1
|
Nehus E, Mitsnefes M. Kidney consequences of obesity. Pediatr Nephrol 2025; 40:1879-1893. [PMID: 39680134 DOI: 10.1007/s00467-024-06623-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 12/17/2024]
Abstract
Herein, we review the devastating consequences of the worldwide obesity epidemic on kidney health and outcomes. We submit that the obesity epidemic is the most pressing public health crisis facing the nephrology community today. A historical approach has been undertaken, wherein major breakthroughs in the recognition and understanding of obesity-related kidney disease (ORKD) are highlighted. We begin with a description of the worldwide obesity epidemic followed by an account of the discovery and characterization of ORKD. A detailed summary of the pathophysiology of ORKD disease is presented, wherein we set forth the following two propositions: first, ORKD is due to a maladaptive response to caloric surplus; and second, this maladaptive response causes kidney damage via hemodynamic (hyperfiltration), hormonal (adipokine dysregulation), and lipotoxic pathways. Each of these pathways is described, with particular emphasis on the relatively recent discovery that the final stage of cellular injury in ORKD is mitochondrial oxidative damage. The prevention and treatment of ORKD are then discussed, including environmental, behavioral, pharmacologic, and surgical options. Finally, we conclude with suggestions for future research to improve early recognition and treatment of ORKD.
Collapse
Affiliation(s)
- Edward Nehus
- Department of Pediatrics, West Virginia University School of Medicine Charleston Campus, Charleston, WV, 25314, USA.
- Institute for Academic Medicine, Charleston Area Medical Center, Charleston, WV, USA.
| | - Mark Mitsnefes
- Division of Nephrology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
2
|
Cui L, Gao Y, Sun R, Li Z, Zhang Z, Ji L, Wang Y, Ye H, Qin L. Mediating effect of osteocalcin underlying the link between insulin-like growth factor-I and gestational diabetes mellitus. BMC Pregnancy Childbirth 2025; 25:579. [PMID: 40380114 PMCID: PMC12085077 DOI: 10.1186/s12884-025-07689-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 05/05/2025] [Indexed: 05/19/2025] Open
Abstract
PURPOSE To investigate the associations of serum insulin like growth factor I (IGF-I) and Osteocalcin (OC) concentrations with gestational diabetes mellitus (GDM) risk among Chinese women. METHODS A case-control study was conducted in China, involving 125 GDM and 153 healthy pregnant women at 24-28 gestational weeks from 2019 to 2022. The study was approved by the Clinical Trial Ethics Committee of the Third Afliated Hospital of Zhengzhou University in January 04, 2020, and the study had been registered with the Chinese Clinical Trial Registry (ChiCTR2000028811). Maternal serum IGF-I and OC levels were measured in the second trimester. Logistic regression models and restricted cubic spline (RCS) were employed to calculate the association of IGF-I and OC levels with the risk of GDM, and and receiver operating characteristic (ROC) curves were generated to evaluate the predictive capacity of IGF-I and OC for GDM. Mediation analyses were used to investigate the mediation effect of OC on the association between IGF-I and the risk of GDM. RESULTS Both serum IGF-I and undercarboxylated Osteocalcin (ucOC) concentration were positively associated with the risk of GDM. The relationship between serum IGF-I and the risk of GDM is not linear (P-value < 0.001, P-Nonlinear < 0.001). Mediation analyses suggested that 48.61% of the associations between IGF-I and GDM might be mediated by ucOC. The areas under the ROC curves for IGF-I and integrated model were 74.5% and 76.2%. CONCLUSIONS Serum IGF-I might provide a new dimension in the diagnosis of GDM for clinical application, and ucOC might serve as a mediator between IGF-I and GDM.
Collapse
Affiliation(s)
- Lingling Cui
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yuting Gao
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Ruijie Sun
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Zhiqian Li
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Zhengya Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Linpu Ji
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yibo Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Hua Ye
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Luying Qin
- School of Nursing and Health, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
3
|
Arroyo-Ataz G, Yagüe AC, Breda JC, Mazzilli SA, Jones D. Single-Cell Transcriptomics and Lineage Tracing Unveil Parallels in Lymphatic Muscle and Venous Smooth Muscle Development, Identity, and Function. Arterioscler Thromb Vasc Biol 2025. [PMID: 40371470 DOI: 10.1161/atvbaha.125.322567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 04/23/2025] [Indexed: 05/16/2025]
Abstract
BACKGROUND Lymphatic muscle cells (LMCs) are indispensable for lymphatic vessel contraction, and their aberrant recruitment or absence is associated with both primary and secondary lymphedema. Despite their critical role in lymphatic vessel function, the cellular and molecular bases that confer the unique contractile properties to LMCs are largely undefined, limiting the development of therapeutic interventions that precisely target LMCs. METHODS We used single-cell RNA sequencing, genetic lineage tracing, whole mount immunostaining, and intravital imaging to investigate the basis for the hybrid cardiomyocyte and blood vascular smooth muscle cell (SMC) characteristics that have been described for LMCs. RESULTS Using single-cell RNA sequencing, the transcriptomes of LMCs and venous SMCs exhibited more similarities than differences, with both cell types exhibiting enrichment in overlapping molecular markers. Notably, LMCs and venous SMCs were both markedly distinct from that of arteriole SMCs. Functionally, both lymphatic vessels and blood vessels in the murine hind limb displayed pulsatile contractility, and their functions were regulated by gabapentin and nifedipine, which target the activity of voltage-gated calcium channels. Although LMCs express genes that overlap with the venous SMC transcriptome, lineage tracing demonstrates that LMCs do not originate from Myh11 (myosin heavy chain 11) lineage-derived SMCs, Nkx2.5 (NK2 homeobox 5) cardiomyocyte progenitors, or Wnt1 (Wnt family member 1) neural crest progenitors. Instead, most LMCs and SMCs in the hind limb and inguinal-axillary region originate from WT1+ (Wilms tumor gene 1) mesodermal progenitors from the lateral plate mesoderm. LMCs derived from WT1+ progenitors were critical for the maintenance of lymphatic vessel contractility. CONCLUSIONS Overall, our findings suggest that venous SMCs and LMCs derive from a related mesodermal progenitor and acquire a similar gene expression program that facilitates their contractile properties.
Collapse
Affiliation(s)
- Guillermo Arroyo-Ataz
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, MA. (G.A.-A., A.C.Y., D.J.)
| | - Alejandra Carrasco Yagüe
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, MA. (G.A.-A., A.C.Y., D.J.)
| | - Julia C Breda
- Department of Medicine, Division of Computational Biomedicine, Boston University Chobanian & Avedisian School of Medicine, MA. (J.C.B., S.A.M.)
| | - Sarah A Mazzilli
- Department of Medicine, Division of Computational Biomedicine, Boston University Chobanian & Avedisian School of Medicine, MA. (J.C.B., S.A.M.)
| | - Dennis Jones
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, MA. (G.A.-A., A.C.Y., D.J.)
| |
Collapse
|
4
|
Jayabalan N, Nair S, Lai A, Scholz-Romero K, Razo-Azamar M, Ormazabal V, Lim R, Carrion F, Guanzon D, Rice GE, McIntyre HD, Lappas M, Salomon C. Extracellular vesicle-associated miR-515-5p from adipose tissue regulates placental metabolism and fetal growth in gestational diabetes mellitus. Cardiovasc Diabetol 2025; 24:205. [PMID: 40369565 PMCID: PMC12080180 DOI: 10.1186/s12933-025-02739-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 04/10/2025] [Indexed: 05/16/2025] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) affects 2-20% of pregnant women worldwide and is linked to fetal overgrowth, increased perinatal morbidity, and mortality, as well as a higher risk of developing cardiovascular disease later in life for mother and child. MicroRNAs (miRNAs), which regulate gene expression, can be transported within extracellular vesicles (EVs). Adipose tissue-derived EVs have been associated with changes in placental metabolism in GDM, potentially influencing cardiovascular health outcomes. This study aimed to evaluate the miRNA profile in EVs from omental adipose tissue in GDM and their effect on placental nutrient uptake and fetal growth. METHODS This case-control study included patients with normal glucose tolerance (NGT) and GDM. We conducted a miRNA expression profiling on omental adipose tissue and its derived EVs from women with NGT (n = 20) and GDM (n = 36). Trophoblast cells were utilized to assess the effect of EVs on glucose and fatty acid uptake, pro-inflammatory cytokine, and chemokine release. Double-stranded miRNA mimics were used to investigate the effect of selected miRNAs on trophoblast cells. Subsequently, the impact of EVs from NGT and GDM, as well as miR-515-5p, on in vivo glucose tolerance and fetal growth was assessed in pregnant mice. RESULTS Fifty-four miRNAs showed significant differences between EVs from the adipose tissue of NGT and GDM groups. EVs from GDM increased glucose uptake in trophoblast cells, whereas EVs from NGT increased the secretion of CXCL8, IL-6, CXCL1, CXCL4, and CXCL5 from trophoblasts compared to the effect without EVs. Specifically, miR-515-5p increased glucose uptake and abolished TNF-α-dependent increase in pro-inflammatory cytokines and chemokines from trophoblast cells. Injection of pregnant mice with EVs from NGT adipose tissue loaded with miR-515-5p resulted in increased fetal weight and glucose levels. CONCLUSION miR-515-5p, specifically encapsulated within EVs from omental adipose tissue in GDM, regulates placental nutrient uptake, glucose homeostasis, and fetal growth.
Collapse
Affiliation(s)
- Nanthini Jayabalan
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4029, Australia.
| | - Soumyalekshmi Nair
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4029, Australia
- UQ Centre for Extracellular Vesicle nanomedicine, The University of Queensland, Brisbane, QLD, 4029, Australia
| | - Andrew Lai
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4029, Australia
- UQ Centre for Extracellular Vesicle nanomedicine, The University of Queensland, Brisbane, QLD, 4029, Australia
| | - Katherin Scholz-Romero
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4029, Australia
- UQ Centre for Extracellular Vesicle nanomedicine, The University of Queensland, Brisbane, QLD, 4029, Australia
| | - Melissa Razo-Azamar
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4029, Australia
- UQ Centre for Extracellular Vesicle nanomedicine, The University of Queensland, Brisbane, QLD, 4029, Australia
| | - Valeska Ormazabal
- Faculty of Biological Sciences, Pharmacology Department, University of Concepcion, Concepción, Chile
| | - Ratana Lim
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, Australia
| | - Flavio Carrion
- Departamento de Investigación, Postgrado y Educación Continua (DIPEC), Facultad de Ciencias de la Salud, Universidad del Alba, Santiago, Chile
| | - Dominic Guanzon
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4029, Australia
- UQ Centre for Extracellular Vesicle nanomedicine, The University of Queensland, Brisbane, QLD, 4029, Australia
| | - Gregory E Rice
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4029, Australia
- INOVIQ Ltd, Notting Hill, VIC, 3168, Australia
| | - Harold David McIntyre
- Mater Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Martha Lappas
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, Australia
| | - Carlos Salomon
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4029, Australia.
- UQ Centre for Extracellular Vesicle nanomedicine, The University of Queensland, Brisbane, QLD, 4029, Australia.
| |
Collapse
|
5
|
Xu X, Tang X, Ji R, Xiang X, Liu Q, Han S, Du J, Li Y, Mai K, Ai Q. Adiponectin receptor agonist AdipoRon regulates glucose and lipid metabolism via PPARγ signaling pathway in hepatocytes of large yellow croaker (Larimichthys crocea). Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159632. [PMID: 40379087 DOI: 10.1016/j.bbalip.2025.159632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 05/07/2025] [Accepted: 05/13/2025] [Indexed: 05/19/2025]
Abstract
Activation of adiponectin receptors (AdipoRs) has been shown to regulate glucose and lipid metabolism in mammalian hepatocytes. However, much less is known for their roles in fish. The current study demonstrated that AdipoRon, a small-molecule activator of AdipoRs, modulated glucose and lipid metabolism in large yellow croaker. In hepatocytes of large yellow croaker, AdipoRon upregulated the mRNA expression of adipors and appl1, while increasing phosphorylation levels of AMPK and AKT. These changes indicate the activation of AdipoR-mediated signaling. Furthermore, AdipoRon promoted glucose uptake, increased intracellular glucose content, as well as upregulated genes involved in glycogen synthesis and glycolysis whereas downregulated gluconeogenesis-related genes. On the other hand, AdipoRon facilitated free fatty acid (FFA) absorption by increasing the expression of fatty acid transport genes (fat/cd36, fatp1, and fabp11). It also enhanced triglyceride (TG) synthesis, evidenced by increased triglyceride levels and upregulation of dgat2 and PPARγ, which is consistent with the effect of adiponectin (APN) in large yellow croaker. Additional evidence suggested that inhibition of PPARγ with GW9662 reduced the effects of AdipoRon on glucose uptake and lipid metabolism, indicating that PPARγ is a key mediator in these metabolic regulations. Overall, AdipoRon was found to modulate multiple metabolic processes in hepatocytes of large yellow croaker via PPARγ signaling pathway, and these findings suggested that AdipoRon might contribute to beneficial effects on metabolic homeostasis in teleosts.
Collapse
Affiliation(s)
- Xiang Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003 Qingdao, Shandong, People's Republic of China
| | - Xiao Tang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003 Qingdao, Shandong, People's Republic of China
| | - Renlei Ji
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003 Qingdao, Shandong, People's Republic of China
| | - Xiaojun Xiang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003 Qingdao, Shandong, People's Republic of China
| | - Qiangde Liu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003 Qingdao, Shandong, People's Republic of China
| | - Shangzhe Han
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003 Qingdao, Shandong, People's Republic of China
| | - Jianlong Du
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003 Qingdao, Shandong, People's Republic of China
| | - Yueru Li
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003 Qingdao, Shandong, People's Republic of China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003 Qingdao, Shandong, People's Republic of China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003 Qingdao, Shandong, People's Republic of China.
| |
Collapse
|
6
|
Naidu D, Althaf Umar KP, Muhsina K, Augustine S, Jeengar MK, S K K. Zingiberaceae in Cardiovascular Health: A review of adipokine modulation and endothelial protection via adipocyte-endothelial crosstalk mechanism. Curr Nutr Rep 2025; 14:66. [PMID: 40366476 DOI: 10.1007/s13668-025-00656-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2025] [Indexed: 05/15/2025]
Abstract
PURPOSE OF THE REVIEW Although adipose tissue controls metabolism and protects vital organs, its importance to general health is being highlighted by the rise in type 2 diabetes and cardiovascular disease. Adipokines produced by adipose cells are essential regulators of metabolism, glucose homeostasis, and inflammatory response. It also protects vascular endothelial cells for its potential implications for cardiovascular protection. Understanding its intricate involvement in adipose tissue-endothelial communication is critical in developing targeted therapeutics to treat cardiovascular conditions linked with obesity and metabolic dysregulation. Spices from the Zingiberaceae family, such as cardamom, turmeric, and ginger, have anti-inflammatory and anti-oxidant properties that help reduce oxidative stress, vascular dysfunction, and adipocyte-endothelial crosstalk which are all linked to the etiology of CVD. Comprehensive molecular insights into how they modulate adipokine signalling, inflammatory pathways, and ROS-induced adipocyte-vascular interactions remain unexplored, demanding additional translational and clinical validation. With an emphasis on patients with obesity and metabolic dysregulation, the investigation aims to elucidate the mechanisms by which the spice as whole/bioactive constituents of the Zingiberaceae family may provide protection against CVD by integrating previous studies. RECENT FINDINGS Current research continues to support the use of spices from the Zingiberaceae family, such as ginger, turmeric, cardamom, and pepper, as potential therapeutic agents for addressing metabolic complications like obesity, type II diabetes, and CVDs. These natural remedies may modulate adipocyte-endothelial crosstalk and inflammation by modulating important signalling pathways such as AMPK, AKT, PPAR, and NF-κB.. CONCLUSION This review provides a complete summary of existing knowledge, opening the way for future research and prospective therapeutic applications of Zingiberaceae spices in cardiovascular health management.
Collapse
Affiliation(s)
- Disha Naidu
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - K P Althaf Umar
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - K Muhsina
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - Sanu Augustine
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - Manish Kumar Jeengar
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India.
| | - Kanthlal S K
- Department of Pharmacology, Sree Krishna College of Pharmacy and Research Centre, Parassala, Thiruvananthapuram, Kerala, 695502, India.
| |
Collapse
|
7
|
Lecoutre S, Rebière C, Maqdasy S, Lambert M, Dussaud S, Abatan JB, Dugail I, Gautier EL, Clément K, Marcelin G. Enhancing adipose tissue plasticity: progenitor cell roles in metabolic health. Nat Rev Endocrinol 2025; 21:272-288. [PMID: 39757324 DOI: 10.1038/s41574-024-01071-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/27/2024] [Indexed: 01/07/2025]
Abstract
Adipose tissue demonstrates considerable plasticity and heterogeneity, enabling metabolic, cellular and structural adaptations to environmental signals. This adaptability is key for maintaining metabolic homeostasis. Impaired adipose tissue plasticity can lead to abnormal adipose tissue responses to metabolic cues, which contributes to the development of cardiometabolic diseases. In chronic obesity, white adipose tissue undergoes pathological remodelling marked by adipocyte hypertrophy, chronic inflammation and fibrosis, which are linked to local and systemic insulin resistance. Research data suggest that the capacity for healthy or unhealthy white adipose tissue remodelling might depend on the intrinsic diversity of adipose progenitor cells (APCs), which sense and respond to metabolic cues. This Review highlights studies on APCs as key determinants of adipose tissue plasticity, discussing differences between subcutaneous and visceral adipose tissue depots during development, growth and obesity. Modulating APC functions could improve strategies for treating adipose tissue dysfunction and metabolic diseases in obesity.
Collapse
Affiliation(s)
- Simon Lecoutre
- Nutrition and Obesities: Systemic Approach Research Group, Nutriomics, Sorbonne Université, INSERM, Paris, France.
| | - Clémentine Rebière
- Nutrition and Obesities: Systemic Approach Research Group, Nutriomics, Sorbonne Université, INSERM, Paris, France
| | - Salwan Maqdasy
- Department of Medicine, Karolinska Institutet Hospital, Stockholm, Sweden
| | - Mélanie Lambert
- Institut National de la Santé et de la Recherche Médicale, Bobigny, France
- Labex Inflamex, Université Sorbonne Paris Nord, Alliance Sorbonne Paris Cité, Bobigny, France
| | - Sébastien Dussaud
- Nutrition and Obesities: Systemic Approach Research Group, Nutriomics, Sorbonne Université, INSERM, Paris, France
| | - Jimon Boniface Abatan
- Nutrition and Obesities: Systemic Approach Research Group, Nutriomics, Sorbonne Université, INSERM, Paris, France
| | - Isabelle Dugail
- Nutrition and Obesities: Systemic Approach Research Group, Nutriomics, Sorbonne Université, INSERM, Paris, France
| | - Emmanuel L Gautier
- Nutrition and Obesities: Systemic Approach Research Group, Nutriomics, Sorbonne Université, INSERM, Paris, France
| | - Karine Clément
- Nutrition and Obesities: Systemic Approach Research Group, Nutriomics, Sorbonne Université, INSERM, Paris, France.
- Department of Nutrition, Pitie-Salpêtriere Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.
| | - Geneviève Marcelin
- Nutrition and Obesities: Systemic Approach Research Group, Nutriomics, Sorbonne Université, INSERM, Paris, France.
| |
Collapse
|
8
|
Huang H, Liu L, Liang Z, Wang Q, Li C, Huang Z, Zhao Z, Han W. C-type natriuretic peptide regulates lipid metabolism through a NPRB-PPAR pathway in the intramuscular and subcutaneous adipocytes in chickens. Sci Rep 2025; 15:13018. [PMID: 40234429 PMCID: PMC12000514 DOI: 10.1038/s41598-025-86433-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 01/10/2025] [Indexed: 04/17/2025] Open
Abstract
Natriuretic peptides (NPs) have an important role in lipid metabolism in skeletal muscle and adipose tissue in animals. C-type natriuretic peptide (CNP) is an important NP, but the molecular mechanisms that underlie its activity are not completely understood. Treatment of intramuscular fat (IMF) and subcutaneous fat (SCF) adipocytes with CNP led to decreased differentiation, promoted proliferation and lipolysis, and increased the expression of natriuretic peptide receptor B (NPRB) mRNA. Silencing natriuretic peptide C (NPPC) had the opposite results in IMF and SCF adipocytes. Transcriptome analysis found 665 differentially expressed genes (DEGs) in IMF adipocytes and 991 in SCF adipocytes. Seven genes in IMF adipocytes (FABP4, APOA1, ACOX2, ADIPOQ, CD36, FABP5, and LPL) and eight genes in SCF adipocytes (ACOX3, ACSL1, APOA1, CPT1A, CPT2, FABP4, PDPK1 and PPARα) are related to fat metabolism. Fifteen genes were found to be enriched in the peroxisome proliferator-activated receptor (PPAR) pathway. Integrated analysis identified 113 intersection genes in IMF and SCF adipocytes, two of which (APOA1 and FABP4) were enriched in the PPAR pathway. In conclusion, CNP may regulated lipid metabolism through the NPRB-PPAR pathway in both IMF and SCF adipocytes, FABP4 and APOA1 may be the key genes that mediated CNP regulation of fat deposition.
Collapse
Affiliation(s)
- Huayun Huang
- Institute of Poultry Science, Chinese Academy of Agriculture Sciences, 225125, Jiangsu, P. R. China
- College of Animal Science, Yangtze University, Jingzhou, 8060550, P. R. China
| | - Longzhou Liu
- Institute of Poultry Science, Chinese Academy of Agriculture Sciences, 225125, Jiangsu, P. R. China
- College of Animal Science, Yangtze University, Jingzhou, 8060550, P. R. China
| | - Zhong Liang
- Institute of Poultry Science, Chinese Academy of Agriculture Sciences, 225125, Jiangsu, P. R. China
- College of Animal Science, Yangtze University, Jingzhou, 8060550, P. R. China
| | - Qianbao Wang
- Institute of Poultry Science, Chinese Academy of Agriculture Sciences, 225125, Jiangsu, P. R. China
- College of Animal Science, Yangtze University, Jingzhou, 8060550, P. R. China
| | - Chunmiao Li
- Institute of Poultry Science, Chinese Academy of Agriculture Sciences, 225125, Jiangsu, P. R. China
- College of Animal Science, Yangtze University, Jingzhou, 8060550, P. R. China
| | - Zhengyang Huang
- Institute of Poultry Science, Chinese Academy of Agriculture Sciences, 225125, Jiangsu, P. R. China
- College of Animal Science, Yangtze University, Jingzhou, 8060550, P. R. China
| | - Zhenhua Zhao
- Institute of Poultry Science, Chinese Academy of Agriculture Sciences, 225125, Jiangsu, P. R. China.
- College of Animal Science, Yangtze University, Jingzhou, 8060550, P. R. China.
| | - Wei Han
- Institute of Poultry Science, Chinese Academy of Agriculture Sciences, 225125, Jiangsu, P. R. China.
- College of Animal Science, Yangtze University, Jingzhou, 8060550, P. R. China.
| |
Collapse
|
9
|
Tilg H, Ianiro G, Gasbarrini A, Adolph TE. Adipokines: masterminds of metabolic inflammation. Nat Rev Immunol 2025; 25:250-265. [PMID: 39511425 DOI: 10.1038/s41577-024-01103-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2024] [Indexed: 11/15/2024]
Abstract
Adipose tissue is an immunologically active organ that controls host physiology, partly through the release of mediators termed adipokines. In obesity, adipocytes and infiltrating leukocytes produce adipokines, which include the hormones adiponectin and leptin and cytokines such as tumour necrosis factor and IL-1β. These adipokines orchestrate immune responses that are collectively referred to as metabolic inflammation. Consequently, metabolic inflammation characterizes metabolic disorders and promotes distinct disease aspects, such as insulin resistance, metabolic dysfunction-associated liver disease and cardiovascular complications. In this unifying concept, adipokines participate in the immunological cross-talk that occurs between metabolically active organs in metabolic diseases, highlighting the fundamental role of adipokines in obesity and their potential for therapeutic intervention. Here, we summarize how adipokines shape metabolic inflammation in mice and humans, focusing on their contribution to metabolic disorders in the setting of obesity and discussing their value as therapeutic targets.
Collapse
Affiliation(s)
- Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria.
| | - Gianluca Ianiro
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Antonio Gasbarrini
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
10
|
Blüher M. An overview of obesity-related complications: The epidemiological evidence linking body weight and other markers of obesity to adverse health outcomes. Diabetes Obes Metab 2025; 27 Suppl 2:3-19. [PMID: 40069923 PMCID: PMC12000860 DOI: 10.1111/dom.16263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/23/2025] [Accepted: 02/02/2025] [Indexed: 04/17/2025]
Abstract
Obesity is a highly prevalent chronic multisystem disease associated with shortened life expectancy due to a number of adverse health outcomes. Epidemiological data link body weight and parameters of central fat distribution to an increasing risk for type 2 diabetes, hypertension, fatty liver diseases, cardiovascular diseases including myocardial infarction, heart failure, atrial fibrillation, stroke, obstructive sleep apnoea, osteoarthritis, mental disorders and some types of cancer. However, the individual risk to develop cardiometabolic and other obesity-related diseases cannot entirely be explained by increased fat mass. Rather than excess fat accumulation, dysfunction of adipose tissue may represent the mechanistic link between obesity and adverse health outcomes. There are people living with obesity who seem to be protected against the premature development of cardiometabolic diseases. On the other hand, people with normal weight may develop typical obesity diseases upon dysfunction of adipose tissue and predominantly visceral fat distribution. The mechanisms linking impaired function of adipose tissue in people with obesity include adipocyte hypertrophy, altered cellular composition, limited expandability of safe subcutaneous fat stores, ectopic fat deposition in visceral depots, the liver and other organs, hypoxia, a variety of stresses, inflammatory processes, and the release of pro-inflammatory, diabetogenic and atherogenic signals. Genetic and environmental factors might contribute either alone or via interaction with intrinsic biological factors to variation in adipose tissue function. There are still many open questions regarding the mechanisms of how increased body weight causes obesity-related disorders and whether these pathologies could be reversed. Evidence-based weight loss interventions using behaviour change, pharmacological or surgical approaches have clarified the beneficial effects of realistic and sustained weight loss on obesity-related complications as hard outcomes. This review focusses on recent advances in understanding epidemiological trends and mechanisms of obesity-related diseases. PLAIN LANGUAGE SUMMARY: Obesity is a chronic complex and progressive disease characterized by excessive fat deposition that may impair health and quality of life. Worldwide, the number of adults living with obesity has more than doubled since 1990. Obesity may lead to reduced life expectancy, because it increases the risk for type 2 diabetes, cardiovascular diseases (e.g., myocardial infarction, high blood pressure, stroke), fatty liver diseases, musculoskeletal diseases, chronic respiratory diseases, depression and certain types of cancer. However, not every person with obesity develops these diseases. For better prevention and treatment, it is important to understand the mechanisms linking high fat mass to obesity related diseases. It has become clear that fat mass alone cannot explain the higher risk of obesity complications. People with obesity can have either high or low risk of developing complications. Compared to people with a low risk for obesity complications those with a high risk to develop obesity related diseases are characterized by higher central fat deposition in the abdominal region, on average bigger fat cells, higher number of immune cells in adipose tissue and altered signals released from adipose tissue that may directly affect the brain, liver, vasculature and other organs. Both inherited and environment factors may cause these abnormalities of adipose tissue function. However, weight loss through behaviour changes (e.g., lower calorie intake, higher physical activity), medications or obesity surgery can improve health, quality of life and reduce the risk for obesity related diseases.
Collapse
Affiliation(s)
- Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI‐MAG) of the Helmholtz Zentrum MünchenUniversity of Leipzig and University Hospital LeipzigLeipzigGermany
- Medical Department III—Endocrinology, Nephrology, RheumatologyUniversity of Leipzig Medical CenterLeipzigGermany
| |
Collapse
|
11
|
Youm YH, Gliniak C, Zhang Y, Dlugos T, Scherer PE, Dixit VD. Enhanced paracrine action of FGF21 in stromal cells delays thymic aging. NATURE AGING 2025; 5:576-587. [PMID: 39972172 PMCID: PMC12003152 DOI: 10.1038/s43587-025-00813-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/16/2025] [Indexed: 02/21/2025]
Abstract
Age-related thymic involution precedes aging of all other organs in vertebrates and initiates the process of declining T cell diversity, which leads to eventual immune dysfunction. Whether FGF21, a liver-derived pro-longevity hormone that is also produced in thymic stroma, including by adipocytes, controls the mechanism of thymic demise is incompletely understood. Here, we demonstrate that elevation of FGF21 in thymic epithelial cells (TECs) and in adipocytes protects against thymic aging, whereas conditional hepatic overexpression did not impact thymic biology in aged mice. Notably, elevation of thymic FGF21 increased naïve CD8 T cells in aged animals and extended healthspan. Mechanistically, thymic FGF21 overexpression elevated TECs and reduced fibroadipogenic cells. Ablation of β-klotho, the obligatory co-receptor for FGF21 in Foxn1+ TECs, accelerated thymic aging, suggesting regulation of TECs by FGF21 is partially required for thymic lymphopoiesis. These findings establish that paracrine FGF21 improves thymic function and delays immune aging.
Collapse
Affiliation(s)
- Yun-Hee Youm
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Department of Immunobiology and Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Christy Gliniak
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yuan Zhang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tamara Dlugos
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Vishwa Deep Dixit
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA.
- Department of Immunobiology and Comparative Medicine, Yale School of Medicine, New Haven, CT, USA.
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Yale Center for Research on Aging, New Haven, CT, USA.
| |
Collapse
|
12
|
McLeod K, Datta V, Fuller S. Adipokines as Cardioprotective Factors: BAT Steps Up to the Plate. Biomedicines 2025; 13:710. [PMID: 40149686 PMCID: PMC11940801 DOI: 10.3390/biomedicines13030710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/07/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
Cardiovascular disease is the leading cause of death throughout most of the industrialized world. Metabolic syndrome (MetS) and its associated pathologies are underlying factors in the etiology of cardiovascular disease, as well as a plethora of other maladies which cause excess morbidity and mortality. Adipose tissue (AT) has come to be regarded as a bona fide endocrine organ which secretes specific molecular entities constituting part of a complex web of inter-organ crosstalk that functions as a key determinant of whole-body metabolic phenotype. Brown adipose tissue (BAT) has classically been regarded as a thermogenic tissue exerting its metabolic effects primarily through its capacity to oxidize substrates decoupled from ATP resynthesis, thereby resulting in increased energy expenditure (EE) and heat production. However, in recent years, BAT has begun to receive attention as a secretory organ in its own right. The molecules secreted specifically by BAT have been termed "batokines", and currently available evidence supports the notion that batokines exert favorable metabolic effects on multiple organ systems. While maintenance of healthy body composition by conferring resistance to excessive adiposity is a rather obvious mechanism by which BAT operates via increased EE, effects on critical organs such as the heart remain unclear. This narrative review focuses on four types of batokines (FGF21, neuregulin 4, 12,13-diHOME, and BAT-derived microRNAs) for which evidence of modulation of cardiovascular function exists in the context of pathological states such as hypertension, atherosclerosis, and ischemia/reperfusion injury. Given the overwhelming burden of cardiometabolic disease, further study of the functions of BAT and its secretome is warranted and will intensify in the future.
Collapse
Affiliation(s)
- Keely McLeod
- School of Kinesiology, University of Louisiana at Lafayette, Lafayette, LA 70506, USA; (K.M.); (V.D.)
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Victoria Datta
- School of Kinesiology, University of Louisiana at Lafayette, Lafayette, LA 70506, USA; (K.M.); (V.D.)
| | - Scott Fuller
- School of Kinesiology, University of Louisiana at Lafayette, Lafayette, LA 70506, USA; (K.M.); (V.D.)
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| |
Collapse
|
13
|
Gong H, Zhao Y. Association between body roundness index and sleep disorder: the mediating role of depression. BMC Psychiatry 2025; 25:212. [PMID: 40055626 PMCID: PMC11889924 DOI: 10.1186/s12888-025-06664-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/26/2025] [Indexed: 05/13/2025] Open
Abstract
BACKGROUND Several studies have indicated a potential association between obesity, depression, and sleep disorders. However, the role of depression in mediating the relationship between obesity and sleep disorders remains unclear. The Body Roundness Index (BRI), a more precise anthropometric measure of obesity than the traditional body mass index (BMI), is particularly effective in assessing body and visceral fat levels. This study examines the relationship between BRI and sleep disorders, with a focus on whether depression influences this association. METHODS This study included data from 32,504 participants in the National Health and Nutrition Examination Survey (NHANES) 2005-2018 cycle. The association between BRI and sleep disorders was examined through subgroup analysis, restricted cubic spline (RCS) modeling, threshold effect analysis, and multivariable logistic regression. Furthermore, the predictive capabilities of various anthropometric indices-including BRI, weight-adjusted waist index (WWI), BMI, and weight-on sleep disorder incidence were assessed using Receiver Operating Characteristic (ROC) curve analysis. Finally, a Mediation analysis was also performed to explore the potential role of depression in this relationship. RESULTS This study included 32,504 participants, of whom 4,568 reported sleep disorders. After adjusting for all covariates using multivariable logistic regression, each one-unit increase in BRI was associated with a 13% higher prevalence of sleep disorders (OR = 1.13, 95% CI: 1.09, 1.16) and an 8% higher prevalence of depression (OR = 1.08, 95% CI: 1.05, 1.11). Similar results were obtained when BRI was divided into tertiles, with a significant trend (P for trend < 0.05). RCS and threshold effect analyses revealed a nonlinear relationship between BRI and sleep disorder prevalence, with a breakpoint of 3.508. The ROC curve analysis revealed that BRI had a superior predictive capability compared to traditional obesity indices, with an area under the curve (AUC) of 0.637 (95% CI, 0.628-0.645, all P < 0.001). Mediation analysis further indicated that 14% of the association between BRI and sleep disorders was mediated by depression (P < 0.001). CONCLUSION Elevated BRI levels were linked to a higher prevalence of sleep disorders, with depression acting as a partial mediator in this relationship. These findings emphasize the potential connection between obesity, depression, and sleep disorders, highlighting the importance of managing visceral fat to mitigate the risk of sleep disorders. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Hongyang Gong
- Department of Physiology, College of Medicine, Chosun University, Gwangju, Republic of Korea
| | - Yunkai Zhao
- Department of Neurology, Huzhou Nanxun People's Hospital, 99 Fengshun Road, Nanxun District, Huzhou, Zhejiang, 313009, China.
| |
Collapse
|
14
|
Ouyang P, Qi J, Tong B, Li Y, Cao J, Wang L, Niu T, Qi X. Butyrate Ameliorates Graves' Orbitopathy Through Regulating Orbital Fibroblast Phenotypes and Gut Microbiota. Invest Ophthalmol Vis Sci 2025; 66:5. [PMID: 40035727 PMCID: PMC11892527 DOI: 10.1167/iovs.66.3.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 02/04/2025] [Indexed: 03/06/2025] Open
Abstract
Purpose Graves' orbitopathy (GO), the common extrathyroidal complication of Graves' disease (GD), is characterized by orbital fibroblast stimulation, adipogenesis, and hyaluronan production. Recently, gut microbiota and its metabolites have garnered attention for their possible involvement in GO. Methods This study utilized an animal model of GO and examined the effects of butyrate treatment on orbital fibroblast cells and gut microbiota. Ex vivo experiments were performed using orbital fibroblasts derived from healthy patients' and patients' with GO orbital tissue to evaluate vitality, activation, and adipogenesis in response to butyrate treatment. Gut microbiota diversity was also analyzed in butyrate-treated and untreated GO mice. Results In human orbital fibroblasts, butyrate treatment dramatically decreased the vitality of GO-derived fibroblasts without harming normal fibroblasts. Butyrate prevented activation and fibrotic processes induced by transforming growth factor beta 1 (TGF-β1) in GO and normal fibroblasts. Additionally, butyrate reduced lipid droplet formation and downregulated lipogenic markers in GO and normal orbital fibroblasts, inhibiting adipogenesis. In the GO mouse model, butyrate therapy improved orbital histological abnormalities and normalized serum thyroid hormone and antibody levels. The intestinal microbiome of butyrate-treated GO mice also changed significantly, with a reduction in certain bacteria (Bifidobacterium, GCA-900066575, and Parabacteroides) and an increase in others (Bacteroides and Rikenellaceae_RC9). Conclusions Butyrate ameliorates several of the symptoms of GO, lowering GO orbital fibroblast viability, adipogenesis, and TGF-β1-induced fibrosis without damaging normal fibroblasts. Butyrate normalizes thyroid function in a GO mouse model, improves histopathological alterations, and transforms gut microbiota populations, proving its potential in treating GO through the gut-thyroid axis.
Collapse
Affiliation(s)
- Pingbo Ouyang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jia Qi
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Boding Tong
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yunping Li
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiamin Cao
- Department of Ophthalmology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lujue Wang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tongxin Niu
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xin Qi
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
15
|
Sasaoka M, Kakino A, Villalobos-Labra R, Yamashita Y, Spaans F, Joshita S, Hosoda H, Uehara T, Chen CH, Davidge ST, Sawamura T. A Novel ELISA System for Measuring Modified LDL-Adiponectin Complex. J Atheroscler Thromb 2025:65377. [PMID: 39993736 DOI: 10.5551/jat.65377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025] Open
Abstract
AIM Adiponectin is an anti-diabetic and anti-atherogenic protein secreted primarily from adipose tissue. Adiponectin and modified LDL (mLDL) form a complex to modulate their biological activity. To elucidate the significance of the complex formation, we analyzed its effects on vascular tissue and developed and verified novel quantifying methods for adiponectin. METHODS To study the significance of the mLDL-adiponectin complex (MAC) formation, we used the wire-myography method on rat mesenteric artery. We developed a method to measure MAC by using LOX-1 as the capture protein and anti-adiponectin antibody for detection. We compared serum MAC levels between hemodialysis patients and control subjects. RESULTS Administering mLDL alone to rat mesenteric artery impaired endothelium-dependent vasorelaxation, whereas simultaneously administering adiponectin with mLDL protected rat mesenteric artery from the mLDL-induced impairment of vasorelaxation. This finding indicates MAC formation prevents endothelium from mLDL-induced dysfunction in tissue. Using our novel ELISA for MAC, we found that MAC was increasingly detectable depending on the doses of mLDL and adiponectin in vitro. In serum, hemodialysis patients showed a significantly higher ratio of MAC-high patients (higher than the median level of MAC) than did healthy controls. Furthermore, the MAC-high hemodialysis group had lower mLDL activity measured as LOX-1 ligand containing apoB. CONCLUSION Using our ELISA, we detected MAC in human serum that protected blood vessels from the deleterious effects of oxidized LDL.
Collapse
Affiliation(s)
- Mai Sasaoka
- Department of Molecular Pathophysiology, School of Medicine, Shinshu University
- Department of Laboratory Medicine, Shinshu University Hospital
| | - Akemi Kakino
- Department of Molecular Pathophysiology, School of Medicine, Shinshu University
- Institute for Biomedical Sciences, Shinshu University
| | - Roberto Villalobos-Labra
- Department of Obstetrics and Gynecology, University of Alberta
- School of Medicine, Faculty of Medicine, San Felipe Campus, Universidad de Valparaíso
| | - Yuki Yamashita
- Department of Molecular Pathophysiology, School of Medicine, Shinshu University
- Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, Shinshu University
| | - Floor Spaans
- Department of Obstetrics and Gynecology, University of Alberta
| | - Satoru Joshita
- Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, Shinshu University
| | - Hiroshi Hosoda
- Department of Molecular Pathophysiology, School of Medicine, Shinshu University
- Institute for Biomedical Sciences, Shinshu University
| | - Takeshi Uehara
- Department of Laboratory Medicine, Shinshu University Hospital
| | - Chu-Huang Chen
- Vascular and Medicinal Research, The Texas Heart Institute
| | | | - Tatsuya Sawamura
- Department of Molecular Pathophysiology, School of Medicine, Shinshu University
- Institute for Biomedical Sciences, Shinshu University
| |
Collapse
|
16
|
Hu C, Chen Y, Yin X, Xu R, Yin C, Wang C, Zhao Y. Pancreatic endocrine and exocrine signaling and crosstalk in physiological and pathological status. Signal Transduct Target Ther 2025; 10:39. [PMID: 39948335 PMCID: PMC11825823 DOI: 10.1038/s41392-024-02098-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/20/2024] [Accepted: 12/03/2024] [Indexed: 02/16/2025] Open
Abstract
The pancreas, an organ with dual functions, regulates blood glucose levels through the endocrine system by secreting hormones such as insulin and glucagon. It also aids digestion through the exocrine system by secreting digestive enzymes. Complex interactions and signaling mechanisms between the endocrine and exocrine functions of the pancreas play a crucial role in maintaining metabolic homeostasis and overall health. Compelling evidence indicates direct and indirect crosstalk between the endocrine and exocrine parts, influencing the development of diseases affecting both. From a developmental perspective, the exocrine and endocrine parts share the same origin-the "tip-trunk" domain. In certain circumstances, pancreatic exocrine cells may transdifferentiate into endocrine-like cells, such as insulin-secreting cells. Additionally, several pancreatic diseases, including pancreatic cancer, pancreatitis, and diabetes, exhibit potential relevance to both endocrine and exocrine functions. Endocrine cells may communicate with exocrine cells directly through cytokines or indirectly by regulating the immune microenvironment. This crosstalk affects the onset and progression of these diseases. This review summarizes the history and milestones of findings related to the exocrine and endocrine pancreas, their embryonic development, phenotypic transformations, signaling roles in health and disease, the endocrine-exocrine crosstalk from the perspective of diseases, and potential therapeutic targets. Elucidating the regulatory mechanisms of pancreatic endocrine and exocrine signaling and provide novel insights for the understanding and treatment of diseases.
Collapse
Grants
- National High Level Hospital Clinical Research Funding (2022, 2022-PUMCH-D-001, to YZ), CAMS Innovation Fund for Medical Sciences (2021, 2021-I2M-1-002, to YZ), National Nature Science Foundation of China (2021, 82102810, to CW, the Fundamental Research Funds for the Central Universities(3332023123)
- cNational High Level Hospital Clinical Research Funding (2022, 2022-PUMCH-D-001, to YZ), CAMS Innovation Fund for Medical Sciences (2021, 2021-I2M-1-002, to YZ), National Nature Science Foundation of China (2021, 82102810, to CW, the Fundamental Research Funds for the Central Universities(3332023123)
Collapse
Affiliation(s)
- Chenglin Hu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China
| | - Yuan Chen
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China
| | - Xinpeng Yin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China
| | - Ruiyuan Xu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China
| | - Chenxue Yin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China
| | - Chengcheng Wang
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China.
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China.
- National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Beijing, PR China.
- Institute of Clinical Medicine, Peking Union Medical College Hospital, Beijing, PR China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China.
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China.
- National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Beijing, PR China.
| |
Collapse
|
17
|
Braun LM, Giesler S, Andrieux G, Riemer R, Talvard-Balland N, Duquesne S, Rückert T, Unger S, Kreutmair S, Zwick M, Follo M, Hartmann A, Osswald N, Melchinger W, Chapman S, Hutchinson JA, Haferkamp S, Torster L, Kött J, Gebhardt C, Hellwig D, Karantzelis N, Wallrabenstein T, Lowinus T, Yücel M, Brehm N, Rawluk J, Pfeifer D, Bronsert P, Rogg M, Mattern S, Heikenwälder M, Fusco S, Malek NP, Singer S, Schmitt-Graeff A, Ceteci F, Greten FR, Blazar BR, Boerries M, Köhler N, Duyster J, Ihorst G, Lassmann S, Keye P, Minguet S, Schadendorf D, Ugurel S, Rafei-Shamsabadi D, Thimme R, Hasselblatt P, Bengsch B, Schell C, Pearce EL, Meiss F, Becher B, Funke-Lorenz C, Placke JM, Apostolova P, Zeiser R. Adiponectin reduces immune checkpoint inhibitor-induced inflammation without blocking anti-tumor immunity. Cancer Cell 2025; 43:269-291.e19. [PMID: 39933899 DOI: 10.1016/j.ccell.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/30/2024] [Accepted: 01/10/2025] [Indexed: 02/13/2025]
Abstract
Immune-related adverse events (irAEs) in cancer patients receiving immune checkpoint inhibitors (ICIs) cause morbidity and necessitate cessation of treatment. Comparing irAE treatments, we find that anti-tumor immunity is preserved in mice after extracorporeal photopheresis (ECP) but reduced with glucocorticosteroids, TNFα blockade, and α4β7-integrin inhibition. Local adiponectin production elicits a tissue-specific effect by reducing pro-inflammatory T cell frequencies in the colon while sparing tumor-specific T cell development. A prospective phase-1b/2 trial (EudraCT-No.2021-002073-26) with 14 patients reveals low ECP-related toxicity. Overall response rate for all irAEs is 92% (95% confidence interval [CI]: 63.97%-99.81%); colitis-specific complete remission rate is 100% (95% CI: 63.06%-100%). Glucocorticosteroid dosages could be reduced for all patients after ECP therapy. The ECP-adiponectin axis reduces intestinal tissue-resident memory T cell activation and CD4+IFN-γ+ T cells in patients with ICI-induced colitis without evidence of loss of anti-tumor immunity. In conclusion, we identify adiponectin as an immunomodulatory molecule that controls ICI-induced irAEs without blocking anti-tumor immunity.
Collapse
Affiliation(s)
- Lukas M Braun
- Department of Internal Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Sophie Giesler
- Department of Internal Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Roxane Riemer
- Department of Internal Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nana Talvard-Balland
- Department of Internal Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sandra Duquesne
- Department of Internal Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tamina Rückert
- Department of Internal Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Susanne Unger
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Stefanie Kreutmair
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Melissa Zwick
- Department of Internal Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Marie Follo
- Department of Internal Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Alina Hartmann
- Department of Internal Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Natascha Osswald
- Department of Internal Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Wolfgang Melchinger
- Department of Internal Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stefanie Chapman
- Department of Internal Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - James A Hutchinson
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Sebastian Haferkamp
- Department of Dermatology, University Hospital Regensburg, Regensburg, Germany
| | - Leopold Torster
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julian Kött
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoffer Gebhardt
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dirk Hellwig
- Department of Nuclear Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Nikolaos Karantzelis
- Department of Internal Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Till Wallrabenstein
- Department of Internal Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Theresa Lowinus
- Department of Internal Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Mehtap Yücel
- Department of Internal Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Niklas Brehm
- Department of Internal Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Justyna Rawluk
- Department of Internal Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dietmar Pfeifer
- Department of Internal Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Bronsert
- Institute of Surgical Pathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Manuel Rogg
- Institute of Surgical Pathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sven Mattern
- Institute of Pathology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany; M3 Research Center, Eberhard Karls University Tübingen, Tübingen, Germany; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Stefano Fusco
- Medizinische Klinik I, Uniklinik Tübingen, Tübingen, Germany
| | - Nisar P Malek
- Medizinische Klinik I, Uniklinik Tübingen, Tübingen, Germany
| | - Stephan Singer
- Institute of Pathology, University Hospital Tübingen, 72076 Tübingen, Germany; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | | | - Fatih Ceteci
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt/Main, Germany
| | - Florian R Greten
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt/Main, Germany
| | - Bruce R Blazar
- Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, University of Minnesota, Minneapolis, MN, United States
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg, a Partnership Between DKFZ and Medical Center - University of Freiburg, Freiburg im Breisgau, Germany
| | - Natalie Köhler
- Department of Internal Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Justus Duyster
- Department of Internal Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg, a Partnership Between DKFZ and Medical Center - University of Freiburg, Freiburg im Breisgau, Germany
| | - Gabriele Ihorst
- Clinical Trials Unit, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Silke Lassmann
- Institute of Surgical Pathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philip Keye
- Eye Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Susana Minguet
- Signalling Research Centres BIOSS and CIBSS, Freiburg. Germany. Department of Synthetic Immunology, Faculty of Biology and Centre for Chronic Immunodeficiency (CCI), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany, and German Cancer Consortium (DKTK), Partner Site Essen/Duesseldorf, Essen, Germany; National Center for Tumor Diseases (NCT)-West, Campus Essen, & Research Alliance Ruhr, Research Center One Health, University Duisburg-Essen, Essen, Germany
| | - Selma Ugurel
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany, and German Cancer Consortium (DKTK), Partner Site Essen/Duesseldorf, Essen, Germany
| | - David Rafei-Shamsabadi
- Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Robert Thimme
- Department of Internal Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Hasselblatt
- Department of Internal Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bertram Bengsch
- German Cancer Consortium (DKTK), Partner Site Freiburg, a Partnership Between DKFZ and Medical Center - University of Freiburg, Freiburg im Breisgau, Germany; Department of Internal Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Christoph Schell
- Institute of Surgical Pathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Erika L Pearce
- Department of Oncology, The Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Frank Meiss
- Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Carolin Funke-Lorenz
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany, and German Cancer Consortium (DKTK), Partner Site Essen/Duesseldorf, Essen, Germany
| | - Jan-Malte Placke
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany, and German Cancer Consortium (DKTK), Partner Site Essen/Duesseldorf, Essen, Germany
| | - Petya Apostolova
- Department of Internal Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg, a Partnership Between DKFZ and Medical Center - University of Freiburg, Freiburg im Breisgau, Germany; Department of Oncology, The Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; Department of Biomedicine, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland; Division of Hematology, University Hospital Basel, Basel, Switzerland.
| | - Robert Zeiser
- Department of Internal Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg, a Partnership Between DKFZ and Medical Center - University of Freiburg, Freiburg im Breisgau, Germany; Signalling Research Centres BIOSS and CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
18
|
Nielsen MB, Benn M, Nordestgaard BG, Skov L, Çolak Y. Adiponectin and Risk of Psoriasis: Observational and Mendelian Randomization Studies in up to 900 000 Individuals. Clin Chem 2025; 71:286-295. [PMID: 39478357 DOI: 10.1093/clinchem/hvae160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/10/2024] [Indexed: 02/04/2025]
Abstract
BACKGROUND Psoriasis is a chronic inflammatory skin disorder often associated with obesity. Adiponectin, an anti-inflammatory protein-hormone secreted by adipose tissue, may be a link between obesity and psoriasis. We hypothesized that low plasma adiponectin is associated with an increased risk of psoriasis in observational and causal genetic studies. METHODS In observational analyses, we used information on plasma adiponectin and psoriasis in 30 045 individuals from the Copenhagen General Population Study (CGPS). In one-sample Mendelian randomization analyses, we used genetic information on adiponectin and psoriasis in 107 308 individuals from the CGPS. In two-sample Mendelian randomization analyses, we used genetic information on adiponectin from the ADIPOGen consortium and genetic information on psoriasis in 373 338 and 462 933 individuals from the FinnGen study and UK Biobank (UKB). RESULTS In observational analyses, a 1-unit log-transformed higher plasma adiponectin was associated with a hazard ratio (HR) for psoriasis of 0.67 (95% confidence interval: 0.48-0.94) in an age- and sex-adjusted model but not in a multivariable adjusted model including obesity measures with a HR of 0.95 (0.66-1.35). In genetic one-sample Mendelian randomization analysis, a 1-unit log-transformed higher plasma adiponectin was not associated with a causal risk ratio for psoriasis of 1.33 (0.77-2.32) in the CGPS. In two-sample Mendelian randomization analyses, a 1-unit log-transformed higher plasma adiponectin was not associated with causal risk ratios for psoriasis of 0.96 (0.81-1.14) in FinnGen and 1.00 (1.00-1.01) in UKB. CONCLUSIONS Low plasma adiponectin is associated with increased risk of psoriasis in age- and sex-adjusted observational analyses; however, this was not the case after adjustment for obesity measures or in causal genetic analyses.
Collapse
Affiliation(s)
- Maria B Nielsen
- Department of Clinical Biochemistry, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark
- The Copenhagen General Population Study, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Dermatology and Allergy, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark
| | - Marianne Benn
- The Copenhagen General Population Study, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark
- The Copenhagen General Population Study, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lone Skov
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Dermatology and Allergy, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark
| | - Yunus Çolak
- The Copenhagen General Population Study, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Respiratory Medicine, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark
| |
Collapse
|
19
|
Zhao S, Zhu Q, Lee WH, Funcke JB, Zhang Z, Wang MY, Lin Q, Field B, Sun XN, Li G, Ekane M, Onodera T, Li N, Zhu Y, Kusminski CM, Hinds TD, Scherer PE. The adiponectin-PPARγ axis in hepatic stellate cells regulates liver fibrosis. Cell Rep 2025; 44:115165. [PMID: 39792554 PMCID: PMC11839304 DOI: 10.1016/j.celrep.2024.115165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/30/2024] [Accepted: 12/16/2024] [Indexed: 01/12/2025] Open
Abstract
Hepatic stellate cells (HSCs) are key drivers of local fibrosis. Adiponectin, conventionally thought of as an adipokine, is also expressed in quiescent HSCs. However, the impact of its local expression on the progression of liver fibrosis remains unclear. We recently generated a transgenic mouse line (Lrat-rtTA) that expresses the doxycycline-responsive transcriptional activator rtTA under the control of the HSC-specific lecithin retinol acyltransferase (Lrat) promoter, which enables us to specifically and inducibly overexpress or eliminate genes in these cells. The inducible elimination of HSCs protects mice from methionine/choline-deficient (MCD) diet-induced liver fibrosis, confirming their causal involvement in fibrosis development. We generated HSC-specific adiponectin overexpression and null models that demonstrate that HSC-specific adiponectin overexpression dramatically reduces liver fibrosis, whereas HSC-specific adiponectin elimination accelerates fibrosis progression. We identify a local adiponectin-peroxisome proliferator-activated receptor gamma (PPARγ) axis in HSCs that exerts a marked influence on the progression of local fibrosis, independent of circulating adiponectin derived from adipocytes.
Collapse
Affiliation(s)
- Shangang Zhao
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, USA; Sam and Ann Barshop Institute for Longevity and Aging Studies, Division of Endocrinology, Department of Medicine and Department of Cellular & Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Qingzhang Zhu
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, USA; Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, KY 40508, USA
| | - Wang-Hsin Lee
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Jan-Bernd Funcke
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zhuzhen Zhang
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, USA; College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| | - May-Yun Wang
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qian Lin
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bianca Field
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xue-Nan Sun
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Guannan Li
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Division of Endocrinology, Department of Medicine and Department of Cellular & Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Mbolle Ekane
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Division of Endocrinology, Department of Medicine and Department of Cellular & Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Toshiharu Onodera
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Adipose Management, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Na Li
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yi Zhu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christine M Kusminski
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
20
|
Mamashli E, Goulding RP, Iranparvar M, Skishahr FS, Siahkouhian M, Ramezanzade R, Jaspers RT, Davarnia B. Association of adiponectin gene single nucleotide polymorphisms with environmental risk factors in type 2 diabetes mellitus: An updated evidence of haplotype-based analysis study. Gene 2025; 933:148816. [PMID: 39128620 DOI: 10.1016/j.gene.2024.148816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 07/17/2024] [Accepted: 07/31/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND AND AIM Adiponectin (ADIPOQ) gene is considered to be one of the promising players in deciphering the genetic bases of type 2 diabetes. This study investigated the associations between haplotype combinations of three single nucleotide polymorphisms (SNPs) of the ADIPOQ gene and two SNPs of the adiponectin receptor 1 (AdipoR1) and 2 (AdipoR2) genes with environmental risk factors for the prediction of T2DM disorder susceptibility in the Iranian population. METHODS This case-control and cross-sectional study was conducted on 182 patients with T2DM and 155 healthy controls. Genotyping was performed using amplification refractory mutation system-PCR (ARMS-PCR) for rs17300539G/A, rs2241766T/G, and rs1501299G/T of the ADIPOQ gene, rs1342387C/T of the AdipoR1 gene, and rs10773989T/C of the AdipoR2 gene. RESULTS All polymorphisms met the Hardy-Weinberg equilibrium (p> 0.05). The studied SNPs; rs17300539, rs2241766 of the ADIPOQ gene and rs10773989 of the AdipoR2 gene, were significantly associated with an increased risk of T2DM. Two-way ANOVA analysis indicated that GG carriers of rs2241766T/G had a significantly lower waist-to-hip ratio (P= 0.049) and body mass index (P= 0.011) and higher HbA1c (P= 0.048) compared to TT carriers, while TT genotype carriers of rs2241766T/G showed the higher plasma adiponectin concentration compared to TG and GG carriers (P= 0.009 and P= 0.013, respectively). CC carriers of rs10773989T/C displayed a significantly higher LDL level compared to the TT genotype carries (P= 0.036). Also plasma adiponectin concentrations were significantly lower in AA genotype carriers of rs17300539G/A compared to GG and GA genotypes carriers in the control group only (P= 0.005 and P= 0.016, respectively). According to Combined Haplotype ([rs17300539, rs2241766, rs1501299]/[rs17300539, rs2241766, rs1501299]) analysis, GTT-homozygote carriers displayed the highest plasma adiponectin concentration and in contrast, GGG/GTG, ATG/GTG, and GGG/GGG showed the lowest plasma adiponectin concentration in the controls (p> 0.05). CONCLUSION The adiponectin gene haplotype combinations were associated with plasma adiponectin concentration in healthy individuals. In T2DM, adiponectin genetic variants displayed less effect on adiponectin plasma concentration.
Collapse
Affiliation(s)
- Elahe Mamashli
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands; Department of Sport Physiology, Faculty of Educational Sciences and Psychology, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Richie P Goulding
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Manouchehr Iranparvar
- Department of Endocrinology, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farnaz Seifi Skishahr
- Department of Sport Physiology, Faculty of Educational Sciences and Psychology, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Marefat Siahkouhian
- Department of Sport Physiology, Faculty of Educational Sciences and Psychology, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Raziye Ramezanzade
- Department of Sport Physiology, Faculty of Educational Sciences and Psychology, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Richard T Jaspers
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.
| | - Behzad Davarnia
- Department of Medical Genetics and Pathology, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
21
|
Huang K, Wu L, Xu D, Zhang H, Liu Q, Xie Y. Downregulation of CTRP1 reduces radio-resistance in glioblastoma cells by inhibiting the expression of CD133 after X-ray and carbon ion irradiation. Exp Cell Res 2025; 444:114292. [PMID: 39515408 DOI: 10.1016/j.yexcr.2024.114292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/16/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024]
Abstract
Glioblastomas (GBMs), the most prevalent primary malignant brain tumors, present significant challenges due to their invasive nature, high recurrence rates, and limited treatment options. Radiotherapy is a cornerstone in the management of GBMs; however, resistance to treatment poses a substantial obstacle. This study investigates the role of adipokine C1q/TNF-related protein 1 (CTRP1) in the radio-sensitivity of GBMs, utilizing both X-ray and carbon ion irradiation. Expression analyses revealed elevated CTRP1 and CD133 levels in GBMs tissues, which were associated with poor patient survival. Carbon ion irradiation demonstrated superior growth inhibition compared to X-ray, particularly in U87 (high CD133) cells. Moreover, CTRP1 expression increased following radiation exposure, especially after X-ray treatment. Knockdown of CTRP1 enhanced radio-sensitivity by reducing cell proliferation and increasing apoptosis, while exacerbating oxidative stress. Bioinformatics analysis revealed CTRP1's involvement in DNA damage repair pathways. Our findings establish a novel connection between CTRP1 and cellular radio-sensitivity. Targeting CTRP1, especially in U87 (high CD133) cells, enhances GBMs radio-sensitivity, offering potential therapeutic avenues.
Collapse
Affiliation(s)
- Ke Huang
- School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China; School/Hospital of Stomatology, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Luyao Wu
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, PR China; Graduate School of the Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing, 100049, PR China
| | - Dan Xu
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, PR China; School of Nuclear Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, PR China
| | - Hong Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, PR China.
| | - Qiang Liu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 238 Baidi Road, Nankai District, Tianjin, 300192, PR China.
| | - Yi Xie
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, PR China.
| |
Collapse
|
22
|
Wang Q, Wang X, Xu D, Jiang M, Gao Y, Jiang L, Liu M, Tang H, Tang L. Circulating levels of adiponectin and AdipoR expression in peripheral blood mononuclear cells are associated with lower respiratory tract Infection. Front Immunol 2025; 15:1510760. [PMID: 39840070 PMCID: PMC11746025 DOI: 10.3389/fimmu.2024.1510760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 12/13/2024] [Indexed: 01/23/2025] Open
Abstract
Objective The role of adiponectin (APN) in regulating inflammation is well recognized in metabolic disease, but the dysregulation of APN in lower respiratory tract infection (LRTI) remains controversial. We aimed to measure APN and its signaling receptors, adiponectin receptor (AdipoR), in peripheral blood mononuclear cells (PBMCs) from LRTI patients to explore their potential roles in the LRTI process. Methods A total of 99 LRTI patients from the Second Xiangya Hospital of Central South University were categorized into acute (n=35) and non-acute (n=64), and non-severe (n=62) and severe (n=37) groups. Serum APN was quantified using ELISA, and mRNA levels of PBMC AdipoRs were determined by RT-qPCR. Results Both levels of APN in circulation and AdipoR1 mRNA were significantly elevated in the LRTI patients (P=2.61E-04; P=2.49E-08), while no statistical difference was observed for AdipoR2. APN levels were increased in the non-acute group compared to the acute group (P=6.06E-04) and AdipoR1 levels were higher in the severe group (P=0.004). Increased APN and AdipoR1 mRNA levels were positively associated with LRTI even after adjustment for sex, age, BMI and blood lipids (OR=1.10; 95% CI 1.04-1.18; P=9.61E-04; OR=2.69; 95% CI 1.29-5.58; P=0.008). Subgroup analyses based on sex, age, and BMI revealed APN elevation in males, ≥65-year-olds, and overweight individuals, with higher AdipoR2 mRNA in females and those under 65; AdipoR1 was uniformly elevated. Additionally, APN was negatively correlated with lymphocyte count in acute and severe subgroup; AdipoR1 was positively correlated with indicators of inflammation in LRTI group. Conclusion Our study highlights that serum APN and AdipoR1 mRNA in PBMCs are associated with LRTI. Circulating APN and PBMC AdipoR1 have different significances in LRTI acute onset and severity.
Collapse
Affiliation(s)
- Qian Wang
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xuemei Wang
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Danning Xu
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Mengjie Jiang
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yidan Gao
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Lijuan Jiang
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Meilian Liu
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Haoneng Tang
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Lingli Tang
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
23
|
Fornari Laurindo L, Minniti G, Rodrigues VD, Fornari Laurindo L, Strozze Catharin VMC, Baisi Chagas EF, Dos Anjos VD, de Castro MVM, Baldi Júnior E, Ferraroni Sanches RC, Mendez-Sanchez N, Maria Barbalho S. Exploring the Logic and Conducting a Comprehensive Evaluation of the Adiponectin Receptor Agonists AdipoRon and AdipoAI's Impacts on Bone Metabolism and Repair-A Systematic Review. Curr Med Chem 2025; 32:1168-1194. [PMID: 39206478 DOI: 10.2174/0109298673308301240821052742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/17/2024] [Accepted: 07/05/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Adiponectin replacement therapy shows promising outcomes in various diseases, especially for bone-related disorders. Challenges in using the complete protein have led to alternative approaches, with AdipoRon and AdipoAI emerging as extensively researched drug candidates. Their influence on models of bone-related disorders has progressed considerably but there has been no review of their effectiveness in modulating bone metabolism and repair. METHODS This systematic review seeks to address this knowledge gap. Based on preclinical evidence from PubMed, EMBASE, and COCHRANE, ten studies were included following PRISMA guidelines. The JBI Checklist Critical Appraisal Tool assessed the quality of this systematic review. The studies encompassed various animal models, addressing bone defects, osseointegration, diabetes-associated periodontitis, fracture repair, growth retardation, and diabetes-associated peri-implantitis. RESULTS AdipoRon and AdipoAI demonstrated effectiveness in modulating bone metabolism and repair through diverse pathways, including the activation of AdipoR1/APPL1, inhibition of F-actin ring formation, suppression of IκB-α phosphorylation, p65 nuclear translocation and Wnt5a-Ror2 signaling pathway, reduction of CCL2 secretion and expression, regulation of autophagy via LC3A/B expression, modulation of SDF-1 production, activation of the ERK1/2 signaling pathway, modulation of bone integration-related markers and osteokines such as RANKL, BMP-2, OPG, OPN, and Runx2, inhibition of RANKL in osteoblasts, and inhibition of podosome formation via the activation of AMPK. CONCLUSION While preclinical studies show promise, human trials are crucial to confirm the clinical safety and effectiveness of AdipoRon and AdipoAI. Caution is necessary due to potential off-target effects, especially in bone therapy with multi-target approaches. Structural biology and computational methods can help predict and understand these effects.
Collapse
Affiliation(s)
- Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília 17519-030, São Paulo, Brazil
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Giulia Minniti
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Victoria Dogani Rodrigues
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília 17519-030, São Paulo, Brazil
| | - Lívia Fornari Laurindo
- Medical Department, School of Medicine, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto 15090-000, São Paulo, Brazil
| | - Virginia Maria Cavallari Strozze Catharin
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Eduardo Federighi Baisi Chagas
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Vinicius Dias Dos Anjos
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Marcela Vialogo Marques de Castro
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Edgar Baldi Júnior
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Raquel Cristina Ferraroni Sanches
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Nahum Mendez-Sanchez
- Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, São Paulo, Brazil
| |
Collapse
|
24
|
Tam E, Ouimet M, Sweeney G. Cardioprotective Effects of Adiponectin-Stimulated Autophagy. J Lipid Atheroscler 2025; 14:40-53. [PMID: 39911962 PMCID: PMC11791421 DOI: 10.12997/jla.2025.14.1.40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/11/2024] [Accepted: 09/19/2024] [Indexed: 02/07/2025] Open
Abstract
Cardiovascular diseases (CVDs), including heart failure, pose a significant economic and health burden worldwide. Current treatment strategies for heart failure are greatly limited, in that they mainly mitigate symptoms or delay further progression. In contrast, therapies aimed at proactively preventing the onset of heart failure could greatly improve outcomes. Adiponectin is an adipocyte-derived hormone that confers an array of cardioprotective effects. It exerts anti-inflammatory effects, improves metabolic function, mitigates endothelial cell dysfunction, and reduce cardiomyocyte cell death. Furthermore, it has gained increasing attention for its ability to activate autophagy, a conserved cellular pathway that facilitates the degradation and recycling of cell components. The disruption of autophagy has been linked to CVDs including heart failure. Additionally, growing evidence also points to specific forms of autophagy, namely mitophagy and lipophagy, as crucial adaptive responses in protection against CVDs. The protective effects of adiponectin, autophagy, mitophagy, and lipophagy against CVDs along with potential therapeutic implications will be discussed.
Collapse
Affiliation(s)
- Eddie Tam
- Department of Biology, York University, Toronto, ON, Canada
| | - Mireille Ouimet
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Gary Sweeney
- Department of Biology, York University, Toronto, ON, Canada
| |
Collapse
|
25
|
Cai JJ, Zheng P, Su M, Shen YL, Li XC, Guo QW, Chen X, Su GM, Lin J, Gong RR, Fang DZ. Suicidal ideation in adolescents with adiponectin receptor 2 rs12342 polymorphism affected by Wenchuan earthquake. Early Interv Psychiatry 2025; 19:e13585. [PMID: 38837550 DOI: 10.1111/eip.13585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/17/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
PURPOSE The present study was to investigate prevalence of suicidal ideation and its associations with biological and environmental factors in adolescents with different genotypes of rs12342 at adiponectin receptor 2 gene (ADIPOR2). METHODS Suicidal ideation, biological and environmental factors were evaluated by questionnaires in 669 high school students after Wenchuan earthquake in China. ADIPOR2 rs12342 was genotyped by polymerase chain reaction-restriction fragment length polymorphism and verified by DNA sequencing. RESULTS Female adolescents had higher prevalence of suicidal ideation than male students in AG heterozygote and GG homozygote, but not AA homozygote. Prevalence of suicidal ideation was different in male, but not female, subjects with different genotypes. Genotype and allele frequencies were significantly different between male students with and without suicidal ideation, but not the female counterparts. Family history of mental disorders, extent of damage to property, carbohydrate intake and protein intake were associated with suicidal ideation in female subjects, while ADIPOR2 rs12342, father's educational level and previous trauma experience were associated with suicidal ideation in male subjects. CONCLUSION ADIPOR2 rs12342 is associated with and has potential to interact with environmental factors on suicidal ideation in a gender-dependent manner in youth. These findings pave a novel way and perspective for precision inferences of suicidal ideation in subjects with different genetic backgrounds. ADIPOR2 rs12342 needs to be considered when intervening suicidal ideation, especially in adolescents.
Collapse
Affiliation(s)
- Jia Jing Cai
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Ping Zheng
- West China School of Nursing, Sichuan University, Chengdu, People's Republic of China
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, People's Republic of China
| | - Mi Su
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Yi Lin Shen
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Xue Cheng Li
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Qi Wei Guo
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Xu Chen
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Guo Ming Su
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Jia Lin
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Ren Rong Gong
- West China School of Nursing, Sichuan University, Chengdu, People's Republic of China
- Department of Surgery, West China Hospital of Sichuan University, Chengdu, People's Republic of China
| | - Ding Zhi Fang
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
26
|
Mann JP, Tábara LC, Patel S, Pushpa P, Alvarez-Guaita A, Dong L, Haider A, Lim K, Tandon P, Scurria F, Minchin JEN, O’Rahilly S. S, Fazakerley DJ, Prudent J, Semple RK, Savage DB. Loss of Mfn1 but not Mfn2 enhances adipogenesis. PLoS One 2024; 19:e0306243. [PMID: 39739772 PMCID: PMC11687706 DOI: 10.1371/journal.pone.0306243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/13/2024] [Indexed: 01/02/2025] Open
Abstract
OBJECTIVE A biallelic missense mutation in mitofusin 2 (MFN2) causes multiple symmetric lipomatosis and partial lipodystrophy, implicating disruption of mitochondrial fusion or interaction with other organelles in adipocyte differentiation, growth and/or survival. In this study, we aimed to document the impact of loss of mitofusin 1 (Mfn1) or 2 (Mfn2) on adipogenesis in cultured cells. METHODS We characterised adipocyte differentiation of wildtype (WT), Mfn1-/- and Mfn2-/- mouse embryonic fibroblasts (MEFs) and 3T3-L1 preadipocytes in which Mfn1 or 2 levels were reduced using siRNA. RESULTS Mfn1-/- MEFs displayed striking fragmentation of the mitochondrial network, with surprisingly enhanced propensity to differentiate into adipocytes, as assessed by lipid accumulation, expression of adipocyte markers (Plin1, Fabp4, Glut4, Adipoq), and insulin-stimulated glucose uptake. RNA sequencing revealed a corresponding pro-adipogenic transcriptional profile including Pparg upregulation. Mfn2-/- MEFs also had a disrupted mitochondrial morphology, but in contrast to Mfn1-/- MEFs they showed reduced expression of adipocyte markers. Mfn1 and Mfn2 siRNA mediated knockdown studies in 3T3-L1 adipocytes generally replicated these findings. CONCLUSIONS Loss of Mfn1 but not Mfn2 in cultured pre-adipocyte models is pro-adipogenic. This suggests distinct, non-redundant roles for the two mitofusin orthologues in adipocyte differentiation.
Collapse
Affiliation(s)
- Jake P. Mann
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Luis Carlos Tábara
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Satish Patel
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Pushpa Pushpa
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Anna Alvarez-Guaita
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Liang Dong
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Afreen Haider
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Koini Lim
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Panna Tandon
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Fabio Scurria
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - James E. N. Minchin
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Stephen O’Rahilly S.
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Daniel J. Fazakerley
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Julien Prudent
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Robert K. Semple
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh, United Kingdom
| | - David B. Savage
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
27
|
Blüher M. Understanding Adipose Tissue Dysfunction. J Obes Metab Syndr 2024; 33:275-288. [PMID: 39734091 PMCID: PMC11704217 DOI: 10.7570/jomes24013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/08/2024] [Accepted: 12/16/2024] [Indexed: 12/31/2024] Open
Abstract
Diseases affecting adipose tissue (AT) function include obesity, lipodystrophy, and lipedema, among others. Both a lack of and excess AT are associated with increased risk for developing diseases including type 2 diabetes mellitus, hypertension, obstructive sleep apnea, and some types of cancer. However, individual risk of developing cardiometabolic and other 'obesity-related' diseases is not entirely determined by fat mass. Rather than excess fat accumulation, AT dysfunction may represent the mechanistic link between obesity and comorbid diseases. There are people who remain metabolically healthy despite obesity, whereas people with normal weight or very low subcutaneous AT mass may develop typically obesity-related diseases. AT dysfunction is characterized by adipocyte hypertrophy, impaired subcutaneous AT expandability (ectopic fat deposition), hypoxia, a variety of stress, inflammatory processes, and the release of proinflammatory, diabetogenic, and atherogenic signals. Genetic and environmental factors might contribute to AT heterogeneity either alone or via interaction with intrinsic biological factors. However, many questions remain regarding the mechanisms of AT dysfunction initiation and whether and how it could be reversed. Do AT signatures define clinically relevant subtypes of obesity? Is the cellular composition of AT associated with variation in obesity phenotypes? What roles do environmental compounds play in the manifestation of AT dysfunction? Answers to these and other questions may explain AT disease mechanisms and help to define strategies for improving AT health. This review focuses on recent advances in our understanding of AT biology.
Collapse
Affiliation(s)
- Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
- Medical Department III—Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| |
Collapse
|
28
|
Aranäs C, Edvardsson CE, Zentveld L, Vallöf D, Witley S, Tufvesson-Alm M, Shevchouk OT, Vestlund J, Jerlhag E. The combination of a glucagon-like peptide-1 and amylin receptor agonists reduces alcohol consumption in both male and female rats. Acta Neuropsychiatr 2024; 37:e42. [PMID: 39639536 DOI: 10.1017/neu.2024.58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
OBJECTIVE Combining different pharmaceuticals may be beneficial when treating disorders with complex neurobiology, including alcohol use disorder (AUD). The gut-brain peptides amylin and GLP-1 may be of potential interest as they individually reduce alcohol intake in rodents. While the combination of amylin receptor (AMYR) and glucagon-like peptide-1 receptor (GLP-1R) agonists have been found to decrease feeding and body weight in obese male rats synergistically, their combined impact on alcohol intake is unknown. METHODS Therefore, the effect of the combination of an AMYR (salmon calcitonin (sCT)) and a GLP-1R (dulaglutide) agonist on alcohol intake in rats of both sexes was explored in two separate alcohol-drinking experiments. The first alcohol-drinking experiment evaluated the potential of adding sCT to an ongoing dulaglutide treatment, whereas the second alcohol-drinking experiment examined the effect when adding sCT and dulaglutide simultaneously. RESULTS When adding sCT to an ongoing dulaglutide treatment, a reduction in alcohol intake was observed in both male and female rats. However, when combining sCT and dulaglutide simultaneously, an initial reduction in alcohol intake was observed in rats of both sexes, whereas tolerance towards treatment was observed. In both alcohol-drinking experiments, this treatment combination consistently decreased food consumption and body weight in males and females. While the treatment combination did not affect inflammatory mediators, the gene expression of AMYR or GLP-1R, it changed fat tissue morphology. CONCLUSIONS Further investigation needs to be done on the combination of AMYR and GLP-1R agonists to assess their combined effects on alcohol intake.
Collapse
Affiliation(s)
- Cajsa Aranäs
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Christian E Edvardsson
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Lindsay Zentveld
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Daniel Vallöf
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Sarah Witley
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Maximilian Tufvesson-Alm
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Olesya T Shevchouk
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Jesper Vestlund
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Elisabet Jerlhag
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
29
|
Zhang J, Lu E, Deng L, Zhu Y, Lu X, Li X, Li F, Yan Y, Han JY, Li Y, Zhang Y. Immunological roles for resistin and related adipokines in obesity-associated tumors. Int Immunopharmacol 2024; 142:112911. [PMID: 39232363 DOI: 10.1016/j.intimp.2024.112911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024]
Abstract
Rationale Obesity is an independent risk factor for the occurrence and development of tumors. Obesity is influenced by signaling of adipokines, which are secreted factors from adipocytes and resident immune cells within adipose tissues that mediate lipid metabolism. More recently, adipokines have been implicated in chronic inflammation as well as in tumor formation and growth. Among them, resistin has received increasing attention in research related to the growth and expansion of solid tumors and hematological cancers through various signaling pathways. Objective and findings We reviewed the physiological, biochemical, and immune functions of adipose tissue, with a focus on the structure and expression of resistin and adipokines within multiple adipose cell types, their signaling pathways and putative effects on tumor cells, as well as their in vivo regulation. Current evidence indicates that adipokines such as resistin act as pro-inflammatory factors to stimulate immune cells which, in turn, promotes tumor angiogenesis, connective tissue proliferation, and matrix fibrosis. Concurrently, in states of metabolic dysfunction and lipotoxicity in obese individuals, the numbers and functions of immune cells are compromised, leading to an immunosuppressive environment that fosters tumor cell survival and weak cancer immune monitoring. Conclusion Adipokines such as resistin are important to the development of obesity-related tumors. Clarifying the roles for obesity-related factors in immune regulation and tumor progression may lead to the discovery of novel anti-tumor strategies for targeting obesity factors such as resistin to limit tumor growth and manage obesity, or both.
Collapse
Affiliation(s)
- Jingxin Zhang
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Enting Lu
- Department of Gynecology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Lei Deng
- Department of Gynecology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yaoxuan Zhu
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Xiaoqing Lu
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Xinyuan Li
- School of Nursing, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Fangmei Li
- Department of Gynecology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yan Yan
- Department of Gynecology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Jing-Yan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yin Li
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China.
| | - Yi Zhang
- Department of Gynecology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
30
|
Díaz-Castro F, Morselli E, Claret M. Interplay between the brain and adipose tissue: a metabolic conversation. EMBO Rep 2024; 25:5277-5293. [PMID: 39558137 PMCID: PMC11624209 DOI: 10.1038/s44319-024-00321-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/20/2024] Open
Abstract
The central nervous system and adipose tissue interact through complex communication. This bidirectional signaling regulates metabolic functions. The hypothalamus, a key homeostatic brain region, integrates exteroceptive and interoceptive signals to control appetite, energy expenditure, glucose, and lipid metabolism. This regulation is partly achieved via the nervous modulation of white (WAT) and brown (BAT) adipose tissue. In this review, we highlight the roles of sympathetic and parasympathetic innervation in regulating WAT and BAT activities, such as lipolysis and thermogenesis. Adipose tissue, in turn, plays a dual role as an energy reservoir and an endocrine organ, secreting hormones that influence brain function and metabolic health. In addition, this review focuses on recently uncovered communication pathways, including extracellular vesicles and neuro-mesenchymal units, which add new layers of regulation and complexity to the brain-adipose tissue interaction. Finally, we also examine the consequences of disrupted communication between the brain and adipose tissue in metabolic disorders like obesity and type-2 diabetes, emphasizing the potential for new therapeutic strategies targeting these pathways to improve metabolic health.
Collapse
Affiliation(s)
- Francisco Díaz-Castro
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Laboratory of Autophagy and Metabolism, Faculty of Medicine and Sciences, Department of Basic Sciences, Universidad San Sebastián, Santiago de Chile, Chile
- Physiology Department, Biological Science Faculty, Pontificia Universidad Católica de Chile, Santiago de Chile, Chile
| | - Eugenia Morselli
- Laboratory of Autophagy and Metabolism, Faculty of Medicine and Sciences, Department of Basic Sciences, Universidad San Sebastián, Santiago de Chile, Chile.
| | - Marc Claret
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- IBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain.
- School of Medicine, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
31
|
Abubakar M, Irfan U, Abdelkhalek A, Javed I, Khokhar MI, Shakil F, Raza S, Salim SS, Altaf MM, Habib R, Ahmed S, Ahmed F. Comprehensive Quality Analysis of Conventional and Novel Biomarkers in Diagnosing and Predicting Prognosis of Coronary Artery Disease, Acute Coronary Syndrome, and Heart Failure, a Comprehensive Literature Review. J Cardiovasc Transl Res 2024; 17:1258-1285. [PMID: 38995611 DOI: 10.1007/s12265-024-10540-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 06/25/2024] [Indexed: 07/13/2024]
Abstract
Coronary artery disease (CAD), acute coronary syndrome (ACS), and heart failure (HF) are major global health issues with high morbidity and mortality rates. Biomarkers like cardiac troponins (cTn) and natriuretic peptides (NPs) are crucial tools in cardiology, but numerous new biomarkers have emerged, proving increasingly valuable in CAD/ACS. These biomarkers are classified based on their mechanisms, such as fibrosis, metabolism, inflammation, and congestion. The integration of established and emerging biomarkers into clinical practice is an ongoing process, and recognizing their strengths and limitations is crucial for their accurate interpretation, incorporation into clinical settings, and improved management of CVD patients. We explored established biomarkers like cTn, NPs, and CRP, alongside newer biomarkers such as Apo-A1, IL-17E, IgA, Gal-3, sST2, GDF-15, MPO, H-FABP, Lp-PLA2, and ncRNAs; provided evidence of their utility in CAD/ACS diagnosis and prognosis; and empowered clinicians to confidently integrate these biomarkers into clinical practice based on solid evidence.
Collapse
Affiliation(s)
- Muhammad Abubakar
- Department of Internal Medicine, Ameer-Ud-Din Medical College, 6 Birdwood Road, Jinnah Town, Lahore, 54000, Punjab, Pakistan.
| | - Umema Irfan
- Department of Internal Medicine, Deccan College of Medical Sciences, Hyderabad, India
| | - Ahmad Abdelkhalek
- Department of Internal Medicine, Zhejiang University, Zhejiang, China
| | - Izzah Javed
- Department of Internal Medicine, Ameer-Ud-Din Medical College, 6 Birdwood Road, Jinnah Town, Lahore, 54000, Punjab, Pakistan
| | | | - Fraz Shakil
- Department of Emergency Medicine, Mayo Hospital, Lahore, Pakistan
| | - Saud Raza
- Department of Anesthesia, Social Security Teaching Hospital, Lahore, Punjab, Pakistan
| | - Siffat Saima Salim
- Department of Surgery, Holy Family Red Crescent Medical College Hospital, Dhaka, Bangladesh
| | - Muhammad Mahran Altaf
- Department of Internal Medicine, Ameer-Ud-Din Medical College, 6 Birdwood Road, Jinnah Town, Lahore, 54000, Punjab, Pakistan
| | - Rizwan Habib
- Department of Internal Medicine and Emergency, Indus Hospital, Lahore, Pakistan
| | - Simra Ahmed
- Department of Internal Medicine, Ziauddin Medical College, Karachi, Pakistan
| | - Farea Ahmed
- Department of Internal Medicine, Ziauddin Medical College, Karachi, Pakistan
| |
Collapse
|
32
|
Wen W, Fan H, Zhang S, Hu S, Chen C, Tang J, You Y, Wang C, Li J, Luo L, Cheng Y, Zhou M, Zhao X, Tan T, Xu F, Fu X, Chen J, Dong P, Zhang X, Wang M, Feng Y. Associations between metabolic dysfunction-associated fatty liver disease and atherosclerotic cardiovascular disease. Am J Med Sci 2024; 368:557-568. [PMID: 38944203 DOI: 10.1016/j.amjms.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/01/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is closely related to metabolic syndrome and remains a major global health burden. The increased prevalence of obesity and type 2 diabetes mellitus (T2DM) worldwide has contributed to the rising incidence of NAFLD. It is widely believed that atherosclerotic cardiovascular disease (ASCVD) is associated with NAFLD. In the past decade, the clinical implications of NAFLD have gone beyond liver-related morbidity and mortality, with a majority of patient deaths attributed to malignancy, coronary heart disease (CHD), and other cardiovascular (CVD) complications. To better define fatty liver disease associated with metabolic disorders, experts proposed a new term in 2020 - metabolic dysfunction associated with fatty liver disease (MAFLD). Along with this new designation, updated diagnostic criteria were introduced, resulting in some differentiation between NAFLD and MAFLD patient populations, although there is overlap. The aim of this review is to explore the relationship between MAFLD and ASCVD based on the new definitions and diagnostic criteria, while briefly discussing potential mechanisms underlying cardiovascular disease in patients with MAFLD.
Collapse
Affiliation(s)
- Wen Wen
- Department of Cardiology, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, 313000, Zhejiang, China
| | - Hua Fan
- School of Clinical Medicine, The First Affiliated Hospital of Henan University of Science and Technology, Henan University of Science and Technology, Luoyang 471003, Henan, China
| | - Shenghui Zhang
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Siqi Hu
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Chen Chen
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Jiake Tang
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Yao You
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Chunyi Wang
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Jie Li
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Lin Luo
- Hangzhou Ruolin Hospital Management Co. Ltd, Hangzhou, 310007, China
| | - Yongran Cheng
- School of Public Health, Hangzhou Medical College, Hangzhou, 311300, China
| | - Mengyun Zhou
- Department of Molecular & Cellular Physiology, Shinshu University School of Medicine, 3900803, Japan
| | - Xuezhi Zhao
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China
| | - Tao Tan
- Faculty of Applied Science, Macao Polytechnic University, Macao SAR, 999078, China
| | - Fangfang Xu
- Strategy Research and Knowledge Information Center, SAIC Motor Group, 200030, Shanghai, China
| | - Xinyan Fu
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Juan Chen
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Peng Dong
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Xingwei Zhang
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Mingwei Wang
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China.
| | - Yan Feng
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China.
| |
Collapse
|
33
|
Fu X, Wang Y, Lu Y, Liu J, Li H. Association between metabolic syndrome and benign prostatic hyperplasia: The underlying molecular connection. Life Sci 2024; 358:123192. [PMID: 39488266 DOI: 10.1016/j.lfs.2024.123192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/08/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
Benign prostatic hyperplasia (BPH), a common cause of lower urinary tract symptoms (LUTS), has been recently regarded as a metabolic disease. Metabolic syndrome (MetS) is a constellation of metabolic disarrangements, including insulin resistance, obesity, hypertension, and dyslipidemia, and it has been established that these components of MetS are important contributing factors exacerbating the degree of prostatic enlargement and bladder outlet obstruction among patients with BPH. Clinical and experimental studies demonstrated that many molecules, such as insulin, insulin-like growth factor 1 (IGF-1), androgen and estrogen, and adipokines, are involved in the overlapping pathogenesis of BPH and MetS, indicating that clinicians might be able to simultaneously alleviate or cure two diseases by choosing appropriate medications. This article aims to systematically review the pathophysiological aspect and traditional etiology and pathogenesis of BPH and discuss the intricate association between MetS and BPH from the molecular point of view, in an attempt to provide stronger evidence for better treatment of two diseases.
Collapse
Affiliation(s)
- Xun Fu
- Department of Urology, Peking Union Medical Collage Hospital, Beijing, China
| | - Yutao Wang
- Department of Urology, Peking Union Medical Collage Hospital, Beijing, China
| | - Yi Lu
- Department of Urology, Peking Union Medical Collage Hospital, Beijing, China
| | - Jiang Liu
- Department of Urology, Peking Union Medical Collage Hospital, Beijing, China
| | - Hongjun Li
- Department of Urology, Peking Union Medical Collage Hospital, Beijing, China.
| |
Collapse
|
34
|
Han R, Huang H, Zhu J, Jin X, Wang Y, Xu Y, Xia Z. Adipokines and their potential impacts on susceptibility to myocardial ischemia/reperfusion injury in diabetes. Lipids Health Dis 2024; 23:372. [PMID: 39538244 PMCID: PMC11558907 DOI: 10.1186/s12944-024-02357-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Coronary artery disease has a high mortality rate and is a striking public health concern, affecting a substantial portion of the global population. On the early onset of myocardial ischemia, thrombolytic therapy and coronary revascularization could promptly restore the bloodstream and nutrient supply to the ischemic tissue, efficiently preserving less severely injured myocardium. However, the abrupt re-establishment of blood flow triggers the significant discharge of previously accumulated oxidative substances and inflammatory cytokines, leading to further harm referred to as ischemia/reperfusion (I/R) injury. Diabetes significantly raises the vulnerability of the heart to I/R injury due to disrupted glucose and lipid processing, impaired insulin sensitivity and metabolic signaling, and increased inflammatory responses. Numerous studies have indicated that adipokines are crucial in the etiology and pathogenesis of obesity, diabetes, hyperlipidemia, hypertension, and coronary artery disease. Adipokines such as adiponectin, adipsin, visfatin, chemerin, omentin, and apelin, which possess protective properties against inflammatory activity and insulin resistance, have been shown to confer myocardial protection in conditions such as atherosclerosis, myocardial hypertrophy, myocardial I/R injury, and diabetic complications. On the other hand, adipokines such as leptin and resistin, known for their pro-inflammatory characteristics, have been linked to elevated cardiac lipid deposition, insulin resistance, and fibrosis. Meteorin-like (metrnl) exhibits opposite effects in various pathological conditions. However, the data on adipokines in myocardial I/R, especially in diabetes, is still incomplete and controversial. This review focuses on recent research regarding the categorization and function of adipokines in the heart muscle, and the identification of different signaling pathways involved in myocardial I/R injury under diabetic conditions, aiming to facilitate the exploration of therapeutic strategies against myocardial I/R injury in diabetes.
Collapse
Affiliation(s)
- Ronghui Han
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, PR, China
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Hemeng Huang
- Department of Emergency, Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Jianyu Zhu
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Xiaogao Jin
- Department of Anesthesiology, The Second Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Yongyan Wang
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, PR, China
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Youhua Xu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, PR, China.
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute, Hengqin, Zhuhai, People's Republic of China.
- Faculty of Pharmacy, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, People's Republic of China.
| | - Zhengyuan Xia
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, PR, China.
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China.
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
35
|
Whytock KL, Divoux A, Sun Y, Pino MF, Yu G, Jin CA, Robino JJ, Plekhanov A, Varlamov O, Smith SR, Walsh MJ, Sparks LM. Aging human abdominal subcutaneous white adipose tissue at single cell resolution. Aging Cell 2024; 23:e14287. [PMID: 39141531 PMCID: PMC11561672 DOI: 10.1111/acel.14287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 08/16/2024] Open
Abstract
White adipose tissue (WAT) is a robust energy storage and endocrine organ critical for maintaining metabolic health as we age. Our aim was to identify cell-specific transcriptional aberrations that occur in WAT with aging. We leveraged full-length snRNA-Seq and histology to characterize the cellular landscape of human abdominal subcutaneous WAT in a prospective cohort of 10 younger (≤30 years) and 10 older individuals (≥65 years) balanced for sex and body mass index (BMI). The older group had greater cholesterol, very-low-density lipoprotein, triglycerides, thyroid stimulating hormone, and aspartate transaminase compared to the younger group (p < 0.05). We highlight that aging WAT is associated with adipocyte hypertrophy, increased proportions of lipid-associated macrophages and mast cells, an upregulation of immune responses linked to fibrosis in pre-adipocyte, adipocyte, and vascular populations, and highlight CXCL14 as a biomarker of these processes. We show that older WAT has elevated levels of senescence marker p16 in adipocytes and identify the adipocyte subpopulation driving this senescence profile. We confirm that these transcriptional and phenotypical changes occur without overt fibrosis and in older individuals that have comparable WAT insulin sensitivity to the younger individuals.
Collapse
Affiliation(s)
- K. L. Whytock
- Translational Research Institute, AdventHealthOrlandoFloridaUSA
| | - A. Divoux
- Translational Research Institute, AdventHealthOrlandoFloridaUSA
| | - Y. Sun
- Icahn School of Medicine at Mount SinaiNew York CityNew YorkUSA
| | - M. F. Pino
- Translational Research Institute, AdventHealthOrlandoFloridaUSA
| | - G. Yu
- Translational Research Institute, AdventHealthOrlandoFloridaUSA
| | - C. A. Jin
- Department of Genetics, School of MedicineStanford UniversityStanfordCaliforniaUSA
| | - J. J. Robino
- Divisions of Metabolic Health and DiseaseOregon National Primate Research CenterBeavertonOregonUSA
| | - A. Plekhanov
- Divisions of Metabolic Health and DiseaseOregon National Primate Research CenterBeavertonOregonUSA
| | - O. Varlamov
- Divisions of Metabolic Health and DiseaseOregon National Primate Research CenterBeavertonOregonUSA
| | - S. R. Smith
- Translational Research Institute, AdventHealthOrlandoFloridaUSA
| | - M. J. Walsh
- Icahn School of Medicine at Mount SinaiNew York CityNew YorkUSA
| | - L. M. Sparks
- Translational Research Institute, AdventHealthOrlandoFloridaUSA
| |
Collapse
|
36
|
Lai HH, Jeng KS, Huang CT, Chu AJ, Her GM. Heightened TPD52 linked to metabolic dysfunction and associated abnormalities in zebrafish. Arch Biochem Biophys 2024; 761:110166. [PMID: 39349129 DOI: 10.1016/j.abb.2024.110166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/05/2024] [Accepted: 09/25/2024] [Indexed: 10/02/2024]
Abstract
The tumor protein D52 (TPD52) gene encodes a proto-oncogene protein associated with various medical conditions, including breast and prostate cancers. It plays a role in multiple biological pathways such as cell growth, differentiation, and apoptosis. The function of TPD52 in lipid droplet biosynthesis has been investigated in vitro. However, its precise role in lipid metabolism in animal models is not fully understood. To investigate the functions of TPD52 in vivo, we performed a conditional TPD52 protein expression analysis using a Tet-off transgenic system to establish conditionally expressed Tpd52 transgenic zebrafish. The effect of Tpd52 on lipogenesis was assessed using various methods, including whole-mount Oil Red O staining, histological examination, and measurement of inflammatory markers and potential targets using real-time quantitative polymerase chain reaction and immunoblotting in Tpd52 fish. Zebrafish with increased Tpd52 levels exhibited notable weight gain and the enlargement of fat deposits, which were mainly attributed to an increase in the volume of adipocytes. Moreover, Tpd52 overexpression was correlated with the triggering of the adipocyte differentiation signaling pathway. During adipocytic differentiation in response to nutrient status, our observations revealed adipogenesis, nonalcoholic fatty liver disease, and metabolic cardiomyopathy (MCM) in Tpd52 transgenic zebrafish. To gain a deeper understanding of the contribution of these proteins to the regulation of cellular growth, we investigated the expression of their corresponding genes and proteins in zebrafish. In the present study, the activated protein kinase pathway was identified as the primary target of TPD52. Adult Tpd52 zebrafish showed increased lipid accumulation, resulting in the development of visceral obesity, nonalcoholic fatty liver disease, and MCM. These findings strongly suggest that TPD52 actively contributes to adipose tissue expansion and its subsequent effects. This investigation provides compelling evidence that Tpd52 facilitates adipocyte development and related metabolic comorbidities in zebrafish.
Collapse
Affiliation(s)
- Hsin-Hung Lai
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Kuo-Shyang Jeng
- Division of General Surgery, Far Eastern Memorial Hospital, New Taipei, 220, Taiwan
| | - Chung-Tsui Huang
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Far Eastern Memorial Hospital, New Taipei, 220, Taiwan
| | - An-Ju Chu
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Guor Mour Her
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
| |
Collapse
|
37
|
Aleman J, K R, Wiegand C, Schurdak ME, Vernetti L, Gavlock D, Reese C, DeBiasio R, LaRocca G, Angarita YD, Gough A, Soto-Gutierrez A, Behari J, Yechoor VK, Miedel MT, Stern AM, Banerjee I, Taylor DL. A metabolic dysfunction-associated steatotic liver acinus biomimetic induces pancreatic islet dysfunction in a coupled microphysiology system. Commun Biol 2024; 7:1317. [PMID: 39397070 PMCID: PMC11471816 DOI: 10.1038/s42003-024-07006-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024] Open
Abstract
Preclinical and clinical studies suggest that lipid-induced hepatic insulin resistance is a primary defect that predisposes to dysfunction in islets, implicating a perturbed liver-pancreas axis underlying the comorbidity of T2DM and MASLD. To investigate this hypothesis, we developed a human biomimetic microphysiological system (MPS) coupling our vascularized liver acinus MPS (vLAMPS) with pancreatic islet MPS (PANIS) enabling MASLD progression and islet dysfunction to be assessed. The modular design of this system (vLAMPS-PANIS) allows intra-organ and inter-organ dysregulation to be deconvoluted. When compared to normal fasting (NF) conditions, under early metabolic syndrome (EMS) conditions, the standalone vLAMPS exhibited characteristics of early stage MASLD, while no significant differences were observed in the standalone PANIS. In contrast, with EMS, the coupled vLAMPS-PANIS exhibited a perturbed islet-specific secretome and a significantly dysregulated glucose stimulated insulin secretion response implicating direct signaling from the dysregulated liver acinus to the islets. Correlations between several pairs of a vLAMPS-derived and a PANIS-derived factors were significantly altered under EMS, as compared to NF conditions, mechanistically connecting MASLD and T2DM associated hepatic-factors with islet-derived GLP-1 synthesis and regulation. Since vLAMPS-PANIS is compatible with patient-specific iPSCs, this platform represents an important step towards addressing patient heterogeneity, identifying disease mechanisms, and advancing precision medicine.
Collapse
Affiliation(s)
- Julio Aleman
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, USA
- University of Pittsburgh Department of Bioengineering, Pittsburgh, USA
| | - Ravikumar K
- University of Pittsburgh Department of Chemical and Petroleum Engineering, Pittsburgh, USA
| | - Connor Wiegand
- University of Pittsburgh Department of Chemical and Petroleum Engineering, Pittsburgh, USA
| | - Mark E Schurdak
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, USA
- University of Pittsburgh Department of Computational and Systems Biology, Pittsburgh, USA
- University of Pittsburgh Liver Research Center, Pittsburgh, USA
| | - Lawrence Vernetti
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, USA
- University of Pittsburgh Department of Computational and Systems Biology, Pittsburgh, USA
- University of Pittsburgh Liver Research Center, Pittsburgh, USA
| | - Dillon Gavlock
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, USA
| | - Celeste Reese
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, USA
| | - Richard DeBiasio
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, USA
| | - Greg LaRocca
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, USA
| | | | - Albert Gough
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, USA
- University of Pittsburgh Department of Computational and Systems Biology, Pittsburgh, USA
| | - Alejandro Soto-Gutierrez
- University of Pittsburgh Liver Research Center, Pittsburgh, USA
- University of Pittsburgh Department of Pathology, Pittsburgh, USA
| | - Jaideep Behari
- Division of Gastroenterology, Hepatology and Nutrition, School of Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Vijay K Yechoor
- Diabetes and Beta Cell Biology Center, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, USA
| | - Mark T Miedel
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, USA
- University of Pittsburgh Liver Research Center, Pittsburgh, USA
- University of Pittsburgh Department of Pathology, Pittsburgh, USA
| | - Andrew M Stern
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, USA.
- University of Pittsburgh Department of Computational and Systems Biology, Pittsburgh, USA.
| | - Ipsita Banerjee
- University of Pittsburgh Department of Bioengineering, Pittsburgh, USA.
- University of Pittsburgh Department of Chemical and Petroleum Engineering, Pittsburgh, USA.
| | - D Lansing Taylor
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, USA.
- University of Pittsburgh Department of Bioengineering, Pittsburgh, USA.
- University of Pittsburgh Department of Computational and Systems Biology, Pittsburgh, USA.
- University of Pittsburgh Liver Research Center, Pittsburgh, USA.
| |
Collapse
|
38
|
Wang F, Huynh PM, An YA. Mitochondrial Function and Dysfunction in White Adipocytes and Therapeutic Implications. Compr Physiol 2024; 14:5581-5640. [PMID: 39382163 DOI: 10.1002/cphy.c230009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
For a long time, white adipocytes were thought to function as lipid storages due to the sizeable unilocular lipid droplet that occupies most of their space. However, recent discoveries have highlighted the critical role of white adipocytes in maintaining energy homeostasis and contributing to obesity and related metabolic diseases. These physiological and pathological functions depend heavily on the mitochondria that reside in white adipocytes. This article aims to provide an up-to-date overview of the recent research on the function and dysfunction of white adipocyte mitochondria. After briefly summarizing the fundamental aspects of mitochondrial biology, the article describes the protective role of functional mitochondria in white adipocyte and white adipose tissue health and various roles of dysfunctional mitochondria in unhealthy white adipocytes and obesity. Finally, the article emphasizes the importance of enhancing mitochondrial quantity and quality as a therapeutic avenue to correct mitochondrial dysfunction, promote white adipocyte browning, and ultimately improve obesity and its associated metabolic diseases. © 2024 American Physiological Society. Compr Physiol 14:5581-5640, 2024.
Collapse
Affiliation(s)
- Fenfen Wang
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| | - Phu M Huynh
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| | - Yu A An
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
- Department of Biochemistry and Molecular Biology, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
39
|
Wu X, Tian Y, Zhang N, Ren Y, Zhang Z, Zhao Y, Guo Y, Gong Y, Zhang Y, Li D, Li H, Jiang R, Li G, Liu X, Kang X, Tian Y. The role of AdipoQ on proliferation, apoptosis, and hormone Secretion in chicken primary adenohypophysis cells. Poult Sci 2024; 103:104137. [PMID: 39142032 PMCID: PMC11379664 DOI: 10.1016/j.psj.2024.104137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 08/16/2024] Open
Abstract
Adiponectin (AdipoQ), an adipokine secreted by adipocytes, has been reported to exist widely in various cell types and tissues, including the adenohypophysis of chickens. However, the molecular mechanism by which AdipoQ regulates the function of chicken adenohypophysis remains elusive. In this study, we investigated the effects of AdipoQ on proliferation, apoptosis, secretion of related hormones (FSH, LH, TSH, GH, PRL and ACTH) and expression of related genes (FSHβ, LHβ, GnRHR, TSHβ, GH, PRL and ACTH) in primary adenohypophysis cells of chickens by using real-time fluorescent quantitative PCR (RT-qPCR), cell counting kit-8 (CCK-8), flow cytometry, enzyme-linked immunosorbent assay (ELISA) and Western blot (WB) assays. Our results showed that AdipoQ promoted the proliferation of chicken primary adenohypophysis cells, up-regulated the mRNA expression of proliferation-related genes CDK1, PCNA, CCND1 and P21 (P < 0.05), as well as the increased protein expression of CDK1 and PCNA (P < 0.05). Furthermore, AdipoQ inhibited apoptosis of chicken primary adenohypophysis cells, resulting in down-regulation of pro-apoptotic genes Caspase3, Fas, and FasL mRNA expression, and decreased Caspase3 protein expression (P < 0.05). Moreover, there was an up-regulation of anti-apoptotic gene Bcl2 mRNA and protein expression (P < 0.05). Additionally, AdipoQ suppressed the secretion of FSH, LH, TSH, GH, PRL, and ACTH (P < 0.05), as well as the mRNA expression levels of related genes (P < 0.05). Treatment with AdipoRon (a synthetic substitute for AdipoQ) and co-treatment with RNA interference targeting AdipoQ receptors 1/2 (AdipoR1/2) had no effect on the secretion of FSH, LH, TSH, GH, PRL, and ACTH, as well as the mRNA expression levels of the related genes. This suggests that AdipoQ's regulation of hormone secretion and related gene expression is mediated by the AdipoR1/2 signaling axis. Importantly, we further demonstrated that the mechanism of AdipoQ on FSH, LH, TSH and GH secretion is realized through AMPK signaling pathway. In conclusion, we have revealed, for the first time the molecular mechanism by which AdipoQ regulates hormone secretion in chicken primary adenohypophysis cells.
Collapse
Affiliation(s)
- Xing Wu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yixiang Tian
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Na Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yangguang Ren
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Zihao Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yudian Zhao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yulong Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yujie Gong
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yanhua Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Donghua Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Hong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Guoxi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China.
| |
Collapse
|
40
|
Nemeth J, Skronska-Wasek W, Keppler S, Schundner A, Groß A, Schoenberger T, Quast K, El Kasmi KC, Ruppert C, Günther A, Frick M. Adiponectin suppresses stiffness-dependent, profibrotic activation of lung fibroblasts. Am J Physiol Lung Cell Mol Physiol 2024; 327:L487-L502. [PMID: 39104319 PMCID: PMC11482465 DOI: 10.1152/ajplung.00037.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/05/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, irreversible respiratory disease with limited therapeutic options. A hallmark of IPF is excessive fibroblast activation and extracellular matrix (ECM) deposition. The resulting increase in tissue stiffness amplifies fibroblast activation and drives disease progression. Dampening stiffness-dependent activation of fibroblasts could slow disease progression. We performed an unbiased, next-generation sequencing (NGS) screen to identify signaling pathways involved in stiffness-dependent lung fibroblast activation. Adipocytokine signaling was downregulated in primary lung fibroblasts (PFs) cultured on stiff matrices. Re-activating adipocytokine signaling with adiponectin suppressed stiffness-dependent activation of human PFs. Adiponectin signaling depended on CDH13 expression and p38 mitogen-activated protein kinase gamma (p38MAPKγ) activation. CDH13 expression and p38MAPKγ activation were strongly reduced in lungs from IPF donors. Our data suggest that adiponectin-signaling via CDH13 and p38MAPKγ activation suppresses profibrotic activation of fibroblasts in the lung. Targeting of the adiponectin signaling cascade may provide therapeutic benefits in IPF.NEW & NOTEWORTHY A hallmark of idiopathic pulmonary fibrosis (IPF) is excessive fibroblast activation and extracellular matrix (ECM) deposition. The resulting increase in tissue stiffness amplifies fibroblast activation and drives disease progression. Dampening stiffness-dependent activation of fibroblasts could slow disease progression. We found that activation of the adipocytokine signaling pathway halts and reverses stiffness-induced, profibrotic fibroblast activation. Specific targeting of this signaling cascade may therefore provide therapeutic benefits in IPF.
Collapse
Affiliation(s)
- Julia Nemeth
- Institute of General Physiology, Ulm University, Ulm, Germany
| | | | - Sophie Keppler
- Institute of General Physiology, Ulm University, Ulm, Germany
| | | | - Alexander Groß
- Institute of Medical Systems Biology, Ulm University, Ulm, Germany
| | | | - Karsten Quast
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | | | - Clemens Ruppert
- Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
| | - Andreas Günther
- Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
- Center for Interstitial and Rare Lung Diseases, Justus-Liebig University Giessen, Giessen, Germany
| | - Manfred Frick
- Institute of General Physiology, Ulm University, Ulm, Germany
| |
Collapse
|
41
|
Li Y, Liu T, Zhang M, Pan C, Liu X, Zhao H, Lan X. A Functional 67-bp Duplication Locating at the Core Promoter Region within the Bovine ADIPOQ Gene Is Associated with Ovarian Traits and mRNA Expression. Animals (Basel) 2024; 14:2362. [PMID: 39199896 PMCID: PMC11350689 DOI: 10.3390/ani14162362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
ADIPOQ plays a crucial role in regulating the reproductive system, but there are few reports on the effects of ADIPOQ on ovarian in dairy cows. Previous studies have verified the presence of a 67-bp mutation in the promoter region of the ADIPOQ gene. Hence, we employed ovarian tissues (n = 2111) and blood samples (n = 108) from Chinese Holstein cows as experimental samples to examine the association between ADIPOQ promoter variants and ovarian traits. We extracted DNA from these samples and conducted genetic typing identification on each sample using advanced techniques like PCR and agarose gel electrophoresis. Consequently, the DD, ID, and II genotypes were discovered. and it has been observed that the mutation frequency of this locus is low in the Chinese Holstein cow. Importantly, the correlational analysis unveiled a significant relationship (p < 0.05) between the weight of ovaries in late estrus and the width of ovaries during the estrus interval with the mutation. Result of the RT-PCR revealed that the ID genotype partially diminished the expression of the ADIPOQ gene. The results of this study suggest that the identified variable duplication could serve as a potential genetic marker for enhancing the ovarian traits of Chinese Holstein cows.
Collapse
Affiliation(s)
- Yufu Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (Y.L.); (T.L.); (M.Z.); (C.P.)
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China;
| | - Tingting Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (Y.L.); (T.L.); (M.Z.); (C.P.)
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221008, China
| | - Mengyang Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (Y.L.); (T.L.); (M.Z.); (C.P.)
| | - Chuanying Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (Y.L.); (T.L.); (M.Z.); (C.P.)
| | - Xu Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China;
| | - Haiyu Zhao
- College of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (Y.L.); (T.L.); (M.Z.); (C.P.)
| |
Collapse
|
42
|
Ceccarini G, Pelosini C, Paoli M, Tyutyusheva N, Magno S, Gilio D, Palladino L, Sessa MR, Bertelloni S, Santini F. Serum levels of adiponectin differentiate generalized lipodystrophies from anorexia nervosa. J Endocrinol Invest 2024; 47:1881-1886. [PMID: 38358463 DOI: 10.1007/s40618-024-02308-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/09/2024] [Indexed: 02/16/2024]
Abstract
PURPOSE The differential diagnosis of lipodystrophy involves other disorders characterized by severe fat loss and may be sometimes challenging. Owing to the rarity of lipodystrophy, it is relevant to search for tools and assays that differentiate it from other diseases that may mimic it. We conducted a study on leptin and high molecular weight (HMW) adiponectin serum concentrations in a series of patients diagnosed with lipodystrophy and compared them with those found in anorexia nervosa, one of the illnesses that may be cause of a missed diagnosis of lipodystrophy. METHODS Leptin and HMW adiponectin serum concentrations were measured in six patients diagnosed with generalized lipodystrophy (GL), six with progeroid syndromes (PS), 13 with familial partial lipodystrophy type 1 (FPLD1, Kobberling syndrome), 10 with familial partial lipodystrophy type 2 (FPLD2, Dunnigan syndrome), 18 with acquired partial lipodystrophy (APL) and 12 affected by anorexia nervosa (AN). Measurements were compared to those obtained in 12 normal weight healthy subjects. RESULTS Serum leptin concentrations were reduced to a similar degree in GL, PS and AN, proportionally to the extent of fat loss. Serum concentrations of HMW adiponectin were found extremely low in patients with GL and PS, while comparable to normal weight subjects in patients with AN. CONCLUSION Serum HMW adiponectin can be regarded as a useful tool to discriminate between generalized lipodystrophy syndromes (including PS) and AN.
Collapse
Affiliation(s)
- G Ceccarini
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, Pisa, Italy.
| | - C Pelosini
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, Pisa, Italy
- Chemistry and Endocrinology Laboratory, University Hospital of Pisa, Pisa, Italy
| | - M Paoli
- Chemistry and Endocrinology Laboratory, University Hospital of Pisa, Pisa, Italy
| | - N Tyutyusheva
- Pediatric Unit, University Hospital of Pisa, Pisa, Italy
| | - S Magno
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, Pisa, Italy
| | - D Gilio
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, Pisa, Italy
| | - L Palladino
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, Pisa, Italy
| | - M R Sessa
- Chemistry and Endocrinology Laboratory, University Hospital of Pisa, Pisa, Italy
| | - S Bertelloni
- Pediatric Unit, University Hospital of Pisa, Pisa, Italy
| | - F Santini
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, Pisa, Italy
| |
Collapse
|
43
|
Phuong LDT, Tran Huy T, Huynh Quang T. The Plasma Levels of Protein Adiponectin ( AdipoQ) and Meteorin-Like (Metrnl) in Newly Diagnosed Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes 2024; 17:2903-2909. [PMID: 39100966 PMCID: PMC11298186 DOI: 10.2147/dmso.s471954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024] Open
Abstract
Purpose This study aimed to measure the concentrations of the Adiponectin and Meteorin - Like (Metrnl) in newly diagnosed type 2 diabetes patients. Patients and Methods A comparative cross-sectional study contained two groups: Group 1 (86 newly diagnosed diabetes mellitus type 2 patients) and group 2 (71 healthy persons). The plasma concentrations of Adiponectin and Metrnl were measured by Enzyme Link Immunosorbent Assay (ELISA). Results The plasma level of Adiponectin of the newly diagnosed diabetes mellitus type 2 group and the healthy group were 1219.82 ng/mL (1132.43-2772.50) and 1187.25 ng/mL (1160.66-3807.50) respectively. The plasma level of Metrnl of two groups were 757.60 pg/mL (564.15-994.00) and 697.60 pg/mL (538.50-986.10) respectively. There were no significant difference between two groups. Metrnl had no correlation with glucose, HbA1c, lipid profile, BMI. Adiponectin had correlation with Metrnl and HDL-cholesterol. Adiponectin had no correlation to glucose, HbA1c, LDL-cholesterol, total cholesterol, triglyceride, BMI. People with the lower Adiponectin concentration had the higher risk of diabetes (OR=6.52; 95% CI: 2.43 -17.55). Conclusion Adiponectin and Metrnl were not significantly different in newly diagnosed type 2 diabetes and healthy people. The lower concentration of Adiponectin might increase the risk of type 2 diabetes.
Collapse
Affiliation(s)
- Lan Dam Thi Phuong
- Biochemistry Department, Hanoi Medical University, Hanoi, Vietnam
- Department of Biochemistry, 103 Military Hospital, Vietnam Military Medical University, Hanoi, Vietnam
| | - Thinh Tran Huy
- Biochemistry Department, Hanoi Medical University, Hanoi, Vietnam
| | - Thuan Huynh Quang
- Department of Biochemistry, 103 Military Hospital, Vietnam Military Medical University, Hanoi, Vietnam
| |
Collapse
|
44
|
Lino M, Garcia-Martin R, Muñoz VR, Ruiz GP, Nawaz A, Brandão BB, Dreyfus J, Pan H, Kahn CR. Multi-step regulation of microRNA expression and secretion into small extracellular vesicles by insulin. Cell Rep 2024; 43:114491. [PMID: 39002127 PMCID: PMC11363058 DOI: 10.1016/j.celrep.2024.114491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/05/2024] [Accepted: 06/26/2024] [Indexed: 07/15/2024] Open
Abstract
Tissues release microRNAs (miRNAs) in small extracellular vesicles (sEVs) including exosomes, which can regulate gene expression in distal cells, thus acting as modulators of local and systemic metabolism. Here, we show that insulin regulates miRNA secretion into sEVs from 3T3-L1 adipocytes and that this process is differentially regulated from cellular expression. Thus, of the 53 miRNAs upregulated and 66 miRNAs downregulated by insulin in 3T3-L1 sEVs, only 12 were regulated in parallel in cells. Insulin regulated this process in part by phosphorylating hnRNPA1, causing it to bind to AU-rich motifs in miRNAs, mediating their secretion into sEVs. Importantly, 43% of insulin-regulated sEV-miRNAs are implicated in obesity and insulin resistance. These include let-7 and miR-103, which we show regulate insulin signaling in AML12 hepatocytes. Together, these findings demonstrate an important layer to insulin's regulation of adipose biology and provide a mechanism of tissue crosstalk in obesity and other hyperinsulinemic states.
Collapse
Affiliation(s)
- Marsel Lino
- Joslin Diabetes Center, Harvard Medical School, Harvard University, Boston, MA, USA; Harvard Medical School, Harvard University, Boston, MA, USA
| | - Ruben Garcia-Martin
- Joslin Diabetes Center, Harvard Medical School, Harvard University, Boston, MA, USA; Harvard Medical School, Harvard University, Boston, MA, USA
| | - Vitor Rosetto Muñoz
- Joslin Diabetes Center, Harvard Medical School, Harvard University, Boston, MA, USA; Harvard Medical School, Harvard University, Boston, MA, USA
| | - Gabriel Palermo Ruiz
- Joslin Diabetes Center, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Allah Nawaz
- Joslin Diabetes Center, Harvard Medical School, Harvard University, Boston, MA, USA; Harvard Medical School, Harvard University, Boston, MA, USA
| | - Bruna Brasil Brandão
- Joslin Diabetes Center, Harvard Medical School, Harvard University, Boston, MA, USA; Harvard Medical School, Harvard University, Boston, MA, USA
| | - Jonathan Dreyfus
- Joslin Diabetes Center, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Hui Pan
- Joslin Diabetes Center, Harvard Medical School, Harvard University, Boston, MA, USA
| | - C Ronald Kahn
- Joslin Diabetes Center, Harvard Medical School, Harvard University, Boston, MA, USA; Harvard Medical School, Harvard University, Boston, MA, USA.
| |
Collapse
|
45
|
You H, Chang F, Chen H, Wang Y, Han W. Exploring the role of CBLB in acute myocardial infarction: transcriptomic, microbiomic, and metabolomic analyses. J Transl Med 2024; 22:654. [PMID: 39004726 PMCID: PMC11247792 DOI: 10.1186/s12967-024-05425-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND Specific alterations in gut microbiota and metabolites have been linked to AMI, with CBLB potentially playing an essential role. However, the precise interactions remain understudied, creating a significant gap in our understanding. This study aims to address this by exploring these interactions in CBLB-intervened AMI mice using transcriptome sequencing, 16 S rDNA, and non-targeted metabolite analysis. METHODS To probe the therapeutic potential and mechanistic underpinnings of CBLB overexpression in AMI, we utilized an integrative multi-omics strategy encompassing transcriptomics, metabolomics, and 16s rDNA sequencing. We selected these particular methods as they facilitate a holistic comprehension of the intricate interplay between the host and its microbiota, and the potential effects on the host's metabolic and gene expression profiles. The uniqueness of our investigation stems from utilizing a multi-omics approach to illuminate the role of CBLB in AMI, an approach yet unreported to the best of our knowledge. Our experimental protocol encompassed transfection of CBLB lentivirus-packaged vectors into 293T cells, followed by subsequent intervention in AMI mice. Subsequently, we conducted pathological staining, fecal 16s rDNA sequencing, and serum non-targeted metabolome sequencing. We applied differential expression analysis to discern differentially expressed genes (DEGs), differential metabolites, and differential microbiota. We performed protein-protein interaction analysis to identify core genes, and conducted correlation studies to clarify the relationships amongst these core genes, paramount metabolites, and key microbiota. RESULTS Following the intervention of CBLB in AMI, we observed a significant decrease in inflammatory cell infiltration and collagen fiber formation in the infarcted region of mice hearts. We identified key changes in microbiota, metabolites, and DEGs that were associated with this intervention. The findings revealed that CBLB has a significant correlation with DEGs, differential metabolites and microbiota, respectively. This suggests it could play a pivotal role in the regulation of AMI. CONCLUSION This study confirmed the potential of differentially expressed genes, metabolites, and microbiota in AMI regulation post-CBLB intervention. Our findings lay groundwork for future exploration of CBLB's role in AMI, suggesting potential therapeutic applications and novel research directions in AMI treatment strategies.
Collapse
Affiliation(s)
- Hongjun You
- Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, No.256 Youyi West Road, Beilin District, Xi'an City, 710068, Shaanxi Province, China
| | - Fengjun Chang
- Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, No.256 Youyi West Road, Beilin District, Xi'an City, 710068, Shaanxi Province, China
| | - Haichao Chen
- Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, No.256 Youyi West Road, Beilin District, Xi'an City, 710068, Shaanxi Province, China
| | - Yi Wang
- Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, No.256 Youyi West Road, Beilin District, Xi'an City, 710068, Shaanxi Province, China
| | - Wenqi Han
- Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, No.256 Youyi West Road, Beilin District, Xi'an City, 710068, Shaanxi Province, China.
| |
Collapse
|
46
|
Muntean M, Săsăran V, Luca ST, Suciu LM, Nyulas V, Mărginean C. Serum Levels of Adipolin and Adiponectin and Their Correlation with Perinatal Outcomes in Gestational Diabetes Mellitus. J Clin Med 2024; 13:4082. [PMID: 39064123 PMCID: PMC11278400 DOI: 10.3390/jcm13144082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Objectives: This study aimed to investigate the serum level of adipolin and adiponectin in healthy pregnant women and pregnant women with gestational diabetes mellitus (GDM) during the second trimester, the prepartum period, and in the newborns of these patients. Methods: A total of 55 women diagnosed with GDM and 110 healthy pregnant women were included in this study. Pearson's and Spearman's correlation coefficients were calculated to determine the association of adipolin and adiponectin with anthropometric markers of obesity (body mass index (BMI), mid-upper arm circumference (MUAC), tricipital skinfold thickness (TST)), inflammation markers (neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), C-reactive protein (CRP)), and maternal glucose homeostasis parameters (fasting glucose, insulin, C peptide, glycosylated hemoglobin A1c (HbA1c), Insulin Resistance-Homeostatic Model Assessment (IR HOMA)). Results: There were no statistical differences between the adipolin value in patients with GDM compared to healthy patients (p = 0.65 at diagnosis and p = 0.50 prepartum) and in newborns from mothers with GDM compared to healthy mothers (p = 0.24). Adipolin levels are significantly higher in patients with GDM who gave birth via cesarean section (p = 0.01). In patients with GDM, the adipolin level correlates positively with HgA1c in the prepartum period. We found a positive correlation between the maternal adipolin values at diagnosis and prepartum and neonatal adipolin (respectively: r = 0.556, p = 0.001; r = 0.332, p = 0.013). Adiponectin levels were significantly lower in patients with GDM at diagnosis and prepartum (p = 0.0009 and p = 0.02), but their levels increased prepartum (5267 ± 2114 ng/mL vs. 6312 ± 3150 ng/mL p = 0.0006). Newborns of mothers with GDM had lower adiponectin levels than newborns of healthy mothers (p < 0.0001). The maternal adiponectin value correlates negatively with maternal BMI, MUAC, and IR HOMA in both groups at diagnosis and prepartum. There were no differences between the groups in terms of cesarean rate (p > 0.99). The relative risk of occurrence of adverse events in patients with GDM compared to healthy ones was 2.15 (95% CI 1.416 to 3.182), and the odds ratio for macrosomia was 4.66 (95% CI 1.591 to 12.69). Conclusions: There was no difference in adipolin levels between mothers with GDM and healthy mothers during the second trimester and the prepartum period. Adipolin is known to enhance insulin sensitivity and reduce inflammation, but unlike adiponectin, it does not appear to contribute to the development of GDM.
Collapse
Affiliation(s)
- Mihai Muntean
- Departament of Obstetrics and Gynecology 2, University of Medicine Pharmacy Science and Technology George Emil Palade of Târgu Mureș, 540142 Târgu Mureș, Romania; (M.M.); (S.-T.L.); (C.M.)
| | - Vladut Săsăran
- Departament of Obstetrics and Gynecology 2, University of Medicine Pharmacy Science and Technology George Emil Palade of Târgu Mureș, 540142 Târgu Mureș, Romania; (M.M.); (S.-T.L.); (C.M.)
| | - Sonia-Teodora Luca
- Departament of Obstetrics and Gynecology 2, University of Medicine Pharmacy Science and Technology George Emil Palade of Târgu Mureș, 540142 Târgu Mureș, Romania; (M.M.); (S.-T.L.); (C.M.)
| | - Laura Mihaela Suciu
- Departament of Neonatology, University of Medicine Pharmacy Science and Technology George Emil Palade of Târgu Mureș, 540142 Târgu Mureș, Romania;
| | - Victoria Nyulas
- Departament of Informatics and Medical Biostatistics, University of Medicine Pharmacy Science and Technology George Emil Palade of Târgu Mureș, 540142 Târgu Mureș, Romania;
| | - Claudiu Mărginean
- Departament of Obstetrics and Gynecology 2, University of Medicine Pharmacy Science and Technology George Emil Palade of Târgu Mureș, 540142 Târgu Mureș, Romania; (M.M.); (S.-T.L.); (C.M.)
| |
Collapse
|
47
|
Zheng J, Zhang W, Xu R, Liu L. The role of adiponectin and its receptor signaling in ocular inflammation-associated diseases. Biochem Biophys Res Commun 2024; 717:150041. [PMID: 38710142 DOI: 10.1016/j.bbrc.2024.150041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/13/2024] [Accepted: 04/29/2024] [Indexed: 05/08/2024]
Abstract
Ocular inflammation-associated diseases are leading causes of global visual impairment, with limited treatment options. Adiponectin, a hormone primarily secreted by adipose tissue, binds to its receptors, which are widely distributed throughout the body, exerting powerful physiological regulatory effects. The protective role of adiponectin in various inflammatory diseases has gained increasing attention in recent years. Previous studies have confirmed the presence of adiponectin and its receptors in the eyes. Furthermore, adiponectin and its analogs have shown potential as novel drugs for the treatment of inflammatory eye diseases. This article summarizes the evidence for the interplay between adiponectin and inflammatory eye diseases and provides new perspectives on the diagnostic and therapeutic possibilities of adiponectin.
Collapse
Affiliation(s)
- Jing Zheng
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China; Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, China
| | - Wenqiu Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China; Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, China
| | - Ran Xu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China; Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, China
| | - Longqian Liu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China; Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
48
|
Li Y, Onodera T, Scherer PE. Adiponectin. Trends Endocrinol Metab 2024; 35:674-675. [PMID: 38981443 PMCID: PMC11374108 DOI: 10.1016/j.tem.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 07/11/2024]
Affiliation(s)
- Yan Li
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Toshiharu Onodera
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Adipose Management, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Philipp E Scherer
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
49
|
Gandhi S, Sweeney G, Perry CGR. Recent Advances in Pre-Clinical Development of Adiponectin Receptor Agonist Therapies for Duchenne Muscular Dystrophy. Biomedicines 2024; 12:1407. [PMID: 39061981 PMCID: PMC11274162 DOI: 10.3390/biomedicines12071407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/03/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by genetic mutations in the cytoskeletal-sarcolemmal anchor protein dystrophin. Repeated cycles of sarcolemmal tearing and repair lead to a variety of secondary cellular and physiological stressors that are thought to contribute to weakness, atrophy, and fibrosis. Collectively, these stressors can contribute to a pro-inflammatory milieu in locomotor, cardiac, and respiratory muscles. Given the many unwanted side effects that accompany current anti-inflammatory steroid-based approaches for treating DMD (e.g., glucocorticoids), there is a need to develop new therapies that address inflammation and other cellular dysfunctions. Adiponectin receptor (AdipoR) agonists, which stimulate AdipoR1 and R2 isoforms on various cell types, have emerged as therapeutic candidates for DMD due to their anti-inflammatory, anti-fibrotic, and pro-myogenic properties in pre-clinical human and rodent DMD models. Although these molecules represent a new direction for therapeutic intervention, the mechanisms through which they elicit their beneficial effects are not yet fully understood, and DMD-specific data is limited. The overarching goal of this review is to investigate how adiponectin signaling may ameliorate pathology associated with dystrophin deficiency through inflammatory-dependent and -independent mechanisms and to determine if current data supports their future progression to clinical trials.
Collapse
Affiliation(s)
- Shivam Gandhi
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON M3J 1P3, Canada;
| | - Gary Sweeney
- Department of Biology and Muscle Health Research Centre, York University, Toronto, ON M3J 1P3, Canada;
| | - Christopher G. R. Perry
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON M3J 1P3, Canada;
| |
Collapse
|
50
|
Stark R. The olfactory bulb: A neuroendocrine spotlight on feeding and metabolism. J Neuroendocrinol 2024; 36:e13382. [PMID: 38468186 DOI: 10.1111/jne.13382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/13/2024]
Abstract
Olfaction is the most ancient sense and is needed for food-seeking, danger protection, mating and survival. It is often the first sensory modality to perceive changes in the external environment, before sight, taste or sound. Odour molecules activate olfactory sensory neurons that reside on the olfactory epithelium in the nasal cavity, which transmits this odour-specific information to the olfactory bulb (OB), where it is relayed to higher brain regions involved in olfactory perception and behaviour. Besides odour processing, recent studies suggest that the OB extends its function into the regulation of food intake and energy balance. Furthermore, numerous hormone receptors associated with appetite and metabolism are expressed within the OB, suggesting a neuroendocrine role outside the hypothalamus. Olfactory cues are important to promote food preparatory behaviours and consumption, such as enhancing appetite and salivation. In addition, altered metabolism or energy state (fasting, satiety and overnutrition) can change olfactory processing and perception. Similarly, various animal models and human pathologies indicate a strong link between olfactory impairment and metabolic dysfunction. Therefore, understanding the nature of this reciprocal relationship is critical to understand how olfactory or metabolic disorders arise. This present review elaborates on the connection between olfaction, feeding behaviour and metabolism and will shed light on the neuroendocrine role of the OB as an interface between the external and internal environments. Elucidating the specific mechanisms by which olfactory signals are integrated and translated into metabolic responses holds promise for the development of targeted therapeutic strategies and interventions aimed at modulating appetite and promoting metabolic health.
Collapse
Affiliation(s)
- Romana Stark
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|