1
|
Long C, Cheng J, Feng M, Yan B, Li Y, Jiang W, Chen D, Yan J. Association of the tumor microenvironment collagen score and immunoscore with colon cancer lymph node metastasis. BMC Cancer 2025; 25:506. [PMID: 40108544 PMCID: PMC11924846 DOI: 10.1186/s12885-025-13842-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 02/28/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND In clinical practice, lymph node status has an important impact on colon cancer (CC) management and treatment. The role of the tumor microenvironment collagen score and immunoscore in colon cancer lymph node metastasis remains unknown. METHODS A total of 249 CC patients who underwent laparoscopic-assisted D3 lymphadenectomy from June 2016 to May 2019 were included. The patients' clinicopathological data were collected retrospectively. A total of 142 collagen features were extracted by multiphoton imaging and collagen quantification. A collagen score was constructed using a LASSO logistic regression model. Antibodies against CD3 and CD8 were used for immunostaining. The immunoscore was constructed based on the mean densities of CD3 + and CD8 + T cells both in the tumor center and invasion margin on imaging. RESULTS The lymph node metastasis rate among colon cancer patients was 42.2% (105/249). The multivariate analysis indicated that lymphatic invasion (OR: 3.892, 95% CI: 1.784-8.491, p = 0.001), vascular invasion (OR, 3.234, 95% CI: 1.544-6.776); p = 0.002), mucus adenocarcinoma and signet-ring cell carcinoma (OR: 2.990, 95% CI: 1.413-6.328, p = 0.004), the collagen score (OR: 6.304, 95% CI: 2.145-18.527, p = 0.001) and the immunoscore [intermediate group (OR, 2.473; 95% CI, 1.192-5.130; p = 0.015); low group (OR, 5.877; 95% CI, 2.423-14.257; p < 0.01)] were independent risk factors for colon cancer lymph node metastasis. The newly developed model comprising these five independent predictors showed good discrimination with an AUROC of 0.809 (95% CI: 0.755-0.862). The new model performed significantly better than the traditional clinicopathological model [AUROC: 0.715 (95% CI: 0.649-0.780), p < 0.001]. CONCLUSIONS The tumor microenvironment collagen score and immunoscore are associated with colon cancer lymph node metastasis.
Collapse
Affiliation(s)
- Chenyan Long
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, People's Republic of China
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Cancer, Guangzhou, Guangdong, 510515, People's Republic of China
- Department of Colorectal & Anal Surgery, Cancer Hospitalaffiliated to, Guangxi Medical Universityaq , Nanning, Guangxi, 530021, People's Republic of China
| | - Jiaxin Cheng
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, People's Republic of China
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Mingyuan Feng
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, People's Republic of China
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Botao Yan
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, People's Republic of China
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Yiran Li
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, People's Republic of China
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Wei Jiang
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, People's Republic of China
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Dexin Chen
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, People's Republic of China
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Cancer, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Jun Yan
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, People's Republic of China.
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China.
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Cancer, Guangzhou, Guangdong, 510515, People's Republic of China.
| |
Collapse
|
2
|
Majocchi S, Lloveras P, Nouveau L, Legrand M, Viandier A, Malinge P, Charreton M, Raymond C, Pace EA, Millard BL, Svensson LA, Kelpšas V, Anceriz N, Salgado-Pires S, Daubeuf B, Magistrelli G, Gueneau F, Moine V, Masternak K, Shang L, Fischer N, Ferlin WG. NI-3201 Is a Bispecific Antibody Mediating PD-L1-Dependent CD28 Co-stimulation on T Cells for Enhanced Tumor Control. Cancer Immunol Res 2025; 13:365-383. [PMID: 39760515 PMCID: PMC11876958 DOI: 10.1158/2326-6066.cir-24-0298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/02/2024] [Accepted: 11/26/2024] [Indexed: 01/07/2025]
Abstract
Despite advances in cancer immunotherapy, such as targeting the PD-1/PD-L1 axis, a substantial number of patients harbor tumors that are resistant or relapse. Selective engagement of T-cell co-stimulatory molecules with bispecific antibodies may offer novel therapeutic options by enhancing signal 1-driven activation occurring via T-cell receptor engagement. In this study, we report the development and preclinical characterization of NI-3201, a PD-L1×CD28 bispecific antibody generated on the κλ-body platform that was designed to promote T-cell activity and antitumor function through a dual mechanism of action. We confirmed that NI-3201 blocks the PD-L1/PD-1 immune checkpoint pathway and conditionally provides T-cell co-stimulation via CD28 (signal 2) when engaging PD-L1+ tumors or immune cells. In systems with signal 1-primed T cells, NI-3201 enhanced potent effector functionality: in vitro through antigen-specific recall assays with cytomegalovirus-specific T cells and in vivo by inducing tumor regression and immunologic memory in tumor-associated antigen-expressing MC38 syngeneic mouse models. When T-cell engagers were used to provide synthetic signal 1, the combination with NI-3201 resulted in synergistic T cell-dependent cytotoxicity and potent antitumor activity in two humanized mouse tumor models. Nonhuman primate safety assessments showed favorable tolerability and pharmacokinetics at pharmacologically active doses. Quantitative systems pharmacology modeling predicted that NI-3201 exposure results in antitumor activity in patients, but this remains to be investigated. Overall, this study suggests that by combining PD-L1 blockade with safe and effective CD28 co-stimulation, NI-3201 has the potential to improve cancer immunotherapy outcomes, and the clinical development of NI-3201 for PD-L1+ solid tumors is planned.
Collapse
Affiliation(s)
- Sara Majocchi
- Light Chain Bioscience – Novimmune SA, Geneva, Switzerland
| | | | - Lise Nouveau
- Light Chain Bioscience – Novimmune SA, Geneva, Switzerland
| | | | | | | | - Maud Charreton
- Light Chain Bioscience – Novimmune SA, Geneva, Switzerland
| | - Cecile Raymond
- Light Chain Bioscience – Novimmune SA, Geneva, Switzerland
| | | | | | | | | | - Nadia Anceriz
- Light Chain Bioscience – Novimmune SA, Geneva, Switzerland
| | | | - Bruno Daubeuf
- Light Chain Bioscience – Novimmune SA, Geneva, Switzerland
| | | | - Franck Gueneau
- Light Chain Bioscience – Novimmune SA, Geneva, Switzerland
| | - Valéry Moine
- Light Chain Bioscience – Novimmune SA, Geneva, Switzerland
| | | | - Limin Shang
- Light Chain Bioscience – Novimmune SA, Geneva, Switzerland
| | | | | |
Collapse
|
3
|
Wang Z, Dai Y, Zhou Y, Wang Y, Chen P, Li Y, Zhang Y, Wang X, Hu Y, Li H, Li G, Jing Y. Research progress of T cells in cholangiocarcinoma. Front Immunol 2025; 16:1453344. [PMID: 40070825 PMCID: PMC11893616 DOI: 10.3389/fimmu.2025.1453344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 02/06/2025] [Indexed: 03/14/2025] Open
Abstract
Cholangiocarcinoma (CCA), a malignant tumor, is typically challenging to detect early and often results in a poor prognosis. In recent years, research interest has grown in the potential application of immunotherapy for CCA treatment. T cells, as a crucial component of the immune system, play a significant role in immune surveillance and therapy for cholangiocarcinoma. This article provides a review of the research advancements concerning T cells in cholangiocarcinoma patients, including their distribution, functional status, and correlation with patient prognosis within the tumor microenvironment. It further discusses the potential applications and challenges of immunotherapy strategies targeting T cells in CCA treatment and anticipates future research directions. A more profound understanding of T cells' role in cholangiocarcinoma can guide the development of clinical treatment strategies, thereby enhancing patient survival rates and quality of life. Finally, we explored the potential risks and side effects of immunotherapy for T-cell cholangiocarcinoma.
Collapse
Affiliation(s)
- Zhiming Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yunyan Dai
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yunpeng Zhou
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yi Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Pinggui Chen
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yaoxuan Li
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yunfei Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Xiaocui Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Ying Hu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Haonan Li
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Gaopeng Li
- Department of Hepatobiliary Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yukai Jing
- Department of Clinical Laboratory, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
4
|
Naing A, McKean M, Tolcher A, Victor A, Hu P, Gao W, Nogueira Filho MAF, Kitzing T, Gleicher S, Holland D, Richter E, Tadjalli-Mehr K, Siu LL. TIGIT inhibitor M6223 as monotherapy or in combination with bintrafusp alfa in patients with advanced solid tumors: a first-in-human, phase 1, dose-escalation trial. J Immunother Cancer 2025; 13:e010584. [PMID: 39929671 PMCID: PMC11815413 DOI: 10.1136/jitc-2024-010584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/20/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND M6223 is an intravenous (IV), Fc-competent, fully human, antagonistic, anti-T cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domains (TIGIT) antibody. Bintrafusp alfa (BA) is a bifunctional fusion protein that simultaneously blocks nonredundant immunosuppressive TGF-β and PD-(L)1 pathways. METHODS This first-in-human, dose-escalation study in patients with advanced solid tumors (N=58; aged ≥18 years, ECOG PS≤1) evaluated M6223 alone (Part 1A, n=40; M6223 10-2400 mg every 2 weeks, n=32; M6223 2400 mg every 3 weeks, n=8) or with BA (Part 1B, n=18; M6223 300-1600 mg with BA 1200 mg; both every 2 weeks, intravenous). Primary objectives were safety, tolerability, maximum tolerated dose (MTD) and recommended dose for expansion (RDE). Additional objectives included pharmacokinetics, pharmacodynamics and clinical activity (NCT04457778). RESULTS Two dose-limiting toxicities were observed: grade 3 adrenal insufficiency (Part 1A: M6223 900 mg every 2 weeks) and grade 3 anemia (Part 1B: M6223 300 mg, only BA related). MTD was not reached. Overall, median overall survival and progression-free survival were 7.6 (95% CI 4.9, 12.0) and 1.4 (95% CI 1.3, 1.8) months, respectively. Stable disease as best response was observed in 13 (32.5%) and 5 (27.8%) patients in parts 1A and 1B, respectively. M6223±BA displayed a linear pharmacokinetic profile. Anti-TIGIT mode-of-action-related pharmacodynamic effects were observed in peripheral blood and in tumor tissue. RDEs were 1600 mg every 2 weeks or 2400 mg every 3 weeks for M6223 monotherapy and 1600+1200 mg every 2 weeks for M6223+BA. CONCLUSIONS M6223±BA had a manageable safety profile, with RDEs defined for both monotherapy and combination therapy. Further evaluation of M6223 is ongoing in combination with the PD-L1 inhibitor avelumab in patients with advanced urothelial carcinoma (JAVELIN Bladder Medley; NCT05327530). TRIAL REGISTRATION NUMBER NCT04457778.
Collapse
Affiliation(s)
- Aung Naing
- The University of Texas MD Anderson Cancer Centre, Houston, Texas, USA
| | | | | | | | - Ping Hu
- EMD Serono, Billerica, Massachusetts, USA
| | - Wei Gao
- EMD Serono, Billerica, Massachusetts, USA
| | | | | | | | | | | | | | - Lillian L Siu
- Princess Margaret Hospital Cancer Centre, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Yang XY, Chen N, Wen Q, Zhou Y, Zhang T, Zhou J, Liang CH, Han LP, Wang XY, Kang QM, Zheng XX, Zhai XJ, Jiang HY, Shen TH, Xiao JW, Zou YX, Deng Y, Lin S, Duan JJ, Wang J, Yu SC. The microenvironment cell index is a novel indicator for the prognosis and therapeutic regimen selection of cancers. J Transl Med 2025; 23:61. [PMID: 39806464 PMCID: PMC11727790 DOI: 10.1186/s12967-024-05950-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND It is worthwhile to establish a prognostic prediction model based on microenvironment cells (MCs) infiltration and explore new treatment strategies for triple-negative breast cancer (TNBC). METHODS The xCell algorithm was used to quantify the cellular components of the TNBC microenvironment based on bulk RNA sequencing (bulk RNA-seq) data. The MCs index (MCI) was constructed using the least absolute shrinkage and selection operator Cox (LASSO-Cox) regression analysis. Single-cell RNA sequencing (scRNA-seq), spatially resolved transcriptomics (SRT), and multiplex immunofluorescence (mIF) staining analyses verified MCI. The mechanism of action of the MCI was investigated in tumor-bearing mice. RESULTS MCI consists of the six types of MCs, which can precisely predict the prognosis of the TNBC patients. scRNA-seq, SRT, and mIF analyses verified the existence and proportions of these cells. Furthermore, combined with the spatial distribution characteristics of the six types of MCs, an MCI-enhanced (MCI-e) model was constructed, which could predict the prognosis of the TNBC patients more accurately. More importantly, inhibition of the insulin signaling pathway activated in the cancer cells of the MCIhigh the TNBC patients significantly prolonged the survival time of tumor-bearing mice. CONCLUSIONS Overall, our results demonstrate that MCs infiltration can be exploited as a novel indicator for the prognosis and therapeutic regimen selection of the TNBC patients.
Collapse
Affiliation(s)
- Xian-Yan Yang
- Department of Stem Cell and Regenerative Medicine, Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, 400038, China
- Jin-Feng Laboratory, Chongqing, 401329, China
| | - Nian Chen
- Department of Stem Cell and Regenerative Medicine, Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, 400038, China
| | - Qian Wen
- Department of Stem Cell and Regenerative Medicine, Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, 400038, China
| | - Yu Zhou
- Department of Stem Cell and Regenerative Medicine, Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, 400038, China
| | - Tao Zhang
- Department of Stem Cell and Regenerative Medicine, Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, 400038, China
| | - Ji Zhou
- Department of Stem Cell and Regenerative Medicine, Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, 400038, China
| | - Cheng-Hui Liang
- Department of Stem Cell and Regenerative Medicine, Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, 400038, China
| | - Li-Ping Han
- Department of Stem Cell and Regenerative Medicine, Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, 400038, China
| | - Xiao-Ya Wang
- Department of Stem Cell and Regenerative Medicine, Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, 400038, China
| | - Qing-Mei Kang
- Department of Stem Cell and Regenerative Medicine, Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, 400038, China
| | - Xiao-Xia Zheng
- Department of Stem Cell and Regenerative Medicine, Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, 400038, China
| | - Xue-Jia Zhai
- Department of Stem Cell and Regenerative Medicine, Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, 400038, China
| | - Hong-Ying Jiang
- Department of Stem Cell and Regenerative Medicine, Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, 400038, China
| | - Tian-Hua Shen
- Department of Stem Cell and Regenerative Medicine, Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, 400038, China
| | - Jin-Wei Xiao
- Department of Stem Cell and Regenerative Medicine, Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, 400038, China
| | - Yu-Xin Zou
- Department of Stem Cell and Regenerative Medicine, Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, 400038, China
| | - Yun Deng
- Department of Stem Cell and Regenerative Medicine, Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, 400038, China
| | - Shuang Lin
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jiang-Jie Duan
- Department of Stem Cell and Regenerative Medicine, Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, 400038, China
- Jin-Feng Laboratory, Chongqing, 401329, China
| | - Jun Wang
- Department of Stem Cell and Regenerative Medicine, Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, 400038, China.
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, 400038, China.
- Jin-Feng Laboratory, Chongqing, 401329, China.
| | - Shi-Cang Yu
- Department of Stem Cell and Regenerative Medicine, Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, 400038, China.
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, 400038, China.
- Jin-Feng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
6
|
Wang T, Shin SJ, Wang M, Xu Q, Jiang G, Cong F, Kang J, Xu H. Multi-Task Adaptive Resolution Network for Lymph Node Metastasis Diagnosis From Whole Slide Images of Colorectal Cancer. IEEE J Biomed Health Inform 2025; 29:420-432. [PMID: 39446536 DOI: 10.1109/jbhi.2024.3485703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Automated detection of lymph node metastasis (LNM) holds great potential to alleviate the workload of doctors and reduce misinterpretations. Despite the practical successes achieved, effectively addressing the highly complex and heterogeneous tumor microenvironment remains an open and challenging problem, especially when tumor subtypes intermingle and are difficult to delineate. In this paper, we propose a multi-task adaptive resolution network, named MAR-Net, for LNM detection and subtyping in complex mixed-type cancers. Specifically, we construct a resolution-aware module to mine heterogeneous diagnostic information, which exploits the multi-scale pyramid information and adaptively combines multi-resolution structured features for comprehensive representation. Additionally, we adopt a multi-task learning approach that simultaneously addresses LNM detection and subtyping, reducing model instability during optimization and improving performance across both tasks. More importantly, to rectify the potential misclassification of tumor subtypes, we elaborately design a hierarchical subtying refinement (HSR) algorithm that leverages a generic segmentation model informed by pathologists' prior knowledge. Evaluations have been conducted on three private and one public cancer datasets (554 WSIs, 4.8 million patches). Our experimental results demonstrate that the proposed method consistently achieves superior performance compared to the state-of-the-art methods, achieving 0.5% to 3.2% higher AUC in LNM detection and 3.8% to 4.4% higher AUC in LNM subtyping.
Collapse
|
7
|
Ahmad I, Altameemi KKA, Hani MM, Ali AM, Shareef HK, Hassan ZF, Alubiady MHS, Al-Abdeen SHZ, Shakier HG, Redhee AH. Shifting cold to hot tumors by nanoparticle-loaded drugs and products. Clin Transl Oncol 2025; 27:42-69. [PMID: 38922537 DOI: 10.1007/s12094-024-03577-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
Cold tumors lack antitumor immunity and are resistant to therapy, representing a major challenge in cancer medicine. Because of the immunosuppressive spirit of the tumor microenvironment (TME), this form of tumor has a low response to immunotherapy, radiotherapy, and also chemotherapy. Cold tumors have low infiltration of immune cells and a high expression of co-inhibitory molecules, such as immune checkpoints and immunosuppressive molecules. Therefore, targeting TME and remodeling immunity in cold tumors can improve the chance of tumor repression after therapy. However, tumor stroma prevents the infiltration of inflammatory cells and hinders the penetration of diverse molecules and drugs. Nanoparticles are an intriguing tool for the delivery of immune modulatory agents and shifting cold to hot tumors. In this review article, we discuss the mechanisms underlying the ability of nanoparticles loaded with different drugs and products to modulate TME and enhance immune cell infiltration. We also focus on newest progresses in the design and development of nanoparticle-based strategies for changing cold to hot tumors. These include the use of nanoparticles for targeted delivery of immunomodulatory agents, such as cytokines, small molecules, and checkpoint inhibitors, and for co-delivery of chemotherapy drugs and immunomodulatory agents. Furthermore, we discuss the potential of nanoparticles for enhancing the efficacy of cancer vaccines and cell therapy for overcoming resistance to treatment.
Collapse
Affiliation(s)
- Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia.
| | | | - Mohaned Mohammed Hani
- Department of Medical Instrumentation Engineering Techniques, Imam Ja'afar Al-Sadiq University, Al Muthanna, Iraq
| | - Afaq Mahdi Ali
- Department of Pharmaceutics, Al-Turath University College, Baghdad, Iraq
| | - Hasanain Khaleel Shareef
- Department of Medical Biotechnology, College of Science, Al-Mustaqbal University, Hilla, Iraq
- Biology Department, College of Science for Women, University of Babylon, Hilla, Iraq
| | | | | | | | | | - Ahmed Huseen Redhee
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
8
|
Chen F, Xu Y, Liu X, Dong N, Tian L. TIGIT + CD4 + regulatory T cells enhance PD-1 expression on CD8 + T cells and promote tumor growth in a murine ovarian cancer model. J Ovarian Res 2024; 17:252. [PMID: 39707532 DOI: 10.1186/s13048-024-01578-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024] Open
Abstract
Immune checkpoint-based immunotherapy has shown limited efficacy in the treatment of ovarian cancer. In recent years, the emergence of immune checkpoint co-targeting therapies, led by the combination targeting of TIGIT and FAK, has shown promise in ovarian cancer treatment. Our preliminary research indicates that TIGIT is predominantly expressed in regulatory T cells during ovarian cancer. However, the therapeutic impact of TIGIT targeting based on regulatory T cells in ovarian cancer remains to be elucidated. We utilized ID8 cells to establish a mouse model of ovarian cancer. Through flow cytometry and co-culture methods, we validated the relationship between the functionality of regulatory T cells and tumor masses, and confirmed the crucial role of TIGIT in immune suppression in ovarian cancer. Furthermore, using Foxp3-diphtheria toxin receptor (DTR) mice, we substantiated that the combined TIGIT antibody treatment, based on targeting regulatory T cells, effectively slowed down the progression of ovarian cancer. Taken together, our results have demonstrated that dual targeting of regulatory T cells and TIGIT effectively retards tumor growth, laying the groundwork for the clinical application of immune checkpoint combination therapies. Future research in ovarian cancer immunotherapy is leaning towards a strategy that combines multiple targets, and specific cell-type immunotherapies.
Collapse
Affiliation(s)
- Fengzhen Chen
- Department of Gynecology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China.
| | - Yanying Xu
- Department of Gynecology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Xiangyu Liu
- Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Na Dong
- Department of Gynecology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Lei Tian
- Department of Gynecology and Obstetrics, The Affiliated Hospital of Nankai University, Tianjin No. 4 Hospital, Tianjin, 300222, China
| |
Collapse
|
9
|
Luo Y, Gadd ME, Qie Y, Otamendi-Lopez A, Sanchez-Garavito JE, Brooks MM, Ulloa Navas MJ, Hundal T, Li S, Jones VK, Lou Y, Patel T, Dronca R, Kharfan-Dabaja MA, Dong H, Quinones-Hinojosa A, Qin H. Solid cancer-directed CAR T cell therapy that attacks both tumor and immunosuppressive cells via targeting PD-L1. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200891. [PMID: 39498357 PMCID: PMC11532918 DOI: 10.1016/j.omton.2024.200891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/31/2024] [Accepted: 10/03/2024] [Indexed: 11/07/2024]
Abstract
Chimeric antigen receptor (CAR) T cell therapy has encountered limited success in solid tumors. The lack of dependable antigens and the immunosuppressive tumor microenvironment (TME) are major challenges. Within the TME, tumor cells along with immunosuppressive cells employ an immune-evasion mechanism that upregulates programmed death ligand 1 (PD-L1) to deactivate effector T cells; this makes PD-L1 a reliable, universal target for solid tumors. We developed a novel PD-L1 CAR (MC9999) using our humanized anti-PD-L1 monoclonal antibody, designed to simultaneously target tumor and immunosuppressive cells. The antigen-specific antitumor effects of MC9999 CAR T cells were observed consistently across four solid tumor models: breast cancer, lung cancer, melanoma, and glioblastoma multiforme (GBM). Notably, intravenous administration of MC9999 CAR T cells eradicated intracranially established LN229 GBM tumors, suggesting penetration of the blood-brain barrier. The proof-of-concept data demonstrate the cytolytic effect of MC9999 CAR T cells against immunosuppressive cells, including microglia HMC3 cells and M2 macrophages. Furthermore, MC9999 CAR T cells elicited cytotoxicity against primary tumor-associated macrophages within GBM tumors. The concept of targeting both tumor and immunosuppressive cells with MC9999 was further validated using CAR T cells derived from cancer patients. These findings establish MC9999 as a foundation for the development of effective CAR T cell therapies against solid tumors.
Collapse
Affiliation(s)
- Yan Luo
- Regenerative Immunotherapy and CAR-T Translational Research Program, Mayo Clinic, Jacksonville, FL, USA
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Martha E. Gadd
- Regenerative Immunotherapy and CAR-T Translational Research Program, Mayo Clinic, Jacksonville, FL, USA
| | - Yaqing Qie
- Regenerative Immunotherapy and CAR-T Translational Research Program, Mayo Clinic, Jacksonville, FL, USA
| | | | | | - Mieu M. Brooks
- The Neurosurgery Department, Mayo Clinic, Jacksonville, FL, USA
| | | | - Tanya Hundal
- Regenerative Immunotherapy and CAR-T Translational Research Program, Mayo Clinic, Jacksonville, FL, USA
| | - Shuhua Li
- Regenerative Immunotherapy and CAR-T Translational Research Program, Mayo Clinic, Jacksonville, FL, USA
| | | | - Yanyan Lou
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Mayo Clinic, Jacksonville, FL, USA
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Tushar Patel
- Hepatology & Liver Transplantation, Mayo Clinic, Jacksonville, FL, USA
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Roxana Dronca
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Mohamed A. Kharfan-Dabaja
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Mayo Clinic, Jacksonville, FL, USA
- Blood and Marrow Transplantation and Cellular Therapy Program, Mayo Clinic, Jacksonville, FL, USA
| | - Haidong Dong
- Department of Urology, Mayo Clinic, Rochester, MN, USA
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | - Alfredo Quinones-Hinojosa
- The Neurosurgery Department, Mayo Clinic, Jacksonville, FL, USA
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Hong Qin
- Regenerative Immunotherapy and CAR-T Translational Research Program, Mayo Clinic, Jacksonville, FL, USA
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Mayo Clinic, Jacksonville, FL, USA
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
10
|
Bida M, Miya TV, Hull R, Dlamini Z. Tumor-infiltrating lymphocytes in melanoma: from prognostic assessment to therapeutic applications. Front Immunol 2024; 15:1497522. [PMID: 39712007 PMCID: PMC11659259 DOI: 10.3389/fimmu.2024.1497522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/04/2024] [Indexed: 12/24/2024] Open
Abstract
Malignant melanoma, the most aggressive form of skin cancer, is characterized by unpredictable growth patterns, and its mortality rate has remained alarmingly high over recent decades, despite various treatment approaches. One promising strategy for improving outcomes in melanoma patients lies in the early use of biomarkers to predict prognosis. Biomarkers offer a way to gauge patient outlook early in the disease course, facilitating timely, targeted intervention. In recent years, considerable attention has been given to the immune response's role in melanoma, given the tumor's high immunogenicity and potential responsiveness to immunologic treatments. Researchers are focusing on identifying predictive biomarkers by examining both cancer cell biology and immune interactions within the tumor microenvironment (TME). This approach has shed light on tumor-infiltrating lymphocytes (TILs), a type of immune cell found within the tumor. TILs have emerged as a promising area of study for their potential to serve as both a prognostic indicator and therapeutic target in melanoma. The presence of TILs in melanoma tissue can often signal a positive immune response to the cancer, with numerous studies suggesting that TILs may improve patient prognosis. This review delves into the prognostic value of TILs in melanoma, assessing how these immune cells influence patient outcomes. It explores the mechanisms through which TILs interact with melanoma cells and the potential clinical applications of leveraging TILs in treatment strategies. While TILs present a hopeful avenue for prognostication and treatment, there are still challenges. These include understanding the full extent of TIL dynamics within the TME and overcoming limitations in TIL-based therapies. Advancements in TIL characterization methods are also critical to refining TIL-based approaches. By addressing these hurdles, TIL-focused research may pave the way for improved diagnostic and therapeutic options, ultimately offering better outcomes for melanoma patients.
Collapse
Affiliation(s)
- Meshack Bida
- Division of Anatomical Pathology, National Health Laboratory Service, University of Pretoria, Hatfield, South Africa
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield, South Africa
| | - Thabiso Victor Miya
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield, South Africa
| | - Rodney Hull
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield, South Africa
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield, South Africa
| |
Collapse
|
11
|
Devaraja K, Singh M, Sharan K, Aggarwal S. Coley's Toxin to First Approved Therapeutic Vaccine-A Brief Historical Account in the Progression of Immunobiology-Based Cancer Treatment. Biomedicines 2024; 12:2746. [PMID: 39767654 PMCID: PMC11726767 DOI: 10.3390/biomedicines12122746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/19/2024] [Accepted: 11/28/2024] [Indexed: 01/03/2025] Open
Abstract
Cancer immunobiology is one of the hot topics of discussion amongst researchers today, and immunotherapeutic modalities are among the selected few emerging approaches to cancer treatment that have exhibited a promising outlook. However, immunotherapy is not a new kid on the block; it has been around for centuries. The origin of cancer immunotherapy in modern medicine can be traced back to the initial reports of spontaneous regression of malignant tumors in some patients following an acute febrile infection, at the turn of the twentieth century. This review briefly revisits the historical accounts of immunotherapy, highlighting some of the significant developments in the field of cancer immunobiology, that have been instrumental in bringing back the immunotherapeutic approaches to the forefront of cancer research. Some of the topics covered are: Coley's toxin-the first immunotherapeutic; the genesis of the theory of immune surveillance; the discovery of T lymphocytes and dendritic cells and their roles; the role of tumor antigens; relevance of tumor microenvironment; the anti-tumor (therapeutic) ability of Bacillus Calmette- Guérin; Melacine-the first therapeutic vaccine engineered; theories of immunoediting and immunophenotyping of cancer; and Provenge-the first FDA-approved therapeutic vaccine. In this review, head and neck cancer has been taken as the reference tumor for narrating the progression of cancer immunobiology, particularly for highlighting the advent of immunotherapeutic agents.
Collapse
Affiliation(s)
- K. Devaraja
- Department of Head and Neck Surgery, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Manisha Singh
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Krishna Sharan
- Department of Radiation Oncology, K S Hegde Medical College, Nitte University, Mangalore 574110, India;
| | - Sadhna Aggarwal
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
12
|
Li HX, Gong YW, Yan PJ, Xu Y, Qin G, Wen WP, Teng FY. Revolutionizing head and neck squamous cell carcinoma treatment with nanomedicine in the era of immunotherapy. Front Immunol 2024; 15:1453753. [PMID: 39676875 PMCID: PMC11638222 DOI: 10.3389/fimmu.2024.1453753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/05/2024] [Indexed: 12/17/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a prevalent malignant tumor globally. Despite advancements in treatment methods, the overall survival rate remains low due to limitations such as poor targeting and low bioavailability, which result in the limited efficacy of traditional drug therapies. Nanomedicine is considered to be a promising strategy in tumor therapy, offering the potential for maximal anti-tumor effects. Nanocarriers can overcome biological barriers, enhance drug delivery efficiency to targeted sites, and minimize damage to normal tissues. Currently, various nano-carriers for drug delivery have been developed to construct new nanomedicine. This review aims to provide an overview of the current status of HNSCC treatment and the necessity of nanomedicine in improving treatment outcomes. Moreover, it delves into the research progress of nanomedicine in HNSCC treatment, with a focus on enhancing radiation sensitivity, improving the efficacy of tumor immunotherapy, effectively delivering chemotherapy drugs, and utilizing small molecule inhibitors. Finally, this article discussed the challenges and prospects of applying nanomedicine in cancer treatment.
Collapse
Affiliation(s)
- Hong-Xia Li
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Otolaryngology, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, Department of Endocrinology and Metabolism, Luzhou, Sichuan, China
| | - Yu-Wen Gong
- Department of Otolaryngology, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Pi-Jun Yan
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, Department of Endocrinology and Metabolism, Luzhou, Sichuan, China
| | - Yong Xu
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, Department of Endocrinology and Metabolism, Luzhou, Sichuan, China
| | - Gang Qin
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Wei-Ping Wen
- Department of Otolaryngology, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Fang-Yuan Teng
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, Department of Endocrinology and Metabolism, Luzhou, Sichuan, China
| |
Collapse
|
13
|
Anton A, Hutchinson R, Hovens CM, Christie M, Ryan A, Gibbs P, Costello A, Peters J, Neeson PJ, Corcoran NM, Tran B. An immune suppressive tumor microenvironment in primary prostate cancer promotes tumor immune escape. PLoS One 2024; 19:e0301943. [PMID: 39602457 PMCID: PMC11602054 DOI: 10.1371/journal.pone.0301943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/25/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Immunotherapy has demonstrated limited activity in prostate cancer to date. This likely reflects an immune suppressive tumor microenvironment (TME), with previous studies suggesting low PD-L1 expression and a sparse immune cell infiltrate. We aimed to further characterise the immune TME in primary prostate cancer and correlate immune subset densities with clinical outcomes. METHODS Two distinct cohorts of patients treated with radical prostatectomy were identified, based on the development of biochemical recurrence (BCR), one subgroup with high International Society of Urological Pathologists (ISUP) grade group, recurrent disease and a second with low grade, non-recurrent disease. A prostate immunohistochemical (IHC) antibody cocktail was used to differentiate tumor and peritumoral benign tissue. Specific CD8+, CD4+, FoxP3+, CD20+ and CD68+ cell subsets were identified using IHC staining of consecutive slides. PD-L1 and CD8/PD-L1 dual staining were also performed. Cell subset densities were quantified within tumor and peritumoral regions. We used descriptive statistics to report cell subset densities and T-tests to compare groups by age, grade and the development of BCR. Univariable and multivariable logistic regression were used to analyse risk factors for BCR and the development of metastatic disease. RESULTS A total of 175 patients were included, with a median age of 63 years and median pre-operative PSA of 8.2ng/ml. BCR occurred in 115 patients (66%) and 56 (32%) developed metastatic disease. CD68+ cells were the most abundant (median 648.8/mm2 intratumoral, 247.6/mm2 peritumoral), while PD-L1+ and PD-L1/CD8+ cell density was low overall (PD-L1+ median 162.4/mm2 intratumoral, 141.7/mm2 peritumoral; PD-L1/CD8+ (median 5.52/mm2 intratumoral, 3.41/mm2 peritumoral). Overall, grade group and T-stage were independently associated with BCR and metastatic disease. Higher density of peritumoral PD-L1+ cells was an independent risk factor for BCR (OR 5.33, 95%CI 1.31-21.61, p = 0.019).Although higher densities of CD8+ and CD4+ cells were observed in higher grade group 3-5 tumors, these were not associated with the development of BCR or metastasis. CONCLUSIONS In our cohort of prostate cancer patients who underwent radical prostatectomy, higher grade group and T-stage were independent predictors of BCR and metastasis. Despite higher grade group being associated with higher CD8+ cell density, PD-L1+ and PD-L1/CD8+ cell densities were low overall, suggesting lower T cell receptor recognition of tumor antigens. Further understanding of this phenomenon would influence development of future immunotherapeutic strategies in prostate cancer.
Collapse
Affiliation(s)
- Angelyn Anton
- Division of personalised oncology, Walter and Eliza Hall Institute, Melbourne, Australia
| | - Ryan Hutchinson
- Division of personalised oncology, Walter and Eliza Hall Institute, Melbourne, Australia
| | - Christopher M. Hovens
- Royal Melbourne Hospital, Melbourne, Australia
- Department of Surgery, University of Melbourne, Melbourne, Australia
| | | | - Andrew Ryan
- TissuPath, Mount Waverley, Melbourne, Australia
| | - Peter Gibbs
- Division of personalised oncology, Walter and Eliza Hall Institute, Melbourne, Australia
- Western Health, Melbourne, Australia
| | - Anthony Costello
- Royal Melbourne Hospital, Melbourne, Australia
- Department of Surgery, University of Melbourne, Melbourne, Australia
- Epworth Healthcare, Melbourne, Australia
| | - Justin Peters
- Royal Melbourne Hospital, Melbourne, Australia
- Department of Surgery, University of Melbourne, Melbourne, Australia
- Epworth Healthcare, Melbourne, Australia
| | - Paul J. Neeson
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Niall M. Corcoran
- Royal Melbourne Hospital, Melbourne, Australia
- Department of Surgery, University of Melbourne, Melbourne, Australia
- Western Health, Melbourne, Australia
| | - Ben Tran
- Division of personalised oncology, Walter and Eliza Hall Institute, Melbourne, Australia
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| |
Collapse
|
14
|
Hamza FN, Mohammad KS. Immunotherapy in the Battle Against Bone Metastases: Mechanisms and Emerging Treatments. Pharmaceuticals (Basel) 2024; 17:1591. [PMID: 39770433 PMCID: PMC11679356 DOI: 10.3390/ph17121591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/20/2024] [Accepted: 11/23/2024] [Indexed: 01/11/2025] Open
Abstract
Bone metastases are a prevalent complication in advanced cancers, particularly in breast, prostate, and lung cancers, and are associated with severe skeletal-related events (SREs), including fractures, spinal cord compression, and debilitating pain. Conventional bone-targeted treatments like bisphosphonates and RANKL inhibitors (denosumab) reduce osteoclast-mediated bone resorption but do not directly impact tumor progression within the bone. This review focuses on examining the growing potential of immunotherapy in targeting the unique challenges posed by bone metastases. Even though immune checkpoint inhibitors (ICIs) have significantly changed cancer treatment, their impact on bone metastases appears limited because of the bone microenvironment's immunosuppressive traits, which include high levels of transforming growth factor-beta (TGFβ) and the immune-suppressing cells, such as regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs). This review underscores the investigation of combined therapeutic approaches that might ease these difficulties, such as the synergy of immune checkpoint inhibitors with agents aimed at bones (denosumab, bisphosphonates), chemotherapy, and radiotherapy, as well as the combination of immune checkpoint inhibitors with different immunotherapeutic methods, including CAR T-cell therapy. This review provides a comprehensive analysis of preclinical studies and clinical trials that show the synergistic potential of these combination approaches, which aim to both enhance immune responses and mitigate bone destruction. By offering an in-depth exploration of how these strategies can be tailored to the bone microenvironment, this review underscores the need for personalized treatment approaches. The findings emphasize the urgent need for further research into overcoming immune evasion in bone metastases, with the goal of improving patient survival and quality of life.
Collapse
Affiliation(s)
- Fatheia N. Hamza
- Department of Biochemistry, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
| | - Khalid Said Mohammad
- Department of Anatomy and Genetics, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| |
Collapse
|
15
|
Mastrogiovanni M, Donnadieu E, Pathak R, Di Bartolo V. Subverting Attachment to Prevent Attacking: Alteration of Effector Immune Cell Migration and Adhesion as a Key Mechanism of Tumor Immune Evasion. BIOLOGY 2024; 13:860. [PMID: 39596815 PMCID: PMC11591779 DOI: 10.3390/biology13110860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024]
Abstract
Cell adhesion regulates specific migratory patterns, location, communication with other cells, physical interactions with the extracellular matrix, and the establishment of effector programs. Proper immune control of cancer strongly depends on all these events occurring in a highly accurate spatiotemporal sequence. In response to cancer-associated inflammatory signals, effector immune cells navigating the bloodstream shift from their patrolling exploratory migration mode to establish adhesive interactions with vascular endothelial cells. This interaction enables them to extravasate through the blood vessel walls and access the cancer site. Further adhesive interactions within the tumor microenvironment (TME) are crucial for coordinating their distribution in situ and for mounting an effective anti-tumor immune response. In this review, we examine how alterations of adhesion cues in the tumor context favor tumor escape by affecting effector immune cell infiltration and trafficking within the TME. We discuss the mechanisms by which tumors directly modulate immune cell adhesion and migration patterns to affect anti-tumor immunity and favor tumor evasion. We also explore indirect immune escape mechanisms that involve modifications of TME characteristics, such as vascularization, immunogenicity, and structural topography. Finally, we highlight the significance of these aspects in designing more effective drug treatments and cellular immunotherapies.
Collapse
Affiliation(s)
- Marta Mastrogiovanni
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Emmanuel Donnadieu
- Equipe Labellisée Ligue Contre le Cancer, CNRS, INSERM, Institut Cochin, Université Paris Cité, F-75014 Paris, France;
| | - Rajiv Pathak
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Vincenzo Di Bartolo
- Immunoregulation Unit, Institut Pasteur, Université Paris Cité, F-75015 Paris, France;
| |
Collapse
|
16
|
Stiff PJ, Kertowidjojo E, Potkul RK, Banerjee S, Mehrotra S, Small W, Stack MS, Drakes ML. Cabozantinib inhibits tumor growth in mice with ovarian cancer. Am J Cancer Res 2024; 14:4788-4802. [PMID: 39553221 PMCID: PMC11560812 DOI: 10.62347/zswv1767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/07/2024] [Indexed: 11/19/2024] Open
Abstract
Ovarian cancer is usually detected in the advanced stages. Existing treatments for high grade serous ovarian cancer (HGSOC) are not adequate and approximately fifty percent of patients succumb to this disease and die within five years after diagnosis. We conducted pre-clinical studies in a mouse model of ovarian cancer to evaluate disease outcome in response to treatment with the multi-kinase inhibitor cabozantinib. Cabozantinib is a receptor tyrosine kinase inhibitor with multiple targets including vascular endothelial growth factor receptor-2 (VEGFR-2), associated with immune suppression in ovarian cancer. Mice (C57BL/6) were injected with ID8-RFP ovarian tumor cells and treated with cabozantinib. Studies investigated ascites development, tumor burden and regulation of anti-tumor immunity with treatment. Mice treated with cabozantinib had significantly decreased solid tumor burden and decreased malignant ascites as compared to untreated controls. Improved outcome in cabozantinib treated mice was associated with a significantly higher percentage of CD69 early activated T cells, a higher percentage of granzyme B secreting CD8 T cells, the enhanced release of cytokines and chemokines known to recruit CD8 T cells and amplify T cell function, as well as reduced VEGFR-2. Findings suggest that cabozantinib is an important clinical agent capable of improving ovarian cancer in mice potentially in part by priming the autologous immune system to promote anti-tumor immunity.
Collapse
Affiliation(s)
- Patrick J Stiff
- Department of Medicine, Cardinal Bernardin Cancer Center, Loyola University ChicagoMaywood, IL 60153, USA
| | | | - Ronald K Potkul
- Department of Obstetrics and Gynecology, Cardinal Bernardin Cancer Center, Loyola University ChicagoMaywood, IL 60153, USA
| | - Swarnali Banerjee
- Center for Data Science and Consulting, and Department of Mathematics and Statistics, Loyola University ChicagoChicago, IL 60660, USA
| | - Swati Mehrotra
- Department of Pathology, Edward Hines Jr. VA HospitalHines, IL 60141, USA
| | - William Small
- Department of Radiation Oncology, Cardinal Bernardin Cancer Center, Loyola University ChicagoMaywood, IL 60153, USA
| | - M Sharon Stack
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre DameSouth Bend, IN 46617, USA
| | - Maureen L Drakes
- Department of Medicine, Cardinal Bernardin Cancer Center, Loyola University ChicagoMaywood, IL 60153, USA
| |
Collapse
|
17
|
Chu T, Maksoudian C, Pedrotti S, Izci M, Perez Gilabert I, Koutsoumpou X, Sargsian A, Girmatsion H, Goncalves FR, Scheele CL, Manshian BB, Soenen SJ. Nanomaterial-Mediated Delivery of MLKL Plasmids Sensitizes Tumors to Immunotherapy and Reduces Metastases. Adv Healthc Mater 2024; 13:e2401306. [PMID: 39031098 DOI: 10.1002/adhm.202401306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/19/2024] [Indexed: 07/22/2024]
Abstract
Cancer immunotherapy has emerged as a promising approach for the induction of an antitumor response. While immunotherapy response rates are very high in some cancers, the efficacy against solid tumors remains limited caused by the presence of an immunosuppressive tumor microenvironment. Induction of immunogenic cell death (ICD) in the tumor can be used to boost immunotherapy response in solid cancers by eliciting the release of immune-stimulatory components. However, the delivery of components inducing ICD to tumor sites remains a challenge. Here, a novel delivery method is described for antitumor therapy based on MLKL (Mixed Lineage Kinase Domain-Like), a key mediator of necroptosis and inducer of ICD. A novel highly branched poly (β-amino ester)s (HPAEs) system is designed to efficiently deliver MLKL plasmid DNA to the tumor with consequent enhancement of immune antigen presentation for T cell responses in vitro, and improved antitumor response and prolonged survival in tumor-bearing mice. Combination of the therapy with anti-PD-1 treatment revealed significant changes in the composition of the tumor microenvironment, including increased infiltration of CD8+ T cells and tumor-associated lymphocytes. Overall, the HPAEs delivery system can enhance MLKL-based cancer immunotherapy and promote antitumor immune responses, providing a potential treatment to boost cancer immunotherapies.
Collapse
Affiliation(s)
- Tianjiao Chu
- Department of Imaging and Pathology, NanoHealth and Optical Imaging Group, KULeuven, Leuven, 3000, Belgium
| | - Christy Maksoudian
- Department of Imaging and Pathology, NanoHealth and Optical Imaging Group, KULeuven, Leuven, 3000, Belgium
| | - Stefania Pedrotti
- Laboratory of Intravital Microscopy and Dynamics of Tumor Progression, Department of Oncology, KULeuven, Leuven, 3000, Belgium
- Laboratory of Intravital Microscopy and Dynamics of Tumor Progression, VIB Center for Cancer Biology, Leuven, 3000, Belgium
| | - Mukaddes Izci
- Department of Imaging and Pathology, NanoHealth and Optical Imaging Group, KULeuven, Leuven, 3000, Belgium
| | - Irati Perez Gilabert
- Department of Imaging and Pathology, NanoHealth and Optical Imaging Group, KULeuven, Leuven, 3000, Belgium
| | - Xanthippi Koutsoumpou
- Laboratory of Intravital Microscopy and Dynamics of Tumor Progression, Department of Oncology, KULeuven, Leuven, 3000, Belgium
| | - Ara Sargsian
- Department of Imaging and Pathology, Translational Cell and Tissue Research Unit, KULeuven, Leuven, 3000, Belgium
| | - Hermon Girmatsion
- Department of Imaging and Pathology, Translational Cell and Tissue Research Unit, KULeuven, Leuven, 3000, Belgium
| | - Filipa Roque Goncalves
- Department of Imaging and Pathology, NanoHealth and Optical Imaging Group, KULeuven, Leuven, 3000, Belgium
| | - Colinda Lgj Scheele
- Laboratory of Intravital Microscopy and Dynamics of Tumor Progression, Department of Oncology, KULeuven, Leuven, 3000, Belgium
- Laboratory of Intravital Microscopy and Dynamics of Tumor Progression, VIB Center for Cancer Biology, Leuven, 3000, Belgium
| | - Bella B Manshian
- Department of Imaging and Pathology, Translational Cell and Tissue Research Unit, KULeuven, Leuven, 3000, Belgium
- Leuven Cancer Institute, KULeuven, Leuven, 3000, Belgium
| | - Stefaan J Soenen
- Department of Imaging and Pathology, NanoHealth and Optical Imaging Group, KULeuven, Leuven, 3000, Belgium
- Leuven Cancer Institute, KULeuven, Leuven, 3000, Belgium
| |
Collapse
|
18
|
Liu J, Zhu J. Progresses of T-cell-engaging bispecific antibodies in treatment of solid tumors. Int Immunopharmacol 2024; 138:112609. [PMID: 38971103 DOI: 10.1016/j.intimp.2024.112609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/08/2024]
Abstract
T-cell-engaging bispecific antibody (TCB) therapies have emerged as a promising immunotherapeutic approach, effectively redirecting effector T cells to selectively eliminate tumor cells. The therapeutic potential of TCBs has been well recognized, particularly with the approval of multiple TCBs in recent years for the treatment of hematologic malignancies as well as some solid tumors. However, TCBs encounter multiple challenges in treating solid tumors, such as on-target off-tumor toxicity, cytokine release syndrome (CRS), and T cell dysfunction within the immunosuppressive tumor microenvironment, all of which may impact their therapeutic efficacy. In this review, we summarize clinical data on TCBs for solid tumor treatment, highlight the challenges faced, and discuss potential solutions based on emerging strategies from current clinical and preclinical research. These solutions include TCB structural optimization, target selection, and combination strategies. This comprehensive analysis aims to guide the development of TCBs from design to clinical application, addressing the evolving landscape of cancer immunotherapy.
Collapse
Affiliation(s)
- Junjun Liu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianwei Zhu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; Jecho Laboratories, Inc., Frederick, MD 21704, USA.
| |
Collapse
|
19
|
Bauer M, Monecke A, Hackl H, Wilfer A, Jaekel N, Bläker H, Al-Ali HK, Seliger B, Wickenhauser C. Association of immune evasion in myeloid sarcomas with disease manifestation and patients' survival. Front Immunol 2024; 15:1396187. [PMID: 39170623 PMCID: PMC11336574 DOI: 10.3389/fimmu.2024.1396187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024] Open
Abstract
Introduction Myeloid sarcomas (MS) comprise rare extramedullary manifestations of myeloid neoplasms with poor patients' outcome. While the clinical relevance of the tumor microenvironment (TME) is well established in many malignancies, there exists limited information in MS. Methods The expression of the human leukocyte antigen class I (HLA-I) antigens, HLA-I antigen processing and presenting machinery (APM) components and the composition of the TME of 45 MS and paired bone marrow (BM) samples from two independent cohorts were assessed by immunohistochemistry, multispectral imaging, and RNA sequencing (RNAseq). Results A significant downregulation of the HLA-I heavy chain (HC; 67.5%) and ß2-microglobulin (ß2M; 64.8%), but an upregulation of HLA-G was found in MS compared to BM samples, which was confirmed in a publicly available dataset. Moreover, MS tumors showed a predominantly immune cell excluded TME with decreased numbers of tissue infiltrating lymphocytes (TILs) (9.5%) compared to paired BM (22.9%). RNAseq analysis of a subset of 10 MS patients with preserved and reduced HLA-I HC expression revealed 150 differentially expressed genes and a significantly reduced expression of inflammatory response genes was found in samples with preserved HLA-I expression. Furthermore, low HLA-I expression and low TIL numbers in the TME of MS cases were linked to an inferior patients' outcome. Discussion This study demonstrated a high prevalence of immune escape strategies in the pathogenesis and extramedullary spread of MS, which was also found in patients without evidence of any BM pathology, which yields the rational for the development of novel individually tailored therapies for MS patients.
Collapse
Affiliation(s)
- Marcus Bauer
- Institute of Pathology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Astrid Monecke
- Institute of Pathology, University Leipzig, Leipzig, Germany
| | - Hubert Hackl
- Institute of Bioinformatics, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | - Andreas Wilfer
- Institute of Pathology, Martin Luther University Halle-Wittenberg, Halle, Germany
- Krukenberg Cancer Center Halle, University Hospital Halle, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Nadja Jaekel
- Department of Hematology, University Hospital Halle, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Hendrik Bläker
- Institute of Pathology, University Leipzig, Leipzig, Germany
| | - Haifa Kathrin Al-Ali
- Krukenberg Cancer Center Halle, University Hospital Halle, Martin Luther University Halle-Wittenberg, Halle, Germany
- Department of Hematology, University Hospital Halle, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Barbara Seliger
- Medical Faculty, Martin Luther University Halle-Wittenberg, Halle, Germany
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
- Institute of Translational Immunology, Medical School “Theodor Fontane”, Brandenburg an der Havel, Germany
| | - Claudia Wickenhauser
- Institute of Pathology, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
20
|
Yu KX, Yuan WJ, Wang HZ, Li YX. Extracellular matrix stiffness and tumor-associated macrophage polarization: new fields affecting immune exclusion. Cancer Immunol Immunother 2024; 73:115. [PMID: 38693304 PMCID: PMC11063025 DOI: 10.1007/s00262-024-03675-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/12/2024] [Indexed: 05/03/2024]
Abstract
In the malignant progression of tumors, there is deposition and cross-linking of collagen, as well as an increase in hyaluronic acid content, which can lead to an increase in extracellular matrix stiffness. Recent research evidence have shown that the extracellular matrix plays an important role in angiogenesis, cell proliferation, migration, immunosuppression, apoptosis, metabolism, and resistance to chemotherapeutic by the alterations toward both secretion and degradation. The clinical importance of tumor-associated macrophage is increasingly recognized, and macrophage polarization plays a central role in a series of tumor immune processes through internal signal cascade, thus regulating tumor progression. Immunotherapy has gradually become a reliable potential treatment strategy for conventional chemotherapy resistance and advanced cancer patients, but the presence of immune exclusion has become a major obstacle to treatment effectiveness, and the reasons for their resistance to these approaches remain uncertain. Currently, there is a lack of exact mechanism on the regulation of extracellular matrix stiffness and tumor-associated macrophage polarization on immune exclusion. An in-depth understanding of the relationship between extracellular matrix stiffness, tumor-associated macrophage polarization, and immune exclusion will help reveal new therapeutic targets and guide the development of clinical treatment methods for advanced cancer patients. This review summarized the different pathways and potential molecular mechanisms of extracellular matrix stiffness and tumor-associated macrophage polarization involved in immune exclusion and provided available strategies to address immune exclusion.
Collapse
Affiliation(s)
- Ke-Xun Yu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Wei-Jie Yuan
- Department of Gastrointestinal Surgery, Xiangya Hospital of Central South University, Changsha, China
| | - Hui-Zhen Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yong-Xiang Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| |
Collapse
|
21
|
Wu D, Ding Z, Lu T, Chen Y, Zhang F, Lu S. DDR1-targeted therapies: current limitations and future potential. Drug Discov Today 2024; 29:103975. [PMID: 38580164 DOI: 10.1016/j.drudis.2024.103975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/22/2024] [Accepted: 03/29/2024] [Indexed: 04/07/2024]
Abstract
Discoidin domain receptor (DDR)-1 has a crucial role in regulating vital processes, including cell differentiation, proliferation, adhesion, migration, invasion, and matrix remodeling. Overexpression or activation of DDR1 in various pathological scenarios makes it a potential therapeutic target for the treatment of cancer, fibrosis, atherosclerosis, and neuropsychiatric, psychiatric, and neurodegenerative disorders. In this review, we summarize current therapeutic approaches targeting DDR1 from a medicinal chemistry perspective. Furthermore, we analyze factors other than issues of low selectivity and risk of resistance, contributing to the infrequent success of DDR1 inhibitors. The complex interplay between DDR1 and the extracellular matrix (ECM) necessitates additional validation, given that DDR1 might exhibit complex and synergistic interactions with other signaling molecules during ECM regulation. The mechanisms involved in DDR1 regulation in cancer and inflammation-related diseases also remain unknown.
Collapse
Affiliation(s)
- Donglin Wu
- School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Zihui Ding
- School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Tao Lu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Yadong Chen
- Laboratory of Molecular Design and Drug Discovery, China Pharmaceutical University, Nanjing 211198, China.
| | - Feng Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Shuai Lu
- School of Science, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
22
|
Mitra A, Kumar A, Amdare NP, Pathak R. Current Landscape of Cancer Immunotherapy: Harnessing the Immune Arsenal to Overcome Immune Evasion. BIOLOGY 2024; 13:307. [PMID: 38785789 PMCID: PMC11118874 DOI: 10.3390/biology13050307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Cancer immune evasion represents a leading hallmark of cancer, posing a significant obstacle to the development of successful anticancer therapies. However, the landscape of cancer treatment has significantly evolved, transitioning into the era of immunotherapy from conventional methods such as surgical resection, radiotherapy, chemotherapy, and targeted drug therapy. Immunotherapy has emerged as a pivotal component in cancer treatment, harnessing the body's immune system to combat cancer and offering improved prognostic outcomes for numerous patients. The remarkable success of immunotherapy has spurred significant efforts to enhance the clinical efficacy of existing agents and strategies. Several immunotherapeutic approaches have received approval for targeted cancer treatments, while others are currently in preclinical and clinical trials. This review explores recent progress in unraveling the mechanisms of cancer immune evasion and evaluates the clinical effectiveness of diverse immunotherapy strategies, including cancer vaccines, adoptive cell therapy, and antibody-based treatments. It encompasses both established treatments and those currently under investigation, providing a comprehensive overview of efforts to combat cancer through immunological approaches. Additionally, the article emphasizes the current developments, limitations, and challenges in cancer immunotherapy. Furthermore, by integrating analyses of cancer immunotherapy resistance mechanisms and exploring combination strategies and personalized approaches, it offers valuable insights crucial for the development of novel anticancer immunotherapeutic strategies.
Collapse
Affiliation(s)
- Ankita Mitra
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY 10016, USA
| | - Anoop Kumar
- Molecular Diagnostic Laboratory, National Institute of Biologicals, Noida 201309, Uttar Pradesh, India
| | - Nitin P. Amdare
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Rajiv Pathak
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| |
Collapse
|
23
|
Dicks LMT. Gut Bacteria Provide Genetic and Molecular Reporter Systems to Identify Specific Diseases. Int J Mol Sci 2024; 25:4431. [PMID: 38674014 PMCID: PMC11050607 DOI: 10.3390/ijms25084431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
With genetic information gained from next-generation sequencing (NGS) and genome-wide association studies (GWAS), it is now possible to select for genes that encode reporter molecules that may be used to detect abnormalities such as alcohol-related liver disease (ARLD), cancer, cognitive impairment, multiple sclerosis (MS), diabesity, and ischemic stroke (IS). This, however, requires a thorough understanding of the gut-brain axis (GBA), the effect diets have on the selection of gut microbiota, conditions that influence the expression of microbial genes, and human physiology. Bacterial metabolites such as short-chain fatty acids (SCFAs) play a major role in gut homeostasis, maintain intestinal epithelial cells (IECs), and regulate the immune system, neurological, and endocrine functions. Changes in butyrate levels may serve as an early warning of colon cancer. Other cancer-reporting molecules are colibactin, a genotoxin produced by polyketide synthetase-positive Escherichia coli strains, and spermine oxidase (SMO). Increased butyrate levels are also associated with inflammation and impaired cognition. Dysbiosis may lead to increased production of oxidized low-density lipoproteins (OX-LDLs), known to restrict blood vessels and cause hypertension. Sudden changes in SCFA levels may also serve as a warning of IS. Early signs of ARLD may be detected by an increase in regenerating islet-derived 3 gamma (REG3G), which is associated with changes in the secretion of mucin-2 (Muc2). Pro-inflammatory molecules such as cytokines, interferons, and TNF may serve as early reporters of MS. Other examples of microbial enzymes and metabolites that may be used as reporters in the early detection of life-threatening diseases are reviewed.
Collapse
Affiliation(s)
- Leon M T Dicks
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
24
|
de Vicente JC, Lequerica-Fernández P, Rodrigo JP, Rodríguez-Santamarta T, Blanco-Lorenzo V, Prieto-Fernández L, Corte-Torres D, Vallina A, Domínguez-Iglesias F, Álvarez-Teijeiro S, García-Pedrero JM. Lectin-like Transcript-1 (LLT1) Expression in Oral Squamous Cell Carcinomas: Prognostic Significance and Relationship with the Tumor Immune Microenvironment. Int J Mol Sci 2024; 25:4314. [PMID: 38673902 PMCID: PMC11050533 DOI: 10.3390/ijms25084314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/01/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Lectin-like transcript-1 (LLT1) expression is detected in different cancer types and is involved in immune evasion. The present study investigates the clinical relevance of tumoral and stromal LLT1 expression in oral squamous cell carcinoma (OSCC), and relationships with the immune infiltrate into the tumor immune microenvironment (TIME). Immunohistochemical analysis of LLT1 expression was performed in 124 OSCC specimens, together with PD-L1 expression and the infiltration of CD20+, CD4+, and CD8+ lymphocytes and CD68+ and CD163+-macrophages. Associations with clinicopathological variables, prognosis, and immune cell densities were further assessed. A total of 41 (33%) OSCC samples showed positive LLT1 staining in tumor cells and 55 (44%) positive LLT1 in tumor-infiltrating lymphocytes (TILs). Patients harboring tumor-intrinsic LLT1 expression exhibited poorer survival, suggesting an immunosuppressive role. Conversely, positive LLT1 expression in TILs was significantly associated with better disease-specific survival, and also an immune-active tumor microenvironment highly infiltrated by CD8+ T cells and M1/M2 macrophages. Furthermore, the combination of tumoral and stromal LLT1 was found to distinguish three prognostic categories (favorable, intermediate, and adverse; p = 0.029, Log-rank test). Together, these data demonstrate the prognostic relevance of tumoral and stromal LLT1 expression in OSCC, and its potential application to improve prognosis prediction and patient stratification.
Collapse
Affiliation(s)
- Juan C. de Vicente
- Department of Oral and Maxillofacial Surgery, Hospital Universitario Central de Asturias (HUCA), Carretera de Rubín s/n, 33011 Oviedo, Spain;
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Carretera de Rubín s/n, 33011 Oviedo, Spain; (P.L.-F.); (J.P.R.); (L.P.-F.); (S.Á.-T.)
- Department of Surgery, University of Oviedo, Julián Clavería s/n, 33006 Oviedo, Spain
| | - Paloma Lequerica-Fernández
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Carretera de Rubín s/n, 33011 Oviedo, Spain; (P.L.-F.); (J.P.R.); (L.P.-F.); (S.Á.-T.)
- Department of Biochemistry, Hospital Universitario Central de Asturias (HUCA), Carretera de Rubín s/n, 33011 Oviedo, Spain
| | - Juan P. Rodrigo
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Carretera de Rubín s/n, 33011 Oviedo, Spain; (P.L.-F.); (J.P.R.); (L.P.-F.); (S.Á.-T.)
- Department of Surgery, University of Oviedo, Julián Clavería s/n, 33006 Oviedo, Spain
- Department of Otolaryngology, Hospital Universitario Central de Asturias (HUCA), Carretera de Rubín s/n, 33011 Oviedo, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Av. Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Tania Rodríguez-Santamarta
- Department of Oral and Maxillofacial Surgery, Hospital Universitario Central de Asturias (HUCA), Carretera de Rubín s/n, 33011 Oviedo, Spain;
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Carretera de Rubín s/n, 33011 Oviedo, Spain; (P.L.-F.); (J.P.R.); (L.P.-F.); (S.Á.-T.)
| | - Verónica Blanco-Lorenzo
- Department of Pathology, Hospital Universitario Central de Asturias (HUCA), Carretera de Rubín s/n, 33011 Oviedo, Spain; (V.B.-L.); (A.V.)
| | - Llara Prieto-Fernández
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Carretera de Rubín s/n, 33011 Oviedo, Spain; (P.L.-F.); (J.P.R.); (L.P.-F.); (S.Á.-T.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Av. Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Daniela Corte-Torres
- Principado de Asturias Biobank, Hospital Universitario Central de Asturias (HUCA), Carretera de Rubín s/n, 33011 Oviedo, Spain;
- Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
| | - Aitana Vallina
- Department of Pathology, Hospital Universitario Central de Asturias (HUCA), Carretera de Rubín s/n, 33011 Oviedo, Spain; (V.B.-L.); (A.V.)
- Principado de Asturias Biobank, Hospital Universitario Central de Asturias (HUCA), Carretera de Rubín s/n, 33011 Oviedo, Spain;
- Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
| | | | - Saúl Álvarez-Teijeiro
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Carretera de Rubín s/n, 33011 Oviedo, Spain; (P.L.-F.); (J.P.R.); (L.P.-F.); (S.Á.-T.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Av. Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Juana M. García-Pedrero
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Carretera de Rubín s/n, 33011 Oviedo, Spain; (P.L.-F.); (J.P.R.); (L.P.-F.); (S.Á.-T.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Av. Monforte de Lemos 3-5, 28029 Madrid, Spain
| |
Collapse
|
25
|
Ram S, Mojtahedzadeh S, Aguilar JK, Coskran T, Powell EL, O'Neil SP. Quantitative performance assessment of Ultivue multiplex panels in formalin-fixed, paraffin-embedded human and murine tumor specimens. Sci Rep 2024; 14:8496. [PMID: 38605049 PMCID: PMC11009312 DOI: 10.1038/s41598-024-58372-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/28/2024] [Indexed: 04/13/2024] Open
Abstract
We present a rigorous validation strategy to evaluate the performance of Ultivue multiplex immunofluorescence panels. We have quantified the accuracy and precision of four different multiplex panels (three human and one mouse) in tumor specimens with varying levels of T cell density. Our results show that Ultivue panels are typically accurate wherein the relative difference in cell proportion between a multiplex image and a 1-plex image is less than 20% for a given biomarker. Ultivue panels exhibited relatively high intra-run precision (CV ≤ 25%) and relatively low inter-run precision (CV >> 25%) which can be remedied by using local intensity thresholding to gate biomarker positivity. We also evaluated the reproducibility of cell-cell distance estimates measured from multiplex images which show high intra- and inter-run precision. We introduce a new metric, multiplex labeling efficiency, which can be used to benchmark the overall fidelity of the multiplex data across multiple batch runs. Taken together our results provide a comprehensive characterization of Ultivue panels and offer practical guidelines for analyzing multiplex images.
Collapse
Affiliation(s)
- Sripad Ram
- Drug Safety Research and Development, Pfizer Inc., Groton, CT, USA.
| | | | | | - Timothy Coskran
- Drug Safety Research and Development, Pfizer Inc., Groton, CT, USA
| | - Eric L Powell
- Oncology Research and Development, Pfizer Inc., San Diego, CA, USA
| | - Shawn P O'Neil
- Drug Safety Research and Development, Pfizer Inc., Groton, CT, USA
| |
Collapse
|
26
|
Hirani P, McDermott J, Rajeeve V, Cutillas PR, Jones JL, Pennington DJ, Wight TN, Santamaria S, Alonge KM, Pearce OM. Versican Associates with Tumor Immune Phenotype and Limits T-cell Trafficking via Chondroitin Sulfate. CANCER RESEARCH COMMUNICATIONS 2024; 4:970-985. [PMID: 38517140 PMCID: PMC10989462 DOI: 10.1158/2767-9764.crc-23-0548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/02/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024]
Abstract
Immunotherapies for cancers of epithelial origin have limited efficacy, and a growing body of evidence links the composition of extracellular matrix (ECM) with the likelihood of a favorable response to treatment. The ECM may be considered an immunologic barrier, restricting the localization of cytotoxic immune cells to stromal areas and inhibiting their contact with tumor cells. Identifying ECM components of this immunologic barrier could provide targets that whether degraded in situ may support antitumor immunity and improve immunotherapy response. Using a library of primary triple-negative breast cancer tissues, we correlated CD8+ T-cell tumor contact with ECM composition and identified a proteoglycan, versican (VCAN), as a putative member of the immunologic barrier. Our analysis reveals that CD8+ T-cell contact with tumor associates with the location of VCAN expression, the specific glycovariant of VCAN [defined through the pattern of posttranslational attachments of glycosaminoglycans (GAG)], and the cell types that produce the variant. In functional studies, the isomers of chondroitin sulfate presented on VCAN have opposing roles being either supportive or inhibiting of T-cell trafficking, and removal of the GAGs ameliorates these effects on T-cell trafficking. Overall, we conclude that VCAN can either support or inhibit T-cell trafficking within the tumor microenvironment depending on the pattern of GAGs present, and that VCAN is a major component of the ECM immunologic barrier that defines the type of response to immunotherapy. SIGNIFICANCE The response to immunotherapy has been poor toward solid tumors despite immune cells infiltrating into the tumor. The ECM has been associated with impacting T-cell infiltration toward the tumor and in this article we have identified VCAN and its structural modification, chondroitin sulfate as having a key role in T-cell invasion.
Collapse
Affiliation(s)
- Priyanka Hirani
- Barts Cancer Institute, John Vane Science Centre, Queen Mary University of London, London, United Kingdom
| | - Jacqueline McDermott
- Department of Histopathology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Vinothini Rajeeve
- Barts Cancer Institute, John Vane Science Centre, Queen Mary University of London, London, United Kingdom
| | - Pedro R. Cutillas
- Barts Cancer Institute, John Vane Science Centre, Queen Mary University of London, London, United Kingdom
| | - J. Louise Jones
- Barts Cancer Institute, John Vane Science Centre, Queen Mary University of London, London, United Kingdom
| | - Daniel J. Pennington
- Centre for Immunobiology, Blizard Institute, Barts and the London Medical School, Queen Mary University of London, London, United Kingdom
| | - Thomas N. Wight
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington
| | - Salvatore Santamaria
- Department of Biochemical Sciences, School of Biosciences, Faculty of Health and Medical Sciences, Edward Jenner Building, University of Surrey, Surrey, United Kingdom
| | - Kimberly M. Alonge
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington
| | - Oliver M.T. Pearce
- Barts Cancer Institute, John Vane Science Centre, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
27
|
Rigamonti A, Viatore M, Polidori R, Rahal D, Erreni M, Fumagalli MR, Zanini D, Doni A, Putignano AR, Bossi P, Voulaz E, Alloisio M, Rossi S, Zucali PA, Santoro A, Balzano V, Nisticò P, Feuerhake F, Mantovani A, Locati M, Marchesi F. Integrating AI-Powered Digital Pathology and Imaging Mass Cytometry Identifies Key Classifiers of Tumor Cells, Stroma, and Immune Cells in Non-Small Cell Lung Cancer. Cancer Res 2024; 84:1165-1177. [PMID: 38315789 PMCID: PMC10982643 DOI: 10.1158/0008-5472.can-23-1698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/13/2023] [Accepted: 02/01/2024] [Indexed: 02/07/2024]
Abstract
Artificial intelligence (AI)-powered approaches are becoming increasingly used as histopathologic tools to extract subvisual features and improve diagnostic workflows. On the other hand, hi-plex approaches are widely adopted to analyze the immune ecosystem in tumor specimens. Here, we aimed at combining AI-aided histopathology and imaging mass cytometry (IMC) to analyze the ecosystem of non-small cell lung cancer (NSCLC). An AI-based approach was used on hematoxylin and eosin (H&E) sections from 158 NSCLC specimens to accurately identify tumor cells, both adenocarcinoma and squamous carcinoma cells, and to generate a classifier of tumor cell spatial clustering. Consecutive tissue sections were stained with metal-labeled antibodies and processed through the IMC workflow, allowing quantitative detection of 24 markers related to tumor cells, tissue architecture, CD45+ myeloid and lymphoid cells, and immune activation. IMC identified 11 macrophage clusters that mainly localized in the stroma, except for S100A8+ cells, which infiltrated tumor nests. T cells were preferentially localized in peritumor areas or in tumor nests, the latter being associated with better prognosis, and they were more abundant in highly clustered tumors. Integrated tumor and immune classifiers were validated as prognostic on whole slides. In conclusion, integration of AI-powered H&E and multiparametric IMC allows investigation of spatial patterns and reveals tissue relevant features with clinical relevance. SIGNIFICANCE Leveraging artificial intelligence-powered H&E analysis integrated with hi-plex imaging mass cytometry provides insights into the tumor ecosystem and can translate tumor features into classifiers to predict prognosis, genotype, and therapy response.
Collapse
Affiliation(s)
- Alessandra Rigamonti
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital; Rozzano (Milan), Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan; Milan, Italy
| | - Marika Viatore
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital; Rozzano (Milan), Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan; Milan, Italy
| | - Rebecca Polidori
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital; Rozzano (Milan), Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan; Milan, Italy
| | - Daoud Rahal
- Department of Pathology, IRCCS Humanitas Research Hospital; Rozzano (Milan), Italy
| | - Marco Erreni
- Unit of Advanced Optical Microscopy, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Science, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Maria Rita Fumagalli
- Unit of Advanced Optical Microscopy, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Damiano Zanini
- Unit of Advanced Optical Microscopy, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Andrea Doni
- Unit of Advanced Optical Microscopy, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Anna Rita Putignano
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital; Rozzano (Milan), Italy
| | - Paola Bossi
- Department of Pathology, IRCCS Humanitas Research Hospital; Rozzano (Milan), Italy
| | - Emanuele Voulaz
- Department of Biomedical Science, Humanitas University, Pieve Emanuele, Milan, Italy
- Division of Thoracic Surgery, IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
| | - Marco Alloisio
- Division of Thoracic Surgery, IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
| | - Sabrina Rossi
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
| | - Paolo Andrea Zucali
- Department of Biomedical Science, Humanitas University, Pieve Emanuele, Milan, Italy
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
| | - Armando Santoro
- Department of Biomedical Science, Humanitas University, Pieve Emanuele, Milan, Italy
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
| | - Vittoria Balzano
- Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Paola Nisticò
- Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | | | - Alberto Mantovani
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital; Rozzano (Milan), Italy
- Department of Biomedical Science, Humanitas University, Pieve Emanuele, Milan, Italy
- The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Massimo Locati
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital; Rozzano (Milan), Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan; Milan, Italy
| | - Federica Marchesi
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital; Rozzano (Milan), Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan; Milan, Italy
| |
Collapse
|
28
|
Gil-Jimenez A, van Dijk N, Vos JL, Lubeck Y, van Montfoort ML, Peters D, Hooijberg E, Broeks A, Zuur CL, van Rhijn BWG, Vis DJ, van der Heijden MS, Wessels LFA. Spatial relationships in the urothelial and head and neck tumor microenvironment predict response to combination immune checkpoint inhibitors. Nat Commun 2024; 15:2538. [PMID: 38514623 PMCID: PMC10957922 DOI: 10.1038/s41467-024-46450-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 02/28/2024] [Indexed: 03/23/2024] Open
Abstract
Immune checkpoint inhibitors (ICI) can achieve remarkable responses in urothelial cancer (UC), which may depend on tumor microenvironment (TME) characteristics. However, the relationship between the TME, usually characterized by immune cell density, and response to ICI is unclear. Here, we quantify the TME immune cell densities and spatial relationships (SRs) of 24 baseline UC samples, obtained before pre-operative combination ICI treatment, using multiplex immunofluorescence. We describe SRs by approximating the first nearest-neighbor distance distribution with a Weibull distribution and evaluate the association between TME metrics and ipilimumab+nivolumab response. Immune cell density does not discriminate between response groups. However, the Weibull SR metrics of CD8+ T cells or macrophages to their closest cancer cell positively associate with response. CD8+ T cells close to B cells are characteristic of non-response. We validate our SR response associations in a combination ICI cohort of head and neck tumors. Our data confirm that SRs, in contrast to density metrics, are strong biomarkers of response to pre-operative combination ICIs.
Collapse
Affiliation(s)
- Alberto Gil-Jimenez
- Department of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Nick van Dijk
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Joris L Vos
- Department of Head and Neck Surgery and Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Yoni Lubeck
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | - Dennis Peters
- Core Facility Molecular Pathology & Biobanking, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Erik Hooijberg
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Annegien Broeks
- Core Facility Molecular Pathology & Biobanking, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Charlotte L Zuur
- Department of Head and Neck Surgery and Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Otorhinolaryngology Head and Neck Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Bas W G van Rhijn
- Department of Urology, The Netherlands Cancer Institute, Amsterdam, Netherlands
- Department of Urology, Caritas St. Josef Medical Centre, University of Regensburg, Regensburg, Germany
| | - Daniel J Vis
- Department of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Michiel S van der Heijden
- Department of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Lodewyk F A Wessels
- Department of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
- Oncode Institute, Utrecht, the Netherlands.
- Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, the Netherlands.
| |
Collapse
|
29
|
Hu J, Ascierto P, Cesano A, Herrmann V, Marincola FM. Shifting the paradigm: engaging multicellular networks for cancer therapy. J Transl Med 2024; 22:270. [PMID: 38475820 PMCID: PMC10936124 DOI: 10.1186/s12967-024-05043-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/01/2023] [Indexed: 03/14/2024] Open
Abstract
Most anti-cancer modalities are designed to directly kill cancer cells deploying mechanisms of action (MOAs) centered on the presence of a precise target on cancer cells. The efficacy of these approaches is limited because the rapidly evolving genetics of neoplasia swiftly circumvents the MOA generating therapy-resistant cancer cell clones. Other modalities engage endogenous anti-cancer mechanisms by activating the multi-cellular network (MCN) surrounding neoplastic cells in the tumor microenvironment (TME). These modalities hold a better chance of success because they activate numerous types of immune effector cells that deploy distinct cytotoxic MOAs. This in turn decreases the chance of developing treatment-resistance. Engagement of the MCN can be attained through activation of immune effector cells that in turn kill cancer cells or when direct cancer killing is complemented by the production of proinflammatory factors that secondarily recruit and activate immune effector cells. For instance, adoptive cell therapy (ACT) supplements cancer cell killing with the release of homeostatic and pro-inflammatory cytokines by the immune cells and damage associated molecular patterns (DAMPs) by dying cancer cells. The latter phenomenon, referred to as immunogenic cell death (ICD), results in an exponential escalation of anti-cancer MOAs at the tumor site. Other approaches can also induce exponential cancer killing by engaging the MCN of the TME through the release of DAMPs and additional pro-inflammatory factors by dying cancer cells. In this commentary, we will review the basic principles that support emerging paradigms likely to significantly improve the efficacy of anti-cancer therapy.
Collapse
Affiliation(s)
- Joyce Hu
- Sonata Therapeutics, Watertown, MA, 02472, USA.
| | - Paolo Ascierto
- Cancer Immunotherapy and Innovative Therapy, National Tumor Institute, Fondazione G. Pascale, 80131, Naples, Italy
| | | | | | | |
Collapse
|
30
|
Zhang G, Wang N, Ma S, Tao P, Cai H. Comprehensive analysis of the effects of the cuprotosis-associated gene SLC31A1 on patient prognosis and tumor microenvironment in human cancer. Transl Cancer Res 2024; 13:714-737. [PMID: 38482443 PMCID: PMC10928633 DOI: 10.21037/tcr-23-1308] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2025]
Abstract
BACKGROUND Solute carrier family 31 (copper transporter), member 1 (SLC31A1) is a key factor in maintaining intracellular copper concentration and an important factor affecting cancer energy metabolism. Therefore, exploring the potential biological function and value of SLC31A1 could provide a new direction for the targeted therapy of tumors. METHODS This study assessed gene expression levels, survival, clinicopathology, gene mutations, methylation levels, the tumor mutational burden (TMB), microsatellite instability (MSI), and the immune cell infiltration of SLC31A1 in pan-cancer using the Tumor Immune Estimation Resource 2.0 (TIMER2.0), Gene Expression Profiling Interactive Analysis (GEPIA), University of Alabama at Birmingham CANcer (UALCAN) data analysis portal, and cBioPortal databases. To further understand the potential biological mechanisms of SLC31A1 in different cancers, single-cell level sequencing and a Gene Ontology/Kyoto Encyclopedia of Genes and Genomes (GO/KEGG) enrichment analysis of SLC31A1 were also performed. Finally, real-time quantitative polymerase chain reaction (RT-qPCR) and western blotting (WB) were used to validate the expression of SLC31A1 in cancers, such as gastric cancer. RESULTS SLC31A1 was expressed in most cancer tissues. In kidney renal clear cell carcinoma (KIRC), the high expression of SLC31A1 was associated with good overall survival (OS), while in adrenocortical carcinoma (ACC), breast invasive carcinoma (BRCA), lower grade glioma (LGG), mesothelioma (MESO), and skin cutaneous melanoma (SKCM), the low expression of SLC31A1 was associated with good OS. The highest frequency of SLC31A1 amplification was observed in ACC. In addition, missense mutations accounted for a major portion of the mutation types. The truncation mutation S105Y may be a putative cancer driver. SLC31A1 affected methylation levels in cancer and was associated with the TMB, MSI, and the level of infiltration of various immune cells. Additionally, the single-cell sequencing results showed that SLC31A1 was associated with multiple biological functions in cancer. Finally, the SLC31A1 enrichment analysis revealed that the SLC31A1-related genes were mainly enriched in the mitochondrial matrix and envelope vesicles. The RT-qPCR and WB results were consistent with the predicted results. CONCLUSIONS SLC31A1 may be a potential target related to cancer energy metabolism and may have prognostic value.
Collapse
Affiliation(s)
- Guiqian Zhang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
- General Surgery, Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumors, Gansu Provincial Hospital, Lanzhou, China
| | - Ning Wang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
| | - Shixun Ma
- General Surgery, Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumors, Gansu Provincial Hospital, Lanzhou, China
| | - Pengxian Tao
- General Surgery, Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumors, Gansu Provincial Hospital, Lanzhou, China
| | - Hui Cai
- General Surgery, Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumors, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
31
|
Demeule M, Currie JC, Charfi C, Zgheib A, Cousineau I, Lullier V, Béliveau R, Marsolais C, Annabi B. Sudocetaxel Zendusortide (TH1902) triggers the cGAS/STING pathway and potentiates anti-PD-L1 immune-mediated tumor cell killing. Front Immunol 2024; 15:1355945. [PMID: 38482021 PMCID: PMC10936008 DOI: 10.3389/fimmu.2024.1355945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/31/2024] [Indexed: 04/14/2024] Open
Abstract
The anticancer efficacy of Sudocetaxel Zendusortide (TH1902), a peptide-drug conjugate internalized through a sortilin-mediated process, was assessed in a triple-negative breast cancer-derived MDA-MB-231 immunocompromised xenograft tumor model where complete tumor regression was observed for more than 40 days after the last treatment. Surprisingly, immunohistochemistry analysis revealed high staining of STING, a master regulator in the cancer-immunity cycle. A weekly administration of TH1902 as a single agent in a murine B16-F10 melanoma syngeneic tumor model demonstrated superior tumor growth inhibition than did docetaxel. A net increase in CD45 leukocyte infiltration within TH1902-treated tumors, especially for tumor-infiltrating lymphocytes and tumor-associated macrophages was observed. Increased staining of perforin, granzyme B, and caspase-3 was suggestive of elevated cytotoxic T and natural killer cell activities. Combined TH1902/anti-PD-L1 treatment led to increases in tumor growth inhibition and median animal survival. TH1902 inhibited cell proliferation and triggered apoptosis and senescence in B16-F10 cells in vitro, while inducing several downstream effectors of the cGAS/STING pathway and the expression of MHC-I and PD-L1. This is the first evidence that TH1902 exerts its antitumor activity, in part, through modulation of the immune tumor microenvironment and that the combination of TH1902 with checkpoint inhibitors (anti-PD-L1) could lead to improved clinical outcomes.
Collapse
Affiliation(s)
| | | | | | - Alain Zgheib
- Laboratoire d’Oncologie Moléculaire, Département de Chimie, Université du Québec à Montréal, Montréal, QC, Canada
| | - Isabelle Cousineau
- Laboratoire d’Oncologie Moléculaire, Département de Chimie, Université du Québec à Montréal, Montréal, QC, Canada
| | - Véronique Lullier
- Laboratoire d’Oncologie Moléculaire, Département de Chimie, Université du Québec à Montréal, Montréal, QC, Canada
| | - Richard Béliveau
- Laboratoire d’Oncologie Moléculaire, Département de Chimie, Université du Québec à Montréal, Montréal, QC, Canada
| | | | - Borhane Annabi
- Laboratoire d’Oncologie Moléculaire, Département de Chimie, Université du Québec à Montréal, Montréal, QC, Canada
| |
Collapse
|
32
|
Mlynska A, Gibavičienė J, Kutanovaitė O, Senkus L, Mažeikaitė J, Kerševičiūtė I, Maskoliūnaitė V, Rupeikaitė N, Sabaliauskaitė R, Gaiževska J, Suveizdė K, Kraśko JA, Dobrovolskienė N, Paberalė E, Žymantaitė E, Pašukonienė V. Defining Melanoma Immune Biomarkers-Desert, Excluded, and Inflamed Subtypes-Using a Gene Expression Classifier Reflecting Intratumoral Immune Response and Stromal Patterns. Biomolecules 2024; 14:171. [PMID: 38397409 PMCID: PMC10886750 DOI: 10.3390/biom14020171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
The spatial distribution of tumor infiltrating lymphocytes (TILs) defines several histologically and clinically distinct immune subtypes-desert (no TILs), excluded (TILs in stroma), and inflamed (TILs in tumor parenchyma). To date, robust classification of immune subtypes still requires deeper experimental evidence across various cancer types. Here, we aimed to investigate, define, and validate the immune subtypes in melanoma by coupling transcriptional and histological assessments of the lymphocyte distribution in tumor parenchyma and stroma. We used the transcriptomic data from The Cancer Genome Atlas melanoma dataset to screen for the desert, excluded, and inflamed immune subtypes. We defined subtype-specific genes and used them to construct a subtype assignment algorithm. We validated the two-step algorithm in the qPCR data of real-world melanoma tumors with histologically defined immune subtypes. The accuracy of a classifier encompassing expression data of seven genes (immune response-related: CD2, CD53, IRF1, and CD8B; and stroma-related: COL5A2, TNFAIP6, and INHBA) in a validation cohort reached 79%. Our findings suggest that melanoma tumors can be classified into transcriptionally and histologically distinct desert, excluded, and inflamed subtypes. Gene expression-based algorithms can assist physicians and pathologists as biomarkers in the rapid assessment of a tumor immune microenvironment while serving as a tool for clinical decision making.
Collapse
Affiliation(s)
- Agata Mlynska
- National Cancer Institute, LT-08406 Vilnius, Lithuania; (J.G.); (O.K.); (R.S.); (N.D.); (E.P.); (V.P.)
- Faculty of Fundamental Sciences, Vilnius Gediminas Technical University, LT-10223 Vilnius, Lithuania
| | - Jolita Gibavičienė
- National Cancer Institute, LT-08406 Vilnius, Lithuania; (J.G.); (O.K.); (R.S.); (N.D.); (E.P.); (V.P.)
| | - Otilija Kutanovaitė
- National Cancer Institute, LT-08406 Vilnius, Lithuania; (J.G.); (O.K.); (R.S.); (N.D.); (E.P.); (V.P.)
| | - Linas Senkus
- National Cancer Institute, LT-08406 Vilnius, Lithuania; (J.G.); (O.K.); (R.S.); (N.D.); (E.P.); (V.P.)
| | - Julija Mažeikaitė
- National Cancer Institute, LT-08406 Vilnius, Lithuania; (J.G.); (O.K.); (R.S.); (N.D.); (E.P.); (V.P.)
| | - Ieva Kerševičiūtė
- Life Sciences Center, Vilnius University, LT-01513 Vilnius, Lithuania (N.R.)
| | - Vygantė Maskoliūnaitė
- Life Sciences Center, Vilnius University, LT-01513 Vilnius, Lithuania (N.R.)
- National Center of Pathology, LT-08406 Vilnius, Lithuania
| | - Neda Rupeikaitė
- Life Sciences Center, Vilnius University, LT-01513 Vilnius, Lithuania (N.R.)
| | - Rasa Sabaliauskaitė
- National Cancer Institute, LT-08406 Vilnius, Lithuania; (J.G.); (O.K.); (R.S.); (N.D.); (E.P.); (V.P.)
| | - Justina Gaiževska
- National Cancer Institute, LT-08406 Vilnius, Lithuania; (J.G.); (O.K.); (R.S.); (N.D.); (E.P.); (V.P.)
| | - Karolina Suveizdė
- National Cancer Institute, LT-08406 Vilnius, Lithuania; (J.G.); (O.K.); (R.S.); (N.D.); (E.P.); (V.P.)
| | - Jan Aleksander Kraśko
- National Cancer Institute, LT-08406 Vilnius, Lithuania; (J.G.); (O.K.); (R.S.); (N.D.); (E.P.); (V.P.)
- Faculty of Fundamental Sciences, Vilnius Gediminas Technical University, LT-10223 Vilnius, Lithuania
| | - Neringa Dobrovolskienė
- National Cancer Institute, LT-08406 Vilnius, Lithuania; (J.G.); (O.K.); (R.S.); (N.D.); (E.P.); (V.P.)
| | - Emilija Paberalė
- National Cancer Institute, LT-08406 Vilnius, Lithuania; (J.G.); (O.K.); (R.S.); (N.D.); (E.P.); (V.P.)
- Life Sciences Center, Vilnius University, LT-01513 Vilnius, Lithuania (N.R.)
| | - Eglė Žymantaitė
- National Cancer Institute, LT-08406 Vilnius, Lithuania; (J.G.); (O.K.); (R.S.); (N.D.); (E.P.); (V.P.)
| | - Vita Pašukonienė
- National Cancer Institute, LT-08406 Vilnius, Lithuania; (J.G.); (O.K.); (R.S.); (N.D.); (E.P.); (V.P.)
- Faculty of Fundamental Sciences, Vilnius Gediminas Technical University, LT-10223 Vilnius, Lithuania
| |
Collapse
|
33
|
Das S, Dey MK, Devireddy R, Gartia MR. Biomarkers in Cancer Detection, Diagnosis, and Prognosis. SENSORS (BASEL, SWITZERLAND) 2023; 24:37. [PMID: 38202898 PMCID: PMC10780704 DOI: 10.3390/s24010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/27/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024]
Abstract
Biomarkers are vital in healthcare as they provide valuable insights into disease diagnosis, prognosis, treatment response, and personalized medicine. They serve as objective indicators, enabling early detection and intervention, leading to improved patient outcomes and reduced costs. Biomarkers also guide treatment decisions by predicting disease outcomes and facilitating individualized treatment plans. They play a role in monitoring disease progression, adjusting treatments, and detecting early signs of recurrence. Furthermore, biomarkers enhance drug development and clinical trials by identifying suitable patients and accelerating the approval process. In this review paper, we described a variety of biomarkers applicable for cancer detection and diagnosis, such as imaging-based diagnosis (CT, SPECT, MRI, and PET), blood-based biomarkers (proteins, genes, mRNA, and peptides), cell imaging-based diagnosis (needle biopsy and CTC), tissue imaging-based diagnosis (IHC), and genetic-based biomarkers (RNAseq, scRNAseq, and spatial transcriptomics).
Collapse
Affiliation(s)
| | | | | | - Manas Ranjan Gartia
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA; (S.D.); (M.K.D.); (R.D.)
| |
Collapse
|
34
|
Heiser CN, Simmons AJ, Revetta F, McKinley ET, Ramirez-Solano MA, Wang J, Kaur H, Shao J, Ayers GD, Wang Y, Glass SE, Tasneem N, Chen Z, Qin Y, Kim W, Rolong A, Chen B, Vega PN, Drewes JL, Markham NO, Saleh N, Nikolos F, Vandekar S, Jones AL, Washington MK, Roland JT, Chan KS, Schürpf T, Sears CL, Liu Q, Shrubsole MJ, Coffey RJ, Lau KS. Molecular cartography uncovers evolutionary and microenvironmental dynamics in sporadic colorectal tumors. Cell 2023; 186:5620-5637.e16. [PMID: 38065082 PMCID: PMC10756562 DOI: 10.1016/j.cell.2023.11.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/23/2023] [Accepted: 11/02/2023] [Indexed: 12/18/2023]
Abstract
Colorectal cancer exhibits dynamic cellular and genetic heterogeneity during progression from precursor lesions toward malignancy. Analysis of spatial multi-omic data from 31 human colorectal specimens enabled phylogeographic mapping of tumor evolution that revealed individualized progression trajectories and accompanying microenvironmental and clonal alterations. Phylogeographic mapping ordered genetic events, classified tumors by their evolutionary dynamics, and placed clonal regions along global pseudotemporal progression trajectories encompassing the chromosomal instability (CIN+) and hypermutated (HM) pathways. Integrated single-cell and spatial transcriptomic data revealed recurring epithelial programs and infiltrating immune states along progression pseudotime. We discovered an immune exclusion signature (IEX), consisting of extracellular matrix regulators DDR1, TGFBI, PAK4, and DPEP1, that charts with CIN+ tumor progression, is associated with reduced cytotoxic cell infiltration, and shows prognostic value in independent cohorts. This spatial multi-omic atlas provides insights into colorectal tumor-microenvironment co-evolution, serving as a resource for stratification and targeted treatments.
Collapse
Affiliation(s)
- Cody N Heiser
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Alan J Simmons
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Frank Revetta
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Eliot T McKinley
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Marisol A Ramirez-Solano
- Department of Biostatistics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Jiawei Wang
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Harsimran Kaur
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Justin Shao
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Computer Science, Vanderbilt University, Nashville, TN 37235, USA
| | - Gregory D Ayers
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yu Wang
- Department of Biostatistics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Sarah E Glass
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Naila Tasneem
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Zhengyi Chen
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yan Qin
- Incendia Therapeutics, Inc., Boston, MA 02135, USA
| | - William Kim
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Andrea Rolong
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Bob Chen
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Paige N Vega
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Julia L Drewes
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nicholas O Markham
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Nabil Saleh
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Fotis Nikolos
- Department of Urology, Neal Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Simon Vandekar
- Department of Biostatistics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Angela L Jones
- Vanderbilt Technologies for Advanced Genomics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - M Kay Washington
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Joseph T Roland
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Keith S Chan
- Department of Urology, Neal Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA
| | | | - Cynthia L Sears
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Qi Liu
- Department of Biostatistics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Martha J Shrubsole
- Department of Medicine, Division of Epidemiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robert J Coffey
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Ken S Lau
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
35
|
Liang J, Zhu F, Cheng K, Ma N, Ma X, Feng Q, Xu C, Gao X, Wang X, Shi J, Zhao X, Nie G. Outer Membrane Vesicle-Based Nanohybrids Target Tumor-Associated Macrophages to Enhance Trained Immunity-Related Vaccine-Generated Antitumor Activity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2306158. [PMID: 37643537 DOI: 10.1002/adma.202306158] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/13/2023] [Indexed: 08/31/2023]
Abstract
Trained immunity refers to the innate immune system building memory-like features in response to subsequent infections and vaccinations. Compared with classical tumor vaccines, trained immunity-related vaccines (TIrV) are independent of tumor-specific antigens. Bacterial outer membrane vesicles (OMVs) contain an abundance of PAMPs and have the potential to act as TIrV-inducer, but face challenges in endotoxin tolerance, systemic delivery, long-term training, and trained tumor-associated macrophage (TAM)-mediated antitumor phagocytosis. Here, an OMV-based TIrV is developed, OMV nanohybrids (OMV-SIRPα@CaP/GM-CSF) for exerting vaccine-enhanced antitumor activity. In the bone marrow, GM-CSF-assisted OMVs train bone marrow progenitor cells and monocytes, which are inherited by TAMs. In tumor tissues, SIRPα-Fc-assisted OMVs trigger TAM-mediated phagocytosis. This TIrV can be identified by metabolic and epigenetic rewiring using transposase-accessible chromatin (ATAC) and transcriptome sequencing. Furthermore, it is found that the TIrV-mediated antitumor mechanism in the MC38 tumor model (TAM-hot and T cell-cold) is trained immunity and activated T cell response, whereas in the B16-F10 tumor model (T cell-hot and TAM-cold) is primarily mediated by trained immunity. This study not only develops and identifies OMV-based TIrV, but also investigates the trained immunity signatures and therapeutic mechanisms, providing a basis for further vaccination strategies.
Collapse
Affiliation(s)
- Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fei Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Keman Cheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Nana Ma
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Xiaotu Ma
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Qingqing Feng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Chen Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Xiaoyu Gao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Xinwei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Jian Shi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Xiao Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
36
|
Ye J, Guo W, Wang C, Egelston CA, D'Apuzzo M, Shankar G, Fakih MG, Lee PP. Peritumoral Immune-suppressive Mechanisms Impede Intratumoral Lymphocyte Infiltration into Colorectal Cancer Liver versus Lung Metastases. CANCER RESEARCH COMMUNICATIONS 2023; 3:2082-2095. [PMID: 37768208 PMCID: PMC10569153 DOI: 10.1158/2767-9764.crc-23-0212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/19/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023]
Abstract
Patients with microsatellite stable (MSS) colorectal cancer with liver metastases are resistant to immune checkpoint inhibitor (ICI) therapy, while about one-third of patients with colorectal cancer without liver metastases, particularly those with lung-only metastases, respond to ICI. We analyzed primary colorectal cancer tumors and major metastatic sites (liver, lung, peritoneal) using multiplex immunofluorescence and whole-slide spatial analyses to identify variations in immune contexture and regional localization within the tumor microenvironment. While levels of T and B cells within peritumoral regions were similar, their levels were significantly lower within the tumor core of liver and peritoneal metastases compared with lung metastases. In contrast, antigen-presenting cells (APC) and APC-T cell interactions were more abundant in all regions of lung metastases. We also identified an abundance of lymphoid aggregates throughout lung metastases, but these were present only within peritumoral regions of liver and peritoneal metastases. Larger lymphoid aggregates consistent with features of tertiary lymphoid structures were observed within or adjacent to primary tumors, but not metastatic lesions. Our findings were validated using NanoString GeoMx DSP, which further showed that liver metastases had higher expression of immune-suppressive markers, while lung metastases showed higher proinflammatory activity and T-cell activation markers. Peritoneal metastases demonstrated higher expression of cancer-associated fibroblast-related proteins and upregulated PD-1/PD-L1 signaling molecules. Our results demonstrate that functional status and spatial distribution of immune cells vary significantly across different metastatic sites. These findings suggest that metastatic site-dependent immune contexture may underlie discordant responses to ICI therapy in patients with MSS colorectal cancer. SIGNIFICANCE Our results demonstrate that functional status and spatial distribution of immune cells vary significantly across different metastatic sites in MSS colorectal cancer. These findings suggest that metastatic site-dependent immune contexture may underlie discordant responses to ICI therapy in patients with MSS colorectal cancer.
Collapse
Affiliation(s)
- Jian Ye
- Department of Immuno-Oncology, Beckman Research Institute of the City of Hope, Duarte, California
| | - Weihua Guo
- Department of Immuno-Oncology, Beckman Research Institute of the City of Hope, Duarte, California
| | - Chongkai Wang
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California
| | - Colt A. Egelston
- Department of Immuno-Oncology, Beckman Research Institute of the City of Hope, Duarte, California
| | - Massimo D'Apuzzo
- Department of Pathology, City of Hope National Medical Center, Duarte, California
| | | | - Marwan G. Fakih
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California
| | - Peter P. Lee
- Department of Immuno-Oncology, Beckman Research Institute of the City of Hope, Duarte, California
| |
Collapse
|
37
|
Stiff PJ, Mehrotra S, Potkul RK, Banerjee S, Walker C, Drakes ML. Selinexor in Combination with Decitabine Attenuates Ovarian Cancer in Mice. Cancers (Basel) 2023; 15:4541. [PMID: 37760508 PMCID: PMC10526280 DOI: 10.3390/cancers15184541] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND High-grade serous ovarian cancer is a lethal gynecologic disease. Conventional therapies, such as platinum-based chemotherapy, are rendered inadequate for disease management as most advanced disease patients develop resistance to this therapy and soon relapse, leading to poor prognosis. Novel immunotherapy and targeted therapy are currently under investigation as treatment options for ovarian cancer, but so far with little success. Epigenetic changes, such as aberrant DNA methylation, have been reported in resistance to platinum-based therapy. Decitabine is a hypomethylating agent which is effective against platinum-resistant disease and also exhibits several anti-tumor immune functions. Selinexor is a selective inhibitor of nuclear protein export. It restored platinum sensitivity in patient-derived ovarian cancer cell lines and is currently in clinical trials for the treatment of platinum-resistant ovarian cancer. We hypothesized that these two agents used in combination could elicit more potent anti-tumor immune responses in vivo than either agent used alone. METHODS These studies were designed to investigate the efficacy of these two agents used in combination to treat ovarian cancer by assessing murine models for changes in disease pathology and in anti-tumor responses. RESULTS Decitabine priming followed by selinexor treatment significantly limited ascites formation and tumor size. This combination of agents also promoted T cell effector function as measured by granzyme B secretion. Treatment of mice with decitabine and selinexor led to the significant release of a broader range of macrophage and T cell cytokines and chemokines above control PBS and vehicle and above decitabine or selinexor treatment alone. CONCLUSIONS These results reveal crucial information for the design of clinical trials which may advance therapy outcomes in ovarian cancer.
Collapse
Affiliation(s)
- Patrick J. Stiff
- Cardinal Bernardin Cancer Center, Department of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | | | - Ronald K. Potkul
- Department of Obstetrics and Gynecology, Loyola University Chicago, Maywood, IL 60153, USA
| | - Swarnali Banerjee
- Department of Mathematics and Statistics, Loyola University Chicago, Chicago, IL 60660, USA
| | | | - Maureen L. Drakes
- Cardinal Bernardin Cancer Center, Department of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| |
Collapse
|
38
|
Xu Z, Zheng T, Zheng Z, Jiang W, Huang L, Deng K, Yuan L, Qin F, Sun Y, Qin J, Li S. TAGAP expression influences CD4+ T cell differentiation, immune infiltration, and cytotoxicity in LUAD through the STAT pathway: implications for immunotherapy. Front Immunol 2023; 14:1224340. [PMID: 37744350 PMCID: PMC10511754 DOI: 10.3389/fimmu.2023.1224340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Background T-cell Activation GTPase Activating Protein (TAGAP) plays a role in immune cell regulation. This study aimed to investigate TAGAP's expression and its potential impact on CD4+ T cell function and prognosis in lung adenocarcinoma (LUAD). Methods We analyzed TAGAP expression and its correlation with immune infiltration and clinical data in LUAD patients using multiple datasets, including The Cancer Genome Atlas (TCGA-LUAD), Gene Expression Omnibus (GEO), and scRNA-seq datasets. In vitro and in vivo experiments were conducted to explore the role of TAGAP in CD4+ T cell function, chemotaxis, and cytotoxicity. Results TAGAP expression was significantly lower in LUAD tissues compared to normal tissues, and high TAGAP expression correlated with better prognosis in LUAD patients. TAGAP was positively correlated with immune/stromal/ESTIMATE scores and immune cell infiltration in LUAD. Single-cell RNA sequencing revealed that TAGAP was primarily distributed in CD4+/CD8+ T cells. In vitro experiments showed that TAGAP overexpression enhanced CD4+ T cell cytotoxicity, proliferation, and chemotaxis. Gene Set Enrichment Analysis (GSEA) indicated that TAGAP was enriched in the JAK-STAT signaling pathway. In vivo experiments in a xenograft tumor model demonstrated that TAGAP overexpression suppressed tumor growth and promoted CD4+ T cell cytotoxicity. Conclusions TAGAP influences CD4+ T cell differentiation and function in LUAD through the STAT pathway, promoting immune infiltration and cytotoxicity. This study provides a scientific basis for developing novel LUAD immunotherapy strategies and exploring new therapeutic targets.
Collapse
Affiliation(s)
- Zhanyu Xu
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Tiaozhan Zheng
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Zhiwen Zheng
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Wei Jiang
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Liuliu Huang
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Kun Deng
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Liqiang Yuan
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Fanglu Qin
- School of Information and Management, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yu Sun
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Junqi Qin
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Shikang Li
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
39
|
Gonzàlez-Farré M, Gibert J, Santiago-Díaz P, Menéndez S, Monzonis X, Olivares F, Riera X, López D, Torner A, Casado B, Bellosillo B, Lloveras B, Casadevall D, Rovira A, Servitja S, Albanell J, Vázquez I, Comerma L. Characterization and spatial distribution of the immune cell infiltrate in triple-negative breast cancer: a novel classification based on plasma cells and CD8+ T cells. Hum Pathol 2023; 139:91-105. [PMID: 37517596 DOI: 10.1016/j.humpath.2023.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
Stromal tumor-infiltrating lymphocytes (sTILs) are a robust prognostic and predictive biomarker in triple-negative breast carcinoma. However, the sTIL compartment comprises different cell populations. The aim of the study is to characterize the distribution of T cells (CD3+ and CD8+), B cells, and plasma cells and explore their association with outcome in the surgical specimen of 62 patients. Furthermore, programmed death ligand 1 expression and the presence of tertiary lymphoid structures (TLSs) are explored. Patients with higher sTILs achieve better progression-free survival (PFS) (P = .0013), and tumors have more plasma cells in the infiltrate. Specifically, higher counts of T cells (both CD3+ and CD8+) have better PFS (P = .002 and P = .0086, respectively) as it is observed in tumors with higher infiltration of CD8+ T cells in the tumor core (P = .035). Higher infiltration by B cells and plasma cells shows a positive tendency toward increased PFS (P = .06 and P = .058). Programmed death ligand 1 (SP142) is positive in 56% of tumors. Tumors with at least 1 TLS (42%) show higher CD8+ T cell infiltration in the tumor core and the sTIL value doubles compared to tumors devoid of TLSs [sTIL mean: 36 ± 11% and 18 ± 5% (CI [Confidence Interval]: 95%), respectively]. Our study demonstrates that the characterization of the immune cell infiltration is as relevant as its distribution. Moreover, the importance of considering different immune cell types for classification is emphasized. Therefore, a new classification of triple-negative breast carcinoma immune infiltration with CD8+ T cell and plasma cell densities in the tumor core and infiltrative margin is proposed.
Collapse
Affiliation(s)
- Mònica Gonzàlez-Farré
- Department of Pathology, Hospital del Mar, 08003 Barcelona, Spain; Cancer Research Program, IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain.
| | - Joan Gibert
- Department of Pathology, Hospital del Mar, 08003 Barcelona, Spain; Cancer Research Program, IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain
| | | | - Silvia Menéndez
- Cancer Research Program, IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain
| | - Xavier Monzonis
- Department of Medical Oncology, Hospital del Mar, 08003 Barcelona, Spain
| | | | - Xènia Riera
- Department of Pathology, Hospital del Mar, 08003 Barcelona, Spain
| | - David López
- Department of Pathology, Hospital del Mar, 08003 Barcelona, Spain
| | - Ariadna Torner
- Department of Pathology, Hospital del Mar, 08003 Barcelona, Spain
| | - Beatriz Casado
- Department of Pathology, Hospital del Mar, 08003 Barcelona, Spain
| | - Beatriz Bellosillo
- Department of Pathology, Hospital del Mar, 08003 Barcelona, Spain; Cancer Research Program, IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain; Department of Medicine and Life Sciences (MELIS), University Pompeu Fabra, Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Belén Lloveras
- Department of Pathology, Hospital del Mar, 08003 Barcelona, Spain; Cancer Research Program, IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain; Department of Medicine and Life Sciences (MELIS), University Pompeu Fabra, Doctor Aiguader 88, 08003 Barcelona, Spain
| | - David Casadevall
- Cancer Research Program, IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain
| | - Ana Rovira
- Cancer Research Program, IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain; Center for Biomedical Network Research on Cancer (CIBERONC), 28029 Madrid, Spain
| | - Sònia Servitja
- Cancer Research Program, IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain; Department of Medical Oncology, Hospital del Mar, 08003 Barcelona, Spain
| | - Joan Albanell
- Cancer Research Program, IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain; Department of Medical Oncology, Hospital del Mar, 08003 Barcelona, Spain; Center for Biomedical Network Research on Cancer (CIBERONC), 28029 Madrid, Spain; Department of Medicine and Life Sciences (MELIS), University Pompeu Fabra, Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Ivonne Vázquez
- Department of Pathology, Hospital del Mar, 08003 Barcelona, Spain
| | - Laura Comerma
- Department of Pathology, Hospital del Mar, 08003 Barcelona, Spain; Cancer Research Program, IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain
| |
Collapse
|
40
|
Fu X, Sahai E, Wilkins A. Application of digital pathology-based advanced analytics of tumour microenvironment organisation to predict prognosis and therapeutic response. J Pathol 2023; 260:578-591. [PMID: 37551703 PMCID: PMC10952145 DOI: 10.1002/path.6153] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/25/2023] [Accepted: 06/07/2023] [Indexed: 08/09/2023]
Abstract
In recent years, the application of advanced analytics, especially artificial intelligence (AI), to digital H&E images, and other histological image types, has begun to radically change how histological images are used in the clinic. Alongside the recognition that the tumour microenvironment (TME) has a profound impact on tumour phenotype, the technical development of highly multiplexed immunofluorescence platforms has enhanced the biological complexity that can be captured in the TME with high precision. AI has an increasingly powerful role in the recognition and quantitation of image features and the association of such features with clinically important outcomes, as occurs in distinct stages in conventional machine learning. Deep-learning algorithms are able to elucidate TME patterns inherent in the input data with minimum levels of human intelligence and, hence, have the potential to achieve clinically relevant predictions and discovery of important TME features. Furthermore, the diverse repertoire of deep-learning algorithms able to interrogate TME patterns extends beyond convolutional neural networks to include attention-based models, graph neural networks, and multimodal models. To date, AI models have largely been evaluated retrospectively, outside the well-established rigour of prospective clinical trials, in part because traditional clinical trial methodology may not always be suitable for the assessment of AI technology. However, to enable digital pathology-based advanced analytics to meaningfully impact clinical care, specific measures of 'added benefit' to the current standard of care and validation in a prospective setting are important. This will need to be accompanied by adequate measures of explainability and interpretability. Despite such challenges, the combination of expanding datasets, increased computational power, and the possibility of integration of pre-clinical experimental insights into model development means there is exciting potential for the future progress of these AI applications. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Xiao Fu
- Tumour Cell Biology LaboratoryThe Francis Crick InstituteLondonUK
- Biomolecular Modelling LaboratoryThe Francis Crick InstituteLondonUK
| | - Erik Sahai
- Tumour Cell Biology LaboratoryThe Francis Crick InstituteLondonUK
| | - Anna Wilkins
- Tumour Cell Biology LaboratoryThe Francis Crick InstituteLondonUK
- Division of Radiotherapy and ImagingInstitute of Cancer ResearchLondonUK
- Royal Marsden Hospitals NHS TrustLondonUK
| |
Collapse
|
41
|
Caponio VCA, Zhurakivska K, Lo Muzio L, Troiano G, Cirillo N. The Immune Cells in the Development of Oral Squamous Cell Carcinoma. Cancers (Basel) 2023; 15:3779. [PMID: 37568595 PMCID: PMC10417065 DOI: 10.3390/cancers15153779] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 08/13/2023] Open
Abstract
A still unresolved issue surrounding tumor formation concerns the role that the immune system plays in preventing the formation and progression of neoplasia, including oral squamous cell carcinoma (OSCC). Antitumor immunity has historically been seen as a critical barrier for cancer cells to develop, grow and spread, and this can be modulated using immunotherapies to achieve antitumor clinical responses. However, it has recently become clear that tumor-associated immunity, particularly the inflammatory microenvironment, has the paradoxical effect of enhancing tumorigenesis and progression. In this review, we discuss the multifaceted function of infiltrating immune cells in suppressing or promoting premalignancy and cancer. In particular, we report on the evidence supporting a role for T lymphocytes, dendritic cells, macrophages, and neutrophils in the development and progression of oral potentially malignant disorders (OPMD) and OSCC. We also draw attention to the clinical relevance of immune cell phenotypes and associated molecules for use as biomarkers and to the translatability of current research findings to improve classification systems and precision medicine in patients with OSCC.
Collapse
Affiliation(s)
- Vito Carlo Alberto Caponio
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (V.C.A.C.); (K.Z.); (L.L.M.); (G.T.)
| | - Khrystyna Zhurakivska
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (V.C.A.C.); (K.Z.); (L.L.M.); (G.T.)
| | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (V.C.A.C.); (K.Z.); (L.L.M.); (G.T.)
| | - Giuseppe Troiano
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (V.C.A.C.); (K.Z.); (L.L.M.); (G.T.)
| | - Nicola Cirillo
- Melbourne Dental School, The University of Melbourne, Melbourne, VIC 3010, Australia
- School of Dentistry, University of Jordan, Amman 11942, Jordan
| |
Collapse
|
42
|
Fasching PA, Szeto C, Denkert C, Benz S, Weber K, Spilman P, Budczies J, Schneeweiss A, Stickeler E, Schmatloch S, Jackisch C, Karn T, Sinn HP, Warm M, van Mackelenbergh M, Rabizadeh S, Schem C, Heinmöller E, Mueller V, Marmé F, Soon-Shiong P, Nekljudova V, Untch M, Loibl S. Inferred Immune-Cell Activity Is an Independent Predictor of HER2-Negative Breast Cancer Prognosis and Response to Paclitaxel-Based Therapy in the GeparSepto Trial. Clin Cancer Res 2023; 29:2456-2465. [PMID: 37014668 PMCID: PMC10320466 DOI: 10.1158/1078-0432.ccr-22-2213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/13/2022] [Accepted: 03/31/2023] [Indexed: 04/05/2023]
Abstract
PURPOSE Tumor microenvironment (TME) immune markers have been correlated with both response to neoadjuvant therapy and prognosis in patients with breast cancer. Here, immune-cell activity of breast cancer tumors was inferred by expression-based analysis to determine if it is prognostic and/or predictive of response to neoadjuvant paclitaxel-based therapy in the GeparSepto (G7) trial (NCT01583426). EXPERIMENTAL DESIGN Pre-study biopsies from 279 patients with HER2-negative breast cancer in the G7 trial underwent RNA-seq-based profiling of 104 immune-cell-specific genes to assess inferred Immune Cell Activity (iICA) of 23 immune-cell types. Hierarchical clustering was used to classify tumors as iICA "hot," "warm," or "cold" by comparison of iICA in the G7 cohort relative to that of 1,467 samples from a tumor database established by Nantomics LLC. Correlations between iICA cluster, pathology-assessed tumor-infiltrating lymphocytes (TIL), and hormone receptor (HR) status for pathologic complete response (pCR), disease-free survival (DFS), and overall survival (OS) were determined. RESULTS iICA cluster correlated with TIL levels. The highest pCR rates were observed in hot cluster tumors, and those with relatively higher TILs. Greater inferred activity of several T-cell types was significantly associated with pCR and survival. DFS and OS were prolonged in patients with hot or warm cluster tumors, the latter particularly for HR negative tumors, even if TILs were relatively low. CONCLUSIONS Overall, TIL level better predicted pCR, but iICA cluster better predicted survival. Differences in associations between TILs, cluster, pCR, and survival were observed for HR-positive tumors versus HR-negative tumors, suggesting expanded study of the implication of these findings is warranted.
Collapse
Affiliation(s)
- Peter A. Fasching
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-EMN, Erlangen, Germany
| | | | - Carsten Denkert
- Institute for Pathology, Philipps University of Marburg, Marburg, Germany
| | | | | | | | - Jan Budczies
- Institute for Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Andreas Schneeweiss
- National Center for Tumor Diseases, Heidelberg University Hospital, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elmar Stickeler
- Department of Gynecology and Obstetrics, University Hospital, RWTH Aachen, Germany
| | | | - Christian Jackisch
- Department of Gynecology and Obstetrics, Sana Hospital Offenbach, Offenbach, Germany
| | - Thomas Karn
- Department of Gynecology and Obstetrics, Goethe University Frankfurt, UCT-Frankfurt-Marburg, Frankfurt, Germany
| | - Hans Peter Sinn
- Division of Gynecopathology, Institute for Pathology, University Hospital Heidelberg, Germany
| | | | - Marion van Mackelenbergh
- University Hospital Schleswig-Holstein, Clinic for Gynecology and Obstetrics, Schleswig-Holstein, Germany
| | | | | | | | - Volkmar Mueller
- Department of Gynecology and Obstetrics, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Frederik Marmé
- Department of Gynecology and Obstetrics, University Hospital Mannheim, Mannheim, Germany
| | | | | | | | | |
Collapse
|
43
|
Shao Y, Wang Y, Su R, Pu W, Chen S, Fu L, Yu H, Qiu Y. Dual identity of tumor-associated macrophage in regulated cell death and oncotherapy. Heliyon 2023; 9:e17582. [PMID: 37449180 PMCID: PMC10336529 DOI: 10.1016/j.heliyon.2023.e17582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/25/2023] [Accepted: 05/31/2023] [Indexed: 07/18/2023] Open
Abstract
Tumor-associated macrophage (TAM) affects the intrinsic properties of tumor cells and the tumor microenvironment (TME), which can stimulate tumor cell proliferation, migration, and genetic instability, and macrophage diversity includes the diversity of tumors with different functional characteristics. Macrophages are now a central drug target in various diseases, especially in the TME, which, as "tumor promoters" and "immunosuppressors", have different responsibilities during tumor development and accompany by significant dynamic alterations in various subpopulations. Remodelling immunosuppression of TME and promotion of pre-existing antitumor immune responses is critical by altering TAM polarization, which is relevant to the efficacy of immunotherapy, and uncovering the exact mechanism of action of TAMs and identifying their specific targets is vital to optimizing current immunotherapies. Hence, this review aims to reveal the triadic interactions of macrophages with programmed death and oncotherapy, and to integrate certain relationships in cancer treatment.
Collapse
Affiliation(s)
- Yingying Shao
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Yu Wang
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Ranran Su
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Weiling Pu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Sibao Chen
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen, China
- Department of Applied Biology and Chemical Technology, Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong, China
| | - Leilei Fu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Haiyang Yu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Yuling Qiu
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| |
Collapse
|
44
|
Wu X, Yan H, Qiu M, Qu X, Wang J, Xu S, Zheng Y, Ge M, Yan L, Liang L. Comprehensive characterization of tumor microenvironment in colorectal cancer via molecular analysis. eLife 2023; 12:e86032. [PMID: 37267125 PMCID: PMC10238095 DOI: 10.7554/elife.86032] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 05/10/2023] [Indexed: 06/04/2023] Open
Abstract
Colorectal cancer (CRC) remains a challenging and deadly disease with high tumor microenvironment (TME) heterogeneity. Using an integrative multi-omics analysis and artificial intelligence-enabled spatial analysis of whole-slide images, we performed a comprehensive characterization of TME in colorectal cancer (CCCRC). CRC samples were classified into four CCCRC subtypes with distinct TME features, namely, C1 as the proliferative subtype with low immunogenicity; C2 as the immunosuppressed subtype with the terminally exhausted immune characteristics; C3 as the immune-excluded subtype with the distinct upregulation of stromal components and a lack of T cell infiltration in the tumor core; and C4 as the immunomodulatory subtype with the remarkable upregulation of anti-tumor immune components. The four CCCRC subtypes had distinct histopathologic and molecular characteristics, therapeutic efficacy, and prognosis. We found that the C1 subtype may be suitable for chemotherapy and cetuximab, the C2 subtype may benefit from a combination of chemotherapy and bevacizumab, the C3 subtype has increased sensitivity to the WNT pathway inhibitor WIKI4, and the C4 subtype is a potential candidate for immune checkpoint blockade treatment. Importantly, we established a simple gene classifier for accurate identification of each CCCRC subtype. Collectively our integrative analysis ultimately established a holistic framework to thoroughly dissect the TME of CRC, and the CCCRC classification system with high biological interpretability may contribute to biomarker discovery and future clinical trial design.
Collapse
Affiliation(s)
- Xiangkun Wu
- Department of Pathology, Nanfang Hospital/School of Basic Medical Sciences, Southern Medical UniversityGuangzhouChina
- Department of Pathology and Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical UniversityGuangzhouChina
| | - Hong Yan
- Department of Pathology, Nanfang Hospital/School of Basic Medical Sciences, Southern Medical UniversityGuangzhouChina
- Department of Pathology and Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical UniversityGuangzhouChina
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
| | - Mingxing Qiu
- Department of Pathology, Nanfang Hospital/School of Basic Medical Sciences, Southern Medical UniversityGuangzhouChina
- Department of Pathology and Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical UniversityGuangzhouChina
| | - Xiaoping Qu
- Nanjing Simcere Medical Laboratory Science Co., LtdNanjingChina
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., LtdNanjingChina
| | - Jing Wang
- Department of Pathology, Nanfang Hospital/School of Basic Medical Sciences, Southern Medical UniversityGuangzhouChina
- Department of Pathology and Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical UniversityGuangzhouChina
| | - Shaowan Xu
- Department of Pathology, Nanfang Hospital/School of Basic Medical Sciences, Southern Medical UniversityGuangzhouChina
- Department of Pathology and Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical UniversityGuangzhouChina
| | - Yiran Zheng
- Nanjing Simcere Medical Laboratory Science Co., LtdNanjingChina
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., LtdNanjingChina
| | - Minghui Ge
- Nanjing Simcere Medical Laboratory Science Co., LtdNanjingChina
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., LtdNanjingChina
| | - Linlin Yan
- Nanjing Simcere Medical Laboratory Science Co., LtdNanjingChina
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., LtdNanjingChina
| | - Li Liang
- Department of Pathology, Nanfang Hospital/School of Basic Medical Sciences, Southern Medical UniversityGuangzhouChina
- Department of Pathology and Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical UniversityGuangzhouChina
- Jinfeng LaboratoryChongqingChina
| |
Collapse
|
45
|
Hathaway CA, Conejo-Garcia JR, Fridley BL, Rosner B, Saeed-Vafa D, Segura CM, Nguyen JV, Hecht JL, Sasamoto N, Terry KL, Tworoger SS, Townsend MK. Measurement of Ovarian Tumor Immune Profiles by Multiplex Immunohistochemistry: Implications for Epidemiologic Studies. Cancer Epidemiol Biomarkers Prev 2023; 32:848-853. [PMID: 36940177 PMCID: PMC10239319 DOI: 10.1158/1055-9965.epi-22-1285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/22/2023] [Accepted: 03/16/2023] [Indexed: 03/21/2023] Open
Abstract
BACKGROUND Despite the immunogenic nature of many ovarian tumors, treatment with immune checkpoint therapies has not led to substantial improvements in ovarian cancer survival. To advance population-level research on the ovarian tumor immune microenvironment, it is critical to understand methodologic issues related to measurement of immune cells on tissue microarrays (TMA) using multiplex immunofluorescence (mIF) assays. METHODS In two prospective cohorts, we collected formalin-fixed, paraffin-embedded ovarian tumors from 486 cases and created seven TMAs. We measured T cells, including several sub-populations, and immune checkpoint markers on the TMAs using two mIF panels. We used Spearman correlations, Fisher exact tests, and multivariable-adjusted beta-binomial models to evaluate factors related to immune cell measurements in TMA tumor cores. RESULTS Between-core correlations of intratumoral immune markers ranged from 0.52 to 0.72, with more common markers (e.g., CD3+, CD3+CD8+) having higher correlations. Correlations of immune cell markers between the whole core, tumor area, and stromal area were high (range 0.69-0.97). In multivariable-adjusted models, odds of T-cell positivity were lower in clear cell and mucinous versus type II tumors (ORs, 0.13-0.48) and, for several sub-populations, were lower in older tissue (sample age > 30 versus ≤ 10 years; OR, 0.11-0.32). CONCLUSIONS Overall, high correlations between cores for immune markers measured via mIF support the use of TMAs in studying ovarian tumor immune infiltration, although very old samples may have reduced antigenicity. IMPACT Future epidemiologic studies should evaluate differences in the tumor immune response by histotype and identify modifiable factors that may alter the tumor immune microenvironment.
Collapse
Affiliation(s)
| | | | - Brooke L. Fridley
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida, USA
| | - Bernard Rosner
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Daryoush Saeed-Vafa
- Department of Anatomic Pathology, Moffitt Cancer Center, Tampa, Florida, USA
- Advanced Analytical and Digital Laboratory, Moffitt Cancer Center, Tampa, Florida, USA
| | - Carlos Moran Segura
- Advanced Analytical and Digital Laboratory, Moffitt Cancer Center, Tampa, Florida, USA
| | - Jonathan V. Nguyen
- Advanced Analytical and Digital Laboratory, Moffitt Cancer Center, Tampa, Florida, USA
| | - Jonathan L. Hecht
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Naoko Sasamoto
- Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women's Hospital and Harvard Medical School; Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Kathryn L. Terry
- Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women's Hospital and Harvard Medical School; Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Shelley S. Tworoger
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Mary K. Townsend
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida, USA
| |
Collapse
|
46
|
Nabhan M, Egan D, Kreileder M, Zhernovkov V, Timosenko E, Slidel T, Dovedi S, Glennon K, Brennan D, Kolch W. Deciphering the tumour immune microenvironment cell by cell. IMMUNO-ONCOLOGY TECHNOLOGY 2023; 18:100383. [PMID: 37234284 PMCID: PMC10206805 DOI: 10.1016/j.iotech.2023.100383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Immune checkpoint inhibitors (ICIs) have rejuvenated therapeutic approaches in oncology. Although responses tend to be durable, response rates vary in many cancer types. Thus, the identification and validation of predictive biomarkers is a key clinical priority, the answer to which is likely to lie in the tumour microenvironment (TME). A wealth of data demonstrates the huge impact of the TME on ICI response and resistance. However, these data also reveal the complexity of the TME composition including the spatiotemporal interactions between different cell types and their dynamic changes in response to ICIs. Here, we briefly review some of the modalities that sculpt the TME, in particular the metabolic milieu, hypoxia and the role of cancer-associated fibroblasts. We then discuss recent approaches to dissect the TME with a focus on single-cell RNA sequencing, spatial transcriptomics and spatial proteomics. We also discuss some of the clinically relevant findings these multi-modal analyses have yielded.
Collapse
Affiliation(s)
- M. Nabhan
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Ireland
| | - D. Egan
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Ireland
| | - M. Kreileder
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Ireland
| | - V. Zhernovkov
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Ireland
| | - E. Timosenko
- ICC, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, , UK
| | - T. Slidel
- Oncology Data Science, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - S. Dovedi
- ICC, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, , UK
| | - K. Glennon
- UCD Gynaecological Oncology Group, UCD School of Medicine Mater Misericordiae University Hospital, Dublin, Ireland
| | - D. Brennan
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Ireland
- UCD Gynaecological Oncology Group, UCD School of Medicine Mater Misericordiae University Hospital, Dublin, Ireland
| | - W. Kolch
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Ireland
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Ireland
| |
Collapse
|
47
|
Liu J, Chiang HC, Xiong W, Laurent V, Griffiths SC, Dülfer J, Deng H, Sun X, Yin YW, Li W, Audoly LP, An Z, Schürpf T, Li R, Zhang N. A highly selective humanized DDR1 mAb reverses immune exclusion by disrupting collagen fiber alignment in breast cancer. J Immunother Cancer 2023; 11:e006720. [PMID: 37328286 PMCID: PMC10277525 DOI: 10.1136/jitc-2023-006720] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND Immune exclusion (IE) where tumors deter the infiltration of immune cells into the tumor microenvironment has emerged as a key mechanism underlying immunotherapy resistance. We recently reported a novel role of discoidin domain-containing receptor 1 (DDR1) in promoting IE in breast cancer and validated its critical role in IE using neutralizing rabbit monoclonal antibodies (mAbs) in multiple mouse tumor models. METHODS To develop a DDR1-targeting mAb as a potential cancer therapeutic, we humanized mAb9 with a complementarity-determining region grafting strategy. The humanized antibody named PRTH-101 is currently being tested in a Phase 1 clinical trial. We determined the binding epitope of PRTH-101 from the crystal structure of the complex between DDR1 extracellular domain (ECD) and the PRTH-101 Fab fragment with 3.15 Å resolution. We revealed the underlying mechanisms of action of PRTH-101 using both cell culture assays and in vivo study in a mouse tumor model. RESULTS PRTH-101 has subnanomolar affinity to DDR1 and potent antitumor efficacy similar to the parental rabbit mAb after humanization. Structural information illustrated that PRTH-101 interacts with the discoidin (DS)-like domain, but not the collagen-binding DS domain of DDR1. Mechanistically, we showed that PRTH-101 inhibited DDR1 phosphorylation, decreased collagen-mediated cell attachment, and significantly blocked DDR1 shedding from the cell surface. Treatment of tumor-bearing mice with PRTH-101 in vivo disrupted collagen fiber alignment (a physical barrier) in the tumor extracellular matrix (ECM) and enhanced CD8+ T cell infiltration in tumors. CONCLUSIONS This study not only paves a pathway for the development of PRTH-101 as a cancer therapeutic, but also sheds light on a new therapeutic strategy to modulate collagen alignment in the tumor ECM for enhancing antitumor immunity.
Collapse
Affiliation(s)
- Junquan Liu
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Huai-Chin Chiang
- Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, DC, USA
| | - Wei Xiong
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Victor Laurent
- Evotec (France) SAS, Campus Curie, 195 route d'Espagne, 31036 Toulouse CEDEX, Toulouse, France
| | | | | | - Hui Deng
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Xiujie Sun
- Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, DC, USA
| | - Y Whitney Yin
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Wenliang Li
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | | | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | | | - Rong Li
- Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, DC, USA
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
48
|
Clifton GT, Rothenberg M, Ascierto PA, Begley G, Cecchini M, Eder JP, Ghiringhelli F, Italiano A, Kochetkova M, Li R, Mechta-Grigoriou F, Pai SI, Provenzano P, Puré E, Ribas A, Schalper KA, Fridman WH. Developing a definition of immune exclusion in cancer: results of a modified Delphi workshop. J Immunother Cancer 2023; 11:e006773. [PMID: 37290925 PMCID: PMC10254706 DOI: 10.1136/jitc-2023-006773] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2023] [Indexed: 06/10/2023] Open
Abstract
Checkpoint inhibitors represent an effective treatment approach for a variety of cancers through their inhibition of immune regulatory pathways within the tumor microenvironment (TME). Unfortunately only a minority of patients with cancer achieve clinical benefit from immunotherapy, with the TME emerging as an important predictor of outcomes and sensitivity to therapy. The extent and pattern of T-cell infiltration can vary prominently within/across tumors and represents a biological continuum. Three immune profiles have been identified along this continuum: 'immune-desert' or 'T-cell cold' phenotype, 'immune-active', 'inflamed', or 'T-cell hot' phenotype, and 'immune excluded' phenotype. Of the three profiles, immune excluded remains the most ill-defined with no clear, universally accepted definition even though it is commonly associated with lack of response to immune checkpoint inhibitors and poor clinical outcomes. To address this, 16 multidisciplinary cancer experts from around the world were invited to participate in a symposium using a three-round modified Delphi approach. The first round was an open-ended questionnaire distributed via email and the second was an in-person discussion of the first round results that allowed for statements to be revised as necessary to achieve a maximum consensus (75% agreement) among the rating committee (RC). The final round questionnaire was distributed to the RC via email and had a 100% completion rate. The Delphi process resulted in moving us closer to a consensus definition for immune exclusion that is practical, clinically pertinent, and applicable across a wide range of cancer histologies. A general consensus of the role of immune exclusion in resistance to checkpoint therapy and five research priorities emerged from this process. Together, these tools could help efforts designed to address the underlying mechanisms of immune exclusion that span cancer types and, ultimately, aid in the development of treatments to target these mechanisms to improve patient outcomes.
Collapse
Affiliation(s)
| | - Mace Rothenberg
- Consultant, Parthenon Therapeutics, Boston, Massachusetts, USA
| | - Paolo Antonio Ascierto
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, IRCCS Fondazione "G. Pascale", Istituto Nazionale Tumori IRCCS Fondazione Pascale, Napoli, Campania, Italy
| | - Glenn Begley
- Parthenon Therapeutics, Boston, Massachusetts, USA
| | - Michael Cecchini
- Department of Internal Medicine, Division of Medical Oncology, Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Francois Ghiringhelli
- Department of Medical Oncology, Georges François Leclerc Cancer Center-UNICANCER, Dijon, France
| | - Antoine Italiano
- Early Phase Trial Unit, Institut Bergonié, Bordeaux 33000, France
| | - Marina Kochetkova
- Centre for Cancer Biology, University of South Australia, Adelaide, South Australia, Australia
| | - Rong Li
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | | | - Sara I Pai
- Department of Surgical Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Paolo Provenzano
- Department of Biomedical Engineering, University of Minnesota System, Minneapolis, Minnesota, USA
| | - Ellen Puré
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | - Antoni Ribas
- Division of Hematology and Oncology, UCLA David Geffen School of Medicine, Los Angeles, California, USA
| | - Kurt A Schalper
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Wolf Herve Fridman
- Department of Immunology, Inflammation and Cancer, Centre de Recherche des Cordeliers, Paris, France
| |
Collapse
|
49
|
Eivary SHA, Kheder RK, Najmaldin SK, Kheradmand N, Esmaeili SA, Hajavi J. Implications of IL-21 in solid tumor therapy. Med Oncol 2023; 40:191. [PMID: 37249661 DOI: 10.1007/s12032-023-02051-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/08/2023] [Indexed: 05/31/2023]
Abstract
Cancer, the most deadly disease, is known as a recent dilemma worldwide. Presently different treatments are used for curing cancers, especially solid cancers. Because of the immune-enhancing functions of cytokine, IL-21 as a cytokine may have new possibilities to manipulate the immune system in disease conditions, as it stimulates NK and CTL functions and drives IgG antibody production. Indeed, IL-21 has been revealed to elicit antitumor-immune responses in several tumor models. Combining IL-21 with other agents, which target tumor cells, immune-regulatory circuits, or other immune-enhancing molecules enhances this activity. The exciting breakthrough in the results obtained in pre-clinical situations has led to the early outset of present developing clinical trials in cancer patients. In the paper, we have reviewed the function of IL-21 in solid tumor immunotherapy.
Collapse
Affiliation(s)
- Seyed Hossein Abtahi Eivary
- Department of Medical Sciences of Laboratory, Infectious Diseases Research Center, School of Para-Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Ramiar Kamal Kheder
- Medical Laboratory Science Department, College of Science, University of Raparin, Rania, Sulaymaniyah, Iraq
| | - Soran K Najmaldin
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Iraq
| | - Nahid Kheradmand
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Jafar Hajavi
- Department of Basic Sciences, Faculty of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Science, Gonabad, Iran.
| |
Collapse
|
50
|
Bruni S, Mercogliano MF, Mauro FL, Cordo Russo RI, Schillaci R. Cancer immune exclusion: breaking the barricade for a successful immunotherapy. Front Oncol 2023; 13:1135456. [PMID: 37284199 PMCID: PMC10239871 DOI: 10.3389/fonc.2023.1135456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/10/2023] [Indexed: 06/08/2023] Open
Abstract
Immunotherapy has changed the course of cancer treatment. The initial steps were made through tumor-specific antibodies that guided the setup of an antitumor immune response. A new and successful generation of antibodies are designed to target immune checkpoint molecules aimed to reinvigorate the antitumor immune response. The cellular counterpart is the adoptive cell therapy, where specific immune cells are expanded or engineered to target cancer cells. In all cases, the key for achieving positive clinical resolutions rests upon the access of immune cells to the tumor. In this review, we focus on how the tumor microenvironment architecture, including stromal cells, immunosuppressive cells and extracellular matrix, protects tumor cells from an immune attack leading to immunotherapy resistance, and on the available strategies to tackle immune evasion.
Collapse
|