1
|
Barthez M, Xue B, Zheng J, Wang Y, Song Z, Mu WC, Wang CL, Guo J, Yang F, Ma Y, Wei X, Ye C, Sims N, Martinez-Sobrido L, Perlman S, Chen D. SIRT2 suppresses aging-associated cGAS activation and protects aged mice from severe COVID-19. Cell Rep 2025; 44:115562. [PMID: 40220296 DOI: 10.1016/j.celrep.2025.115562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/11/2024] [Accepted: 03/24/2025] [Indexed: 04/14/2025] Open
Abstract
Aging-associated vulnerability to coronavirus disease 2019 (COVID-19) remains poorly understood. Here, we show that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected aged mice lacking SIRT2, a cytosolic NAD+-dependent deacetylase, develop more severe disease and show increased mortality, while treatment with an NAD+ booster, 78c, protects aged mice from lethal infection. Mechanistically, we demonstrate that SIRT2 modulates the acetylation of cyclic GMP-AMP synthase (cGAS), an immune sensor for cytosolic DNA, and suppresses aging-associated cGAS activation and inflammation. Furthermore, we show that SARS-CoV-2 infection-induced inflammation is mediated at least in part by ORF3a, which triggers mtDNA release and cGAS activation. Collectively, our study reveals a molecular basis for aging-associated susceptibility to COVID-19 and suggests therapeutic approaches to protect aged populations from severe SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Marine Barthez
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Biyun Xue
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Jian Zheng
- Department of Microbiology and Immunology, Center for Predictive Medicine, University of Louisville, Louisville, KY, USA
| | - Yifei Wang
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA; Metabolic Biology Graduate Program, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Zehan Song
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA; Metabolic Biology Graduate Program, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Wei-Chieh Mu
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA; Endocrinology Graduate Program, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Chih-Ling Wang
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jiayue Guo
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Fanghan Yang
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA; Endocrinology Graduate Program, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Yuze Ma
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Xuetong Wei
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA; Metabolic Biology Graduate Program, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Chengjin Ye
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Nicholas Sims
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA; Department of Pediatrics, University of Iowa, Iowa City, IA, USA.
| | - Danica Chen
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA; Metabolic Biology Graduate Program, University of California, Berkeley, Berkeley, CA 94720, USA; Endocrinology Graduate Program, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
2
|
Stephens EB, Kunec D, Henke W, Vidal RM, Greishaber B, Saud R, Kalamvoki M, Singh G, Kafle S, Trujillo JD, Ferreyra FM, Morozov I, Richt JA. The Role of the Tyrosine-Based Sorting Signals of the ORF3a Protein of SARS-CoV-2 in Intracellular Trafficking and Pathogenesis. Viruses 2025; 17:522. [PMID: 40284965 PMCID: PMC12031507 DOI: 10.3390/v17040522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 03/27/2025] [Accepted: 04/01/2025] [Indexed: 04/29/2025] Open
Abstract
The open reading frame 3a (ORF3a) is a protein important to the pathogenicity of SARS-CoV-2. The cytoplasmic domain of ORF3a has three canonical tyrosine-based sorting signals (160YNSV163, 211YYQL213, and 233YNKI236), and a previous study has indicated that mutation of the 160YNSV163 motif abrogated plasma membrane expression and inhibited ORF3a-induced apoptosis. Here, we have systematically removed all three tyrosine-based motifs and assessed the importance of each motif or combination of motifs in trafficking to the cell surface. Our results indicate that the 160YNSV163 motif alone was insufficient for ORF3a cell-surface trafficking, while the 211YYQL213 motif was the most important. Additionally, an ORF3a with all three YxxΦ motifs disrupted (ORF3a-[ΔYxxΦ]) was not transported to the cell surface, and LysoIP studies indicate that ORF3a but not ORF3a-[ΔYxxΦ] was present in late endosome/lysosome fractions. A growth-curve analysis of different SARS-CoV-2 viruses expressing the different mutant ORF3a proteins revealed no significant differences in virus replication. Finally, the inoculation of K18hACE-2 mice indicated that the SARS-CoV-2 lacking the three YxxΦ motifs was less pathogenic than the unmodified SARS-CoV-2. These results indicate that the tyrosine motifs of ORF3a contribute to cell-surface expression and SARS-CoV-2 pathogenesis.
Collapse
Affiliation(s)
- Edward B. Stephens
- Department of Microbiology, Molecular Genetics, and Immunology 2000 Cates Hall, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| | - Dusan Kunec
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany; (D.K.)
| | - Wyatt Henke
- Department of Microbiology, Molecular Genetics, and Immunology 2000 Cates Hall, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| | | | - Brandon Greishaber
- Department of Microbiology, Molecular Genetics, and Immunology 2000 Cates Hall, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| | - Rabina Saud
- Department of Microbiology, Molecular Genetics, and Immunology 2000 Cates Hall, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| | - Maria Kalamvoki
- Department of Microbiology, Molecular Genetics, and Immunology 2000 Cates Hall, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| | - Gagandeep Singh
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (G.S.); (J.D.T.)
| | - Sujan Kafle
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (G.S.); (J.D.T.)
| | - Jessie D. Trujillo
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (G.S.); (J.D.T.)
| | - Franco Matias Ferreyra
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Igor Morozov
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (G.S.); (J.D.T.)
| | - Juergen A. Richt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (G.S.); (J.D.T.)
| |
Collapse
|
3
|
Ye ZW, Ong CP, Cao H, Tang K, Gray VS, Hinson Cheung PH, Wang J, Li W, Zhang H, Luo P, Ni T, Chan CP, Zhang M, Zhang Y, Ling GS, Yuan S, Jin DY. A live attenuated SARS-CoV-2 vaccine constructed by dual inactivation of NSP16 and ORF3a. EBioMedicine 2025; 114:105662. [PMID: 40132472 PMCID: PMC11985078 DOI: 10.1016/j.ebiom.2025.105662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 02/16/2025] [Accepted: 03/08/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND Live attenuated vaccines against SARS-CoV-2 activate all phases of host immunity resembling a natural infection and they block viral transmission more efficiently than existing vaccines in human use. In our prior work, we characterised an attenuated SARS-CoV-2 variant, designated d16, which harbours a D130A mutation in the NSP16 protein, inactivating its 2'-O-methyltransferase function. The d16 variant has demonstrated an ability to induce both mucosal and sterilising immunity in animal models. However, further investigation is required to identify any additional modifications to d16 that could mitigate concerns regarding potential virulence reversion and the suboptimal regulation of the proinflammatory response. METHODS Mutations were introduced into molecular clone of SARS-CoV-2 and live attenuated virus was recovered from cultured cells. Virological, biochemical and immunological assays were performed in vitro and in two animal models to access the protective efficacies of the candidate vaccine strain. FINDINGS Here we describe evaluation of a derivative of d16. We further modified the d16 variant by inverting the open reading frame of the ORF3a accessory protein, resulting in the d16i3a strain. This modification is anticipated to enhance safety and reduce pathogenicity. d16i3a appeared to be further attenuated in hamsters and transgenic mice compared to d16. Intranasal vaccination with d16i3a stimulated humoural, cell-mediated and mucosal immune responses, conferring sterilising protection against SARS-CoV-2 Delta and Omicron variants in animals. A version of d16i3a expressing the XBB.1.16 spike protein further expanded the vaccine's protection spectrum against circulating variants. Notably, this version has demonstrated efficacy as a booster in hamsters, providing protection against Omicron subvariants and achieving inhibition of viral transmission. INTERPRETATION Our work established a platform for generating safe and effective live attenuated vaccines by dual inactivation of NSP16 and ORF3a of SARS-CoV-2. FUNDING This work was supported by National Key Research and Development Program of China (2021YFC0866100, 2023YFC3041600, and 2023YFE0203400), Hong Kong Health and Medical Research Fund (COVID190114, CID-HKU1-9, and 23220712), Hong Kong Research Grants Council (C7142-20GF and T11-709/21-N), Hong Kong Innovation and Technology Commission grant (MHP/128/22), Guangzhou Laboratory (EKPG22-01) and Health@InnoHK (CVVT). Funding sources had no role in the writing of the manuscript or the decision to submit it for publication.
Collapse
Affiliation(s)
- Zi-Wei Ye
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region of China
| | - Chon Phin Ong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region of China
| | - Hehe Cao
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 102 Pokfulam Road, Pokfulam, Hong Kong Special Administrative Region of China
| | - Kaiming Tang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 102 Pokfulam Road, Pokfulam, Hong Kong Special Administrative Region of China
| | - Victor Sebastien Gray
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region of China
| | - Pak-Hin Hinson Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region of China
| | - Junjue Wang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region of China
| | - Weixin Li
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region of China
| | - Hongzhuo Zhang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region of China
| | - Peng Luo
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 102 Pokfulam Road, Pokfulam, Hong Kong Special Administrative Region of China
| | - Tao Ni
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region of China
| | - Chi Ping Chan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region of China
| | - Ming Zhang
- State Key Laboratory of Novel Vaccines for Emerging Infectious Diseases, China National Biotec Group Company Limited, Beijing, 100024, China
| | - Yuntao Zhang
- State Key Laboratory of Novel Vaccines for Emerging Infectious Diseases, China National Biotec Group Company Limited, Beijing, 100024, China
| | - Guang Sheng Ling
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region of China
| | - Shuofeng Yuan
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 102 Pokfulam Road, Pokfulam, Hong Kong Special Administrative Region of China
| | - Dong-Yan Jin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region of China.
| |
Collapse
|
4
|
Wang J, Levi NJ, Diaz-Solares M, Mim C, Dahl G, Barro-Soria R. A metastasis-associated pannexin-1 mutant (Panx1 1-89) forms a minimalist ATP release channel. FEBS J 2025. [PMID: 40087867 DOI: 10.1111/febs.70060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 01/20/2025] [Accepted: 02/03/2025] [Indexed: 03/17/2025]
Abstract
A truncated form of the ATP release channel pannexin 1 (Panx1), Panx11-89, is enriched in metastatic breast cancer cells and has been proposed to mediate metastatic cell survival by increasing ATP release through mechanosensitive Panx1 channels. However, whether Panx11-89 on its own [without the presence of wild-type Panx1 (wtPanx1)] mediates ATP release has not been tested. Here, we show that Panx11-89 by itself can form a constitutively active membrane channel, capable of releasing ATP even in the absence of wtPanx1. Our biophysical characterization reveals that most basic structure-function features of the channel pore are conserved in the truncated Panx11-89 polypeptide. Thus, augmenting extracellular potassium ion concentrations enhances Panx11-89-mediated conductance. Moreover, despite the severe truncation, Panx11-89 retains sensitivity to most wtPanx1 channel inhibitors. Therefore, Panx1 blockers may be of therapeutic value to combat metastatic cell survival. Our study both provides a mechanism for ATP release from cancer cells and suggests that Panx11-89 might aid in the structure-function analysis of Panx1 channels.
Collapse
Affiliation(s)
- Junjie Wang
- Department of Physiology and Biophysics, University of Miami School of Medicine, Miami, FL, USA
| | - Noah J Levi
- Department of Medicine, University of Miami School of Medicine, Miami, FL, USA
| | | | - Carsten Mim
- Department of Biomedical Engineering and Health Systems, Royal Institute of Technology, Huddinge, Sweden
| | - Gerhard Dahl
- Department of Physiology and Biophysics, University of Miami School of Medicine, Miami, FL, USA
| | - Rene Barro-Soria
- Department of Medicine, University of Miami School of Medicine, Miami, FL, USA
| |
Collapse
|
5
|
Wyżewski Z, Gregorczyk-Zboroch KP, Mielcarska MB, Świtlik W, Niedzielska A. Bid Protein: A Participant in the Apoptotic Network with Roles in Viral Infections. Int J Mol Sci 2025; 26:2385. [PMID: 40141030 PMCID: PMC11942203 DOI: 10.3390/ijms26062385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/01/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
The BH3-interacting domain death agonist (Bid), a proapoptotic signaling molecule of the B-cell lymphoma 2 (Bcl-2) family, is a key regulator of mitochondrial outer membrane (MOM) permeability. Uniquely positioned at the intersection of extrinsic and intrinsic apoptosis pathways, Bid links death receptor signaling to the mitochondria-dependent cascade and can also be activated by endoplasmic reticulum (ER) stress. In its active forms, cleaved Bid (cBid) and truncated Bid (tBid), it disrupts MOM integrity via Bax/Bak-dependent and independent mechanisms. Apoptosis plays a dual role in viral infections, either promoting or counteracting viral propagation. Consequently, viruses modulate Bid signaling to favor their replication. The deregulation of Bid activity contributes to oncogenic transformation, inflammation, immunosuppression, neurotoxicity, and pathogen propagation during various viral infections. In this work, we explore Bid's structure, function, activation processes, and mitochondrial targeting. We describe its role in apoptosis induction and its involvement in infections with multiple viruses. Additionally, we discuss the therapeutic potential of Bid in antiviral strategies. Understanding Bid's signaling pathways offers valuable insights into host-virus interactions and the pathogenesis of infections. This knowledge may facilitate the development of novel therapeutic approaches to combat virus-associated diseases effectively.
Collapse
Affiliation(s)
- Zbigniew Wyżewski
- Institute of Biological Sciences, Cardinal Stefan Wyszynski University in Warsaw, Dewajtis 5, 01-815 Warsaw, Poland
| | - Karolina Paulina Gregorczyk-Zboroch
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (K.P.G.-Z.); (M.B.M.); (A.N.)
| | - Matylda Barbara Mielcarska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (K.P.G.-Z.); (M.B.M.); (A.N.)
| | - Weronika Świtlik
- Centre for Advanced Materials and Technologies, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland;
| | - Adrianna Niedzielska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (K.P.G.-Z.); (M.B.M.); (A.N.)
| |
Collapse
|
6
|
Hinkle JJ, Trychta KA, Wires ES, Osborn RM, Leach JR, Faraz ZF, Svarcbahs R, Richie CT, Dewhurst S, Harvey BK. Subcellular localization of SARS-CoV-2 E and 3a proteins along the secretory pathway. J Mol Histol 2025; 56:98. [PMID: 40025386 PMCID: PMC11872775 DOI: 10.1007/s10735-025-10375-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 02/13/2025] [Indexed: 03/04/2025]
Abstract
SARS-CoV-2 E and 3a proteins are important for the assembly, budding, and release of viral particles. These two transmembrane proteins have been implicated in forming channels in the membrane that allow the transport of ions to favor viral replication. During an active infection, both proteins generally localize to the endoplasmic reticulum (ER), ER-Golgi intermediate compartment (ERGIC), and the Golgi where viral assembly occurs. The ER and Golgi are critical for the proper packaging and trafficking of cellular proteins along the secretory pathways which determine a protein's final destination inside or outside of the cell. The SARS-CoV-2 virus primarily infects epithelial cells that are highly secretory in nature such as those in the lung and gut. Here we quantified the distribution of SARS-CoV-2 E and 3a proteins along the secretory pathways in a human intestinal epithelial cell line. We used NaturePatternMatch to demonstrate that epitope-tagged E and 3a proteins expressed alone via transient transfection have a similar immunoreactivity pattern as E and 3a proteins expressed by wild-type viral infection. While E and 3a proteins localized with all selected cellular markers to varying degrees, 3a protein displayed a higher correlation coefficient with the Golgi, early/late endosome, lysosome, and plasma membrane when compared to E protein. This work is the first to provide quantification of the subcellular distribution of E and 3a proteins along the multiple components of the secretory pathway and serves as a basis to develop models for examining how E and 3a alter proteostasis within these structures and affect their function.
Collapse
Affiliation(s)
- Joshua J Hinkle
- Intramural Research Program, National Institute on Drug Abuse, NIH, Suite 200, 251 Bayview Blvd, Baltimore, MD, 21224, USA.
| | - Kathleen A Trychta
- Intramural Research Program, National Institute on Drug Abuse, NIH, Suite 200, 251 Bayview Blvd, Baltimore, MD, 21224, USA
| | - Emily S Wires
- Intramural Research Program, National Institute on Drug Abuse, NIH, Suite 200, 251 Bayview Blvd, Baltimore, MD, 21224, USA
| | - Raven M Osborn
- School of Medicine & Dentistry, University of Rochester, Rochester, NY, 14642, USA
| | - Justin R Leach
- School of Medicine & Dentistry, University of Rochester, Rochester, NY, 14642, USA
| | - Zoha F Faraz
- Intramural Research Program, National Institute on Drug Abuse, NIH, Suite 200, 251 Bayview Blvd, Baltimore, MD, 21224, USA
| | - Reinis Svarcbahs
- Intramural Research Program, National Institute on Drug Abuse, NIH, Suite 200, 251 Bayview Blvd, Baltimore, MD, 21224, USA
| | - Christopher T Richie
- Intramural Research Program, National Institute on Drug Abuse, NIH, Suite 200, 251 Bayview Blvd, Baltimore, MD, 21224, USA
| | - Stephen Dewhurst
- School of Medicine & Dentistry, University of Rochester, Rochester, NY, 14642, USA
| | - Brandon K Harvey
- Intramural Research Program, National Institute on Drug Abuse, NIH, Suite 200, 251 Bayview Blvd, Baltimore, MD, 21224, USA.
| |
Collapse
|
7
|
Michelucci A, Sforna L, Focaia R, Leonardi MV, Di Battista A, Rastelli G, Vespa S, Boncompagni S, Di Cristina M, Catacuzzeno L. SARS-CoV-2 ORF3a accessory protein is a water-permeable channel that induces lysosome swelling. Commun Biol 2025; 8:170. [PMID: 39905220 PMCID: PMC11794868 DOI: 10.1038/s42003-024-07442-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 12/23/2024] [Indexed: 02/06/2025] Open
Abstract
ORF3a, the most abundantly expressed accessory protein of SARS-CoV-2, plays an essential role in virus egress by inactivating lysosomes through their deacidification. However, the mechanism underlying this process remains unclear. While seminal studies suggested ORF3a being a cation-selective channel (i.e., viroporin), recent works disproved this conclusion. To unravel the potential function of ORF3a, here we employed a multidisciplinary approach including patch-clamp electrophysiology, videoimaging, molecular dynamics (MD) simulations, and electron microscopy. Preliminary structural analyses and patch-clamp recordings in HEK293 cells rule out ORF3a functioning as either viroporin or proton (H+) channel. Conversely, videoimaging experiments demonstrate that ORF3a mediates the transmembrane transport of water. MD simulations identify the tetrameric assembly of ORF3a as the functional water transporter, with a putative selectivity filter for water permeation that includes two essential asparagines, N82 and N119. Consistent with this, N82L and N82W mutations abolish ORF3a-mediated water permeation. Finally, ORF3a expression in HEK293 cells leads to lysosomal volume increase, mitochondrial damage, and accumulation of intracellular membranes, all alterations reverted by the N82W mutation. We propose a novel function for ORF3a as a lysosomal water-permeable channel, essential for lysosome deacidification and inactivation, key steps to promote virus egress.
Collapse
Affiliation(s)
- Antonio Michelucci
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy.
| | - Luigi Sforna
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Riccardo Focaia
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | | | - Angela Di Battista
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Giorgia Rastelli
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Simone Vespa
- Department of Medicine and Aging Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Simona Boncompagni
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Manlio Di Cristina
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Luigi Catacuzzeno
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy.
| |
Collapse
|
8
|
Webb I, Erdmann M, Milligan R, Savage M, Matthews DA, Davidson AD. Examining the feasibility of replacing ORF3a with fluorescent genes to construct SARS-CoV-2 reporter viruses. J Gen Virol 2025; 106:002072. [PMID: 39937571 PMCID: PMC11822206 DOI: 10.1099/jgv.0.002072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 01/13/2025] [Indexed: 02/13/2025] Open
Abstract
The SARS-CoV-2 genome encodes at least nine accessory proteins, including innate immune antagonist and putative viroporin ORF3a. ORF3a plays a role in many stages of the viral replication cycle, including immune modulation. We constructed two recombinant (r)SARS-CoV-2 viruses in which the ORF3a gene was replaced with mScarlet (mS) or mNeonGreen (mNG), denoted as rSARS-CoV-2-Δ3a-mS and rSARS-CoV-2-Δ3a-mNG, respectively. rSARS-CoV-2-Δ3a-mNG generated a fluorescent signal after infection in both A549-ACE-2-TMPRSS2 (AAT) and Vero-E6-TMPRSS2 (VTN) cells, unlike rSARS-CoV-2-Δ3a-mS. rSARS-CoV-2-Δ3a-mS mS protein could be detected immunologically in VTN but not AAT cells, indicating the expression of a non-fluorescent mS protein. The analysis of the viral transcriptomes in infected AAT cells by nanopore direct RNA sequencing (dRNAseq) revealed that the level of mS transcript was below the limit of detection in AAT cells. rSARS-CoV-2-Δ3a-mNG virus was found to be genetically stable in AAT and VTN cells, but rSARS-CoV-2-Δ3a-mS acquired partial deletions of the mS gene during sequential passaging in VTN cells, creating the virus rSARS-CoV-2-Δ3a-ΔmS. The mS deletion in VTN cells removes the chromophore coding sequence, and this may explain the presence of a non-fluorescent mS protein detected in VTN cells. The rSARS-CoV-2-Δ3a-mNG, rSARS-CoV-2-Δ3a-mS and rSARS-CoV-2-Δ3a-ΔmS viruses all replicated to a lower titre and produced smaller plaques than the parental rSARS-CoV-2-S-D614G. Interestingly, the rSARS-CoV-2-Δ3a-ΔmS virus produced higher virus titres and larger plaque sizes than rSARS-CoV-2-Δ3a-mS. This suggested that both the insertion of mS coding sequence and the deletion of ORF3a coding sequence contributed to attenuation. In comparison with rSARS-CoV-2, the rSARS-CoV-2-Δ3a-mS and rSARS-CoV-2-Δ3a-mNG viruses showed increased sensitivity to pre-treatment of cells with IFN-α but did not exhibit a dose-dependent increase in replication in the presence of the Janus kinase-signal transducer and activator of transcription signalling pathway inhibitor, ruxolitinib. In conclusion, the replacement of the ORF3a coding sequence with those of fluorescent reporter proteins attenuated the replication of SARS-CoV-2 and its ability to effectively evade the innate immune response in vitro.
Collapse
Affiliation(s)
- Isobel Webb
- School of Cellular and Molecular Medicine, Faculty of Health and Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Maximillian Erdmann
- School of Cellular and Molecular Medicine, Faculty of Health and Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Rachel Milligan
- School of Cellular and Molecular Medicine, Faculty of Health and Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Megan Savage
- School of Cellular and Molecular Medicine, Faculty of Health and Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - David A. Matthews
- School of Cellular and Molecular Medicine, Faculty of Health and Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Andrew D. Davidson
- School of Cellular and Molecular Medicine, Faculty of Health and Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
9
|
Alcaraz A, Nieva JL. Viroporins: discovery, methods of study, and mechanisms of host-membrane permeabilization. Q Rev Biophys 2025; 58:e1. [PMID: 39806799 DOI: 10.1017/s0033583524000192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The 'Viroporin' family comprises a number of mostly small-sized, integral membrane proteins encoded by animal and plant viruses. Despite their sequence and structural diversity, viroporins share a common functional trend: their capacity to assemble transmembrane channels during the replication cycle of the virus. Their selectivity spectrum ranges from low-pH-activated, unidirectional proton transporters, to size-limited permeating pores allowing passive diffusion of metabolites. Through mechanisms not fully understood, expression of viroporins facilitates virion assembly/release from infected cells, and subverts the cell physiology, contributing to cytopathogenicity. Compounds that interact with viroporins and interfere with their membrane-permeabilizing activity in vitro, are known to inhibit virus production. Moreover, viroporin-defective viruses comprise a source of live attenuated vaccines that prevent infection by notorious human and livestock pathogens. This review dives into the origin and evolution of the viroporin concept, summarizes some of the methodologies used to characterize the structure-function relationships of these important virulence factors, and attempts to classify them on biophysical grounds attending to their mechanisms of ion/solute transport across membranes.
Collapse
Affiliation(s)
- Antonio Alcaraz
- Laboratory of Molecular Biophysics, Department of Physics, University Jaume I, Castellón, Spain
| | - José L Nieva
- Instituto Biofisika (CSIC-UPV/EHU), University of the Basque Country (UPV/EHU), Bilbao, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| |
Collapse
|
10
|
McCaig CD. SARS-CoV-2 Is an Electricity-Driven Virus. Rev Physiol Biochem Pharmacol 2025; 187:361-410. [PMID: 39838019 DOI: 10.1007/978-3-031-68827-0_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
One of the most important and challenging biological events of recent times has been the pandemic caused by SARS-CoV-2. Since the underpinning argument behind this book is the ubiquity of electrical forces driving multiple disparate biological events, consideration of key aspects of the SARS-CoV-2 structural proteins is included. Electrical regulation of spike protein, nucleocapsid protein, membrane protein, and envelope protein is included, with several of their activities regulated by LLPS and the multivalent and π-cation and π-π electrical forces that drive phase separation.
Collapse
Affiliation(s)
- Colin D McCaig
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| |
Collapse
|
11
|
Doyle A, Goodson BA, Kolaczkowski OM, Liu R, Jia J, Wang H, Han X, Ye C, Bradfute SB, Kell AM, Lemus MR, Pu J. Manipulation of Host Cholesterol by SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.13.623299. [PMID: 39605369 PMCID: PMC11601339 DOI: 10.1101/2024.11.13.623299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
SARS-CoV-2 infection is associated with alterations in host lipid metabolism, including disruptions in cholesterol homeostasis. However, the specific mechanisms by which viral proteins influence cholesterol remain incompletely understood. Here, we report that SARS-CoV-2 infection induces cholesterol sequestration within lysosomes, with the viral protein ORF3a identified as the primary driver of this effect. Mechanistically, we found that ORF3a interacts directly with the HOPS complex subunit VPS39 through a hydrophobic interface formed by residues W193 and Y184. A W193A mutation in ORF3a significantly rescues cholesterol egress and corrects the mislocalization of the lysosomal cholesterol transporter NPC2, which is caused by defective trafficking of the trans-Golgi network (TGN) sorting receptor, the cation-independent mannose-6-phosphate receptor (CI-MPR). We further observed a marked reduction in bis(monoacylglycero)phosphate (BMP), a lipid essential for lysosomal cholesterol egress, in both SARS-CoV-2-infected cells and ORF3a-expressing cells, suggesting BMP reduction as an additional mechanism of SARS-CoV-2-caused cholesterol sequestration. Inhibition of lysosomal cholesterol egress using the compound U18666A significantly decreased SARS-CoV-2 infection, highlighting a potential viral strategy of manipulating lysosomal cholesterol to modulate host cell susceptibility. Our findings reveal that SARS-CoV-2 ORF3a disrupts cellular cholesterol transport by altering lysosomal protein trafficking and BMP levels, providing new insights into virus-host interactions that contribute to lipid dysregulation in infected cells.
Collapse
Affiliation(s)
- Aliza Doyle
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| | - Baley A. Goodson
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| | - Oralia M. Kolaczkowski
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| | - Rui Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| | - Jingyue Jia
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
- Autophagy, Inflammation, and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| | - Hu Wang
- Department of Medicine, UT Health San Antonio Long School of Medicine, San Antonio, Texas 78229, USA
| | - Xianlin Han
- Department of Medicine, UT Health San Antonio Long School of Medicine, San Antonio, Texas 78229, USA
| | - Chunyan Ye
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| | - Steven B. Bradfute
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| | - Alison M. Kell
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| | - Monica Rosas Lemus
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
- Autophagy, Inflammation, and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| | - Jing Pu
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
12
|
Devantier K, Kjær VMS, Griffin S, Kragelund BB, Rosenkilde MM. Advancing the field of viroporins-Structure, function and pharmacology: IUPHAR Review 39. Br J Pharmacol 2024; 181:4450-4490. [PMID: 39224966 DOI: 10.1111/bph.17317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/28/2024] [Accepted: 07/07/2024] [Indexed: 09/04/2024] Open
Abstract
Viroporins possess important potential as antiviral targets due to their critical roles during virus life cycles, spanning from virus entry to egress. Although the antiviral amantadine targets the M2 viroporin of influenza A virus, successful progression of other viroporin inhibitors into clinical use remains challenging. These challenges relate in varying proportions to a lack of reliable full-length 3D-structures, difficulties in functionally characterising individual viroporins, and absence of verifiable direct binding between inhibitor and viroporin. This review offers perspectives to help overcome these challenges. We provide a comprehensive overview of the viroporin family, including their structural and functional features, highlighting the moldability of their energy landscapes and actions. To advance the field, we suggest a list of best practices to aspire towards unambiguous viroporin identification and characterisation, along with considerations of potential pitfalls. Finally, we present current and future scenarios of, and prospects for, viroporin targeting drugs.
Collapse
Affiliation(s)
- Kira Devantier
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Viktoria M S Kjær
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stephen Griffin
- Leeds Institute of Medical Research, St James' University Hospital, School of Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Mette M Rosenkilde
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Bloothooft M, Voigt N, de Boer TP. Addressing SARS-CoV-2 viroporins with antiarrhythmic drugs. Europace 2024; 26:euae254. [PMID: 39412365 PMCID: PMC11481343 DOI: 10.1093/europace/euae254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2024] Open
Affiliation(s)
- Meye Bloothooft
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| | - Niels Voigt
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
- Cluster of Excellence ‘Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells’ (MBExC), University of Göttingen, Göttingen, Germany
| | - Teun P de Boer
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| |
Collapse
|
14
|
Wiedmann F, Boondej E, Stanifer M, Paasche A, Kraft M, Prüser M, Seeger T, Uhrig U, Boulant S, Schmidt C. SARS-CoV-2 ORF 3a-mediated currents are inhibited by antiarrhythmic drugs. Europace 2024; 26:euae252. [PMID: 39412366 PMCID: PMC11481279 DOI: 10.1093/europace/euae252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/01/2024] [Indexed: 10/19/2024] Open
Abstract
AIMS Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been linked to cardiovascular complications, notably cardiac arrhythmias. The open reading frame (ORF) 3a of the coronavirus genome encodes for a transmembrane protein that can function as an ion channel. The aim of this study was to investigate the role of the SARS-CoV-2 ORF 3a protein in COVID-19-associated arrhythmias and its potential as a pharmacological target. METHODS AND RESULTS Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) and cultured human fibroblasts were infected with SARS-CoV-2. Subsequent immunoblotting assays revealed the expression of ORF 3a protein in hiPSC-CM but not in fibroblasts. After intracytoplasmic injection of RNA encoding ORF 3a proteins into Xenopus laevis oocytes, macroscopic outward currents could be measured. While class I, II, and IV antiarrhythmic drugs showed minor effects on ORF 3a-mediated currents, a robust inhibition was detected after application of class III antiarrhythmics. The strongest effects were observed with dofetilide and amiodarone. Finally, molecular docking simulations and mutagenesis studies identified key amino acid residues involved in drug binding. CONCLUSION Class III antiarrhythmic drugs are potential inhibitors of ORF 3a-mediated currents, offering new options for the treatment of COVID-19-related cardiac complications.
Collapse
Affiliation(s)
- Felix Wiedmann
- Department of Cardiology, University Hospital Heidelberg, Im Neuenheimer Feld 410, D-69120 Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
- HCR, Heidelberg Center for Heart Rhythm Disorders, University Hospital Heidelberg, Heidelberg, Germany
| | - Emika Boondej
- Department of Cardiology, University Hospital Heidelberg, Im Neuenheimer Feld 410, D-69120 Heidelberg, Germany
| | - Megan Stanifer
- Department of Molecular Genetics and Microbiology, University of Florida, College of Medicine, Gainesville, FL, USA
| | - Amelie Paasche
- Department of Cardiology, University Hospital Heidelberg, Im Neuenheimer Feld 410, D-69120 Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Manuel Kraft
- Department of Cardiology, University Hospital Heidelberg, Im Neuenheimer Feld 410, D-69120 Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
- HCR, Heidelberg Center for Heart Rhythm Disorders, University Hospital Heidelberg, Heidelberg, Germany
| | - Merten Prüser
- Department of Cardiology, University Hospital Heidelberg, Im Neuenheimer Feld 410, D-69120 Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Timon Seeger
- Department of Cardiology, University Hospital Heidelberg, Im Neuenheimer Feld 410, D-69120 Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Ulrike Uhrig
- Chemical Biology Core Facility, EMBL, Heidelberg, Germany
| | - Steeve Boulant
- Department of Molecular Genetics and Microbiology, University of Florida, College of Medicine, Gainesville, FL, USA
| | - Constanze Schmidt
- Department of Cardiology, University Hospital Heidelberg, Im Neuenheimer Feld 410, D-69120 Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
- HCR, Heidelberg Center for Heart Rhythm Disorders, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
15
|
Kumar D, Karvas RM, Jones BR, McColl ER, Diveley E, Sukanta J, Surendra S, Kelly JC, Theunissen TW, Mysorekar IU. SARS-CoV-2 ORF3a Protein Impairs Syncytiotrophoblast Maturation, Alters ZO-1 Localization, and Shifts Autophagic Pathways in Trophoblast Cells and 3D Organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.614931. [PMID: 39386577 PMCID: PMC11463380 DOI: 10.1101/2024.09.25.614931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
SARS-CoV-2 infection poses a significant risk to placental physiology, but its impact on placental homeostasis is not well understood. We and others have previously shown that SARS-CoV-2 can colonize maternal and fetal placental cells, yet the specific mechanisms remain unclear. In this study, we investigate ORF3a, a key accessory protein of SARS-CoV-2 that exhibits continuous mutations. Our findings reveal that ORF3a is present in placental tissue from pregnant women infected with SARS-CoV-2 and disrupts autophagic flux in placental cell lines and 3D stem-cell-derived trophoblast organoids (SC-TOs), impairing syncytiotrophoblast differentiation and trophoblast invasion. This disruption leads to protein aggregation in cytotrophoblasts (CTB) and activates secretory autophagy, increasing CD63+ extracellular vesicle secretion, along with ORF3a itself. ORF3a also compromises CTB barrier integrity by disrupting tight junctions via interaction with ZO-1, mediated by its PDZ-binding motif, SVPL. Co-localization of ORF3a and ZO-1 in SARS-CoV-2-infected human placental tissue supports our in vitro findings. Deleting the PDZ binding motif in the ORF3a protein (ORF3a-noPBM mutant) restored proper ZO-1 localization at the cell junctions in an autophagy-independent manner. Lastly, we demonstrate that constitutive ORF3a expression induces SC-TOs to transition towards a secretory autophagy pathway likely via the PBM motif, as the ORF3a-NoPBM mutants showed a significant lack of CD63 expression. This study demonstrates the functional impact of ORF3a on placental autophagy and reveals a new mechanism for the activation of secretory autophagy, which may lead to increased extracellular vesicle secretion. These findings provide a foundation for exploring therapeutic approaches targeting ORF3a, specifically focusing on its PBM region to block its interactions with host cellular proteins and limiting placental impact.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rowan M. Karvas
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110
| | - Brittany R. Jones
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX 77030, USA
| | - Eliza R. McColl
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX 77030, USA
| | - Emily Diveley
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, 63110
| | - Jash Sukanta
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University Alpert School of Medicine, Providence, RI 02903)
| | - Sharma Surendra
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX 77555
| | - Jeannie C. Kelly
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, 63110
| | - Thorold W. Theunissen
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110
| | - Indira U. Mysorekar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Huffington Center of Aging, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
16
|
Sergio MC, Ricciardi S, Guarino AM, Giaquinto L, De Matteis MA. Membrane remodeling and trafficking piloted by SARS-CoV-2. Trends Cell Biol 2024; 34:785-800. [PMID: 38262893 DOI: 10.1016/j.tcb.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/25/2024]
Abstract
The molecular mechanisms underlying SARS-CoV-2 host cell invasion and life cycle have been studied extensively in recent years, with a primary focus on viral entry and internalization with the aim of identifying antiviral therapies. By contrast, our understanding of the molecular mechanisms involved in the later steps of the coronavirus life cycle is relatively limited. In this review, we describe what is known about the host factors and viral proteins involved in the replication, assembly, and egress phases of SARS-CoV-2, which induce significant host membrane rearrangements. We also discuss the limits of the current approaches and the knowledge gaps still to be addressed.
Collapse
Affiliation(s)
- Maria Concetta Sergio
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy; University of Naples Federico II, Naples, Italy
| | | | - Andrea M Guarino
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy; University of Naples Federico II, Naples, Italy
| | - Laura Giaquinto
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy; University of Naples Federico II, Naples, Italy
| | - Maria Antonietta De Matteis
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy; University of Naples Federico II, Naples, Italy.
| |
Collapse
|
17
|
Joharinia N, Bonneil É, Grandvaux N, Thibault P, Lippé R. Comprehensive proteomic analysis of HCoV-OC43 virions and virus-modulated extracellular vesicles. J Virol 2024; 98:e0085024. [PMID: 38953378 PMCID: PMC11265355 DOI: 10.1128/jvi.00850-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/13/2024] [Indexed: 07/04/2024] Open
Abstract
Viruses are obligate parasites that depend on the cellular machinery for their propagation. Several viruses also incorporate cellular proteins that facilitate viral spread. Defining these cellular proteins is critical to decipher viral life cycles and delineate novel therapeutic strategies. While numerous studies have explored the importance of host proteins in coronavirus spread, information about their presence in mature virions is limited. In this study, we developed a protocol to highly enrich mature HCoV-OC43 virions and characterize them by proteomics. Recognizing that cells release extracellular vesicles whose content is modulated by viruses, and given our ability to separate virions from these vesicles, we also analyzed their protein content in both uninfected and infected cells. We uncovered 69 unique cellular proteins associated with virions including 31 high-confidence hits. These proteins primarily regulate RNA metabolism, enzymatic activities, vesicular transport, cell adhesion, metabolite interconversion, and translation. We further discovered that the virus had a profound impact on exosome composition, incorporating 47 novel cellular proteins (11 high confidence) and excluding 92 others (61 high confidence) in virus-associated extracellular vesicles compared to uninfected cells. Moreover, a dsiRNA screen revealed that 11 of 18 select targets significantly impacted viral yields, including proteins found in virions or extracellular vesicles. Overall, this study provides new and important insights into the incorporation of numerous host proteins into HCoV-OC43 virions, their biological significance, and the ability of the virus to modulate extracellular vesicles. IMPORTANCE In recent years, coronaviruses have dominated global attention, making it crucial to develop methods to control them and prevent future pandemics. Besides viral proteins, host proteins play a significant role in viral propagation and offer potential therapeutic targets. Targeting host proteins is advantageous because they are less likely to mutate and develop resistance compared to viral proteins, a common issue with many antiviral treatments. In this study, we examined the protein content of the less virulent biosafety level 2 HCoV-OC43 virus as a stand-in for the more virulent SARS-CoV-2. Our findings reveal that several cellular proteins incorporated into the virion regulate viral spread. In addition, we report that the virus extensively modulates the content of extracellular vesicles, enhancing viral dissemination. This underscores the critical interplay between the virus, host proteins, and extracellular vesicles.
Collapse
Affiliation(s)
- Negar Joharinia
- Azrieli Research center of the CHU Sainte-Justine, Montreal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, University of Montreal, Montreal, Quebec, Canada
| | - Éric Bonneil
- IRIC, University of Montreal, Montreal, Quebec, Canada
| | - Nathalie Grandvaux
- Research center of the CHUM (CRCHUM), Montreal, Quebec, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Pierre Thibault
- IRIC, University of Montreal, Montreal, Quebec, Canada
- Department of Chemistry, University of Montreal, Montreal, Quebec, Canada
| | - Roger Lippé
- Azrieli Research center of the CHU Sainte-Justine, Montreal, Quebec, Canada
- Department of Pathology and Cell biology, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
18
|
Liang R, Liu K, Li Y, Zhang X, Duan L, Huang M, Sun L, Yuan F, Zhao J, Zhao Y, Zhang G. Adaptive truncation of the S gene in IBV during chicken embryo passaging plays a crucial role in its attenuation. PLoS Pathog 2024; 20:e1012415. [PMID: 39078847 PMCID: PMC11315334 DOI: 10.1371/journal.ppat.1012415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/09/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Like all coronaviruses, infectious bronchitis virus, the causative agent of infectious bronchitis in chickens, exhibits a high mutation rate. Adaptive mutations that arise during the production of live attenuated vaccines against IBV often decrease virulence. The specific impact of these mutations on viral pathogenicity, however, has not been fully elucidated. In this study, we identified a mutation at the 3' end of the S gene in an IBV strain that was serially passaged in chicken embryos, and showed that this mutation resulted in a 9-aa truncation of the cytoplasmic tail (CT) of the S protein. This phenomenon of CT truncation has previously been observed in the production of attenuated vaccines against other coronaviruses such as the porcine epidemic diarrhea virus. We next discovered that the 9-aa truncation in the S protein CT resulted in the loss of the endoplasmic-reticulum-retention signal (KKSV). Rescue experiments with recombinant viruses confirmed that the deletion of the KKSV motif impaired the localization of the S protein to the endoplasmic-reticulum-Golgi intermediate compartment (ERGIC) and increased its expression on the cell surface. This significantly reduced the incorporation of the S protein into viral particles, impaired early subgenomic RNA and protein synthesis, and ultimately reduced viral invasion efficiency in CEK cells. In vivo experiments in chickens confirmed the reduced pathogenicity of the mutant IBV strains. Additionally, we showed that the adaptive mutation altered the TRS-B of ORF3 and impacted the transcriptional regulation of this gene. Our findings underscore the significance of this adaptive mutation in the attenuation of IBV infection and provide a novel strategy for the development of live attenuated IBV vaccines.
Collapse
Affiliation(s)
- Rong Liang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Kangchengyin Liu
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yingfei Li
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xuehui Zhang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Linqing Duan
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Min Huang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lu Sun
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Fang Yuan
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jing Zhao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ye Zhao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Guozhong Zhang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
19
|
López-Ayllón BD, Marin S, Fernández MF, García-García T, Fernández-Rodríguez R, de Lucas-Rius A, Redondo N, Mendoza-García L, Foguet C, Grigas J, Calvet A, Villalba JM, Gómez MJR, Megías D, Mandracchia B, Luque D, Lozano JJ, Calvo C, Herrán UM, Thomson TM, Garrido JJ, Cascante M, Montoya M. Metabolic and mitochondria alterations induced by SARS-CoV-2 accessory proteins ORF3a, ORF9b, ORF9c and ORF10. J Med Virol 2024; 96:e29752. [PMID: 38949191 DOI: 10.1002/jmv.29752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 07/02/2024]
Abstract
Antiviral signaling, immune response and cell metabolism are dysregulated by SARS-CoV-2, the causative agent of COVID-19. Here, we show that SARS-CoV-2 accessory proteins ORF3a, ORF9b, ORF9c and ORF10 induce a significant mitochondrial and metabolic reprogramming in A549 lung epithelial cells. While ORF9b, ORF9c and ORF10 induced largely overlapping transcriptomes, ORF3a induced a distinct transcriptome, including the downregulation of numerous genes with critical roles in mitochondrial function and morphology. On the other hand, all four ORFs altered mitochondrial dynamics and function, but only ORF3a and ORF9c induced a marked alteration in mitochondrial cristae structure. Genome-Scale Metabolic Models identified both metabolic flux reprogramming features both shared across all accessory proteins and specific for each accessory protein. Notably, a downregulated amino acid metabolism was observed in ORF9b, ORF9c and ORF10, while an upregulated lipid metabolism was distinctly induced by ORF3a. These findings reveal metabolic dependencies and vulnerabilities prompted by SARS-CoV-2 accessory proteins that may be exploited to identify new targets for intervention.
Collapse
Affiliation(s)
- Blanca D López-Ayllón
- Viral Immunology Lab, Molecular Biomedicine Department, BICS Unit. Margarita Salas Center for Biological Research (CIB-CSIC), Madrid, Spain
| | - Silvia Marin
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona (UB), Barcelona, Spain
- CIBER of Hepatic and Digestive Diseases (CIBEREHD), Institute of Health Carlos III (ISCIII), Madrid, Spain
- Institute of Biomedicine of University of Barcelona (IBUB), University of Barcelona (UB), Barcelona, Spain
| | - Marco Fariñas Fernández
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona (UB), Barcelona, Spain
- Department of Biomedical Laboratory Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Tránsito García-García
- Immunogenomics and Molecular Pathogenesis Group, UIC Zoonoses and Emergent Diseases ENZOEM, Department of Genetics, University of Córdoba, Córdoba, Spain
- Maimónides Biomedical Research, Institute of Córdoba (IMIBIC), Córdoba, Spain
| | - Raúl Fernández-Rodríguez
- Immunogenomics and Molecular Pathogenesis Group, UIC Zoonoses and Emergent Diseases ENZOEM, Department of Genetics, University of Córdoba, Córdoba, Spain
- Maimónides Biomedical Research, Institute of Córdoba (IMIBIC), Córdoba, Spain
| | - Ana de Lucas-Rius
- Viral Immunology Lab, Molecular Biomedicine Department, BICS Unit. Margarita Salas Center for Biological Research (CIB-CSIC), Madrid, Spain
| | - Natalia Redondo
- Unit of Infectious Diseases, University Hospital '12 de Octubre', Institute for Health Research Hospital '12 de Octubre' (imas12), Madrid, Spain
- Centre for Biomedical Research Network on Infectious Diseases (CIBERINFEC), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Laura Mendoza-García
- Viral Immunology Lab, Molecular Biomedicine Department, BICS Unit. Margarita Salas Center for Biological Research (CIB-CSIC), Madrid, Spain
| | - Carles Foguet
- British Heart Foundation Cardiovascular Epidemiology Unit and Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Juozas Grigas
- Laboratory of Immunology, Department of Anatomy and Physiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Institute of Microbiology and Virology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Alba Calvet
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona (UB), Barcelona, Spain
- Institute of Biomedicine of University of Barcelona (IBUB), University of Barcelona (UB), Barcelona, Spain
| | - José Manuel Villalba
- Department of Cell Biology, Physiology and Immunology, Agrifood Campus of International Excellence, University of Córdoba, Córdoba, Spain
| | - María Josefa Rodríguez Gómez
- Scientific-Technical Central Units, Instituto de Salud Carlos III (ISCIII), Majadahonda, Spain
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Diego Megías
- Scientific-Technical Central Units, Instituto de Salud Carlos III (ISCIII), Majadahonda, Spain
| | - Biagio Mandracchia
- Scientific-Technical Central Units, Instituto de Salud Carlos III (ISCIII), Majadahonda, Spain
- ETSI Telecommunication, University of Valladolid, Valladolid, Spain
| | - Daniel Luque
- Scientific-Technical Central Units, Instituto de Salud Carlos III (ISCIII), Majadahonda, Spain
- Electron Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, Australia
- School of Biomedical Sciences, University of New South Wales, Sydney, Australia
| | - Juan José Lozano
- CIBER of Hepatic and Digestive Diseases (CIBEREHD), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Cristina Calvo
- Barcelona Institute for Molecular Biology (IBMB-CSIC), Barcelona, Spain
| | - Unai Merino Herrán
- Viral Immunology Lab, Molecular Biomedicine Department, BICS Unit. Margarita Salas Center for Biological Research (CIB-CSIC), Madrid, Spain
| | - Timothy M Thomson
- CIBER of Hepatic and Digestive Diseases (CIBEREHD), Institute of Health Carlos III (ISCIII), Madrid, Spain
- Barcelona Institute for Molecular Biology (IBMB-CSIC), Barcelona, Spain
- Translational Research and Computational Biology Laboratory, Faculty of Science and Engineering, Peruvian University Cayetano Heredia, Lima, Perú
| | - Juan J Garrido
- Immunogenomics and Molecular Pathogenesis Group, UIC Zoonoses and Emergent Diseases ENZOEM, Department of Genetics, University of Córdoba, Córdoba, Spain
- Maimónides Biomedical Research, Institute of Córdoba (IMIBIC), Córdoba, Spain
| | - Marta Cascante
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona (UB), Barcelona, Spain
- CIBER of Hepatic and Digestive Diseases (CIBEREHD), Institute of Health Carlos III (ISCIII), Madrid, Spain
- Institute of Biomedicine of University of Barcelona (IBUB), University of Barcelona (UB), Barcelona, Spain
| | - María Montoya
- Viral Immunology Lab, Molecular Biomedicine Department, BICS Unit. Margarita Salas Center for Biological Research (CIB-CSIC), Madrid, Spain
| |
Collapse
|
20
|
Ferdoush J, Abdul Kadir R, Simay Kaplanoglu S, Osborn M. SARS-CoV-2 and UPS with potentials for therapeutic interventions. Gene 2024; 912:148377. [PMID: 38490508 DOI: 10.1016/j.gene.2024.148377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
The Ubiquitin proteasome system (UPS), an essential eukaryotic/host/cellular post-translational modification (PTM), plays a critical role in the regulation of diverse cellular functions including regulation of protein stability, immune signaling, antiviral activity, as well as virus replication. Although UPS regulation of viral proteins may be utilized by the host as a defense mechanism to invade viruses, viruses may have adapted to take advantage of the host UPS. This system can be manipulated by viruses such as the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) to stimulate various steps of the viral replication cycle and facilitate pathogenesis, thereby causing the respiratory disease COVID-19. Many SARS-CoV-2 encoded proteins including open reading frame 3a (ORF3a), ORF6, ORF7a, ORF9b, and ORF10 interact with the host's UPS machinery, influencing host immune signaling and apoptosis. Moreover, SARS-CoV-2 encoded papain-like protease (PLpro) interferes with the host UPS to facilitate viral replication and to evade the host's immune system. These alterations in SARS-CoV-2 infected cells have been revealed by various proteomic studies, suggesting potential targets for clinical treatment. To provide insight into the underlying causes of COVID-19 and suggest possible directions for therapeutic interventions, this paper reviews the intricate relationship between SARS-CoV-2 and UPS. Promising treatment strategies are also investigated in this paper including targeting PLpro with zinc-ejector drugs, as well as targeting viral non-structural protein (nsp12) via heat treatment associated ubiquitin-mediated proteasomal degradation to reduce viral pathogenesis.
Collapse
Affiliation(s)
- Jannatul Ferdoush
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga 615 McCallie Ave, Chattanooga, TN 37403, USA.
| | - Rizwaan Abdul Kadir
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga 615 McCallie Ave, Chattanooga, TN 37403, USA
| | - Selin Simay Kaplanoglu
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga 615 McCallie Ave, Chattanooga, TN 37403, USA
| | - Morgan Osborn
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga 615 McCallie Ave, Chattanooga, TN 37403, USA
| |
Collapse
|
21
|
Hartmann S, Radochonski L, Ye C, Martinez-Sobrido L, Chen J. SARS-CoV-2 ORF3a drives dynamic dense body formation for optimal viral infectivity. RESEARCH SQUARE 2024:rs.3.rs-4292014. [PMID: 38798602 PMCID: PMC11118709 DOI: 10.21203/rs.3.rs-4292014/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
SARS-CoV-2 uses the double-membrane vesicles as replication organelles. However, how virion assembly occurs has not been fully understood. Here we identified a SARS-CoV-2-driven membrane structure named the 3a dense body (3DB). 3DBs have unusual electron-dense and dynamic inner structures, and their formation is driven by the accessory protein ORF3a via hijacking a specific subset of the trans-Golgi network (TGN) and early endosomal membranes. 3DB formation is conserved in related bat and pangolin coronaviruses yet lost during the evolution to SARS-CoV. 3DBs recruit the viral structural proteins spike (S) and membrane (M) and undergo dynamic fusion/fission to facilitate efficient virion assembly. A recombinant SARS-CoV-2 virus with an ORF3a mutant specifically defective in 3DB formation showed dramatically reduced infectivity for both extracellular and cell-associated virions. Our study uncovers the crucial role of 3DB in optimal SARS-CoV-2 infectivity and highlights its potential as a target for COVID-19 prophylactics and therapeutics.
Collapse
Affiliation(s)
- Stella Hartmann
- Department of Microbiology, University of Chicago, Chicago, IL, USA 60637
- Howard Taylor Ricketts Laboratory, University of Chicago, Lemont, IL, USA 60439
| | - Lisa Radochonski
- Department of Microbiology, University of Chicago, Chicago, IL, USA 60637
- Howard Taylor Ricketts Laboratory, University of Chicago, Lemont, IL, USA 60439
| | - Chengjin Ye
- Texas Biomedical Research Institute, San Antonio, TX, USA 78227
| | | | - Jueqi Chen
- Department of Microbiology, University of Chicago, Chicago, IL, USA 60637
- Howard Taylor Ricketts Laboratory, University of Chicago, Lemont, IL, USA 60439
| |
Collapse
|
22
|
Grote K, Schaefer AC, Soufi M, Ruppert V, Linne U, Mukund Bhagwat A, Szymanski W, Graumann J, Gercke Y, Aldudak S, Hilfiker-Kleiner D, Schieffer E, Schieffer B. Targeting the High-Density Lipoprotein Proteome for the Treatment of Post-Acute Sequelae of SARS-CoV-2. Int J Mol Sci 2024; 25:4522. [PMID: 38674105 PMCID: PMC11049911 DOI: 10.3390/ijms25084522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Here, we target the high-density lipoprotein (HDL) proteome in a case series of 16 patients with post-COVID-19 symptoms treated with HMG-Co-A reductase inhibitors (statin) plus angiotensin II type 1 receptor blockers (ARBs) for 6 weeks. Patients suffering from persistent symptoms (post-acute sequelae) after serologically confirmed SARS-CoV-2 infection (post-COVID-19 syndrome, PCS, n = 8) or following SARS-CoV-2 vaccination (PVS, n = 8) were included. Asymptomatic subjects with corresponding serological findings served as healthy controls (n = 8/8). HDL was isolated using dextran sulfate precipitation and the HDL proteome of all study participants was analyzed quantitatively by mass spectrometry. Clinical symptoms were assessed using questionnaires before and after therapy. The inflammatory potential of the patients' HDL proteome was addressed in human endothelial cells. The HDL proteome of patients with PCS and PVS showed no significant differences; however, compared to controls, the HDL from PVS/PCS patients displayed significant alterations involving hemoglobin, cytoskeletal proteins (MYL6, TLN1, PARVB, TPM4, FLNA), and amyloid precursor protein. Gene Ontology Biological Process (GOBP) enrichment analysis identified hemostasis, peptidase, and lipoprotein regulation pathways to be involved. Treatment of PVS/PCS patients with statins plus ARBs improved the patients' clinical symptoms. After therapy, three proteins were significantly increased (FAM3C, AT6AP2, ADAM10; FDR < 0.05) in the HDL proteome from patients with PVS/PCS. Exposure of human endothelial cells with the HDL proteome from treated PVS/PCS patients revealed reduced inflammatory cytokine and adhesion molecule expression. Thus, HDL proteome analysis from PVS/PCS patients enables a deeper insight into the underlying disease mechanisms, pointing to significant involvement in metabolic and signaling disturbances. Treatment with statins plus ARBs improved clinical symptoms and reduced the inflammatory potential of the HDL proteome. These observations may guide future therapeutic strategies for PVS/PCS patients.
Collapse
Affiliation(s)
- Karsten Grote
- Department of Cardiology, Angiology, and Intensive Care, Philipps University Marburg, 35043 Marburg, Germany; (K.G.); (A.-C.S.); (M.S.); (V.R.); (S.A.); (E.S.)
| | - Ann-Christin Schaefer
- Department of Cardiology, Angiology, and Intensive Care, Philipps University Marburg, 35043 Marburg, Germany; (K.G.); (A.-C.S.); (M.S.); (V.R.); (S.A.); (E.S.)
| | - Muhidien Soufi
- Department of Cardiology, Angiology, and Intensive Care, Philipps University Marburg, 35043 Marburg, Germany; (K.G.); (A.-C.S.); (M.S.); (V.R.); (S.A.); (E.S.)
| | - Volker Ruppert
- Department of Cardiology, Angiology, and Intensive Care, Philipps University Marburg, 35043 Marburg, Germany; (K.G.); (A.-C.S.); (M.S.); (V.R.); (S.A.); (E.S.)
| | - Uwe Linne
- Mass Spectrometry Facility, Department of Chemistry, Philipps University Marburg, 35043 Marburg, Germany;
| | - Aditya Mukund Bhagwat
- Institute of Translational Proteomics & Core Facility Translational Proteomics, Philipps University Marburg, 35043 Marburg, Germany (W.S.)
| | - Witold Szymanski
- Institute of Translational Proteomics & Core Facility Translational Proteomics, Philipps University Marburg, 35043 Marburg, Germany (W.S.)
| | - Johannes Graumann
- Institute of Translational Proteomics & Core Facility Translational Proteomics, Philipps University Marburg, 35043 Marburg, Germany (W.S.)
| | - Yana Gercke
- Department of Cardiology, Angiology, and Intensive Care, Philipps University Marburg, 35043 Marburg, Germany; (K.G.); (A.-C.S.); (M.S.); (V.R.); (S.A.); (E.S.)
| | - Sümeya Aldudak
- Department of Cardiology, Angiology, and Intensive Care, Philipps University Marburg, 35043 Marburg, Germany; (K.G.); (A.-C.S.); (M.S.); (V.R.); (S.A.); (E.S.)
| | - Denise Hilfiker-Kleiner
- Institute Cardiovascular Complications in Pregnancy and Oncologic Therapies, Philipps University Marburg, 35043 Marburg, Germany;
| | - Elisabeth Schieffer
- Department of Cardiology, Angiology, and Intensive Care, Philipps University Marburg, 35043 Marburg, Germany; (K.G.); (A.-C.S.); (M.S.); (V.R.); (S.A.); (E.S.)
| | - Bernhard Schieffer
- Department of Cardiology, Angiology, and Intensive Care, Philipps University Marburg, 35043 Marburg, Germany; (K.G.); (A.-C.S.); (M.S.); (V.R.); (S.A.); (E.S.)
| |
Collapse
|
23
|
Pearson GJ, Mears HV, Broncel M, Snijders AP, Bauer DLV, Carlton JG. ER-export and ARFRP1/AP-1-dependent delivery of SARS-CoV-2 Envelope to lysosomes controls late stages of viral replication. SCIENCE ADVANCES 2024; 10:eadl5012. [PMID: 38569033 PMCID: PMC10990277 DOI: 10.1126/sciadv.adl5012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/28/2024] [Indexed: 04/05/2024]
Abstract
The β-coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the global COVID-19 pandemic. Coronaviral Envelope (E) proteins are pentameric viroporins that play essential roles in assembly, release, and pathogenesis. We developed a nondisruptive tagging strategy for SARS-CoV-2 E and find that, at steady state, it localizes to the Golgi and to lysosomes. We identify sequences in E, conserved across Coronaviridae, responsible for endoplasmic reticulum-to-Golgi export, and relate this activity to interaction with COP-II via SEC24. Using proximity biotinylation, we identify an ADP ribosylation factor 1/adaptor protein-1 (ARFRP1/AP-1)-dependent pathway allowing Golgi-to-lysosome trafficking of E. We identify sequences in E that bind AP-1, are conserved across β-coronaviruses, and allow E to be trafficked from Golgi to lysosomes. We show that E acts to deacidify lysosomes and, by developing a trans-complementation assay for SARS-CoV-2 structural proteins, that lysosomal delivery of E and its viroporin activity is necessary for efficient viral replication and release.
Collapse
Affiliation(s)
- Guy J. Pearson
- Organelle Dynamics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- School of Cancer & Pharmaceutical Sciences, King’s College London, Great Maze Pond, London SE1 1UL, UK
| | - Harriet V. Mears
- RNA Virus Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Malgorzata Broncel
- Proteomic Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ambrosius P. Snijders
- Proteomic Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - David L. V. Bauer
- RNA Virus Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Jeremy G. Carlton
- Organelle Dynamics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- School of Cancer & Pharmaceutical Sciences, King’s College London, Great Maze Pond, London SE1 1UL, UK
| |
Collapse
|
24
|
Wang J, Mim C, Dahll G, Barro-Soria R. A metastasis-associated Pannexin1 mutant (Panx1 1-89 ) forms a minimalist ATP release channel. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584732. [PMID: 38559162 PMCID: PMC10980048 DOI: 10.1101/2024.03.12.584732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
A truncated form of the ATP release channel pannexin 1 (Panx1), Panx1 1-89 , is enriched in metastatic breast cancer cells and has been proposed to mediate metastatic cell survival by increasing ATP release through mechanosensitive Panx1 channels. However, whether Panx1 1-89 on its own (without the presence of wtPanx1) mediates ATP release has not been tested. Here, we show that Panx1 1-89 by itself can form a constitutively active membrane channel, capable of releasing ATP even in the absence of wild type Panx1. Our biophysical characterization reveals that most basic structure-function features of the channel pore are conserved in the truncated Panx1 1-89 peptide. Thus, augmenting extracellular potassium ion concentrations enhances Panx1 1-89 -mediated conductance. Moreover, despite the severe truncation, Panx1 1-89 retains the sensitivity to most of wtPanx1 channel inhibitors and can thus be targeted. Therefore, Panx1 blockers have the potential to be of therapeutic value to combat metastatic cell survival. Our study not only elucidates a mechanism for ATP release from cancer cells, but it also supports that the Panx1 1-89 mutant should facilitate structure-function analysis of Panx1 channels.
Collapse
|
25
|
Rosenbaum JC, Carlson AE. The SARS coronavirus accessory protein ORF3a rescues potassium conductance in yeast. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001129. [PMID: 38525126 PMCID: PMC10958204 DOI: 10.17912/micropub.biology.001129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/26/2024]
Abstract
ORF3a is an accessory protein expressed by all human pathogen coronaviruses and is the only accessory protein that strongly affects viral fitness. Its deletion reduces severity in both alpha- and beta-coronaviruses, demonstrating a conserved function across the superfamily. Initially regarded as a non-selective cation channel, ORF3a's function is now disputed. Here, we show that ORF3a from SARS, but not SARS-CoV-2, promotes potassium conductance in a yeast model system commonly used to study potassium channels. ORF3a-mediated potassium conductance is also sensitive to inhibitors, including emodin, carbamazepine, and nifedipine. This model may be used in future studies on ORF3a and related proteins.
Collapse
Affiliation(s)
- Joel C. Rosenbaum
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Anne E. Carlson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
26
|
Walia K, Sharma A, Paul S, Chouhan P, Kumar G, Ringe R, Sharma M, Tuli A. SARS-CoV-2 virulence factor ORF3a blocks lysosome function by modulating TBC1D5-dependent Rab7 GTPase cycle. Nat Commun 2024; 15:2053. [PMID: 38448435 PMCID: PMC10918171 DOI: 10.1038/s41467-024-46417-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 02/26/2024] [Indexed: 03/08/2024] Open
Abstract
SARS-CoV-2, the causative agent of COVID-19, uses the host endolysosomal system for entry, replication, and egress. Previous studies have shown that the SARS-CoV-2 virulence factor ORF3a interacts with the lysosomal tethering factor HOPS complex and blocks HOPS-mediated late endosome and autophagosome fusion with lysosomes. Here, we report that SARS-CoV-2 infection leads to hyperactivation of the late endosomal and lysosomal small GTP-binding protein Rab7, which is dependent on ORF3a expression. We also observed Rab7 hyperactivation in naturally occurring ORF3a variants encoded by distinct SARS-CoV-2 variants. We found that ORF3a, in complex with Vps39, sequesters the Rab7 GAP TBC1D5 and displaces Rab7 from this complex. Thus, ORF3a disrupts the GTP hydrolysis cycle of Rab7, which is beneficial for viral production, whereas the Rab7 GDP-locked mutant strongly reduces viral replication. Hyperactivation of Rab7 in ORF3a-expressing cells impaired CI-M6PR retrieval from late endosomes to the trans-Golgi network, disrupting the biosynthetic transport of newly synthesized hydrolases to lysosomes. Furthermore, the tethering of the Rab7- and Arl8b-positive compartments was strikingly reduced upon ORF3a expression. As SARS-CoV-2 egress requires Arl8b, these findings suggest that ORF3a-mediated hyperactivation of Rab7 serves a multitude of functions, including blocking endolysosome formation, interrupting the transport of lysosomal hydrolases, and promoting viral egress.
Collapse
Affiliation(s)
- Kshitiz Walia
- Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Abhishek Sharma
- Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
| | - Sankalita Paul
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Punjab, India
| | - Priya Chouhan
- Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Gaurav Kumar
- Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
| | - Rajesh Ringe
- Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
| | - Mahak Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Punjab, India
| | - Amit Tuli
- Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|
27
|
Zhang J, Hom K, Zhang C, Nasr M, Gerzanich V, Zhang Y, Tang Q, Xue F, Simard JM, Zhao RY. SARS-CoV-2 ORF3a Protein as a Therapeutic Target against COVID-19 and Long-Term Post-Infection Effects. Pathogens 2024; 13:75. [PMID: 38251382 PMCID: PMC10819734 DOI: 10.3390/pathogens13010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 has posed unparalleled challenges due to its rapid transmission, ability to mutate, high mortality and morbidity, and enduring health complications. Vaccines have exhibited effectiveness, but their efficacy diminishes over time while new variants continue to emerge. Antiviral medications offer a viable alternative, but their success has been inconsistent. Therefore, there remains an ongoing need to identify innovative antiviral drugs for treating COVID-19 and its post-infection complications. The ORF3a (open reading frame 3a) protein found in SARS-CoV-2, represents a promising target for antiviral treatment due to its multifaceted role in viral pathogenesis, cytokine storms, disease severity, and mortality. ORF3a contributes significantly to viral pathogenesis by facilitating viral assembly and release, essential processes in the viral life cycle, while also suppressing the body's antiviral responses, thus aiding viral replication. ORF3a also has been implicated in triggering excessive inflammation, characterized by NF-κB-mediated cytokine production, ultimately leading to apoptotic cell death and tissue damage in the lungs, kidneys, and the central nervous system. Additionally, ORF3a triggers the activation of the NLRP3 inflammasome, inciting a cytokine storm, which is a major contributor to the severity of the disease and subsequent mortality. As with the spike protein, ORF3a also undergoes mutations, and certain mutant variants correlate with heightened disease severity in COVID-19. These mutations may influence viral replication and host cellular inflammatory responses. While establishing a direct link between ORF3a and mortality is difficult, its involvement in promoting inflammation and exacerbating disease severity likely contributes to higher mortality rates in severe COVID-19 cases. This review offers a comprehensive and detailed exploration of ORF3a's potential as an innovative antiviral drug target. Additionally, we outline potential strategies for discovering and developing ORF3a inhibitor drugs to counteract its harmful effects, alleviate tissue damage, and reduce the severity of COVID-19 and its lingering complications.
Collapse
Affiliation(s)
- Jiantao Zhang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (J.Z.); (C.Z.)
| | - Kellie Hom
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA; (K.H.); (F.X.)
| | - Chenyu Zhang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (J.Z.); (C.Z.)
| | - Mohamed Nasr
- Drug Development and Clinical Sciences Branch, Division of AIDS, NIAID, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (V.G.); (J.M.S.)
| | - Yanjin Zhang
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA;
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, Washington, DC 20059, USA;
| | - Fengtian Xue
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA; (K.H.); (F.X.)
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (V.G.); (J.M.S.)
- Research & Development Service, VA Maryland Health Care System, Baltimore, MD 21201, USA
| | - Richard Y. Zhao
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (J.Z.); (C.Z.)
- Research & Development Service, VA Maryland Health Care System, Baltimore, MD 21201, USA
- Department of Microbiology-Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Institute of Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
28
|
Chen YM, Lu CT, Wang CW, Fischer WB. Repurposing dye ligands as antivirals via a docking approach on viral membrane and globular proteins - SARS-CoV-2 and HPV-16. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184220. [PMID: 37657640 DOI: 10.1016/j.bbamem.2023.184220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/03/2023]
Abstract
A series of dye ligands are docked to three different proteins, E and 3a of severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) and E6 of human papilloma virus type 16 (HPV-16) using three different software. A four-level selection algorithm is used based on nonparametric statistics of numerical key values such as the "rank" derived from (i) averaged estimated binding energies (EBEs) and (ii) absolute EBE value of each of the software, (iii) frequency of ranking and (iv) rank of the area-under-curve values (AUCs) from decoy docking. A series of repurposing drugs and known antivirals used in experimental studies are docked for comparison. One dye ligand is ranked best for all proteins using the selection algorithm levels i - iii. Another three dye ligands are ranked top for the proteins individually when using all four levels.
Collapse
Affiliation(s)
- Yi-Ming Chen
- Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ching-Tai Lu
- Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chia-Wen Wang
- Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wolfgang B Fischer
- Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
29
|
Rout M, Mishra S, Panda S, Dehury B, Pati S. Lipid and cholesterols modulate the dynamics of SARS-CoV-2 viral ion channel ORF3a and its pathogenic variants. Int J Biol Macromol 2024; 254:127986. [PMID: 37944718 DOI: 10.1016/j.ijbiomac.2023.127986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
SARS-CoV-2 accessory protein, ORF3a is a putative ion channel which immensely contributes to viral pathogenicity by modulating host immune responses and virus-host interactions. Relatively high expression of ORF3a in diseased individuals and implication with inflammasome activation, apoptosis and autophagy inhibition, ratifies as an effective target for developing vaccines and therapeutics. Herein, we present the elusive dynamics of ORF3a-dimeric state using all-atoms molecular dynamics (MD) simulations at μ-seconds scale in a heterogeneous lipid-mimetic system in multiple replicates. Additionally, we also explore the effect of non-synonymous pathogenic mutations on ORF3a ion channel activity and viral pathogenicity in different SARS-CoV-2 variants using various structure-based protein stability (ΔΔG) tools and computational saturation mutagenesis. Our study ascertains the role of phosphatidylcholines and cholesterol in modulating the structure of ORF3a, which perturbs the size and flexibility of the polar cavity that allows permeation of large cations. Discrete trend in ion channel pore radius and area per lipid arises the premise that presence of lipids might also affect the overall conformation of ORF3a. MD structural-ensembles, in some replicates rationalize the crucial role of TM2 in maintaining the native structure of ORF3a. We also infer that loss of structural stability primarily grounds for pathogenicity in more than half of the pathogenic variants of ORF3a. Overall, the effect of mutation on alteration of ion permeability of ORF3a, proposed in this study brings mechanistic insights into variant consequences on viral membrane proteins of SARS-CoV-2, which can be utilized for the development of novel therapeutics to treat COVID-19 and other coronavirus diseases.
Collapse
Affiliation(s)
- Madhusmita Rout
- Bioinformatics Division, ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar 751023, Odisha, India
| | - Sarbani Mishra
- Bioinformatics Division, ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar 751023, Odisha, India
| | - Sunita Panda
- Mycology Division, ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar 751023, Odisha, India
| | - Budheswar Dehury
- Bioinformatics Division, ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar 751023, Odisha, India.
| | - Sanghamitra Pati
- Bioinformatics Division, ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar 751023, Odisha, India.
| |
Collapse
|
30
|
Stewart H, Palmulli R, Johansen KH, McGovern N, Shehata OM, Carnell GW, Jackson HK, Lee JS, Brown JC, Burgoyne T, Heeney JL, Okkenhaug K, Firth AE, Peden AA, Edgar JR. Tetherin antagonism by SARS-CoV-2 ORF3a and spike protein enhances virus release. EMBO Rep 2023; 24:e57224. [PMID: 37818801 PMCID: PMC10702813 DOI: 10.15252/embr.202357224] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/23/2023] [Accepted: 09/21/2023] [Indexed: 10/13/2023] Open
Abstract
The antiviral restriction factor, tetherin, blocks the release of several different families of enveloped viruses, including the Coronaviridae. Tetherin is an interferon-induced protein that forms parallel homodimers between the host cell and viral particles, linking viruses to the surface of infected cells and inhibiting their release. We demonstrate that SARS-CoV-2 infection causes tetherin downregulation and that tetherin depletion from cells enhances SARS-CoV-2 viral titres. We investigate the potential viral proteins involved in abrogating tetherin function and find that SARS-CoV-2 ORF3a reduces tetherin localisation within biosynthetic organelles where Coronaviruses bud, and increases tetherin localisation to late endocytic organelles via reduced retrograde recycling. We also find that expression of Spike protein causes a reduction in cellular tetherin levels. Our results confirm that tetherin acts as a host restriction factor for SARS-CoV-2 and highlight the multiple distinct mechanisms by which SARS-CoV-2 subverts tetherin function.
Collapse
Affiliation(s)
- Hazel Stewart
- Department of PathologyUniversity of CambridgeCambridgeUK
| | | | - Kristoffer H Johansen
- Department of PathologyUniversity of CambridgeCambridgeUK
- Laboratory of Immune Systems Biology, National Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMDUSA
| | - Naomi McGovern
- Department of PathologyUniversity of CambridgeCambridgeUK
| | - Ola M Shehata
- Department of Biomedical ScienceUniversity of Sheffield, Firth CourtSheffieldUK
| | - George W Carnell
- Department of Veterinary MedicineUniversity of CambridgeCambridgeUK
| | | | - Jin S Lee
- Department of PathologyUniversity of CambridgeCambridgeUK
| | | | - Thomas Burgoyne
- Royal Brompton HospitalGuy's and St Thomas' NHS Foundation TrustLondonUK
- UCL Institute of OphthalmologyUniversity College LondonLondonUK
| | | | | | - Andrew E Firth
- Department of PathologyUniversity of CambridgeCambridgeUK
| | - Andrew A Peden
- Department of Biomedical ScienceUniversity of Sheffield, Firth CourtSheffieldUK
| | - James R Edgar
- Department of PathologyUniversity of CambridgeCambridgeUK
| |
Collapse
|
31
|
Pitsillou E, Beh RC, Liang JJ, Tang TS, Zhou X, Siow YY, Ma Y, Hu Z, Wu Z, Hung A, Karagiannis TC. EpiMed Coronabank Chemical Collection: Compound selection, ADMET analysis, and utilisation in the context of potential SARS-CoV-2 antivirals. J Mol Graph Model 2023; 125:108602. [PMID: 37597309 DOI: 10.1016/j.jmgm.2023.108602] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/08/2023] [Accepted: 08/13/2023] [Indexed: 08/21/2023]
Abstract
Antiviral drugs are important for the coronavirus disease 2019 (COVID-19) response, as vaccines and antibodies may have reduced efficacy against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. Antiviral drugs that have been made available for use, albeit with questionable efficacy, include remdesivir (Veklury®), nirmatrelvir-ritonavir (Paxlovid™), and molnupiravir (Lagevrio®). To expand the options available for COVID-19 and prepare for future pandemics, there is a need to investigate new uses for existing drugs and design novel compounds. To support these efforts, we have created a comprehensive library of 750 molecules that have been sourced from in vitro, in vivo, and in silico studies. It is publicly available at our dedicated website (https://epimedlab.org/crl/). The EpiMed Coronabank Chemical Collection consists of compounds that have been divided into 10 main classes based on antiviral properties, as well as the potential to be used for the management, prevention, or treatment of COVID-19 related complications. A detailed description of each compound is provided, along with the molecular formula, canonical SMILES, and U.S. Food and Drug Administration approval status. The chemical structures have been obtained and are available for download. Moreover, the pharmacokinetic properties of the ligands have been characterised. To demonstrate an application of the EpiMed Coronabank Chemical Collection, molecular docking was used to evaluate the binding characteristics of ligands against SARS-CoV-2 nonstructural and accessory proteins. Overall, our database can be used to aid the drug repositioning process, and for gaining further insight into the molecular mechanisms of action of potential compounds of interest.
Collapse
Affiliation(s)
- Eleni Pitsillou
- Epigenomic Medicine Laboratory at prospED, Carlton, VIC, 3053, Australia; School of Science, STEM College, RMIT University, VIC, 3001, Australia
| | - Raymond C Beh
- Epigenomic Medicine Laboratory at prospED, Carlton, VIC, 3053, Australia; School of Science, STEM College, RMIT University, VIC, 3001, Australia
| | - Julia J Liang
- Epigenomic Medicine Laboratory at prospED, Carlton, VIC, 3053, Australia; School of Science, STEM College, RMIT University, VIC, 3001, Australia
| | - Thinh Sieu Tang
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Xun Zhou
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Ya Yun Siow
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Yinghao Ma
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Zifang Hu
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Zifei Wu
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Andrew Hung
- School of Science, STEM College, RMIT University, VIC, 3001, Australia
| | - Tom C Karagiannis
- Epigenomic Medicine Laboratory at prospED, Carlton, VIC, 3053, Australia; Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, 3010, Australia; Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
32
|
Busscher BM, Befekadu HB, Liu Z, Xiao TS. SARS-CoV-2 ORF3a-Mediated NF-κB Activation Is Not Dependent on TRAF-Binding Sequence. Viruses 2023; 15:2229. [PMID: 38005906 PMCID: PMC10675646 DOI: 10.3390/v15112229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/31/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has caused a global pandemic of Coronavirus Disease 2019 (COVID-19). Excessive inflammation is a hallmark of severe COVID-19, and several proteins encoded in the SARS-CoV-2 genome are capable of stimulating inflammatory pathways. Among these, the accessory protein open reading frame 3a (ORF3a) has been implicated in COVID-19 pathology. Here we investigated the roles of ORF3a in binding to TNF receptor-associated factor (TRAF) proteins and inducing nuclear factor kappa B (NF-κB) activation. X-ray crystallography and a fluorescence polarization assay revealed low-affinity binding between an ORF3a N-terminal peptide and TRAFs, and a dual-luciferase assay demonstrated NF-κB activation by ORF3a. Nonetheless, mutation of the N-terminal TRAF-binding sequence PIQAS in ORF3a did not significantly diminish NF-κB activation in our assay. Our results thus suggest that the SARS-CoV-2 protein may activate NF-κB through alternative mechanisms.
Collapse
Affiliation(s)
- Brianna M. Busscher
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (B.M.B.); (Z.L.)
| | - Henock B. Befekadu
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Zhonghua Liu
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (B.M.B.); (Z.L.)
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Tsan Sam Xiao
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (B.M.B.); (Z.L.)
| |
Collapse
|
33
|
Fang P, Zhang H, Cheng T, Ding T, Xia S, Xiao W, Li Z, Xiao S, Fang L. Porcine deltacoronavirus accessory protein NS6 harnesses VPS35-mediated retrograde trafficking to facilitate efficient viral infection. J Virol 2023; 97:e0095723. [PMID: 37815351 PMCID: PMC10617406 DOI: 10.1128/jvi.00957-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/01/2023] [Indexed: 10/11/2023] Open
Abstract
IMPORTANCE Retrograde transport has been reported to be closely associated with normal cellular biological processes and viral replication. As an emerging enteropathogenic coronavirus with zoonotic potential, porcine deltacoronavirus (PDCoV) has attracted considerable attention. However, whether retrograde transport is associated with PDCoV infection remains unclear. Our present study demonstrates that retromer protein VPS35 acts as a critical host factor that is required for PDCoV infection. Mechanically, VPS35 interacts with PDCoV NS6, mediating the retrograde transport of NS6 from endosomes to the Golgi and preventing it from lysosomal degradation. Recombinant PDCoVs with an NS6 deletion display resistance to VPS35 deficiency. Our work reveals a novel evasion mechanism of PDCoV that involves the manipulation of the retrograde transport pathway by VPS35, providing new insight into the mechanism of PDCoV infection.
Collapse
Affiliation(s)
- Puxian Fang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Huichang Zhang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Ting Cheng
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Tong Ding
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - SiJin Xia
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Wenwen Xiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zhuang Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Shaobo Xiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Liurong Fang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
34
|
Juckel D, Desmarets L, Danneels A, Rouillé Y, Dubuisson J, Belouzard S. MERS-CoV and SARS-CoV-2 membrane proteins are modified with polylactosamine chains. J Gen Virol 2023; 104. [PMID: 37800895 DOI: 10.1099/jgv.0.001900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023] Open
Abstract
Coronaviruses are positive-stranded RNA enveloped viruses. The helical nucleocapsid is surrounded by a lipid bilayer in which are anchored three viral proteins: the spike (S), membrane (M) and envelope (E) proteins. The M protein is the major component of the viral envelope and is believed to be its building block. The M protein of Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contains a short N-terminal domain with an N-glycosylation site. We investigated their N-glycosylation and show that polylactosamine chains are conjugated to SARS-CoV-2 and MERS-CoV M proteins in transfected and infected cells. Acidic residues present in the first transmembrane segments of the proteins are required for their glycosylation. No specific signal to specify polylactosamine conjugation could be identified and high mannose-conjugated protein was incorporated into virus-like particles.
Collapse
Affiliation(s)
- Dylan Juckel
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL- Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Lowiese Desmarets
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL- Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Adeline Danneels
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL- Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Yves Rouillé
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL- Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Jean Dubuisson
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL- Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Sandrine Belouzard
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL- Center for Infection and Immunity of Lille, F-59000 Lille, France
| |
Collapse
|
35
|
Lee YB, Jung M, Kim J, Charles A, Christ W, Kang J, Kang MG, Kwak C, Klingström J, Smed-Sörensen A, Kim JS, Mun JY, Rhee HW. Super-resolution proximity labeling reveals anti-viral protein network and its structural changes against SARS-CoV-2 viral proteins. Cell Rep 2023; 42:112835. [PMID: 37478010 DOI: 10.1016/j.celrep.2023.112835] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 05/31/2023] [Accepted: 07/05/2023] [Indexed: 07/23/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replicates in human cells by interacting with host factors following infection. To understand the virus and host interactome proximity, we introduce a super-resolution proximity labeling (SR-PL) method with a "plug-and-playable" PL enzyme, TurboID-GBP (GFP-binding nanobody protein), and we apply it for interactome mapping of SARS-CoV-2 ORF3a and membrane protein (M), which generates highly perturbed endoplasmic reticulum (ER) structures. Through SR-PL analysis of the biotinylated interactome, 224 and 272 peptides are robustly identified as ORF3a and M interactomes, respectively. Within the ORF3a interactome, RNF5 co-localizes with ORF3a and generates ubiquitin modifications of ORF3a that can be involved in protein degradation. We also observe that the SARS-CoV-2 infection rate is efficiently reduced by the overexpression of RNF5 in host cells. The interactome data obtained using the SR-PL method are presented at https://sarscov2.spatiomics.org. We hope that our method will contribute to revealing virus-host interactions of other viruses in an efficient manner.
Collapse
Affiliation(s)
- Yun-Bin Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Minkyo Jung
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Jeesoo Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea; Center for RNA Research, Institute for Basic Science, Seoul 08826, Republic of Korea
| | - Afandi Charles
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, 17164 Stockholm, Sweden
| | - Wanda Christ
- Centre for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 14183 Stockholm, Sweden
| | - Jiwoong Kang
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Myeong-Gyun Kang
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Chulhwan Kwak
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Jonas Klingström
- Centre for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 14183 Stockholm, Sweden; Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden
| | - Anna Smed-Sörensen
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, 17164 Stockholm, Sweden
| | - Jong-Seo Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea; Center for RNA Research, Institute for Basic Science, Seoul 08826, Republic of Korea.
| | - Ji Young Mun
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea.
| | - Hyun-Woo Rhee
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
36
|
Jiao S, Miranda P, Li Y, Maric D, Holmgren M. Some aspects of the life of SARS-CoV-2 ORF3a protein in mammalian cells. Heliyon 2023; 9:e18754. [PMID: 37609425 PMCID: PMC10440475 DOI: 10.1016/j.heliyon.2023.e18754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/24/2023] Open
Abstract
The accessory protein ORF3a, from SARS-CoV-2, plays a critical role in viral infection and pathogenesis. Here, we characterized ORF3a assembly, ion channel activity, subcellular localization, and interactome. At the plasma membrane, ORF3a exists mostly as monomers and dimers, which do not alter the native cell membrane conductance, suggesting that ORF3a does not function as a viroporin at the cell surface. As a membrane protein, ORF3a is synthesized at the ER and sorted via a canonical route. ORF3a overexpression induced an approximately 25% increase in cell death. By developing an APEX2-based proximity labeling assay, we uncovered proteins proximal to ORF3a, suggesting that ORF3a recruits some host proteins to weaken the cell. In addition, it exposed a set of mitochondria related proteins that triggered mitochondrial fission. Overall, this work can be an important instrument in understanding the role of ORF3a in the virus pathogenicity and searching for potential therapeutic treatments for COVID-19.
Collapse
Affiliation(s)
- Song Jiao
- Molecular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Maryland, MD, USA
| | - Pablo Miranda
- Molecular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Maryland, MD, USA
| | - Yan Li
- Proteomics Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Maryland, MD, USA
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Maryland, MD, USA
| | - Miguel Holmgren
- Molecular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Maryland, MD, USA
| |
Collapse
|
37
|
Henke W, Kalamvoki M, Stephens EB. The Role of the Tyrosine-Based Sorting Signals of the ORF3a Protein of SARS-CoV-2 on Intracellular Trafficking, Autophagy, and Apoptosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.24.550379. [PMID: 37547007 PMCID: PMC10402054 DOI: 10.1101/2023.07.24.550379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The open reading frame 3a (ORF3a) is an accessory transmembrane protein that is important to the pathogenicity of SARS-CoV-2. The cytoplasmic domain of ORF3a has three canonical tyrosine-based sorting signals (YxxΦ; where x is any amino acid and Φ is a hydrophobic amino acid with a bulky -R group). They have been implicated in the trafficking of membrane proteins to the cell plasma membrane and to intracellular organelles. Previous studies have indicated that mutation of the 160YSNV163 motif abrogated plasma membrane expression and inhibited ORF3a-induced apoptosis. However, two additional canonical tyrosine-based sorting motifs (211YYQL213, 233YNKI236) exist in the cytoplasmic domain of ORF3a that have not been assessed. We removed all three potential tyrosine-based motifs and systematically restored them to assess the importance of each motif or combination of motifs that restored efficient trafficking to the cell surface and lysosomes. Our results indicate that the YxxΦ motif at position 160 was insufficient for the trafficking of ORF3a to the cell surface. Our studies also showed that ORF3a proteins with an intact YxxΦ at position 211 or at 160 and 211 were most important. We found that ORF3a cell surface expression correlated with the co-localization of ORF3a with LAMP-1 near the cell surface. These results suggest that YxxΦ motifs within the cytoplasmic domain may act cooperatively in ORF3a transport to the plasma membrane and endocytosis to lysosomes. Further, our results indicate that certain tyrosine mutants failed to activate caspase 3 and did not correlate with autophagy functions associated with this protein.
Collapse
Affiliation(s)
- Wyatt Henke
- Department of Microbiology, Molecular Genetics, and Immunology, 2000 Hixon Hall, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, Kansas 66160
| | - Maria Kalamvoki
- Department of Microbiology, Molecular Genetics, and Immunology, 2000 Hixon Hall, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, Kansas 66160
| | - Edward B Stephens
- Department of Microbiology, Molecular Genetics, and Immunology, 2000 Hixon Hall, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, Kansas 66160
| |
Collapse
|
38
|
Chen GL, Li J, Zhang J, Zeng B. To Be or Not to Be an Ion Channel: Cryo-EM Structures Have a Say. Cells 2023; 12:1870. [PMID: 37508534 PMCID: PMC10378246 DOI: 10.3390/cells12141870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/13/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
Ion channels are the second largest class of drug targets after G protein-coupled receptors. In addition to well-recognized ones like voltage-gated Na/K/Ca channels in the heart and neurons, novel ion channels are continuously discovered in both excitable and non-excitable cells and demonstrated to play important roles in many physiological processes and diseases such as developmental disorders, neurodegenerative diseases, and cancer. However, in the field of ion channel discovery, there are an unignorable number of published studies that are unsolid and misleading. Despite being the gold standard of a functional assay for ion channels, electrophysiological recordings are often accompanied by electrical noise, leak conductance, and background currents of the membrane system. These unwanted signals, if not treated properly, lead to the mischaracterization of proteins with seemingly unusual ion-conducting properties. In the recent ten years, the technical revolution of cryo-electron microscopy (cryo-EM) has greatly advanced our understanding of the structures and gating mechanisms of various ion channels and also raised concerns about the pore-forming ability of some previously identified channel proteins. In this review, we summarize cryo-EM findings on ion channels with molecular identities recognized or disputed in recent ten years and discuss current knowledge of proposed channel proteins awaiting cryo-EM analyses. We also present a classification of ion channels according to their architectures and evolutionary relationships and discuss the possibility and strategy of identifying more ion channels by analyzing structures of transmembrane proteins of unknown function. We propose that cross-validation by electrophysiological and structural analyses should be essentially required for determining molecular identities of novel ion channels.
Collapse
Affiliation(s)
- Gui-Lan Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Jian Li
- College of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, China
| | - Jin Zhang
- School of Basic Medical Sciences, Nanchang University, Nanchang 330031, China
| | - Bo Zeng
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
39
|
Oliveira-Mendes BBR, Alameh M, Ollivier B, Montnach J, Bidère N, Souazé F, Escriou N, Charpentier F, Baró I, De Waard M, Loussouarn G. SARS-CoV-2 E and 3a Proteins Are Inducers of Pannexin Currents. Cells 2023; 12:1474. [PMID: 37296595 PMCID: PMC10252541 DOI: 10.3390/cells12111474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/10/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
Controversial reports have suggested that SARS-CoV E and 3a proteins are plasma membrane viroporins. Here, we aimed at better characterizing the cellular responses induced by these proteins. First, we show that expression of SARS-CoV-2 E or 3a protein in CHO cells gives rise to cells with newly acquired round shapes that detach from the Petri dish. This suggests that cell death is induced upon expression of E or 3a protein. We confirmed this by using flow cytometry. In adhering cells expressing E or 3a protein, the whole-cell currents were not different from those of the control, suggesting that E and 3a proteins are not plasma membrane viroporins. In contrast, recording the currents on detached cells uncovered outwardly rectifying currents much larger than those observed in the control. We illustrate for the first time that carbenoxolone and probenecid block these outwardly rectifying currents; thus, these currents are most probably conducted by pannexin channels that are activated by cell morphology changes and also potentially by cell death. The truncation of C-terminal PDZ binding motifs reduces the proportion of dying cells but does not prevent these outwardly rectifying currents. This suggests distinct pathways for the induction of these cellular events by the two proteins. We conclude that SARS-CoV-2 E and 3a proteins are not viroporins expressed at the plasma membrane.
Collapse
Affiliation(s)
| | - Malak Alameh
- L’institut du Thorax, Nantes Université, CNRS, INSERM, F-44000 Nantes, France; (B.B.R.O.-M.); (M.A.)
- Labex Ion Channels, Science and Therapeutics, F-06560 Valbonne, France
| | - Béatrice Ollivier
- L’institut du Thorax, Nantes Université, CNRS, INSERM, F-44000 Nantes, France; (B.B.R.O.-M.); (M.A.)
| | - Jérôme Montnach
- L’institut du Thorax, Nantes Université, CNRS, INSERM, F-44000 Nantes, France; (B.B.R.O.-M.); (M.A.)
| | - Nicolas Bidère
- Team SOAP, CRCI2NA, INSERM, CNRS, Nantes Université, Université d’Angers, F-44000 Nantes, France
- Equipe Labellisée Ligue Contre le Cancer, F-75006 Paris, France
| | | | - Nicolas Escriou
- Institut Pasteur, Université Paris Cité, Département de Santé Globale, F-75015 Paris, France
| | - Flavien Charpentier
- L’institut du Thorax, Nantes Université, CNRS, INSERM, F-44000 Nantes, France; (B.B.R.O.-M.); (M.A.)
| | - Isabelle Baró
- L’institut du Thorax, Nantes Université, CNRS, INSERM, F-44000 Nantes, France; (B.B.R.O.-M.); (M.A.)
| | - Michel De Waard
- L’institut du Thorax, Nantes Université, CNRS, INSERM, F-44000 Nantes, France; (B.B.R.O.-M.); (M.A.)
- Labex Ion Channels, Science and Therapeutics, F-06560 Valbonne, France
| | - Gildas Loussouarn
- L’institut du Thorax, Nantes Université, CNRS, INSERM, F-44000 Nantes, France; (B.B.R.O.-M.); (M.A.)
| |
Collapse
|