1
|
Yang Y, Yu C, Duan M, Liu C, Li M, Wu G, Du J, Xu G, Yu X, Wang L. Application of microfluidic modulation spectroscopy for simultaneous structural and thermal stability analysis of commercial mAbs under varying formulation conditions. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:4087-4093. [PMID: 40333006 DOI: 10.1039/d4ay02324b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
The secondary structure of proteins is extremely important because it contains some of the most fundamental information about how a protein folds into its tertiary and quaternary structures. The most widely used biophysical tools for analyzing protein secondary structures, however, suffer from major limitations such as low resolution, poor reproducibility, and a narrow concentration range. This study utilized Microfluidic Modulation Spectroscopy (MMS), a novel automated protein structural characterization technique, to analyze the secondary structure of nine commercial monoclonal antibodies (mAbs) under various concentrations and buffer conditions. The results revealed that diluting the mAbs in formulation buffer did not affect the protein structure, whereas reconstituting the mAbs from formulation buffer to PBS altered the protein structure by a small but detectable margin. In addition, properties such as the antibody subtype and target seem to have little relation to the secondary structure of the protein, based on the 9 mAbs tested in this study. However, differences or changes in the secondary structure of antibodies led to discrepancies in their thermal stability and melting temperature. This study shows that MMS can detect the secondary structure of monoclonal antibodies reproducibly and reliably, based on which we can derive the factors affecting the determination of the secondary structure from the experimental results of small peak shifts in the spectrum.
Collapse
Affiliation(s)
- Yalan Yang
- National Institutes for Food and Drug Control, China
| | - Chuanfei Yu
- National Institutes for Food and Drug Control, China
| | - Maoqin Duan
- National Institutes for Food and Drug Control, China
| | - Chunyu Liu
- National Institutes for Food and Drug Control, China
| | - Meng Li
- National Institutes for Food and Drug Control, China
| | - Gang Wu
- National Institutes for Food and Drug Control, China
| | - Jialiang Du
- National Institutes for Food and Drug Control, China
| | - Gangling Xu
- National Institutes for Food and Drug Control, China
| | - Xiaojuan Yu
- National Institutes for Food and Drug Control, China
| | - Lan Wang
- National Institutes for Food and Drug Control, China
| |
Collapse
|
2
|
Alphonse N, Sécher T, Heuzé-Vourc'h N. A breath of fresh air: inhaled antibodies to combat respiratory infectious diseases - a clinical trial overview. Expert Opin Drug Deliv 2025; 22:197-218. [PMID: 39711323 DOI: 10.1080/17425247.2024.2446608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/03/2024] [Accepted: 12/20/2024] [Indexed: 12/24/2024]
Abstract
INTRODUCTION With the worldwide growing burden of respiratory tract infections (RTIs), innovative therapeutic approaches are in high demand. Inhaled antibodies (Abs) represent a promising avenue, offering targeted treatment options with potentially better therapeutic index compared to traditional delivery methods. AREAS COVERED This comprehensive review summarizes the challenges faced in delivering Abs by (intranasal and pulmonary) inhalation. It outlines the physiological and biological barriers encountered by inhaled drugs, as well as the influence of delivery devices and formulation on the deposition and efficacy of inhaled molecules. Moreover, it provides a detailed overview of the current clinical trial landscape of inhaled anti-RTI Abs, highlighting the progress in the development of inhaled Abs targeting a range of pathogens, such as severe acute respiratory syndrome coronavirus 2 and respiratory syncytial virus. The mechanism of action, therapeutic targets, and clinical outcomes of these novel therapies are detailed. EXPERT OPINION Delivery of Abs by inhalation faces several challenges. Addressing these challenges and developing specific approaches to deliver inhaled Abs represent a promising avenue for the development of the next generation of inhaled Abs. By offering targeted, localized therapy with the potential for a better therapeutic index, inhaled Abs could significantly improve outcomes for patients with RTIs.
Collapse
Affiliation(s)
- Noémie Alphonse
- Université de Tours, Centre d'Etude des Pathologies Respiratoires, Tours, France
- INSERM, Centre d'Etude des Pathologies Respiratoires, Tours, France
| | - Thomas Sécher
- Université de Tours, Centre d'Etude des Pathologies Respiratoires, Tours, France
- INSERM, Centre d'Etude des Pathologies Respiratoires, Tours, France
| | - Nathalie Heuzé-Vourc'h
- Université de Tours, Centre d'Etude des Pathologies Respiratoires, Tours, France
- INSERM, Centre d'Etude des Pathologies Respiratoires, Tours, France
| |
Collapse
|
3
|
Wu L, Xu W, Jiang H, Yang M, Cun D. Respiratory delivered vaccines: Current status and perspectives in rational formulation design. Acta Pharm Sin B 2024; 14:5132-5160. [PMID: 39807330 PMCID: PMC11725141 DOI: 10.1016/j.apsb.2024.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/20/2024] [Accepted: 08/18/2024] [Indexed: 01/16/2025] Open
Abstract
The respiratory tract is susceptible to various infections and can be affected by many serious diseases. Vaccination is one of the most promising ways that prevent infectious diseases and treatment of some diseases such as malignancy. Direct delivery of vaccines to the respiratory tract could mimic the natural process of infection and shorten the delivery path, therefore unique mucosal immunity at the first line might be induced and the efficiency of delivery can be high. Despite considerable attempts at the development of respiratory vaccines, the rational formulation design still warrants attention, i.e., how the formulation composition, particle properties, formulation type (liquid or solid), and devices would influence the immune outcome. This article reviews the recent advances in the formulation design and development of respiratory vaccines. The focus is on the state of the art of delivering antigenic compounds through the respiratory tract, overcoming the pulmonary bio-barriers, enhancing delivery efficiencies of respiratory vaccines as well as maintaining the stability of vaccines during storage and use. The choice of devices and the influence of deposition sites on vaccine efficiencies were also reviewed.
Collapse
Affiliation(s)
- Lan Wu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China
| | - Wenwen Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China
| | - Huiyang Jiang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China
| | - Mingshi Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Dongmei Cun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China
- School of Food and Drug, Shenzhen Polytechnic University, China, Shenzhen 518055, China
| |
Collapse
|
4
|
Morin TM, Allan N, Coutts J, Hooker JM, Langille M, Metcalfe A, Thamboo A, Jackson J, Sharma M, Rees T, Enright K, Irving K. Laminar Fluid Ejection for Olfactory Drug Delivery: A Proof of Concept Study. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2024; 12:727-738. [PMID: 39698475 PMCID: PMC11655101 DOI: 10.1109/jtehm.2024.3503498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/17/2024] [Accepted: 11/16/2024] [Indexed: 12/20/2024]
Abstract
Focal intranasal drug delivery to the olfactory cleft is a promising avenue for pharmaceuticals targeting the brain. However, traditional nasal sprays often fail to deliver enough medication to this specific area. We present a laminar fluid ejection (LFE) method for precise delivery of medications to the olfactory cleft. Using a 3D-printed model of the nasal passages, we determined the precise velocity and angle of insertion needed to deposit fluid at the olfactory cleft. Then, we conducted three proof-of-concept in-vivo imaging studies to confirm olfactory delivery in humans. First, we used Technetium-99 (a radiolabeled tracer) and methylene blue (a laboratory-made dye) to visualize olfactory deposition. Both tracers showed successful deposition. In a separate study, we used functional MRI (fMRI), to compare our LFE method with a conventional nasal spray while delivering insulin. From the fMRI results, we qualitatively observed focal decreases in brain activity in prefrontal cortex following insulin delivery. Overall, these preliminary results suggest that LFE offers a targeted approach to olfactory drug delivery, opening opportunities for access to the brain.Clinical and Translational Impact Statement - Focal deposition at the olfactory cleft is a promising target for delivering medication to the brain. We present in-human tests of a laminar fluid ejection method for intranasal drug delivery and demonstrate improvements over conventional nasal spray.
Collapse
Affiliation(s)
- Thomas M. Morin
- Massachusetts General HospitalCharlestownMA02129USA
- Department of PsychologyBrandeis UniversityWalthamMA02453USA
| | | | | | - Jacob M. Hooker
- Massachusetts General HospitalCharlestownMA02129USA
- Harvard Medical SchoolBostonMA02115USA
| | - Morgan Langille
- Canadian Imaging Research CentreSaint JohnNBN6A 5B7Canada
- Department of Pharmacology, Department of Microbiology and ImmunologyDalhousie UniversityHalifaxNSB3H 4R2Canada
| | - Arron Metcalfe
- Canadian Imaging Research CentreSaint JohnNBN6A 5B7Canada
| | - Andrew Thamboo
- St. Paul's Sinus CentreSt. Paul's HospitalVancouverBCV6Z 1Y6Canada
| | | | - Manu Sharma
- Rocket Science HealthVictoriaBCV8V 2Y1Canada
| | - Tim Rees
- Rocket Science HealthVictoriaBCV8V 2Y1Canada
| | | | - Ken Irving
- Rocket Science HealthVictoriaBCV8V 2Y1Canada
| |
Collapse
|
5
|
Byun AS, Vitetta L, Chan HK, Kwok PCL. Respiratory Delivery of Lacticaseibacillus rhamnosus GG by Vibrating-Mesh and Jet Nebulisation. Pharmaceutics 2024; 16:1326. [PMID: 39458655 PMCID: PMC11510752 DOI: 10.3390/pharmaceutics16101326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND The use of probiotic bacteria to improve lung health has been gaining interest. Although the oral delivery of probiotics and their effects are well documented, there is currently limited knowledge on the respiratory delivery of probiotics. OBJECTIVES This study aimed to investigate whether nebulisation is suitable for delivering Lacticaseibacillus rhamnosus GG (LGG) into the lungs for the potential treatment of bacterial pulmonary infections. METHODS It compared the dose output and aerosol performance of a vibrating-mesh nebuliser (VMN) and a jet nebuliser (JN) in nebulising LGG suspended in de Man Rogosa Sharpe (MRS) broth, phosphate-buffered saline (PBS), or normal saline (0.9% w/v sodium chloride in water). RESULTS The VMN consistently produced a higher output than the JN for all liquid media, indicating that VMN was more efficient. The fine-particle fractions of both nebulisers were comparable for a given medium. The highest fine-particle fraction was achieved with LGG suspended in MRS broth for both nebulisers (20.5 ± 2.8% for VMN; 18.7 ± 3.4% for JN). This suggests that the aerosol performance of nebulised probiotics may depend on the medium in which the probiotic bacteria were suspended. CONCLUSIONS Therefore, this study demonstrated that the nebulisation efficiency of LGG depended on the nebuliser type and liquid medium of the probiotic suspension.
Collapse
Affiliation(s)
| | | | | | - Philip Chi Lip Kwok
- Faculty of Medicine and Health, School of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia; (A.S.B.); (L.V.); (H.-K.C.)
| |
Collapse
|
6
|
Kaur A, Singh S, Sharma SC. Unlocking Trehalose's versatility: A comprehensive Journey from biosynthesis to therapeutic applications. Exp Cell Res 2024; 442:114250. [PMID: 39260672 DOI: 10.1016/j.yexcr.2024.114250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/06/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
For over forty years, a sugar of rare configuration known as trehalose (two molecules of glucose linked at their 1-carbons), has been recognised for more than just its roles as a storage compound. The ability of trehalose to protect an extensive range of biological materials, for instance cell lines, tissues, proteins and DNA, has sparked considerable interest in the biotechnology and pharmaceutical industries. Currently, trehalose is now being investigated as a promising therapeutic candidate for human use, as it has shown potential to reduce disease severity in various experimental models. Despite its diverse biological effects, the precise mechanism underlying this observation remain unclear. Therefore, this review delves into the significance of trehalose biosynthesis pathway in the development of novel drug, investigates the inhibitors of trehalose synthesis and evaluates the binding efficiency of T6P with TPS1. Additionally, it also emphasizes the knowledge about the protective effect of trehalose on modulation of autophagy, combating viral infections, addressing the conditions like cancer and neurodegenerative diseases based on the recent advancement. Furthermore, review also highlight the trehalose's emerging role as a surfactant in delivering monoclonal antibodies that will further broadening its potential application in biomedicines.
Collapse
Affiliation(s)
- Amandeep Kaur
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India.
| | - Sukhwinder Singh
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India.
| | | |
Collapse
|
7
|
Zeng P, Zhang P, Chan HW, Chow SF, Lam JKW, Ip M, Leung SSY. Storage stability of lysostaphin solution and its pulmonary delivery. Drug Deliv Transl Res 2024; 14:2433-2443. [PMID: 38231385 PMCID: PMC11291608 DOI: 10.1007/s13346-024-01518-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2024] [Indexed: 01/18/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) has become a leading causative pathogen of nosocomial pneumonia with an alarming in-hospital mortality rate of 30%. Last resort antibiotic, vancomycin, has been increasingly used to treat MRSA infections, but the rapid emergence of vancomycin-resistant strains urges the development of alternative treatment strategies against MRSA-associated pneumonia. The bacteriolytic enzyme, lysostaphin, targeting the cell wall peptidoglycan of S. aureus, has been considered as a promising alternative for MRSA infections. Its proteinaceous nature is likely benefit from direct delivery to the lungs, but the challenges for successful pulmonary delivery of lysostaphin lying on a suitable inhalation device and a formulation with sufficient storage stability. In this study, the applicability of a vibrating mesh nebulizer (Aerogen Solo®) and a soft mist inhaler (Respimat®) was investigated. Both devices were capable of aerosolizing lysostaphin solution into inhalable droplets and caused minimum antibacterial activity loss. In addition, lysostaphin stabilized with phosphate-buffered saline and 0.1% Tween 80 was proved to have acceptable stability for at least 12 months when stored at 4 °C. These promising data encourage further clinical development of lysostaphin for management of MRSA-associated lung infections.
Collapse
Affiliation(s)
- Ping Zeng
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Pengfei Zhang
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ho Wan Chan
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Shing Fung Chow
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Jenny Ka Wing Lam
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Margaret Ip
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Sharon Shui Yee Leung
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
8
|
Kim HI, Park J, Zhu Y, Wang X, Han Y, Zhang D. Recent advances in extracellular vesicles for therapeutic cargo delivery. Exp Mol Med 2024; 56:836-849. [PMID: 38556545 PMCID: PMC11059217 DOI: 10.1038/s12276-024-01201-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 01/07/2024] [Accepted: 01/15/2024] [Indexed: 04/02/2024] Open
Abstract
Exosomes, which are nanosized vesicles secreted by cells, are attracting increasing interest in the field of biomedical research due to their unique properties, including biocompatibility, cargo loading capacity, and deep tissue penetration. They serve as natural signaling agents in intercellular communication, and their inherent ability to carry proteins, lipids, and nucleic acids endows them with remarkable therapeutic potential. Thus, exosomes can be exploited for diverse therapeutic applications, including chemotherapy, gene therapy, and photothermal therapy. Moreover, their capacity for homotypic targeting and self-recognition provides opportunities for personalized medicine. Despite their advantages as novel therapeutic agents, there are several challenges in optimizing cargo loading efficiency and structural stability and in defining exosome origins. Future research should include the development of large-scale, quality-controllable production methods, the refinement of drug loading strategies, and extensive in vivo studies and clinical trials. Despite the unresolved difficulties, the use of exosomes as efficient, stable, and safe therapeutic delivery systems is an interesting area in biomedical research. Therefore, this review describes exosomes and summarizes cutting-edge studies published in high-impact journals that have introduced novel or enhanced therapeutic effects using exosomes as a drug delivery system in the past 2 years. We provide an informative overview of the current state of exosome research, highlighting the unique properties and therapeutic applications of exosomes. We also emphasize challenges and future directions, underscoring the importance of addressing key issues in the field. With this review, we encourage researchers to further develop exosome-based drugs for clinical application, as such drugs may be among the most promising next-generation therapeutics.
Collapse
Affiliation(s)
- Hyo In Kim
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Jinbong Park
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Yin Zhu
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA, 30912, USA
| | - Xiaoyun Wang
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA, 30912, USA
| | - Yohan Han
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA, 30912, USA.
- Department of Microbiology, Wonkwang University School of Medicine, Iksan, 54538, Republic of Korea.
- Sarcopenia Total Solution Center, Wonkwang University, Iksan, 54538, Republic of Korea.
| | - Duo Zhang
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA, 30912, USA.
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
9
|
McSweeney MD, Alnajjar S, Schaefer AM, Richardson Z, Wolf W, Stewart I, Sriboonyapirat P, McCallen J, Farmer E, Nzati B, Lord S, Farrer B, Moench TR, Kumar PA, Arora H, Pickles RJ, Hickey AJ, Ackermann M, Lai SK. Inhaled "Muco-Trapping" Monoclonal Antibody Effectively Treats Established Respiratory Syncytial Virus (RSV) Infections. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306729. [PMID: 38225749 DOI: 10.1002/advs.202306729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/12/2023] [Indexed: 01/17/2024]
Abstract
Respiratory syncytial virus (RSV) causes substantial morbidity and mortality in infants, the immunocompromised, and the elderly. RSV infects the airway epithelium via the apical membrane and almost exclusively sheds progeny virions back into the airway mucus (AM), making RSV difficult to target by systemically administered therapies. An inhalable "muco-trapping" variant of motavizumab (Mota-MT), a potent neutralizing mAb against RSV F is engineered. Mota-MT traps RSV in AM via polyvalent Fc-mucin bonds, reducing the fraction of fast-moving RSV particles in both fresh pediatric and adult AM by ≈20-30-fold in a Fc-glycan dependent manner, and facilitates clearance from the airways of mice within minutes. Intranasal dosing of Mota-MT eliminated viral load in cotton rats within 2 days. Daily nebulized delivery of Mota-MT to RSV-infected neonatal lambs, beginning 3 days after infection when viral load is at its maximum, led to a 10 000-fold and 100 000-fold reduction in viral load in bronchoalveolar lavage and lung tissues relative to placebo control, respectively. Mota-MT-treated lambs exhibited reduced bronchiolitis, neutrophil infiltration, and airway remodeling than lambs receiving placebo or intramuscular palivizumab. The findings underscore inhaled delivery of muco-trapping mAbs as a promising strategy for the treatment of RSV and other acute respiratory infections.
Collapse
Affiliation(s)
| | - Sarhad Alnajjar
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7AL, UK
| | - Alison M Schaefer
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA
| | | | - Whitney Wolf
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ian Stewart
- RTI International, Research Triangle Park, NC, 27709, USA
| | | | - Justin McCallen
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ellen Farmer
- Inhalon Biopharma, Research Triangle Park, NC, 27707, USA
| | | | - Sam Lord
- Inhalon Biopharma, Research Triangle Park, NC, 27707, USA
| | - Brian Farrer
- Inhalon Biopharma, Research Triangle Park, NC, 27707, USA
| | | | - Priya A Kumar
- Department of Anesthesiology, School of Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
- Outcomes Research Consortium, Cleveland, OH, 44195, USA
| | - Harendra Arora
- Department of Anesthesiology, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Raymond J Pickles
- Department of Microbiology & Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | | | - Mark Ackermann
- USDA/ARS-National Animal Disease Center, Ames, IA, 50010, USA
| | - Samuel K Lai
- Inhalon Biopharma, Research Triangle Park, NC, 27707, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Microbiology & Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
10
|
Mahri S, Wilms T, Hagedorm P, Guichard MJ, Vanvarenberg K, Dumoulin M, Frijlink H, Vanbever R. Nebulization of PEGylated recombinant human deoxyribonuclease I using vibrating membrane nebulizers: A technical feasibility study. Eur J Pharm Sci 2023; 189:106522. [PMID: 37423579 DOI: 10.1016/j.ejps.2023.106522] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/16/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Recombinant human deoxyribonuclease I (rhDNase, Pulmozyme®) is the most frequently used mucolytic agent for the symptomatic treatment of cystic fibrosis (CF) lung disease. Conjugation of rhDNase to polyethylene glycol (PEG) has been shown to greatly prolong its residence time in the lungs and improve its therapeutic efficacy in mice. To present an added value over current rhDNase treatment, PEGylated rhDNase needs to be efficiently and less frequently administrated by aerosolization and possibly at higher concentrations than existing rhDNase. In this study, the effects of PEGylation on the thermodynamic stability of rhDNase was investigated using linear 20 kDa, linear 30 kDa and 2-armed 40 kDa PEGs. The suitability of PEG30-rhDNase to electrohydrodynamic atomization (electrospraying) as well as the feasibility of using two vibrating mesh nebulizers, the optimized eFlow® Technology nebulizer (eFlow) and Innospire Go, at varying protein concentrations were investigated. PEGylation was shown to destabilize rhDNase upon chemical-induced denaturation and ethanol exposure. Yet, PEG30-rhDNase was stable enough to withstand aerosolization stresses using the eFlow and Innospire Go nebulizers even at higher concentrations (5 mg of protein per ml) than conventional rhDNase formulation (1 mg/ml). High aerosol output (up to 1.5 ml per min) and excellent aerosol characteristics (up to 83% fine particle fraction) were achieved while preserving protein integrity and enzymatic activity. This work demonstrates the technical feasibility of PEG-rhDNase nebulization with advanced vibrating membrane nebulizers, encouraging further pharmaceutical and clinical developments of a long-acting PEGylated alternative to rhDNase for treating patients with CF.
Collapse
Affiliation(s)
- Sohaib Mahri
- Université catholique de Louvain (UCLouvain), Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Brussels, Belgium
| | - Tobias Wilms
- Université catholique de Louvain (UCLouvain), Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Brussels, Belgium
| | - Paul Hagedorm
- University of Groningen, Groningen Research Institute of Pharmacy, Pharmaceutical Technology and Biopharmacy, Groningen, the Netherlands
| | - Marie-Julie Guichard
- Université catholique de Louvain (UCLouvain), Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Brussels, Belgium
| | - Kevin Vanvarenberg
- Université catholique de Louvain (UCLouvain), Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Brussels, Belgium
| | - Mireille Dumoulin
- University of Liège, Center for Protein Engineering, InBioS, Nanobodies to Explore Protein Structure and Functions, Liège, Belgium
| | - Henderik Frijlink
- University of Groningen, Groningen Research Institute of Pharmacy, Pharmaceutical Technology and Biopharmacy, Groningen, the Netherlands
| | - Rita Vanbever
- Université catholique de Louvain (UCLouvain), Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Brussels, Belgium.
| |
Collapse
|
11
|
Flint R, Laucirica DR, Chan HK, Chang BJ, Stick SM, Kicic A. Stability Considerations for Bacteriophages in Liquid Formulations Designed for Nebulization. Cells 2023; 12:2057. [PMID: 37626867 PMCID: PMC10453214 DOI: 10.3390/cells12162057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Pulmonary bacterial infections present a significant health risk to those with chronic respiratory diseases (CRDs) including cystic fibrosis (CF) and chronic-obstructive pulmonary disease (COPD). With the emergence of antimicrobial resistance (AMR), novel therapeutics are desperately needed to combat the emergence of resistant superbugs. Phage therapy is one possible alternative or adjunct to current antibiotics with activity against antimicrobial-resistant pathogens. How phages are administered will depend on the site of infection. For respiratory infections, a number of factors must be considered to deliver active phages to sites deep within the lung. The inhalation of phages via nebulization is a promising method of delivery to distal lung sites; however, it has been shown to result in a loss of phage viability. Although preliminary studies have assessed the use of nebulization for phage therapy both in vitro and in vivo, the factors that determine phage stability during nebulized delivery have yet to be characterized. This review summarizes current findings on the formulation and stability of liquid phage formulations designed for nebulization, providing insights to maximize phage stability and bactericidal activity via this delivery method.
Collapse
Affiliation(s)
- Rohan Flint
- School of Biomedical Sciences, The University of Western Australia, Perth, WA 6009, Australia;
- Wal-yan Respiratory Research Center, Telethon Kids Institute, The University of Western Australia, Perth, WA 6009, Australia; (D.R.L.); (S.M.S.)
| | - Daniel R. Laucirica
- Wal-yan Respiratory Research Center, Telethon Kids Institute, The University of Western Australia, Perth, WA 6009, Australia; (D.R.L.); (S.M.S.)
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, School of Pharmacy, University of Sydney, Sydney, NSW 2050, Australia;
| | - Barbara J. Chang
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, WA 6009, Australia;
| | - Stephen M. Stick
- Wal-yan Respiratory Research Center, Telethon Kids Institute, The University of Western Australia, Perth, WA 6009, Australia; (D.R.L.); (S.M.S.)
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Perth, WA 6009, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, Harry Perkins Institute of Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| | - Anthony Kicic
- Wal-yan Respiratory Research Center, Telethon Kids Institute, The University of Western Australia, Perth, WA 6009, Australia; (D.R.L.); (S.M.S.)
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Perth, WA 6009, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, Harry Perkins Institute of Medical Research, The University of Western Australia, Perth, WA 6009, Australia
- School of Population Health, Curtin University, Perth, WA 6102, Australia
| |
Collapse
|
12
|
Focosi D, Maggi F. Respiratory delivery of passive immunotherapies for SARS-CoV-2 prophylaxis and therapy. Hum Vaccin Immunother 2023; 19:2260040. [PMID: 37799070 PMCID: PMC10561570 DOI: 10.1080/21645515.2023.2260040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/13/2023] [Indexed: 10/07/2023] Open
Abstract
Convalescent plasma has been extensively tested during the COVID-19 pandemic as a transfusion product. Similarly, monoclonal antibodies have been largely administered either intravenously or intramuscularly. Nevertheless, when used against a respiratory pathogen, respiratory delivery is preferable to maximize the amount of antibody that reaches the entry door in order to prevent sustained viral multiplication. In this narrative review, we review the different types of inhalation device and summarize evidence from animal models and early clinical trials supporting the respiratory delivery (for either prophylactic or therapeutic purposes) of convalescent plasma or monoclonal antibodies (either full antibodies, single-chain variable fragments, or camelid-derived monoclonal heavy-chain only antibodies). Preliminary evidences from animal models suggest similar safety and noninferior efficacy, but efficacy evaluation from clinical trials is still limited.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| | - Fabrizio Maggi
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani IRCCS”, Rome, Italy
| |
Collapse
|
13
|
Sécher T, Heuzé-Vourc'h N. Barriers for orally inhaled therapeutic antibodies. Expert Opin Drug Deliv 2023; 20:1071-1084. [PMID: 37609943 DOI: 10.1080/17425247.2023.2249821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/17/2023] [Accepted: 08/16/2023] [Indexed: 08/24/2023]
Abstract
INTRODUCTION Respiratory diseases represent a worldwide health issue. The recent Sars-CoV-2 pandemic, the burden of lung cancer, and inflammatory respiratory diseases urged the development of innovative therapeutic solutions. In this context, therapeutic antibodies (Abs) offer a tremendous opportunity to benefit patients with respiratory diseases. Delivering Ab through the airways has been demonstrated to be relevant to improve their therapeutic index. However, few inhaled Abs are on the market. AREAS COVERED This review describes the different barriers that may alter the fate of inhaled therapeutic Abs in the lungs at steady state. It addresses both physical and biological barriers and discusses the importance of taking into consideration the pathological changes occurring during respiratory disease, which may reinforce these barriers. EXPERT OPINION The pulmonary route remains rare for delivering therapeutic Abs, with few approved inhaled molecules, despite promising evidence. Efforts must focus on the intertwined barriers associated with lung diseases to develop appropriate Ab-formulation-device combo, ensuring optimal Ab deposition in the respiratory tract. Finally, randomized controlled clinical trials should be carried out to establish inhaled Ab therapy as prominent against respiratory diseases.
Collapse
Affiliation(s)
- Thomas Sécher
- INSERM, Centre d'Etude des Pathologies Respiratoires, Tours, France
- Université de Tours, Tours, France
| | - Nathalie Heuzé-Vourc'h
- INSERM, Centre d'Etude des Pathologies Respiratoires, Tours, France
- Université de Tours, Tours, France
| |
Collapse
|
14
|
Matera MG, Calzetta L, Rinaldi B, Cazzola M, Rogliani P. Strategies for overcoming the biological barriers associated with the administration of inhaled monoclonal antibodies for lung diseases. Expert Opin Drug Deliv 2023; 20:1085-1095. [PMID: 37715502 DOI: 10.1080/17425247.2023.2260310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/10/2023] [Accepted: 09/14/2023] [Indexed: 09/17/2023]
Abstract
INTRODUCTION Monoclonal antibodies (mAbs) should be administered by inhalation rather than parenterally to improve their efficiency in lung diseases. However, the pulmonary administration of mAbs in terms of aerosol technology and the formulation for inhalation is difficult. AREAS COVERED The feasible or suitable strategies for overcoming the barriers associated with administering mAbs are described. EXPERT OPINION Providing mAbs via inhalation to individuals with lung disorders is still difficult. However, inhalation is a desirable method for mAb delivery. Inhaled mAb production needs to be well thought out. The illness, the patient group(s), the therapeutic molecule selected, its interaction with the biological barriers in the lungs, the formulation, excipients, and administration systems must all be thoroughly investigated. Therefore, to create inhaled mAbs that are stable and efficacious, it will be essential to thoroughly examine the problems linked to instability and protein aggregation. More excipients will also need to be manufactured, expanding the range of formulation design choices. Another crucial requirement is for novel carriers for topical delivery to the lungs since carriers might significantly enhance proteins' stability and pharmacokinetic profile.
Collapse
Affiliation(s)
- Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Luigino Calzetta
- Unit of Respiratory Diseases and Lung Function, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Barbara Rinaldi
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | - Paola Rogliani
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome 'Tor Vergata', Rome, Italy
| |
Collapse
|
15
|
He X, Chen X, Wang H, Du G, Sun X. Recent advances in respiratory immunization: A focus on COVID-19 vaccines. J Control Release 2023; 355:655-674. [PMID: 36787821 PMCID: PMC9937028 DOI: 10.1016/j.jconrel.2023.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023]
Abstract
The development of vaccines has always been an essential task worldwide since vaccines are regarded as powerful weapons in protecting the global population. Although the vast majority of currently authorized human vaccinations are administered intramuscularly or subcutaneously, exploring novel routes of immunization has been a prominent area of study in recent years. This is particularly relevant in the face of pandemic diseases, such as COVID-19, where respiratory immunization offers distinct advantages, such as inducing systemic and mucosal responses to prevent viral infections in both the upper and lower respiratory tracts and also leading to higher patient compliance. However, the development of respiratory vaccines confronts challenges due to the physiological barriers of the respiratory tract, with most of these vaccines still in the research and development stage. In this review, we detail the structure of the respiratory tract and the mechanisms of mucosal immunity, as well as the obstacles to respiratory vaccination. We also examine the considerations necessary in constructing a COVID-19 respiratory vaccine, including the dosage form of the vaccines, potential excipients and mucosal adjuvants, and delivery systems and devices for respiratory vaccines. Finally, we present a comprehensive overview of the COVID-19 respiratory vaccines currently under clinical investigation. We hope this review can provide valuable insights and inspiration for the future development of respiratory vaccinations.
Collapse
Affiliation(s)
- Xiyue He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiaoyan Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Hairui Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Guangsheng Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xun Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
16
|
Montefusco-Pereira CV. Steps toward nebulization in-use studies to understand the stability of new biological entities. Drug Discov Today 2023; 28:103461. [PMID: 36455828 PMCID: PMC9770090 DOI: 10.1016/j.drudis.2022.103461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
The need for novel biological drugs against respiratory diseases has been highlighted during the Coronavirus (COVID-19) pandemic. The use of inhalation presents challenges to drug product stability, which is especially true for delivery using nebulizers (jet versus mesh technologies). The late-stage process of drug development in the pharmaceutical industry requires the investigation of in-use stability. In-use studies generate data that are guided by the requirements of regulatory authorities for inclusion in the clinical trial application dossier. In this review, I introduce the initial aspects of in-use stability studies during the development of an aerosol formulation to deliver biologics with a nebulizer. Lessons learned from this experience can guide future development and planning for formulation, analytics, material compatibility, nebulization process, and clinical trial preparations.
Collapse
|
17
|
Fishler R, Ostrovski Y, Frenkel A, Dorfman S, Vaknin M, Waisman D, Korin N, Sznitman J. Exploring pulmonary distribution of intratracheally instilled liquid foams in excised porcine lungs. Eur J Pharm Sci 2023; 181:106359. [PMID: 36521723 PMCID: PMC9850415 DOI: 10.1016/j.ejps.2022.106359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/28/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
The applicability of inhalation therapy to some severe pulmonary conditions is often compromised by limited delivery rates (i.e. total dose) and low deposition efficiencies in the respiratory tract, most notably in the deep pulmonary acinar airways. To circumvent such limitations, alternative therapeutic techniques have relied for instance on intratracheal liquid instillations for the delivery of high-dose therapies. Yet, a longstanding mechanistic challenge with such latter methods lies in delivering solutions homogeneously across the whole lungs, despite an inherent tendency of non-uniform spreading driven mainly by gravitational effects. Here, we hypothesize that the pulmonary distribution of instilled liquid solutions can be meaningfully improved by foaming the solution prior to its instillation, owing to the increased volume and the reduced gravitational bias of foams. As a proof-of-concept, we show in excised adult porcine lungs that liquid foams can lead to significant improvement in homogenous pulmonary distributions compared with traditional liquid instillations. Our ex-vivo results suggest that liquid foams can potentially offer an attractive novel pulmonary delivery modality with applications for high-dose regimens of respiratory therapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | - Dan Waisman
- Departments of Neonatology, Carmel Medical Center and the Ruth and Bruce Rappaport Faculty of Medicine
| | | | | |
Collapse
|
18
|
Chow MYT, Pan HW, Seow HC, Lam JKW. Inhalable neutralizing antibodies - promising approach to combating respiratory viral infections. Trends Pharmacol Sci 2023; 44:85-97. [PMID: 36566131 DOI: 10.1016/j.tips.2022.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022]
Abstract
Monoclonal antibodies represent an exciting class of therapeutics against respiratory viral infections. Notwithstanding their specificity and affinity, the conventional parenteral administration is suboptimal in delivering antibodies for neutralizing activity in the airways due to the poor distribution of macromolecules to the respiratory tract. Inhaled therapy is a promising approach to overcome this hurdle in a noninvasive manner, while advances in antibody engineering have led to the development of unique antibody formats which exhibit properties desirable for inhalation. In this Opinion, we examine the major challenges surrounding the development of inhaled antibodies, identify knowledge gaps that need to be addressed and provide strategies from a drug delivery perspective to enhance the efficacy and safety of neutralizing antibodies against respiratory viral infections.
Collapse
Affiliation(s)
- Michael Y T Chow
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Harry W Pan
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Han Cong Seow
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Jenny K W Lam
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China; School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK.
| |
Collapse
|
19
|
Noverraz F, Robin B, Passemard S, Fauvel B, Presumey J, Rigal E, Cookson A, Chopineau J, Martineau P, Villalba M, Jorgensen C, Aubert-Pouëssel A, Morille M, Gerber-Lemaire S. Novel trehalose-based excipients for stabilizing nebulized anti-SARS-CoV-2 antibody. Int J Pharm 2023; 630:122463. [PMID: 36462738 PMCID: PMC9710110 DOI: 10.1016/j.ijpharm.2022.122463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022]
Abstract
COVID-19 is caused by the infection of the lungs by SARS-CoV-2. Monoclonal antibodies, such as sotrovimab, showed great efficiency in neutralizing the virus before its internalization by lung epithelial cells. However, parenteral routes are still the preferred route of administration, even for local infections, which requires injection of high doses of antibody to reach efficacious concentrations in the lungs. Lung administration of antibodies would be more relevant requiring lower doses, thus reducing the costs and the side effects. But aerosolization of therapeutic proteins is very challenging, as the different processes available are harsh and trigger protein aggregation and conformational changes. This decreases the efficiency of the treatment, and can increase its immunogenicity. To address those issues, we developed a series of new excipients composed of a trehalose core, a succinyl side chain and a hydrophobic carbon chain (from 8 to 16 carbons). Succinylation increased the solubility of the excipients, allowing their use at relevant concentrations for protein stabilization. In particular, the excipient with 16 carbons (C16TreSuc) used at 5.6 mM was able to preserve colloidal stability and antigen-binding ability of sotrovimab during the nebulization process. It could also be used as a cryoprotectant, allowing storage of sotrovimab in a lyophilized form during weeks. Finally, we demonstrated that C16TreSuc could be used as an excipient to stabilize antibodies for the treatment against COVID-19, by in vitro and in vivo assays. The presence of C16TreSuc during nebulization preserved the neutralization capacity of sotrovimab against SARS-CoV-2 in vitro; an increase of its efficacy was even observed, compared to the non-nebulized control. The in vivo study also showed the wide distribution of sotrovimab in mice lungs, after nebulization with 5.6 mM of excipient. This work brings a solution to stabilize therapeutic proteins during storage and nebulization, making pulmonary immunotherapy possible in the treatment of COVID-19 and other lung diseases.
Collapse
Affiliation(s)
- François Noverraz
- Group for Functionalized Biomaterials, Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC SCI-SB-SG, Station 6, CH-1015 Lausanne, Switzerland
| | - Baptiste Robin
- MedXCell Science, Bâtiment Cyborg 1 (IRMB), Hôpital Saint-Eloi, 80 avenue Augustin Fliche, 34295 Montpellier, France
| | - Solène Passemard
- Montpellier Life Science Bâtiment Cyborg 1 (IRMB), Hôpital Saint-Eloi, 80 avenue Augustin Fliche, 34295 Montpellier, France
| | - Bénédicte Fauvel
- CYTEA BIO, Bâtiment Cyborg 1 (IRMB), Hôpital Saint-Eloi, 80 avenue Augustin Fliche, 34295 Montpellier, France
| | - Jessy Presumey
- CYTEA BIO, Bâtiment Cyborg 1 (IRMB), Hôpital Saint-Eloi, 80 avenue Augustin Fliche, 34295 Montpellier, France
| | - Emilie Rigal
- CYTEA BIO, Bâtiment Cyborg 1 (IRMB), Hôpital Saint-Eloi, 80 avenue Augustin Fliche, 34295 Montpellier, France
| | - Alan Cookson
- MedXCell SA, Av. des Planches 20C, 1820 Montreux, Suisse
| | - Joël Chopineau
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | | - Martin Villalba
- IRMB, Univ Montpellier, INSERM, CNRS, CHU Montpellier, Montpellier, France
| | | | | | - Marie Morille
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France.
| | - Sandrine Gerber-Lemaire
- Group for Functionalized Biomaterials, Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC SCI-SB-SG, Station 6, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
20
|
Han Y, Zhu Y, Youngblood HA, Almuntashiri S, Jones TW, Wang X, Liu Y, Somanath PR, Zhang D. Nebulization of extracellular vesicles: A promising small RNA delivery approach for lung diseases. J Control Release 2022; 352:556-569. [PMID: 36341934 DOI: 10.1016/j.jconrel.2022.10.052] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/13/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
Small extracellular vesicles (sEVs) are a group of cell-secreted nanovesicles with a diameter up to 200 nm. A growing number of studies have indicated that sEVs can reflect the pathogenesis of human diseases and mediate intercellular communications. Recently, sEV research has drastically increased due to their drug delivery property. However, a comprehensive method of delivering exogenous small RNAs-loaded sEVs through nebulization has not been reported. The methodology is complicated by uncertainty regarding the integrity of sEVs after nebulization, the delivery efficiency of aerosolized sEVs, their deposition in the lungs/cells, etc. This study demonstrates that sEVs can be delivered to murine lungs through a vibrating mesh nebulizer (VMN). In vivo sEV tracking indicated that inhaled sEVs were distributed exclusively in the lung and localized primarily in lung macrophages and airway epithelial cells. Additionally, sEVs loaded with small RNAs were successfully delivered into the lungs. The administration of siMyd88-loaded sEVs through inhalation reduced lipopolysaccharide (LPS)-induced lung injury in mice, supporting an application of this nebulization methodology to deliver functional small RNAs. Collectively, our study proposes a novel method of sEVs-mediated small RNA delivery into the murine lung through nebulization and presents a potential sEV-based therapeutic strategy for human lung diseases.
Collapse
Affiliation(s)
- Yohan Han
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States
| | - Yin Zhu
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States
| | - Hannah A Youngblood
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA 30912, United States
| | - Sultan Almuntashiri
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States
| | - Timothy W Jones
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States
| | - Xiaoyun Wang
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA 30912, United States
| | - Payaningal R Somanath
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States; Vascular Biology Center, Augusta University, Augusta, GA 30912, United States
| | - Duo Zhang
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States; Vascular Biology Center, Augusta University, Augusta, GA 30912, United States; Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States.
| |
Collapse
|
21
|
Mayor A, Thibert B, Huille S, Bensaid F, Respaud R, Audat H, Heuzé-Vourc'h N. Inhaled IgG1 antibodies: The buffering system is an important driver of stability during mesh-nebulization. Eur J Pharm Biopharm 2022; 181:173-182. [PMID: 36395981 DOI: 10.1016/j.ejpb.2022.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
In the past decade, oral inhalation has been a thriving focus of research to administer antibody directly to the lungs as an aerosol, for local treatment of respiratory diseases. Formulation of inhaled antibodies is central for the stability of antibody, lung safety and to ensure inhaler performances. Surfactants have already been shown to prevent antibody degradation during aerosolization, but little is known about the impact of other components of liquid formulations on the structural stability of antibodies. Here, we report for the first time to the best of our knowledge, a significant effect of the buffering system on monoclonal antibodies stability, during mesh-nebulization. While the monoclonal antibody extensively aggregated in citrate buffer after nebulization and required high concentration of polysorbate 80 (PS80) to maintain protein integrity, acetate and histidine buffers resulted in a slight to moderate aggregation without PS80 and low concentration of PS80 was sufficient to stabilize antibody during mesh-nebulization.
Collapse
Affiliation(s)
- Alexie Mayor
- INSERM, Centre D'Etude Des Pathologies Respiratoires, Université François Rabelais de Tours, 10 Boulevard Tonnellé, U1100F-37032 Tours, France; University of Tours, Tours, France; Sanofi, Formulation and Process Development, Impasse Des Ateliers, 94400 Vitry-sur-Seine, France
| | - Béatrice Thibert
- Sanofi, Formulation and Process Development, Impasse Des Ateliers, 94400 Vitry-sur-Seine, France
| | - Sylvain Huille
- Sanofi, Formulation and Process Development, Impasse Des Ateliers, 94400 Vitry-sur-Seine, France
| | - Fethi Bensaid
- Sanofi, Formulation and Process Development, Impasse Des Ateliers, 94400 Vitry-sur-Seine, France
| | - Renaud Respaud
- INSERM, Centre D'Etude Des Pathologies Respiratoires, Université François Rabelais de Tours, 10 Boulevard Tonnellé, U1100F-37032 Tours, France
| | - Héloïse Audat
- Sanofi, Formulation and Process Development, Impasse Des Ateliers, 94400 Vitry-sur-Seine, France
| | - Nathalie Heuzé-Vourc'h
- INSERM, Centre D'Etude Des Pathologies Respiratoires, Université François Rabelais de Tours, 10 Boulevard Tonnellé, U1100F-37032 Tours, France; University of Tours, Tours, France.
| |
Collapse
|
22
|
Reinders LMH, Noelle D, Klassen MD, Jaeger M, Schmidt TC, Tuerk J, Teutenberg T. Development and validation of a method for airborne monoclonal antibodies to quantify workplace exposure. J Pharm Biomed Anal 2022; 221:115046. [PMID: 36152489 DOI: 10.1016/j.jpba.2022.115046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/06/2022] [Accepted: 09/11/2022] [Indexed: 10/31/2022]
Abstract
Modern therapy strategies are based on patient-specific treatment where the drug and dose are optimally adapted to the patient's needs. In recent drugs, monoclonal antibodies (mAbs) are increasingly used as active ingredients. Their patient-specific formulations are not part of the pharmaceutical industry's manufacturing process but are prepared from concentrates by pharmaceutical personnel. During the manufacturing process, however, active pharmaceutical ingredients are released in trace amounts or, in the case of accidents and spills, also in high concentrations. Regardless of the source of entry, mAbs can become airborne, be inhaled, and cause undesirable side-effects such as sensitization. To assess the risk for pharmaceutical personnel, a personal air sampling method was developed and validated for bevacizumab, cetuximab, daratumumab, omalizumab, rituximab and trastuzumab. The method is based on the combination of high-performance liquid chromatography with tandem mass spectrometry (HPLC-MS/MS). The analytical method achieves a limit of detection of 0.30-8.8 ng mL-1, recoveries of 83-96 % (intra-day assay) and 75-89 % (inter-day assay), with no detectable carry-over. A polycarbonate filter proved suitable for sampling airborne monoclonal antibodies, as it achieved 80-104 % recovery across all mAbs. It also showed concentration-independent desorption efficiency. The sampling duration can be up to 480 min without negatively affecting the recovery. MAbs are stable on the polycarbonate filter at 5 °C for 3 days (recovery: 94 % ± 5 %) and at - 20 °C for 14 days (recovery: 97 % ± 4 %). Our method demonstrated that there is a potential for release when handling monoclonal antibodies. However, this can be reduced below the limit of detection by using pressure equalization systems (spikes).
Collapse
Affiliation(s)
- Lars M H Reinders
- Institut für Energie und Umwelttechnik e. V. (IUTA, Institute of Energy and Environmental Technology), Bliersheimer Str. 58-60, 47229 Duisburg, Germany; Hochschule Niederrhein (University of Applied Science), Reinarzstr. 49, 47805 Krefeld, Germany; University Duisburg-Essen, Faculty of Chemistry, Instrumental Analytical Chemistry, Universitätsstr. 5, 45141 Essen, Germany
| | - Dennis Noelle
- Institut für Energie und Umwelttechnik e. V. (IUTA, Institute of Energy and Environmental Technology), Bliersheimer Str. 58-60, 47229 Duisburg, Germany; Hochschule Niederrhein (University of Applied Science), Reinarzstr. 49, 47805 Krefeld, Germany
| | - Martin D Klassen
- Institut für Energie und Umwelttechnik e. V. (IUTA, Institute of Energy and Environmental Technology), Bliersheimer Str. 58-60, 47229 Duisburg, Germany
| | - Martin Jaeger
- Hochschule Niederrhein (University of Applied Science), Reinarzstr. 49, 47805 Krefeld, Germany
| | - Torsten C Schmidt
- University Duisburg-Essen, Faculty of Chemistry, Instrumental Analytical Chemistry, Universitätsstr. 5, 45141 Essen, Germany
| | - Jochen Tuerk
- Institut für Energie und Umwelttechnik e. V. (IUTA, Institute of Energy and Environmental Technology), Bliersheimer Str. 58-60, 47229 Duisburg, Germany
| | - Thorsten Teutenberg
- Institut für Energie und Umwelttechnik e. V. (IUTA, Institute of Energy and Environmental Technology), Bliersheimer Str. 58-60, 47229 Duisburg, Germany.
| |
Collapse
|
23
|
Jia J, Yin Z, Zhang X, Li H, Meng D, Liu Q, Wang H, Han M, Suo S, Liu Y, Hu P, Sun C, Li J, Xie L. Feasibility Studies of Nebulized SARS-CoV-2 Neutralizing Antibody in Mice and Cynomolgus Monkeys. Pharm Res 2022; 39:2191-2201. [PMID: 35882740 PMCID: PMC9322739 DOI: 10.1007/s11095-022-03340-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/09/2022] [Indexed: 01/08/2023]
Abstract
Purpose Neutralizing antibodies, administrated through intravenous infusion, have shown to be highly efficacious in treating mild and moderate COVID-19 caused by SARS-CoV-2 infection in the lung. However, antibodies do not transport across the plasma-lung barrier efficiently, and up to 100 mg/kg dose was used in human causing significant supply and cost burdens. This study was to explore the feasibility of nebulized antibodies inhalation delivery as an alternative route. Methods HB27, a potent RBD-specific humanized monoclonal antibody (Zhu et al. in National Sci Rev. 8:nwaa297, 2020), showed excellent protection against SARS-CoV-2 in animal model and good safety profile in clinical studies. The pharmacokinetics and preliminary safety of HB27 administrated through the respiratory tract were studied in mice and cynomolgus monkeys here. Results At a single 5 mg/kg dose, the peak HB27 concentration in mice pulmonary epithelial lining fluid (ELF) reached 857.8 μg/mL, 670-fold higher than the PRNT90 value of 1.28 μg/mL, and maintained above PRNT90 over 240 h. In contrast, when administrated by intravenous injection at a 5 mg/kg dose, the antibody concentrations in mice ELF were below PRNT90 value throughout, and were about 50-fold lower than that in the serum. In cynomolgus monkeys administrated with a single dose through inhalation, the antibody concentration in ELF remained high within 3 days. No drug-related safety concerns were observed in the studies. Conclusions The study demonstrated that nebulized neutralizing antibody delivery though inhalation could be a more efficient and efficacious alternative approach for treating COVID-19 and other respiratory infectious diseases, and warrants further evaluation in clinical studies. Supplementary Information The online version contains supplementary material available at 10.1007/s11095-022-03340-9.
Collapse
Affiliation(s)
- Jilei Jia
- Sinocelltech Ltd., No.31 Kechuang 7th Street, Beijing, 100176, BDA, China
| | - Zhaojuan Yin
- Sinocelltech Ltd., No.31 Kechuang 7th Street, Beijing, 100176, BDA, China
| | - Xiao Zhang
- Sinocelltech Ltd., No.31 Kechuang 7th Street, Beijing, 100176, BDA, China
| | - Huimin Li
- Sinocelltech Ltd., No.31 Kechuang 7th Street, Beijing, 100176, BDA, China
| | - Dan Meng
- Sinocelltech Ltd., No.31 Kechuang 7th Street, Beijing, 100176, BDA, China
| | - Qianqian Liu
- Sinocelltech Ltd., No.31 Kechuang 7th Street, Beijing, 100176, BDA, China
| | - Hongfang Wang
- Sinocelltech Ltd., No.31 Kechuang 7th Street, Beijing, 100176, BDA, China
| | - Meng Han
- Sinocelltech Ltd., No.31 Kechuang 7th Street, Beijing, 100176, BDA, China
| | - Shixiang Suo
- Sinocelltech Ltd., No.31 Kechuang 7th Street, Beijing, 100176, BDA, China
| | - Yan Liu
- Sinocelltech Ltd., No.31 Kechuang 7th Street, Beijing, 100176, BDA, China
| | - Ping Hu
- Sinocelltech Ltd., No.31 Kechuang 7th Street, Beijing, 100176, BDA, China
| | - Chunyun Sun
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd, No.31 Kechuang 7th Street, Beijing, 100176, BDA, China
| | - Jing Li
- Sinocelltech Ltd., No.31 Kechuang 7th Street, Beijing, 100176, BDA, China
| | - Liangzhi Xie
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd, No.31 Kechuang 7th Street, Beijing, 100176, BDA, China. .,Cell Culture Engineering Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
24
|
|
25
|
Aggregates Associated with Instability of Antibodies during Aerosolization Induce Adverse Immunological Effects. Pharmaceutics 2022; 14:pharmaceutics14030671. [PMID: 35336045 PMCID: PMC8949695 DOI: 10.3390/pharmaceutics14030671] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 01/27/2023] Open
Abstract
Background: Immunogenicity refers to the inherent ability of a molecule to stimulate an immune response. Aggregates are one of the major risk factors for the undesired immunogenicity of therapeutic antibodies (Ab) and may ultimately result in immune-mediated adverse effects. For Ab delivered by inhalation, it is necessary to consider the interaction between aggregates resulting from the instability of the Ab during aerosolization and the lung mucosa. The aim of this study was to determine the impact of aggregates produced during aerosolization of therapeutic Ab on the immune system. Methods: Human and murine immunoglobulin G (IgG) were aerosolized using a clinically-relevant nebulizer and their immunogenic potency was assessed, both in vitro using a standard human monocyte-derived dendritic cell (MoDC) reporter assay and in vivo in immune cells in the airway compartment, lung parenchyma and spleen of healthy C57BL/6 mice after pulmonary administration. Results: IgG aggregates, produced during nebulization, induced a dose-dependent activation of MoDC characterized by the enhanced production of cytokines and expression of co-stimulatory markers. Interestingly, in vivo administration of high amounts of nebulization-mediated IgG aggregates resulted in a profound and sustained local and systemic depletion of immune cells, which was attributable to cell death. This cytotoxic effect was observed when nebulized IgG was administered locally in the airways as compared to a systemic administration but was mitigated by improving IgG stability during nebulization, through the addition of polysorbates to the formulation. Conclusion: Although inhalation delivery represents an attractive alternative route for delivering Ab to treat respiratory infections, our findings indicate that it is critical to prevent IgG aggregation during the nebulization process to avoid pro-inflammatory and cytotoxic effects. The optimization of Ab formulation can mitigate adverse effects induced by nebulization.
Collapse
|
26
|
Cazzola M, Ora J, Calzetta L, Rogliani P, Matera MG. The future of inhalation therapy in chronic obstructive pulmonary disease. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100092. [PMID: 35243334 PMCID: PMC8866667 DOI: 10.1016/j.crphar.2022.100092] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/13/2022] [Indexed: 11/05/2022] Open
Abstract
The inhaled route is critical for the administration of drugs to treat patients suffering from COPD, but there is still an unmet need for new and innovative inhalers to address some limitations of existing products that do not make them suitable for many COPD patients. The treatment of COPD, currently limited to the use of bronchodilators, corticosteroids, and antibiotics, requires a significant expansion of the therapeutic armamentarium that is closely linked to the widening of knowledge on the pathogenesis and evolution of COPD. The great interest in the development of new drugs that may be able to interfere in the natural history of the disease is leading to the synthesis of numerous new molecules, of which however only a few have entered the stages of clinical development. On the other hand, further improvement of inhaled drug delivery could be an interesting possibility because it targets the organ of interest directly, requires significantly less drug to exert the pharmacological effect and, by lowering the amount of drug needed, reduces the cost of therapy. Unfortunately, however, the development of new inhaled drugs for use in COPD is currently too slow.
Collapse
Affiliation(s)
- Mario Cazzola
- Chair of Respiratory Medicine, Department of Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Josuel Ora
- Respiratory Diseases Unit, “Tor Vergata” University Hospital, Rome, Italy
| | - Luigino Calzetta
- Respiratory Disease and Lung Function Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Paola Rogliani
- Chair of Respiratory Medicine, Department of Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
- Respiratory Diseases Unit, “Tor Vergata” University Hospital, Rome, Italy
| | - Maria Gabriella Matera
- Pharmacology Unit, Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| |
Collapse
|
27
|
Cazzola M, Ora J, Cavalli F, Rogliani P, Matera MG. An Overview of the Safety and Efficacy of Monoclonal Antibodies for the Chronic Obstructive Pulmonary Disease. Biologics 2021; 15:363-374. [PMID: 34475751 PMCID: PMC8407524 DOI: 10.2147/btt.s295409] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 08/19/2021] [Indexed: 11/23/2022]
Abstract
Several mAbs have been tested or are currently under clinical evaluation for the treatment of COPD. They can be subdivided into those that aim to block specific pro-inflammatory and pro-neutrophilic cytokines and chemokines, such as TNF-α, IL-1β, CXCL8 and IL-1β, and those that act on T2-mediated inflammation, respectively, by blocking IL-5 and/or its receptor, preventing IL-4 and IL-13 signaling, affecting IL-33 pathway and blocking TSLP. None of these approaches has proved to be effective, probably because in COPD there is no dominant cytokine or chemokine and, therefore, a single mAb cannot be effective on all pathways. With a more in-depth understanding of the numerous pheno/endotypic pathways that play a role in COPD, it may eventually be possible to identify those specific patients in whom some of these cytokines or chemokines might predominate. In this case, it will be possible to implement a personalized treatment, but the use of each mAb will only be reserved for a very limited number of subjects.
Collapse
Affiliation(s)
- Mario Cazzola
- Chair of Respiratory Medicine, Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Josuel Ora
- Division of Respiratory Medicine, University Hospital Tor Vergata, Rome, Italy
| | - Francesco Cavalli
- Chair of Respiratory Medicine, Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paola Rogliani
- Chair of Respiratory Medicine, Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy.,Division of Respiratory Medicine, University Hospital Tor Vergata, Rome, Italy
| | - Maria Gabriella Matera
- Chair of Pharmacology, Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
28
|
Parray HA, Shukla S, Perween R, Khatri R, Shrivastava T, Singh V, Murugavelu P, Ahmed S, Samal S, Sharma C, Sinha S, Luthra K, Kumar R. Inhalation monoclonal antibody therapy: a new way to treat and manage respiratory infections. Appl Microbiol Biotechnol 2021; 105:6315-6332. [PMID: 34423407 PMCID: PMC8380517 DOI: 10.1007/s00253-021-11488-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 07/14/2021] [Accepted: 07/30/2021] [Indexed: 12/23/2022]
Abstract
The route of administration of a therapeutic agent has a substantial impact on its success. Therapeutic antibodies are usually administered systemically, either directly by intravenous route, or indirectly by intramuscular or subcutaneous injection. However, treatment of diseases contained within a specific tissue necessitates a better alternate route of administration for targeting localised infections. Inhalation is a promising non-invasive strategy for antibody delivery to treat respiratory maladies because it provides higher concentrations of antibody in the respiratory airways overcoming the constraints of entry through systemic circulation and uncertainity in the amount reaching the target tissue. The nasal drug delivery route is one of the extensively researched modes of administration, and nasal sprays for molecular drugs are deemed successful and are presently commercially marketed. This review highlights the current state and future prospects of inhaled therapies, with an emphasis on the use of monoclonal antibodies for the treatment of respiratory infections, as well as an overview of their importance, practical challenges, and clinical trial outcomes.Key points• Immunologic strategies for preventing mucosal transmission of respiratory pathogens.• Mucosal-mediated immunoprophylaxis could play a major role in COVID-19 prevention.• Applications of monoclonal antibodies in passive immunisation.
Collapse
Affiliation(s)
- Hilal Ahmad Parray
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Shivangi Shukla
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Reshma Perween
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Ritika Khatri
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Tripti Shrivastava
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Vanshika Singh
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Praveenkumar Murugavelu
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Shubbir Ahmed
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Sweety Samal
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Chandresh Sharma
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Subrata Sinha
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Rajesh Kumar
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India.
| |
Collapse
|
29
|
Fatima N, Kaushik V, Ayoub A. A Narrative Review of a Pulmonary Aerosolized Formulation or a Nasal Drop Using Sera Containing Neutralizing Antibodies Collected from COVID-19-Recovered Patients as a Probable Therapy for COVID-19. IRANIAN JOURNAL OF MEDICAL SCIENCES 2021; 46:151-168. [PMID: 34083848 PMCID: PMC8163704 DOI: 10.30476/ijms.2020.86417.1624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/29/2020] [Accepted: 09/22/2020] [Indexed: 12/15/2022]
Abstract
Coronavirus disease 2019 (COVID-19) emerged as a new contagion during December 2019, since which time it has triggered a rampant spike in fatality rates worldwide due to insufficient medical treatments and a lack of counteragents and prompted the World Health Organization to declare COVID-19 a public health emergency. It is, therefore, vital to accelerate the screening of new molecules or vaccines to win the battle against this pandemic. Experiences from previous epidemiological data on coronaviruses guide investigators in designing and exploring new compounds for a safe and cost-effective treatment. Several reports on the severe acute respiratory syndrome (SARS) epidemic indicate that severe acute respiratory syndrome coronavirus (SARS-CoV) and the novel COVID-19 use angiotensin-converting enzyme 2 (ACE2) as a receptor for binding to the host cell in the lung epithelia through the spike protein on their virion surface. ACE2 is a mono-carboxypeptidase best known for cleaving major peptides and substrates. Its degree in human airway epithelia positively correlates with coronavirus infection. The treatment approach can be the neutralization of the virus entering lung epithelial cells by using sera containing antibodies collected from COVID-19-recovered patients. Hence, we herein propose a pulmonary aerosolized formulation or a nasal drop using sera, which contain antibodies to prevent, treat, or immunize against COVID-19 infection.
Collapse
Affiliation(s)
- Nishat Fatima
- School of Pharmacy, Al-Hawash Private University, Homs, Syria
| | | | - Amjad Ayoub
- School of Pharmacy, Al-Hawash Private University, Homs, Syria
| |
Collapse
|
30
|
Novel formulations and drug delivery systems to administer biological solids. Adv Drug Deliv Rev 2021; 172:183-210. [PMID: 33705873 DOI: 10.1016/j.addr.2021.02.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/28/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022]
Abstract
Recent advances in formulation sciences have expanded the previously limited design space for biological modalities, including peptide, protein, and vaccine products. At the same time, the discovery and application of new modalities, such as cellular therapies and gene therapies, have presented formidable challenges to formulation scientists. We explore these challenges and highlight the opportunities to overcome them through the development of novel formulations and drug delivery systems as biological solids. We review the current progress in both industry and academic laboratories, and we provide expert perspectives in those settings. Formulation scientists have made a tremendous effort to accommodate the needs of these novel delivery routes. These include stability-preserving formulations and dehydration processes as well as dosing regimes and dosage forms that improve patient compliance.
Collapse
|
31
|
Cruz-Teran C, Tiruthani K, McSweeney M, Ma A, Pickles R, Lai SK. Challenges and opportunities for antiviral monoclonal antibodies as COVID-19 therapy. Adv Drug Deliv Rev 2021; 169:100-117. [PMID: 33309815 PMCID: PMC7833882 DOI: 10.1016/j.addr.2020.12.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/30/2020] [Accepted: 12/05/2020] [Indexed: 01/08/2023]
Abstract
To address the COVID-19 pandemic, there has been an unprecedented global effort to advance potent neutralizing mAbs against SARS-CoV-2 as therapeutics. However, historical efforts to advance antiviral monoclonal antibodies (mAbs) for the treatment of other respiratory infections have been met with categorical failures in the clinic. By investigating the mechanism by which SARS-CoV-2 and similar viruses spread within the lung, along with available biodistribution data for systemically injected mAb, we highlight the challenges faced by current antiviral mAbs for COVID-19. We summarize some of the leading mAbs currently in development, and present the evidence supporting inhaled delivery of antiviral mAb as an early intervention against COVID-19 that could prevent important pulmonary morbidities associated with the infection.
Collapse
Affiliation(s)
- Carlos Cruz-Teran
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Karthik Tiruthani
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Alice Ma
- UNC/NCSU Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Raymond Pickles
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Samuel K Lai
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Inhalon Biopharma, Durham, NC 27709, USA; UNC/NCSU Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
32
|
Cao G, Gao X, Zhan Y, Wang Q, Zhang Z, Dimitrov DS, Gong R. An engineered human IgG1 CH2 domain with decreased aggregation and nonspecific binding. MAbs 2021; 12:1689027. [PMID: 31795802 PMCID: PMC6927756 DOI: 10.1080/19420862.2019.1689027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The immunoglobulin (Ig) CH2 domain is a promising scaffold for the development of candidate therapeutics. We have previously shown that the stability of isolated CH2 could be increased by the introduction of an additional disulfide bond and removal of seven N-terminal residues (m01s). However, both isolated CH2 and m01s aggregate, likely due to the existence of aggregation-prone regions (APRs) that we identified by using computational methods. This knowledge was used to generate a phage display library of mutants. The library was incubated at high temperature to remove aggregating CH2 domains, and then panned against a mouse anti-human CH2 monoclonal antibody targeting a conformational epitope to remove misfolded CH2s. After two rounds of panning, one clone, m01s5, with smaller APRs, was identified. After additional mutagenesis one clone, m01s5.4, which aggregated much less than m01s as measured by a turbidity assay and dynamic light scattering, was identified. m01s5.4 also exhibited much lower nonspecific binding than m01s. Engineering of a previously identified m01s-based tumor antigen-specific binder led to a dramatic reduction of its aggregation without affecting its binding. In summary, we describe a new approach for reducing aggregation based on a combination of computational and phage display methodologies, and show that aggregation of CH2-based scaffolds can be significantly reduced by the newly identified mutants, which can improve the developability of potential CH2-based therapeutics.
Collapse
Affiliation(s)
- Guangcan Cao
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xinyu Gao
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yancheng Zhan
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qingguang Wang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhe Zhang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Dimiter S Dimitrov
- Center for Antibody Therapeutics, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania, USA
| | - Rui Gong
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| |
Collapse
|
33
|
Chow MYT, Chang RYK, Chan HK. Inhalation delivery technology for genome-editing of respiratory diseases. Adv Drug Deliv Rev 2021; 168:217-228. [PMID: 32512029 PMCID: PMC7274121 DOI: 10.1016/j.addr.2020.06.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/21/2020] [Accepted: 06/01/2020] [Indexed: 12/25/2022]
Abstract
The clustered regulatory interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (CRISPR/Cas9) system has significant therapeutic potentials for lung congenital diseases such as cystic fibrosis, as well as other pulmonary disorders like lung cancer and obstructive diseases. Local administration of CRISPR/Cas9 therapeutics through inhalation can achieve high drug concentration and minimise systemic exposure. While the field is advancing with better understanding on the biological functions achieved by CRISPR/Cas9 systems, the lack of progress in inhalation formulation and delivery of the molecule may impede their clinical translation efficiently. This forward-looking review discussed the current status of formulations and delivery for inhalation of relevant biologics such as genes (plasmids and mRNAs) and proteins, emphasising on their design strategies and preparation methods. By adapting and optimising formulation strategies used for genes and proteins, we envisage that development of inhalable CRISPR/Cas9 liquid or powder formulations for inhalation administration can potentially be fast-tracked in near future.
Collapse
Affiliation(s)
- Michael Y T Chow
- Advanced Drug Delivery Group, School of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia
| | - Rachel Yoon Kyung Chang
- Advanced Drug Delivery Group, School of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, School of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
34
|
The Confluence of Innovation in Therapeutics and Regulation: Recent CMC Considerations. J Pharm Sci 2020; 109:3524-3534. [PMID: 32971125 PMCID: PMC7505112 DOI: 10.1016/j.xphs.2020.09.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 01/02/2023]
Abstract
The field of human therapeutics has expanded tremendously from small molecules to complex biological modalities, and this trend has accelerated in the last two decades with a greater diversity in the types and applications of novel modalities, accompanied by increasing sophistication in drug delivery technology. These innovations have led to a corresponding increase in the number of therapies seeking regulatory approval, and as the industry continues to evolve regulations will need to adapt to the ever-changing landscape. The growth in this field thus represents a challenge for regulatory authorities as well as for sponsors. This review provides a brief description of novel biologics, including innovative antibody therapeutics, genetic modification technologies, new developments in vaccines, and multifunctional modalities. It also describes a few pertinent drug delivery mechanisms such as nanoparticles, liposomes, coformulation, recombinant human hyaluronidase for subcutaneous delivery, pulmonary delivery, and 3D printing. In addition, it provides an overview of the current CMC regulatory challenges and discusses potential methods of accelerating regulatory mechanisms for more efficient approvals. Finally, we look at the future of biotherapeutics and emphasize the need to bring these modalities to the forefront of patient care from a global perspective as effectively as possible.
Collapse
|
35
|
Learning from past failures: Challenges with monoclonal antibody therapies for COVID-19. J Control Release 2020; 329:87-95. [PMID: 33276017 PMCID: PMC7836766 DOI: 10.1016/j.jconrel.2020.11.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/25/2020] [Accepted: 11/29/2020] [Indexed: 01/08/2023]
Abstract
COVID-19, the disease caused by infection with SARS-CoV-2, requires urgent development of therapeutic interventions. Due to their safety, specificity, and potential for rapid advancement into the clinic, monoclonal antibodies (mAbs) represent a highly promising class of antiviral or anti-inflammatory agents. Herein, by analyzing prior efforts to advance antiviral mAbs for other acute respiratory infections (ARIs), we highlight the challenges faced by mAb-based immunotherapies for COVID-19. We present evidence supporting early intervention immediately following a positive diagnosis via inhaled delivery of mAbs with vibrating mesh nebulizers as a promising approach for the treatment of COVID-19.
Collapse
|
36
|
Repurposing of Plasminogen: An Orphan Medicinal Product Suitable for SARS-CoV-2 Inhalable Therapeutics. Pharmaceuticals (Basel) 2020; 13:ph13120425. [PMID: 33260813 PMCID: PMC7761183 DOI: 10.3390/ph13120425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/21/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022] Open
Abstract
The SARS-CoV-2 infection is associated with pulmonary coagulopathy, which determines the deposition of fibrin in the air spaces and lung parenchyma. The resulting lung lesions compromise patient pulmonary function and increase mortality, or end in permanent lung damage for those who have recovered from the COVID-19 disease. Therefore, local pulmonary fibrinolysis can be efficacious in degrading pre-existing fibrin clots and reducing the conversion of lung lesions into lasting scars. Plasminogen is considered a key player in fibrinolysis processes, and in view of a bench-to-bedside translation, we focused on the aerosolization of an orphan medicinal product (OMP) for ligneous conjunctivitis: human plasminogen (PLG-OMP) eye drops. As such, the sterile and preservative-free solution guarantees the pharmaceutical quality of GMP production and meets the Ph. Eur. requirements of liquid preparations for nebulization. PLG-OMP aerosolization was evaluated both from technological and stability viewpoints, after being submitted to either jet or ultrasonic nebulization. Jet nebulization resulted in a more efficient delivery of an aerosol suitable for pulmonary deposition. The biochemical investigation highlighted substantial protein integrity maintenance with the percentage of native plasminogen band > 90%, in accordance with the quality specifications of PLG-OMP. In a coherent way, the specific activity of plasminogen is maintained within the range 4.8–5.6 IU/mg (PLG-OMP pre-nebulization: 5.0 IU/mg). This is the first study that focuses on the technological and biochemical aspects of aerosolized plasminogen, which could affect both treatment efficacy and clinical dosage delivery. Increasing evidence for the need of local fibrinolytic therapy could merge with the availability of PLG-OMP as an easy handling solution, readily aerosolizable for a fast translation into an extended clinical efficacy assessment in COVID-19 patients.
Collapse
|
37
|
Chauhan VM, Zhang H, Dalby PA, Aylott JW. Advancements in the co-formulation of biologic therapeutics. J Control Release 2020; 327:397-405. [PMID: 32798639 PMCID: PMC7426274 DOI: 10.1016/j.jconrel.2020.08.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 12/17/2022]
Abstract
Biologic therapeutics are the medicines of the future and are destined to transform the approaches by which the causes and symptoms of diseases are cured and alleviated. These approaches will be accelerated through the development of novel strategies that target multiple pharmacologically active sites using a combination of different biologics, or mixtures of biologics and small molecule therapeutics. However, for this potential to be realised, advancements in co-formulation strategies for biologic therapeutics must be established. This review describes the current and emerging developments within this field and highlights the challenges and potential solutions, that will pave-the-way towards their clinical translation.
Collapse
Affiliation(s)
- Veeren M Chauhan
- Advanced Materials & Healthcare Technologies Group, School of Pharmacy, University of Nottingham, Boots Science Building, Science Road, Nottingham, NG7 2RD, UK.
| | - Hongyu Zhang
- Future Targeted Healthcare Manufacturing Hub, Biochemical Engineering, University College London, Bernard Katz Building, Gordon Street, London, WC1H 0AH, UK
| | - Paul A Dalby
- Future Targeted Healthcare Manufacturing Hub, Biochemical Engineering, University College London, Bernard Katz Building, Gordon Street, London, WC1H 0AH, UK
| | - Jonathan W Aylott
- Advanced Materials & Healthcare Technologies Group, School of Pharmacy, University of Nottingham, Boots Science Building, Science Road, Nottingham, NG7 2RD, UK
| |
Collapse
|
38
|
Matthews AA, Ee PLR, Ge R. Developing inhaled protein therapeutics for lung diseases. MOLECULAR BIOMEDICINE 2020; 1:11. [PMID: 34765995 PMCID: PMC7595758 DOI: 10.1186/s43556-020-00014-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/15/2020] [Indexed: 12/28/2022] Open
Abstract
Biologic therapeutics such as protein/polypeptide drugs are conventionally administered systemically via intravenous injection for the treatment of diseases including lung diseases, although this approach leads to low target site accumulation and the potential risk for systemic side effects. In comparison, topical delivery of protein drugs to the lung via inhalation is deemed to be a more effective approach for lung diseases, as proteins would directly reach the target in the lung while exhibiting poor diffusion into the systemic circulation, leading to higher lung drug retention and efficacy while minimising toxicity to other organs. This review examines the important considerations and challenges in designing an inhaled protein therapeutics for local lung delivery: the choice of inhalation device, structural changes affecting drug deposition in diseased lungs, clearance mechanisms affecting an inhaled protein drug’s lung accumulation, protein stability, and immunogenicity. Possible approaches to overcoming these issues will also be discussed.
Collapse
|
39
|
Airway Delivery of Anti-influenza Monoclonal Antibodies Results in Enhanced Antiviral Activities and Enables Broad-Coverage Combination Therapies. J Virol 2020; 94:JVI.00052-20. [PMID: 32847855 PMCID: PMC7592225 DOI: 10.1128/jvi.00052-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 08/02/2020] [Indexed: 12/12/2022] Open
Abstract
Influenza causes widespread illness in humans and can result in morbidity and death, especially in the very young and elderly populations. Because influenza vaccination can be poorly effective some years, and the immune systems of the most susceptible populations are often compromised, passive immunization treatments using broadly neutralizing antibodies is a promising therapeutic approach. However, large amounts of a single antibody are required for effectiveness when delivered through systemic administration (typically intravenous infusion), precluding the feasible dosing of antibody combinations via this route. The significance of our research is the demonstration that effective therapeutic treatments of multiple relevant influenza types (H1N1, H3N2, and B) can be achieved by airway administration of a single combination of relatively small amounts of three anti-influenza antibodies. This advance exploits the discovery that airway delivery is a more potent way of administering anti-influenza antibodies compared to systemic delivery, making this a feasible and cost-effective therapeutic approach. Effective and reliable anti-influenza treatments are acutely needed and passive immunizations using broadly neutralizing anti-influenza monoclonal antibodies (bNAbs) are a promising emerging approach. Because influenza infections are initiated in and localized to the pulmonary tract, and newly formed viral particles egress from the apical side of the lung epithelium, we compared the effectiveness of hemagglutinin (HA) stalk-binding bNAbs administered through the airway (intranasal or via nebulization) versus the systemic route (intraperitoneal or intravenous). Airway deliveries of various bNAbs were 10- to 50-fold more effective than systemic deliveries of the same bNAbs in treating H1N1, H3N2, B/Victoria-, and B/Yamagata-lineage influenza viral infections in mouse models. The potency of airway-delivered anti-HA bNAbs was highly dependent on antiviral neutralization activity, with little dependence on the effector function of the antibody. In contrast, the effectiveness of systemically delivered anti-HA bNAbs was not dependent on antiviral neutralization, but critically dependent on antibody effector functions. Concurrent administration of a neutralizing/effector function-positive bNAb via the airway and systemic routes showed increased effectiveness. The small amount of airway-delivered bNAbs needed for effective influenza treatment creates the opportunity to combine potent bNAbs with different anti-influenza specificities to generate a cost-effective antiviral therapy that provides broad coverage against all circulating influenza strains infecting humans. A 3 mg/kg dose of the novel triple antibody combination CF-404 (i.e., 1 mg/kg of each component bNAb) delivered to the airway was shown to effectively prevent weight loss and death in mice challenged with ten 50% lethal dose (LD50) inoculums of either H1N1, H3N2, B/Victoria-lineage, or B/Yamagata-lineage influenza viruses. IMPORTANCE Influenza causes widespread illness in humans and can result in morbidity and death, especially in the very young and elderly populations. Because influenza vaccination can be poorly effective some years, and the immune systems of the most susceptible populations are often compromised, passive immunization treatments using broadly neutralizing antibodies is a promising therapeutic approach. However, large amounts of a single antibody are required for effectiveness when delivered through systemic administration (typically intravenous infusion), precluding the feasible dosing of antibody combinations via this route. The significance of our research is the demonstration that effective therapeutic treatments of multiple relevant influenza types (H1N1, H3N2, and B) can be achieved by airway administration of a single combination of relatively small amounts of three anti-influenza antibodies. This advance exploits the discovery that airway delivery is a more potent way of administering anti-influenza antibodies compared to systemic delivery, making this a feasible and cost-effective therapeutic approach.
Collapse
|
40
|
Liang W, Pan HW, Vllasaliu D, Lam JKW. Pulmonary Delivery of Biological Drugs. Pharmaceutics 2020; 12:E1025. [PMID: 33114726 PMCID: PMC7693150 DOI: 10.3390/pharmaceutics12111025] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/13/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022] Open
Abstract
In the last decade, biological drugs have rapidly proliferated and have now become an important therapeutic modality. This is because of their high potency, high specificity and desirable safety profile. The majority of biological drugs are peptide- and protein-based therapeutics with poor oral bioavailability. They are normally administered by parenteral injection (with a very few exceptions). Pulmonary delivery is an attractive non-invasive alternative route of administration for local and systemic delivery of biologics with immense potential to treat various diseases, including diabetes, cystic fibrosis, respiratory viral infection and asthma, etc. The massive surface area and extensive vascularisation in the lungs enable rapid absorption and fast onset of action. Despite the benefits of pulmonary delivery, development of inhalable biological drug is a challenging task. There are various anatomical, physiological and immunological barriers that affect the therapeutic efficacy of inhaled formulations. This review assesses the characteristics of biological drugs and the barriers to pulmonary drug delivery. The main challenges in the formulation and inhalation devices are discussed, together with the possible strategies that can be applied to address these challenges. Current clinical developments in inhaled biological drugs for both local and systemic applications are also discussed to provide an insight for further research.
Collapse
Affiliation(s)
- Wanling Liang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China; (H.W.P.); (J.K.W.L.)
| | - Harry W. Pan
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China; (H.W.P.); (J.K.W.L.)
| | - Driton Vllasaliu
- School of Cancer and Pharmaceutical Sciences, King’s College London, 150 Stamford Street, London SE1 9NH, UK;
| | - Jenny K. W. Lam
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China; (H.W.P.); (J.K.W.L.)
| |
Collapse
|
41
|
Sou T, Soukarieh F, Williams P, Stocks MJ, Cámara M, Bergström CAS. Model-Informed Drug Discovery and Development in Pulmonary Delivery: Biopharmaceutical Pharmacometric Modeling for Formulation Evaluation of Pulmonary Suspensions. ACS OMEGA 2020; 5:25733-25746. [PMID: 33073099 PMCID: PMC7557213 DOI: 10.1021/acsomega.0c03004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
For respiratory conditions, targeted drug delivery to the lungs could produce higher local concentrations with reduced risk of adverse events compared to systemic administration. Despite the increasing interest in pulmonary delivery, the pharmacokinetics (PK) of drugs following pulmonary administration remains to be elucidated. In this context, the application of modeling and simulation methodologies to characterize PK properties of compounds following pulmonary administration remains a scarcity. Pseudomonas aeruginosa (PA) lung infections are resistant to many of the current antibiotic therapies. Targeted treatments for pulmonary delivery could be particularly beneficial for these local conditions. In this study, we report the application of biopharmaceutical pharmacometrics (BPMX) for the analysis of PK data from three investigational antimicrobial agents following pulmonary administration of a suspension formulation. The observed drug concentration-time profiles in lungs and plasma of the compound series were combined for simultaneous analysis and modeling. The developed model describes the PK data, taking into account formulation properties, and provides a mechanism to predict dissolved drug concentrations in the lungs available for activity. The model was then used to evaluate formulation effects and the impact of variability on total and dissolved drug concentrations in lungs and plasma. The predictions suggest that these therapies for lung delivery should ideally be delivered in a sustained release formulation with high solubility for maximum local exposure in lungs for efficacy, with rapid systemic clearance in plasma for reduced risk of unwanted systemic adverse effects. This work shows the potential benefits of BPMX and the role it can play to support drug discovery and development in pulmonary delivery.
Collapse
Affiliation(s)
- Tomás Sou
- Molecular
Pharmaceutics, Department of Pharmacy, Uppsala
University, SE-751 23 Uppsala, Sweden
- Pharmacometrics,
Department of Pharmacy, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Fadi Soukarieh
- Nottingham
University Biodiscovery Institute, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom
- The National
Biofilms Innovation Centre, Nottingham NG7 2RD, United Kingdom
| | - Paul Williams
- Nottingham
University Biodiscovery Institute, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom
- The National
Biofilms Innovation Centre, Nottingham NG7 2RD, United Kingdom
| | - Michael J. Stocks
- Nottingham
University Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
- The National
Biofilms Innovation Centre, Nottingham NG7 2RD, United Kingdom
| | - Miguel Cámara
- Nottingham
University Biodiscovery Institute, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom
- The National
Biofilms Innovation Centre, Nottingham NG7 2RD, United Kingdom
| | - Christel A. S. Bergström
- Drug
Delivery, Department of Pharmacy, Uppsala
University, SE-751 23 Uppsala, Sweden
- The
Swedish Drug Delivery Center, Department of Pharmacy, Uppsala University, SE-751
23 Uppsala, Sweden
| |
Collapse
|
42
|
Sou T, Bergström CAS. Contemporary Formulation Development for Inhaled Pharmaceuticals. J Pharm Sci 2020; 110:66-86. [PMID: 32916138 DOI: 10.1016/j.xphs.2020.09.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/22/2022]
Abstract
Pulmonary delivery has gained increased interests over the past few decades. For respiratory conditions, targeted drug delivery directly to the site of action can achieve a high local concentration for efficacy with reduced systemic exposure and adverse effects. For systemic conditions, the unique physiology of the lung evolutionarily designed for rapid gaseous exchange presents an entry route for systemic drug delivery. Although the development of inhaled formulations has come a long way over the last few decades, many aspects of it remain to be elucidated. In particular, a reliable and well-understood method for in vitro-in vivo correlations remains to be established. With the rapid and ongoing advancement of technology, there is much potential to better utilise computational methods including different types of modelling and simulation approaches to support inhaled formulation development. This review intends to provide an introduction on some fundamental concepts in pulmonary drug delivery and inhaled formulation development followed by discussions on some challenges and opportunities in the translation of inhaled pharmaceuticals from preclinical studies to clinical development. The review concludes with some recent advancements in modelling and simulation approaches that could play an increasingly important role in modern formulation development of inhaled pharmaceuticals.
Collapse
Affiliation(s)
- Tomás Sou
- Drug Delivery, Department of Pharmacy, Uppsala University, Uppsala, Sweden; Pharmacometrics, Department of Pharmacy, Uppsala University, Uppsala, Sweden.
| | - Christel A S Bergström
- Drug Delivery, Department of Pharmacy, Uppsala University, Uppsala, Sweden; The Swedish Drug Delivery Center, Department of Pharmacy, Uppsala University, Uppsala, Sweden
| |
Collapse
|
43
|
Chang KH, Moon SH, Yoo SK, Park BJ, Nam KC. Aerosol Delivery of Dornase Alfa Generated by Jet and Mesh Nebulizers. Pharmaceutics 2020; 12:pharmaceutics12080721. [PMID: 32751886 PMCID: PMC7463544 DOI: 10.3390/pharmaceutics12080721] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 11/23/2022] Open
Abstract
Recent reports on mesh nebulizers suggest the possibility of stable nebulization of various therapeutic protein drugs. In this study, the in vitro performance and drug stability of jet and mesh nebulizers were examined for dornase alfa and compared with respect to their lung delivery efficiency in BALB/c mice. We compared four nebulizers: two jet nebulizers (PARI BOY SX with red and blue nozzles), a static mesh nebulizer (NE-U150), and a vibrating mesh nebulizer (NE-SM1). The enzymatic activity of dornase alfa was assessed using a kinetic fluorometric DNase activity assay. Both jet nebulizers had large residual volumes between 24% and 27%, while the volume of the NE-SM1 nebulizer was less than 2%. Evaluation of dornase alfa aerosols produced by the four nebulizers showed no overall loss of enzymatic activity or protein content and no increase in aggregation or degradation. The amount of dornase alfa delivered to the lungs was highest for the PARI BOY SX-red jet nebulizer. This result confirmed that aerosol droplet size is an important factor in determining the efficiency of dornase alfa delivery to the lungs. Further clinical studies and analysis are required before any conclusions can be drawn regarding the clinical safety and efficacy of these nebulizers.
Collapse
Affiliation(s)
- Kyung Hwa Chang
- Department of Medical Engineering, Dongguk University College of Medicine, Goyang-si, Gyeonggi-do 10326, Korea; (K.H.C.); (S.-H.M.)
| | - Sang-Hyub Moon
- Department of Medical Engineering, Dongguk University College of Medicine, Goyang-si, Gyeonggi-do 10326, Korea; (K.H.C.); (S.-H.M.)
| | - Sun Kook Yoo
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Bong Joo Park
- Department of Electrical & Biological Physics, Kwangwoon University, Seoul 01897, Korea
- Institute of Biomaterials, Kwangwoon University, Seoul 01897, Korea
- Correspondence: (B.J.P.); (K.C.N.); Tel.: +82-2-940-8629 (B.J.P.); +82-31-961-5802 (K.C.N.)
| | - Ki Chang Nam
- Department of Medical Engineering, Dongguk University College of Medicine, Goyang-si, Gyeonggi-do 10326, Korea; (K.H.C.); (S.-H.M.)
- Correspondence: (B.J.P.); (K.C.N.); Tel.: +82-2-940-8629 (B.J.P.); +82-31-961-5802 (K.C.N.)
| |
Collapse
|
44
|
Bodier-Montagutelli E, Respaud R, Perret G, Baptista L, Duquenne P, Heuzé-Vourc'h N, Vecellio L. Protein stability during nebulization: Mind the collection step! Eur J Pharm Biopharm 2020; 152:23-34. [DOI: 10.1016/j.ejpb.2020.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/19/2019] [Accepted: 04/09/2020] [Indexed: 01/02/2023]
|
45
|
McCarthy SD, González HE, Higgins BD. Future Trends in Nebulized Therapies for Pulmonary Disease. J Pers Med 2020; 10:E37. [PMID: 32397615 PMCID: PMC7354528 DOI: 10.3390/jpm10020037] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 12/15/2022] Open
Abstract
Aerosol therapy is a key modality for drug delivery to the lungs of respiratory disease patients. Aerosol therapy improves therapeutic effects by directly targeting diseased lung regions for rapid onset of action, requiring smaller doses than oral or intravenous delivery and minimizing systemic side effects. In order to optimize treatment of critically ill patients, the efficacy of aerosol therapy depends on lung morphology, breathing patterns, aerosol droplet characteristics, disease, mechanical ventilation, pharmacokinetics, and the pharmacodynamics of cell-drug interactions. While aerosol characteristics are influenced by drug formulations and device mechanisms, most other factors are reliant on individual patient variables. This has led to increased efforts towards more personalized therapeutic approaches to optimize pulmonary drug delivery and improve selection of effective drug types for individual patients. Vibrating mesh nebulizers (VMN) are the dominant device in clinical trials involving mechanical ventilation and emerging drugs. In this review, we consider the use of VMN during mechanical ventilation in intensive care units. We aim to link VMN fundamentals to applications in mechanically ventilated patients and look to the future use of VMN in emerging personalized therapeutic drugs.
Collapse
Affiliation(s)
- Sean D. McCarthy
- Anaesthesia, School of Medicine, National University of Ireland Galway, H91 TK33 Galway, Ireland; (S.D.M.); (H.E.G.)
- Lung Biology Group, Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, H91 TK33 Galway, Ireland
| | - Héctor E. González
- Anaesthesia, School of Medicine, National University of Ireland Galway, H91 TK33 Galway, Ireland; (S.D.M.); (H.E.G.)
- Lung Biology Group, Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, H91 TK33 Galway, Ireland
| | - Brendan D. Higgins
- Physiology, School of Medicine, National University of Ireland Galway, H91 TK33 Galway, Ireland
| |
Collapse
|
46
|
Reslan M, Sifniotis V, Cruz E, Sumer-Bayraktar Z, Cordwell S, Kayser V. Enhancing the stability of adalimumab by engineering additional glycosylation motifs. Int J Biol Macromol 2020; 158:189-196. [PMID: 32360204 DOI: 10.1016/j.ijbiomac.2020.04.147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/23/2020] [Accepted: 04/18/2020] [Indexed: 12/23/2022]
Abstract
Monoclonal antibodies (mAbs) are of high value in the diagnostic and treatment of many debilitating diseases such as cancers, auto-immune disorders and infections. Unfortunately, protein aggregation is one of the ongoing challenges, limiting the development and application of mAbs as therapeutic products by decreasing half-life, increasing immunogenicity and reducing activity. We engineered an aggregation-prone region of adalimumab, the top selling mAb product worldwide - with additional glycosylation sites to enhance its resistance to aggregation by steric hindrance as a next generation biologic. We found that the addition of N-glycans in the Fab domain significantly enhanced its conformational stability, with some variants increasing the melting temperature of the Fab domain by >6 °C. The mutations tested had minimal impact on antigen binding affinity, or affinity to Fcγ receptors responsible for effector function. Our findings highlight the significant utility of this rational engineering approach for enhancing the conformational stability of therapeutic mAbs and other next-generation antibody formats.
Collapse
Affiliation(s)
- Mouhamad Reslan
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| | - Vicki Sifniotis
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| | - Esteban Cruz
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| | - Zeynep Sumer-Bayraktar
- School of Life and Environmental Sciences, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.
| | - Stuart Cordwell
- School of Life and Environmental Sciences, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.
| | - Veysel Kayser
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
47
|
Marqus S, Lee L, Istivan T, Kyung Chang RY, Dekiwadia C, Chan HK, Yeo LY. High frequency acoustic nebulization for pulmonary delivery of antibiotic alternatives against Staphylococcus aureus. Eur J Pharm Biopharm 2020; 151:181-188. [PMID: 32315699 DOI: 10.1016/j.ejpb.2020.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 01/17/2023]
Abstract
The increasing prevalence of multidrug resistant bacteria has warranted the search for new antimicrobial agents as existing antibiotics lose their potency. Among these, bacteriophage therapy, as well as the administration of specific bacteriolysis agents, i.e., lytic enzymes, have emerged as attractive alternatives. Nebulizers offer the possibility for delivering these therapeutics directly to the lung, which is particularly advantageous as a non-invasive and direct route to treat bacterial lung infections. Nevertheless, nebulizers can often result in significant degradation of the bacteriophage or protein, both structurally and functionally, due to the large stresses the aerosolization process imposes on these entities. In this work, we assess the capability of a novel low-cost and portable hybrid surface and bulk acoustic wave platform (HYDRA) to nebulize a Myoviridae bacteriophage (phage K) and lytic enzyme (lysostaphin) that specifically targets Staphylococcus aureus. Besides its efficiency in producing phage or protein-laden aerosols within the 1-5 μm respirable range for optimum delivery to the lower respiratory tract where lung infections commonly take place, we observe that the HYDRA platform-owing to the efficiency of driving the aerosolization process at relatively low powers and high frequencies (approximately 10 MHz)-does not result in appreciable denaturation of the phages or proteins, such that the loss of antimicrobial activity following nebulization is minimized. Specifically, a low (0.1 log10 (pfu/ml)) titer loss was obtained with the phages, resulting in a high viable respirable fraction of approximately 90%. Similarly, minimal loss of antimicrobial activity was obtained with lysostaphin upon nebulization wherein its minimum inhibitory concentration (0.5 μg/ml) remained unaltered as compared with the non-nebulized control. These results therefore demonstrate the potential of the HYDRA nebulization platform as a promising strategy for pulmonary administration of alternative antimicrobial agents to antibiotics for the treatment of lung diseases caused by pathogenic bacteria.
Collapse
Affiliation(s)
- Susan Marqus
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Lillian Lee
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Taghrid Istivan
- School of Science, RMIT University, Bundoora, VIC 3083, Australia
| | - Rachel Yoon Kyung Chang
- Advanced Drug Delivery Group, School of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia
| | - Chaitali Dekiwadia
- RMIT Microscopy and Microanalysis Facility, RMIT University, Melbourne, VIC 3000, Australia
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, School of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia
| | - Leslie Y Yeo
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia.
| |
Collapse
|
48
|
Cazzola M, Cavalli F, Usmani OS, Rogliani P. Advances in pulmonary drug delivery devices for the treatment of chronic obstructive pulmonary disease. Expert Opin Drug Deliv 2020; 17:635-646. [DOI: 10.1080/17425247.2020.1739021] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Mario Cazzola
- Department of Experimental Medicine, Unit of Respiratory Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Francesco Cavalli
- Department of Experimental Medicine, Unit of Respiratory Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Omar S. Usmani
- Imperial College London and Royal Brompton Hospital, Airways Disease Section, National Heart and Lung Institute (NHLI), London, UK
| | - Paola Rogliani
- Department of Experimental Medicine, Unit of Respiratory Medicine, University of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|
49
|
Generation of a Nebulizable CDR-Modified MERS-CoV Neutralizing Human Antibody. Int J Mol Sci 2019; 20:ijms20205073. [PMID: 31614869 PMCID: PMC6829326 DOI: 10.3390/ijms20205073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 12/26/2022] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) induces severe aggravating respiratory failure in infected patients, frequently resulting in mechanical ventilation. As limited therapeutic antibody is accumulated in lung tissue following systemic administration, inhalation is newly recognized as an alternative, possibly better, route of therapeutic antibody for pulmonary diseases. The nebulization process, however, generates diverse physiological stresses, and thus, the therapeutic antibody must be resistant to these stresses, remain stable, and form minimal aggregates. We first isolated a MERS-CoV neutralizing antibody that is reactive to the receptor-binding domain (RBD) of spike (S) glycoprotein. To increase stability, we introduced mutations into the complementarity-determining regions (CDRs) of the antibody. In the HCDRs (excluding HCDR3) in this clone, two hydrophobic residues were replaced with Glu, two residues were replaced with Asp, and four residues were replaced with positively charged amino acids. In LCDRs, only two Leu residues were replaced with Val. These modifications successfully generated a clone with significantly greater stability and equivalent reactivity and neutralizing activity following nebulization compared to the original clone. In summary, we generated a MERS-CoV neutralizing human antibody that is reactive to recombinant MERS-CoV S RBD protein for delivery via a pulmonary route by introducing stabilizing mutations into five CDRs.
Collapse
|
50
|
Yang B, Schaefer A, Wang YY, McCallen J, Lee P, Newby JM, Arora H, Kumar PA, Zeitlin L, Whaley KJ, McKinley SA, Fischer WA, Harit D, Lai SK. ZMapp Reinforces the Airway Mucosal Barrier Against Ebola Virus. J Infect Dis 2019; 218:901-910. [PMID: 29688496 DOI: 10.1093/infdis/jiy230] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/19/2018] [Indexed: 11/15/2022] Open
Abstract
Filoviruses, including Ebola, have the potential to be transmitted via virus-laden droplets deposited onto mucus membranes. Protecting against such emerging pathogens will require understanding how they may transmit at mucosal surfaces and developing strategies to reinforce the airway mucus barrier. Here, we prepared Ebola pseudovirus (with Zaire strain glycoproteins) and used high-resolution multiple-particle tracking to track the motions of hundreds of individual pseudoviruses in fresh and undiluted human airway mucus isolated from extubated endotracheal tubes. We found that Ebola pseudovirus readily penetrates human airway mucus. Addition of ZMapp, a cocktail of Ebola-binding immunoglobulin G antibodies, effectively reduced mobility of Ebola pseudovirus in the same mucus secretions. Topical delivery of ZMapp to the mouse airways also facilitated rapid elimination of Ebola pseudovirus. Our work demonstrates that antibodies can immobilize virions in airway mucus and reduce access to the airway epithelium, highlighting topical delivery of pathogen-specific antibodies to the lungs as a potential prophylactic or therapeutic approach against emerging viruses or biowarfare agents.
Collapse
Affiliation(s)
- Bing Yang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, Chapel Hill, North Carolina
| | - Alison Schaefer
- University of North Carolina/North Carolina State University Joint Department of Biomedical Engineering, Chapel Hill, North Carolina
| | - Ying-Ying Wang
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland
| | - Justin McCallen
- University of North Carolina/North Carolina State University Joint Department of Biomedical Engineering, Chapel Hill, North Carolina
| | - Phoebe Lee
- University of North Carolina/North Carolina State University Joint Department of Biomedical Engineering, Chapel Hill, North Carolina
| | - Jay M Newby
- Department of Mathematics and Applied Physical Sciences, Chapel Hill, North Carolina
| | - Harendra Arora
- Department of Anesthesiology, School of Medicine, Chapel Hill, North Carolina
| | - Priya A Kumar
- Department of Anesthesiology, School of Medicine, Chapel Hill, North Carolina
| | | | | | - Scott A McKinley
- Mathematics Department, Tulane University, New Orleans, Louisiana
| | - William A Fischer
- Division of Pulmonary and Critical Care Medicine, School of Medicine, Chapel Hill, North Carolina
| | - Dimple Harit
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, Chapel Hill, North Carolina
| | - Samuel K Lai
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, Chapel Hill, North Carolina.,University of North Carolina/North Carolina State University Joint Department of Biomedical Engineering, Chapel Hill, North Carolina.,Department of Microbiology & Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|