1
|
Togami K, Wolf W, Olson LC, Card M, Shen L, Schaefer A, Okuda K, Zeitlin L, Pauly M, Whaley K, Pickles RJ, Lai SK. Impact of mAb-FcRn affinity on IgG transcytosis across human well-differentiated airway epithelium. Front Immunol 2024; 15:1371156. [PMID: 39351230 PMCID: PMC11439726 DOI: 10.3389/fimmu.2024.1371156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/05/2024] [Indexed: 10/04/2024] Open
Abstract
Effective treatment and immunoprophylaxis of viral respiratory infections with neutralizing monoclonal antibodies (mAbs) require maintaining inhibitory concentrations of mAbs at the airway surface. While engineered mAbs with increased affinity to the neonatal Fc receptor (FcRn) are increasingly employed, little is known how increased affinity of Fc to FcRn influences basal-to-apical transepithelial transport (transcytosis) of mAbs across the airway epithelium. To investigate this, we utilized a model of well-differentiated human airway epithelium (WD-HAE) that exhibited robust FcRn expression, and measured the transepithelial transport of a mAb against SARS-CoV-2 Spike protein (CR3022) with either wildtype IgG1-Fc or Fc modified with YTE or LS mutations known to increase affinity for FcRn. Despite the marked differences in the affinity of these CR3022 variants for FcRn, we did not find substantial differences in basal-to-apical transport reflective of systemic dosing, or apical-to-basal transport reflective of inhaled dosing, compared to the transport of wildtype IgG1-Fc. These results suggest increasing FcRn affinity may only have limited influence over transcytosis rates of systemically dosed mAbs across the human airway epithelium over short time scales. Over longer time scales, the elevated circulating levels of mAbs with greater FcRn affinity, due to more effective FcRn-mediated recycling, may better resupply mAb into the respiratory tract, leading to more effective extended immunoprophylaxis.
Collapse
Affiliation(s)
- Kohei Togami
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Whitney Wolf
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lucas C Olson
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Madison Card
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Limei Shen
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Alison Schaefer
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kenichi Okuda
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | | | | | | | - Raymond J Pickles
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Microbiology & Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Samuel K Lai
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Microbiology & Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
2
|
Adegbaju MS, Ajose T, Adegbaju IE, Omosebi T, Ajenifujah-Solebo SO, Falana OY, Shittu OB, Adetunji CO, Akinbo O. Genetic engineering and genome editing technologies as catalyst for Africa's food security: the case of plant biotechnology in Nigeria. Front Genome Ed 2024; 6:1398813. [PMID: 39045572 PMCID: PMC11263695 DOI: 10.3389/fgeed.2024.1398813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 05/15/2024] [Indexed: 07/25/2024] Open
Abstract
Many African countries are unable to meet the food demands of their growing population and the situation is worsened by climate change and disease outbreaks. This issue of food insecurity may lead to a crisis of epic proportion if effective measures are not in place to make more food available. Thus, deploying biotechnology towards the improvement of existing crop varieties for tolerance or resistance to both biotic and abiotic stresses is crucial to increasing crop production. In order to optimize crop production, several African countries have implemented strategies to make the most of this innovative technology. For example, Nigerian government has implemented the National Biotechnology Policy to facilitate capacity building, research, bioresource development and commercialization of biotechnology products for over two decades. Several government ministries, research centers, universities, and agencies have worked together to implement the policy, resulting in the release of some genetically modified crops to farmers for cultivation and Commercialization, which is a significant accomplishment. However, the transgenic crops were only brought to Nigeria for confined field trials; the manufacturing of the transgenic crops took place outside the country. This may have contributed to the suspicion of pressure groups and embolden proponents of biotechnology as an alien technology. Likewise, this may also be the underlying issue preventing the adoption of biotechnology products in other African countries. It is therefore necessary that African universities develop capacity in various aspects of biotechnology, to continuously train indigenous scientists who can generate innovative ideas tailored towards solving problems that are peculiar to respective country. Therefore, this study intends to establish the role of genetic engineering and genome editing towards the achievement of food security in Africa while using Nigeria as a case study. In our opinion, biotechnology approaches will not only complement conventional breeding methods in the pursuit of crop improvements, but it remains a viable and sustainable means of tackling specific issues hindering optimal crop production. Furthermore, we suggest that financial institutions should offer low-interest loans to new businesses. In order to promote the growth of biotechnology products, especially through the creation of jobs and revenues through molecular farming.
Collapse
Affiliation(s)
- Muyiwa Seyi Adegbaju
- Department of Crop, Soil and Pest Management, Federal University of Technology Akure, Akure, Ondo, Nigeria
| | - Titilayo Ajose
- Fruits and Spices Department, National Horticultural Institute, Ibadan, Oyo, Nigeria
| | | | - Temitayo Omosebi
- Department of Agricultural Technology, Federal College of Forestry, Jos, Nigeria
| | | | - Olaitan Yetunde Falana
- Department of Genetics, Genomic and Bioinformatics, National Biotechnology Research and Development Agency, Abuja, Nigeria
| | - Olufunke Bolatito Shittu
- Department of Microbiology, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | | | - Olalekan Akinbo
- African Union Development Agency-NEPAD, Office of Science, Technology and Innovation, Midrand, South Africa
| |
Collapse
|
3
|
Smith SP, Shipley R, Drake P, Fooks AR, Ma J, Banyard AC. Characterisation of a Live-Attenuated Rabies Virus Expressing a Secreted scFv for the Treatment of Rabies. Viruses 2023; 15:1674. [PMID: 37632016 PMCID: PMC10458464 DOI: 10.3390/v15081674] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Rabies virus (RABV) causes possibly the oldest disease and is responsible for an estimated >59,000 human fatalities/year. Post exposure prophylaxis (PEP), the administration of vaccine and rabies immunoglobulin, is a highly effective tool which is frequently unavailable in RABV endemic areas. Furthermore, due to the constraints of the blood-brain barrier, current PEP regimes are ineffective after the onset of clinical symptoms which invariably result in death. To circumvent this barrier, a live-attenuated recombinant RABV expressing a highly RABV-neutralising scFv antibody (62-71-3) linked to the fluorescent marker mCherry was designed. Once rescued, the resulting construct (named RABV-62scFv) was grown to high titres, its growth and cellular dissemination kinetics characterised, and the functionality of the recombinant 62-71-3 scFv assessed. Encouraging scFv production and subsequent virus neutralisation results demonstrate the potential for development of a therapeutic live-attenuated virus-based post-infection treatment (PIT) for RABV infection.
Collapse
Affiliation(s)
- Samuel P. Smith
- Wildlife Zoonoses and Vector-Borne Diseases Research Group, Animal and Plant Health Agency (APHA), Weybridge, London KT15 3NB, UK; (S.P.S.); (R.S.); (A.R.F.)
- Institute for Infection and Immunity, St. George’s Hospital Medical School, University of London, London SW17 0RE, UK; (P.D.); (J.M.)
| | - Rebecca Shipley
- Wildlife Zoonoses and Vector-Borne Diseases Research Group, Animal and Plant Health Agency (APHA), Weybridge, London KT15 3NB, UK; (S.P.S.); (R.S.); (A.R.F.)
| | - Pascal Drake
- Institute for Infection and Immunity, St. George’s Hospital Medical School, University of London, London SW17 0RE, UK; (P.D.); (J.M.)
| | - Anthony R. Fooks
- Wildlife Zoonoses and Vector-Borne Diseases Research Group, Animal and Plant Health Agency (APHA), Weybridge, London KT15 3NB, UK; (S.P.S.); (R.S.); (A.R.F.)
| | - Julian Ma
- Institute for Infection and Immunity, St. George’s Hospital Medical School, University of London, London SW17 0RE, UK; (P.D.); (J.M.)
| | - Ashley C. Banyard
- Wildlife Zoonoses and Vector-Borne Diseases Research Group, Animal and Plant Health Agency (APHA), Weybridge, London KT15 3NB, UK; (S.P.S.); (R.S.); (A.R.F.)
| |
Collapse
|
4
|
Phetphoung T, Malla A, Rattanapisit K, Pisuttinusart N, Damrongyot N, Joyjamras K, Chanvorachote P, Phakham T, Wongtangprasert T, Strasser R, Chaotham C, Phoolcharoen W. Expression of plant-produced anti-PD-L1 antibody with anoikis sensitizing activity in human lung cancer cells via., suppression on epithelial-mesenchymal transition. PLoS One 2022; 17:e0274737. [PMID: 36367857 PMCID: PMC9651560 DOI: 10.1371/journal.pone.0274737] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Immune checkpoint antibodies in cancer treatment are receptor-ligand pairs that modulate cancer immunity. PD-1/PD-L1 pathway has emerged as one of the major targets in cancer immunotherapy. Atezolizumab, the first anti-PD-L1 antibody approved for the treatment of metastatic urothelial, non-small cell lung, small cell lung and triple-negative breast cancers, is produced in Chinese Hamster Ovary (CHO) cells with several limitations i.e., high-production costs, low-capacity yields, and contamination risks. Due to the rapid scalability and low production costs, the transient expression in Nicotiana benthamiana leaves was investigated by co-infiltration of Agrobacterium tumefaciens GV3101 cultures harboring the nucleic acid sequences encoding for Atezolizumab heavy chain and light chain in this study. The transient expression of Atezolizumab in transformed N. benthamiana accumulated up to 86.76 μg/g fresh leaf weight after 6 days of agroinfiltration (OD 600 nm: 0.4) with 1:1 ratio of heavy chain to light chain. The structural and functional characteristics of plant-produced Atezolizumab was compared with commercially available Tecentriq® from CHO cells with similar binding efficacies to PD-L1 receptor. The direct anti-cancer effect of plant-produced anti-PD-L1 was further performed in human lung metastatic cancer cells H460 cultured under detachment condition, demonstrating the activity of anti-PD-L1-antibody on sensitizing anoikis as well as the suppression on anti-apoptosis proteins (Bcl-2 and Mcl-1) and modulation of epithelial to mesenchymal regulating proteins (E-cadherin, N-cadherin, Snail and Slug). In conclusion, this study manifests plants as an alternative cost-effective platform for the production of functional monoclonal antibodies for use in cancer therapy.
Collapse
Affiliation(s)
- Thareeya Phetphoung
- Graduate Program of Pharmaceutical Sciences and Technology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | | | | | - Nuttapat Pisuttinusart
- Graduate Program of Pharmaceutical Sciences and Technology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Naruechai Damrongyot
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Keerati Joyjamras
- Pharmacology and Toxicology Unit, Department of Medical Science, Faculty of Science, Rangsit University, Pathum Thani, Thailand
| | - Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Tanapati Phakham
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Excellence Center for Cancer Immunotherapy, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Tossapon Wongtangprasert
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Excellence Center for Cancer Immunotherapy, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Excellence Chulalongkorn Comprehensive Cancer Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Chatchai Chaotham
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- * E-mail: (CC); (WP)
| | - Waranyoo Phoolcharoen
- Center of Excellence in Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- * E-mail: (CC); (WP)
| |
Collapse
|
5
|
Abstract
Simplified monoclonal antibodies can be produced by fusing a VHH or nanobody, derived from camelid heavy-chain-only antibodies to the Fc domain of either IgG (VHH-IgG), IgA (VHH-IgA), or IgY (VHH-IgY). These recombinant antibodies are encoded by a single gene and their production can be easily scaled up in plants. This chapter contains methods for Gateway cloning of VHH-Fc fusions into the binary T-DNA vectors pEAQ-HT-DEST1 and pPhasGW, electroporation of Agrobacterium with the resulting constructs, transient antibody expression in Nicotiana benthamiana leaves, and stable antibody expression in Arabidopsis thaliana seeds. The properties of chimeric VHH-based antibodies produced in plants enable novel passive immunization treatments, such as in-feed oral delivery or intravenous injection.
Collapse
Affiliation(s)
- Henri De Greve
- VIB-VUB Center for Structural Biology, Brussels, Belgium.
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
6
|
Abstract
Plant systems have been used as biofactories to produce recombinant proteins since 1983. The huge amount of data, collected so far in this framework, suggests that plants display several key advantages over existing traditional platforms when they are intended for therapeutic uses, including safety, scalability, and the speed in obtaining the final product.Here, we describe a method that could be applied for the expression and production of a candidate subunit vaccine in Nicotiana benthamiana plants by transient expression, defining all the protocols starting from plant cultivation to target recombinant protein purification.
Collapse
Affiliation(s)
- Mattia Santoni
- Department of Biotechnology, University of Verona, Verona, Italy
- Diamante srl, Verona, Italy
| | | | | | - Linda Avesani
- Department of Biotechnology, University of Verona, Verona, Italy.
| |
Collapse
|
7
|
Singh AA, Pillay P, Kwezi L, Tsekoa TL. A plant-biotechnology approach for producing highly potent anti-HIV antibodies for antiretroviral therapy consideration. JOURNAL OF GENETIC ENGINEERING AND BIOTECHNOLOGY 2021; 19:180. [PMID: 34878628 PMCID: PMC8655037 DOI: 10.1186/s43141-021-00279-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/26/2021] [Indexed: 11/10/2022]
Abstract
Despite a reduction in global HIV prevalence the development of a pipeline of new therapeutics or pre-exposure prophylaxis to control the HIV/AIDS epidemic are of high priority. Antibody-based therapies offer several advantages and have been shown to prevent HIV-infection. Plant-based production is efficient for several biologics, including antibodies. We provide a short review on the work by Singh et al., 2020 who demonstrated the transient production of potent CAP256-VRC26 broadly neutralizing antibodies. These antibodies have engineered posttranslational modifications, namely N-glycosylation in the fragment crystallizable region and O-sulfation of tyrosine residues in the complementary-determining region H3 loop. The glycoengineered Nicotiana benthamiana mutant (ΔXTFT) was used, with glycosylating structures lacking β1,2-xylose and/or α1,3-fucose residues, which is critical for enhanced effector activity. The CAP256-VRC26 antibody lineage targets the first and second variable region of the HIV-1 gp120 envelope glycoprotein. The high potency of this lineage is mediated by a protruding O-sulfated tyrosine in the CDR H3 loop. Nicotiana benthamiana lacks human tyrosyl protein sulfotransferase 1, the enzyme responsible for tyrosine O-sulfation. The transient coexpression of the CAP256-VRC26 antibodies with tyrosyl protein sulfotransferase 1 in planta had restored the efficacy of these antibodies through the incorporation of the O-sulfation modification. This approach demonstrates the strategic incorporation of posttranslational modifications in production systems, which may have not been previously considered. These plant-produced CAP256-VRC26 antibodies have therapeutic as well as topical and systemic pre-exposure prophylaxis potential in enabling the empowerment of young girls and women given that gender inequalities remain a major driver of the epidemic.
Collapse
Affiliation(s)
- Advaita Acarya Singh
- Council for Scientific and Industrial Research, Future Production: Chemicals Cluster, P.O. Box 395, Pretoria, 0001, South Africa
| | - Priyen Pillay
- Council for Scientific and Industrial Research, Future Production: Chemicals Cluster, P.O. Box 395, Pretoria, 0001, South Africa
| | - Lusisizwe Kwezi
- Council for Scientific and Industrial Research, Future Production: Chemicals Cluster, P.O. Box 395, Pretoria, 0001, South Africa
| | - Tsepo Lebiletsa Tsekoa
- Council for Scientific and Industrial Research, Future Production: Chemicals Cluster, P.O. Box 395, Pretoria, 0001, South Africa.
| |
Collapse
|
8
|
Singh AA, Pillay P, Tsekoa TL. Engineering Approaches in Plant Molecular Farming for Global Health. Vaccines (Basel) 2021; 9:vaccines9111270. [PMID: 34835201 PMCID: PMC8623924 DOI: 10.3390/vaccines9111270] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/16/2022] Open
Abstract
Since the demonstration of the first plant-produced proteins of medical interest, there has been significant growth and interest in the field of plant molecular farming, with plants now being considered a viable production platform for vaccines. Despite this interest and development by a few biopharmaceutical companies, plant molecular farming is yet to be embraced by ‘big pharma’. The plant system offers a faster alternative, which is a potentially more cost-effective and scalable platform for the mass production of highly complex protein vaccines, owing to the high degree of similarity between the plant and mammalian secretory pathway. Here, we identify and address bottlenecks in the use of plants for vaccine manufacturing and discuss engineering approaches that demonstrate both the utility and versatility of the plant production system as a viable biomanufacturing platform for global health. Strategies for improving the yields and quality of plant-produced vaccines, as well as the incorporation of authentic posttranslational modifications that are essential to the functionality of these highly complex protein vaccines, will also be discussed. Case-by-case examples are considered for improving the production of functional protein-based vaccines. The combination of all these strategies provides a basis for the use of cutting-edge genome editing technology to create a general plant chassis with reduced host cell proteins, which is optimised for high-level protein production of vaccines with the correct posttranslational modifications.
Collapse
|
9
|
Phakham T, Bulaon CJI, Khorattanakulchai N, Shanmugaraj B, Buranapraditkun S, Boonkrai C, Sooksai S, Hirankarn N, Abe Y, Strasser R, Rattanapisit K, Phoolcharoen W. Functional Characterization of Pembrolizumab Produced in Nicotiana benthamiana Using a Rapid Transient Expression System. FRONTIERS IN PLANT SCIENCE 2021; 12:736299. [PMID: 34567049 PMCID: PMC8459022 DOI: 10.3389/fpls.2021.736299] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/18/2021] [Indexed: 05/23/2023]
Abstract
The striking innovation and clinical success of immune checkpoint inhibitors (ICIs) have undoubtedly contributed to a breakthrough in cancer immunotherapy. Generally, ICIs produced in mammalian cells requires high investment, production costs, and involves time consuming procedures. Recently, the plants are considered as an emerging protein production platform due to its cost-effectiveness and rapidity for the production of recombinant biopharmaceuticals. This study explored the potential of plant-based system to produce an anti-human PD-1 monoclonal antibody (mAb), Pembrolizumab, in Nicotiana benthamiana. The transient expression of this mAb in wild-type N. benthamiana accumulated up to 344.12 ± 98.23 μg/g fresh leaf weight after 4 days of agroinfiltration. The physicochemical and functional characteristics of plant-produced Pembrolizumab were compared to mammalian cell-produced commercial Pembrolizumab (Keytruda®). Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and western blot analysis results demonstrated that the plant-produced Pembrolizumab has the expected molecular weight and is comparable with the Keytruda®. Structural characterization also confirmed that both antibodies have no protein aggregation and similar secondary and tertiary structures. Furthermore, the plant-produced Pembrolizumab displayed no differences in its binding efficacy to PD-1 protein and inhibitory activity between programmed cell death 1 (PD-1) and programmed cell death ligand 1 (PD-L1) interaction with the Keytruda®. In vitro efficacy for T cell activation demonstrated that the plant-produced Pembrolizumab could induce IL-2 and IFN-γ production. Hence, this proof-of-concept study showed that the plant-production platform can be utilized for the rapid production of functional mAbs for immunotherapy.
Collapse
Affiliation(s)
- Tanapati Phakham
- Interdisciplinary Program of Biomedical Sciences, Graduate School, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Christine Joy I. Bulaon
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Plant-Produced Pharmaceutical Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Narach Khorattanakulchai
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Plant-Produced Pharmaceutical Research Unit, Chulalongkorn University, Bangkok, Thailand
| | | | - Supranee Buranapraditkun
- Department of Microbiology, Faculty of Medicine, Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center-Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chatikorn Boonkrai
- Interdisciplinary Program of Biomedical Sciences, Graduate School, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sarintip Sooksai
- The Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Nattiya Hirankarn
- Department of Microbiology, Faculty of Medicine, Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok, Thailand
| | - Yoshito Abe
- Department of Pharmaceutical Sciences, School of Pharmacy at Fukuoka, International University of Health and Welfare, Okawa, Japan
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | - Waranyoo Phoolcharoen
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Plant-Produced Pharmaceutical Research Unit, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
10
|
Forestier EC, Czechowski T, Cording AC, Gilday AD, King AJ, Brown GD, Graham IA. Developing a Nicotiana benthamiana transgenic platform for high-value diterpene production and candidate gene evaluation. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1614-1623. [PMID: 33657678 PMCID: PMC8384591 DOI: 10.1111/pbi.13574] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/24/2021] [Accepted: 02/23/2021] [Indexed: 05/25/2023]
Abstract
To engineer Nicotiana benthamiana to produce novel diterpenoids, we first aimed to increase production of the diterpenoid precursor geranylgeranyl pyrophosphate (GGPP) by up-regulation of key genes of the non-mevalonate (MEP) pathway sourced from Arabidopsis thaliana. We used transient expression to evaluate combinations of the eight MEP pathway genes plus GGPP synthase and a Jatropha curcas casbene synthase (JcCAS) to identify an optimal combination for production of casbene from GGPP. AtDXS and AtHDR together with AtGGPPS and JcCAS gave a 410% increase in casbene production compared to transient expression of JcCAS alone. This combination was cloned into a single construct using the MoClo toolkit, and stably integrated into the N. benthamiana genome. We also created multigene constructs for stable transformation of two J. curcas cytochrome P450 genes, JcCYP726A20 and JcCYP71D495 that produce the more complex diterpenoid jolkinol C from casbene when expressed transiently with JcCAS in N. benthamiana. Stable transformation of JcCYP726A20, JcCYP71D495 and JcCAS did not produce any detectable jolkinol C until these genes were co-transformed with the optimal set of precursor-pathway genes. One such stable homozygous line was used to evaluate by transient expression the involvement of an 'alkenal reductase'-like family of four genes in the further conversion of jolkinol C, leading to the demonstration that one of these performs reduction of the 12,13-double bond in jolkinol C. This work highlights the need to optimize precursor supply for production of complex diterpenoids in stable transformants and the value of such lines for novel gene discovery.
Collapse
Affiliation(s)
- Edith C.F. Forestier
- Centre for Novel Agricultural ProductsDepartment of BiologyUniversity of YorkHeslingtonYorkUK
| | - Tomasz Czechowski
- Centre for Novel Agricultural ProductsDepartment of BiologyUniversity of YorkHeslingtonYorkUK
| | - Amy C. Cording
- Centre for Novel Agricultural ProductsDepartment of BiologyUniversity of YorkHeslingtonYorkUK
| | - Alison D. Gilday
- Centre for Novel Agricultural ProductsDepartment of BiologyUniversity of YorkHeslingtonYorkUK
| | - Andrew J. King
- Centre for Novel Agricultural ProductsDepartment of BiologyUniversity of YorkHeslingtonYorkUK
| | | | - Ian A. Graham
- Centre for Novel Agricultural ProductsDepartment of BiologyUniversity of YorkHeslingtonYorkUK
| |
Collapse
|
11
|
Mardanova ES, Ravin NV. Transient expression of recombinant proteins in plants using potato virus X based vectors. Methods Enzymol 2021; 660:205-222. [PMID: 34742389 DOI: 10.1016/bs.mie.2021.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Plants become a promising biofactory for the large-scale production of recombinant proteins due to low cost, scalability, and safety. Agroinfiltration of plant leaves with a plant viral vector carrying a gene of interest is a rapid and efficient method for protein production in plants. Currently this method is in use for producing a wide range of proteins for multiple applications, including vaccine antigens, antibodies, and protein nanoparticles such as virus-like particles. A number of pharmaceutical proteins produced by transient expression are currently in clinical development. Here, we describe potato virus X based vector pEff-GFP enabling fast and high-level expression of recombinant proteins in Nicotiana benthamiana plants. The pEff vector provides green fluorescent protein expression levels of up to 30% of total soluble protein (about 1mg per g of fresh leaf tissue) and was successfully applied for the production of the immunogens of potential clinical interest.
Collapse
Affiliation(s)
- Eugenia S Mardanova
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Nikolai V Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
12
|
Wang W, Yuan J, Jiang C. Applications of nanobodies in plant science and biotechnology. PLANT MOLECULAR BIOLOGY 2021; 105:43-53. [PMID: 33037986 PMCID: PMC7547553 DOI: 10.1007/s11103-020-01082-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 10/05/2020] [Indexed: 05/15/2023]
Abstract
Present review summarizes the current applications of nanobodies in plant science and biotechnology, including plant expression of nanobodies, plant biotechnological applications, nanobody-based immunodetection, and nanobody-mediated resistance against plant pathogens. Nanobodies (Nbs) are variable domains of heavy chain-only antibodies (HCAbs) isolated from camelids. In spite of their single domain structure, nanobodies display many unique features, such as small size, high stability, and cryptic epitopes accessibility, which make them ideal for sophisticated applications in plants and animals. In this review, we summarize the current applications of nanobodies in plant science and biotechnology, focusing on nanobody expression in plants, plant biotechnological applications, determination of plant toxins and pathogens, and nanobody-mediated resistance against plant pathogens. Prospects and challenges of nanobody applications in plants are also discussed.
Collapse
Affiliation(s)
- Wenyi Wang
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, Hubei, China.
- Precision Medicine R&D Center, Zhuhai Institute of Advanced Technology, Chinese Academy of Sciences, Zhuhai, Guangdong Province, China.
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China.
| | - Jumao Yuan
- Precision Medicine R&D Center, Zhuhai Institute of Advanced Technology, Chinese Academy of Sciences, Zhuhai, Guangdong Province, China
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| | - Changan Jiang
- Precision Medicine R&D Center, Zhuhai Institute of Advanced Technology, Chinese Academy of Sciences, Zhuhai, Guangdong Province, China
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| |
Collapse
|
13
|
Dhama K, Natesan S, Iqbal Yatoo M, Patel SK, Tiwari R, Saxena SK, Harapan H. Plant-based vaccines and antibodies to combat COVID-19: current status and prospects. Hum Vaccin Immunother 2020; 16:2913-2920. [PMID: 33270484 PMCID: PMC7754927 DOI: 10.1080/21645515.2020.1842034] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022] Open
Abstract
Globally, researchers are undertaking significant efforts to design and develop effective vaccines, therapeutics, and antiviral drugs to curb the spread of coronavirus disease 2019 (COVID-19). Plants have been used for the production of vaccines, monoclonal antibodies, immunomodulatory proteins, drugs, and pharmaceuticals via molecular farming/transient expression system and are considered as bioreactors or factories for their bulk production. These biological products are stable, safe, effective, easily available, and affordable. Plant molecular farming could facilitate rapid production of biologics on an industrial scale, and has the potential to fulfill emergency demands, such as in the present situation of the COVID-19 pandemic. This article aims to describe the methodology and basics of plant biopharming, in addition to its prospective applications for developing effective vaccines and antibodies to counter COVID-19.
Collapse
Affiliation(s)
- Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Senthilkumar Natesan
- Division of Biological & Life Sciences, Indian Institute of Public Health Gandhinagar, Ganghinagar, India
| | - Mohd. Iqbal Yatoo
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Alusteng Srinagar, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Shailesh Kumar Patel
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, India
| | - Shailendra K Saxena
- Centre for Advanced Research (CFAR), Faculty of Medicine, King George’s Medical University (KGMU), Lucknow, India
| | - Harapan Harapan
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
- Tropical Disease Centre, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
- Department of Microbiology, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| |
Collapse
|
14
|
Capell T, Twyman RM, Armario-Najera V, Ma JKC, Schillberg S, Christou P. Potential Applications of Plant Biotechnology against SARS-CoV-2. TRENDS IN PLANT SCIENCE 2020; 25:635-643. [PMID: 32371057 PMCID: PMC7181989 DOI: 10.1016/j.tplants.2020.04.009] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 05/17/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel coronavirus responsible for an ongoing human pandemic (COVID-19). There is a massive international effort underway to develop diagnostic reagents, vaccines, and antiviral drugs in a bid to slow down the spread of the disease and save lives. One part of that international effort involves the research community working with plants, bringing researchers from all over the world together with commercial enterprises to achieve the rapid supply of protein antigens and antibodies for diagnostic kits, and scalable production systems for the emergency manufacturing of vaccines and antiviral drugs. Here, we look at some of the ways in which plants can and are being used in the fight against COVID-19.
Collapse
Affiliation(s)
- Teresa Capell
- Department of Crop and Forest Sciences, University of Lleida-Agrotecnio Center, Av. Rovira Roure 191, 25198 Lleida, Spain
| | | | - Victoria Armario-Najera
- Department of Crop and Forest Sciences, University of Lleida-Agrotecnio Center, Av. Rovira Roure 191, 25198 Lleida, Spain
| | - Julian K-C Ma
- Institute for Infection and Immunity, St George's University of London, London, UK.
| | | | - Paul Christou
- Department of Crop and Forest Sciences, University of Lleida-Agrotecnio Center, Av. Rovira Roure 191, 25198 Lleida, Spain; ICREA, Catalan Institute for Research and Advanced Studies, Passeig Lluıís Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
15
|
Rong Y, Pauly M, Guthals A, Pham H, Ehrbar D, Zeitlin L, Mantis NJ. A Humanized Monoclonal Antibody Cocktail to Prevent Pulmonary Ricin Intoxication. Toxins (Basel) 2020. [PMID: 32235318 DOI: 10.3390/toxins1204215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
PB10 IgG1, a monoclonal antibody (MAb) directed against an immunodominant epitope on the enzymatic subunit (RTA) of ricin toxin (RT), has been shown to passively protect mice and non-human primates from an aerosolized lethal-dose RT challenge. However, it was recently demonstrated that the therapeutic efficacy of PB10 IgG1 is significantly improved when co-administered with a second MAb, SylH3, targeting RT's binding subunit (RTB). Here we report that the PB10/SylH3 cocktail is also superior to PB10 alone when used as a pre-exposure prophylactic (PrEP) in a mouse model of intranasal RT challenge. The benefit of the PB10/SylH3 cocktail prompted us to engineer a humanized IgG1 version of SylH3 (huSylH3). The huPB10/huSylH3 cocktail proved highly efficacious in the mouse model, thereby opening the door to future testing in non-human primates.
Collapse
MESH Headings
- Administration, Inhalation
- Animals
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Neutralizing/administration & dosage
- Antibodies, Neutralizing/pharmacology
- Antidotes/administration & dosage
- Antidotes/pharmacology
- Chlorocebus aethiops
- Disease Models, Animal
- Drug Therapy, Combination
- Female
- Lung Diseases/chemically induced
- Lung Diseases/prevention & control
- Mice, Inbred BALB C
- Pre-Exposure Prophylaxis
- Ricin/antagonists & inhibitors
- Ricin/immunology
- Vero Cells
Collapse
Affiliation(s)
- Yinghui Rong
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Michael Pauly
- Mapp Biopharmaceutical, Inc. 6160 Lusk Blvd, San Diego, CA 92121, USA
| | - Adrian Guthals
- Mapp Biopharmaceutical, Inc. 6160 Lusk Blvd, San Diego, CA 92121, USA
| | - Henry Pham
- Mapp Biopharmaceutical, Inc. 6160 Lusk Blvd, San Diego, CA 92121, USA
| | - Dylan Ehrbar
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Larry Zeitlin
- Mapp Biopharmaceutical, Inc. 6160 Lusk Blvd, San Diego, CA 92121, USA
| | - Nicholas J Mantis
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| |
Collapse
|
16
|
A Humanized Monoclonal Antibody Cocktail to Prevent Pulmonary Ricin Intoxication. Toxins (Basel) 2020; 12:toxins12040215. [PMID: 32235318 PMCID: PMC7232472 DOI: 10.3390/toxins12040215] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/11/2022] Open
Abstract
PB10 IgG1, a monoclonal antibody (MAb) directed against an immunodominant epitope on the enzymatic subunit (RTA) of ricin toxin (RT), has been shown to passively protect mice and non-human primates from an aerosolized lethal-dose RT challenge. However, it was recently demonstrated that the therapeutic efficacy of PB10 IgG1 is significantly improved when co-administered with a second MAb, SylH3, targeting RT’s binding subunit (RTB). Here we report that the PB10/SylH3 cocktail is also superior to PB10 alone when used as a pre-exposure prophylactic (PrEP) in a mouse model of intranasal RT challenge. The benefit of the PB10/SylH3 cocktail prompted us to engineer a humanized IgG1 version of SylH3 (huSylH3). The huPB10/huSylH3 cocktail proved highly efficacious in the mouse model, thereby opening the door to future testing in non-human primates.
Collapse
|
17
|
Molecular farming - The slope of enlightenment. Biotechnol Adv 2020; 40:107519. [PMID: 31954848 DOI: 10.1016/j.biotechadv.2020.107519] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/20/2019] [Accepted: 01/13/2020] [Indexed: 12/23/2022]
Abstract
Molecular farming can be defined as the use of plants to produce recombinant protein products. The technology is now >30 years old. The early promise of molecular farming was based on three perceived advantages: the low costs of growing plants, the immense scalability of agricultural production, and the inherent safety of plants as hosts for the production of pharmaceuticals. This resulted in a glut of research publications in which diverse proteins were expressed in equally diverse plant-based systems, and numerous companies were founded hoping to commercialize the new technology. There was a moderate degree of success for companies producing non-pharmaceutical proteins, but in the pharmaceutical sector the anticipation raised by promising early research was soon met by the cold hard reality of industrial pragmatism. Plants did not have a track record of success in pharmaceutical protein manufacturing, lacked a regulatory framework, and did not perform as well as established industry platforms. Negative attitudes towards genetically modified plants added to the mix. By the early 2000s, major industry players started to lose interest and pharmaceutical molecular farming fell from a peak of expectation into a trough of disillusionment, just as predicted by the Gartner hype cycle. But many of the pioneers of molecular farming have refocused their activities and have worked to address the limitations that hampered the first generation of technologies. The field has now consolidated around a smaller number of better-characterized platforms and has started to develop standardized methods and best practices, mirroring the evolution of more mature industry sectors. Likewise, attention has turned from proof-of-principle studies to realistic techno-economic modeling to capture significant niche markets, replicating the success of the industrial molecular farming sector. Here we argue that these recent developments signify that pharmaceutical molecular farming is now climbing the slope of enlightenment and will soon emerge as a mature technology.
Collapse
|
18
|
Clark M, Maselko M. Transgene Biocontainment Strategies for Molecular Farming. FRONTIERS IN PLANT SCIENCE 2020; 11:210. [PMID: 32194598 PMCID: PMC7063990 DOI: 10.3389/fpls.2020.00210] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/11/2020] [Indexed: 05/21/2023]
Abstract
Advances in plant synthetic biology promise to introduce novel agricultural products in the near future. 'Molecular farms' will include crops engineered to produce medications, vaccines, biofuels, industrial enzymes, and other high value compounds. These crops have the potential to reduce costs while dramatically increasing scales of synthesis and provide new economic opportunities to farmers. Current transgenic crops may be considered safe given their long-standing use, however, some applications of molecular farming may pose risks to human health and the environment. Unwanted gene flow from engineered crops could potentially contaminate the food supply, and affect wildlife. There is also potential for unwanted gene flow into engineered crops which may alter their ability to produce compounds of interest. Here, we briefly discuss the applications of molecular farming and explore the various genetic and physical methods that can be used for transgene biocontainment. As yet, no technology can be applied to all crop species, such that a combination of approaches may be necessary. Effective biocontainment is needed to enable large scale molecular farming.
Collapse
Affiliation(s)
- Michael Clark
- Applied Biosciences, Macquarie University, North Ryde, NSW, Australia
| | - Maciej Maselko
- Applied Biosciences, Macquarie University, North Ryde, NSW, Australia
- CSIRO Health and Biosecurity, Canberra, ACT, Australia
- CSIRO Synthetic Biology Future Science Platform, Brisbane, QLD, Australia
- *Correspondence: Maciej Maselko,
| |
Collapse
|
19
|
Kopertekh L, Schiemann J. Transient Production of Recombinant Pharmaceutical Proteins in Plants: Evolution and Perspectives. Curr Med Chem 2019; 26:365-380. [DOI: 10.2174/0929867324666170718114724] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 06/07/2017] [Accepted: 06/07/2017] [Indexed: 11/22/2022]
Abstract
During the last two decades, the production of pharmaceutical proteins in plants
evolved from proof of concept to established technology adopted by several biotechnological
companies. This progress is particularly based on intensive research starting stable genetic
transformation and moving to transient expression. Due to its advantages in yield and
speed of protein production transient expression platforms became the leading plant-based
manufacturing technology. Current transient expression methods rely on Agrobacteriummediated
delivery of expression vectors into plant cells. In recent years, great advances have
been made in the improvement of expression vectors, host cell engineering as well as in the
development of commercial manufacturing processes. Several GMP-certified large-scale
production facilities exist around the world to utilize agroinfiltration method. A number of
pharmaceutical proteins produced by transient expression are currently in clinical development.
The great potential of transient expression platform in respect to rapid response to
emerging pandemics was demonstrated by the production of experimental ZMapp antibodies
against Ebola virus as well as influenza vaccines. This review is focused on current design,
status and future perspectives of plant transient expression system for the production
of biopharmaceutical proteins.
Collapse
Affiliation(s)
- Lilya Kopertekh
- Federal Research Centre for Cultivated Plants, Institute for Biosafety in Plant Biotechnology, Erwin-Baur- Str. 27, D-06484, Quedlinburg, Germany
| | - Joachim Schiemann
- Federal Research Centre for Cultivated Plants, Institute for Biosafety in Plant Biotechnology, Erwin-Baur- Str. 27, D-06484, Quedlinburg, Germany
| |
Collapse
|
20
|
Roychowdhury S, Oh YJ, Kajiura H, Hamorsky KT, Fujiyama K, Matoba N. Hydroponic Treatment of Nicotiana benthamiana with Kifunensine Modifies the N-glycans of Recombinant Glycoprotein Antigens to Predominantly Man9 High-Mannose Type upon Transient Overexpression. FRONTIERS IN PLANT SCIENCE 2018; 9:62. [PMID: 29441088 PMCID: PMC5797603 DOI: 10.3389/fpls.2018.00062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/12/2018] [Indexed: 05/17/2023]
Abstract
Nicotiana benthamiana transient overexpression systems offer unique advantages for rapid and scalable biopharmaceuticals production, including high scalability and eukaryotic post-translational modifications such as N-glycosylation. High-mannose-type glycans (HMGs) of glycoprotein antigens have been implicated in the effectiveness of some subunit vaccines. In particular, Man9GlcNAc2 (Man9) has high binding affinity to mannose-specific C-type lectin receptors such as the mannose receptor and dendritic cell-specific intracellular adhesion molecule 3-grabbing non-integrin (DC-SIGN). Here, we investigated the effect of kifunensine, an α-mannosidase I inhibitor, supplemented in a hydroponic culture of N. benthamiana for the production of Man9-rich HMG glycoproteins, using N-glycosylated cholera toxin B subunit (gCTB) and human immunodeficiency virus gp120 that are tagged with a H/KDEL endoplasmic reticulum retention signal as model vaccine antigens. Biochemical analysis using anti-fucose and anti-xylose antibodies as well as Endo H and PNGase F digestion showed that kifunensine treatment effectively reduced plant-specific glycoforms while increasing HMGs in the N-glycan compositions of gCTB. Detailed glycan profiling revealed that plant-produced gp120 had a glycan profile bearing mostly HMGs regardless of kifunensine treatment. However, the gp120 produced under kifunensine-treatment conditions showed Man9 being the most prominent glycoform (64.5%), while the protein produced without kifunensine had a substantially lower Man9 composition (20.3%). Our results open up possibilities for efficient production of highly mannosylated recombinant vaccine antigens in plants.
Collapse
Affiliation(s)
- Sugata Roychowdhury
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, United States
| | - Young J. Oh
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, United States
| | - Hiroyuki Kajiura
- The International Center for Biotechnology, Osaka University, Suita, Japan
| | - Krystal T. Hamorsky
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, United States
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, United States
| | - Kazuhito Fujiyama
- The International Center for Biotechnology, Osaka University, Suita, Japan
| | - Nobuyuki Matoba
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, United States
- Center for Predictive Medicine, University of Louisville School of Medicine, Louisville, KY, United States
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, United States
- *Correspondence: Nobuyuki Matoba
| |
Collapse
|
21
|
Fujiuchi N, Matsuda R, Matoba N, Fujiwara K. Effects of plant density on recombinant hemagglutinin yields in an Agrobacterium-mediated transient gene expression system using Nicotiana benthamiana plants. Biotechnol Bioeng 2017; 114:1762-1770. [PMID: 28369753 DOI: 10.1002/bit.26303] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/19/2017] [Accepted: 03/29/2017] [Indexed: 12/11/2022]
Abstract
Agrobacterium-mediated transient expression systems enable plants to rapidly produce a wide range of recombinant proteins. To achieve economically feasible upstream production and downstream processing, it is beneficial to obtain high levels of two yield-related quantities of upstream production: recombinant protein content per fresh mass of harvested biomass (g gFM-1 ) and recombinant protein productivity per unit area-time (g m-2 /month). Here, we report that the density of Nicotiana benthamiana plants during upstream production had significant impacts on the yield-related quantities of recombinant hemagglutinin (HA). The two quantities were smaller at a high plant density of 400 plants m-2 than at a low plant density of 100 plants m-2 . The smaller quantities at the high plant density were attributed to: (i) a lower HA content in young leaves, which usually have high HA accumulation potentials; (ii) a lower biomass allocation to the young leaves; and (iii) a high area-time requirement for plants. Thus, plant density is a key factor for improving upstream production in Agrobacterium-mediated transient expression systems. Biotechnol. Bioeng. 2017;114: 1762-1770. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Naomichi Fujiuchi
- Department of Biological and Environmental Engineering, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryo Matsuda
- Department of Biological and Environmental Engineering, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Nobuyuki Matoba
- Owensboro Cancer Research Program, James Graham Brown Cancer Center, University of Louisville School of Medicine, Owensboro, Kentucky
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Kazuhiro Fujiwara
- Department of Biological and Environmental Engineering, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
22
|
Pharmacokinetics and Preliminary Safety of Pod-Intravaginal Rings Delivering the Monoclonal Antibody VRC01-N for HIV Prophylaxis in a Macaque Model. Antimicrob Agents Chemother 2017; 61:AAC.02465-16. [PMID: 28416548 DOI: 10.1128/aac.02465-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 04/09/2017] [Indexed: 01/02/2023] Open
Abstract
The broadly neutralizing antibody (bNAb) VRC01, capable of neutralizing 91% of known human immunodeficiency virus type 1 (HIV-1) isolates in vitro, is a promising candidate microbicide for preventing sexual HIV infection when administered topically to the vagina; however, accessibility to antibody-based prophylactic treatment by target populations in sub-Saharan Africa and other underdeveloped regions may be limited by the high cost of conventionally produced antibodies and the limited capacity to manufacture such antibodies. Intravaginal rings of the pod design (pod-IVRs) delivering Nicotiana-manufactured VRC01 (VRC01-N) over a range of release rates have been developed. The pharmacokinetics and preliminary safety of VRC01-N pod-IVRs were evaluated in a rhesus macaque model. The devices sustained VRC01-N release for up to 21 days at controlled rates, with mean steady-state VRC01-N levels in vaginal fluids in the range of 102 to 103 μg g-1 being correlated with in vitro release rates. No adverse safety indications were observed. These findings indicate that pod-IVRs are promising devices for the delivery of the candidate topical microbicide VRC01-N against HIV-1 infection and merit further preclinical evaluation.
Collapse
|
23
|
Juarez P, Virdi V, Depicker A, Orzaez D. Biomanufacturing of protective antibodies and other therapeutics in edible plant tissues for oral applications. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1791-1799. [PMID: 26873071 PMCID: PMC5067594 DOI: 10.1111/pbi.12541] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/12/2016] [Accepted: 01/13/2016] [Indexed: 06/05/2023]
Abstract
Although plant expression systems used for production of therapeutic proteins have the advantage of being scalable at a low price, the downstream processing necessary to obtain pure therapeutic molecules is as expensive as for the traditional Chinese hamster ovary (CHO) platforms. However, when edible plant tissues (EPTs) are used, there is no need for exhaustive purification, because they can be delivered orally as partially purified formulations that are safe for consumption. This economic benefit is especially interesting when high doses of recombinant proteins are required throughout the treatment/prophylaxis period, as is the case for antibodies used for oral passive immunization (OPI). The secretory IgA (SIgA) antibodies, which are highly abundant in the digestive tract and mucosal secretions, and thus the first choice for OPI, have only been successfully produced in plant expression systems. Here, we cover most of the up-to-date examples of EPT-produced pharmaceuticals, including two examples of SIgA aimed at oral delivery. We describe the benefits and drawbacks of delivering partially purified formulations and discuss a number of practical considerations and criteria to take into account when using plant expression systems, such as subcellular targeting, protein degradation, glycosylation patterns and downstream strategies, all crucial for improved yield, high quality and low cost of the final product.
Collapse
Affiliation(s)
- Paloma Juarez
- Department of Plant Systems Biology, VIB, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, Valencia, Spain
| | - Vikram Virdi
- Department of Plant Systems Biology, VIB, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Ann Depicker
- Department of Plant Systems Biology, VIB, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Diego Orzaez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, Valencia, Spain
| |
Collapse
|
24
|
Scott Y, Dezzutti CS. Non-Antiretroviral Microbicides for HIV Prevention. AIDS Rev 2016; 18:145-150. [PMID: 27438574 PMCID: PMC5053894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Non-antiretroviral microbicide candidates were previously explored as a female-controlled method of preventing sexual transmission of HIV. These products contained non-HIV specific active compounds that were ultimately found to disrupt the vaginal epithelium, cause increased immune activation in the female genital tract, disturb vaginal flora, and/or cause other irritation that precluded their use as vaginal microbicides. Due to the failure of these first-generation candidates, there was a shift in focus to developing HIV pre-exposure prophylaxis and microbicides containing small-molecule antiretrovirals. Even with the limited success of the antiretroviral-based microbicides in clinical evaluations and no commercially available products, there has been significant progress in microbicide research. The lessons learned from previous trials have given rise to more rigorous preclinical evaluation that aims to be better at predicting microbicide efficacy and safety and to novel formulation and delivery technologies. These advances have resulted in renewed interest in developing non-antiretroviral-based microbicides, such as broadly neutralizing antibodies (for example, VRC01) and anti-viral proteins (for example, Griffithsin), as options for persons not wanting to use antiretroviral drugs, and for their potential to prevent multiple sexually transmitted infections.
Collapse
Affiliation(s)
- Yanille Scott
- University of Pittsburgh, Graduate School of Public Health, Pittsburgh, USA
| | - Charlene S Dezzutti
- University of Pittsburgh, School of Medicine; Magee-Womens Research Institute. Pittsburgh, USA
| |
Collapse
|
25
|
Ebola Virus Disease: Therapeutic and Potential Preventative Opportunities. Microbiol Spectr 2016; 4. [PMID: 27337455 DOI: 10.1128/microbiolspec.ei10-0014-2016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 2014 Ebola virus disease (EVD) epidemic in West Africa was unprecedented in its geographical distribution, scale, and toll on public health infrastructure. Standard public health measures were rapidly overwhelmed, and many projections on outbreak progression through the region were dire. At the beginning of the outbreak there were no treatments or vaccines that had been shown to be safe and effective for treating or preventing EVD, limiting health care providers to offer supportive care under extremely challenging circumstances and at great risk to themselves. Over time, however, drugs and vaccines in the development pipeline were prioritized based on all available research data and were moved forward for evaluation in clinical trials to demonstrate safety and efficacy. The armamentarium against EVD eventually included biologics such as monoclonal antibodies, convalescent plasma, and vaccines as well as small molecule therapeutics such as small interfering RNAs and nucleoside analogs. This article provides a high-level overview of the interventions and prophylactics considered for use in the outbreak and discusses the challenges faced when attempting to deploy investigational countermeasures in the midst of an evolving epidemic.
Collapse
|
26
|
Tschofen M, Knopp D, Hood E, Stöger E. Plant Molecular Farming: Much More than Medicines. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2016; 9:271-94. [PMID: 27049632 DOI: 10.1146/annurev-anchem-071015-041706] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plants have emerged as commercially relevant production systems for pharmaceutical and nonpharmaceutical products. Currently, the commercially available nonpharmaceutical products outnumber the medical products of plant molecular farming, reflecting the shorter development times and lower regulatory burden of the former. Nonpharmaceutical products benefit more from the low costs and greater scalability of plant production systems without incurring the high costs associated with downstream processing and purification of pharmaceuticals. In this review, we explore the areas where plant-based manufacturing can make the greatest impact, focusing on commercialized products such as antibodies, enzymes, and growth factors that are used as research-grade or diagnostic reagents, cosmetic ingredients, and biosensors or biocatalysts. An outlook is provided on high-volume, low-margin proteins such as industrial enzymes that can be applied as crude extracts or unprocessed plant tissues in the feed, biofuel, and papermaking industries.
Collapse
Affiliation(s)
- Marc Tschofen
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria;
| | - Dietmar Knopp
- Institute of Hydrochemistry, Chair for Analytical Chemistry, Technische Universität München, 80333 Munich, Germany
| | - Elizabeth Hood
- Arkansas State University Biosciences Institute, Jonesboro, Arkansas 72467
| | - Eva Stöger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria;
| |
Collapse
|
27
|
Fujiuchi N, Matoba N, Matsuda R. Environment Control to Improve Recombinant Protein Yields in Plants Based on Agrobacterium-Mediated Transient Gene Expression. Front Bioeng Biotechnol 2016; 4:23. [PMID: 27014686 PMCID: PMC4781840 DOI: 10.3389/fbioe.2016.00023] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 02/22/2016] [Indexed: 11/13/2022] Open
Abstract
Agrobacterium-mediated transient expression systems enable plants to produce a wide range of recombinant proteins on a rapid timescale. To achieve economically feasible upstream production and downstream processing, two yield parameters should be considered: (1) recombinant protein content per unit biomass and (2) recombinant protein productivity per unit area-time at the end of the upstream production. Because environmental factors in the upstream production have impacts on these parameters, environment control is important to maximize the recombinant protein yield. In this review, we summarize the effects of pre- and postinoculation environmental factors in the upstream production on the yield parameters and discuss the basic concept of environment control for plant-based transient expression systems. Preinoculation environmental factors associated with planting density, light quality, and nutrient supply affect plant characteristics, such as biomass and morphology, which in turn affect recombinant protein content and productivity. Accordingly, environment control for such plant characteristics has significant implications to achieve a high yield. On the other hand, postinoculation environmental factors, such as temperature, light intensity, and humidity, have been shown to affect recombinant protein content. Considering that recombinant protein production in Agrobacterium-mediated transient expression systems is a result of a series of complex biological events starting from T-DNA transfer from Agrobacterium tumefaciens to protein biosynthesis and accumulation in leaf tissue, we propose that dynamic environment control during the postinoculation process, i.e., changing environmental conditions at an appropriate timing for each event, may be a promising approach to obtain a high yield. Detailed descriptions of plant growth conditions and careful examination of environmental effects will significantly contribute to our knowledge to stably obtain high recombinant protein content and productivity, thus enhancing the utility of plant-based transient expression systems as recombinant protein factories.
Collapse
Affiliation(s)
- Naomichi Fujiuchi
- Department of Biological and Environmental Engineering, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Nobuyuki Matoba
- Owensboro Cancer Research Program, James Graham Brown Cancer Center, University of Louisville School of Medicine, Owensboro, KY, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Ryo Matsuda
- Department of Biological and Environmental Engineering, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
28
|
Condori J, Acosta W, Ayala J, Katta V, Flory A, Martin R, Radin J, Cramer CL, Radin DN. Enzyme replacement for GM1-gangliosidosis: Uptake, lysosomal activation, and cellular disease correction using a novel β-galactosidase:RTB lectin fusion. Mol Genet Metab 2016; 117:199-209. [PMID: 26766614 PMCID: PMC6116835 DOI: 10.1016/j.ymgme.2015.12.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 12/04/2015] [Accepted: 12/05/2015] [Indexed: 10/22/2022]
Abstract
New enzyme delivery technologies are required for treatment of lysosomal storage disorders with significant pathologies associated with the so-called "hard-to-treat" tissues and organs. Genetic deficiencies in the GLB1 gene encoding acid β-galactosidase lead to GM1-gangliosidosis or Morquio B, lysosomal diseases with predominant disease manifestation associated with the central nervous system or skeletal system, respectively. Current lysosomal ERTs are delivered into cells based on receptor-mediated endocytosis and do not effectively address several hard-to-treat organs including those critical for GM1-gangliosidosis patients. Lectins provide alternative cell-uptake mechanisms based on adsorptive-mediated endocytosis and thus may provide unique biodistribution for lysosomal disease therapeutics. In the current study, genetic fusions of the plant galactose/galactosamine-binding lectin, RTB, and the human acid β-galactosidase enzyme were produced using a plant-based bioproduction platform. β-gal:RTB and RTB:β-gal fusion products retained both lectin activity and β-galactosidase activity. Purified proteins representing both fusion orientations were efficiently taken up into GM1 patient fibroblasts and mediated the reduction of GM1 ganglioside substrate with activities matching mammalian cell-derived β-galactosidase. In contrast, plant-derived β-gal alone was enzymatically active but did not mediate uptake or correction indicating the need for either lectin-based (plant product) or mannose-6-phosphate-based (mammalian product) delivery. Native β-galactosidase undergoes catalytic activation (cleavage within the C-terminal region) in lysosomes and is stabilized by association with protective protein/cathepsin A. Enzymatic activity and lysosomal protein processing of the RTB fusions were assessed following internalization into GM1 fibroblasts. Within 1-4h, both β-gal:RTB and RTB:β-gal were processed to the ~64kDa "activated" β-gal form; the RTB lectin was cleaved and rapidly degraded. The activated β-gal was still detected at 48h suggesting interactions with protective protein/cathepsin A. Uptake-saturation analyses indicated that the RTB adsorptive-mediated mechanisms of β-gal:RTB supported significantly greater accumulation of β-galactose activity in fibroblasts compared to the receptor-mediated mechanisms of the mammalian cell-derived β-gal. These data demonstrate that plant-made β-gal:RTB functions as an effective replacement enzyme for GM1-gangliosidosis - delivering enzyme into cells, enabling essential lysosomal processing, and mediating disease substrate clearance at the cellular level. RTB provides novel uptake behaviors and thus may provide new receptor-independent strategies that could broadly impact lysosomal disease treatments.
Collapse
Affiliation(s)
- Jose Condori
- BioStrategies LC, P.O. Box 2428, State University, AR 72467, USA
| | - Walter Acosta
- BioStrategies LC, P.O. Box 2428, State University, AR 72467, USA
| | - Jorge Ayala
- BioStrategies LC, P.O. Box 2428, State University, AR 72467, USA
| | - Varun Katta
- BioStrategies LC, P.O. Box 2428, State University, AR 72467, USA
| | - Ashley Flory
- BioStrategies LC, P.O. Box 2428, State University, AR 72467, USA
| | - Reid Martin
- BioStrategies LC, P.O. Box 2428, State University, AR 72467, USA; Arkansas Biosciences Institute & Dept. Biological Sciences, P.O Box 639, Arkansas State University-Jonesboro, State University, AR 72467, USA
| | - Jonathan Radin
- BioStrategies LC, P.O. Box 2428, State University, AR 72467, USA
| | - Carole L Cramer
- BioStrategies LC, P.O. Box 2428, State University, AR 72467, USA; Arkansas Biosciences Institute & Dept. Biological Sciences, P.O Box 639, Arkansas State University-Jonesboro, State University, AR 72467, USA.
| | - David N Radin
- BioStrategies LC, P.O. Box 2428, State University, AR 72467, USA
| |
Collapse
|
29
|
Madeira LM, Szeto TH, Henquet M, Raven N, Runions J, Huddleston J, Garrard I, Drake PMW, Ma JKC. High-yield production of a human monoclonal IgG by rhizosecretion in hydroponic tobacco cultures. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:615-24. [PMID: 26038982 PMCID: PMC11388865 DOI: 10.1111/pbi.12407] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 04/28/2015] [Accepted: 04/29/2015] [Indexed: 05/28/2023]
Abstract
Rhizosecretion of recombinant pharmaceuticals from in vitro hydroponic transgenic plant cultures is a simple, low cost, reproducible and controllable production method. Here, we demonstrate the application and adaptation of this manufacturing platform to a human antivitronectin IgG1 monoclonal antibody (mAb) called M12. The rationale for specific growth medium additives was established by phenotypic analysis of root structure and by LC-ESI-MS/MS profiling of the total protein content profile of the hydroponic medium. Through a combination of optimization approaches, mAb yields in hydroponic medium reached 46 μg/mL in 1 week, the highest figure reported for a recombinant mAb in a plant secretion-based system to date. The rhizosecretome was determined to contain 104 proteins, with the mAb heavy and light chains the most abundant. This enabled evaluation of a simple, scalable extraction and purification protocol and demonstration that only minimal processing was necessary prior to protein A affinity chromatography. MALDI-TOF MS revealed that purified mAb contained predominantly complex-type plant N-glycans, in three major glycoforms. The binding of M12 purified from hydroponic medium to vitronectin was comparable to its Chinese hamster ovary (CHO)-derived counterpart. This study demonstrates that in vitro hydroponic cultivation coupled with recombinant protein rhizosecretion can be a practical, low-cost production platform for monoclonal antibodies.
Collapse
Affiliation(s)
- Luisa M Madeira
- The Hotung Molecular Immunology Unit, Institute for Infection and Immunity, St. George's University of London, London, UK
| | - Tim H Szeto
- The Hotung Molecular Immunology Unit, Institute for Infection and Immunity, St. George's University of London, London, UK
| | - Maurice Henquet
- Plant Research International, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Nicole Raven
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen, Germany
| | - John Runions
- Department of Biological and Medical Sciences - Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Jon Huddleston
- Brunel Institute for Bioengineering, Brunel University, London, UK
| | - Ian Garrard
- Brunel Institute for Bioengineering, Brunel University, London, UK
| | - Pascal M W Drake
- The Hotung Molecular Immunology Unit, Institute for Infection and Immunity, St. George's University of London, London, UK
| | - Julian K-C Ma
- The Hotung Molecular Immunology Unit, Institute for Infection and Immunity, St. George's University of London, London, UK
| |
Collapse
|
30
|
Wessler T, Chen A, McKinley SA, Cone R, Forest MG, Lai SK. Using Computational Modeling To Optimize the Design of Antibodies That Trap Viruses in Mucus. ACS Infect Dis 2016; 2:82-92. [PMID: 26771004 DOI: 10.1021/acsinfecdis.5b00108] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Immunoglobulin G (IgG) antibodies that trap viruses in cervicovaginal mucus (CVM) via adhesive interactions between IgG-Fc and mucins have recently emerged as a promising strategy to block vaginally transmitted infections. The array of IgG bound to a virus particle appears to trap the virus by making multiple weak affinity bonds to the fibrous mucins that form the mucus gel. However, the antibody characteristics that maximize virus trapping and minimize viral infectivity remain poorly understood. Toward this goal, we developed a mathematical model that takes into account physiologically relevant spatial dimensions and time scales, binding, and unbinding rates between IgG and virions and between IgG and mucins, as well as the respective diffusivities of virions and IgG in semen and CVM. We then systematically explored the IgG-antigen and IgG-mucin binding and unbinding rates that minimize the flux of infectious HIV arriving at the vaginal epithelium. Surprisingly, contrary to common intuition that infectivity would drop monotonically with increasing affinities between IgG and HIV, and between IgG and mucins, our model suggests maximal trapping of HIV and minimal flux of HIV to the epithelium are achieved with IgG molecules that exhibit (i) rapid antigen binding (high kon) rather than very slow unbinding (low koff), that is, high-affinity binding to the virion, and (ii) relatively weak affinity with mucins. These results provide important insights into the design of more potent "mucotrapping" IgG for enhanced protection against vaginally transmitted infections. The model is adaptable to other pathogens, mucosal barriers, geometries, and kinetic and diffusional effects, providing a tool for hypothesis testing and producing quantitative insights into the dynamics of immune-mediated protection.
Collapse
Affiliation(s)
- Timothy Wessler
- Departments of Mathematics and Applied Physical Science, University of North Carolina—Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Alex Chen
- Departments of Mathematics and Applied Physical Science, University of North Carolina—Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Scott A. McKinley
- Mathematics Department, Tulane University, New Orleans, Louisiana 70118, United States
| | - Richard Cone
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - M. Gregory Forest
- Departments of Mathematics and Applied Physical Science, University of North Carolina—Chapel Hill, Chapel Hill, North Carolina 27599, United States
- UNC/NCSU Joint Department of Biomedical
Engineering, University of North Carolina—Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Samuel K. Lai
- Division of Molecular Pharmaceutics, Eshelman School
of Pharmacy, University of North Carolina—Chapel Hill, Chapel Hill, North Carolina 27599, United States
- UNC/NCSU Joint Department of Biomedical
Engineering, University of North Carolina—Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Microbiology & Immunology, University of North Carolina—Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
31
|
Broadly Neutralizing Anti-HIV Antibodies Prevent HIV Infection of Mucosal Tissue Ex Vivo. Antimicrob Agents Chemother 2015; 60:904-12. [PMID: 26596954 DOI: 10.1128/aac.02097-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 11/19/2015] [Indexed: 01/16/2023] Open
Abstract
Broadly neutralizing monoclonal antibodies (nAbs) specific for HIV are being investigated for use in HIV prevention. Due to their ability to inhibit HIV attachment to and entry into target cells, nAbs may be suitable for use as topical HIV microbicides. As such, they would present an alternative intervention for individuals who may not benefit from using antiretroviral-based products for HIV prevention. We theorize that nAbs can inhibit viral transmission through mucosal tissue, thus reducing the incidence of HIV infection. The efficacy of the PG9, PG16, VRC01, and 4E10 antibodies was evaluated in an ex vivo human model of mucosal HIV transmission. nAbs reduced HIV transmission, causing 1.5- to 2-log10 reductions in HIV replication in ectocervical tissues and ≈3-log10 reductions in HIV replication in colonic tissues over 21 days. These antibodies demonstrated greater potency in colonic tissues, with a 50-fold higher dose being required to reduce transmission in ectocervical tissues. Importantly, nAbs retained their potency and reduced viral transmission in the presence of whole semen. No changes in tissue viability or immune activation were observed in colonic or ectocervical tissue after nAb exposure. Our data suggest that topically applied nAbs are safe and effective against HIV infection of mucosal tissue and support further development of nAbs as a topical microbicide that could be used for anal as well as vaginal protection.
Collapse
|
32
|
Limkul J, Misaki R, Kato K, Fujiyama K. The combination of plant translational enhancers and terminator increase the expression of human glucocerebrosidase in Nicotiana benthamiana plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 240:41-9. [PMID: 26475186 DOI: 10.1016/j.plantsci.2015.08.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/19/2015] [Accepted: 08/25/2015] [Indexed: 05/18/2023]
Abstract
Gaucher's disease is a lysosomal storage disorder caused by mutations in the gene encoding glucocerebrosidase (GCase). It is currently treated by enzyme replacement therapy using recombinant GCase expressed in mammalian cells. Plant production systems are among the most attractive alternatives for pharmaceutical protein production due to such advantages as low-cost, high-scalability, and safety from human pathogen contamination. Because of its high biomass yield, Nicotiana benthamiana could be an economical recombinant GCase production system. In this study, a translational enhancer and suitable terminator were utilized to obtain a powerful expression system for GCase production in N. benthamiana plants. Six plasmid constructs were used. The highest activity of 44.5units/mg protein (after subtraction of endogenous glucosidase activity of the wild-type plant) was observed in transgenic plants transformed with pAt-GC-HSP combined with a 5' untranslated region of the Arabidopsis alcohol dehydrogenase gene with the Arabidopsis heat shock protein terminator. These transgenic plant lines could pave the way to a stable plant-production system for low-cost, high-yield human GCase production.
Collapse
Affiliation(s)
- Juthamard Limkul
- International Center for Biotechnology, Osaka University, 2-1 Yamada-oka, Suita-shi, Osaka 565-0871, Japan
| | - Ryo Misaki
- International Center for Biotechnology, Osaka University, 2-1 Yamada-oka, Suita-shi, Osaka 565-0871, Japan
| | - Ko Kato
- Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Kazuhito Fujiyama
- International Center for Biotechnology, Osaka University, 2-1 Yamada-oka, Suita-shi, Osaka 565-0871, Japan.
| |
Collapse
|
33
|
Acosta W, Ayala J, Dolan MC, Cramer CL. RTB Lectin: a novel receptor-independent delivery system for lysosomal enzyme replacement therapies. Sci Rep 2015; 5:14144. [PMID: 26382970 PMCID: PMC4585660 DOI: 10.1038/srep14144] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 08/19/2015] [Indexed: 01/10/2023] Open
Abstract
Enzyme replacement therapies have revolutionized patient treatment for multiple rare lysosomal storage diseases but show limited effectiveness for addressing pathologies in "hard-to-treat" organs and tissues including brain and bone. Here we investigate the plant lectin RTB as a novel carrier for human lysosomal enzymes. RTB enters mammalian cells by multiple mechanisms including both adsorptive-mediated and receptor-mediated endocytosis, and thus provides access to a broader array of organs and cells. Fusion proteins comprised of RTB and human α-L-iduronidase, the corrective enzyme for Mucopolysaccharidosis type I, were produced using a tobacco-based expression system. Fusion products retained both lectin selectivity and enzyme activity, were efficiently endocytosed into human fibroblasts, and corrected the disease phenotype of mucopolysaccharidosis patient fibroblasts in vitro. RTB-mediated delivery was independent of high-mannose and mannose-6-phosphate receptors, which are exploited for delivery of currently approved lysosomal enzyme therapeutics. Thus, the RTB carrier may support distinct in vivo pharmacodynamics with potential to address hard-to-treat tissues.
Collapse
Affiliation(s)
- Walter Acosta
- Arkansas Biosciences Institute at Arkansas State University-Jonesboro, State University, Arkansas, USA
| | - Jorge Ayala
- Arkansas Biosciences Institute at Arkansas State University-Jonesboro, State University, Arkansas, USA
- BioStrategies LC, State University, Arkansas, USA
| | - Maureen C. Dolan
- Arkansas Biosciences Institute at Arkansas State University-Jonesboro, State University, Arkansas, USA
- Department of Biological Sciences, Arkansas State University-Jonesboro, State University, Arkansas, USA
| | - Carole L. Cramer
- Arkansas Biosciences Institute at Arkansas State University-Jonesboro, State University, Arkansas, USA
- Department of Biological Sciences, Arkansas State University-Jonesboro, State University, Arkansas, USA
- BioStrategies LC, State University, Arkansas, USA
| |
Collapse
|
34
|
Levinson KJ, Giffen SR, Pauly MH, Kim DH, Bohorov O, Bohorova N, Whaley KJ, Zeitlin L, Mantis NJ. Plant-based production of two chimeric monoclonal IgG antibodies directed against immunodominant epitopes of Vibrio cholerae lipopolysaccharide. J Immunol Methods 2015; 422:111-7. [PMID: 25865265 PMCID: PMC4458452 DOI: 10.1016/j.jim.2015.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 03/29/2015] [Accepted: 04/01/2015] [Indexed: 01/19/2023]
Abstract
We have produced and characterized two chimeric human IgG1 monoclonal antibodies that bind different immunodominant epitopes on Vibrio cholerae lipopolysaccharide (LPS). MAb 2D6 IgG1 recognizes Ogawa O-polysaccharide antigen, while mAb ZAC-3 IgG1 recognizes core/lipid A moiety of Ogawa and Inaba LPS. Both antibodies were expressed using a Nicotiana benthamiana-based rapid antibody-manufacturing platform (RAMP) and evaluated in vitro for activities associated with immunity to V. cholerae, including vibriocidal activity, bacterial agglutination and motility arrest.
Collapse
Affiliation(s)
- Kara J Levinson
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY 12208, United States; Department of Biomedical Sciences, University at Albany, Albany, NY 12208, United States
| | - Samantha R Giffen
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY 12208, United States
| | - Michael H Pauly
- Mapp Biopharmaceutical, Inc., San Diego, CA 92121, United States
| | - Do H Kim
- Mapp Biopharmaceutical, Inc., San Diego, CA 92121, United States
| | - Ognian Bohorov
- Mapp Biopharmaceutical, Inc., San Diego, CA 92121, United States
| | - Natasha Bohorova
- Mapp Biopharmaceutical, Inc., San Diego, CA 92121, United States
| | - Kevin J Whaley
- Mapp Biopharmaceutical, Inc., San Diego, CA 92121, United States
| | - Larry Zeitlin
- Mapp Biopharmaceutical, Inc., San Diego, CA 92121, United States
| | - Nicholas J Mantis
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY 12208, United States; Department of Biomedical Sciences, University at Albany, Albany, NY 12208, United States.
| |
Collapse
|
35
|
Wong G, Qiu X. Development of experimental and early investigational drugs for the treatment of Ebola virus infections. Expert Opin Investig Drugs 2015; 24:999-1011. [PMID: 26065319 DOI: 10.1517/13543784.2015.1052403] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Ebola virus (EBOV) causes severe hemorrhagic fever in humans, and due to the aggressive nature of infection it has been difficult to develop effective medical countermeasures. Total casualties from past outbreaks numbered fewer than 1500 cases, but EBOV unexpectedly emerged from Guinea in late 2013 and infected over 25,000 people in nine countries spanning Africa, Europe and North America. Concern among the public and authorities helped spark an unprecedented push to fast-track experimental drugs for clinical use. AREAS COVERED The authors provide a historical timeline of the progress in developing a licensed post-exposure EBOV drug for use in humans. Furthermore, they summarize and discuss the published data with different in light of their potential to play a role during outbreak times. EXPERT OPINION Monoclonal antibody-based therapy is able to reverse advanced EBOV disease, but the outbreak of an antigenically divergent filovirus would require the reformulation and possibly redevelopment of the most promising candidates. Immunocompetent small animal models have not yet been developed for screening drugs against other filoviruses aside from Ravn and Marburg virus, and thus the number of prophylactic and therapeutic candidates lag behind that of EBOV. There is an urgent need for the proactive development of drugs against other neglected pathogens before the next major outbreak.
Collapse
Affiliation(s)
- Gary Wong
- National Microbiology Laboratory, Public Health Agency of Canada, Special Pathogens Program , Winnipeg, Manitoba , Canada
| | | |
Collapse
|
36
|
Moustafa K, Makhzoum A, Trémouillaux-Guiller J. Molecular farming on rescue of pharma industry for next generations. Crit Rev Biotechnol 2015; 36:840-50. [DOI: 10.3109/07388551.2015.1049934] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
37
|
Moshelion M, Altman A. Current challenges and future perspectives of plant and agricultural biotechnology. Trends Biotechnol 2015; 33:337-42. [PMID: 25842169 DOI: 10.1016/j.tibtech.2015.03.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/04/2015] [Accepted: 03/05/2015] [Indexed: 01/02/2023]
Abstract
Advances in understanding plant biology, novel genetic resources, genome modification, and omics technologies generate new solutions for food security and novel biomaterials production under changing environmental conditions. New gene and germplasm candidates that are anticipated to lead to improved crop yields and other plant traits under stress have to pass long development phases based on trial and error using large-scale field evaluation. Therefore, quantitative, objective, and automated screening methods combined with decision-making algorithms are likely to have many advantages, enabling rapid screening of the most promising crop lines at an early stage followed by final mandatory field experiments. The combination of novel molecular tools, screening technologies, and economic evaluation should become the main goal of the plant biotechnological revolution in agriculture.
Collapse
Affiliation(s)
- Menachem Moshelion
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Faculty of Agricultural, Food, and Environmental Quality Sciences, PO Box 12, Rehovot 76100, Israel
| | - Arie Altman
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Faculty of Agricultural, Food, and Environmental Quality Sciences, PO Box 12, Rehovot 76100, Israel.
| |
Collapse
|
38
|
Whaley KJ, Mayer KH. Strategies for preventing mucosal cell-associated HIV transmission. J Infect Dis 2015; 210 Suppl 3:S674-80. [PMID: 25414423 DOI: 10.1093/infdis/jiu398] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Human immunodeficiency virus (HIV) may be transmitted through either cell-free virions or leukocytes harboring intracellular HIV in bodily fluids. In recent years, the early initiation of combination antiretroviral therapy leading to virological suppression has resulted in decreased HIV transmission to uninfected partners. Additionally, the efficacy of primary chemoprophylaxis with oral or topical antiretroviral regimens containing tenofovir (with or without emtricitabine) has been demonstrated. However, the efficacy of these approaches may be compromised by suboptimal adherence, decreased drug concentrations in mucosal compartments in women, and genital inflammation. Furthermore, in vitro studies on the effects of tenofovir on cell-associated HIV transmission have produced conflicting results. Preclinical studies suggest that combination preventive approaches may be most effective in stopping the transmission of HIV after mucosal exposure. Since the development of antibodies were found to correlate with protection in the only effective HIV vaccine trial, the administration of preformed mucosal and systemic antibodies may inform the development of safe and effective antibody-based oral, topical, and/or systemic preexposure prophylaxis agents and provide guidance in the development of HIV vaccines that effectively block cell-associated HIV transmission.
Collapse
Affiliation(s)
| | - Kenneth H Mayer
- The Fenway Institute, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| |
Collapse
|
39
|
van Dolleweerd CJ, Teh AYH, Banyard AC, Both L, Lotter-Stark HCT, Tsekoa T, Phahladira B, Shumba W, Chakauya E, Sabeta CT, Gruber C, Fooks AR, Chikwamba RK, Ma JKC. Engineering, expression in transgenic plants and characterisation of E559, a rabies virus-neutralising monoclonal antibody. J Infect Dis 2014; 210:200-8. [PMID: 24511101 PMCID: PMC4073784 DOI: 10.1093/infdis/jiu085] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 01/27/2014] [Indexed: 12/30/2022] Open
Abstract
Rabies post-exposure prophylaxis (PEP) currently comprises administration of rabies vaccine together with rabies immunoglobulin (RIG) of either equine or human origin. In the developing world, RIG preparations are expensive, often in short supply, and of variable efficacy. Therefore, we are seeking to develop a monoclonal antibody cocktail to replace RIG. Here, we describe the cloning, engineering and production in plants of a candidate monoclonal antibody (E559) for inclusion in such a cocktail. The murine constant domains of E559 were replaced with human IgG1κ constant domains and the resulting chimeric mouse-human genes were cloned into plant expression vectors for stable nuclear transformation of Nicotiana tabacum. The plant-expressed, chimeric antibody was purified and biochemically characterized, was demonstrated to neutralize rabies virus in a fluorescent antibody virus neutralization assay, and conferred protection in a hamster challenge model.
Collapse
Affiliation(s)
- Craig J. van Dolleweerd
- Research Centre for Infection and Immunity, Division of Clinical Sciences, St George's University of London, United Kingdom
| | - Audrey Y-H. Teh
- Research Centre for Infection and Immunity, Division of Clinical Sciences, St George's University of London, United Kingdom
| | - Ashley C. Banyard
- Wildlife Zoonoses and Vector Borne Disease Research Group, Animal Health and Veterinary Laboratories Agency (AHVLA), Surrey, United Kingdom
| | - Leonard Both
- Research Centre for Infection and Immunity, Division of Clinical Sciences, St George's University of London, United Kingdom
| | | | - Tsepo Tsekoa
- Council for Scientific and Industrial Research (CSIR), Biosciences, Pretoria, South Africa
| | - Baby Phahladira
- Agricultural Research Council-Onderstepoort Veterinary Institute (ARC-OVI), OIE Rabies Reference Laboratory, Onderstepoort, Pretoria, South Africa
| | - Wonderful Shumba
- Agricultural Research Council-Onderstepoort Veterinary Institute (ARC-OVI), OIE Rabies Reference Laboratory, Onderstepoort, Pretoria, South Africa
| | - Ereck Chakauya
- Council for Scientific and Industrial Research (CSIR), Biosciences, Pretoria, South Africa
| | - Claude T. Sabeta
- Agricultural Research Council-Onderstepoort Veterinary Institute (ARC-OVI), OIE Rabies Reference Laboratory, Onderstepoort, Pretoria, South Africa
| | - Clemens Gruber
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Anthony R. Fooks
- Wildlife Zoonoses and Vector Borne Disease Research Group, Animal Health and Veterinary Laboratories Agency (AHVLA), Surrey, United Kingdom
| | - Rachel K. Chikwamba
- Council for Scientific and Industrial Research (CSIR), Biosciences, Pretoria, South Africa
| | - Julian K-C. Ma
- Research Centre for Infection and Immunity, Division of Clinical Sciences, St George's University of London, United Kingdom
| |
Collapse
|
40
|
Whaley KJ, Morton J, Hume S, Hiatt E, Bratcher B, Klimyuk V, Hiatt A, Pauly M, Zeitlin L. Emerging antibody-based products. Curr Top Microbiol Immunol 2014; 375:107-26. [PMID: 22772797 DOI: 10.1007/82_2012_240] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Antibody-based products are not widely available to address many global health challenges due to high costs, limited manufacturing capacity, and long manufacturing lead times. There are now tremendous opportunities to address these industrialization challenges as a result of revolutionary advances in plant virus-based transient expression. This review focuses on some antibody-based products that are in preclinical and clinical development, and have scaled up manufacturing and purification (mg of purified mAb/kg of biomass). Plant virus-based antibody products provide lower upfront cost, shorter time to clinical and market supply, and lower cost of goods (COGs). Further, some plant virus-based mAbs may provide improvements in pharmacokinetics, safety and efficacy.
Collapse
Affiliation(s)
- Kevin J Whaley
- Mapp Biopharmaceutical Inc, 6160 Lusk Blvd, Suite C105, San Diego, CA, 92121, USA,
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Magy B, Tollet J, Laterre R, Boutry M, Navarre C. Accumulation of secreted antibodies in plant cell cultures varies according to the isotype, host species and culture conditions. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:457-67. [PMID: 24373507 DOI: 10.1111/pbi.12152] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 10/29/2013] [Accepted: 11/13/2013] [Indexed: 05/28/2023]
Abstract
Nicotiana tabacum suspension cells have been widely used to produce monoclonal antibodies, but the yield of secreted antibodies is usually low probably because of proteolytic degradation. Most IgGs that have been expressed in suspension cells have been of the human IgG1 isotype. In this study, we examined whether other isotypes displayed the same sensitivity to proteolytic degradation and whether the choice of plant host species mattered. Human serum IgG displayed different degradation profiles when incubated in spent culture medium from N. tabacum, Nicotiana benthamiana or Arabidopsis thaliana suspension cells. Zymography showed that the protease profile was host species dependent. Three human isotypes, IgG1, IgG2 and IgG4, and a mouse IgG2a were provided with the same heavy- and light-chain variable regions from an anti-human IgM antibody and expressed in N. tabacum cv. BY-2 and A. thaliana cv. Col-0 cells. Although all tested isotypes were detected in the extracellular medium using SDS-PAGE and a functional ELISA, up to 10-fold differences in the level of intact antibody were found according to the isotype expressed, to the host species and to the culture conditions. In the best combination (BY-2 cells secreting human IgG1), we reported accumulation of more than 30 mg/L of intact antibody in culture medium. The possibility of using IgG constant regions as a scaffold to allow stable accumulation of antibodies with different variable regions was demonstrated for human IgG2 and mouse IgG2a.
Collapse
Affiliation(s)
- Bertrand Magy
- Institut des Sciences de la Vie, University of Louvain, Louvain-la-Neuve, Belgium
| | | | | | | | | |
Collapse
|
42
|
Hiatt A, Bohorova N, Bohorov O, Goodman C, Kim D, Pauly MH, Velasco J, Whaley KJ, Piedra PA, Gilbert BE, Zeitlin L. Glycan variants of a respiratory syncytial virus antibody with enhanced effector function and in vivo efficacy. Proc Natl Acad Sci U S A 2014; 111:5992-7. [PMID: 24711420 PMCID: PMC4000855 DOI: 10.1073/pnas.1402458111] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Respiratory syncytial virus (RSV) can cause devastating lower respiratory tract infections in preterm infants or when other serious health problems are present. Immunoprophylaxis with palivizumab (Synagis), a humanized IgG1 mAb, is the current standard of care for preventing RSV infection in at-risk neonates. We have explored the contribution of effector function to palivizumab efficacy using a plant-based expression system to produce palivizumab N-glycan structure variants with high homogeneity on different antibody isotypes. We compared these isotype and N-glycoform variants with commercially available palivizumab with respect to both in vitro receptor and C1q binding and in vivo efficacy. Whereas the affinity for antigen and neutralization activity of each variant were indistinguishable from those of palivizumab, their Fcγ receptor binding profiles were very different, which was reflected in either a reduced or enhanced ability to influence the RSV lung titer in challenged cotton rats. Enhanced Fcγ receptor binding was associated with reduced viral lung titers compared with palivizumab, whereas abrogation of receptor binding led to a drastic reduction in efficacy. The results support the hypotheses that classic antibody neutralization is a minor component of efficacy by palivizumab in the cotton rat and that antibody-dependent cell-mediated cytotoxicity activity can significantly enhance the efficacy of this antiviral mAb.
Collapse
Affiliation(s)
- Andrew Hiatt
- Mapp Biopharmaceutical, Inc., San Diego, CA 92121
| | | | | | | | - Do Kim
- Mapp Biopharmaceutical, Inc., San Diego, CA 92121
| | | | | | | | - Pedro A. Piedra
- Department of Molecular Virology and Microbiology, and
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030-3498
| | | | | |
Collapse
|
43
|
Pettitt J, Zeitlin L, Kim DH, Working C, Johnson JC, Bohorov O, Bratcher B, Hiatt E, Hume SD, Johnson AK, Morton J, Pauly MH, Whaley KJ, Ingram MF, Zovanyi A, Heinrich M, Piper A, Zelko J, Olinger GG. Therapeutic intervention of Ebola virus infection in rhesus macaques with the MB-003 monoclonal antibody cocktail. Sci Transl Med 2014; 5:199ra113. [PMID: 23966302 DOI: 10.1126/scitranslmed.3006608] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Ebola virus (EBOV) remains one of the most lethal transmissible infections and is responsible for high fatality rates and substantial morbidity during sporadic outbreaks. With increasing human incursions into endemic regions and the reported possibility of airborne transmission, EBOV is a high-priority public health threat for which no preventive or therapeutic options are currently available. Recent studies have demonstrated that cocktails of monoclonal antibodies are effective at preventing morbidity and mortality in nonhuman primates (NHPs) when administered as a post-exposure prophylactic within 1 or 2 days of challenge. To test whether one of these cocktails (MB-003) demonstrates efficacy as a therapeutic (after the onset of symptoms), we challenged NHPs with EBOV and initiated treatment upon confirmation of infection according to a diagnostic protocol for U.S. Food and Drug Administration Emergency Use Authorization and observation of a documented fever. Of the treated animals, 43% survived challenge, whereas both the controls and all historical controls with the same challenge stock succumbed to infection. These results represent successful therapy of EBOV infection in NHPs.
Collapse
Affiliation(s)
- James Pettitt
- Division of Virology, U.S. Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, MD 21702, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Chimeric plantibody passively protects mice against aerosolized ricin challenge. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:777-82. [PMID: 24574537 DOI: 10.1128/cvi.00003-14] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recent incidents in the United States and abroad have heightened concerns about the use of ricin toxin as a bioterrorism agent. In this study, we produced, using a robust plant-based platform, four chimeric toxin-neutralizing monoclonal antibodies that were then evaluated for the ability to passively protect mice from a lethal-dose ricin challenge. The most effective antibody, c-PB10, was further evaluated in mice as a therapeutic following ricin exposure by injection and inhalation.
Collapse
|
45
|
Fischer R, Buyel JF, Schillberg S, Twyman RM. Molecular Farming in Plants: The Long Road to the Market. COMMERCIAL PLANT-PRODUCED RECOMBINANT PROTEIN PRODUCTS 2014. [DOI: 10.1007/978-3-662-43836-7_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
46
|
Stoger E, Fischer R, Moloney M, Ma JKC. Plant molecular pharming for the treatment of chronic and infectious diseases. ANNUAL REVIEW OF PLANT BIOLOGY 2014; 65:743-68. [PMID: 24579993 DOI: 10.1146/annurev-arplant-050213-035850] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plant molecular pharming has emerged as a niche technology for the manufacture of pharmaceutical products indicated for chronic and infectious diseases, particularly for products that do not fit into the current industry-favored model of fermenter-based production campaigns. In this review, we explore the areas where molecular pharming can make the greatest impact, including the production of pharmaceuticals that have novel glycan structures or that cannot be produced efficiently in microbes or mammalian cells because they are insoluble or toxic. We also explore the market dynamics that encourage the use of molecular pharming, particularly for pharmaceuticals that are required in small amounts (such as personalized medicines) or large amounts (on a multi-ton scale, such as blood products and microbicides) and those that are needed in response to emergency situations (pandemics and bioterrorism). The impact of molecular pharming will increase as the platforms become standardized and optimized through adoption of good manufacturing practice (GMP) standards for clinical development, offering a new opportunity to produce inexpensive medicines in regional markets that are typically excluded under current business models.
Collapse
Affiliation(s)
- Eva Stoger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria;
| | | | | | | |
Collapse
|
47
|
Whaley KJ, Zeitlin L. Antibody-based concepts for multipurpose prevention technologies. Antiviral Res 2013; 100 Suppl:S48-53. [PMID: 24188703 PMCID: PMC3933545 DOI: 10.1016/j.antiviral.2013.09.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 09/03/2013] [Accepted: 09/26/2013] [Indexed: 02/04/2023]
Abstract
Because of the versatility and specificity of monoclonal antibodies, they are candidates for multipurpose prevention technologies when formulated as topical (gels, films, rings) or injectable drugs and as vaccines. This review focuses on antibody-based proof of concept studies for the human immunodeficiency virus, herpes simplex virus and sperm. Opportunities and challenges in antibody evasion/resistance, manufacturing, regulatory, and pharmacoeconomics are discussed. This article is based on a presentation at the "Product Development Workshop 2013: HIV and Multipurpose Prevention Technologies," held in Arlington, Virginia on February 21-22, 2013. It forms part of a special supplement to Antiviral Research.
Collapse
|
48
|
Hamorsky KT, Grooms-Williams TW, Husk AS, Bennett LJ, Palmer KE, Matoba N. Efficient single tobamoviral vector-based bioproduction of broadly neutralizing anti-HIV-1 monoclonal antibody VRC01 in Nicotiana benthamiana plants and utility of VRC01 in combination microbicides. Antimicrob Agents Chemother 2013; 57:2076-86. [PMID: 23403432 PMCID: PMC3632893 DOI: 10.1128/aac.02588-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 02/08/2013] [Indexed: 12/15/2022] Open
Abstract
Broadly neutralizing monoclonal antibodies (bnMAbs) may offer powerful tools for HIV-1 preexposure prophylaxis, such as topical microbicides. However, this option is hampered due to expensive MAb biomanufacturing based on mammalian cell culture. To address this issue, we developed a new production system for bnMAb VRC01 in Nicotiana benthamiana plants using a tobamovirus replicon vector. Unlike conventional two-vector-based expression, this system was designed to overexpress full-length IgG1 from a single polypeptide by means of kex2p-like enzyme recognition sites introduced between the heavy and light chains. An enzyme-linked immunosorbent assay (ELISA) revealed that gp120-binding VRC01 IgG1 was maximally accumulated on 5 to 7 days following vector inoculation, yielding ~150 mg of the bnMAb per kg of fresh leaf material. The plant-made VRC01 (VRC01p) was efficiently purified by protein A affinity followed by hydrophobic-interaction chromatography. ELISA, surface plasmon resonance, and an HIV-1 neutralization assay demonstrated that VRC01p has gp120-binding affinity and HIV-1-neutralization capacity virtually identical to the human-cell-produced counterpart. To advance VRC01p's use in topical microbicides, we analyzed combinations of the bnMAb with other microbicide candidates holding distinct antiviral mechanisms in an HIV-1 neutralization assay. VRC01p exhibited clear synergy with the antiviral lectin griffithsin, the CCR5 antagonist maraviroc, and the reverse transcriptase inhibitor tenofovir in multiple CCR5-tropic HIV-1 strains from clades A, B, and C. In summary, VRC01p is amenable to robust, rapid, and large-scale production and may be developed as an active component in combination microbicides with other anti-HIV agents such as antiviral lectins, CCR5 antagonists, and reverse transcriptase inhibitors.
Collapse
Affiliation(s)
- Krystal Teasley Hamorsky
- Department of Pharmacology and Toxicology and James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Owensboro Cancer Research Program, Owensboro, Kentucky, USA
| | - Tiffany W. Grooms-Williams
- Department of Pharmacology and Toxicology and James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Adam S. Husk
- Owensboro Cancer Research Program, Owensboro, Kentucky, USA
| | | | - Kenneth E. Palmer
- Department of Pharmacology and Toxicology and James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Owensboro Cancer Research Program, Owensboro, Kentucky, USA
| | - Nobuyuki Matoba
- Department of Pharmacology and Toxicology and James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Owensboro Cancer Research Program, Owensboro, Kentucky, USA
| |
Collapse
|
49
|
Rosenberg Y, Sack M, Montefiori D, Forthal D, Mao L, Hernandez-Abanto S, Urban L, Landucci G, Fischer R, Jiang X. Rapid high-level production of functional HIV broadly neutralizing monoclonal antibodies in transient plant expression systems. PLoS One 2013; 8:e58724. [PMID: 23533588 PMCID: PMC3606348 DOI: 10.1371/journal.pone.0058724] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 02/05/2013] [Indexed: 11/19/2022] Open
Abstract
Passive immunotherapy using anti-HIV broadly neutralizing monoclonal antibodies (mAbs) has shown promise as an HIV treatment, reducing mother-to-child-transmission (MTCT) of simian/human immunodeficiency virus (SHIV) in non-human primates and decreasing viral rebound in patients who ceased receiving anti-viral drugs. In addition, a cocktail of potent mAbs may be useful as mucosal microbicides and provide an effective therapy for post-exposure prophylaxis. However, even highly neutralizing HIV mAbs used today may lose their effectiveness if resistance occurs, requiring the rapid production of new or engineered mAbs on an ongoing basis in order to counteract the viral resistance or the spread of a certain HIV-1 clade in a particular region or patient. Plant-based expression systems are fast, inexpensive and scalable and are becoming increasingly popular for the production of proteins and monoclonal antibodies. In the present study, Agrobacterium-mediated transient transfection of plants, utilizing two species of Nicotiana, have been tested to rapidly produce high levels of an HIV 89.6PΔ140env and several well-studied anti-HIV neutralizing monoclonal antibodies (b12, 2G12, 2F5, 4E10, m43, VRC01) or a single chain antibody construct (m9), for evaluation in cell-based viral inhibition assays. The protein-A purified plant-derived antibodies were intact, efficiently bound HIV envelope, and were equivalent to, or in one case better than, their counterparts produced in mammalian CHO or HEK-293 cells in both neutralization and antibody dependent viral inhibition assays. These data indicate that transient plant-based transient expression systems are very adaptable and could rapidly generate high levels of newly identified functional recombinant HIV neutralizing antibodies when required. In addition, they warrant detailed cost-benefit analysis of prolonged incubation in plants to further increase mAb production.
Collapse
Affiliation(s)
- Yvonne Rosenberg
- PlantVax Corporation, Rockville, Maryland, United States of America.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Hamorsky KT, Kouokam JC, Bennett LJ, Baldauf KJ, Kajiura H, Fujiyama K, Matoba N. Rapid and scalable plant-based production of a cholera toxin B subunit variant to aid in mass vaccination against cholera outbreaks. PLoS Negl Trop Dis 2013; 7:e2046. [PMID: 23505583 PMCID: PMC3591335 DOI: 10.1371/journal.pntd.0002046] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 12/18/2012] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Cholera toxin B subunit (CTB) is a component of an internationally licensed oral cholera vaccine. The protein induces neutralizing antibodies against the holotoxin, the virulence factor responsible for severe diarrhea. A field clinical trial has suggested that the addition of CTB to killed whole-cell bacteria provides superior short-term protection to whole-cell-only vaccines; however, challenges in CTB biomanufacturing (i.e., cost and scale) hamper its implementation to mass vaccination in developing countries. To provide a potential solution to this issue, we developed a rapid, robust, and scalable CTB production system in plants. METHODOLOGY/PRINCIPAL FINDINGS In a preliminary study of expressing original CTB in transgenic Nicotiana benthamiana, the protein was N-glycosylated with plant-specific glycans. Thus, an aglycosylated CTB variant (pCTB) was created and overexpressed via a plant virus vector. Upon additional transgene engineering for retention in the endoplasmic reticulum and optimization of a secretory signal, the yield of pCTB was dramatically improved, reaching >1 g per kg of fresh leaf material. The protein was efficiently purified by simple two-step chromatography. The GM1-ganglioside binding capacity and conformational stability of pCTB were virtually identical to the bacteria-derived original B subunit, as demonstrated in competitive enzyme-linked immunosorbent assay, surface plasmon resonance, and fluorescence-based thermal shift assay. Mammalian cell surface-binding was corroborated by immunofluorescence and flow cytometry. pCTB exhibited strong oral immunogenicity in mice, inducing significant levels of CTB-specific intestinal antibodies that persisted over 6 months. Moreover, these antibodies effectively neutralized the cholera holotoxin in vitro. CONCLUSIONS/SIGNIFICANCE Taken together, these results demonstrated that pCTB has robust producibility in Nicotiana plants and retains most, if not all, of major biological activities of the original protein. This rapid and easily scalable system may enable the implementation of pCTB to mass vaccination against outbreaks, thereby providing better protection of high-risk populations in developing countries.
Collapse
Affiliation(s)
- Krystal Teasley Hamorsky
- Owensboro Cancer Research Program, Owensboro, Kentucky, United States of America
- Department of Pharmacology and Toxicology and James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - J. Calvin Kouokam
- Owensboro Cancer Research Program, Owensboro, Kentucky, United States of America
- Department of Pharmacology and Toxicology and James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Lauren J. Bennett
- Owensboro Cancer Research Program, Owensboro, Kentucky, United States of America
| | - Keegan J. Baldauf
- Department of Pharmacology and Toxicology and James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Hiroyuki Kajiura
- International Center for Biotechnology, Osaka University, Osaka, Japan
| | - Kazuhito Fujiyama
- International Center for Biotechnology, Osaka University, Osaka, Japan
| | - Nobuyuki Matoba
- Owensboro Cancer Research Program, Owensboro, Kentucky, United States of America
- Department of Pharmacology and Toxicology and James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| |
Collapse
|