1
|
Wu Z, He Y, Wang T, Wang M, Cheng A, Chen S. DENV and ZIKV infection: Species specificity and broad cell tropism. Virology 2024; 600:110276. [PMID: 39467358 DOI: 10.1016/j.virol.2024.110276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/14/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024]
Abstract
Nearly one-third of countries worldwide have reported cases of Dengue virus (DENV) and Zika virus (ZIKV) infections, highlighting the significant threat these viruses pose to global public health. As members of the Flavivirus genus within the Flaviviridae family, DENV and ZIKV have demonstrated the ability to infect a wide range of cell lines from multiple species in vitro. However, the range of susceptible animal models is notably limited, and field studies indicate that their capacity to infect host organisms is highly restricted, with a very narrow range of target cells in vivo. The virus's ability to hijack host cellular machinery plays a crucial role in determining its cellular and species specificity. In this review, we examine how DENV and ZIKV exploit host cells to facilitate their replication, offering new insights that could inform the development of antiviral drugs and therapeutic targets.
Collapse
Affiliation(s)
- Zhen Wu
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Agricultural Bioinformatics of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yu He
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Agricultural Bioinformatics of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Tao Wang
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Mingshu Wang
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Anchun Cheng
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Shun Chen
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Agricultural Bioinformatics of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
2
|
Ren W, Fu C, Zhang Y, Ju X, Jiang X, Song J, Gong M, Li Z, Fan W, Yao J, Ding Q. Zika virus NS5 protein inhibits type I interferon signaling via CRL3 E3 ubiquitin ligase-mediated degradation of STAT2. Proc Natl Acad Sci U S A 2024; 121:e2403235121. [PMID: 39145933 PMCID: PMC11348293 DOI: 10.1073/pnas.2403235121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/09/2024] [Indexed: 08/16/2024] Open
Abstract
The ZIKA virus (ZIKV) evades the host immune response by degrading STAT2 through its NS5 protein, thereby inhibiting type I interferon (IFN)-mediated antiviral immunity. However, the molecular mechanism underlying this process has remained elusive. In this study, we performed a genome-wide CRISPR/Cas9 screen, revealing that ZSWIM8 as the substrate receptor of Cullin3-RING E3 ligase is required for NS5-mediated STAT2 degradation. Genetic depletion of ZSWIM8 and CUL3 substantially impeded NS5-mediated STAT2 degradation. Biochemical analysis illuminated that NS5 enhances the interaction between STAT2 and the ZSWIM8-CUL3 E3 ligase complex, thereby facilitating STAT2 ubiquitination. Moreover, ZSWIM8 knockout endowed A549 and Huh7 cells with partial resistance to ZIKV infection and protected cells from the cytopathic effects induced by ZIKV, which was attributed to the restoration of STAT2 levels and the activation of IFN signaling. Subsequent studies in a physiologically relevant model, utilizing human neural progenitor cells, demonstrated that ZSWIM8 depletion reduced ZIKV infection, resulting from enhanced IFN signaling attributed to the sustained levels of STAT2. Our findings shed light on the role of ZIKV NS5, serving as the scaffold protein, reprograms the ZSWIM8-CUL3 E3 ligase complex to orchestrate STAT2 proteasome-dependent degradation, thereby facilitating evasion of IFN antiviral signaling. Our study provides unique insights into ZIKV-host interactions and holds promise for the development of antivirals and prophylactic vaccines.
Collapse
Affiliation(s)
- Wenlin Ren
- Center for Infection Biology, School of Medicine, Tsinghua University, Beijing100084, China
| | - Chonglei Fu
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Yu Zhang
- Center for Infection Biology, School of Medicine, Tsinghua University, Beijing100084, China
| | - Xiaohui Ju
- Center for Infection Biology, School of Medicine, Tsinghua University, Beijing100084, China
| | - Xi Jiang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Jingwei Song
- Center for Infection Biology, School of Medicine, Tsinghua University, Beijing100084, China
| | - Mingli Gong
- Center for Infection Biology, School of Medicine, Tsinghua University, Beijing100084, China
| | - Zhuoyang Li
- Shanxi Medical University-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan030001, China
- School of Management, Shanxi Medical University, Taiyuan030001, China
| | - Wenchun Fan
- Life Science Institute, Zhejiang University, Hangzhou31008, China
| | - Jun Yao
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Qiang Ding
- Center for Infection Biology, School of Medicine, Tsinghua University, Beijing100084, China
- Shanxi Medical University-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan030001, China
| |
Collapse
|
3
|
Spada SJ, Grigg ME, Bouamr F, Best SM, Zhang P. TRIM5α: A Protean Architect of Viral Recognition and Innate Immunity. Viruses 2024; 16:997. [PMID: 39066160 PMCID: PMC11281341 DOI: 10.3390/v16070997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
The evolutionary pressures exerted by viral infections have led to the development of various cellular proteins with potent antiviral activities, some of which are known as antiviral restriction factors. TRIpartite Motif-containing protein 5 alpha (TRIM5α) is a well-studied restriction factor of retroviruses that exhibits virus- and host-species-specific functions in protecting against cross-primate transmission of specific lentiviruses. This specificity is achieved at the level of the host gene through positive selection predominantly within its C-terminal B30.2/PRYSPRY domain, which is responsible for the highly specific recognition of retroviral capsids. However, more recent work has challenged this paradigm, demonstrating TRIM5α as a restriction factor for retroelements as well as phylogenetically distinct viral families, acting similarly through the recognition of viral gene products via B30.2/PRYSPRY. This spectrum of antiviral activity raises questions regarding the genetic and structural plasticity of this protein as a mediator of the recognition of a potentially diverse array of viral molecular patterns. This review highlights the dynamic evolutionary footprint of the B30.2/PRYSPRY domain in response to retroviruses while exploring the guided 'specificity' conferred by the totality of TRIM5α's additional domains that may account for its recently identified promiscuity.
Collapse
Affiliation(s)
- Stephanie J. Spada
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK;
- Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, MD 20894, USA; (M.E.G.); (F.B.)
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT 59840, USA;
| | - Michael E. Grigg
- Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, MD 20894, USA; (M.E.G.); (F.B.)
| | - Fadila Bouamr
- Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, MD 20894, USA; (M.E.G.); (F.B.)
| | - Sonja M. Best
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT 59840, USA;
| | - Peijun Zhang
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK;
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford OX3 7BN, UK
| |
Collapse
|
4
|
Martí MM, Castanha PMS, Barratt-Boyes SM. The Dynamic Relationship between Dengue Virus and the Human Cutaneous Innate Immune Response. Viruses 2024; 16:727. [PMID: 38793609 PMCID: PMC11125669 DOI: 10.3390/v16050727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Dengue virus (DENV) is a continuing global threat that puts half of the world's population at risk for infection. This mosquito-transmitted virus is endemic in over 100 countries. When a mosquito takes a bloodmeal, virus is deposited into the epidermal and dermal layers of human skin, infecting a variety of permissive cells, including keratinocytes, Langerhans cells, macrophages, dermal dendritic cells, fibroblasts, and mast cells. In response to infection, the skin deploys an array of defense mechanisms to inhibit viral replication and prevent dissemination. Antimicrobial peptides, pattern recognition receptors, and cytokines induce a signaling cascade to increase transcription and translation of pro-inflammatory and antiviral genes. Paradoxically, this inflammatory environment recruits skin-resident mononuclear cells that become infected and migrate out of the skin, spreading virus throughout the host. The details of the viral-host interactions in the cutaneous microenvironment remain unclear, partly due to the limited body of research focusing on DENV in human skin. This review will summarize the functional role of human skin, the cutaneous innate immune response to DENV, the contribution of the arthropod vector, and the models used to study DENV interactions in the cutaneous environment.
Collapse
Affiliation(s)
- Michelle M. Martí
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15260, USA; (M.M.M.); (P.M.S.C.)
| | - Priscila M. S. Castanha
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15260, USA; (M.M.M.); (P.M.S.C.)
- Faculdade de Ciệncias Médicas, Universidade de Pernambuco, Recife 52171-011, Brazil
| | - Simon M. Barratt-Boyes
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15260, USA; (M.M.M.); (P.M.S.C.)
| |
Collapse
|
5
|
Xie F, Zhu Q. The regulation of cGAS-STING signaling by RNA virus-derived components. Virol J 2024; 21:101. [PMID: 38693578 PMCID: PMC11064393 DOI: 10.1186/s12985-024-02359-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/04/2024] [Indexed: 05/03/2024] Open
Abstract
The Cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) serves as a key innate immune signaling axis involved in the regulation of various human diseases. It has been found that cGAS-STING pathway can recognize a variety of cytosolic double-stranded DNA (dsDNA), contributing to cause a robust type I interferon response thereby affecting the occurrence and progression of viral infection. Accumulating evidence indicates RNA virus-derived components play an important role in regulating cGAS-STING signaling, either as protective or pathogenic factors in the pathogenesis of diseases. Thus, a comprehensive understanding of the function of RNA virus-derived components in regulating cGAS-STING signaling will provide insights into developing novel therapies. Here, we review the existing literature on cGAS-STING pathway regulated by RNA virus-derived components to propose insights into pharmacologic strategies targeting the cGAS-STING pathway.
Collapse
Affiliation(s)
- Feiting Xie
- Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, 310006, Hangzhou, China.
| | - Qiugang Zhu
- Department of Laboratory Medicine, Shangyu People's Hospital of Shaoxing, Shaoxing, China
| |
Collapse
|
6
|
Queiroz MAF, Brito WRDS, Pereira KAS, Pereira LMS, Amoras EDSG, Lima SS, Santos EFD, Costa FPD, Sarges KMLD, Cantanhede MHD, Brito MTFMD, Silva ALSD, Leite MDM, Viana MDNDSDA, Rodrigues FBB, Silva RD, Viana GMR, Chaves TDSS, Veríssimo ADOL, Carvalho MDS, Henriques DF, Silva CPD, Nunes JAL, Costa IB, Cayres-Vallinoto IMV, Brasil-Costa I, Quaresma JAS, Falcão LFM, Santos EJMD, Vallinoto ACR. Severe COVID-19 and long COVID are associated with high expression of STING, cGAS and IFN-α. Sci Rep 2024; 14:4974. [PMID: 38424312 PMCID: PMC10904751 DOI: 10.1038/s41598-024-55696-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/27/2024] [Indexed: 03/02/2024] Open
Abstract
The cGAS-STING pathway appears to contribute to dysregulated inflammation during coronavirus disease 2019 (COVID-19); however, inflammatory factors related to long COVID are still being investigated. In the present study, we evaluated the association of cGAS and STING gene expression levels and plasma IFN-α, TNF-α and IL-6 levels with COVID-19 severity in acute infection and long COVID, based on analysis of blood samples from 148 individuals, 87 with acute COVID-19 and 61 in the post-COVID-19 period. Quantification of gene expression was performed by real-time PCR, and cytokine levels were quantified by ELISA and flow cytometry. In acute COVID-19, cGAS, STING, IFN-α, TNF-α, and IL-6 levels were higher in patients with severe disease than in those with nonsevere manifestations (p < 0.05). Long COVID was associated with elevated cGAS, STING and IFN-α levels (p < 0.05). Activation of the cGAS-STING pathway may contribute to an intense systemic inflammatory state in severe COVID-19 and, after infection resolution, induce an autoinflammatory disease in some tissues, resulting in long COVID.
Collapse
Affiliation(s)
- Maria Alice Freitas Queiroz
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil.
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil.
| | - Wandrey Roberto Dos Santos Brito
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Keise Adrielle Santos Pereira
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Leonn Mendes Soares Pereira
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | | | - Sandra Souza Lima
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Erika Ferreira Dos Santos
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Flávia Póvoa da Costa
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Kevin Matheus Lima de Sarges
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Marcos Henrique Damasceno Cantanhede
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | | | | | - Mauro de Meira Leite
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Maria de Nazaré do Socorro de Almeida Viana
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Fabíola Brasil Barbosa Rodrigues
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Rosilene da Silva
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Giselle Maria Rachid Viana
- Laboratory of Basic Research On Malaria, Parasitology Section, Evandro Chagas Institute, Health and Environment Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua, Brazil
| | - Tânia do Socorro Souza Chaves
- Laboratory of Basic Research On Malaria, Parasitology Section, Evandro Chagas Institute, Health and Environment Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua, Brazil
- School of Medicine, Institute of Medical Sciences, Federal University of Pará, Belém, Pará, Brazil
| | | | | | - Daniele Freitas Henriques
- Arbovirology and Hemorrhagic Fevers Section, Evandro Chagas Institute, Health and Environment Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua, Brazil
| | - Carla Pinheiro da Silva
- Arbovirology and Hemorrhagic Fevers Section, Evandro Chagas Institute, Health and Environment Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua, Brazil
| | - Juliana Abreu Lima Nunes
- Laboratory of Immunology, Section of Virology, Instituto Evandro Chagas, Health and Environment Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua, Brazil
| | - Iran Barros Costa
- Laboratory of Immunology, Section of Virology, Instituto Evandro Chagas, Health and Environment Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua, Brazil
- Graduate Program in Virology, Evandro Chagas Institute, Department of Science, Technology, Innovation and Strategic Health Inputs, Ministry of Health of Brazil, Ananindeua, Brazil
| | - Izaura Maria Vieira Cayres-Vallinoto
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Igor Brasil-Costa
- Laboratory of Immunology, Section of Virology, Instituto Evandro Chagas, Health and Environment Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua, Brazil
- Graduate Program in Virology, Evandro Chagas Institute, Department of Science, Technology, Innovation and Strategic Health Inputs, Ministry of Health of Brazil, Ananindeua, Brazil
| | - Juarez Antônio Simões Quaresma
- Graduate Program in Virology, Evandro Chagas Institute, Department of Science, Technology, Innovation and Strategic Health Inputs, Ministry of Health of Brazil, Ananindeua, Brazil
- Center of Biological and Health Sciences, University of the State of Pará, Belém, Brazil
| | | | - Eduardo José Melo Dos Santos
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Antonio Carlos Rosário Vallinoto
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Graduate Program in Virology, Evandro Chagas Institute, Department of Science, Technology, Innovation and Strategic Health Inputs, Ministry of Health of Brazil, Ananindeua, Brazil
| |
Collapse
|
7
|
King CR, Liu Y, Amato KA, Schaack GA, Mickelson C, Sanders AE, Hu T, Gupta S, Langlois RA, Smith JA, Mehle A. Pathogen-driven CRISPR screens identify TREX1 as a regulator of DNA self-sensing during influenza virus infection. Cell Host Microbe 2023; 31:1552-1567.e8. [PMID: 37652009 PMCID: PMC10528757 DOI: 10.1016/j.chom.2023.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/26/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023]
Abstract
Host:pathogen interactions dictate the outcome of infection, yet the limitations of current approaches leave large regions of this interface unexplored. Here, we develop a novel fitness-based screen that queries factors important during the middle to late stages of infection. This is achieved by engineering influenza virus to direct the screen by programming dCas9 to modulate host gene expression. Our genome-wide screen for pro-viral factors identifies the cytoplasmic DNA exonuclease TREX1. TREX1 degrades cytoplasmic DNA to prevent inappropriate innate immune activation by self-DNA. We reveal that this same process aids influenza virus replication. Infection triggers release of mitochondrial DNA into the cytoplasm, activating antiviral signaling via cGAS and STING. TREX1 metabolizes the DNA, preventing its sensing. Collectively, these data show that self-DNA is deployed to amplify innate immunity, a process tempered by TREX1. Moreover, they demonstrate the power and generality of pathogen-driven fitness-based screens to pinpoint key host regulators of infection.
Collapse
Affiliation(s)
- Cason R King
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yiping Liu
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Katherine A Amato
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Grace A Schaack
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Clayton Mickelson
- Department of Microbiology and Immunology and the Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Autumn E Sanders
- Department of Microbiology and Immunology and the Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Tony Hu
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Srishti Gupta
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ryan A Langlois
- Department of Microbiology and Immunology and the Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Judith A Smith
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Andrew Mehle
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
8
|
Yan Y, Wu L, Yuan Y, Wang H, Yin H, Li M, Chai L, Liang R, Liu Y, Zhao D, Xing J, Li P, Li X. Species-specific cleavage of cGAS by picornavirus protease 3C disrupts mitochondria DNA-mediated immune sensing. PLoS Pathog 2023; 19:e1011641. [PMID: 37708231 PMCID: PMC10521975 DOI: 10.1371/journal.ppat.1011641] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/26/2023] [Accepted: 08/29/2023] [Indexed: 09/16/2023] Open
Abstract
RNA viruses cause numerous infectious diseases in humans and animals. The crosstalk between RNA viruses and the innate DNA sensing pathways attracts increasing attention. Recent studies showed that the cGAS-STING pathway plays an important role in restricting RNA viruses via mitochondria DNA (mtDNA) mediated activation. However, the mechanisms of cGAS mediated innate immune evasion by RNA viruses remain unknown. Here, we report that seneca valley virus (SVV) protease 3C disrupts mtDNA mediated innate immune sensing by cleaving porcine cGAS (pcGAS) in a species-specific manner. Mechanistically, a W/Q motif within the N-terminal domain of pcGAS is a unique cleavage site recognized by SVV 3C. Three conserved catalytic residues of SVV 3C cooperatively contribute to the cleavage of pcGAS, but not human cGAS (hcGAS) or mouse cGAS (mcGAS). Additionally, upon SVV infection and poly(dA:dT) transfection, pcGAS and SVV 3C colocalizes in the cells. Furthermore, SVV 3C disrupts pcGAS-mediated DNA binding, cGAMP synthesis and interferon induction by specifically cleaving pcGAS. This work uncovers a novel mechanism by which the viral protease cleaves the DNA sensor cGAS to evade innate immune response, suggesting a new antiviral approach against picornaviruses.
Collapse
Affiliation(s)
- Ya Yan
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lei Wu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ye Yuan
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Haiwei Wang
- State Key Laboratory of Animal Disease Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongyan Yin
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Minjie Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lvye Chai
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ruiying Liang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanjie Liu
- College of Animal Sciences, Shanxi Agricultural University, Jinzhong, China
| | - Dongming Zhao
- State Key Laboratory of Animal Disease Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Junji Xing
- Department of Surgery and Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston Methodist, Houston, Texas, United States of America
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston Methodist, Houston, Texas, United States of America
| | - Pingwei Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Xin Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Liu S, Yang B, Hou Y, Cui K, Yang X, Li X, Chen L, Liu S, Zhang Z, Jia Y, Xie Y, Xue Y, Li X, Yan B, Wu C, Deng W, Qi J, Lu D, Gao GF, Wang P, Shang G. The mechanism of STING autoinhibition and activation. Mol Cell 2023; 83:1502-1518.e10. [PMID: 37086726 DOI: 10.1016/j.molcel.2023.03.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/21/2022] [Accepted: 03/30/2023] [Indexed: 04/24/2023]
Abstract
2',3'-cGAMP, produced by the DNA sensor cGAS, activates stimulator of interferon genes (STING) and triggers immune response during infection. Tremendous effort has been placed on unraveling the mechanism of STING activation. However, little is known about STING inhibition. Here, we found that apo-STING exhibits a bilayer with head-to-head as well as side-by-side packing, mediated by its ligand-binding domain (LBD). This type of assembly holds two endoplasmic reticulum (ER) membranes together not only to prevent STING ER exit but also to eliminate the recruitment of TBK1, representing the autoinhibited state of STING. Additionally, we obtained the filament structure of the STING/2',3'-cGAMP complex, which adopts a bent monolayer assembly mediated by LBD and transmembrane domain (TMD). The active, curved STING polymer could deform ER membrane to support its ER exit and anterograde transportation. Our data together provide a panoramic vision regarding STING autoinhibition and activation, which adds substantially to current understanding of the cGAS-STING pathway.
Collapse
Affiliation(s)
- Sheng Liu
- Shanxi Provincial Key Laboratory of Protein Structure Determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan 030012, China; CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Cryo-EM Center, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bo Yang
- Shanxi Provincial Key Laboratory of Protein Structure Determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan 030012, China; College of Life Sciences, Shanxi Agricultural University, Taiyuan 030031, China; Shanxi Provincial Key Laboratory for Major Infectious Disease Response, Taiyuan 030012, China
| | - Yingxiang Hou
- Shanxi Provincial Key Laboratory of Protein Structure Determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan 030012, China; The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Kaige Cui
- Shanxi Provincial Key Laboratory of Protein Structure Determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan 030012, China; Shanxi Provincial Key Laboratory for Major Infectious Disease Response, Taiyuan 030012, China
| | - Xiaozhu Yang
- Shanxi Provincial Key Laboratory of Protein Structure Determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan 030012, China; Shanxi Provincial Key Laboratory for Major Infectious Disease Response, Taiyuan 030012, China
| | - Xiaoxiong Li
- Shanxi Provincial Key Laboratory of Protein Structure Determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan 030012, China; Shanxi Provincial Key Laboratory for Major Infectious Disease Response, Taiyuan 030012, China
| | - Lianwan Chen
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Shichao Liu
- Shanxi Provincial Key Laboratory of Protein Structure Determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan 030012, China; Shanxi Provincial Key Laboratory for Major Infectious Disease Response, Taiyuan 030012, China
| | - Zhichao Zhang
- Shanxi Provincial Key Laboratory of Protein Structure Determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan 030012, China; Shanxi Provincial Key Laboratory for Major Infectious Disease Response, Taiyuan 030012, China
| | - Yuanyuan Jia
- Shanxi Provincial Key Laboratory of Protein Structure Determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan 030012, China; Shanxi Provincial Key Laboratory for Major Infectious Disease Response, Taiyuan 030012, China
| | - Yufeng Xie
- Shanxi Provincial Key Laboratory of Protein Structure Determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan 030012, China; CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Ying Xue
- Shanxi Provincial Key Laboratory of Protein Structure Determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan 030012, China; Shanxi Provincial Key Laboratory for Major Infectious Disease Response, Taiyuan 030012, China
| | - Xiaomei Li
- Shanxi Provincial Key Laboratory of Protein Structure Determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan 030012, China
| | - Bingxue Yan
- Shanxi Provincial Key Laboratory of Protein Structure Determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan 030012, China
| | - Changxin Wu
- The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Wen Deng
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Life Science Academy, Beijing 102209, China
| | - Defen Lu
- Shanxi Provincial Key Laboratory of Protein Structure Determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan 030012, China; College of Life Sciences, Shanxi Agricultural University, Taiyuan 030031, China.
| | - George F Gao
- Shanxi Provincial Key Laboratory of Protein Structure Determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan 030012, China; CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Peiyi Wang
- Cryo-EM Center, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Guijun Shang
- Shanxi Provincial Key Laboratory of Protein Structure Determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan 030012, China; College of Life Sciences, Shanxi Agricultural University, Taiyuan 030031, China; Shanxi Provincial Key Laboratory for Major Infectious Disease Response, Taiyuan 030012, China.
| |
Collapse
|
10
|
Amurri L, Horvat B, Iampietro M. Interplay between RNA viruses and cGAS/STING axis in innate immunity. Front Cell Infect Microbiol 2023; 13:1172739. [PMID: 37077526 PMCID: PMC10106766 DOI: 10.3389/fcimb.2023.1172739] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023] Open
Abstract
While the function of cGAS/STING signalling axis in the innate immune response to DNA viruses is well deciphered, increasing evidence demonstrates its significant contribution in the control of RNA virus infections. After the first evidence of cGAS/STING antagonism by flaviviruses, STING activation has been detected following infection by various enveloped RNA viruses. It has been discovered that numerous viral families have implemented advanced strategies to antagonize STING pathway through their evolutionary path. This review summarizes the characterized cGAS/STING escape strategies to date, together with the proposed mechanisms of STING signalling activation perpetrated by RNA viruses and discusses possible therapeutic approaches. Further studies regarding the interaction between RNA viruses and cGAS/STING-mediated immunity could lead to major discoveries important for the understanding of immunopathogenesis and for the treatment of RNA viral infections.
Collapse
|
11
|
Abstract
Experimental virology can inform strategic monitoring for new viruses in humans.
Collapse
Affiliation(s)
- Cody J Warren
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Sara L Sawyer
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, USA
| |
Collapse
|
12
|
Automated SSHHPS Analysis Predicts a Potential Host Protein Target Common to Several Neuroinvasive (+)ssRNA Viruses. Viruses 2023; 15:v15020542. [PMID: 36851756 PMCID: PMC9961674 DOI: 10.3390/v15020542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
Within the viral genome, short stretches of homologous host pathogen sequences (SSHHPS) span the protease cleavage sites. To identify host proteins that may be cleaved during infection, we searched the human proteome for viral protease cleavage sites (~20 amino acids). We developed a sequence-to-symptom tool, automating the search and pairing process. We used the viral protein sequence, PHI-BLAST, and UniProt database for gene ontologies and disease relationships. We applied the tool to nine neuroinvasive viruses: Venezuelan and Eastern Equine encephalitis virus (VEEV, EEEV); severe acute respiratory syndrome (SARS, SARS-CoV-2); Middle East respiratory syndrome (MERS); EV-71; Japanese encephalitis virus (JEV); West Nile (WNV); and Zika (ZIKV). A comparison of the hits identified a protein common to all nine viruses called ADGRA2 (GPR124). ADGRA2 was a predicted hit of the 3CL main protease and papain-like protease (PLpro) of SARS-CoV-2. ADGRA2 is an adhesion G protein-coupled receptor and a key endothelial regulator of brain-specific angiogenesis. It is a Wnt7A/Wnt7B specific coactivator of beta-catenin signaling and is essential for blood-brain barrier (BBB) integrity in central nervous system (CNS) diseases. We show the cleavage of the predicted sequences in MYOM1, VWF by the SARS-CoV-2 PLpro; DNAH8 (dynein) by the MERS PLpro; ADGRA2 by the alphaviral VEEV nsP2 protease; and POT1 by the SARS-CoV-2 and MERS PLpro.
Collapse
|
13
|
King CR, Liu Y, Amato KA, Schaack GA, Hu T, Smith JA, Mehle A. Pathogen-driven CRISPR screens identify TREX1 as a regulator of DNA self-sensing during influenza virus infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.07.527556. [PMID: 36798235 PMCID: PMC9934597 DOI: 10.1101/2023.02.07.527556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Intracellular pathogens interact with host factors, exploiting those that enhance replication while countering those that suppress it. Genetic screens have begun to define the host:pathogen interface and establish a mechanistic basis for host-directed therapies. Yet, limitations of current approaches leave large regions of this interface unexplored. To uncover host factors with pro-pathogen functions, we developed a novel fitness-based screen that queries factors important during the middle-to-late stages of infection. This was achieved by engineering influenza virus to direct the screen by programing dCas9 to modulate host gene expression. A genome-wide screen identified the cytoplasmic DNA exonuclease TREX1 as a potent pro-viral factor. TREX1 normally degrades cytoplasmic DNA to prevent inappropriate innate immune activation by self DNA. Our mechanistic studies revealed that this same process functions during influenza virus infection to enhance replication. Infection triggered release of mitochondrial DNA into the cytoplasm, activating antiviral signaling via cGAS and STING. TREX1 metabolized the mitochondrial DNA preventing its sensing. Collectively, these data show that self-DNA is deployed to amplify host innate sensing during RNA virus infection, a process tempered by TREX1. Moreover, they demonstrate the power and generality of pathogen driven fitness-based screens to pinpoint key host regulators of intracellular pathogens.
Collapse
Affiliation(s)
- Cason R. King
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yiping Liu
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Katherine A. Amato
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Grace A. Schaack
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Tony Hu
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Judith A Smith
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Andrew Mehle
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
14
|
Udawatte DJ, Lang DM, Currier JR, Medin CL, Rothman AL. Dengue virus downregulates TNFR1- and TLR3-stimulated NF-κB activation by targeting RIPK1. Front Cell Infect Microbiol 2022; 12:926036. [PMID: 36310878 PMCID: PMC9615918 DOI: 10.3389/fcimb.2022.926036] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
Abstract
Dengue virus (DENV) infection is the most prevalent arthropod-borne virus disease and is endemic in more than 100 countries. Several DENV proteins have been shown to target crucial human host proteins to evade innate immune responses and establish a productive infection. Here we report that the DENV NS3 protein targets RIPK1 (Receptor Interacting Protein Kinase I), a central mediator of inflammation and cell death, and decreases intracellular RIPK1 levels during DENV infection. The interaction of NS3 with RIPK1 results in the inhibition of NF-κB activation in response to TNFR or TLR3 stimulation. Also, we observed that the effects of NS3 on RIPK1 were independent of NS3 protease activity. Our data demonstrate a novel mechanism by which DENV suppresses normal cellular functions to evade host innate immune responses
Collapse
Affiliation(s)
- Darshika J. Udawatte
- Institute for Immunology and Informatics, Department of Cell and Molecular Biology, University of Rhode Island, Providence, RI, United States
| | - Diane M. Lang
- Institute for Immunology and Informatics, Department of Cell and Molecular Biology, University of Rhode Island, Providence, RI, United States
| | - Jeffrey R. Currier
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Carey L. Medin
- Institute for Immunology and Informatics, Department of Cell and Molecular Biology, University of Rhode Island, Providence, RI, United States
| | - Alan L. Rothman
- Institute for Immunology and Informatics, Department of Cell and Molecular Biology, University of Rhode Island, Providence, RI, United States
- *Correspondence: Alan L. Rothman,
| |
Collapse
|
15
|
Latanova A, Starodubova E, Karpov V. Flaviviridae Nonstructural Proteins: The Role in Molecular Mechanisms of Triggering Inflammation. Viruses 2022; 14:v14081808. [PMID: 36016430 PMCID: PMC9414172 DOI: 10.3390/v14081808] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 12/24/2022] Open
Abstract
Members of the Flaviviridae family are posing a significant threat to human health worldwide. Many flaviviruses are capable of inducing severe inflammation in humans. Flaviviridae nonstructural proteins, apart from their canonical roles in viral replication, have noncanonical functions strongly affecting antiviral innate immunity. Among these functions, antagonism of type I IFN is the most investigated; meanwhile, more data are accumulated on their role in the other pathways of innate response. This review systematizes the last known data on the role of Flaviviridae nonstructural proteins in molecular mechanisms of triggering inflammation, with an emphasis on their interactions with TLRs and RLRs, interference with NF-κB and cGAS-STING signaling, and activation of inflammasomes.
Collapse
|
16
|
Wu Z, Hu T, Chen W, Cheng Y, Wang M, Jia R, Zhu D, Liu M, Zhao X, Yang Q, Wu Y, Zhang S, Huang J, Mao S, Ou X, Gao Q, Sun D, Cheng A, Chen S. The autophagy-related degradation of MDA5 by Tembusu virus nonstructural 2B disrupts IFNβ production. FASEB J 2022; 36:e22417. [PMID: 35713934 DOI: 10.1096/fj.202101916rrr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/23/2022] [Accepted: 06/06/2022] [Indexed: 12/24/2022]
Abstract
Duck Tembusu virus (TMUV) is a serious avian pathogen causing a decline in egg production, but the mechanism of the virus that breaks through the innate immune system is poorly understood. Here, we show that TMUV inhibits poly(I:C)-induced interferon (IFN) production. Because poly(I:C) transfection can specifically activate the MDA5 pathway in duck primary cells, we found that infection with TMUV can specifically target MDA5 and lead to its degradation. MDA5 downregulation could be blocked by the autophagy inhibitor 3-methyladenine (3-MA) but not a proteasome inhibitor, strongly implicating MDA5 degradation as an autophagy-related degradation pathway. Pretreatment with 3-MA enhanced the expression of MDA5 and inhibited TMUV replication. To screen TMUV proteins that degraded MDA5, the TMUV replicon and MDA5-Flag were cotransfected into cells, and the western blot analysis showed that nonstructural 2B (NS2B) can degrade MDA5 in a dose-dependent manner. Dual-luciferase assays indicate that NS2B alone inhibits MDA5- or poly(I:C)-mediated IFN production. NS2B binds MDA5 in the presence of 3-MA. The deletion of the amino acids of NS2B from residues 51 to 92 (hydrophilic area) restored the expression of MDA5 and relieved the MDA5-mediated IFNβ production inhibition by NS2B, indicating that the hydrophilic area of NS2B is important for its interaction with host innate immunity.
Collapse
Affiliation(s)
- Zhen Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Tao Hu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Weiqiong Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yao Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
17
|
Surgical Strikes on Host Defenses: Role of the Viral Protease Activity in Innate Immune Antagonism. Pathogens 2022; 11:pathogens11050522. [PMID: 35631043 PMCID: PMC9145062 DOI: 10.3390/pathogens11050522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 02/05/2023] Open
Abstract
As a frontline defense mechanism against viral infections, the innate immune system is the primary target of viral antagonism. A number of virulence factors encoded by viruses play roles in circumventing host defenses and augmenting viral replication. Among these factors are viral proteases, which are primarily responsible for maturation of viral proteins, but in addition cause proteolytic cleavage of cellular proteins involved in innate immune signaling. The study of these viral protease-mediated host cleavages has illuminated the intricacies of innate immune networks and yielded valuable insights into viral pathogenesis. In this review, we will provide a brief summary of how proteases of positive-strand RNA viruses, mainly from the Picornaviridae, Flaviviridae and Coronaviridae families, proteolytically process innate immune components and blunt their functions.
Collapse
|
18
|
Generation and Characterization of Human-Mouse STING Chimeras That Allow DENV Replication in Mouse Cells. mSphere 2022; 7:e0091421. [PMID: 35477320 PMCID: PMC9241525 DOI: 10.1128/msphere.00914-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Our group was the first to describe direct antagonism of the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway by dengue virus (DENV) in human cells, and here, we report new findings on the characterization of the interaction between the DENV nonstructural protein 2B (NS2B)-NS3 (NS2B3) protease complex and STING. We demonstrate interactions between NS2B and the transmembrane domains of human STING and between NS3 and a portion of the cytoplasmic C-terminal domain of human STING. One significant obstacle we face today in the DENV field is the lack of small animal models available that can effectively recapitulate DENV pathogenesis in the early events of infection. The existing mouse models are either immunocompromised mice lacking interferon (IFN) receptors or "humanized" mice reconstituted with human stem cells. However, both approaches fail to capture important aspects of human pathogenesis because they lack critical innate immunity components or have deficiencies in immune cell development or maintenance. As an important step toward developing an immunocompetent mouse model for DENV, we have generated two chimeric human-mouse STING constructs that have promise in retaining both cleavability by NS2B3 and signaling capacity in the mouse. IMPORTANCE This article characterizes the interaction between human STING and DENV viral protease complex NS2B3 by constructing serial deletion mutants of STING. Our findings suggest that DENV nonstructural protein NS2B interacts with the transmembrane domains and NS3 with the C-terminal cyclic dinucleotide binding domain of human STING. Furthermore, as there exists no ideal immunocompetent murine model that can simultaneously support robust DENV replication and recapitulate the clinical manifestation of dengue disease observed in humans, we expressed and characterized two promising human-mouse chimeric STING constructs that can be used for developing a relevant transgenic mouse model to study dengue in the future. Both constructs can activate normal IFN responses in the overexpression system and be cleaved under infection conditions. We believe our findings offer a roadmap to the further development of a murine model that can greatly facilitate antiviral discoveries and vaccine research for DENV.
Collapse
|
19
|
Fan YM, Zhang YL, Luo H, Mohamud Y. Crosstalk between RNA viruses and DNA sensors: Role of the cGAS‐STING signalling pathway. Rev Med Virol 2022; 32:e2343. [DOI: 10.1002/rmv.2343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 12/13/2022]
Affiliation(s)
- Yiyun Michelle Fan
- Center for Heart Lung Innovation St. Paul's Hospital University of British Columbia Vancouver British Columbia Canada
- Department of Cellular & Physiological Sciences University of British Columbia Vancouver British Columbia Canada
| | - Yizhuo Lyanne Zhang
- Center for Heart Lung Innovation St. Paul's Hospital University of British Columbia Vancouver British Columbia Canada
- Department of Cellular & Physiological Sciences University of British Columbia Vancouver British Columbia Canada
| | - Honglin Luo
- Center for Heart Lung Innovation St. Paul's Hospital University of British Columbia Vancouver British Columbia Canada
- Department of Pathology and Laboratory Medicine University of British Columbia Vancouver British Columbia Canada
| | - Yasir Mohamud
- Center for Heart Lung Innovation St. Paul's Hospital University of British Columbia Vancouver British Columbia Canada
- Department of Pathology and Laboratory Medicine University of British Columbia Vancouver British Columbia Canada
| |
Collapse
|
20
|
Wahaab A, Mustafa BE, Hameed M, Stevenson NJ, Anwar MN, Liu K, Wei J, Qiu Y, Ma Z. Potential Role of Flavivirus NS2B-NS3 Proteases in Viral Pathogenesis and Anti-flavivirus Drug Discovery Employing Animal Cells and Models: A Review. Viruses 2021; 14:44. [PMID: 35062249 PMCID: PMC8781031 DOI: 10.3390/v14010044] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 02/07/2023] Open
Abstract
Flaviviruses are known to cause a variety of diseases in humans in different parts of the world. There are very limited numbers of antivirals to combat flavivirus infection, and therefore new drug targets must be explored. The flavivirus NS2B-NS3 proteases are responsible for the cleavage of the flavivirus polyprotein, which is necessary for productive viral infection and for causing clinical infections; therefore, they are a promising drug target for devising novel drugs against different flaviviruses. This review highlights the structural details of the NS2B-NS3 proteases of different flaviviruses, and also describes potential antiviral drugs that can interfere with the viral protease activity, as determined by various studies. Moreover, optimized in vitro reaction conditions for studying the NS2B-NS3 proteases of different flaviviruses may vary and have been incorporated in this review. The increasing availability of the in silico and crystallographic/structural details of flavivirus NS2B-NS3 proteases in free and drug-bound states can pave the path for the development of promising antiflavivirus drugs to be used in clinics. However, there is a paucity of information available on using animal cells and models for studying flavivirus NS2B-NS3 proteases, as well as on the testing of the antiviral drug efficacy against NS2B-NS3 proteases. Therefore, on the basis of recent studies, an effort has also been made to propose potential cellular and animal models for the study of flavivirus NS2B-NS3 proteases for the purposes of exploring flavivirus pathogenesis and for testing the efficacy of possible drugs targets, in vitro and in vivo.
Collapse
Affiliation(s)
- Abdul Wahaab
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (A.W.); (M.H.); (M.N.A.); (K.L.); (J.W.)
| | - Bahar E Mustafa
- Sub Campus Toba Tek Singh, University of Agriculture, Faisalabad 36050, Pakistan;
| | - Muddassar Hameed
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (A.W.); (M.H.); (M.N.A.); (K.L.); (J.W.)
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute, State University, Fralin Life Sciences Building, 360 W Campus Blacksburg, Blacksburg, VA 24061, USA
| | - Nigel J. Stevenson
- Royal College of Surgeons in Ireland, Medical University of Bahrain, Busaiteen, Adliya 15503, Bahrain;
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590 Dublin, Ireland
| | - Muhammad Naveed Anwar
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (A.W.); (M.H.); (M.N.A.); (K.L.); (J.W.)
| | - Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (A.W.); (M.H.); (M.N.A.); (K.L.); (J.W.)
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (A.W.); (M.H.); (M.N.A.); (K.L.); (J.W.)
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (A.W.); (M.H.); (M.N.A.); (K.L.); (J.W.)
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (A.W.); (M.H.); (M.N.A.); (K.L.); (J.W.)
| |
Collapse
|
21
|
Mammalian animal models for dengue virus infection: a recent overview. Arch Virol 2021; 167:31-44. [PMID: 34761286 PMCID: PMC8579898 DOI: 10.1007/s00705-021-05298-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/26/2021] [Indexed: 02/07/2023]
Abstract
Dengue, a rapidly spreading mosquito-borne human viral disease caused by dengue virus (DENV), is a public health concern in tropical and subtropical areas due to its expanding geographical range. DENV can cause a wide spectrum of illnesses in humans, ranging from asymptomatic infection or mild dengue fever (DF) to life-threatening dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Dengue is caused by four DENV serotypes; however, dengue pathogenesis is complex and poorly understood. Establishing a useful animal model that can exhibit dengue-fever-like signs similar to those in humans is essential to improve our understanding of the host response and pathogenesis of DENV. Although several animal models, including mouse models, non-human primate models, and a recently reported tree shrew model, have been investigated for DENV infection, animal models with clinical signs that are similar to those of DF in humans have not yet been established. Although animal models are essential for understanding the pathogenesis of DENV infection and for drug and vaccine development, each animal model has its own strengths and limitations. Therefore, in this review, we provide a recent overview of animal models for DENV infection and pathogenesis, focusing on studies of the antibody-dependent enhancement (ADE) effect in animal models.
Collapse
|
22
|
Tsu BV, Fay EJ, Nguyen KT, Corley MR, Hosuru B, Dominguez VA, Daugherty MD. Running With Scissors: Evolutionary Conflicts Between Viral Proteases and the Host Immune System. Front Immunol 2021; 12:769543. [PMID: 34790204 PMCID: PMC8591160 DOI: 10.3389/fimmu.2021.769543] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/08/2021] [Indexed: 12/28/2022] Open
Abstract
Many pathogens encode proteases that serve to antagonize the host immune system. In particular, viruses with a positive-sense single-stranded RNA genome [(+)ssRNA], including picornaviruses, flaviviruses, and coronaviruses, encode proteases that are not only required for processing viral polyproteins into functional units but also manipulate crucial host cellular processes through their proteolytic activity. Because these proteases must cleave numerous polyprotein sites as well as diverse host targets, evolution of these viral proteases is expected to be highly constrained. However, despite this strong evolutionary constraint, mounting evidence suggests that viral proteases such as picornavirus 3C, flavivirus NS3, and coronavirus 3CL, are engaged in molecular 'arms races' with their targeted host factors, resulting in host- and virus-specific determinants of protease cleavage. In cases where protease-mediated cleavage results in host immune inactivation, recurrent host gene evolution can result in avoidance of cleavage by viral proteases. In other cases, such as recently described examples in NLRP1 and CARD8, hosts have evolved 'tripwire' sequences that mimic protease cleavage sites and activate an immune response upon cleavage. In both cases, host evolution may be responsible for driving viral protease evolution, helping explain why viral proteases and polyprotein sites are divergent among related viruses despite such strong evolutionary constraint. Importantly, these evolutionary conflicts result in diverse protease-host interactions even within closely related host and viral species, thereby contributing to host range, zoonotic potential, and pathogenicity of viral infection. Such examples highlight the importance of examining viral protease-host interactions through an evolutionary lens.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Matthew D. Daugherty
- Division of Biological Sciences, University of California, San Diego, CA, United States
| |
Collapse
|
23
|
Elrefaey AME, Hollinghurst P, Reitmayer CM, Alphey L, Maringer K. Innate Immune Antagonism of Mosquito-Borne Flaviviruses in Humans and Mosquitoes. Viruses 2021; 13:2116. [PMID: 34834923 PMCID: PMC8624719 DOI: 10.3390/v13112116] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/11/2021] [Accepted: 10/16/2021] [Indexed: 01/01/2023] Open
Abstract
Mosquito-borne viruses of the Flavivirus genus (Flaviviridae family) pose an ongoing threat to global public health. For example, dengue, Japanese encephalitis, West Nile, yellow fever, and Zika viruses are transmitted by infected mosquitoes and cause severe and fatal diseases in humans. The means by which mosquito-borne flaviviruses establish persistent infection in mosquitoes and cause disease in humans are complex and depend upon a myriad of virus-host interactions, such as those of the innate immune system, which are the main focus of our review. This review also covers the different strategies utilized by mosquito-borne flaviviruses to antagonize the innate immune response in humans and mosquitoes. Given the lack of antiviral therapeutics for mosquito-borne flaviviruses, improving our understanding of these virus-immune interactions could lead to new antiviral therapies and strategies for developing refractory vectors incapable of transmitting these viruses, and can also provide insights into determinants of viral tropism that influence virus emergence into new species.
Collapse
Affiliation(s)
- Ahmed M. E. Elrefaey
- The Pirbright Institute, Pirbright, Woking GU24 0NF, UK; (P.H.); (C.M.R.); (L.A.)
| | - Philippa Hollinghurst
- The Pirbright Institute, Pirbright, Woking GU24 0NF, UK; (P.H.); (C.M.R.); (L.A.)
- Department of Microbial Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | | | - Luke Alphey
- The Pirbright Institute, Pirbright, Woking GU24 0NF, UK; (P.H.); (C.M.R.); (L.A.)
| | - Kevin Maringer
- The Pirbright Institute, Pirbright, Woking GU24 0NF, UK; (P.H.); (C.M.R.); (L.A.)
| |
Collapse
|
24
|
Kayesh MEH, Kohara M, Tsukiyama-Kohara K. Recent Insights Into the Molecular Mechanism of Toll-Like Receptor Response to Dengue Virus Infection. Front Microbiol 2021; 12:744233. [PMID: 34603272 PMCID: PMC8483762 DOI: 10.3389/fmicb.2021.744233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/23/2021] [Indexed: 12/15/2022] Open
Abstract
Dengue is the most prevalent and rapidly spreading mosquito-borne viral disease caused by dengue virus (DENV). Recently, DENV has been affecting humans within an expanding geographic range due to the warming of the earth. Innate immune responses play a significant role in antiviral defense, and Toll-like receptors (TLRs) are key regulators of innate immunity. Therefore, a detailed understanding of TLR and DENV interactions is important for devising therapeutic and preventive strategies. Several studies have indicated the ability of DENV to modulate the TLR signaling pathway and host immune response. Vaccination is considered one of the most successful medical interventions for preventing viral infections. However, only a partially protective dengue vaccine, the first licensed dengue vaccine CYD-TDV, is available in some dengue-endemic countries to protect against DENV infection. Therefore, the development of a fully protective, durable, and safe DENV vaccine is a priority for global health. Here, we demonstrate the progress made in our understanding of the host response to DENV infection, with a particular focus on TLR response and how DENV avoids the response toward establishing infection. We also discuss dengue vaccine candidates in late-stage development and the issues that must be overcome to enable their success.
Collapse
Affiliation(s)
- Mohammad Enamul Hoque Kayesh
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
- Department of Microbiology and Public Health, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, Bangladesh
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
25
|
Wen W, Li X, Wang H, Zhao Q, Yin M, Liu W, Chen H, Qian P. Seneca Valley Virus 3C Protease Induces Pyroptosis by Directly Cleaving Porcine Gasdermin D. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:189-199. [PMID: 34183365 DOI: 10.4049/jimmunol.2001030] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 04/22/2021] [Indexed: 01/09/2023]
Abstract
Seneca Valley virus (SVV), a newly emerging virus belonging to the Picornaviridae family, has caused vesicular disease in the swine industry. However, the molecular mechanism of viral pathogenesis remains poorly understood. This study revealed that SVV infection could induce pyroptosis in SK6 cells in a caspase-dependent and -independent manner. SVV may inhibit caspase-1 activation at late infection because of 3Cpro cleavage of NLRP3, which counteracted pyroptosis activation. Further study showed that 3Cpro targeted porcine gasdermin D (pGSDMD) for cleavage through its protease activity. 3Cpro cleaved porcine GSDMD (pGSDMD) at two sites, glutamine 193 (Q193) and glutamine 277 (Q277), and Q277 was close to the caspase-1-induced pGSDMD cleavage site. pGSDMD1-277 triggered cell death, which was similar to N-terminal fragment produced by caspase-1 cleavage of pGSDMD, and other fragments exhibited no significant inhibitory effects on cellular activity. Ectopic expression of pGSDMD converted 3Cpro-induced apoptosis to pyroptosis in 293T cells. Interestingly, 3Cpro did not cleave mouse GSDMD or human GSDMD. And, both pGSDMD and pGSDMD1-277 exhibited bactericidal activities in vivo. Nevertheless, pGSDMD cannot kill bacteria in vitro. Taken together, our results reveal a novel pyroptosis activation manner produced by viral protease cleavage of pGSDMD, which may provide an important insight into the pathogenesis of SVV and cancer therapy.
Collapse
Affiliation(s)
- Wei Wen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; and Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xiangmin Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; and Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Haoyuan Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; and Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Qiongqiong Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; and Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Mengge Yin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; and Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Wenqiang Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; and Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; and Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Ping Qian
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; and Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
26
|
Reynolds N, Aceves NM, Liu JL, Compton JR, Leary DH, Freitas BT, Pegan SD, Doctor KZ, Wu FY, Hu X, Legler PM. The SARS-CoV-2 SSHHPS Recognized by the Papain-like Protease. ACS Infect Dis 2021; 7:1483-1502. [PMID: 34019767 PMCID: PMC8171221 DOI: 10.1021/acsinfecdis.0c00866] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Indexed: 12/16/2022]
Abstract
Viral proteases are highly specific and recognize conserved cleavage site sequences of ∼6-8 amino acids. Short stretches of homologous host-pathogen sequences (SSHHPS) can be found spanning the viral protease cleavage sites. We hypothesized that these sequences corresponded to specific host protein targets since >40 host proteins have been shown to be cleaved by Group IV viral proteases and one Group VI viral protease. Using PHI-BLAST and the viral protease cleavage site sequences, we searched the human proteome for host targets and analyzed the hit results. Although the polyprotein and host proteins related to the suppression of the innate immune responses may be the primary targets of these viral proteases, we identified other cleavable host proteins. These proteins appear to be related to the virus-induced phenotype associated with Group IV viruses, suggesting that information about viral pathogenesis may be extractable directly from the viral genome sequence. Here we identify sequences cleaved by the SARS-CoV-2 papain-like protease (PLpro) in vitro within human MYH7 and MYH6 (two cardiac myosins linked to several cardiomyopathies), FOXP3 (an X-linked Treg cell transcription factor), ErbB4 (HER4), and vitamin-K-dependent plasma protein S (PROS1), an anticoagulation protein that prevents blood clots. Zinc inhibited the cleavage of these host sequences in vitro. Other patterns emerged from multispecies sequence alignments of the cleavage sites, which may have implications for the selection of animal models and zoonosis. SSHHPS/nsP is an example of a sequence-specific post-translational silencing mechanism.
Collapse
Affiliation(s)
- Nathanael
D. Reynolds
- Center
for Bio/molecular Science and Engineering (CBMSE), U.S. Naval Research Laboratory, 4555 Overlook Avenue, Washington, DC 20375, United States
| | | | - Jinny L. Liu
- Center
for Bio/molecular Science and Engineering (CBMSE), U.S. Naval Research Laboratory, 4555 Overlook Avenue, Washington, DC 20375, United States
| | - Jaimee R. Compton
- Center
for Bio/molecular Science and Engineering (CBMSE), U.S. Naval Research Laboratory, 4555 Overlook Avenue, Washington, DC 20375, United States
| | - Dagmar H. Leary
- Center
for Bio/molecular Science and Engineering (CBMSE), U.S. Naval Research Laboratory, 4555 Overlook Avenue, Washington, DC 20375, United States
| | - Brendan T. Freitas
- Center
for Drug Discovery, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Scott D. Pegan
- Center
for Drug Discovery, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Katarina Z. Doctor
- Navy
Center for Applied Research in AI (NCARAI) Information Technology
Division, U.S. Naval Research Laboratory, 4555 Overlook Ave., Washington, DC 20375, United States
| | - Fred Y. Wu
- Indiana
University Health Systems, Indiana University
School of Medicine, Bloomington, Indiana 47401, United States
| | - Xin Hu
- National
Center for Advancing Translational Sciences, National Institutes of
Health, Rockville, Maryland 20850, United
States
| | - Patricia M. Legler
- Center
for Bio/molecular Science and Engineering (CBMSE), U.S. Naval Research Laboratory, 4555 Overlook Avenue, Washington, DC 20375, United States
| |
Collapse
|
27
|
Hay-McCullough E, Morrison J. Contributions of Ubiquitin and Ubiquitination to Flaviviral Antagonism of Type I IFN. Viruses 2021; 13:763. [PMID: 33925296 PMCID: PMC8145522 DOI: 10.3390/v13050763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 12/24/2022] Open
Abstract
Flaviviruses implement a broad range of antagonism strategies against the host antiviral response. A pivotal component of the early host response is production and signaling of type I interferon (IFN-I). Ubiquitin, a prevalent cellular protein-modifying molecule, is heavily involved in the cellular regulation of this and other immune response pathways. Viruses use ubiquitin and ubiquitin machinery to antagonize various steps of these pathways through diverse mechanisms. Here, we highlight ways in which flaviviruses use or inhibit ubiquitin to antagonize the antiviral IFN-I response.
Collapse
Affiliation(s)
| | - Juliet Morrison
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, USA;
| |
Collapse
|
28
|
Judd EN, Gilchrist AR, Meyerson NR, Sawyer SL. Positive natural selection in primate genes of the type I interferon response. BMC Ecol Evol 2021; 21:65. [PMID: 33902453 PMCID: PMC8074226 DOI: 10.1186/s12862-021-01783-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/29/2021] [Indexed: 12/28/2022] Open
Abstract
Background The Type I interferon response is an important first-line defense against viruses. In turn, viruses antagonize (i.e., degrade, mis-localize, etc.) many proteins in interferon pathways. Thus, hosts and viruses are locked in an evolutionary arms race for dominance of the Type I interferon pathway. As a result, many genes in interferon pathways have experienced positive natural selection in favor of new allelic forms that can better recognize viruses or escape viral antagonists. Here, we performed a holistic analysis of selective pressures acting on genes in the Type I interferon family. We initially hypothesized that the genes responsible for inducing the production of interferon would be antagonized more heavily by viruses than genes that are turned on as a result of interferon. Our logic was that viruses would have greater effect if they worked upstream of the production of interferon molecules because, once interferon is produced, hundreds of interferon-stimulated proteins would activate and the virus would need to counteract them one-by-one.
Results We curated multiple sequence alignments of primate orthologs for 131 genes active in interferon production and signaling (herein, “induction” genes), 100 interferon-stimulated genes, and 100 randomly chosen genes. We analyzed each multiple sequence alignment for the signatures of recurrent positive selection. Counter to our hypothesis, we found the interferon-stimulated genes, and not interferon induction genes, are evolving significantly more rapidly than a random set of genes. Interferon induction genes evolve in a way that is indistinguishable from a matched set of random genes (22% and 18% of genes bear signatures of positive selection, respectively). In contrast, interferon-stimulated genes evolve differently, with 33% of genes evolving under positive selection and containing a significantly higher fraction of codons that have experienced selection for recurrent replacement of the encoded amino acid. Conclusion Viruses may antagonize individual products of the interferon response more often than trying to neutralize the system altogether.
Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01783-z.
Collapse
Affiliation(s)
- Elena N Judd
- Department of Molecular, Cellular and Developmental Biology; BioFrontiers Institute, University of Colorado Boulder, Boulder, USA
| | - Alison R Gilchrist
- Department of Molecular, Cellular and Developmental Biology; BioFrontiers Institute, University of Colorado Boulder, Boulder, USA
| | - Nicholas R Meyerson
- Department of Molecular, Cellular and Developmental Biology; BioFrontiers Institute, University of Colorado Boulder, Boulder, USA
| | - Sara L Sawyer
- Department of Molecular, Cellular and Developmental Biology; BioFrontiers Institute, University of Colorado Boulder, Boulder, USA.
| |
Collapse
|
29
|
Tsu BV, Beierschmitt C, Ryan AP, Agarwal R, Mitchell PS, Daugherty MD. Diverse viral proteases activate the NLRP1 inflammasome. eLife 2021; 10:60609. [PMID: 33410748 PMCID: PMC7857732 DOI: 10.7554/elife.60609] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 01/06/2021] [Indexed: 12/29/2022] Open
Abstract
The NLRP1 inflammasome is a multiprotein complex that is a potent activator of inflammation. Mouse NLRP1B can be activated through proteolytic cleavage by the bacterial Lethal Toxin (LeTx) protease, resulting in degradation of the N-terminal domains of NLRP1B and liberation of the bioactive C-terminal domain, which includes the caspase activation and recruitment domain (CARD). However, natural pathogen-derived effectors that can activate human NLRP1 have remained unknown. Here, we use an evolutionary model to identify several proteases from diverse picornaviruses that cleave human NLRP1 within a rapidly evolving region of the protein, leading to host-specific and virus-specific activation of the NLRP1 inflammasome. Our work demonstrates that NLRP1 acts as a 'tripwire' to recognize the enzymatic function of a wide range of viral proteases and suggests that host mimicry of viral polyprotein cleavage sites can be an evolutionary strategy to activate a robust inflammatory immune response. The immune system recognizes disease-causing microbes, such as bacteria and viruses, and removes them from the body before they can cause harm. When the immune system first detects these foreign invaders, a multi-part structure known as the inflammasome launches an inflammatory response to help fight the microbes off. Several sensor proteins can activate the inflammasome, including one in mice called NLRP1B. This protein has evolved a specialized site that can be cut by a bacterial toxin. Once cleaved, this region acts like a biological tripwire and sparks NLRP1B into action, allowing the sensor to activate the inflammasome system. Humans have a similar protein called NLRP1, but it is unclear whether this protein has also evolved a tripwire region that can sense microbial proteins. To answer this question, Tsu, Beierschmitt et al. set out to find whether NLRP1 can be activated by viruses in the Picornaviridae family, which are responsible for diseases like polio, hepatitis A, and the common cold. This revealed that NLRP1 contains a cleavage site for enzymes produced by some, but not all, of the viruses in the picornavirus family. Further experiments confirmed that when a picornavirus enzyme cuts through this region during a viral infection, it triggers NLRP1 to activate the inflammasome and initiate an immune response. The enzymes from different viruses were also found to cleave human NLRP1 at different sites, and the protein’s susceptibility to cleavage varied between different animal species. For instance, Tsu, Beierschmitt et al. discovered that NLRP1B in mice is also able to sense picornaviruses, and that different enzymes activate and cleave NLRP1B and NLRP1 to varying degrees: this affected how well the two proteins are expected to be able to sense specific viral infections. This variation suggests that there is an ongoing evolutionary arms-race between viral proteins and the immune system: as viral proteins change and new ones emerge, NLRP1 rapidly evolves new tripwire sites that allow it to sense the infection and launch an inflammatory response. What happens when NLRP1B activates the inflammasome during a viral infection is still an open question. The discovery that mouse NLRP1B shares features with human NLRP1 could allow the development of animal models to study the role of the tripwire in antiviral defenses and the overactive inflammation associated with some viral infections. Understanding the types of viruses that activate the NLRP1 inflammasome, and the outcomes of the resulting immune response, may have implications for future treatments of viral infections.
Collapse
Affiliation(s)
- Brian V Tsu
- Division of Biological Sciences, University of California San Diego, San Diego, United States
| | | | - Andrew P Ryan
- Division of Biological Sciences, University of California San Diego, San Diego, United States
| | - Rimjhim Agarwal
- Division of Immunology & Pathogenesis, University of California Berkeley, Berkeley, United States
| | - Patrick S Mitchell
- Division of Immunology & Pathogenesis, University of California Berkeley, Berkeley, United States.,Department of Microbiology, University of Washington, Seattle, United States
| | - Matthew D Daugherty
- Division of Biological Sciences, University of California San Diego, San Diego, United States
| |
Collapse
|
30
|
Jeffries AM, Marriott I. Cytosolic DNA Sensors and CNS Responses to Viral Pathogens. Front Cell Infect Microbiol 2020; 10:576263. [PMID: 33042875 PMCID: PMC7525022 DOI: 10.3389/fcimb.2020.576263] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/12/2020] [Indexed: 12/17/2022] Open
Abstract
Viral central nervous system (CNS) infections can lead to life threatening encephalitis and long-term neurological deficits in survivors. Resident CNS cell types, such as astrocytes and microglia, are known to produce key inflammatory and antiviral mediators following infection with neurotropic DNA viruses. However, the mechanisms by which glia mediate such responses remain poorly understood. Recently, a class of intracellular pattern recognition receptors (PRRs), collectively known as DNA sensors, have been identified in both leukocytic and non-leukocytic cell types. The ability of such DNA sensors to initiate immune mediator production and contribute to infection resolution in the periphery is increasingly recognized, but our understanding of their role in the CNS remains limited at best. In this review, we describe the evidence for the expression and functionality of DNA sensors in resident brain cells, with a focus on their role in neurotropic virus infections. The available data indicate that glia and neurons can constitutively express, and/or can be induced to express, various disparate DNA sensing molecules previously described in peripheral cell types. Furthermore, multiple lines of investigation suggest that these sensors are functional in resident CNS cells and are required for innate immune responses to viral infections. However, it is less clear whether DNA sensormediated glial responses are beneficial or detrimental, and the answer to this question appears to dependent on the context of the infection with regard to the identity of the pathogen, host cell type, and host species. Defining such parameters will be essential if we are to successfully target these molecules to limit damaging inflammation while allowing beneficial host responses to improve patient outcomes.
Collapse
Affiliation(s)
- Austin M Jeffries
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Ian Marriott
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC, United States
| |
Collapse
|
31
|
Zhu T, Fernandez-Sesma A. Innate Immune DNA Sensing of Flaviviruses. Viruses 2020; 12:v12090979. [PMID: 32899347 PMCID: PMC7552040 DOI: 10.3390/v12090979] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/13/2022] Open
Abstract
Flaviviruses are arthropod-borne RNA viruses that have been used extensively to study host antiviral responses. Often selected just to represent standard single-stranded positive-sense RNA viruses in early studies, the Flavivirus genus over time has taught us how truly unique it is in its remarkable ability to target not just the RNA sensory pathways but also the cytosolic DNA sensing system for its successful replication inside the host cell. This review summarizes the main developments on the unexpected antagonistic strategies utilized by different flaviviruses, with RNA genomes, against the host cyclic GAMP synthase (cGAS)/stimulator of interferon genes (STING) cytosolic DNA sensing pathway in mammalian systems. On the basis of the recent advancements on this topic, we hypothesize that the mechanisms of viral sensing and innate immunity are much more fluid than what we had anticipated, and both viral and host factors will continue to be found as important factors contributing to the host innate immune system in the future.
Collapse
Affiliation(s)
- Tongtong Zhu
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ana Fernandez-Sesma
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Correspondence: ; Tel.: +1-212-241-5182
| |
Collapse
|
32
|
Chiramel AI, Meyerson NR, McNally KL, Broeckel RM, Montoya VR, Méndez-Solís O, Robertson SJ, Sturdevant GL, Lubick KJ, Nair V, Youseff BH, Ireland RM, Bosio CM, Kim K, Luban J, Hirsch VM, Taylor RT, Bouamr F, Sawyer SL, Best SM. TRIM5α Restricts Flavivirus Replication by Targeting the Viral Protease for Proteasomal Degradation. Cell Rep 2020; 27:3269-3283.e6. [PMID: 31189110 PMCID: PMC8666140 DOI: 10.1016/j.celrep.2019.05.040] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/11/2019] [Accepted: 05/10/2019] [Indexed: 12/25/2022] Open
Abstract
Tripartite motif-containing protein 5α (TRIM5α) is a cellular antiviral restriction factor that prevents early events in retrovirus replication. The activity of TRIM5α is thought to be limited to retroviruses as a result of highly specific interactions with capsid lattices. In contrast to this current understanding, we show that both human and rhesus macaque TRIM5α suppress replication of specific flaviviruses. Multiple viruses in the tick-borne encephalitis complex are sensitive to TRIM5α-dependent restriction, but mosquito-borne flaviviruses, including yellow fever, dengue, and Zika viruses, are resistant. TRIM5α suppresses replication by binding to the viral protease NS2B/3 to promote its K48-linked ubiquitination and proteasomal degradation. Importantly, TRIM5α contributes to the antiviral function of IFN-I against sensitive flaviviruses in human cells. Thus, TRIM5α possesses remarkable plasticity in the recognition of diverse virus families, with the potential to influence human susceptibility to emerging flaviviruses of global concern. The antiviral activity of TRIM5α is thought to be limited to retroviruses as a result of highly specific interactions with capsid lattices. Here, Chiramel et al. demonstrate that TRIM5α restricts replication of specific flaviviruses by binding and degrading the viral protease.
Collapse
Affiliation(s)
- Abhilash I Chiramel
- Innate Immunity and Pathogenesis Section, Laboratory of Virology, Rocky Mountain Laboratories (RML), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, MT 59840, USA
| | - Nicholas R Meyerson
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Kristin L McNally
- Innate Immunity and Pathogenesis Section, Laboratory of Virology, Rocky Mountain Laboratories (RML), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, MT 59840, USA
| | - Rebecca M Broeckel
- Innate Immunity and Pathogenesis Section, Laboratory of Virology, Rocky Mountain Laboratories (RML), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, MT 59840, USA
| | - Vanessa R Montoya
- Innate Immunity and Pathogenesis Section, Laboratory of Virology, Rocky Mountain Laboratories (RML), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, MT 59840, USA
| | - Omayra Méndez-Solís
- Innate Immunity and Pathogenesis Section, Laboratory of Virology, Rocky Mountain Laboratories (RML), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, MT 59840, USA
| | - Shelly J Robertson
- Innate Immunity and Pathogenesis Section, Laboratory of Virology, Rocky Mountain Laboratories (RML), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, MT 59840, USA
| | - Gail L Sturdevant
- Innate Immunity and Pathogenesis Section, Laboratory of Virology, Rocky Mountain Laboratories (RML), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, MT 59840, USA
| | - Kirk J Lubick
- Innate Immunity and Pathogenesis Section, Laboratory of Virology, Rocky Mountain Laboratories (RML), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, MT 59840, USA
| | - Vinod Nair
- Research Technology Branch, RML, NIAID, NIH, Hamilton, MT 59840, USA
| | - Brian H Youseff
- Department of Medical Microbiology and Immunology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, Toledo, OH 43606, USA
| | - Robin M Ireland
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, RML, NIAID, NIH, Hamilton, MT 59840, USA
| | - Catharine M Bosio
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, RML, NIAID, NIH, Hamilton, MT 59840, USA
| | - Kyusik Kim
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Jeremy Luban
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Vanessa M Hirsch
- Laboratory of Molecular Microbiology, NIAID, Bethesda, MD 20892, USA
| | - R Travis Taylor
- Department of Medical Microbiology and Immunology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, Toledo, OH 43606, USA
| | - Fadila Bouamr
- Laboratory of Molecular Microbiology, NIAID, Bethesda, MD 20892, USA
| | - Sara L Sawyer
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Sonja M Best
- Innate Immunity and Pathogenesis Section, Laboratory of Virology, Rocky Mountain Laboratories (RML), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, MT 59840, USA.
| |
Collapse
|
33
|
DNA-induced 2'3'-cGAMP enhances haplotype-specific human STING cleavage by dengue protease. Proc Natl Acad Sci U S A 2020; 117:15947-15954. [PMID: 32576686 PMCID: PMC7354927 DOI: 10.1073/pnas.1922243117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Dengue virus (DENV) antagonizes the DNA sensing cGAS-STING pathway to subvert innate immunity, but how DENV protease-mediated human STING cleavage contributes to DENV pathogenesis remains obscure. Here, we found that STING haplotype frequency varies among different subhuman populations, and different haplotypes respond differently to DENV protease. The cleavage of a DENV protease-sensitive STING can be further enhanced by coculture with neighboring cells producing 2′3′-cGAMP, either by DNA transfection of cGAS or by reactivating Epstein–Barr virus from latent infection. Thus, DENV infection trims down human STING-mediated innate immunity in a haplotype-specific manner. The genetic background of host STING and bystander coinfection of pathogens triggering 2′3′-cGAMP production may be the missing link between STING cleavage and DENV pathogenesis. The cytosolic DNA sensor cGMP-AMP synthase (cGAS) synthesizes the noncanonical cyclic dinucleotide 2′3′-cGAMP to activate the adaptor protein stimulator of IFN genes (STING), thus awakening host immunity in response to DNA pathogen infection. However, dengue virus (DENV), an RNA virus without a DNA stage in its life cycle, also manipulates cGAS-STING–mediated innate immunity by proteolytic degradation of STING. Here, we found that the sensitivity of STING to DENV protease varied with different human STING haplotypes. Exogenous DNA further enhanced DENV protease’s ability to interact and cleave protease-sensitive STING. DNA-enhanced STING cleavage was reduced in cGAS-knockdown cells and triggered by the cGAS product 2′3′-cGAMP. The source of DNA may not be endogenous mitochondrial DNA but rather exogenous reactivated viral DNA. Cells producing 2′3′-cGAMP by overexpressing cGAS or with DNA virus reactivation enhanced STING cleavage in neighboring cells harboring DENV protease. DENV infection reduced host innate immunity in cells with the protease-sensitive STING haplotype, whose homozygote genotype frequency was found significantly reduced in Taiwanese people with dengue fever. Therefore, the human STING genetic background and DNA pathogen coinfection may be the missing links contributing to DENV pathogenesis.
Collapse
|
34
|
Zheng Z, Li M, Liu Z, Jin X, Sun J. Establishment of Murine Infection Models with Biological Clones of Dengue Viruses Derived from a Single Clinical Viral Isolate. Virol Sin 2020; 35:626-636. [PMID: 32451883 PMCID: PMC7246292 DOI: 10.1007/s12250-020-00229-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 03/11/2020] [Indexed: 01/25/2023] Open
Abstract
Dengue virus (DENV) is a single-stranded RNA virus transmitted by mosquitoes in tropical and subtropical regions. It causes dengue fever, dengue hemorrhagic fever and dengue shock syndrome in patients. Each year, 390 million people are estimated to be infected by four serotypes of dengue virus, creating a great burden on global public health and local economy. So far, no antiviral drug is available for dengue disease, and the newly licensed vaccine is far from satisfactory. One large obstacle for dengue vaccine and drug development is the lack of suitable small animal models. Although some DENV infection models have been developed, only a small number of viral strains can infect immunodeficient mice. In this study, with biologically cloned viruses from a single clinical isolate, we have established two mouse models of DENV infection, one is severe lethal infection in immunocompromised mice, and the other resembles self-limited disease manifestations in Balb/c mice with transient blockage of type I IFN responses. This study not only offers new small animal models of dengue viral infection, but also provides new viral variants for further investigations on dengue viral pathogenesis.
Collapse
Affiliation(s)
- Zhihang Zheng
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 200031, Shanghai, China.,Chinese Academy of Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China.,Shanghai Public Health Clinical Center, Fudan University, 201508, Shanghai, China
| | - Min Li
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Zhihua Liu
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 200031, Shanghai, China.,Chinese Academy of Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China.,Shanghai Public Health Clinical Center, Fudan University, 201508, Shanghai, China
| | - Xia Jin
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 200031, Shanghai, China. .,Shanghai Public Health Clinical Center, Fudan University, 201508, Shanghai, China.
| | - Jin Sun
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 200031, Shanghai, China.
| |
Collapse
|
35
|
Human Type I Interferon Antiviral Effects in Respiratory and Reemerging Viral Infections. J Immunol Res 2020; 2020:1372494. [PMID: 32455136 PMCID: PMC7231083 DOI: 10.1155/2020/1372494] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/17/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022] Open
Abstract
Type I interferons (IFN-I) are a group of related proteins that help regulate the activity of the immune system and play a key role in host defense against viral infections. Upon infection, the IFN-I are rapidly secreted and induce a wide range of effects that not only act upon innate immune cells but also modulate the adaptive immune system. While IFN-I and many IFN stimulated genes are well-known for their protective antiviral role, recent studies have associated them with potential pathogenic functions. In this review, we summarize the current knowledge regarding the complex effects of human IFN-I responses in respiratory as well as reemerging flavivirus infections of public health significance and the molecular mechanisms by which viral proteins antagonize the establishment of an antiviral host defense. Antiviral effects and immune modulation of IFN-stimulated genes is discussed in resisting and controlling pathogens. Understanding the mechanisms of these processes will be crucial in determining how viral replication can be effectively controlled and in developing safe and effective vaccines and novel therapeutic strategies.
Collapse
|
36
|
Irving AT, Rozario P, Kong PS, Luko K, Gorman JJ, Hastie ML, Chia WN, Mani S, Lee BPH, Smith GJD, Mendenhall IH, Larman HB, Elledge SJ, Wang LF. Robust dengue virus infection in bat cells and limited innate immune responses coupled with positive serology from bats in IndoMalaya and Australasia. Cell Mol Life Sci 2020; 77:1607-1622. [PMID: 31352533 PMCID: PMC11104837 DOI: 10.1007/s00018-019-03242-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 07/10/2019] [Accepted: 07/22/2019] [Indexed: 01/19/2023]
Abstract
Natural reservoir hosts can sustain infection of pathogens without succumbing to overt disease. Multiple bat species host a plethora of viruses, pathogenic to other mammals, without clinical symptoms. Here, we detail infection of bat primary cells, immune cells, and cell lines with Dengue virus. While antibodies and viral RNA were previously detected in wild bats, their ability to sustain infection is not conclusive. Old-world fruitbat cells can be infected, producing high titres of virus with limited cellular responses. In addition, there is minimal interferon (IFN) response in cells infected with MOIs leading to dengue production. The ability to support in vitro replication/production raises the possibility of bats as a transient host in the life cycle of dengue or similar flaviviruses. New antibody serology evidence from Asia/Pacific highlights the previous exposure and raises awareness that bats may be involved in flavivirus dynamics and infection of other hosts.
Collapse
Affiliation(s)
| | | | | | | | - Jeffrey J Gorman
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Marcus L Hastie
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Wan Ni Chia
- Duke-NUS Medical School, Singapore, Singapore
| | | | | | | | | | | | - Stephen J Elledge
- Harvard University Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Lin-Fa Wang
- Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
37
|
Ahn J, Barber GN. STING signaling and host defense against microbial infection. Exp Mol Med 2019; 51:1-10. [PMID: 31827069 PMCID: PMC6906460 DOI: 10.1038/s12276-019-0333-0] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 12/19/2022] Open
Abstract
The first line of host defense against infectious agents involves activation of innate immune signaling pathways that recognize specific pathogen-associated molecular patterns (PAMPs). Key triggers of innate immune signaling are now known to include microbial-specific nucleic acid, which is rapidly detected in the cytosol of the cell. For example, RIG-I-like receptors (RLRs) have evolved to detect viral RNA species and to activate the production of host defense molecules and cytokines that stimulate adaptive immune responses. In addition, host defense countermeasures, including the production of type I interferons (IFNs), can also be triggered by microbial DNA from bacteria, viruses and perhaps parasites and are regulated by the cytosolic sensor, stimulator of interferon genes (STING). STING-dependent signaling is initiated by cyclic dinucleotides (CDNs) generated by intracellular bacteria following infection. CDNs can also be synthesized by a cellular synthase, cGAS, following interaction with invasive cytosolic self-DNA or microbial DNA species. The importance of STING signaling in host defense is evident since numerous pathogens have developed strategies to prevent STING function. Here, we review the relevance of STING-controlled innate immune signaling in host defense against pathogen invasion, including microbial endeavors to subvert this critical process.
Collapse
Affiliation(s)
- Jeonghyun Ahn
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Glen N Barber
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
38
|
Begum F, Das S, Mukherjee D, Mal S, Ray U. Insight into the Tropism of Dengue Virus in Humans. Viruses 2019; 11:v11121136. [PMID: 31835302 PMCID: PMC6950149 DOI: 10.3390/v11121136] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 12/13/2022] Open
Abstract
In tropical and subtropical zones, arboviruses are among the major threats to human life, affecting a large number of populations with serious diseases. Worldwide, over three hundred million people are infected with dengue virus (DENV) every year as per the World Health Organization (WHO). DENV-mediated disease severity ranges from a mild fever to hemorrhagic fever and shock syndrome. Patients suffering from severe infection might experience multi-organ failure, cardiomyopathy and even encephalopathy, further complicating the disease pathogenesis. In life-threatening cases, DENV has been reported to affect almost all organs of the human body. In this review, we discuss the organ tropism of DENV in humans in depth as detected in various autopsy studies. Keeping in mind the fact that there is currently no DENV-specific antiviral, it is of utmost importance to achieve a vivid picture of the susceptible cells in humans which might help in designing antivirals against DENV, especially targeting those tissues in which infection might lead to life-threatening conditions.
Collapse
Affiliation(s)
- Feroza Begum
- CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Jadavpur, Kolkata700032, India; (F.B.); (S.D.); (D.M.); (S.M.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sandeepan Das
- CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Jadavpur, Kolkata700032, India; (F.B.); (S.D.); (D.M.); (S.M.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Debica Mukherjee
- CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Jadavpur, Kolkata700032, India; (F.B.); (S.D.); (D.M.); (S.M.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sweety Mal
- CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Jadavpur, Kolkata700032, India; (F.B.); (S.D.); (D.M.); (S.M.)
| | - Upasana Ray
- CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Jadavpur, Kolkata700032, India; (F.B.); (S.D.); (D.M.); (S.M.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Correspondence: ; Tel.: +91-978-187-8333
| |
Collapse
|
39
|
Cui X, Zhang R, Cen S, Zhou J. STING modulators: Predictive significance in drug discovery. Eur J Med Chem 2019; 182:111591. [PMID: 31419779 PMCID: PMC7172983 DOI: 10.1016/j.ejmech.2019.111591] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/10/2019] [Accepted: 08/05/2019] [Indexed: 12/19/2022]
Abstract
Cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) - stimulator of interferon genes (STING) signaling pathway plays the critical role in the immune response to DNA. Pharmacological modulation of the STING pathway has been well characterized both from structural and functional perspectives, which paves the way for the drug design of small modulators by medicinal chemists. Here, we outline recent progress in studies on the STING pathway, the structure and biological function of STING, the STING related disease, as well as the rationale and progress in the development of STING modulators. Our review demonstrates that STING is a promising drug target, and providing clues for the discovery of novel STING agonists and antagonists for the potential treatment of various disease including microbial infectious diseases, cancer, and autoimmune disease.
Collapse
Affiliation(s)
- Xiangling Cui
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China,Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Rongyu Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China,Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Jinming Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China; Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China; Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China.
| |
Collapse
|
40
|
Wu Z, Zhang W, Wu Y, Wang T, Wu S, Wang M, Jia R, Zhu D, Liu M, Zhao X, Yang Q, Wu Y, Zhang S, Liu Y, Zhang L, Yu Y, Pan L, Merits A, Chen S, Cheng A. Binding of the Duck Tembusu Virus Protease to STING Is Mediated by NS2B and Is Crucial for STING Cleavage and for Impaired Induction of IFN-β. THE JOURNAL OF IMMUNOLOGY 2019; 203:3374-3385. [PMID: 31704883 DOI: 10.4049/jimmunol.1900956] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/10/2019] [Indexed: 11/19/2022]
Abstract
Duck Tembusu virus (DTMUV) is a newly emerged causative agent of avian disease. The protease-dependent immune evasion of flaviviruses has been reported; however, the molecular details of this process are unclear. In this study, we found that DTMUV nonstructural protein 2B-3, a NS2B3 protease, can inhibit IFN-β production. DTMUV NS2B3 inhibited RIG-I-, MDA5-, MAVS-, and STING-directed IFN-β transcription, but not TBK1- and IRF7-mediated induction of IFN-β. Further analysis showed that DTMUV NS2B3 could cleave duck STING (duSTING); the cleavage was dependent on the protease activity of NS2B3. Moreover, the STING cleavage event occurred in a not-strictly-species-specific manner. The scissile bond of duSTING cleaved by NS2B3 was mapped between the R84 and G85 residues. The ability of NS2B3 to reduce duSTING cleavage-resistant mutant-mediated IFN-β, and ISG production was significantly reduced, demonstrating that duSTING cleavage is essential for NS2B3-induced suppression of type I IFN responses. Remarkably, the binding of NS2B3 to duSTING, which is a prerequisite for cleavage, was found to depend on NS2B, but not NS3, the cofactor of the enzyme. Unexpectedly, we found that the region between aa residues 221-225 of duSTING, distal from the site of the scissile bond, was essential for the binding of NS2B3 to duSTING and/or the cleavage of duSTING by NS2B3. Thus, we identified the molecular mechanism by which DTMUV subverts the host innate immunity using its protease. More importantly, our study provides insight into NS2B3-mediated STING cleavage events in general.
Collapse
Affiliation(s)
- Zhen Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan, China
| | - Wei Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan, China
| | - Yuanyuan Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan, China
| | - Tao Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan, China
| | - Shaoxiong Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan, China
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu 611130, Sichuan, China; and
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu 611130, Sichuan, China; and
| | - Dekang Zhu
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu 611130, Sichuan, China; and
| | - Mafeng Liu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu 611130, Sichuan, China; and
| | - Xinxin Zhao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu 611130, Sichuan, China; and
| | - Qiao Yang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu 611130, Sichuan, China; and
| | - Ying Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu 611130, Sichuan, China; and
| | - Shaqiu Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu 611130, Sichuan, China; and
| | - Yunya Liu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan, China
| | - Ling Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan, China
| | - Yanling Yu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan, China
| | - Leichang Pan
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan, China
| | - Andres Merits
- Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Shun Chen
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan, China; .,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu 611130, Sichuan, China; and
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan, China; .,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu 611130, Sichuan, China; and
| |
Collapse
|
41
|
The Interplay between Dengue Virus and the Human Innate Immune System: A Game of Hide and Seek. Vaccines (Basel) 2019; 7:vaccines7040145. [PMID: 31658677 PMCID: PMC6963221 DOI: 10.3390/vaccines7040145] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 12/11/2022] Open
Abstract
With 40% of the world population at risk, infections with dengue virus (DENV) constitute a serious threat to public health. While there is no antiviral therapy available against this potentially lethal disease, the efficacy of the only approved vaccine is not optimal and its safety has been recently questioned. In order to develop better vaccines based on attenuated and/or chimeric viruses, one must consider how the human immune system is engaged during DENV infection. The activation of the innate immunity through the detection of viruses by cellular sensors is the first line of defence against those pathogens. This triggers a cascade of events which establishes an antiviral state at the cell level and leads to a global immunological response. However, DENV has evolved to interfere with the innate immune signalling at multiple levels, hence dampening antiviral responses and favouring viral replication and dissemination. This review elaborates on the interplay between DENV and the innate immune system. A special focus is given on the viral countermeasure mechanisms reported over the last decade which should be taken into consideration during vaccine development.
Collapse
|
42
|
Gunderstofte C, Iversen MB, Peri S, Thielke A, Balachandran S, Holm CK, Olagnier D. Nrf2 Negatively Regulates Type I Interferon Responses and Increases Susceptibility to Herpes Genital Infection in Mice. Front Immunol 2019; 10:2101. [PMID: 31555293 PMCID: PMC6742979 DOI: 10.3389/fimmu.2019.02101] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/20/2019] [Indexed: 12/21/2022] Open
Abstract
Herpes simplex virus-2 (HSV-2) is a leading cause of sexually transmitted infections for which no effective vaccines or prophylactic treatment currently exist. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor involved in the detoxification of reactive oxygen species (ROS) and has been more recently shown to regulate inflammatory and antiviral responses. Here, we evaluated the importance of Nrf2 in the control of HSV-2 genital infection, and its role in the regulation of HSV-induced innate antiviral immunity. Comparison of antiviral gene expression profile by RNA-sequencing analysis of wild type and Nrf2-mutant (Nrf2 AY/AY ) murine macrophages showed an upregulation at the basal level of the type I interferon-associated gene network. The same basal increased antiviral profile was also observed in the spleen of Nrf2 -/- mice. Interestingly, the lack of Nrf2 in murine cells was sufficient to increase the responsiveness to HSV-derived dsDNA and protect cells from HSV-2 infection in vitro. Surprisingly, there was no indication of an alteration in STING expression in murine cells as previously reported in cells of human origin. Additionally, genetic activation of Nrf2 in Keap1 -/- mouse embryonic fibroblasts increased HSV-2 infectivity and replication. Finally, using an in vivo vaginal herpes infection model, we showed that Nrf2 controlled early innate immune responses to HSV-2 without affecting STING expression levels. Nrf2 -/- mice exhibited reduced viral replication that was associated with higher level of type I interferons in vaginal washes. Nrf2 -/- mice also displayed reduced weight loss, lower disease scores, and higher survival rates than wild type animals. Collectively, these data identify Nrf2 as a negative regulator of the interferon-driven antiviral response to HSV-2 without impairing STING mRNA and protein expression levels in murine cells.
Collapse
Affiliation(s)
- Camilla Gunderstofte
- Department of Biomedicine, Aarhus Research Center for Innate Immunology, Aarhus University, Aarhus, Denmark
| | - Marie Beck Iversen
- Department of Biomedicine, Aarhus Research Center for Innate Immunology, Aarhus University, Aarhus, Denmark
| | - Suraj Peri
- Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Anne Thielke
- Department of Biomedicine, Aarhus Research Center for Innate Immunology, Aarhus University, Aarhus, Denmark
| | | | - Christian Kanstrup Holm
- Department of Biomedicine, Aarhus Research Center for Innate Immunology, Aarhus University, Aarhus, Denmark
| | - David Olagnier
- Department of Biomedicine, Aarhus Research Center for Innate Immunology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
43
|
Warren CJ, Meyerson NR, Dirasantha O, Feldman ER, Wilkerson GK, Sawyer SL. Selective use of primate CD4 receptors by HIV-1. PLoS Biol 2019; 17:e3000304. [PMID: 31181085 PMCID: PMC6586362 DOI: 10.1371/journal.pbio.3000304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/20/2019] [Accepted: 05/15/2019] [Indexed: 12/15/2022] Open
Abstract
Individuals chronically infected with HIV-1 harbor complex viral populations within their bloodstreams. Recently, it has come to light that when these people infect others, the new infection is typically established by only one or a small number of virions from within this complex viral swarm. An important goal is to characterize the biological properties of HIV-1 virions that seed and exist early in new human infections because these are potentially the only viruses against which a prophylactic HIV-1 vaccine would need to elicit protection. This includes understanding how the Envelope (Env) protein of these virions interacts with the T-cell receptor CD4, which supports attachment and entry of HIV-1 into target cells. We examined early HIV-1 isolates for their ability to infect cells via the CD4 receptor of 15 different primate species. Primates were the original source of HIV-1 and now serve as valuable animal models for studying HIV-1. We find that most primary isolates of HIV-1 from the blood, including early isolates, are highly selective and enter cells through some primate CD4 receptor orthologs but not others. This phenotype is remarkably consistent, regardless of route of transmission, viral subtype, or time of isolation post infection. We show that the weak CD4 binding affinity of blood-derived HIV-1 isolates is what makes them sensitive to the small sequence differences in CD4 from one primate species to the next. To substantiate this, we engineered an early HIV-1 Env to have high, medium, or low binding affinity to CD4, and we show that it loses the ability to enter cells via the CD4 receptor of many primate species as the binding affinity gets weaker. Based on the phenotype of selective use of primate CD4, we find that weak CD4 binding appears to be a nearly universal property of HIV-1 circulating in the bloodstream. Therefore, weak binding to CD4 must be a selected and important property in the biology of HIV-1 in the body. We identify six primate species that encode CD4 receptors that fully support the entry of early HIV-1 isolates despite their low binding affinity for CD4. These findings will help inform long-standing efforts to model HIV-1 transmission and early disease in primates. The current animal model for HIV, the macaque, encodes a CD4 receptor that is non-permissive for HIV entry. This paper reveals that six primate species encode CD4 receptors compatible with HIV infection, potentially making them powerful tools for the study of HIV biology. Furthermore, weak CD4 binding is a nearly constant, and apparently selected, property of HIV circulating in the human bloodstream.
Collapse
Affiliation(s)
- Cody J. Warren
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Nicholas R. Meyerson
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Obaiah Dirasantha
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Emily R. Feldman
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Gregory K. Wilkerson
- Department of Comparative Medicine, Michale E. Keeling Center for Comparative Medicine and Research, The University of Texas MD Anderson Cancer Center, Bastrop, Texas, United States of America
| | - Sara L. Sawyer
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
- * E-mail:
| |
Collapse
|
44
|
Majerová T, Novotný P, Krýsová E, Konvalinka J. Exploiting the unique features of Zika and Dengue proteases for inhibitor design. Biochimie 2019; 166:132-141. [PMID: 31077760 DOI: 10.1016/j.biochi.2019.05.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/01/2019] [Indexed: 02/07/2023]
Abstract
Zika and Dengue viruses have attracted substantial attention from researchers in light of recent outbreaks of Dengue fever and increases in cases of congenital microcephaly in areas with Zika incidence. This review summarizes the current state of knowledge about Zika and Dengue proteases. These enzymes have several interesting features: 1) NS3 serine protease requires the activating co-factor NS2B, which is anchored in the membrane of the endoplasmic reticulum; 2) NS2B displays extensive conformational dynamics; 3) NS3 is a multidomain protein with proteolytic, NTPase, RNA 5' triphosphatase and helicase activity and has many protein-protein interaction partners; 4) NS3 is autoproteolytically released from its precursor. Attempts to design tight-binding and specific active-site inhibitors are complicated by the facts that the substrate pocket of the NS2B-NS3 protease is flat and the active-site ligands are charged. The ionic character of potential active-site inhibitors negatively influences their cell permeability. Possibilities to block cis-autoprocessing of the protease precursor have recently been considered. Additionally, potential allosteric sites on NS2B-NS3 proteases have been identified and allosteric compounds have been designed to impair substrate binding and/or block the NS2B-NS3 interaction. Such compounds could be specific to viral proteases, without off-target effects on host serine proteases, and could have favorable pharmacokinetic profiles. This review discusses various groups of inhibitors of these proteases according to their mechanisms of action and chemical structures.
Collapse
Affiliation(s)
- Taťána Majerová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Nám. 2, 16610, Prague 6, Czech Republic
| | - Pavel Novotný
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Nám. 2, 16610, Prague 6, Czech Republic; Department of Biochemistry, Faculty of Science, Charles University in Prague, 12843, Prague, Czech Republic
| | - Eliška Krýsová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Nám. 2, 16610, Prague 6, Czech Republic; Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, 12843, Prague, Czech Republic
| | - Jan Konvalinka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Nám. 2, 16610, Prague 6, Czech Republic; Department of Biochemistry, Faculty of Science, Charles University in Prague, 12843, Prague, Czech Republic.
| |
Collapse
|
45
|
Abstract
Viruses of wild and domestic animals can infect humans in a process called zoonosis, and these events can give rise to explosive epidemics such as those caused by the HIV and Ebola viruses. While humans are constantly exposed to animal viruses, those that can successfully infect and transmit between humans are exceedingly rare. The key event in zoonosis is when an animal virus begins to replicate (one virion making many) in the first human subject. Only at this point will the animal virus first experience the selective environment of the human body, rendering possible viral adaptation and refinement for humans. In addition, appreciable viral titers in this first human may enable infection of a second, thus initiating selection for viral variants with increased capacity for spread. We assert that host genetics plays a critical role in defining which animal viruses in nature will achieve this key event of replication in a first human host. This is because animal viruses that pose the greatest risk to humans will have few (or no) genetic barriers to replicating themselves in human cells, thus requiring minimal mutations to make this jump. Only experimental virology provides a path to identifying animal viruses with the potential to replicate themselves in humans because this information will not be evident from viral sequencing data alone.
Collapse
Affiliation(s)
- Cody J. Warren
- BioFrontiers Institute and Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Sara L. Sawyer
- BioFrontiers Institute and Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, United States of America
| |
Collapse
|
46
|
Induction and Suppression of NF-κB Signalling by a DNA Virus of Drosophila. J Virol 2019; 93:JVI.01443-18. [PMID: 30404807 DOI: 10.1128/jvi.01443-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/29/2018] [Indexed: 12/12/2022] Open
Abstract
Interactions between the insect immune system and RNA viruses have been extensively studied in Drosophila, in which RNA interference, NF-κB, and JAK-STAT pathways underlie antiviral immunity. In response to RNA interference, insect viruses have convergently evolved suppressors of this pathway that act by diverse mechanisms to permit viral replication. However, interactions between the insect immune system and DNA viruses have received less attention, primarily because few Drosophila-infecting DNA virus isolates are available. In this study, we used a recently isolated DNA virus of Drosophila melanogaster, Kallithea virus (KV; family Nudiviridae), to probe known antiviral immune responses and virus evasion tactics in the context of DNA virus infection. We found that fly mutants for RNA interference and immune deficiency (Imd), but not Toll, pathways are more susceptible to Kallithea virus infection. We identified the Kallithea virus-encoded protein gp83 as a potent inhibitor of Toll signalling, suggesting that Toll mediates antiviral defense against Kallithea virus infection but that it is suppressed by the virus. We found that Kallithea virus gp83 inhibits Toll signalling through the regulation of NF-κB transcription factors. Furthermore, we found that gp83 of the closely related Drosophila innubila nudivirus (DiNV) suppresses D. melanogaster Toll signalling, suggesting an evolutionarily conserved function of Toll in defense against DNA viruses. Together, these results provide a broad description of known antiviral pathways in the context of DNA virus infection and identify the first Toll pathway inhibitor in a Drosophila virus, extending the known diversity of insect virus-encoded immune inhibitors.IMPORTANCE Coevolution of multicellular organisms and their natural viruses may lead to an intricate relationship in which host survival requires effective immunity and virus survival depends on evasion of such responses. Insect antiviral immunity and reciprocal virus immunosuppression tactics have been well studied in Drosophila melanogaster, primarily during RNA, but not DNA, virus infection. Therefore, we describe interactions between a recently isolated Drosophila DNA virus (Kallithea virus [KV]) and immune processes known to control RNA viruses, such as RNA interference (RNAi) and Imd pathways. We found that KV suppresses the Toll pathway and identified gp83 as a KV-encoded protein that underlies this suppression. This immunosuppressive ability is conserved in another nudivirus, suggesting that the Toll pathway has conserved antiviral activity against DNA nudiviruses, which have evolved suppressors in response. Together, these results indicate that DNA viruses induce and suppress NF-κB responses, and they advance the application of KV as a model to study insect immunity.
Collapse
|
47
|
Suppression of Type I Interferon Signaling by Flavivirus NS5. Viruses 2018; 10:v10120712. [PMID: 30558110 PMCID: PMC6316265 DOI: 10.3390/v10120712] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/08/2018] [Accepted: 12/09/2018] [Indexed: 01/02/2023] Open
Abstract
Type I interferon (IFN-I) is the first line of mammalian host defense against viral infection. To counteract this, the flaviviruses, like other viruses, have encoded a variety of antagonists, and use a multi-layered molecular defense strategy to establish their infections. Among the most potent antagonists is non-structural protein 5 (NS5), which has been shown for all disease-causing flaviviruses to target different steps and players of the type I IFN signaling pathway. Here, we summarize the type I IFN antagonist mechanisms used by flaviviruses with a focus on the role of NS5 in regulating one key regulator of type I IFN, signal transducer and activator of transcription 2 (STAT2).
Collapse
|
48
|
Matz KM, Guzman RM, Goodman AG. The Role of Nucleic Acid Sensing in Controlling Microbial and Autoimmune Disorders. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 345:35-136. [PMID: 30904196 PMCID: PMC6445394 DOI: 10.1016/bs.ircmb.2018.08.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Innate immunity, the first line of defense against invading pathogens, is an ancient form of host defense found in all animals, from sponges to humans. During infection, innate immune receptors recognize conserved molecular patterns, such as microbial surface molecules, metabolites produces during infection, or nucleic acids of the microbe's genome. When initiated, the innate immune response activates a host defense program that leads to the synthesis proteins capable of pathogen killing. In mammals, the induction of cytokines during the innate immune response leads to the recruitment of professional immune cells to the site of infection, leading to an adaptive immune response. While a fully functional innate immune response is crucial for a proper host response and curbing microbial infection, if the innate immune response is dysfunctional and is activated in the absence of infection, autoinflammation and autoimmune disorders can develop. Therefore, it follows that the innate immune response must be tightly controlled to avoid an autoimmune response from host-derived molecules, yet still unencumbered to respond to infection. In this review, we will focus on the innate immune response activated from cytosolic nucleic acids, derived from the microbe or host itself. We will depict how viruses and bacteria activate these nucleic acid sensing pathways and their mechanisms to inhibit the pathways. We will also describe the autoinflammatory and autoimmune disorders that develop when these pathways are hyperactive. Finally, we will discuss gaps in knowledge with regard to innate immune response failure and identify where further research is needed.
Collapse
Affiliation(s)
- Keesha M Matz
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - R Marena Guzman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Alan G Goodman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States; Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States.
| |
Collapse
|
49
|
Manet C, Roth C, Tawfik A, Cantaert T, Sakuntabhai A, Montagutelli X. Host genetic control of mosquito-borne Flavivirus infections. Mamm Genome 2018; 29:384-407. [PMID: 30167843 PMCID: PMC7614898 DOI: 10.1007/s00335-018-9775-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/20/2018] [Indexed: 12/12/2022]
Abstract
Flaviviruses are arthropod-borne viruses, several of which represent emerging or re-emerging pathogens responsible for widespread infections with consequences ranging from asymptomatic seroconversion to severe clinical diseases and congenital developmental deficits. This variability is due to multiple factors including host genetic determinants, the role of which has been investigated in mouse models and human genetic studies. In this review, we provide an overview of the host genes and variants which modify susceptibility or resistance to major mosquito-borne flaviviruses infections in mice and humans.
Collapse
Affiliation(s)
- Caroline Manet
- Mouse Genetics Laboratory, Department of Genomes and Genetics, Institut Pasteur, Paris, France
| | - Claude Roth
- Functional Genetics of Infectious Diseases Unit, Department of Genomes and Genetics, Institut Pasteur, Paris, France
- CNRS, UMR 2000-Génomique Evolutive, Modélisation et Santé, Institut Pasteur, 75015, Paris, France
| | - Ahmed Tawfik
- Functional Genetics of Infectious Diseases Unit, Department of Genomes and Genetics, Institut Pasteur, Paris, France
- CNRS, UMR 2000-Génomique Evolutive, Modélisation et Santé, Institut Pasteur, 75015, Paris, France
| | - Tineke Cantaert
- Immunology Group, Institut Pasteur du Cambodge, International Network of Pasteur Institutes, Phnom Penh, 12201, Cambodia
| | - Anavaj Sakuntabhai
- Functional Genetics of Infectious Diseases Unit, Department of Genomes and Genetics, Institut Pasteur, Paris, France.
- CNRS, UMR 2000-Génomique Evolutive, Modélisation et Santé, Institut Pasteur, 75015, Paris, France.
| | - Xavier Montagutelli
- Mouse Genetics Laboratory, Department of Genomes and Genetics, Institut Pasteur, Paris, France.
| |
Collapse
|
50
|
Species-specific disruption of STING-dependent antiviral cellular defenses by the Zika virus NS2B3 protease. Proc Natl Acad Sci U S A 2018; 115:E6310-E6318. [PMID: 29915078 DOI: 10.1073/pnas.1803406115] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The limited host tropism of numerous viruses causing disease in humans remains incompletely understood. One example is Zika virus (ZIKV), an RNA virus that has reemerged in recent years. Here, we demonstrate that ZIKV efficiently infects fibroblasts from humans, great apes, New and Old World monkeys, but not rodents. ZIKV infection in human-but not murine-cells impairs responses to agonists of the cGMP-AMP synthase/stimulator of IFN genes (cGAS/STING) signaling pathway, suggesting that viral mechanisms to evade antiviral defenses are less effective in rodent cells. Indeed, human, but not mouse, STING is subject to cleavage by proteases encoded by ZIKV, dengue virus, West Nile virus, and Japanese encephalitis virus, but not that of yellow fever virus. The protease cleavage site, located between positions 78/79 of human STING, is only partially conserved in nonhuman primates and rodents, rendering these orthologs resistant to degradation. Genetic disruption of STING increases the susceptibility of mouse-but not human-cells to ZIKV. Accordingly, expression of only mouse, not human, STING in murine STING knockout cells rescues the ZIKV suppression phenotype. STING-deficient mice, however, did not exhibit increased susceptibility, suggesting that other redundant antiviral pathways control ZIKV infection in vivo. Collectively, our data demonstrate that numerous RNA viruses evade cGAS/STING-dependent signaling and affirm the importance of this pathway in shaping the host range of ZIKV. Furthermore, our results explain-at least in part-the decreased permissivity of rodent cells to ZIKV, which could aid in the development of mice model with inheritable susceptibility to ZIKV and other flaviviruses.
Collapse
|