipour S, Keivanlou MH, Amini-Salehi E. Modulation of inflammatory markers in type 2 diabetes mellitus through gut microbiome-targeted interventions: An umbrella review on meta-analyses. Clin Nutr ESPEN 2025; 65:93-104. [PMID: 39551350 DOI: 10.1016/j.clnesp.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/23/2024] [Accepted: 11/05/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND & AIMS Type 2 diabetes mellitus (T2DM) poses a significant global health challenge due to various lifestyle factors contributing to its prevalence and associated complications. Chronic low-grade inflammation, characterized by elevated levels of inflammatory markers such as C-reactive protein (CRP), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α), plays a pivotal role in the pathogenesis of T2DM. Modulation of the gut microbiota through microbiome-targeted therapy (MTT), including probiotics, prebiotics, and synbiotics, has emerged as a potential strategy to mitigate inflammation and improve metabolic outcomes in T2DM. METHODS A systematic review and meta-analysis were conducted following PRISMA guidelines to evaluate the impact of MTT on inflammatory markers in patients with T2DM. Searches were performed in PubMed, Scopus, and Web of Science databases up to June 2024, with inclusion criteria limited to English-language meta-analyses of randomized controlled trials (RCTs) assessing the effects of probiotics, prebiotics, or synbiotics on inflammatory markers in T2DM patients. RESULTS Ten meta-analyses met the inclusion criteria, comprising studies investigating the effects of various MTT interventions on CRP, IL-6, and TNF-α levels in T2DM patients. Meta-analysis results indicated significant reductions in CRP (SMD: -0.070; 95 % CI: -0.119 to -0.020) and TNF-α (SMD: -0.370; 95 % CI: -0.554 to -0.186) levels following MTT, while IL-6 reductions (SMD: -0.070; 95 % CI: -0.269 to 0.129) did not reach statistical significance. However, heterogeneity in study quality, intervention protocols, and participant demographics posed challenges in interpretation. CONCLUSIONS While improvements in inflammatory markers with MTT have been observed, significant limitations-such as heterogeneity in study quality and variation in intervention protocols-highlight the need for further research to confirm its efficacy and clarify underlying mechanisms. Future studies should aim to address these limitations by exploring variations in dosage, supplement formulations, and bacterial strains, which are crucial for improving the reliability and broader applicability of MTT in the management of T2DM.
Collapse
Affiliation(s)
- Arman Habibi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran; Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Negin Letafatkar
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran; Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Nazila Sattari
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran; Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Sara Nobakht
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Zahra Rafat
- Department of Medical Parasitology and Mycology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Arian Mirdamadi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Mona Javid
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Soheil Hassanipour
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran.
| | - Mohammad-Hossein Keivanlou
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran; Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| | - Ehsan Amini-Salehi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
26
|
Abavisani M, Faraji N, Ebadpour N, Kesharwani P, Sahebkar A. Beyond digestion: Exploring how the gut microbiota modulates human social behaviors. Neuroscience 2025; 565:52-62. [PMID: 39615647 DOI: 10.1016/j.neuroscience.2024.11.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 01/07/2025]
Abstract
For a long time, traditional medicine has acknowledged the gut's impact on general health. Contemporary science substantiates this association through investigations of the gut microbiota, the extensive community of microorganisms inhabiting our gastrointestinal system. These microscopic residents considerably improve digestive processes, nutritional absorption, immunological function, and pathogen defense. Nevertheless, a variety of gastrointestinal and extra-intestinal disorders can result from dysbiosis, an imbalance of the microbial composition of the gut microbiota. A groundbreaking discovery is the gut-brain axis, a complex communication network that links the enteric and central nervous system (CNS). This bidirectional communication allows the brain to influence gut activities and vice versa, impacting mental health and mood disorders like anxiety and depression. The gut microbiota can influence this communication by creating neurotransmitters and short-chain fatty acids, among other biochemical processes. These factors may affect our mental state, our ability to regulate our emotions, and the hypothalamic-pituitary-adrenal (HPA) axis. This study aimed to explore the complex interrelationships between the brain and the gut microbiota. We also conducted a thorough examination of the existing understanding in the area of how microbiota affects social behaviors, including emotions, stress responses, and cognitive functions. We also explored the potential of interventions that focus on the connection between the gut and the brain, such as using probiotics to treat diseases of the CNS. This research opens up new possibilities for addressing mental health and neurological conditions in an innovative manner.
Collapse
Affiliation(s)
- Mohammad Abavisani
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Navid Faraji
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negar Ebadpour
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran.
| |
Collapse
|
27
|
Wankhede NL, Kale MB, Kyada A, M RM, Chaudhary K, Naidu KS, Rahangdale S, Shende PV, Taksande BG, Khalid M, Gulati M, Umekar MJ, Fareed M, Kopalli SR, Koppula S. Sleep deprivation-induced shifts in gut microbiota: Implications for neurological disorders. Neuroscience 2025; 565:99-116. [PMID: 39622383 DOI: 10.1016/j.neuroscience.2024.11.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Sleep deprivation is a prevalent issue in contemporary society, with significant ramifications for both physical and mental well-being. Emerging scientific evidence illuminates its intricate interplay with the gut-brain axis, a vital determinant of neurological function. Disruptions in sleep patterns disturb the delicate equilibrium of the gut microbiota, resulting in dysbiosis characterized by alterations in microbial composition and function. This dysbiosis contributes to the exacerbation of neurological disorders such as depression, anxiety, and cognitive decline through multifaceted mechanisms, including heightened neuroinflammation, disturbances in neurotransmitter signalling, and compromised integrity of the gut barrier. In response to these challenges, there is a burgeoning interest in therapeutic interventions aimed at restoring gut microbial balance and alleviating neurological symptoms precipitated by sleep deprivation. Probiotics, dietary modifications, and behavioural strategies represent promising avenues for modulating the gut microbiota and mitigating the adverse effects of sleep disturbances on neurological health. Moreover, the advent of personalized interventions guided by advanced omics technologies holds considerable potential for tailoring treatments to individualized needs and optimizing therapeutic outcomes. Interdisciplinary collaboration and concerted research efforts are imperative for elucidating the underlying mechanisms linking sleep, gut microbiota, and neurological function. Longitudinal studies, translational research endeavours, and advancements in technology are pivotal for unravelling the complex interplay between these intricate systems.
Collapse
Affiliation(s)
- Nitu L Wankhede
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Mayur B Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Ashishkumar Kyada
- Marwadi University Research Center, Department of Pharmacy, Faculty of Health Sciences Marwadi University, Rajkot 360003, Gujarat, India
| | - Rekha M M
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Kamlesh Chaudhary
- Department of Neurology, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - K Satyam Naidu
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, India
| | - Sandip Rahangdale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Prajwali V Shende
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Brijesh G Taksande
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy Prince Sattam Bin Abdulaziz University Alkharj, Saudi Arabia
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 1444411, India; ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 20227, Australia
| | - Milind J Umekar
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Mohammad Fareed
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
| | - Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University, Chungju-Si, Chungcheongbuk Do 27478, Republic of Korea.
| |
Collapse
|
28
|
Ghannadzadeh Kermani Pour R, Kamali Zounouzi S, Farshbafnadi M, Rezaei N. The interplay between gut microbiota composition and dementia. Rev Neurosci 2025:revneuro-2024-0113. [PMID: 39829047 DOI: 10.1515/revneuro-2024-0113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025]
Abstract
Recently, researchers have been interested in the potential connection between gut microbiota composition and various neuropsychological disorders. Dementia significantly affects the socioeconomics of families. Gut microbiota is considered as a probable factor in its pathogenesis. Multiple bacterial metabolites such as short-chain fatty acids, lipopolysaccharides, and various neurotransmitters that are responsible for the incidence and progression of dementia can be produced by gut microbiota. Various bacterial species such as Bifidobacterium breve, Akkermansia muciniphila, Streptococcus thermophilus, Escherichia coli, Blautia hydrogenotrophica, etc. are implicated in the pathogenesis of dementia. Gut microbiota can be a great target for imitating or inhibiting their metabolites as an adjunctive therapy based on their role in its pathogenesis. Therefore, some diets can prevent or decelerate dementia by altering the gut microbiota composition. Moreover, probiotics can modulate gut microbiota composition by increasing beneficial bacteria and reducing detrimental species. These therapeutic modalities are considered novel methods that are probably safe and effective. They can enhance the efficacy of traditional medications and improve cognitive function.
Collapse
Affiliation(s)
| | - Sara Kamali Zounouzi
- School of Medicine, 48439 Tehran University of Medical Sciences , Tehran, 1416634793, Iran
| | - Melina Farshbafnadi
- School of Medicine, 48439 Tehran University of Medical Sciences , Tehran, 1416634793, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, 1416634793, Iran
| | - Nima Rezaei
- Universal Scientific Education and Research Network (USERN), Tehran, 1416634793, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, 48439 Tehran University of Medical Sciences , Tehran, 1416634793, Iran
- Department of Immunology, School of Medicine, 48439 Tehran University of Medical Sciences , Tehran, 1416634793, Iran
| |
Collapse
|
29
|
Rebeck ON, Wallace MJ, Prusa J, Ning J, Evbuomwan EM, Rengarajan S, Habimana-Griffin L, Kwak S, Zahrah D, Tung J, Liao J, Mahmud B, Fishbein SRS, Ramirez Tovar ES, Mehta R, Wang B, Gorelik MG, Helmink BA, Dantas G. A yeast-based oral therapeutic delivers immune checkpoint inhibitors to reduce intestinal tumor burden. Cell Chem Biol 2025; 32:98-110.e7. [PMID: 39571582 PMCID: PMC11741927 DOI: 10.1016/j.chembiol.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/09/2024] [Accepted: 10/28/2024] [Indexed: 12/13/2024]
Abstract
Engineered probiotics are an emerging platform for in situ delivery of therapeutics to the gut. Herein, we developed an orally administered, yeast-based therapeutic delivery system to deliver next-generation immune checkpoint inhibitor (ICI) proteins directly to gastrointestinal tumors. We engineered Saccharomyces cerevisiae var. boulardii (Sb), a probiotic yeast with high genetic tractability and innate anticancer activity, to secrete "miniature" antibody variants that target programmed death ligand 1 (Sb_haPD-1). When tested in an ICI-refractory colorectal cancer (CRC) mouse model, Sb_haPD-1 significantly reduced intestinal tumor burden and resulted in significant shifts to the immune cell profile and microbiome composition. This oral therapeutic platform is modular and highly customizable, opening new avenues of targeted drug delivery that can be applied to treat a myriad of gastrointestinal malignancies.
Collapse
Affiliation(s)
- Olivia N Rebeck
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Miranda J Wallace
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jerome Prusa
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jie Ning
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Esse M Evbuomwan
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Sunaina Rengarajan
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Dermatology, John T. Milliken Department of Internal Medicine, Washington University School of Medicine, St. Louis MO 63110, USA
| | - LeMoyne Habimana-Griffin
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Suryang Kwak
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David Zahrah
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jason Tung
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - James Liao
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bejan Mahmud
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Skye R S Fishbein
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Erick S Ramirez Tovar
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rehan Mehta
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bin Wang
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mark G Gorelik
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Beth A Helmink
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
30
|
Kunasol C, Chattipakorn N, Chattipakorn SC. Impact of calcineurin inhibitors on gut microbiota: Focus on tacrolimus with evidence from in vivo and clinical studies. Eur J Pharmacol 2025; 987:177176. [PMID: 39637933 DOI: 10.1016/j.ejphar.2024.177176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/15/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Calcineurin Inhibitors (CNIs), including tacrolimus and cyclosporine A, are the most widely used immunosuppressive drugs in solid organ transplantation. Those drugs play a pivotal role in preventing graft rejection and reducing autoimmunity. However, recent studies indicate that CNIs can disrupt the composition of gut microbiota or result in "gut dysbiosis". This dysbiosis has been shown to be a significant factor in reducing host immunity by decreasing innate immune cells and impairing metabolic regulation, leading to lipid and glucose accumulation. Several in vivo and clinical studies have demonstrated a mechanistic link between gut dysbiosis and the side effects of CNI. Those studies have unveiled that gut dysbiosis induced by CNIs contributes to adverse effects such as hyperglycemia, nephrotoxicity, and diarrhea. These adverse effects of the induced gut dysbiosis require interventions to restore microbial balance. Probiotics and dietary supplements have emerged as potential interventions to mitigate the side effects of gut dysbiosis caused by CNIs. In this complex relationship between CNI treatment, gut dysbiosis, and interventions, several types of gut microbiota and host immunity are involved. However, the mechanisms underlying these relationships remain elusive. Therefore, the aim of this review is to comprehensively summarize and discuss the major findings from in vivo and clinical data regarding the impact of treatment with CNIs on gut microbiota. This review also explores interventions to mitigate dysbiosis for therapeutic approaches of the side effects of CNIs. The possible underlying mechanisms of CNIs-induced gut dysbiosis with or without interventions are also presented and discussed.
Collapse
Affiliation(s)
- Chanon Kunasol
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Research Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
31
|
Giammona A, Galuzzi BG, Imperia E, Gervasoni C, Remedia S, Restaneo L, Nespoli M, De Gara L, Tani F, Cicala M, Guarino MPL, Porro D, Cerasa A, Lo Dico A, Altomare A, Bertoli G. Chronic Gastrointestinal Disorders and miRNA-Associated Disease: An Up-to-Date. Int J Mol Sci 2025; 26:413. [PMID: 39796266 PMCID: PMC11720538 DOI: 10.3390/ijms26010413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/27/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025] Open
Abstract
Chronic gastrointestinal disorders such as inflammatory bowel diseases (IBDs) and irritable bowel syndrome (IBS) impose significant health burdens globally. IBDs, encompassing Crohn's disease and ulcerative colitis, are multifactorial disorders characterized by chronic inflammation of the gastrointestinal tract. On the other hand, IBS is one of the principal gastrointestinal tract functional disorders and is characterized by abdominal pain and altered bowel habits. Although the precise etiopathogenesis of these disorders remains unclear, mounting evidence suggests that non-coding RNA molecules play crucial roles in regulating gene expression associated with inflammation, apoptosis, oxidative stress, and tissue permeability, thus influencing disease progression. miRNAs have emerged as possible reliable biomarkers, as they can be analyzed in the biological fluids of patients at a low cost. This review explores the roles of miRNAs in IBDs and IBS, focusing on their involvement in the control of disease hallmarks. By an extensive literature review and employing bioinformatics tools, we identified the miRNAs frequently studied concerning these diseases. Ultimately, specific miRNAs could be proposed as diagnostic biomarkers for IBDs and IBS. Their ability to be secreted into biofluids makes them promising candidates for non-invasive diagnostic tools. Therefore, understanding molecular mechanisms through the ways in which they regulate gastrointestinal inflammation and immune responses could provide new insights into the pathogenesis of IBDs and IBS and open avenues for miRNA-based therapeutic interventions.
Collapse
Affiliation(s)
- Alessandro Giammona
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, 20054 Milan, Italy; (A.G.); (B.G.G.); (C.G.); (S.R.); (M.N.); (F.T.); (D.P.); (A.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Bruno Giovanni Galuzzi
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, 20054 Milan, Italy; (A.G.); (B.G.G.); (C.G.); (S.R.); (M.N.); (F.T.); (D.P.); (A.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Elena Imperia
- Department of Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (E.I.); (L.R.); (L.D.G.); (A.A.)
| | - Clarissa Gervasoni
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, 20054 Milan, Italy; (A.G.); (B.G.G.); (C.G.); (S.R.); (M.N.); (F.T.); (D.P.); (A.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Sofia Remedia
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, 20054 Milan, Italy; (A.G.); (B.G.G.); (C.G.); (S.R.); (M.N.); (F.T.); (D.P.); (A.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
- Dipartimento di Scienze della Terra e del Mare (DISTEM), Università di Palermo, Via Archirafi, 22, 90123 Palermo, Italy
| | - Laura Restaneo
- Department of Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (E.I.); (L.R.); (L.D.G.); (A.A.)
| | - Martina Nespoli
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, 20054 Milan, Italy; (A.G.); (B.G.G.); (C.G.); (S.R.); (M.N.); (F.T.); (D.P.); (A.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Laura De Gara
- Department of Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (E.I.); (L.R.); (L.D.G.); (A.A.)
| | - Flaminia Tani
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, 20054 Milan, Italy; (A.G.); (B.G.G.); (C.G.); (S.R.); (M.N.); (F.T.); (D.P.); (A.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Michele Cicala
- Research Unit of Gastroenterology, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (M.C.); (M.P.L.G.)
- Unit of Gastroenterology, Fondazione Policlinico Campus Bio-Medico di Roma, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Michele Pier Luca Guarino
- Research Unit of Gastroenterology, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (M.C.); (M.P.L.G.)
- Unit of Gastroenterology, Fondazione Policlinico Campus Bio-Medico di Roma, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Danilo Porro
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, 20054 Milan, Italy; (A.G.); (B.G.G.); (C.G.); (S.R.); (M.N.); (F.T.); (D.P.); (A.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano Bicocca, 20126 Milan, Italy
| | - Antonio Cerasa
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, 20054 Milan, Italy; (A.G.); (B.G.G.); (C.G.); (S.R.); (M.N.); (F.T.); (D.P.); (A.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Alessia Lo Dico
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, 20054 Milan, Italy; (A.G.); (B.G.G.); (C.G.); (S.R.); (M.N.); (F.T.); (D.P.); (A.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Annamaria Altomare
- Department of Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (E.I.); (L.R.); (L.D.G.); (A.A.)
- Research Unit of Gastroenterology, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (M.C.); (M.P.L.G.)
| | - Gloria Bertoli
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, 20054 Milan, Italy; (A.G.); (B.G.G.); (C.G.); (S.R.); (M.N.); (F.T.); (D.P.); (A.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
32
|
Bongiovanni T, Santiago M, Zielinska K, Scheiman J, Barsa C, Jäger R, Pinto D, Rinaldi F, Giuliani G, Senatore T, Kostic AD. A Lactobacillus consortium provides insights into the sleep-exercise-microbiome nexus in proof of concept studies of elite athletes and in the general population. MICROBIOME 2025; 13:1. [PMID: 39748236 PMCID: PMC11697739 DOI: 10.1186/s40168-024-01936-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/18/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND The complex relationship among sleep, exercise, and the gut microbiome presents a unique opportunity to improve health and wellness. Here, we conducted the first large-scale investigation into the influence of a novel elite athlete-derived probiotic, consisting of a multi-strain Lactobacillus consortium, on sleep quality, exercise recovery, and gut microbiome composition in both elite athletes (n = 11) and the general population (n = 257). RESULTS Our two-phase study design, which included an open-label study followed by a controlled longitudinal study in a professional soccer team, allowed us to identify key interactions between probiotics, the gut microbiome, and the host. In the placebo-controlled study, we observed significant improvements in self-reported sleep quality by 69%, energy levels by 31%, and bowel movements by 37% after probiotic intervention relative to after placebo. These improvements were associated with a significant decrease in D-ROMS (a marker of oxidative stress) and a significantly higher free-testosterone/cortisol ratio. Multi-omics analyses revealed specific changes in microbiome composition and function, potentially providing mechanistic insights into these observed effects. CONCLUSION This study provides novel insights into how a multi-strain Lactobacillus probiotic modulates sleep quality, exercise recovery, and gut microbiome composition in both the general population and elite athletes, and introduces potential mechanisms through which this probiotic could be influencing overall health. Our results emphasize the untapped potential of tailored probiotic interventions derived from extremely fit and healthy individuals in improving several aspects of health and performance directly in humans. Video Abstract.
Collapse
Affiliation(s)
- Tindaro Bongiovanni
- Player Health and Performance, Palermo Football Club, Palermo, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | | | | | | | | | | | | | | | | | - Tullio Senatore
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | | |
Collapse
|
33
|
Silva CAC, Fidelle M, Almonte AA, Derosa L, Zitvogel L. Gut Microbiota-Related Biomarkers in Immuno-Oncology. Annu Rev Pharmacol Toxicol 2025; 65:333-354. [PMID: 39259979 DOI: 10.1146/annurev-pharmtox-061124-102218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Carcinogenesis is associated with the emergence of protracted intestinal dysbiosis and metabolic changes. Increasing evidence shows that gut microbiota-related biomarkers and microbiota-centered interventions are promising strategies to overcome resistance to immunotherapy. However, current standard methods for evaluating gut microbiota composition are cost- and time-consuming. The development of routine diagnostic tools for intestinal barrier alterations and dysbiosis constitutes a critical unmet medical need that can guide routine treatment and microbiota-centered intervention decisions in patients with cancer. In this review, we explore the influence of gut microbiota on cancer immunotherapy and highlight gut-associated biomarkers that have the potential to be transformed into simple diagnostic tools, thus guiding standard treatment decisions in the field of immuno-oncology. Mechanistic insights toward leveraging the complex relationship between cancer immunosurveillance, gut microbiota, and metabolism open exciting opportunities for developing novel biomarkers in immuno-oncology.
Collapse
Affiliation(s)
- Carolina Alves Costa Silva
- Clinicobiome, Gustave Roussy Cancer Campus (GRCC), and INSERM U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France; ,
| | - Marine Fidelle
- Clinicobiome, Gustave Roussy Cancer Campus (GRCC), and INSERM U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France; ,
| | - Andrew A Almonte
- Clinicobiome, Gustave Roussy Cancer Campus (GRCC), and INSERM U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France; ,
| | - Lisa Derosa
- Faculté de Médecine, Université Paris-Saclay, Kremlin-Bicêtre, France
- Clinicobiome, Gustave Roussy Cancer Campus (GRCC), and INSERM U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France; ,
| | - Laurence Zitvogel
- Center of Clinical Investigations BIOTHERIS, INSERM CIC1428, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Kremlin-Bicêtre, France
- Clinicobiome, Gustave Roussy Cancer Campus (GRCC), and INSERM U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France; ,
| |
Collapse
|
34
|
Liu Y, Sun X, Wei C, Guo S, Song C, Zhang J, Bai J. Targeted Drug Nanodelivery and Immunotherapy for Combating Tumor Resistance. Comb Chem High Throughput Screen 2025; 28:561-581. [PMID: 38676501 DOI: 10.2174/0113862073296206240416060154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/05/2024] [Accepted: 03/09/2024] [Indexed: 04/29/2024]
Abstract
Chemotherapy resistance is a common cause of tumor treatment failure. Various molecular responses, such as increased expression of efflux transporter proteins, including Pglycoprotein (P-gp), changes in the tumor microenvironment (TME), the role of platelets, and the effects of cancer stem cells (CSCs), can lead to drug resistance. Through extensive research on the mechanisms of drug resistance, more effective anti-resistance drugs and therapeutic approaches are being developed. This review explores drug resistance mechanisms and summarizes relevant anti-resistance drugs. In addition, due to the therapeutic limitations of the aforementioned treatments, new advances in nanocarrier-based combination immunotherapy to address the challenge of drug resistance have been described. Nanocarriers combined with immunotherapy can not only target tumor sites for targeted drug release but also modulate the autoimmune system and enhance immune efficacy, thereby overcoming tumor drug resistance. This review suggests new strategies for overcoming tumor drug resistance and is expected to inform tumor treatment and prognosis.
Collapse
Affiliation(s)
- Yun Liu
- School of Stomatology, Shandong Second Medical University, Weifang, 261053, China
| | - Xinyu Sun
- School of Medical Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Chen Wei
- School of Medical Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Shoudong Guo
- School of Pharmacy, Shandong Second Medical University, Weifang, 261053, China
| | - Chunxiao Song
- Anorectal Department, Weifang people's Hospital, Weifang, 261000, China
| | - Jiangyu Zhang
- school of Chemistry and Chemical Engineering, Xingtai University, Xingtai, 054001, China
| | - Jingkun Bai
- School of Bioscience and Technology, Shandong Second Medical University, Weifang, 261053, China
| |
Collapse
|
35
|
Patel RA, Panche AN, Harke SN. Gut microbiome-gut brain axis-depression: interconnection. World J Biol Psychiatry 2025; 26:1-36. [PMID: 39713871 DOI: 10.1080/15622975.2024.2436854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 12/24/2024]
Abstract
OBJECTIVES The relationship between the gut microbiome and mental health, particularly depression, has gained significant attention. This review explores the connection between microbial metabolites, dysbiosis, and depression. The gut microbiome, comprising diverse microorganisms, maintains physiological balance and influences health through the gut-brain axis, a communication pathway between the gut and the central nervous system. METHODS Dysbiosis, an imbalance in the gut microbiome, disrupts this axis and worsens depressive symptoms. Factors like diet, antibiotics, and lifestyle can cause this imbalance, leading to changes in microbial composition, metabolism, and immune responses. This imbalance can induce inflammation, disrupt neurotransmitter regulation, and affect hormonal and epigenetic processes, all linked to depression. RESULTS Microbial metabolites, such as short-chain fatty acids and neurotransmitters, are key to gut-brain communication, influencing immune regulation and mood. The altered production of these metabolites is associated with depression. While progress has been made in understanding the gut-brain axis, more research is needed to clarify causative relationships and develop new treatments. The emerging field of psychobiotics and microbiome-targeted therapies shows promise for innovative depression treatments by harnessing the gut microbiome's potential. CONCLUSIONS Epigenetic mechanisms, including DNA methylation and histone modifications, are crucial in how the gut microbiota impacts mental health. Understanding these mechanisms offers new prospects for preventing and treating depression through the gut-brain axis.
Collapse
Affiliation(s)
- Ruhina Afroz Patel
- Institute of Biosciences and Technology, MGM University, Aurangabad, India
| | - Archana N Panche
- Institute of Biosciences and Technology, MGM University, Aurangabad, India
| | - Sanjay N Harke
- Institute of Biosciences and Technology, MGM University, Aurangabad, India
| |
Collapse
|
36
|
Bingöl FG, Ağagündüz D, Budán F. Probiotic Bacterium-Derived p40, p75, and HM0539 Proteins as Novel Postbiotics and Gut-Associated Immune System (GAIS) Modulation: Postbiotic-Gut-Health Axis. Microorganisms 2024; 13:23. [PMID: 39858791 PMCID: PMC11767761 DOI: 10.3390/microorganisms13010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 12/22/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
It is known that probiotics have direct and indirect effects on many systems in the body, especially the gastrointestinal system. Interest in using probiotic strain-derived cell components and metabolites has also increased as a result of the significant benefits of probiotics. Although many terminologies and definitions are used for these components and metabolites, the International Scientific Association of Probiotics and Prebiotics (ISAPP) recommended the use of the term postbiotic in 2021, which is defined as "a preparation of inanimate microorganisms and/or their components that confers a health benefit on the host". Postbiotics are bioactive metabolites such as organic acids, peptides/proteins, cell wall components, functional enzymes, short-chain fatty acids, vitamins, and phenols. These molecules mediate many positive effects such as immunomodulatory, antimicrobial, and antioxidant effects. These positive effects on maintaining health have enabled the identification of many new postbiotic proteins such as p40, p75, and HM0539. In this review, the postbiotic proteins p40, p75, and HM0539 derived from lactobacilli and their functional effects are systematically summarized. The p40 protein, in particular, has been shown to support gut barrier activity and reduce inflammation, potentially through mechanisms involving epidermal growth factor receptor-dependent signaling. Additionally, p40 and p75 proteins exhibit protective effects on intestinal epithelial tight junctions, suggesting their therapeutic potential in preventing intestinal damage and diseases such as colitis. HM0539 enhances intestinal barrier integrity, exhibits antiinflammatory properties, and protects against bacterial infection, suggesting its possible as a therapeutic for inflammatory bowel disease. This review may contribute to future studies on the therapeutic use of p40, p75, and HM0539 postbiotic proteins in inflammatory gastrointestinal system diseases.
Collapse
Affiliation(s)
- Feray Gençer Bingöl
- Department of Nutrition and Dietetics, Faculty of Health Science, Burdur Mehmet Akif Ersoy University, 15200 Burdur, Türkiye;
| | - Duygu Ağagündüz
- Department of Nutrition and Dietetics, Faculty of Health Science, Gazi University, 06490 Ankara, Türkiye;
| | - Ferenc Budán
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary
| |
Collapse
|
37
|
Mauliasari IR, Lee HJ, Koo SY, Hitayezu E, Kieu ANT, Lee SM, Cha KH. Benzo(a)pyrene and Gut Microbiome Crosstalk: Health Risk Implications. TOXICS 2024; 12:938. [PMID: 39771153 PMCID: PMC11840287 DOI: 10.3390/toxics12120938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 02/23/2025]
Abstract
This review delves into the impact of benzo(a)pyrene (B(a)P), which is a toxic and pervasive polycyclic aromatic hydrocarbon (PAH) and known carcinogen, on the human health risk from a gut microbiome perspective. We retrieved the relevant articles on each PAH and summarized the reporting to date, with a particular focus on benzo(a)pyrene, which has been reported to have a high risk of gut microbiome-related harm. B(a)P exposure can compromise the homeostasis of the gut microbiota, leading to dysbiosis, a state of microbial imbalance. The consequences of B(a)P-induced gut dysbiosis can be far-reaching, potentially contributing to inflammation, metabolic disorders, and an increased risk of various diseases. Additionally, due to the strong coupling between B(a)P and microparticles, the toxicity of B(a)P may be further compounded by its reaction with strong gut disruptors such as micro-/nanoplastics, which have recently become a serious environmental concern. This review summarizes current research on the impact of B(a)P on the gut microbiome, highlighting the intricate relationship between environmental exposure, gut health, and human disease. Further research is necessary to elucidate the underlying mechanisms and develop effective strategies to mitigate the adverse health effects of B(a)P exposure.
Collapse
Affiliation(s)
- Intan Rizki Mauliasari
- Center for Natural Product Systems Biology, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (I.R.M.); (H.J.L.); (S.Y.K.); (E.H.); (A.N.T.K.)
- Department of Aquatic Life Medicine, College of Life Sciences, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea;
| | - Hee Ju Lee
- Center for Natural Product Systems Biology, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (I.R.M.); (H.J.L.); (S.Y.K.); (E.H.); (A.N.T.K.)
| | - Song Yi Koo
- Center for Natural Product Systems Biology, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (I.R.M.); (H.J.L.); (S.Y.K.); (E.H.); (A.N.T.K.)
| | - Emmanuel Hitayezu
- Center for Natural Product Systems Biology, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (I.R.M.); (H.J.L.); (S.Y.K.); (E.H.); (A.N.T.K.)
- Department of Food Science, College of Life Sciences, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Anh Nguyen Thi Kieu
- Center for Natural Product Systems Biology, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (I.R.M.); (H.J.L.); (S.Y.K.); (E.H.); (A.N.T.K.)
- Natural Products Applied Science, KIST School, University of Science and Technology, Gangneung 25451, Republic of Korea
| | - Sang-Min Lee
- Department of Aquatic Life Medicine, College of Life Sciences, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea;
| | - Kwang Hyun Cha
- Center for Natural Product Systems Biology, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (I.R.M.); (H.J.L.); (S.Y.K.); (E.H.); (A.N.T.K.)
- Natural Products Applied Science, KIST School, University of Science and Technology, Gangneung 25451, Republic of Korea
- Department of Convergence Medicine, Wonju College of Medicine, Yonsei University, 20, Ilsan-ro, Wonju 26493, Republic of Korea
| |
Collapse
|
38
|
Charitos IA, Inchingolo AM, Ferrante L, Inchingolo F, Inchingolo AD, Castellaneta F, Cotoia A, Palermo A, Scacco S, Dipalma G. The Gut Microbiota's Role in Neurological, Psychiatric, and Neurodevelopmental Disorders. Nutrients 2024; 16:4404. [PMID: 39771025 PMCID: PMC11677138 DOI: 10.3390/nu16244404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
AIM This article aims to explore the role of the human gut microbiota (GM) in the pathogenesis of neurological, psychiatric, and neurodevelopmental disorders, highlighting its influence on health and disease, and investigating potential therapeutic strategies targeting GM modulation. MATERIALS AND METHODS A comprehensive analysis of the gut microbiota's composition and its interaction with the human body, particularly, its role in neurological and psychiatric conditions, is provided. The review discusses factors influencing GM composition, including birth mode, breastfeeding, diet, medications, and geography. Additionally, it examines the GM's functions, such as nutrient absorption, immune regulation, and pathogen defense, alongside its interactions with the nervous system through the gut-brain axis, neurotransmitters, and short-chain fatty acids (SCFAs). RESULTS Alterations in the GM are linked to various disorders, including Parkinson's disease, multiple sclerosis, depression, schizophrenia, ADHD, and autism. The GM influences cognitive functions, stress responses, and mood regulation. Antibiotic use disrupts GM diversity, increasing the risk of metabolic disorders, obesity, and allergic diseases. Emerging therapies such as probiotics, prebiotics, and microbiota transplantation show promise in modulating the GM and alleviating symptoms of neurological and psychiatric conditions. CONCLUSIONS The modulation of the GM represents a promising approach for personalized treatment strategies. Further research is needed to better understand the underlying mechanisms and to develop targeted therapies aimed at restoring GM balance for improved clinical outcomes.
Collapse
Affiliation(s)
- Ioannis Alexandros Charitos
- Istituti Clinici Scientifici Maugeri IRCCS, Pneumology and Respiratory Rehabilitation Unit, “Institute” of Bari, 70124 Bari, Italy;
| | - Angelo Michele Inchingolo
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (L.F.); (A.D.I.); (G.D.)
| | - Laura Ferrante
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (L.F.); (A.D.I.); (G.D.)
| | - Francesco Inchingolo
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (L.F.); (A.D.I.); (G.D.)
| | - Alessio Danilo Inchingolo
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (L.F.); (A.D.I.); (G.D.)
| | - Francesca Castellaneta
- U.O.C. Immunohematology and Transfusion Medicine—S.I.M.T. Di Venere Hospital, 70131 Bari, Italy;
| | - Antonella Cotoia
- Department of Intensive Care, University Hospital of Foggia, 71121 Foggia, Italy;
| | - Andrea Palermo
- Department of Experimental Medicine, University of Salento, 73100 Lecce, Italy;
| | - Salvatore Scacco
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Aldo Moro University, 70121 Bari, Italy;
| | - Gianna Dipalma
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (L.F.); (A.D.I.); (G.D.)
| |
Collapse
|
39
|
Gao F, Shen Y, Wu H, Laue HE, Lau FK, Gillet V, Lai Y, Shrubsole MJ, Prada D, Zhang W, Liu Z, Bellenger JP, Takser L, Baccarelli AA. Associations of Stool Metal Exposures with Childhood Gut Microbiome Multiomics Profiles in a Prospective Birth Cohort Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22053-22063. [PMID: 39630952 DOI: 10.1021/acs.est.4c09642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Metal exposures are closely related to childhood developmental health. However, their effects on the childhood gut microbiome, which also impacts health, are largely unexplored using microbiome multiomics including the metagenome and metatranscriptome. This study examined the associations of fecal profiles of metal/element exposures with gut microbiome species and active functional pathways in 8- to 12-year-old children (N = 116) participating in the GESTation and Environment (GESTE) cohort study. We analyzed 19 stool metal and element concentrations (B, Na, Mg, Al, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Mo, Cd, Ba, and Pb). Covariate-adjusted linear regression models identified several significant microbiome associations with continuous stool metal/element concentrations. For instance, Zn was positively associated with Turicibacter sanguinis (coef = 1.354, q-value = 0.039) and negatively associated with Eubacterium eligens (coef = -0.794, q-value = 0.044). Higher concentrations of Cd were associated with lower Eubacterium eligens (coef = -0.774, q-value = 0.045). Additionally, a total of 490 significant functional pathways such as biosynthesis and degradation/utilization/assimilation were identified, corresponding to different functions, including amino acid synthesis and carbohydrate degradation. Our results suggest links among metal exposures, pediatric gut microbiome multiomics, and potential health implications. Future work will further explore their relation to childhood health.
Collapse
Affiliation(s)
- Feng Gao
- Department of Environmental Health Sciences, Fielding School of Public Health, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, California 90095, United States
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Yike Shen
- Department of Earth and Environmental Sciences, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Haotian Wu
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Hannah E Laue
- Department of Biostatistics and Epidemiology, University of Massachusetts Amherst School of Public Health and Health Sciences, Amherst, Massachusetts 01003, United States
| | - Fion K Lau
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Virginie Gillet
- Département de Pédiatrie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Yunjia Lai
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Martha J Shrubsole
- Division of Epidemiology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Diddier Prada
- Institute for Health Equity Research - IHER, Department of Population Health Science and Policy and the Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Wei Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Zhonghua Liu
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, New York 10032, United States
| | | | - Larissa Takser
- Département de Pédiatrie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Andrea A Baccarelli
- Office of the Dean, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| |
Collapse
|
40
|
Nikola L, Iva L. Gut microbiota as a modulator of type 1 diabetes: A molecular perspective. Life Sci 2024; 359:123187. [PMID: 39488260 DOI: 10.1016/j.lfs.2024.123187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/04/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
Type 1 diabetes (T1D) is defined as an autoimmune metabolic disorder, characterized by destruction of pancreatic β-cells and high blood sugar levels. If left untreated, T1D results in severe health complications, including cardiovascular and kidney disease, as well as nerve damage, with ultimately grave consequences. Besides the role of genetic and certain environmental factors in T1D development, in the last decade, one new player emerged to affect T1D pathology as well, and that is a gut microbiota. Dysbiosis of gut bacteria can contribute to T1D by gut barrier disruption and the activation of autoimmune response, leading to the destruction of insulin producing cells, causing the development and aggravation of T1D symptoms. The relationship between gut microbiota and diabetes is complex and varies between individuals and additional research is needed to fully understand the effects of gut microbiome alternations in T1D pathogenesis. Therefore, the goal of this review is to understand the current knowledge in underlying molecular mechanism of gut microbiota effects, which leads to the new approaches for further studies in the prevention and treatment of T1D.
Collapse
Affiliation(s)
- Lukic Nikola
- Laboratory for Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinca", National Institute of the Republic of Serbia, University of Belgrade, Serbia
| | - Lukic Iva
- Laboratory for Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinca", National Institute of the Republic of Serbia, University of Belgrade, Serbia.
| |
Collapse
|
41
|
Muruganandam A, Migliorini F, Jeyaraman N, Vaishya R, Balaji S, Ramasubramanian S, Maffulli N, Jeyaraman M. Molecular Mimicry Between Gut Microbiome and Rheumatoid Arthritis: Current Concepts. Med Sci (Basel) 2024; 12:72. [PMID: 39728421 PMCID: PMC11677576 DOI: 10.3390/medsci12040072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024] Open
Abstract
Rheumatoid arthritis (RA) represents an autoimmune condition impacted by a combination of genetic and environmental factors, with the gut microbiome (GMB) being one of the influential environmental factors. Patients with RA display notable modifications in the composition of their GMB, characterised by decreased diversity and distinct bacterial alterations. The GMB, comprising an extensive array of approximately 35,000 bacterial species residing within the gastrointestinal tract, has garnered considerable attention as a pivotal contributor to both human health and the pathogenesis of diseases. This article provides an in-depth exploration of the intricate involvement of the GMB in the context of RA. The oral-GMB axis highlights the complex role of bacteria in RA pathogenesis by producing antibodies to citrullinated proteins (ACPAs) through molecular mimicry. Dysbiosis affects Tregs, cytokine levels, and RA disease activity, suggesting that regulating cytokines could be a strategy for managing inflammation in RA. The GMB also has significant implications for drug responses and toxicity, giving rise to the field of pharmacomicrobiomics. The composition of the microbiota can impact the efficacy and toxicity of drugs, while the microbiota's metabolites can influence drug response. Recent research has identified specific bacteria, metabolites, and immune responses associated with RA, offering potential targets for personalised management. However, several challenges, including the variation in microbial composition, establishing causality, accounting for confounding factors, and translating findings into clinical practice, need to be addressed. Microbiome-targeted therapy is still in its early stages and requires further research and standardisation for effective implementation.
Collapse
Affiliation(s)
- Anandanarayan Muruganandam
- Department of Orthopaedics, Faculty of Medicine—Sri Lalithambigai Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600095, India;
| | - Filippo Migliorini
- Department of Orthopedics and Trauma Surgery, Academic Hospital of Bolzano (SABES-ASDAA), 39100 Bolzano, Italy
- Department of Life Sciences, Health, and Health Professions, Link Campus University, 00165 Rome, Italy
| | - Naveen Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600077, India;
| | - Raju Vaishya
- Department of Orthopaedics and Joint Replacement Surgery, Indraprastha Apollo Hospital, New Delhi 110076, India;
| | - Sangeetha Balaji
- Department of Orthopaedics, Government Medical College, Omandurar Government Estate, Chennai 600002, India; (S.B.); (S.R.)
| | - Swaminathan Ramasubramanian
- Department of Orthopaedics, Government Medical College, Omandurar Government Estate, Chennai 600002, India; (S.B.); (S.R.)
| | - Nicola Maffulli
- Department of Trauma and Orthopaedic Surgery, Faculty of Medicine and Psychology, University La Sapienza, 00185 Roma, Italy;
- School of Pharmacy and Bioengineering, Keele University Faculty of Medicine, Stoke on Trent ST4 7QB, UK
- Centre for Sports and Exercise Medicine, Barts and the London School of Medicine and Dentistry, Mile End Hospital, Queen Mary University of London, London E1 4DG, UK
| | - Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600077, India;
| |
Collapse
|
42
|
Al-Beltagi M. Nutritional management and autism spectrum disorder: A systematic review. World J Clin Pediatr 2024; 13:99649. [PMID: 39654662 PMCID: PMC11572612 DOI: 10.5409/wjcp.v13.i4.99649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/21/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) presents unique challenges related to feeding and nutritional management. Children with ASD often experience feeding difficulties, including food selectivity, refusal, and gastrointestinal issues. Various interventions have been explored to address these challenges, including dietary modifications, vitamin supplementation, feeding therapy, and behavioral interventions. AIM To provide a comprehensive overview of the current evidence on nutritional management in ASD. We examine the effectiveness of dietary interventions, vitamin supplements, feeding therapy, behavioral interventions, and mealtime practices in addressing the feeding challenges and nutritional needs of children with ASD. METHODS We systematically searched relevant literature up to June 2024, using databases such as PubMed, PsycINFO, and Scopus. Studies were included if they investigated dietary interventions, nutritional supplements, or behavioral strategies to improve feeding behaviors in children with ASD. We assessed the quality of the studies and synthesized findings on the impact of various interventions on feeding difficulties and nutritional outcomes. Data extraction focused on intervention types, study designs, participant characteristics, outcomes measured, and intervention effectiveness. RESULTS The review identified 316 studies that met the inclusion criteria. The evidence indicates that while dietary interventions and nutritional supplements may offer benefits in managing specific symptoms or deficiencies, the effectiveness of these approaches varies. Feeding therapy and behavioral interventions, including gradual exposure and positive reinforcement, promise to improve food acceptance and mealtime behaviors. The findings also highlight the importance of creating supportive mealtime environments tailored to the sensory and behavioral needs of children with ASD. CONCLUSION Nutritional management for children with ASD requires a multifaceted approach that includes dietary modifications, supplementation, feeding therapy, and behavioral strategies. The review underscores the need for personalized interventions and further research to refine treatment protocols and improve outcomes. Collaborative efforts among healthcare providers, educators, and families are essential to optimize this population's nutritional health and feeding practices. Enhancing our understanding of intervention sustainability and long-term outcomes is essential for optimizing care and improving the quality of life for children with ASD and their families.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Pediatric, Faculty of Medicine, Tanta University, Tanta 31511, Alghrabia, Egypt
- Department of Pediatric, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
| |
Collapse
|
43
|
Mir R, Albarqi SA, Albalawi W, Alatwi HE, Alatawy M, Bedaiwi RI, Almotairi R, Husain E, Zubair M, Alanazi G, Alsubaie SS, Alghabban RI, Alfifi KA, Bashir S. Emerging Role of Gut Microbiota in Breast Cancer Development and Its Implications in Treatment. Metabolites 2024; 14:683. [PMID: 39728464 DOI: 10.3390/metabo14120683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/14/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Background: The human digestive system contains approximately 100 trillion bacteria. The gut microbiota is an emerging field of research that is associated with specific biological processes in many diseases, including cardiovascular disease, obesity, diabetes, brain disease, rheumatoid arthritis, and cancer. Emerging evidence indicates that the gut microbiota affects the response to anticancer therapies by modulating the host immune system. Recent studies have explained a high correlation between the gut microbiota and breast cancer: dysbiosis in breast cancer may regulate the systemic inflammatory response, hormone metabolism, immune response, and the tumor microenvironment. Some of the gut bacteria are related to estrogen metabolism, which may increase or decrease the risk of breast cancer by changing the number of hormones. Further, the gut microbiota has been seen to modulate the immune system in respect of its ability to protect against and treat cancers, with a specific focus on hormone receptor-positive breast cancer. Probiotics and other therapies claiming to control the gut microbiome by bacterial means might be useful in the prevention, or even in the treatment, of breast cancer. Conclusions: The present review underlines the various aspects of gut microbiota in breast cancer risk and its clinical application, warranting research on individualized microbiome-modulated therapeutic approaches to breast cancer treatment.
Collapse
Affiliation(s)
- Rashid Mir
- Department of Medical Lab Technology, Faculty of Applied Medical Sciences, Prince Fahd Bin Sultan Research Chair for Biomedical Research, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Shrooq A Albarqi
- Molecular Medicine, Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Wed Albalawi
- Molecular Medicine, Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Hanan E Alatwi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Marfat Alatawy
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Ruqaiah I Bedaiwi
- Department of Medical Lab Technology, Faculty of Applied Medical Sciences, Prince Fahd Bin Sultan Research Chair for Biomedical Research, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Reema Almotairi
- Department of Medical Lab Technology, Faculty of Applied Medical Sciences, Prince Fahd Bin Sultan Research Chair for Biomedical Research, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Eram Husain
- Department of Medical Lab Technology, Faculty of Applied Medical Sciences, Prince Fahd Bin Sultan Research Chair for Biomedical Research, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Mohammad Zubair
- Department of Medical Microbiology, Faculty of Medicine, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Ghaida Alanazi
- Molecular Medicine, Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Shouq S Alsubaie
- Molecular Medicine, Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Razan I Alghabban
- Molecular Medicine, Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Khalid A Alfifi
- Department of Laboratory and Blood Bank, King Fahd Special Hospital, Tabuk 47717, Saudi Arabia
| | - Shabnam Bashir
- Mubarak Hospital, Srinagar 190002, Jammu and Kashmir, India
| |
Collapse
|
44
|
Chen H, Liu L, Wang Y, Hong L, Pan J, Yu X, Dai H. Managing Cardiovascular Risk in Patients with Autoimmune Diseases: Insights from a Nutritional Perspective. Curr Nutr Rep 2024; 13:718-728. [PMID: 39078574 DOI: 10.1007/s13668-024-00563-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2024] [Indexed: 07/31/2024]
Abstract
PURPOSE OF REVIEW Autoimmune diseases manifest as an immune system response directed against endogenous antigens, exerting a significant influence on a substantial portion of the population. Notably, a leading contributor to morbidity and mortality in this context is cardiovascular disease (CVD). Intriguingly, individuals with autoimmune disorders exhibit a heightened prevalence of CVD compared to the general population. The meticulous management of CV risk factors assumes paramount importance, given the current absence of a standardized solution to this perplexity. This review endeavors to address this challenge from a nutritional perspective. RECENT FINDINGS Emerging evidence suggests that inflammation, a common thread in autoimmune diseases, also plays a pivotal role in the pathogenesis of CVD. Nutritional interventions aimed at reducing inflammation have shown promise in mitigating cardiovascular risk. The integration of nutritional strategies into the management plans for patients with autoimmune diseases offers a holistic approach to reducing cardiovascular risk. While conventional pharmacological treatments remain foundational, the addition of targeted dietary interventions can provide a complementary pathway to improve cardiovascular outcomes.
Collapse
Affiliation(s)
- Huimin Chen
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
| | - Lu Liu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
| | - Yi Wang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
| | - Liqiong Hong
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
| | - Jiahui Pan
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
| | - Xiongkai Yu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
| | - Haijiang Dai
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China.
| |
Collapse
|
45
|
Kaur M, Aran KR, Paswan R. A potential role of gut microbiota in stroke: mechanisms, therapeutic strategies and future prospective. Psychopharmacology (Berl) 2024; 241:2409-2430. [PMID: 39463207 DOI: 10.1007/s00213-024-06708-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
RATIONALE Neurological conditions like Stroke and Alzheimer's disease (AD) often include inflammatory responses in the nervous system. Stroke, linked to high disability and mortality rates, poses challenges related to organ-related complications. Recent focus on understanding the pathophysiology of ischemic stroke includes aspects like cellular excitotoxicity, oxidative stress, cell death mechanisms, and neuroinflammation. OBJECTIVE The objective of this paper is to summarize and explore the pathophysiology of ischemic stroke, elucidates the gut-brain axis mechanism, and discusses recent clinical trials, shedding light on novel treatments and future possibilities. RESULTS Changes in gut architecture and microbiota contribute to dementia by enhancing intestinal permeability, activating the immune system, elevating proinflammatory mediators, altering blood-brain barrier (BBB) permeability, and ultimately leading to neurodegenerative diseases (NDDs). The gut-brain axis's potential role in disease pathophysiology offers new avenues for cell-based regenerative medicine in treating neurological conditions. CONCLUSION In conclusion, the gut microbiome significantly impacts stroke prognosis by highlighting the role of the gut-brain axis in ischemic stroke mechanisms. This insight suggests potential therapeutic strategies for improving outcomes.
Collapse
Affiliation(s)
- Manpreet Kaur
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Khadga Raj Aran
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| | - Raju Paswan
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, Punjab, 142001, India
| |
Collapse
|
46
|
Ogulur I, Pat Y, Yazici D, Ardicli S, Ardicli O, Mitamura Y, Akdis M, Akdis CA. Epithelial barrier dysfunction, type 2 immune response, and the development of chronic inflammatory diseases. Curr Opin Immunol 2024; 91:102493. [PMID: 39321494 DOI: 10.1016/j.coi.2024.102493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024]
Abstract
The prevalence of many chronic noncommunicable diseases has been steadily rising over the past six decades. During this time, humans have been increasingly exposed to substances toxic for epithelial cells, including air pollutants, laundry and dishwashers, household chemicals, toothpaste, food additives, microplastics, and nanoparticles, introduced into our daily lives as part of industrialization, urbanization, and modernization. These substances disrupt the epithelial barriers and lead to microbial dysbiosis and cause immune response to allergens, opportunistic pathogens, bacterial toxins, and autoantigens followed by chronic inflammation due to epigenetic mechanisms. Recent evidence from studies on the mechanisms of epithelial barrier damage has demonstrated that even trace amounts of toxic substances can damage epithelial barriers and induce tissue inflammation. Further research in this field is essential for our understanding of the causal substances and molecular mechanisms involved in the initiation of leaky epithelial barriers that cascade into chronic inflammatory diseases.
Collapse
Affiliation(s)
- Ismail Ogulur
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yagiz Pat
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Duygu Yazici
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Sena Ardicli
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Ozge Ardicli
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yasutaka Mitamura
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland.
| |
Collapse
|
47
|
Zollner A, Meyer M, Jukic A, Adolph T, Tilg H. The Intestine in Acute and Long COVID: Pathophysiological Insights and Key Lessons. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2024; 97:447-462. [PMID: 39703608 PMCID: PMC11650913 DOI: 10.59249/pmie8461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Post-Acute Sequelae of SARS-CoV-2 infection (PASC), commonly known as Long COVID, represents a significant and complex health challenge with a wide range of symptoms affecting multiple organ systems. This review examines the emerging evidence suggesting a critical role of the gut and gut-brain axis in the pathophysiology of Long COVID. It explores how changes in the gut microbiome, disruption of gut barrier integrity, and the persistence of SARS-CoV-2 antigens within the gastrointestinal tract may contribute to the prolonged and varied symptoms seen in Long COVID, including chronic inflammation and neuropsychiatric disturbances. The review also summarizes key insights gained about Long COVID, highlighting its multifactorial nature, which involves immune dysregulation, microvascular damage, and autonomic nervous system dysfunction, with the gut playing a central role in these processes. While progress has been made in understanding these mechanisms, current evidence remains inconclusive. The challenges of establishing causality, standardizing research methodologies, and addressing individual variations in the microbiome are discussed, emphasizing the need for further longitudinal studies and more comprehensive approaches to enhance our understanding of these complex interactions. This review underscores the importance of personalized approaches in developing effective diagnostic and therapeutic strategies for Long COVID, while also acknowledging the significant gaps in our current understanding. Future research should aim to further unravel the complex interplay between the gut and Long COVID, ultimately improving outcomes for those affected by this condition.
Collapse
Affiliation(s)
- Andreas Zollner
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology
& Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Moritz Meyer
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology
& Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Almina Jukic
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology
& Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Timon Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology
& Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology
& Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
48
|
Dubey I, K N, G V, Rohilla G, Lalruatmawii, Naxine P, P J, Rachamalla M, Kushwaha S. Exploring the hypothetical links between environmental pollutants, diet, and the gut-testis axis: The potential role of microbes in male reproductive health. Reprod Toxicol 2024; 130:108732. [PMID: 39395506 DOI: 10.1016/j.reprotox.2024.108732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024]
Abstract
The gut system, commonly referred to as one of the principal organs of the human "superorganism," is a home to trillions of bacteria and serves an essential physiological function in male reproductive failures or infertility. The interaction of the endocrine-immune system and the microbiome facilitates reproduction as a multi-network system. Some recent studies that link gut microbiota to male infertility are questionable. Is the gut-testis axis (GTA) real, and does it affect male infertility? As a result, this review emphasizes the interconnected links between gut health and male reproductive function via changes in gut microbiota. However, a variety of harmful (endocrine disruptors, heavy metals, pollutants, and antibiotics) and favorable (a healthy diet, supplements, and phytoconstituents) elements promote microbiota by causing dysbiosis and symbiosis, respectively, which eventually modify the activities of male reproductive organs and their hormones. The findings of preclinical and clinical studies on the direct and indirect effects of microbiota changes on testicular functions have revealed a viable strategy for exploring the GTA-axis. Although the GTA axis is poorly understood, it may have potential ties to reproductive issues that can be used for therapeutic purposes in the future.
Collapse
Affiliation(s)
- Itishree Dubey
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow 226002, India
| | - Nandheeswari K
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow 226002, India
| | - Vigneshwaran G
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow 226002, India
| | - Gourav Rohilla
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow 226002, India
| | - Lalruatmawii
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow 226002, India
| | - Pratik Naxine
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow 226002, India
| | - Jayapradha P
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow 226002, India
| | - Mahesh Rachamalla
- Department of Biology, University of Saskatchewan, Saskatoon SK S7N 5E2, Canada
| | - Sapana Kushwaha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow 226002, India.
| |
Collapse
|
49
|
Olasunkanmi OI, Aremu J, Wong ML, Licinio J, Zheng P. Maternal gut-microbiota impacts the influence of intrauterine environmental stressors on the modulation of human cognitive development and behavior. J Psychiatr Res 2024; 180:307-326. [PMID: 39488009 DOI: 10.1016/j.jpsychires.2024.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/01/2023] [Accepted: 10/23/2024] [Indexed: 11/04/2024]
Abstract
This review examines the longstanding debate of nature and intrauterine environmental challenges that shapes human development and behavior, with a special focus on the influence of maternal prenatal gut microbes. Recent research has revealed the critical role of the gut microbiome in human neurodevelopment, and evidence suggest that maternal microbiota can impact fetal gene and microenvironment composition, as well as immunophysiology and neurochemical responses. Furthermore, intrauterine neuroepigenetic regulation may be influenced by maternal microbiota, capable of having long-lasting effects on offspring behavior and cognition. By examining the complex relationship between maternal prenatal gut microbes and human development, this review highlights the importance of early-life environmental factors in shaping neurodevelopment and cognition.
Collapse
Affiliation(s)
- Oluwatayo Israel Olasunkanmi
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China; Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education) Chongqing Medical University, Chongqing, China.
| | - John Aremu
- Department of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Ma-Li Wong
- Department of Psychiatry, College of Medicine, Upstate Medical University, Syracuse, NY, USA
| | - Julio Licinio
- Department of Psychiatry, College of Medicine, Upstate Medical University, Syracuse, NY, USA.
| | - Peng Zheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China; Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education) Chongqing Medical University, Chongqing, China.
| |
Collapse
|
50
|
Mahayri TM, Atallah E, Fliegerová KO, Mrázek J, Piccolo G, Bovera F, Moniello G. Inclusion of Tenebrio molitor larvae meal in the diet of barbary partridge (Alectoris barbara) improves caecal bacterial diversity and composition. Sci Rep 2024; 14:29600. [PMID: 39609484 PMCID: PMC11604920 DOI: 10.1038/s41598-024-80341-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024] Open
Abstract
In this study, we investigated the influence of the inclusion of Tenebrio molitor (TM) larvae meal in the diet on the diversity and structure of the bacterial community in the caecal content of Barbary partridges. A total of 36 partridges, selected randomly for slaughter from 54 animals, were divided equally into three treatment groups, including the control group (C) with a diet containing corn-soybean meal and two experimental groups, in which 25% (TM25) and 50% (TM50) of the soybean meal protein was replaced by the meal from TM larvae. After slaughtering, the bacterial community of the 30 caecal samples (10 samples per each experimental group) was analysed by high-throughput sequencing using the V4-V5 region of the 16 S rRNA gene. Alpha diversity showed a higher diversity richness in the TM50 group. Beta diversity showed statistical dissimilarities among the three groups. Firmicutes was the dominant phylum regardless of the diet, with the predominant families Ruminococcaceae and Lachnospiraceae. Clostridia and Faecalibacterium were decreased in both TM groups, Lachnospiraceae was suppressed in the TM50 group, but still this class, genus and family were abundantly present in all samples. Several potentially beneficial genera, such as Bacillus, Ruminococcaceae UCG-009, Oscillibacter and UC1-2E3 (Lachnospiraceae) were increased in the TM50 group. The results showed a beneficial effect of the T. molitor larvae meal on the caecal microbiota of Barbary partridges, particularly in the TM50 group, which showed an increase in bacterial diversity.
Collapse
Affiliation(s)
- Tiziana Maria Mahayri
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, Czech Academy of Science, Prague, 14220, Czech Republic
- Department of Veterinary Medicine, University of Sassari, Sassari, 07100, Italy
| | - Elie Atallah
- Department of Veterinary Medicine, University of Sassari, Sassari, 07100, Italy
- Department of Veterinary Medicine and Animal Sciences, University of Milan, via dell'Università 6, Lodi, 26900, Italy
| | - Kateřina Olša Fliegerová
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, Czech Academy of Science, Prague, 14220, Czech Republic.
| | - Jakub Mrázek
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, Czech Academy of Science, Prague, 14220, Czech Republic
| | - Giovanni Piccolo
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, via F. Delpino, 1, Napoli, 80137, Italy.
| | - Fulvia Bovera
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, via F. Delpino, 1, Napoli, 80137, Italy
| | - Giuseppe Moniello
- Department of Veterinary Medicine, University of Sassari, Sassari, 07100, Italy
| |
Collapse
|