1
|
Choi Y, Youn YH, Kang SJ, Shin JE, Cho YS, Jung YS, Shin SY, Huh CW, Lee YJ, Koo HS, Nam K, Lee HS, Kim DH, Park YH, Kim MC, Song HY, Yoon SH, Lee SY, Choi M, Park MI, Sung IK. 2025 Seoul Consensus on Clinical Practice Guidelines for Irritable Bowel Syndrome. J Neurogastroenterol Motil 2025; 31:133-169. [PMID: 40205893 PMCID: PMC11986658 DOI: 10.5056/jnm25007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/16/2025] [Indexed: 04/11/2025] Open
Abstract
Irritable bowel syndrome (IBS) is a chronic, disabling, and functional bowel disorder that significantly affects social functioning and reduces quality of life and increases social costs. The Korean Society of Neurogastroenterology and Motility published clinical practice guidelines on the management of IBS based on a systematic review of the literature in 2017, and planned to revise these guidelines in light of new evidence on the pathophysiology, diagnosis, and management of IBS. The current revised version of the guidelines is consistent with the previous version and targets adults diagnosed with or suspected of having IBS. These guidelines were developed using a combination of de novo and adaptation methods, with analyses of existing guidelines and discussions within the committee, leading to the identification of key clinical questions. Finally, the guidelines consisted of 22 recommendations, including 3 concerning the definition and risk factors of IBS, 4 regarding diagnostic modalities and strategies, 2 regarding general management, and 13 regarding medical treatment. For each statement, the advantages, disadvantages, and precautions were thoroughly detailed. The modified Delphi method was used to achieve expert consensus to adopt the core recommendations of the guidelines. These guidelines serve as a reference for clinicians (including primary care physicians, general healthcare providers, medical students, residents, and other healthcare professionals) and patients, helping them to make informed decisions regarding IBS management.
Collapse
Affiliation(s)
- Yonghoon Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonngi-do, Korea
| | - Young Hoon Youn
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Seung Joo Kang
- Department of Internal Medicine, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Korea
| | - Jeong Eun Shin
- Department of Internal Medicine, Dankook University College of Medicine, Cheonan, Chungcheongnam-do, Korea
| | - Young Sin Cho
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Chungcheongnam-do, Korea
| | - Yoon Suk Jung
- Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seung Yong Shin
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Cheal Wung Huh
- Department of Internal Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Yoo Jin Lee
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea
| | - Hoon Sup Koo
- Department of Internal Medicine, Konyang University Hospital, Daejeon, Korea
| | - Kwangwoo Nam
- Department of Internal Medicine, Dankook University College of Medicine, Cheonan, Chungcheongnam-do, Korea
| | - Hong Sub Lee
- Department of Internal Medicine, Inje University Busan Paik Hospital, Busan, Korea
| | - Dong Hyun Kim
- Department of Internal Medicine, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea
| | - Ye Hyun Park
- Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul, Korea
| | - Min Cheol Kim
- Department of Internal Medicine, Yeungnam University Hospital, Daegu, Korea
| | - Hyo Yeop Song
- Department of Internal Medicine and Digestive Disease Research Institute, Wonkwang University School of Medicine, Iksan, Jeonbuk State, Korea
| | - Sung-Hoon Yoon
- Department of Psychiatry, Wonkwang University Hospital, Iksan, Jeonbuk State, Korea
| | - Sang Yeol Lee
- Department of Psychiatry, Wonkwang University Hospital, Iksan, Jeonbuk State, Korea
| | - Miyoung Choi
- Division of Healthcare Technology Assessment Research, National Evidence-Based Healthcare Collaborating Agency, Seoul, Korea
| | - Moo-In Park
- Department of Internal Medicine, Kosin University College of Medicine, Busan, Korea
| | - In-Kyung Sung
- Department of Internal Medicine, Konkuk University School of Medicine, Seoul, Korea
| | | |
Collapse
|
2
|
Zhao JX, Elsheikha HM, Shang KM, Su JW, Wei YJ, Qin Y, Zhao ZY, Ma H, Zhang XX. Investigation of the genetic diversity of gut mycobiota of the wild and laboratory mice. Microbiol Spectr 2025:e0284024. [PMID: 40162766 DOI: 10.1128/spectrum.02840-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 03/05/2025] [Indexed: 04/02/2025] Open
Abstract
Mice are colonized by diverse gut fungi, known as the mycobiota, which have received much less attention than bacterial microbiota. Here, we studied the diversities and structures of cecal fungal communities in wild (Lasiopodomys brandtii, Apodemus agrarius, and Microtus fortis) vs laboratory C57BL/6J mice to disentangle the contributions of gut fungi to the adaptation of mice to genetic diversity. Using ITS1 gene sequencing, we obtained 2,912 amplicon sequence variants (ASVs) and characterized the composition and diversity of cecal mycobiota in mice. There were significant differences in the composition of cecal fungal communities between wild and C57BL/6J mice, with more species diversity and richness of fungi in wild mice than C57BL/6J mice. We cultured 428 fungal strains from the cecal mycobiota, sequenced the whole genome of 48 selected strains, and identified 500,849 genes. Functional annotation analysis revealed multiple pathways related to energy metabolism, carbohydrate metabolism, fatty acid metabolism, and enzymes involved in the degradation of polysaccharides, lipids, and proteins, and secondary metabolite biosynthesis. The functions and abundance of Hypocreales and Pleosporales, which included the majority of the crucial metabolic pathways, were significantly higher in wild mice than in C57BL/6J mice. The results suggest that variations in the fungal community composition may relate to the adaptability of mice to their environmental habitats. IMPORTANCE In this study, we analyzed the fungal microbiota of three wild mouse species alongside laboratory mice using ITS1 amplicon sequencing. By integrating whole-genome sequencing with culturomics, we sequenced the genomes of 48 fungi isolated from cultured strains and investigated their biological functions to understand the role of intestinal fungi in the environmental adaptability of wild mice. This investigation has expanded the functional gene repository of gut fungi and shed new light on the intricate interplay between mice and their gut fungal communities. The data offer valuable insight into the ecological adaptation in wild mice, emphasizing the complex and dynamic relationship between the murine hosts and their mycobiota.
Collapse
Affiliation(s)
- Ji-Xin Zhao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom
| | - Kai-Meng Shang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Jin-Wen Su
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Yong-Jie Wei
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Ya Qin
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin, China
| | - Zi-Yu Zhao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin, China
| | - He Ma
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Xiao-Xuan Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| |
Collapse
|
3
|
Nieto ÁVA, Diaz AH, Hernández M. Are there Effective Vegan-Friendly Supplements for Optimizing Health and Sports Performance? a Narrative Review. Curr Nutr Rep 2025; 14:44. [PMID: 40072649 DOI: 10.1007/s13668-025-00633-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2025] [Indexed: 03/14/2025]
Abstract
PURPOSE OF REVIEW Veganism, characterized by the exclusion of all animal-derived products, has grown in popularity due to ethical, environmental, and health considerations. However, vegan athletes often face unique nutritional challenges related to dietary deficiencies of critical nutrients such as proteins, vitamin B12, iron, calcium, and omega-3 fatty acids, among others. This narrative review aims to explore the efficacy and benefits of vegan-friendly supplements specifically tailored to athletic performance, focusing on essential micronutrients, ergogenic aids, and nutrient bioavailability. RECENT FINDINGS Nineteen key supplements are discussed, including protein powders, creatine, beta-alanine, caffeine, vitamin B12, vitamin D, omega-3 fatty acids, zinc, calcium, iron, iodine, vitamin K2, selenium, probiotics, nitrates, electrolytes (including sodium and potassium), taurine, vitamin A, and magnesium. Evidence suggests that the integration of these supplements into personalized nutrition plans can bridge dietary gaps while addressing specific performance needs, potentially leveling the competitive field for vegan athletes. Recent studies also highlight research gaps in sex-specific needs, synergistic effects, and strategies to enhance the bioavailability of nutrients from whole foods. Vegan diets, while conferring various benefits, require careful consideration of nutrient intake for athletes seeking optimal performance. Personalized biochemical assessments should be considered when possible for tailoring specific nutritional guidelines for each case. This narrative review provides practical guidelines for clinicians, nutritionists, trainers, sports scientists, and athletes to design personalized supplementation strategies that address common nutritional shortfalls, enhance performance, and serve as a foundation for future research in vegan sports nutrition.
Collapse
Affiliation(s)
- Álvaro Vergara A Nieto
- Departamento de Investigación y Desarrollo, Good Research and Science (GRS), Avenida Ramón Picarte 780, 5090000, Valdivia, Chile
- Facultad de Ciencias de La Salud, Escuela de Nutrición y Dietética, Universidad del Desarrollo, Ainavillo 456, 4070001, Concepción, Chile
| | - Andrés Halabi Diaz
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Avenida Republica 275, 8370146, Santiago, Chile.
- Departamento de Investigación y Desarrollo, Good Research and Science (GRS), Avenida Ramón Picarte 780, 5090000, Valdivia, Chile.
- Departamento de I+D+I, CatchPredict SpA, Avenida Ramón Picarte 780, 5090000, Valdivia, Chile.
| | - Millaray Hernández
- Departamento de Investigación y Desarrollo, Good Research and Science (GRS), Avenida Ramón Picarte 780, 5090000, Valdivia, Chile
| |
Collapse
|
4
|
Tang X, Zeng T, Deng W, Zhao W, Liu Y, Huang Q, Deng Y, Xie W, Huang W. Gut microbe-derived betulinic acid alleviates sepsis-induced acute liver injury by inhibiting macrophage NLRP3 inflammasome in mice. mBio 2025; 16:e0302024. [PMID: 39887250 PMCID: PMC11898617 DOI: 10.1128/mbio.03020-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/06/2025] [Indexed: 02/01/2025] Open
Abstract
Sepsis-induced acute liver injury (SALI) is a prevalent and life-threatening complication associated with sepsis. The gut microbiota plays a crucial role in the maintenance of health and the development of diseases. The impact of physical exercise on gut microbiota modulation has been well-documented. However, the potential impact of gut microbiome on exercise training-induced protection against SALI remains uncertain. Here, we discovered exercise training ameliorated SALI and systemic inflammation in septic mice. Notably, gut microbiota pre-depletion abolished the protective effects of exercise training in SALI mice. Fecal microbiota transplantation treatment revealed that exercise training-associated gut microbiota contributed to the beneficial effect of exercise training on SALI. Exercise training modulated the metabolism of Ligilactobacillus and enriched betulinic acid (BA) levels in mice. Functionally, BA treatment conferred protection against SALI by inhibiting the hepatic inflammatory response in mice. BA bound and inactivated hnRNPA2B1, thus suppressing NLRP3 inflammasome activation in macrophages. Collectively, this study reveals gut microbiota is involved in the protective effects of exercise training against SALI, and gut microbiota-derived BA inhibits the hepatic inflammatory response via the hnRNPA2B1-NLRP3 axis, providing a potential therapeutic strategy for SALI. IMPORTANCE Sepsis is characterized by a dysregulated immune response to an infection that leads to multiple organ dysfunction. The occurrence of acute liver injury is frequently observed during the initial stage of sepsis and is directly linked to mortality in the intensive care unit. The preventive effect of physical exercise on SALI is well recognized, yet the underlying mechanism remains poorly elucidated. Exercise training alters the gut microbiome in mice, increasing the abundance of Ligilactobacillus and promoting the generation of BA. Additionally, BA supplementation can suppress the NLRP3 inflammasome activation in macrophages by directly binding to hnRNPA2B1, thereby mitigating SALI. These results highlight the beneficial role of gut microbiota-derived BA in inhibiting the hepatic inflammatory response, which represents a crucial stride toward implementing microbiome-based therapeutic strategies for the clinical management of sepsis.
Collapse
Affiliation(s)
- Xuheng Tang
- Department of Critical Care Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Tairan Zeng
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Wenyan Deng
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Wanning Zhao
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yanan Liu
- Department of Critical Care Medicine, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Qiaobing Huang
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yiyu Deng
- Department of Critical Care Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Weidang Xie
- Department of Critical Care Medicine, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Wei Huang
- Department of Critical Care Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Severo JS, da Silva ACA, dos Santos BLB, Reinaldo TS, de Oliveira AM, Lima RSP, Torres-Leal FL, dos Santos AA, da Silva MTB. Physical Exercise as a Therapeutic Approach in Gastrointestinal Diseases. J Clin Med 2025; 14:1708. [PMID: 40095789 PMCID: PMC11899784 DOI: 10.3390/jcm14051708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/19/2025] Open
Abstract
Background/Objectives: Physical exercise can have significant consequences for the gastrointestinal tract, which is why there have been studies into its influence on the treatment of conditions such as colorectal cancer, inflammatory bowel diseases (IBD), and irritable bowel syndrome (IBS), being that there is epidemiological evidence that exercise has a protective effect against colon cancer. This review aims to demonstrate the mechanisms of action of physical exercise in the gastrointestinal tract, as well as the benefits of exercise in diseases associated with the digestive system, in addition to gathering training recommendations in treating different gastrointestinal diseases. Results: Physical exercise modulates gastrointestinal motility, permeability, immune responses, and microbiota composition, with both beneficial and adverse effects depending on intensity and duration. Regular moderate exercise is associated with improved quality of life in IBD and IBS, reduced colorectal cancer risk, and potential symptom relief in constipation. However, high-intensity exercise may exacerbate gastroesophageal reflux symptoms and increase the risk of gastrointestinal bleeding. While aerobic exercise has been extensively studied, the effects of resistance training on gastrointestinal health remain underexplored. Conclusions: New methodologies and techniques, such as molecular biology and the study of gastric receptors, have led to advances in understanding the gastrointestinal changes associated with physical exercise. These advances cover different exercise intensities and are being investigated in both experimental models and clinical studies.
Collapse
Affiliation(s)
- Juliana Soares Severo
- Graduate Program in Food Sciences and Nutrition, Metabolic Diseases, Exercise and Nutrition Research Group (DOMEN), Laboratory of Metabolic Diseases Glauto Tuquarre, Department of Biophysics and Physiology, Center for Health Sciences, Federal University of Piaui, Teresina 64049-550, PI, Brazil; (J.S.S.); (A.M.d.O.); (R.S.P.L.); (F.L.T.-L.)
| | | | | | - Thiago Sousa Reinaldo
- Multicenter Postgraduate Program in Physiological Sciences in Association with the Brazilian Society of Physiology, Federal University of Piauí, Teresina 64049-550, PI, Brazil;
| | - Aureliano Machado de Oliveira
- Graduate Program in Food Sciences and Nutrition, Metabolic Diseases, Exercise and Nutrition Research Group (DOMEN), Laboratory of Metabolic Diseases Glauto Tuquarre, Department of Biophysics and Physiology, Center for Health Sciences, Federal University of Piaui, Teresina 64049-550, PI, Brazil; (J.S.S.); (A.M.d.O.); (R.S.P.L.); (F.L.T.-L.)
| | - Rodrigo Soares Pereira Lima
- Graduate Program in Food Sciences and Nutrition, Metabolic Diseases, Exercise and Nutrition Research Group (DOMEN), Laboratory of Metabolic Diseases Glauto Tuquarre, Department of Biophysics and Physiology, Center for Health Sciences, Federal University of Piaui, Teresina 64049-550, PI, Brazil; (J.S.S.); (A.M.d.O.); (R.S.P.L.); (F.L.T.-L.)
| | - Francisco Leonardo Torres-Leal
- Graduate Program in Food Sciences and Nutrition, Metabolic Diseases, Exercise and Nutrition Research Group (DOMEN), Laboratory of Metabolic Diseases Glauto Tuquarre, Department of Biophysics and Physiology, Center for Health Sciences, Federal University of Piaui, Teresina 64049-550, PI, Brazil; (J.S.S.); (A.M.d.O.); (R.S.P.L.); (F.L.T.-L.)
| | - Armênio Aguiar dos Santos
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza 60430-270, CE, Brazil;
| | - Moisés Tolentino Bento da Silva
- Graduate Program in Pharmacology, Federal University of Piauí, Teresina 64049-550, PI, Brazil;
- Laboratory of Physiology, (MedInUP/RISE-Health)—Department of Immunophysiology and Pharmacology, School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
6
|
Wei YJ, Shang KM, Elsheikha HM, Yan JC, Zhao JX, Ma H, Geng HL, Meng JX, Li WD, Liu R, Zhang XX, Ni HB. Characteristics of fecal mycobiota and bacteriota in laying hens during different laying periods. Microb Pathog 2025; 200:107304. [PMID: 39814111 DOI: 10.1016/j.micpath.2025.107304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/27/2024] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
Mycobiota represents an important component of the gut microbiome in poultry and plays important roles in host nutrition and metabolism. However, the understanding of gut mycobiota in laying hens during the production cycle is limited. The present study aimed to characterize the structure and diversity of fecal mycobiota and bacteriota and examine the interplays between both microbial communities in laying hens during different laying periods. Sequencing of the internal transcribed spacer 1 (ITS1) and 16S rRNA gene amplicon was performed on 50 fecal samples of laying hens at 5 different time points during the laying cycle. The analysis yielded 1314 and 3840 amplicon sequence variants (ASVs), respectively. The results showed that Ascomycota and Basidiomycota were the most predominant. The statistical analysis of fecal flora composition succession in laying hens showed that different laying periods were one of the main factors affecting the fecal flora of laying hens. Mycobiota displayed greater variability across different laying periods compared to the bacterial community, in terms of taxonomic structure and community diversity. Co-occurrence analysis revealed varying degrees of interaction between the mycobiota and bacteriota during different laying periods. The present study aimed to improve the understanding of the fecal mycobiota and bacterial community of laying hens across different laying periods and has provided basic data support for further research into the complex fecal microbiota of laying hens.
Collapse
Affiliation(s)
- Yong-Jie Wei
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, PR China
| | - Kai-Meng Shang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, PR China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Jin-Chu Yan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, PR China
| | - Ji-Xin Zhao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, PR China
| | - He Ma
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, PR China
| | - Hong-Li Geng
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, PR China
| | - Jin-Xin Meng
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, PR China
| | - Wen-Di Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, PR China
| | - Rui Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, PR China
| | - Xiao-Xuan Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, PR China
| | - Hong-Bo Ni
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, PR China.
| |
Collapse
|
7
|
Swarup S, Gupta A, Chung M, Radhakrishnan V, Davis V, Lynch MDJ, Charles TC, Cheng J, Mendoza G. Rapid shift of gut microbiome and enrichment of beneficial microbes during arhatic yoga meditation retreat in a single-arm pilot study. BMC Complement Med Ther 2025; 25:51. [PMID: 39939954 PMCID: PMC11823196 DOI: 10.1186/s12906-025-04783-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 01/24/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND The human microbiome plays a vital role in human health, mediated by the gut-brain axis, with a large diversity of functions and physiological benefits. The dynamics and mechanisms of meditations on oral and gut microbiome modulations are not well understood. This study investigates the short-term modulations of the gut and oral microbiome during an Arhatic Yoga meditation retreat as well as on the role of microbiome in improving well-being through a possible gut-brain axis. METHODS A single-arm pilot clinical trial was conducted in a controlled environment during a 9-day intensive retreat of Arhatic Yoga meditation practices with vegetarian diet. Oral and fecal samples of 24 practitioners were collected at the start (Day0: T1), middle (Day3: T2), and end (Day9:T3) of the retreat. Targeted 16S rRNA gene amplicon sequencing was performed for both oral and gut samples. Functional pathway predictions was identified using phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt2). DESeq2 was used to identify the differential abundant taxa. Various statistical analyses were performed to assess the significant changes in the data. RESULTS Our findings revealed that Arhatic Yoga meditation together with a vegetarian diet led to changes in the oral and gut microbiome profiles within the 9-day retreat. Oral microbiome profile showed a significant (p < 0.05) difference in the species richness and evenness at the end of study, while non-metric multidimensional scaling (NMDS) confirmed the shift in the gut microbiome profile of the practitioners by T2 timepoint, which was further supported by PERMANOVA analysis (p < 0.05). Health-benefiting microbes known to improve the gastrointestinal and gut-barrier functions, immune modulation, and gut-brain axis were enriched. Gut microbiome of both beginner and advanced Arhatic Yoga practitioners showed similar trends of convergence by the end of study. This implies a strong selection pressure by Arhatic Yoga meditation together with a vegetarian diet on the beneficial gut microbiome. CONCLUSION This pilot study demonstrates that Arhatic Yoga meditation practices combined with a vegetarian diet during a short intensive retreat resulted in enrichment of known health-promoting microbes. Such microbial consortia may be developed for potential health benefits and used as probiotics to improve the gastrointestinal and immune systems, as well as functions mediated by the gut-brain axis. TRIAL REGISTRATION Study was submitted in https://clinicaltrials.gov/on28-02-2024 . Retrospective registered.
Collapse
Affiliation(s)
- Sanjay Swarup
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore.
- NUS Environmental Research Institute, National University of Singapore, Singapore, 117411, Singapore.
- Singapore Centre For Environmental Life Sciences Engineering (SCELSE), National University of Singapore, Singapore, 117456, Singapore.
- Pranic Healing Research Institute, New Jersey, 07071, USA.
| | - Abhishek Gupta
- Singapore Centre For Environmental Life Sciences Engineering (SCELSE), National University of Singapore, Singapore, 117456, Singapore
| | - Marianne Chung
- Pranic Healing Research Institute, New Jersey, 07071, USA
- Center for Pranic Healing, New Jersey, USA
| | - Vaishnavi Radhakrishnan
- Pranic Healing Research Institute, New Jersey, 07071, USA
- Center for Pranic Healing, New Jersey, USA
| | - Valerie Davis
- Pranic Healing Research Institute, New Jersey, 07071, USA
- Center for Pranic Healing, New Jersey, USA
| | | | - Trevor C Charles
- Metagenom Bio Life Science Inc, Waterloo, Canada
- University of Waterloo, Waterloo, Canada
| | - Jiujun Cheng
- Metagenom Bio Life Science Inc, Waterloo, Canada
- University of Waterloo, Waterloo, Canada
| | - Glenn Mendoza
- Pranic Healing Research Institute, New Jersey, 07071, USA
- Center for Pranic Healing, New Jersey, USA
| |
Collapse
|
8
|
Guers JJ, Heffernan KS, Campbell SC. Getting to the Heart of the Matter: Exploring the Intersection of Cardiovascular Disease, Sex and Race and How Exercise, and Gut Microbiota Influence these Relationships. Rev Cardiovasc Med 2025; 26:26430. [PMID: 40026503 PMCID: PMC11868917 DOI: 10.31083/rcm26430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/16/2024] [Accepted: 11/28/2024] [Indexed: 03/05/2025] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide, with physical inactivity being a known contributor to the global rates of CVD incidence. CVD incidence, however, is not uniform with recognized sex differences as well and racial and ethnic differences. Furthermore, gut microbiota have been associated with CVD, sex, and race/ethnicity. Researchers have begun to examine the interplay of these complicated yet interrelated topics. This review will present evidence that CVD (risk and development), and gut microbiota are distinct between the sexes and racial/ethnic groups, which appear to be influenced by acculturation, discrimination, stress, and lifestyle factors like exercise. Furthermore, this review will address the beneficial impacts of exercise on the cardiovascular system and will provide recommendations for future research in the field.
Collapse
Affiliation(s)
- John J. Guers
- Department of Health Sciences and Nursing, Rider University, Lawrenceville, NJ 08648, USA
| | - Kevin S. Heffernan
- Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, NY 10027, USA
| | - Sara C. Campbell
- Department of Kinesiology and Health, The State University of New Jersey, New Brunswick, NJ 08901, USA
- Centers for Human Nutrition, Exercise, and Metabolism, Nutrition, Microbiome, and Health, and Lipid Research, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
9
|
Chtioui N, Duval C, St-Pierre DH. The impact of an active lifestyle on markers of intestinal inflammation in Parkinson's disease: Preliminary findings. Clin Park Relat Disord 2025; 12:100301. [PMID: 40093191 PMCID: PMC11910127 DOI: 10.1016/j.prdoa.2025.100301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/22/2024] [Accepted: 01/11/2025] [Indexed: 03/19/2025] Open
Abstract
Alterations in the gut microbiota leading to intestinal inflammation and decreased levels of Short Chain Fatty Acids (SCFA) has been observed in Parkinson's disease (PD). Objective The aim of this study was to compare these factors between physically active and less active people with PD. Methods Stool, plasma samples and clinical data were collected from 35 people with PD (20 men and 15 women, mean age 66 years). Their level of physical activity was retrospectively assessed using the International Physical Activity Questionnaire (IPAQ). Participants were divided into two groups based on their physical activity level: Active and Inactive. Both SCFA and calprotectin, a marker of intestinal inflammation, were respectively measured by GC-MS and ELISA, according to standardized, validated protocols. Results Age, disease stage (Hoen & Yahr) and Montreal Cognitive Assessments (MoCA) were similar between groups. Acetate, propionate, and butyrate levels were significantly higher in the Active group than in the Inactive group. In addition, fecal calprotectin was significantly lower in the Active group than in the Inactive group. The constipation values were significantly lower in the Active group. Conclusion Our results suggest that an active lifestyle with regular physical activity is beneficial in patients with PD, through increased production of SCFA by the gut microbiome, and reduced intestinal inflammation and constipation.
Collapse
Affiliation(s)
- Nesrine Chtioui
- Department of Exercice Science, University of Quebec in Montreal, Montreal, Quebec, Canada
| | - Christian Duval
- Department of Exercice Science, University of Quebec in Montreal, Montreal, Quebec, Canada
- Research Center of the University Institute of Geriatrics of Montreal, Montreal, Quebec, Canada
| | - David H St-Pierre
- Department of Exercice Science, University of Quebec in Montreal, Montreal, Quebec, Canada
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| |
Collapse
|
10
|
Tu G, Jiang N, Chen W, Liu L, Hu M, Liao B. The neurobiological mechanisms underlying the effects of exercise interventions in autistic individuals. Rev Neurosci 2025; 36:27-51. [PMID: 39083671 DOI: 10.1515/revneuro-2024-0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024]
Abstract
Autism spectrum disorder is a pervasive and heterogeneous neurodevelopmental condition characterized by social communication difficulties and rigid, repetitive behaviors. Owing to the complex pathogenesis of autism, effective drugs for treating its core features are lacking. Nonpharmacological approaches, including education, social-communication, behavioral and psychological methods, and exercise interventions, play important roles in supporting the needs of autistic individuals. The advantages of exercise intervention, such as its low cost, easy implementation, and high acceptance, have garnered increasing attention. Exercise interventions can effectively improve the core features and co-occurring conditions of autism, but the underlying neurobiological mechanisms are unclear. Abnormal changes in the gut microbiome, neuroinflammation, neurogenesis, and synaptic plasticity may individually or interactively be responsible for atypical brain structure and connectivity, leading to specific autistic experiences and characteristics. Interestingly, exercise can affect these biological processes and reshape brain network connections, which may explain how exercise alleviates core features and co-occurring conditions in autistic individuals. In this review, we describe the definition, diagnostic approach, epidemiology, and current support strategies for autism; highlight the benefits of exercise interventions; and call for individualized programs for different subtypes of autistic individuals. Finally, the possible neurobiological mechanisms by which exercise improves autistic features are comprehensively summarized to inform the development of optimal exercise interventions and specific targets to meet the needs of autistic individuals.
Collapse
Affiliation(s)
- Genghong Tu
- Department of Sports Medicine, 47878 Guangzhou Sport University , Guangzhou, Guangdong, 510500, P.R. China
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, 47878 Scientific Research Center, Guangzhou Sport University , Guangzhou, Guangdong, 510500, P.R. China
| | - Nan Jiang
- Graduate School, 47878 Guangzhou Sport University , Guangzhou, Guangdong, 510500, P.R. China
| | - Weizhong Chen
- Graduate School, 47878 Guangzhou Sport University , Guangzhou, Guangdong, 510500, P.R. China
| | - Lining Liu
- Graduate School, 47878 Guangzhou Sport University , Guangzhou, Guangdong, 510500, P.R. China
| | - Min Hu
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, 47878 Scientific Research Center, Guangzhou Sport University , Guangzhou, Guangdong, 510500, P.R. China
| | - Bagen Liao
- Department of Sports Medicine, 47878 Guangzhou Sport University , Guangzhou, Guangdong, 510500, P.R. China
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, 47878 Scientific Research Center, Guangzhou Sport University , Guangzhou, Guangdong, 510500, P.R. China
| |
Collapse
|
11
|
Bigliassi M, Cabral DF, Evans AC. Improving brain health via the central executive network. J Physiol 2025. [PMID: 39856810 DOI: 10.1113/jp287099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Cognitive and physical stress have significant effects on brain health, particularly through their influence on the central executive network (CEN). The CEN, which includes regions such as the dorsolateral prefrontal cortex, anterior cingulate cortex and inferior parietal lobe, is central to managing the demands of cognitively challenging motor tasks. Acute stress can temporarily reduce connectivity within the CEN, leading to impaired cognitive function and emotional states. However a rebound in these states often follows, driven by motivational signals through the mesocortical and mesolimbic pathways, which help sustain inhibitory control and task execution. Chronic exposure to physical and cognitive challenges leads to long-term improvements in CEN functionality. These changes are supported by neurochemical, structural and systemic adaptations, including mechanisms of tissue crosstalk. Myokines, adipokines, anti-inflammatory cytokines and gut-derived metabolites contribute to a biochemical environment that enhances neuroplasticity, reduces neuroinflammation and supports neurotransmitters such as serotonin and dopamine. These processes strengthen CEN connectivity, improve self-regulation and enable individuals to adopt and sustain health-optimizing behaviours. Long-term physical activity not only enhances inhibitory control but also reduces the risk of age-related cognitive decline and neurodegenerative diseases. This review highlights the role of progressive physical stress through exercise as a practical approach to strengthening the CEN and promoting brain health, offering a strategy to improve cognitive resilience and emotional well-being across the lifespan.
Collapse
Affiliation(s)
- Marcelo Bigliassi
- Department of Teaching and Learning, Florida International University, Miami, Florida, USA
| | - Danylo F Cabral
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Amanda C Evans
- Functional Flow Solutions LLC, Albuquerque, New Mexico, USA
| |
Collapse
|
12
|
van Baalen M, van der Velden L, van der Gronde T, Pieters T. Developing a translational research framework for MDD: combining biomolecular mechanisms with a spiraling risk factor model. Front Psychiatry 2025; 15:1463929. [PMID: 39839132 PMCID: PMC11747824 DOI: 10.3389/fpsyt.2024.1463929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 12/10/2024] [Indexed: 01/23/2025] Open
Abstract
Objective The global incidence and burden of Major Depressive Disorder (MDD) are increasing annually, with current antidepressant treatments proving ineffective for 30-40% of patients. Biomolecular mechanisms within the microbiota-gut-brain axis (MGBA) may significantly contribute to MDD, potentially paving the way for novel treatment approaches. However, integrating the MGBA with the psychological and environmental aspects of MDD remains challenging. This manuscript aims to: 1) investigate the underlying biomolecular mechanisms of MDD using a modeling approach, and 2) integrate this knowledge into a comprehensive 'spiraling risk factor model' to develop a biopsychosocial translational research framework for the prevention and treatment of MDD. Methods For the first aim, a systematic review (PROSPERO registration) was conducted using PubMed, Embase, and Scopus to query literature published between 2016-2020, with select additional sources. A narrative review was performed for the second aim. Results In addition to genetics and neurobiology, research consistently indicates that hyperactivation of the HPA axis and a pro-inflammatory state are interrelated components of the MGBA and likely underlying mechanisms of MDD. Dysregulation of the MGBA, along with imbalances in mental and physical conditions, lifestyle factors, and pre-existing treatments, can trigger a downward spiral of stress and anxiety, potentially leading to MDD. Conclusions MDD is not solely a brain disorder but a heterogeneous condition involving biomolecular, psychological, and environmental risk factors. Future interdisciplinary research can utilize the integrated biopsychosocial insights from this manuscript to develop more effective lifestyle-focused multimodal treatment interventions, enhance diagnosis, and stimulate early-stage prevention of MDD. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42020215412.
Collapse
Affiliation(s)
- Max van Baalen
- Department of Pharmaceutical Sciences and Freudenthal Institute, Utrecht University, Utrecht, Netherlands
| | - Lars van der Velden
- Department of Pharmaceutical Sciences and Freudenthal Institute, Utrecht University, Utrecht, Netherlands
| | - Toon van der Gronde
- Department of Pharmaceutical Sciences and Freudenthal Institute, Utrecht University, Utrecht, Netherlands
- Late-Stage Development, Oncology Research and Development, AstraZeneca, New York, NY, United States
| | - Toine Pieters
- Department of Pharmaceutical Sciences and Freudenthal Institute, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
13
|
He J, Liu F, Xu P, Xu T, Yu H, Wu B, Wang H, Chen J, Zhang K, Zhang J, Meng K, Yan X, Yang Q, Zhang X, Sun D, Chen X. Aerobic Exercise Improves the Overall Outcome of Type 2 Diabetes Mellitus Among People With Mental Disorders. Depress Anxiety 2024; 2024:6651804. [PMID: 40226688 PMCID: PMC11918971 DOI: 10.1155/da/6651804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/09/2024] [Indexed: 04/15/2025] Open
Abstract
The escalating global prevalence of type 2 diabetes mellitus (T2DM) and mental disorder (MD) including schizophrenia, bipolar disorder, major depressive disorder, and anxiety highlights the urgency for comprehensive therapeutic strategies. Aerobic exercise (AE) is a viable adjunct therapy, providing significant benefits for individuals dealing with both T2DM and MD. This review consolidates evidence on AE's role in alleviating the physiological and psychological effects of these comorbid conditions. It delves into the pathophysiological connections between T2DM and various MD, including depression, schizophrenia, anxiety, and bipolar disorder-emphasizing their reciprocal exacerbation. Key neurophysiological mechanisms through which AE confers benefits are explored, including neuroinflammation modulation, brain structure and neuroplasticity enhancement, growth factor expression regulation, and hypothalamic-pituitary-adrenal (HPA)/microbiota-gut-brain (MGB) axis normalization. Clinical results indicate that AE significantly improves both metabolic and psychological parameters in patients with T2DM and MD, providing a substantial argument for integrating AE into comprehensive treatment plans. Future research should aim to establish detailed, personalized exercise prescriptions and explore the long-term benefits of AE in this population. This review underscores the potential of AE to complement existing therapeutic modalities and enhance the management of patients with T2DM and MD.
Collapse
Affiliation(s)
- Jiaxuan He
- Institute of Life Sciences and Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Fan Liu
- Institute of Life Sciences and Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Peiye Xu
- Institute of Life Sciences and Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Ting Xu
- Institute of Life Sciences and Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Haiyang Yu
- Institute of Life Sciences and Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Baihui Wu
- Institute of Life Sciences and Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Hanbing Wang
- Department of Biotechnology, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Jia Chen
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 611100, China
| | - Kun Zhang
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Junbei Zhang
- Department of Endocrinology, Yiwu Central Hospital, The Affiliated Yiwu Hospital of Wenzhou Medical University, Yiwu 322000, China
| | - Kaikai Meng
- Department of Endocrinology, Yiwu Central Hospital, The Affiliated Yiwu Hospital of Wenzhou Medical University, Yiwu 322000, China
| | - Xiaoqing Yan
- The Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Xingxing Zhang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Da Sun
- Institute of Life Sciences and Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
- Department of Endocrinology, Yiwu Central Hospital, The Affiliated Yiwu Hospital of Wenzhou Medical University, Yiwu 322000, China
| | - Xia Chen
- Department of Endocrinology, Yiwu Central Hospital, The Affiliated Yiwu Hospital of Wenzhou Medical University, Yiwu 322000, China
| |
Collapse
|
14
|
Ji F, Sun Q, Han W, Li Y, Xia X. How Physical Exercise Reduces Problematic Mobile Phone Use in Adolescents: The Roles of Expression Suppression, Depression, Anxiety, and Resilience. Psychol Res Behav Manag 2024; 17:4369-4382. [PMID: 39722776 PMCID: PMC11669333 DOI: 10.2147/prbm.s484089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Problematic mobile phone use has become a pressing concern among adolescents due to its widespread prevalence and associated health risks. Physical exercise has been suggested as a potential intervention, but the psychological mechanisms underlying its effects remain unclear. This study explores how physical exercise impacts problematic mobile phone use through expression suppression, emotional problems (depression and anxiety), and resilience, offering actionable insights for intervention strategies. METHODS The study involved 2,032 Chinese adolescents who completed standardized self-report questionnaires assessing physical exercise, expression suppression, emotional problems, resilience, and problematic mobile phone use. Statistical analyses were conducted using a moderated serial mediation model. RESULTS Among the participants, 25.5% reported problematic mobile phone use, while 37.5% experienced both depression and anxiety. Physical exercise was negatively associated with problematic mobile phone use (β = -0.195, p < 0.001) through its effects on expressive suppression, depression, and anxiety. Indirect effects mediated by expressive suppression and depression/anxiety accounted for 52.0% and 44.4% of the total effect, respectively. Additionally, resilience moderated the pathway linking expressive suppression to depression and anxiety (interaction effect for depression: β = -0.080, 95% CI: -0.111 to -0.048; for anxiety: β = -0.065, 95% CI: -0.097 to -0.033), with low resilience amplifying the negative emotional impacts of expressive suppression. CONCLUSION Physical exercise can directly reduce problematic mobile phone use and indirectly alleviate its associated risks by improving emotion regulation and reducing emotional problems. Expressive suppression and depression/anxiety play significant mediating roles, while resilience moderates these pathways, highlighting its protective effect. By targeting both behavioral and psychological factors, interventions that combine physical activity promotion with resilience training show promise in addressing problematic mobile phone use and associated emotional issues in adolescents.
Collapse
Affiliation(s)
- Fa Ji
- School of Physical Education, Qingdao University, Qingdao, People’s Republic of China
- Development Center for Water Sports, Qingdao University, Qingdao, People’s Republic of China
| | - Qilong Sun
- Liaocheng Infant Normal School, Liaocheng, People’s Republic of China
| | - Wei Han
- Liaocheng Infant Normal School, Liaocheng, People’s Republic of China
| | - Yansong Li
- School of Physical Education, Qingdao University, Qingdao, People’s Republic of China
| | - Xue Xia
- Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, People’s Republic of China
- School of Social Development and Health Management, University of Health and Rehabilitation Sciences, Qingdao, People’s Republic of China
| |
Collapse
|
15
|
Dong R, Rafique H, Niu Q, Zeng X, Messia MC, Yuan L, Shi L, Zou L, Li L, Hu X. Interaction of oat bran and exercise training improved exercise adaptability via alleviating oxidative stress and promoting energy homeostasis. Food Funct 2024; 15:11508-11524. [PMID: 39494504 DOI: 10.1039/d4fo03374d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Skeletal muscle performance is influenced by both diet and the mode of exercise, with diet playing a crucial role in individuals' adaptation to exercise training. Our study investigated the interaction of oat bran (OB) diet and moderate intensity exercise training (MIET) on skeletal muscle function and athletic performance. Studies have reinforced the positive association of high-fat diet (HFD) with chronic systemic inflammation and corresponding peripheral skeletal muscle dysfunction during exercise training. OB could alleviate the inflammation, oxidative stress, and energy homeostasis disorder associated with HFD. We observed improvement in mice limb grip strength and endurance treadmill running distance with OB intake, accompanied by regulation of muscle function-related gene expression. OB intensified exercise training-induced carbohydrate and lipid metabolism, as indicated by changes in lactate, fumarate, malate, pyruvate, succinate, and citrate levels. Additionally, specific probiotic genera producing short-chain fatty acids (SCFAs) were promoted, while inflammation-related circulating metabolites were significantly decreased with oat bran intake. Our findings suggest interactions between OB and MIET improved HFD-induced skeletal muscle dysfunction on both the phenotype and the related mechanisms. This study is an extension of our previous study on the anti-fatigue effect of oat bran, providing a novel prospective by integrating exercise adaptation, gut microbiota, molecular metabolism and skeletal muscle in situ analysis.
Collapse
Affiliation(s)
- Rui Dong
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| | - Hamad Rafique
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| | - Qianwen Niu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| | - Xin Zeng
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| | - Maria Cristina Messia
- School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Li Yuan
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| | - Lin Shi
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| | - Liang Zou
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Lu Li
- Guilin Seamild Foods Co., Ltd, Guilin, Guangxi, 541004, China
| | - Xinzhong Hu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| |
Collapse
|
16
|
Haussmann AJ, McMahan ZH, Volkmann ER. Understanding the gastrointestinal microbiome in systemic sclerosis: methodological advancements and emerging research. Curr Opin Rheumatol 2024; 36:401-409. [PMID: 39189041 PMCID: PMC11588518 DOI: 10.1097/bor.0000000000001048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
PURPOSE OF REVIEW This review highlights the role of the gastrointestinal (GI) microbiome in systemic sclerosis (SSc). We describe techniques for evaluating the GI microbiome in humans, and emerging research linking GI microbiome alterations (i.e., dysbiosis) and distinct SSc clinical manifestations. We also address the evolving treatment landscape targeting dysbiosis in SSc. RECENT FINDINGS Recent literature brings into focus the complex relationship between the GI microbiome and SSc pathogenesis. Advanced techniques (e.g., shotgun metagenomics, meta-transcriptomics) provide deeper insights into microbial taxonomy and active gene expression, exposing dysbiosis as a potential driver of SSc. New studies demonstrate that SSc patients who possess specific SSc clinical features, (e.g., interstitial lung disease), have unique GI microbiome profiles. SUMMARY Dysbiosis is associated with specific clinical features in patients with SSc. New tools for studying the GI microbiome have furthered our understanding of the relationship between dysbiosis and SSc complications. Therapeutic avenues such as dietary adjustments, probiotics, antibiotics, mindfulness practices, and fecal transplants offer potential for managing SSc and preventing its progression through GI microbiome modulation. By clarifying what is known about the relationship between the GI dysbiosis, GI dysfunction, and SSc, this review enhances our understanding of SSc pathogenesis and proposes targeted interventions.
Collapse
Affiliation(s)
- Alana J. Haussmann
- Department of Medicine, University of California, Los Angeles, David Geffen School of Medicine; USA
| | - Zsuzsanna H. McMahan
- Department of Medicine, The University of Texas Health Science Center at Houston; USA
| | - Elizabeth R. Volkmann
- Department of Medicine, University of California, Los Angeles, David Geffen School of Medicine; USA
| |
Collapse
|
17
|
Shalmon G, Ibrahim R, Israel-Elgali I, Grad M, Shlayem R, Shapira G, Shomron N, Youngster I, Scheinowitz M. Gut Microbiota Composition Positively Correlates with Sports Performance in Competitive Non-Professional Female and Male Runners. Life (Basel) 2024; 14:1397. [PMID: 39598196 PMCID: PMC11595618 DOI: 10.3390/life14111397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
There is still a pressing need for further investigation to bridge the gap in understanding the differences in gut microbiota composition between female runners and their male counterparts. We aimed to determine the gut microbiota composition in competitive non-professional female and male runners and to correlate the gut bacteria to performance. Our study included 40 subjects, of which 22 were runners (13 males and 9 females) and 18 control subjects (9 males and 9 females, representing the general population who perform light physical activity with a weekly running volume of ≤5 km per week). Fecal specimens were collected and analyzed for taxonomic profiling to compare species' relative abundances between males and females based on the results of 16SrRNA analysis. Bacterial alpha and beta diversity were assessed to determine the differences in microbial composition between runners and controls, and between sexes. Each participant underwent a maximal oxygen consumption test and a time-to-exhaustion test at 85% of the measured VO2max. Blood lactate was collected every 5 min during the tests. Bacterial alpha diversity showed a significant difference (p = 0.04) between runners and controls. Taxonomic analysis of gut microbiota composition showed a lower Enterobacteriaceae abundance and a higher Methanosphaera abundance in runners compared with the control group. Ten different bacteria (Methanosphaera, Mitsuokella, Prevotellaceae, Megamonas, Rothia, Oscillospira, Bacteroides, Odoribacter, Blautia massiliensis, Butyricicoccus_pullicaecorum) were positively correlated with exercise (VO2max, lactate blood levels, time to exhaustion, and weekly training volume). We found no significant differences in the gut microbiota composition between male and female runners. Gut microbiota composition positively correlates with sports performance in competitive non-professional female and male runners, and female runners show similar gut microbiome diversity to male runners.
Collapse
Affiliation(s)
- Guy Shalmon
- Sylvan Adams Sports Institute, School of Public Health, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel;
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel
| | - Rawan Ibrahim
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel
| | - Ifat Israel-Elgali
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel
| | - Meitar Grad
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel
| | - Rani Shlayem
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel
| | - Guy Shapira
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel
- Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel
| | - Noam Shomron
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel
- Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel
| | - Ilan Youngster
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel
- Pediatric Infectious Diseases Unit, The Center for Microbiome Research, Shamir Medical Center, Tel Aviv 6997801, Israel
| | - Mickey Scheinowitz
- Sylvan Adams Sports Institute, School of Public Health, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel;
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel
| |
Collapse
|
18
|
Huang B, Zhao L, Campbell SC. Bidirectional Link Between Exercise and the Gut Microbiota. Exerc Sport Sci Rev 2024; 52:132-144. [PMID: 39190614 DOI: 10.1249/jes.0000000000000343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Exercise is well known to exert beneficial changes to the gut microbiota. An emerging area is how the gut microbiota may regulate exercise tolerance. This review will summarize the current evidence on how exercise influences gut microbial communities, with emphasis on how disruptions or depletion of an intact gut microbiota impacts exercise tolerance as well as future directions.
Collapse
Affiliation(s)
- Belle Huang
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ
| | | | | |
Collapse
|
19
|
Aziz N, Wal P, Patel A, Prajapati H. A comprehensive review on the pharmacological role of gut microbiome in neurodegenerative disorders: potential therapeutic targets. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7307-7336. [PMID: 38734839 DOI: 10.1007/s00210-024-03109-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/17/2024] [Indexed: 05/13/2024]
Abstract
Neurological disorders, including Alzheimer and Parkinson's, pose significant challenges to public health due to their complex etiologies and limited treatment options. Recent advances in research have highlighted the intricate bidirectional communication between the gut microbiome and the central nervous system (CNS), revealing a potential therapeutic avenue for neurological disorders. Thus, this review aims to summarize the current understanding of the pharmacological role of gut microbiome in neurological disorders. Mounting evidence suggests that the gut microbiome plays a crucial role in modulating CNS function through various mechanisms, including the production of neurotransmitters, neuroactive metabolites, and immune system modulation. Dysbiosis, characterized by alterations in gut microbial composition and function, has been observed in many neurological disorders, indicating a potential causative or contributory role. Pharmacological interventions targeting the gut microbiome have emerged as promising therapeutic strategies for neurological disorders. Probiotics, prebiotics, antibiotics, and microbial metabolite-based interventions have shown beneficial effects in animal models and some human studies. These interventions aim to restore microbial homeostasis, enhance microbial diversity, and promote the production of beneficial metabolites. However, several challenges remain, including the need for standardized protocols, identification of specific microbial signatures associated with different neurological disorders, and understanding the precise mechanisms underlying gut-brain communication. Further research is necessary to unravel the intricate interactions between the gut microbiome and the CNS and to develop targeted pharmacological interventions for neurological disorders.
Collapse
Affiliation(s)
- Namra Aziz
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), NH-19, Kanpur, UP, 209305, India
| | - Pranay Wal
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), NH-19, Kanpur, UP, 209305, India.
| | - Aman Patel
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), NH-19, Kanpur, UP, 209305, India
| | - Harshit Prajapati
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), NH-19, Kanpur, UP, 209305, India
| |
Collapse
|
20
|
Yun S, Seo Y, Lee Y, Lee DT. Gut microbiome related to metabolic diseases after moderate-to-vigorous intensity exercise. J Exerc Sci Fit 2024; 22:375-382. [PMID: 39185003 PMCID: PMC11342187 DOI: 10.1016/j.jesf.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 08/27/2024] Open
Abstract
Background objectives The purpose of this study is to investigate changes in gut microbiota related to metabolic diseases after moderate and high-intensity exercise. A total of 24 participants were divided into three groups: Non-Exercise Group (NEG, n = 8, 28.6 ± 5.3 years, 176.0 ± 7.8 cm, 81.3 ± 14.6 kg), Moderate Intensity Exercise Group (MIEG, n = 8, 26.5 ± 3.3 years, 176.9 ± 5.0 cm, 75.4 ± 9.5 kg), and Vigorous Intensity Exercise Group (VIEG, n = 8, 30.6 ± 5.9 years, 174.2 ± 3.5 cm, 77.8 ± 12.2 kg). Methods The participants were selected by assessing physical activity, gut health status, presence of diseases, recent disease diagnoses, and dietary disorders. Those who reported any presence disease or recent disease diagnosis were excluded from the current study. Stool samples were collected after a 10-h fast for gut microbiome analysis. MIEG participants trained at 40-59 % heart rate reserve (HRR) for at least 150 min per week, while VIEG participants trained at ≥ 60 % HRR for at least 90 min per week. After 4 weeks, all participants provided stool samples for gut microbiome analysis.Data analysis was conducted using the Wilcoxon test, with statistical significance set at ≤ 0.05. Results The results indicated an increase in Prevotella in MIEG, while Veillonella, Dorea_formicigenerans, and Dorea_longicatena exhibited a decrease (p < 0.05). In VIEG, there was an increase in Bacteroides, Butyricimonas, Odoribacter, and Alistipes (p < 0.05). Conclusion These modified microbial groups were associated with factors related to metabolic diseases, including inflammatory bowel disease, obesity, colorectal cancer, diabetes, hypertension, metabolic liver diseases, and ischemic heart diseases. Additional research is essential to delve into the relationship between exercise and these alterations in the microbiome.
Collapse
Affiliation(s)
| | | | - Yunbin Lee
- Exercise Physiology Laboratory, Kookmin University, Seoul, Republic of Korea
| | - Dae Taek Lee
- Exercise Physiology Laboratory, Kookmin University, Seoul, Republic of Korea
| |
Collapse
|
21
|
Sanchez-Martinez J, Solis-Urra P, Olivares-Arancibia J, Plaza-Diaz J. Physical Exercise and Mechanism Related to Alzheimer's Disease: Is Gut-Brain Axis Involved? Brain Sci 2024; 14:974. [PMID: 39451988 PMCID: PMC11506766 DOI: 10.3390/brainsci14100974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Alzheimer's disease is a progressive neurodegenerative disease characterized by structural changes in the brain, including hippocampal atrophy, cortical thinning, amyloid plaques, and tau tangles. Due to the aging of the global population, the burden of Alzheimer's disease is expected to increase, making the exploration of non-pharmacological interventions, such as physical exercise, an urgent priority. RESULTS There is emerging evidence that regular physical exercise may mitigate the structural and functional declines associated with Alzheimer's disease. The underlying mechanisms, however, remain poorly understood. Gut-brain axis research is a promising area for further investigation. This system involves bidirectional communication between the gut microbiome and the brain. According to recent studies, the gut microbiome may influence brain health through modulating neuroinflammation, producing neuroactive compounds, and altering metabolic processes. Exercise has been shown to alter the composition of the gut microbiome, potentially impacting brain structure and function. In this review, we aim to synthesize current research on the relationship between physical exercise, structural brain changes in Alzheimer's disease, and the gut-brain axis. CONCLUSIONS In this study, we will investigate whether changes in the gut microbiome induced by physical exercise can mediate its neuroprotective effects, offering new insights into the prevention and treatment of Alzheimer's disease. By integrating findings from neuroimaging studies, clinical trials, and microbiome research, this review will highlight potential mechanisms. It will also identify key gaps in the literature. This will pave the way for future research directions.
Collapse
Affiliation(s)
- Javier Sanchez-Martinez
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, 18071 Granada, Spain;
| | - Patricio Solis-Urra
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, 18071 Granada, Spain;
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 8370134, Chile
| | - Jorge Olivares-Arancibia
- AFySE Group, Research in Physical Activity and School Health, School of Physical Education, Faculty of Education, Universidad de Las Américas, Santiago 7500975, Chile;
| | - Julio Plaza-Diaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Campus de Cartuja s/n, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| |
Collapse
|
22
|
Chen LA, Boyle K. The Role of the Gut Microbiome in Health and Disease in the Elderly. Curr Gastroenterol Rep 2024; 26:217-230. [PMID: 38642272 PMCID: PMC11282161 DOI: 10.1007/s11894-024-00932-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2024] [Indexed: 04/22/2024]
Abstract
PURPOSE OF REVIEW Growing evidence supports the contribution of age in the composition and function of the gut microbiome, with specific findings associated with health in old age and longevity. RECENT FINDINGS Current studies have associated certain microbiota, such as Butyricimonas, Akkermansia, and Odoribacter, with healthy aging and the ability to survive into extreme old age. Furthermore, emerging clinical and pre-clinical research have shown promising mechanisms for restoring a healthy microbiome in elderly populations through various interventions such as fecal microbiota transplant (FMT), dietary interventions, and exercise programs. Despite several conceptually exciting interventional studies, the field of microbiome research in the elderly remains limited. Specifically, large longitudinal studies are needed to better understand causative relationships between the microbiome and healthy aging. Additionally, individualized approaches to microbiome interventions based on patients' co-morbidities and the underlying functional capacity of their microbiomes are needed to achieve optimal results.
Collapse
Affiliation(s)
- Lea Ann Chen
- Division of Gastroenterology and Hepatology, Department of Medicine, Rutgers, New Brunswick, NJ, USA.
| | - Kaitlyn Boyle
- Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| |
Collapse
|
23
|
Zeng SY, Liu YF, Zeng ZL, Zhao ZB, Yan XL, Zheng J, Chen WH, Wang ZX, Xie H, Liu JH. Antibiotic-induced gut microbiota disruption promotes vascular calcification by reducing short-chain fatty acid acetate. Mol Med 2024; 30:130. [PMID: 39182021 PMCID: PMC11344439 DOI: 10.1186/s10020-024-00900-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Vascular calcification is a common vascular lesion associated with high morbidity and mortality from cardiovascular events. Antibiotics can disrupt the gut microbiota (GM) and have been shown to exacerbate or attenuate several human diseases. However, whether antibiotic-induced GM disruption affects vascular calcification remains unclear. METHODS Antibiotic cocktail (ABX) treatment was utilized to test the potential effects of antibiotics on vascular calcification. The effects of antibiotics on GM and serum short-chain fatty acids (SCFAs) in vascular calcification mice were analyzed using 16 S rRNA gene sequencing and targeted metabolomics, respectively. Further, the effects of acetate, propionate and butyrate on vascular calcification were evaluated. Finally, the potential mechanism by which acetate inhibits osteogenic transformation of VSMCs was explored by proteomics. RESULTS ABX and vancomycin exacerbated vascular calcification. 16 S rRNA gene sequencing and targeted metabolomics analyses showed that ABX and vancomycin treatments resulted in decreased abundance of Bacteroidetes in the fecal microbiota of the mice and decreased serum levels of SCFAs. In addition, supplementation with acetate was found to reduce calcium salt deposition in the aorta of mice and inhibit osteogenic transformation in VSMCs. Finally, using proteomics, we found that the inhibition of osteogenic transformation of VSMCs by acetate may be related to glutathione metabolism and ubiquitin-mediated proteolysis. After adding the glutathione inhibitor Buthionine sulfoximine (BSO) and the ubiquitination inhibitor MG132, we found that the inhibitory effect of acetate on VSMC osteogenic differentiation was weakened by the intervention of BSO, but MG132 had no effect. CONCLUSION ABX exacerbates vascular calcification, possibly by depleting the abundance of Bacteroidetes and SCFAs in the intestine. Supplementation with acetate has the potential to alleviate vascular calcification, which may be an important target for future treatment of vascular calcification.
Collapse
Affiliation(s)
- Shi-Yu Zeng
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yi-Fu Liu
- The Second Affiliated Hospital, Department of Urology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, 330000, Jiangxi, China
| | - Zhao-Lin Zeng
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Zhi-Bo Zhao
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xi-Lin Yan
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Jie Zheng
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Wen-Hang Chen
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, 410008, Hunan, China
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Zhen-Xing Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, 410008, Hunan, China
| | - Hui Xie
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Jiang-Hua Liu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
- Hunan Diabetes Clinical Medical Research Center, Hengyang, 421001, Hunan, China.
| |
Collapse
|
24
|
Wu H, Liu Q, Liu J, Liu M. Effects of neuroticism on pre-exam irritable bowel syndrome in female middle school students: mediating role of intolerance of uncertainty and moderating role of exercise duration. Front Psychiatry 2024; 15:1420970. [PMID: 39205848 PMCID: PMC11349732 DOI: 10.3389/fpsyt.2024.1420970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Background China, which is deeply influenced by Confucianism, places special emphasis on students' test scores. Previous studies have shown that neuroticism is associated with irritable bowel syndrome (IBS) in adolescents. However, the mechanisms underlying this association before exams in female secondary school students are unknown. The present study sought to ascertain whether IU mediates the association between neuroticism and pre-exam IBS, and to determine whether exercise duration moderates the relationship between neuroticism and pre-exam IBS. Methods The sample consisted of 685 Chinese female middle school students (Mage = 14.81, SD = 1.55, range = 11-18) who completed paper questionnaires, including the neuroticism subscale of the Chinese Neuroticism Extraversion Openness Five-Factor Inventory, the IBS Symptom Severity Scale, a simplified version of the Intolerance of Uncertainty Scale, and a movement time questionnaire. Independent samples t-test was used to compare differences between groups and Pearson correlation coefficient was used to investigate the bivariate correlation. The SPSS PROCESS 4.1 plug-in was then used to examine the mediating role of IU as well as the moderating role of movement time between neuroticism and pre-exam IBS. Results Neuroticism and IU were significantly correlated with pre-exam IBS (r = 0.39, 0.30, respectively; all p < 0.01), and neuroticism was significantly correlated with IU (r = 0.46, p < 0.01). Neuroticism had a direct predictive effect on pre-exam IBS in Chinese female middle school students (β = 0.32, p < 0.001), and IU also had a positive effect on pre-exam IBS (β = 0.15, p < 0.001). The mediating effect value of IU on the total effect was 18.09%. The relationship between neuroticism and pre-exam IBS was moderated by movement time (β = -0.23, p < 0.05). Conclusion IU plays a mediating role between neuroticism and pre-exam IBS, and exercise time plays a moderating role between neuroticism and pre-exam IBS. These findings provide an evidence for neuroticism intervention, IU management, and pre-exam IBS improvement in female middle school students.
Collapse
Affiliation(s)
- Hou Wu
- School of Psychology, Jiangxi Normal University, Nanchang, China
- College Counseling Center, Nanchang Institute of Technology, Nanchang, China
| | - Qiqin Liu
- Department of Culture and Tourism, Gaoan Secondary Specialized School, Yichun, China
| | - Jianping Liu
- School of Psychology, Jiangxi Normal University, Nanchang, China
| | - Mingfan Liu
- School of Psychology, Jiangxi Normal University, Nanchang, China
| |
Collapse
|
25
|
Li C, Li J, Zhou Q, Wang C, Hu J, Liu C. Effects of Physical Exercise on the Microbiota in Irritable Bowel Syndrome. Nutrients 2024; 16:2657. [PMID: 39203794 PMCID: PMC11356817 DOI: 10.3390/nu16162657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Irritable bowel syndrome (IBS) is a prevalent functional gastrointestinal disorder characterized by abdominal pain, bloating, diarrhea, and constipation. Recent studies have underscored the significant role of the gut microbiota in the pathogenesis of IBS. Physical exercise, as a non-pharmacological intervention, has been proposed to alleviate IBS symptoms by modulating the gut microbiota. Aerobic exercise, such as running, swimming, and cycling, has been shown to enhance the diversity and abundance of beneficial gut bacteria, including Lactobacillus and Bifidobacterium. These bacteria produce short-chain fatty acids that possess anti-inflammatory properties and support gut barrier integrity. Studies involving IBS patients participating in structured aerobic exercise programs have reported significant improvements in their gut microbiota's composition and diversity, alongside an alleviation of symptoms like abdominal pain and bloating. Additionally, exercise positively influences mental health by reducing stress and improving mood, which can further relieve IBS symptoms via the gut-brain axis. Long-term exercise interventions provide sustained benefits, maintaining the gut microbiota's diversity and stability, supporting immune functions, and reducing systemic inflammation. However, exercise programs must be tailored to individual needs to avoid exacerbating IBS symptoms. Personalized exercise plans starting with low-to-moderate intensity and gradually increasing in intensity can maximize the benefits and minimize risks. This review examines the impact of various types and intensities of physical exercise on the gut microbiota in IBS patients, highlighting the need for further studies to explore optimal exercise protocols. Future research should include larger sample sizes, longer follow-up periods, and examine the synergistic effects of exercise and other lifestyle modifications. Integrating physical exercise into comprehensive IBS management plans can enhance symptom control and improve patients' quality of life.
Collapse
Affiliation(s)
- Chunpeng Li
- Russian Sports University, Moscow 105122, Russia;
| | - Jianmin Li
- School of Tai Chi Culture Handan University, Handan 056005, China;
| | - Qiaorui Zhou
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Q.Z.); (C.W.)
| | - Can Wang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Q.Z.); (C.W.)
| | - Jiahui Hu
- Moscow State Normal University, Moscow 127051, Russia
| | - Chang Liu
- School of Sport Science, Beijing Sport University, Beijing 100084, China
| |
Collapse
|
26
|
Schweitzer M, Wlasak M, Wassermann B, Marcher F, Poglitsch C, Pirker J, Berg G. 'Tiny Biome Tales': A gamified review about the influence of lifestyle choices on the human microbiome. Microb Biotechnol 2024; 17:e14544. [PMID: 39119866 PMCID: PMC11310763 DOI: 10.1111/1751-7915.14544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
In the last two decades, new discoveries from microbiome research have changed our understanding of human health. It became evident that daily habits and lifestyle choices shape the human microbiome and ultimately determine health or disease. Therefore, we developed 'Tiny Biome Tales' (https://microbiome.gamelabgraz.at/), a science pedagogy video game designed like a scientific review based exclusively on peer-reviewed articles, to teach about the influence of lifestyle choices on the human microbiome during pregnancy, early and adult life, and related health consequences. Despite the scientific character, it can be played by a broad audience. Here, we also present a scientific assessment and showed that playing the game significantly contributed to knowledge gain. The innovative style of the 'gamified review' represents an ideal platform to disseminate future findings from microbiome research by updating existing and adding new scenes to the game.
Collapse
Affiliation(s)
- Matthias Schweitzer
- Institute of Environmental BiotechnologyGraz University of TechnologyGrazAustria
| | - Maximilian Wlasak
- Institute of Interactive Systems and Data ScienceGraz University of TechnologyGrazAustria
| | - Birgit Wassermann
- Institute of Environmental BiotechnologyGraz University of TechnologyGrazAustria
| | - Florian Marcher
- Institute of Interactive Systems and Data ScienceGraz University of TechnologyGrazAustria
| | - Christian Poglitsch
- Institute of Interactive Systems and Data ScienceGraz University of TechnologyGrazAustria
| | - Johanna Pirker
- Institute of Interactive Systems and Data ScienceGraz University of TechnologyGrazAustria
- Institut für InformatikLudwig‐Maximilians‐UniversitätMunichGermany
| | - Gabriele Berg
- Institute of Environmental BiotechnologyGraz University of TechnologyGrazAustria
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB)PotsdamGermany
- Institute for Biochemistry and BiologyUniversity of PotsdamPotsdamGermany
| |
Collapse
|
27
|
Taghizadeh Ghassab F, Shamlou Mahmoudi F, Taheri Tinjani R, Emami Meibodi A, Zali MR, Yadegar A. Probiotics and the microbiota-gut-brain axis in neurodegeneration: Beneficial effects and mechanistic insights. Life Sci 2024; 350:122748. [PMID: 38843992 DOI: 10.1016/j.lfs.2024.122748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/21/2024] [Accepted: 05/23/2024] [Indexed: 06/10/2024]
Abstract
Neurodegenerative diseases (NDs) are a group of heterogeneous disorders with a high socioeconomic burden. Although pharmacotherapy is currently the principal therapeutic approach for the management of NDs, mounting evidence supports the notion that the protracted application of available drugs would abate their dopaminergic outcomes in the long run. The therapeutic application of microbiome-based modalities has received escalating attention in biomedical works. In-depth investigations of the bidirectional communication between the microbiome in the gut and the brain offer a multitude of targets for the treatment of NDs or maximizing the patient's quality of life. Probiotic administration is a well-known microbial-oriented approach to modulate the gut microbiota and potentially influence the process of neurodegeneration. Of note, there is a strong need for further investigation to map out the mechanistic prospects for the gut-brain axis and the clinical efficacy of probiotics. In this review, we discuss the importance of microbiome modulation and hemostasis via probiotics, prebiotics, postbiotics and synbiotics in ameliorating pathological neurodegenerative events. Also, we meticulously describe the underlying mechanism of action of probiotics and their metabolites on the gut-brain axis in different NDs. We suppose that the present work will provide a functional direction for the use of probiotic-based modalities in promoting current practical treatments for the management of neurodegenerative-related diseases.
Collapse
Affiliation(s)
- Fatemeh Taghizadeh Ghassab
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Shamlou Mahmoudi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reyhaneh Taheri Tinjani
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Armitasadat Emami Meibodi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
Zhao R. Can exercise benefits be harnessed with drugs? A new way to combat neurodegenerative diseases by boosting neurogenesis. Transl Neurodegener 2024; 13:36. [PMID: 39049102 PMCID: PMC11271207 DOI: 10.1186/s40035-024-00428-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024] Open
Abstract
Adult hippocampal neurogenesis (AHN) is affected by multiple factors, such as enriched environment, exercise, ageing, and neurodegenerative disorders. Neurodegenerative disorders can impair AHN, leading to progressive neuronal loss and cognitive decline. Compelling evidence suggests that individuals engaged in regular exercise exhibit higher production of proteins that are essential for AHN and memory. Interestingly, specific molecules that mediate the effects of exercise have shown effectiveness in promoting AHN and cognition in different transgenic animal models. Despite these advancements, the precise mechanisms by which exercise mimetics induce AHN remain partially understood. Recently, some novel exercise molecules have been tested and the underlying mechanisms have been proposed, involving intercommunications between multiple organs such as muscle-brain crosstalk, liver-brain crosstalk, and gut-brain crosstalk. In this review, we will discuss the current evidence regarding the effects and potential mechanisms of exercise mimetics on AHN and cognition in various neurological disorders. Opportunities, challenges, and future directions in this research field are also discussed.
Collapse
Affiliation(s)
- Renqing Zhao
- College of Physical Education, Yangzhou University, 88 South Daxue Road, Yangzhou, 225009, China.
| |
Collapse
|
29
|
Vandecruys M, De Smet S, De Beir J, Renier M, Leunis S, Van Criekinge H, Glorieux G, Raes J, Vanden Wyngaert K, Nagler E, Calders P, Monbaliu D, Cornelissen V, Evenepoel P, Van Craenenbroeck AH. Revitalizing the Gut Microbiome in Chronic Kidney Disease: A Comprehensive Exploration of the Therapeutic Potential of Physical Activity. Toxins (Basel) 2024; 16:242. [PMID: 38922137 PMCID: PMC11209503 DOI: 10.3390/toxins16060242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024] Open
Abstract
Both physical inactivity and disruptions in the gut microbiome appear to be prevalent in patients with chronic kidney disease (CKD). Engaging in physical activity could present a novel nonpharmacological strategy for enhancing the gut microbiome and mitigating the adverse effects associated with microbial dysbiosis in individuals with CKD. This narrative review explores the underlying mechanisms through which physical activity may favorably modulate microbial health, either through direct impact on the gut or through interorgan crosstalk. Also, the development of microbial dysbiosis and its interplay with physical inactivity in patients with CKD are discussed. Mechanisms and interventions through which physical activity may restore gut homeostasis in individuals with CKD are explored.
Collapse
Affiliation(s)
- Marieke Vandecruys
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium; (M.V.); or (P.E.)
| | - Stefan De Smet
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, 3000 Leuven, Belgium;
| | - Jasmine De Beir
- Department of Rehabilitation Sciences, Ghent University, 9000 Ghent, Belgium; (J.D.B.); (P.C.)
| | - Marie Renier
- Group Rehabilitation for Internal Disorders, Department of Rehabilitation Sciences, KU Leuven, 3000 Leuven, Belgium; (M.R.); (V.C.)
| | - Sofie Leunis
- Department of Microbiology, Immunology and Transplantation, Abdominal Transplantation, KU Leuven, 3000 Leuven, Belgium; (S.L.); (H.V.C.); (D.M.)
| | - Hanne Van Criekinge
- Department of Microbiology, Immunology and Transplantation, Abdominal Transplantation, KU Leuven, 3000 Leuven, Belgium; (S.L.); (H.V.C.); (D.M.)
| | - Griet Glorieux
- Department of Internal Medicine and Pediatrics, Nephrology Section, Ghent University Hospital, 9000 Ghent, Belgium; (G.G.); (K.V.W.); (E.N.)
| | - Jeroen Raes
- Department of Microbiology and Immunology, Rega Institute for Medical Research, 3000 Leuven, Belgium;
- VIB-KU Leuven Center for Microbiology, 3000 Leuven, Belgium
| | - Karsten Vanden Wyngaert
- Department of Internal Medicine and Pediatrics, Nephrology Section, Ghent University Hospital, 9000 Ghent, Belgium; (G.G.); (K.V.W.); (E.N.)
| | - Evi Nagler
- Department of Internal Medicine and Pediatrics, Nephrology Section, Ghent University Hospital, 9000 Ghent, Belgium; (G.G.); (K.V.W.); (E.N.)
| | - Patrick Calders
- Department of Rehabilitation Sciences, Ghent University, 9000 Ghent, Belgium; (J.D.B.); (P.C.)
| | - Diethard Monbaliu
- Department of Microbiology, Immunology and Transplantation, Abdominal Transplantation, KU Leuven, 3000 Leuven, Belgium; (S.L.); (H.V.C.); (D.M.)
- Transplantoux Foundation, 3000 Leuven, Belgium
| | - Véronique Cornelissen
- Group Rehabilitation for Internal Disorders, Department of Rehabilitation Sciences, KU Leuven, 3000 Leuven, Belgium; (M.R.); (V.C.)
| | - Pieter Evenepoel
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium; (M.V.); or (P.E.)
- Department of Nephrology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Amaryllis H. Van Craenenbroeck
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium; (M.V.); or (P.E.)
- Department of Nephrology, University Hospitals Leuven, 3000 Leuven, Belgium
| |
Collapse
|
30
|
Deady C, McCarthy FP, Barron A, McCarthy CM, O’Keeffe GW, O’Mahony SM. An altered gut microbiome in pre-eclampsia: cause or consequence. Front Cell Infect Microbiol 2024; 14:1352267. [PMID: 38774629 PMCID: PMC11106424 DOI: 10.3389/fcimb.2024.1352267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/22/2024] [Indexed: 05/24/2024] Open
Abstract
Hypertensive disorders of pregnancy, including pre-eclampsia, are a leading cause of serious and debilitating complications that affect both the mother and the fetus. Despite the occurrence and the health implications of these disorders there is still relatively limited evidence on the molecular underpinnings of the pathophysiology. An area that has come to the fore with regard to its influence on health and disease is the microbiome. While there are several microbiome niches on and within the body, the distal end of the gut harbors the largest of these impacting on many different systems of the body including the central nervous system, the immune system, and the reproductive system. While the role of the microbiome in hypertensive disorders, including pre-eclampsia, has not been fully elucidated some studies have indicated that several of the symptoms of these disorders are linked to an altered gut microbiome. In this review, we examine both pre-eclampsia and microbiome literature to summarize the current knowledge on whether the microbiome drives the symptoms of pre-eclampsia or if the aberrant microbiome is a consequence of this condition. Despite the paucity of studies, obvious gut microbiome changes have been noted in women with pre-eclampsia and the individual symptoms associated with the condition. Yet further research is required to fully elucidate the role of the microbiome and the significance it plays in the development of the symptoms. Regardless of this, the literature highlights the potential for a microbiome targeted intervention such as dietary changes or prebiotic and probiotics to reduce the impact of some aspects of these disorders.
Collapse
Affiliation(s)
- Clara Deady
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Fergus P. McCarthy
- Department of Obstetrics and Gynecology, University College Cork, Cork, Ireland
- The Infant Research Centre, University College Cork, Cork, Ireland
| | - Aaron Barron
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Cathal M. McCarthy
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Gerard W. O’Keeffe
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Cork Neuroscience Centre, University College Cork, Cork, Ireland
| | - Siobhain M. O’Mahony
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
31
|
Durgan DJ, Zubcevic J, Vijay-Kumar M, Yang T, Manandhar I, Aryal S, Muralitharan RR, Li HB, Li Y, Abais-Battad JM, Pluznick JL, Muller DN, Marques FZ, Joe B. Prospects for Leveraging the Microbiota as Medicine for Hypertension. Hypertension 2024; 81:951-963. [PMID: 38630799 DOI: 10.1161/hypertensionaha.124.21721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Affiliation(s)
- David J Durgan
- Department of Integrative Physiology and Anesthesiology, Baylor College of Medicine, Houston, TX (D.J.D.)
| | - Jasenka Zubcevic
- Center for Hypertension and Precision Medicine, Toledo, OH (J.Z., M.V.-K., T.Y., I.M., S.A., B.J.)
- Microbiome Consortium, Toledo, OH (J.Z., M.V.-K., T.Y., I.M., S.A., B.J.)
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, OH (J.Z., M.V.-K., T.Y., I.M., S.A., B.J.)
| | - Matam Vijay-Kumar
- Center for Hypertension and Precision Medicine, Toledo, OH (J.Z., M.V.-K., T.Y., I.M., S.A., B.J.)
- Microbiome Consortium, Toledo, OH (J.Z., M.V.-K., T.Y., I.M., S.A., B.J.)
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, OH (J.Z., M.V.-K., T.Y., I.M., S.A., B.J.)
| | - Tao Yang
- Center for Hypertension and Precision Medicine, Toledo, OH (J.Z., M.V.-K., T.Y., I.M., S.A., B.J.)
- Microbiome Consortium, Toledo, OH (J.Z., M.V.-K., T.Y., I.M., S.A., B.J.)
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, OH (J.Z., M.V.-K., T.Y., I.M., S.A., B.J.)
| | - Ishan Manandhar
- Center for Hypertension and Precision Medicine, Toledo, OH (J.Z., M.V.-K., T.Y., I.M., S.A., B.J.)
- Microbiome Consortium, Toledo, OH (J.Z., M.V.-K., T.Y., I.M., S.A., B.J.)
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, OH (J.Z., M.V.-K., T.Y., I.M., S.A., B.J.)
| | - Sachin Aryal
- Center for Hypertension and Precision Medicine, Toledo, OH (J.Z., M.V.-K., T.Y., I.M., S.A., B.J.)
- Microbiome Consortium, Toledo, OH (J.Z., M.V.-K., T.Y., I.M., S.A., B.J.)
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, OH (J.Z., M.V.-K., T.Y., I.M., S.A., B.J.)
| | - Rikeish R Muralitharan
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Melbourne, Australia (R.R.M., F.Z.M.)
- Victorian Heart Institute, Monash University, Melbourne, Australia (R.R.M., F.Z.M.)
- Baker Heart and Diabetes Institute, Melbourne, Australia (R.R.M., F.Z.M.)
| | - Hong-Bao Li
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, PR China (H.-B.L., Y.L.)
| | - Ying Li
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, PR China (H.-B.L., Y.L.)
| | | | - Jennifer L Pluznick
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, MD (J.L.P.)
| | - Dominik N Muller
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (D.N.M.)
- Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Germany (D.N.M.)
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany (D.N.M.)
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany (D.N.M.)
| | - Francine Z Marques
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Melbourne, Australia (R.R.M., F.Z.M.)
- Victorian Heart Institute, Monash University, Melbourne, Australia (R.R.M., F.Z.M.)
- Baker Heart and Diabetes Institute, Melbourne, Australia (R.R.M., F.Z.M.)
| | - Bina Joe
- Department of Integrative Physiology and Anesthesiology, Baylor College of Medicine, Houston, TX (D.J.D.)
| |
Collapse
|
32
|
Fu P, Wang C, Zheng S, Qiao L, Gao W, Gong L. Connection of pre-competition anxiety with gut microbiota and metabolites in wrestlers with varying sports performances based on brain-gut axis theory. BMC Microbiol 2024; 24:147. [PMID: 38678197 PMCID: PMC11055349 DOI: 10.1186/s12866-024-03279-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 03/26/2024] [Indexed: 04/29/2024] Open
Abstract
OBJECTIVE The purpose of this study is to investigate the connection of pre-competition anxiety with gut microbiota and metabolites in wrestlers with different sports performances. METHODS One week prior to a national competition, 12 wrestlers completed anxiety questionnaires. Faecal and urine samples were collected for the analysis of gut microbiota and metabolites through the high-throughput sequencing of the 16 S rRNA gene in conjunction with untargeted metabolomics technology. The subjects were divided into two groups, namely, achievement (CP) and no-achievement (CnP) wrestlers, on the basis of whether or not their performances placed them in the top 16 at the competition. The relationship amongst the variations in gut microbiota, metabolites, and anxiety indicators was analyzed. RESULTS (1) The CP group exhibited significantly higher levels of "state self-confidence," "self-confidence," and "somatic state anxiety" than the CnP group. Conversely, the CP group displayed lower levels of "individual failure anxiety" and "sports competition anxiety" than the CnP group. (2) The gut microbiota in the CP group was more diverse and abundant than that in the CnP group. Pre-competition anxiety was linked to Oscillospiraceae UCG_005, Paraprevotella, Ruminococcaceae and TM7x. (3) The functions of differential metabolites in faeces and urine of the CP/CnP group were mainly enriched in caffeine metabolism, lipopolysaccharide biosynthesis and VEGF and mTOR signaling pathways. Common differential metabolites in feces and urine were significantly associated with multiple anxiety indicators. CONCLUSIONS Wrestlers with different sports performance have different pre-competition anxiety states, gut microbiota distribution and abundance and differential metabolites in faeces and urine. A certain correlation exists between these psychological and physiological indicators.
Collapse
Affiliation(s)
- Pengyu Fu
- Department of Physical Education, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
- Key Laboratory of Exercise and Physical Fitness, Ministry of Education, Beijing Sport University, Beijing, 100084, China
| | - Cuiping Wang
- College of Sports and Health Sciences, Xi'an Physical Education University, Xi'an, 710068, Shaanxi, China
| | - Shuai Zheng
- Department of Physical Education, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Lei Qiao
- College of Life Science, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Weiyang Gao
- School of Languages and Cultural Communication, English Department, Xi'An Mingde Institute of Technology, Xi'an, 710124, Shaanxi, China
| | - Lijing Gong
- Key Laboratory of Exercise and Physical Fitness, Ministry of Education, Beijing Sport University, Beijing, 100084, China.
| |
Collapse
|
33
|
Kang P, Wang AZX. Microbiota-gut-brain axis: the mediator of exercise and brain health. PSYCHORADIOLOGY 2024; 4:kkae007. [PMID: 38756477 PMCID: PMC11096970 DOI: 10.1093/psyrad/kkae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/04/2024] [Accepted: 04/16/2024] [Indexed: 05/18/2024]
Abstract
The brain controls the nerve system, allowing complex emotional and cognitive activities. The microbiota-gut-brain axis is a bidirectional neural, hormonal, and immune signaling pathway that could link the gastrointestinal tract to the brain. Over the past few decades, gut microbiota has been demonstrated to be an essential component of the gastrointestinal tract that plays a crucial role in regulating most functions of various body organs. The effects of the microbiota on the brain occur through the production of neurotransmitters, hormones, and metabolites, regulation of host-produced metabolites, or through the synthesis of metabolites by the microbiota themselves. This affects the host's behavior, mood, attention state, and the brain's food reward system. Meanwhile, there is an intimate association between the gut microbiota and exercise. Exercise can change gut microbiota numerically and qualitatively, which may be partially responsible for the widespread benefits of regular physical activity on human health. Functional magnetic resonance imaging (fMRI) is a non-invasive method to show areas of brain activity enabling the delineation of specific brain regions involved in neurocognitive disorders. Through combining exercise tasks and fMRI techniques, researchers can observe the effects of exercise on higher brain functions. However, exercise's effects on brain health via gut microbiota have been little studied. This article reviews and highlights the connections between these three interactions, which will help us to further understand the positive effects of exercise on brain health and provide new strategies and approaches for the prevention and treatment of brain diseases.
Collapse
Affiliation(s)
- Piao Kang
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | | |
Collapse
|
34
|
Bertuccioli A, Zonzini GB, Cazzaniga M, Cardinali M, Di Pierro F, Gregoretti A, Zerbinati N, Guasti L, Matera MR, Cavecchia I, Palazzi CM. Sports-Related Gastrointestinal Disorders: From the Microbiota to the Possible Role of Nutraceuticals, a Narrative Analysis. Microorganisms 2024; 12:804. [PMID: 38674748 PMCID: PMC11051759 DOI: 10.3390/microorganisms12040804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/05/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Intense physical exercise can be related to a significant incidence of gastrointestinal symptoms, with a prevalence documented in the literature above 80%, especially for more intense forms such as running. This is in an initial phase due to the distancing of the flow of blood from the digestive system to the skeletal muscle and thermoregulatory systems, and secondarily to sympathetic nervous activation and hormonal response with alteration of intestinal motility, transit, and nutrient absorption capacity. The sum of these effects results in a localized inflammatory process with disruption of the intestinal microbiota and, in the long term, systemic inflammation. The most frequent early symptoms include abdominal cramps, flatulence, the urge to defecate, rectal bleeding, diarrhea, nausea, vomiting, regurgitation, chest pain, heartburn, and belching. Promoting the stability of the microbiota can contribute to the maintenance of correct intestinal permeability and functionality, with better control of these symptoms. The literature documents various acute and chronic alterations of the microbiota following the practice of different types of activities. Several nutraceuticals can have functional effects on the control of inflammatory dynamics and the stability of the microbiota, exerting both nutraceutical and prebiotic effects. In particular, curcumin, green tea catechins, boswellia, berberine, and cranberry PACs can show functional characteristics in the management of these situations. This narrative review will describe its application potential.
Collapse
Affiliation(s)
- Alexander Bertuccioli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61122 Urbino, Italy; (A.B.); (G.B.Z.); (M.C.)
- Microbiota International Clinical Society, 10123 Torino, Italy; (M.C.); (F.D.P.); (A.G.); (M.R.M.); (I.C.)
| | - Giordano Bruno Zonzini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61122 Urbino, Italy; (A.B.); (G.B.Z.); (M.C.)
| | - Massimiliano Cazzaniga
- Microbiota International Clinical Society, 10123 Torino, Italy; (M.C.); (F.D.P.); (A.G.); (M.R.M.); (I.C.)
- Scientific & Research Department, Velleja Research, 20125 Milano, Italy
| | - Marco Cardinali
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61122 Urbino, Italy; (A.B.); (G.B.Z.); (M.C.)
- Department of Internal Medicine, Infermi Hospital, AUSL Romagna, 47921 Rimini, Italy
| | - Francesco Di Pierro
- Microbiota International Clinical Society, 10123 Torino, Italy; (M.C.); (F.D.P.); (A.G.); (M.R.M.); (I.C.)
- Scientific & Research Department, Velleja Research, 20125 Milano, Italy
- Department of Medicine and Surgery, University of Insurbia, 21100 Varese, Italy; (N.Z.); (L.G.)
| | - Aurora Gregoretti
- Microbiota International Clinical Society, 10123 Torino, Italy; (M.C.); (F.D.P.); (A.G.); (M.R.M.); (I.C.)
| | - Nicola Zerbinati
- Department of Medicine and Surgery, University of Insurbia, 21100 Varese, Italy; (N.Z.); (L.G.)
| | - Luigina Guasti
- Department of Medicine and Surgery, University of Insurbia, 21100 Varese, Italy; (N.Z.); (L.G.)
| | - Maria Rosaria Matera
- Microbiota International Clinical Society, 10123 Torino, Italy; (M.C.); (F.D.P.); (A.G.); (M.R.M.); (I.C.)
| | - Ilaria Cavecchia
- Microbiota International Clinical Society, 10123 Torino, Italy; (M.C.); (F.D.P.); (A.G.); (M.R.M.); (I.C.)
| | - Chiara Maria Palazzi
- Microbiota International Clinical Society, 10123 Torino, Italy; (M.C.); (F.D.P.); (A.G.); (M.R.M.); (I.C.)
| |
Collapse
|
35
|
Luo YX, Yang LL, Yao XQ. Gut microbiota-host lipid crosstalk in Alzheimer's disease: implications for disease progression and therapeutics. Mol Neurodegener 2024; 19:35. [PMID: 38627829 PMCID: PMC11020986 DOI: 10.1186/s13024-024-00720-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
Trillions of intestinal bacteria in the human body undergo dynamic transformations in response to physiological and pathological changes. Alterations in their composition and metabolites collectively contribute to the progression of Alzheimer's disease. The role of gut microbiota in Alzheimer's disease is diverse and complex, evidence suggests lipid metabolism may be one of the potential pathways. However, the mechanisms that gut microbiota mediate lipid metabolism in Alzheimer's disease pathology remain unclear, necessitating further investigation for clarification. This review highlights the current understanding of how gut microbiota disrupts lipid metabolism and discusses the implications of these discoveries in guiding strategies for the prevention or treatment of Alzheimer's disease based on existing data.
Collapse
Affiliation(s)
- Ya-Xi Luo
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ling-Ling Yang
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiu-Qing Yao
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- Chongqing Municipality Clinical Research Center for Geriatric Medicine, Chongqing, China.
- Department of Rehabilitation Therapy, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
36
|
Giuriato G, Romanelli MG, Bartolini D, Vernillo G, Pedrinolla A, Moro T, Franchi M, Locatelli E, Andani ME, Laginestra FG, Barbi C, Aloisi GF, Cavedon V, Milanese C, Orlandi E, De Simone T, Fochi S, Patuzzo C, Malerba G, Fabene P, Donadelli M, Stabile AM, Pistilli A, Rende M, Galli F, Schena F, Venturelli M. Sex differences in neuromuscular and biological determinants of isometric maximal force. Acta Physiol (Oxf) 2024; 240:e14118. [PMID: 38385696 DOI: 10.1111/apha.14118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/29/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Abstract
AIM Force expression is characterized by an interplay of biological and molecular determinants that are expected to differentiate males and females in terms of maximal performance. These include muscle characteristics (muscle size, fiber type, contractility), neuromuscular regulation (central and peripheral factors of force expression), and individual genetic factors (miRNAs and gene/protein expression). This research aims to comprehensively assess these physiological variables and their role as determinants of maximal force difference between sexes. METHODS Experimental evaluations include neuromuscular components of isometric contraction, intrinsic muscle characteristics (proteins and fiber type), and some biomarkers associated with muscle function (circulating miRNAs and gut microbiome) in 12 young and healthy males and 12 females. RESULTS Male strength superiority appears to stem primarily from muscle size while muscle fiber-type distribution plays a crucial role in contractile properties. Moderate-to-strong pooled correlations between these muscle parameters were established with specific circulating miRNAs, as well as muscle and plasma proteins. CONCLUSION Muscle size is crucial in explaining the differences in maximal voluntary isometric force generation between males and females with similar fiber type distribution. Potential physiological mechanisms are seen from associations between maximal force, skeletal muscle contractile properties, and biological markers.
Collapse
Affiliation(s)
- Gaia Giuriato
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- Surgical, Medical and Dental Department of Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Maria Grazia Romanelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Desirée Bartolini
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Gianluca Vernillo
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
- Department of Social Sciences, University of Alberta - Augustana Campus, Camrose, Alberta, Canada
| | - Anna Pedrinolla
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Tatiana Moro
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Martino Franchi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Elena Locatelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Mehran Emadi Andani
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Fabio Giuseppe Laginestra
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- Department of Anesthesiology, University of Utah, Utah, USA
| | - Chiara Barbi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Gloria Fiorini Aloisi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Valentina Cavedon
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Chiara Milanese
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Elisa Orlandi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Tonia De Simone
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Stefania Fochi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Cristina Patuzzo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Giovanni Malerba
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Paolo Fabene
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Anna Maria Stabile
- Department of Medicine and Surgery, Section of Human Anatomy, Clinical and Forensic, School of Medicine, University of Perugia, Perugia, Italy
| | - Alessandra Pistilli
- Department of Medicine and Surgery, Section of Human Anatomy, Clinical and Forensic, School of Medicine, University of Perugia, Perugia, Italy
| | - Mario Rende
- Department of Medicine and Surgery, Section of Human Anatomy, Clinical and Forensic, School of Medicine, University of Perugia, Perugia, Italy
| | - Francesco Galli
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Federico Schena
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Massimo Venturelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- Department of Internal Medicine, University of Utah, Utah, USA
| |
Collapse
|
37
|
Jang HJ, Lee NK, Paik HD. A Narrative Review on the Advance of Probiotics to Metabiotics. J Microbiol Biotechnol 2024; 34:487-494. [PMID: 38247208 PMCID: PMC11018519 DOI: 10.4014/jmb.2311.11023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
Recently, the term metabiotics has emerged as a new concept of probiotics. This concept entails combining existing probiotic components with metabolic by-products improve specific physiological functionalities. Representative ingredients of these metabiotics include short-chain fatty acids (SCFAs), bacteriocins, polysaccharides, and peptides. The new concept is highly regarded as it complements the side effects of existing probiotics and is safe and easy to administer. Known health functions of metabiotics are mainly immune regulation, anti-inflammatory, anticancer, and brain-neurological health. Research has been actively conducted on the health benefits related to the composition of intestinal microorganisms. Among them, the focus has been on brain neurological health, which requires extensive research. This study showed that neurological disorders, such as depression, anxiety, autism spectrum disorder, Alzheimer's disease, and Parkinson's disease, can be treated and prevented according to the gut-brain axis theory by changing the intestinal microflora. In addition, various studies are being conducted on the immunomodulatory and anticancer effects of substances related to metabiotics of the microbiome. In particular, its efficacy is expected to be confirmed through human studies on various cancers. Therefore, developing various health functional effects of the next-generation probiotics such as metabiotics to prevent or treatment of various diseases is anticipated.
Collapse
Affiliation(s)
- Hye Ji Jang
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Na-Kyoung Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
38
|
Bali P, Lal P, Sivapuram MS, Kutikuppala LVS, Avti P, Chanana A, Kumar S, Anand A. Mind over Microbes: Investigating the Interplay between Lifestyle Factors, Gut Microbiota, and Brain Health. Neuroepidemiology 2024; 58:426-448. [PMID: 38531341 DOI: 10.1159/000538416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 03/08/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND The gut microbiota (GM) of the human body comprises several species of microorganisms. This microorganism plays a significant role in the physiological and pathophysiological processes of various human diseases. METHODS The literature review includes studies that describe causative factors that influence GM. The GM is sensitive to various factors like circadian rhythms, environmental agents, physical activity, nutrition, and hygiene that together impact the functioning and composition of the gut microbiome. This affects the health of the host, including the psycho-neural aspects, due to the interconnectivity between the brain and the gut. Hence, this paper examines the relationship of GM with neurodegenerative disorders in the context of these aforesaid factors. CONCLUSION Future studies that identify the regulatory pathways associated with gut microbes can provide a causal link between brain degeneration and the gut at a molecular level. Together, this review could be helpful in designing preventive and treatment strategies aimed at GM, so that neurodegenerative diseases can be treated.
Collapse
Affiliation(s)
- Parul Bali
- Department of Biophysics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
- Department of Neuroscience, University of Florida, Gainesville, Florida, USA
| | - Parth Lal
- Advance Pediatric Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Madhava Sai Sivapuram
- Department of General Medicine, Dr. Pinnamaneni Siddhartha Institute of Medical Sciences and Research Foundation, Peda Avutapalli, India
| | | | - Pramod Avti
- Department of Biophysics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | - Saurabh Kumar
- CCRYN-Collaborative Centre for Mind Body Intervention through Yoga, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Akshay Anand
- CCRYN-Collaborative Centre for Mind Body Intervention through Yoga, Postgraduate Institute of Medical Education and Research, Chandigarh, India
- Neuroscience Research Lab, Department of Neurology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
- Centre for Cognitive Science and Phenomenology, Panjab University, Chandigarh, India
| |
Collapse
|
39
|
Kossowska M, Olejniczak S, Karbowiak M, Mosiej W, Zielińska D, Brzezicka A. The Interplay between Gut Microbiota and Cognitive Functioning in the Healthy Aging Population: A Systematic Review. Nutrients 2024; 16:852. [PMID: 38542764 PMCID: PMC10974508 DOI: 10.3390/nu16060852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND The gut microbiota in healthy older individuals typically show a decrease in beneficial bacteria like Bifidobacterium and Lactobacillus, alongside an increase in pro-inflammatory microbes such as Enterobacteriaceae and Clostridia. These changes contrast with younger and middle-aged individuals and appear to correlate with cognitive status. Although there is extensive research on gut microbiota and cognitive functions in cognitively impaired elderly individuals, its impact on cognitively healthy elderly populations has not been extensively studied. METHOD A comprehensive literature search was conducted across PubMed, EBSCO, Web of Science, and Scopus databases to identify studies exploring the relationship between gut microbiota composition and cognitive functioning in healthy older adults. During the literature screening process, each record was initially assessed by its title, abstract, and keywords to exclude articles that did not align with the scope of this review. Three authors independently screened and retrieved the records. The inclusion criteria included: (1) publication in peer-reviewed journals; (2) studies involving neurologically, cognitively, and medically healthy populations; (3) participants identified as older adults, defined for this review as individuals aged 45 years and older due to the limited number of records; (4) analysis of gut microbiota; and (5) assessment of cognitive function. Subsequently, full texts were analyzed to determine eligibility. The exclusion criteria encompassed: (1) incorrect publication type; (2) inappropriate sample population; (3) unsuitable study design; (4) absence of one or more inclusion criteria; and (5) studies based on animal research. A risk of bias assessment was performed for each included study using the Joanna Briggs Institute (JBI) checklist, ensuring all selected studies met established quality standards. RESULTS A total of 6 eligible research articles from a possible 1752 published until March 2024 were identified and included. We categorized the included studies into two groups based on their focus: the taxonomic composition of gut microbiota and the alpha diversity, which is the variety of organisms within a sample. Additionally, two methods were identified for assessing cognition: neuropsychological tests and physiological measurements, notably electroencephalography (EEG). The studies show varying results regarding the abundance of specific bacterial taxa and their cognitive associations. Notably, the relationship between certain bacteria and cognition may vary when analyzed at different taxonomic levels, such as phylum versus family. CONCLUSIONS Changes in gut microbiota composition in the elderly, even without a cognitive impairment diagnosis, could potentially serve as early biological markers for Alzheimer's disease or other dementias before mild cognitive impairment appears.
Collapse
Affiliation(s)
- Maria Kossowska
- Institute of Psychology, SWPS University, 03-815 Warsaw, Poland; (M.K.); (S.O.)
| | - Sylwia Olejniczak
- Institute of Psychology, SWPS University, 03-815 Warsaw, Poland; (M.K.); (S.O.)
| | - Marcelina Karbowiak
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159c, 02-776 Warsaw, Poland; (M.K.); (W.M.); (D.Z.)
| | - Wioletta Mosiej
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159c, 02-776 Warsaw, Poland; (M.K.); (W.M.); (D.Z.)
| | - Dorota Zielińska
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159c, 02-776 Warsaw, Poland; (M.K.); (W.M.); (D.Z.)
| | - Aneta Brzezicka
- Institute of Psychology, SWPS University, 03-815 Warsaw, Poland; (M.K.); (S.O.)
| |
Collapse
|
40
|
Iwaniak P, Owe-Larsson M, Urbańska EM. Microbiota, Tryptophan and Aryl Hydrocarbon Receptors as the Target Triad in Parkinson's Disease-A Narrative Review. Int J Mol Sci 2024; 25:2915. [PMID: 38474162 DOI: 10.3390/ijms25052915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
In the era of a steadily increasing lifespan, neurodegenerative diseases among the elderly present a significant therapeutic and socio-economic challenge. A properly balanced diet and microbiome diversity have been receiving increasing attention as targets for therapeutic interventions in neurodegeneration. Microbiota may affect cognitive function, neuronal survival and death, and gut dysbiosis was identified in Parkinson's disease (PD). Tryptophan (Trp), an essential amino acid, is degraded by microbiota and hosts numerous compounds with immune- and neuromodulating properties. This broad narrative review presents data supporting the concept that microbiota, the Trp-kynurenine (KYN) pathway and aryl hydrocarbon receptors (AhRs) form a triad involved in PD. A disturbed gut-brain axis allows the bidirectional spread of pro-inflammatory molecules and α-synuclein, which may contribute to the development/progression of the disease. We suggest that the peripheral levels of kynurenines and AhR ligands are strongly linked to the Trp metabolism in the gut and should be studied together with the composition of the microbiota. Such an approach can clearly delineate the sub-populations of PD patients manifesting with a disturbed microbiota-Trp-KYN-brain triad, who would benefit from modifications in the Trp metabolism. Analyses of the microbiome, Trp-KYN pathway metabolites and AhR signaling may shed light on the mechanisms of intestinal distress and identify new targets for the diagnosis and treatment in early-stage PD. Therapeutic interventions based on the combination of a well-defined food regimen, Trp and probiotics seem of potential benefit and require further experimental and clinical research.
Collapse
Affiliation(s)
- Paulina Iwaniak
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, 20-059 Lublin, Poland
| | - Maja Owe-Larsson
- Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, Chałubińskiego 5, 02-004 Warsaw, Poland
- Laboratory of Center for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| | - Ewa M Urbańska
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, 20-059 Lublin, Poland
| |
Collapse
|
41
|
Zhu F, Li F, Lyu MH, Feng BC, Lin L, Tang YR, Qian D, Yu T. Evaluation of the impact of overlapping upper gastrointestinal symptoms on the clinical characteristics of patients with functional constipation, along with risk factor analysis. J Dig Dis 2024; 25:176-190. [PMID: 38697922 DOI: 10.1111/1751-2980.13268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 05/05/2024]
Abstract
OBJECTIVES Functional constipation (FC), a common functional gastrointestinal disorder, is usually overlapping with upper gastrointestinal symptoms (UGS). We aimed to explore the clinical characteristics of patients with FC overlapping UGS along with the related risk factors. METHODS The differences in the severity of constipation symptoms, psychological state, quality of life (QoL), anorectal motility and perception function, autonomic function, and the effect of biofeedback therapy (BFT) among patients with FC in different groups were analyzed, along with the risk factors of overlapping UGS. RESULTS Compared with patients with FC alone, those with FC overlapping UGS had higher scores in the Patient Assessment of Constipation Symptoms and Self-Rating Anxiety Scale and lower scores in the Short Form-36 health survey (P < 0.05). Patients with FC overlapping UGS also had lower rectal propulsion, more negative autonomic nervous function, and worse BFT efficacy (P < 0.05). Overlapping UGS, especially overlapping functional dyspepsia, considerably affected the severity of FC. Logistic regression model showed that age, body mass index (BMI), anxiety, exercise, and sleep quality were independent factors influencing overlapping UGS in patients with FC. CONCLUSIONS Overlapping UGS reduces the physical and mental health and the QoL of patients with FC. It also increases the difficulty in the treatment of FC. Patient's age, BMI, anxiety, physical exercise, and sleep quality might be predictors for FC overlapping UGS.
Collapse
Affiliation(s)
- Feng Zhu
- Department of Gastroenterology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu Province, China
- Department of Gastroenterology, The First People's Hospital of Kunshan, Kunshan, Jiangsu Province, China
| | - Fei Li
- Department of Gastroenterology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Mei Hui Lyu
- Department of Gastroenterology, Yixing People's Hospital, Wuxi, Jiangsu Province, China
| | - Ben Chang Feng
- Department of Gastroenterology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Lin Lin
- Department of Gastroenterology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yu Rong Tang
- Department of Gastroenterology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Dong Qian
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Ting Yu
- Department of Gastroenterology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
42
|
Lai H, Tian G, Pan F, Zhang J, Wu H. Comparative prototypes and metabolites of Du-zhi pill in normal and cerebral ischemia rats by UHPLC-Q-TOF-MS/MS method. Heliyon 2024; 10:e25059. [PMID: 38317920 PMCID: PMC10838771 DOI: 10.1016/j.heliyon.2024.e25059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/07/2024] Open
Abstract
Du-Zhi pill (DZP) is widely used as a Chinese medicine in treating cerebral ischemia. UHPLC-Q-TOF-MS/MS techniques were used to detect and identify the metabolites in rat brain samples of normal and middle cerebral artery occlusion (MCAO) model rats administered with DZP. It was tentatively found that 43 prototypes and 93 metabolites could be identified in rat brain samples. Normal and MCAO model rat brain samples contained 19 prototype components. Eight prototype components were only detected in normal rat brain samples, while 16 were found only in MCAO model rat brain samples. It was determined that 47 metabolites had been identified in the normal rats, while 86 had been placed in MCAO model rats. There were 40 common metabolites in both normal and MCAO model rat brain samples. Seven metabolites were only detected in normal rat brain samples, while 46 were found only in MCAO rat brain samples. The comparison of metabolites in brain samples of normal and MCAO rats showed apparent differences. It was discovered that glucuronidation, methylation, acetylation, and sulfation are phase II metabolic routes of DZP, while hydrogenation, hydroxylation, and dehydroxylation are phase I metabolic routes. Moreover, hydrogenation, glucuronidation, hydroxylation, and methylation were the main metabolic pathways because of the number of metabolites identified in these metabolic pathways. The results provide a valuable reference for further research into effective substances of DZP for treating cerebral ischemia.
Collapse
Affiliation(s)
- Huaqing Lai
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Guanghuan Tian
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Fuzhu Pan
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jianyong Zhang
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Hongwei Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| |
Collapse
|
43
|
Matin S, Dadkhah M. BDNF/CREB signaling pathway contribution in depression pathogenesis: A survey on the non-pharmacological therapeutic opportunities for gut microbiota dysbiosis. Brain Res Bull 2024; 207:110882. [PMID: 38244808 DOI: 10.1016/j.brainresbull.2024.110882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/04/2023] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
Emerging evidence supports the gut microbiota and the brain communication in general health. This axis may affect behavior through modulating neurotransmission, and thereby involve in the pathogenesis and/or progression of different neuropsychiatric disorders such as depression. Brain-derived neurotrophic factor and cAMP response element-binding protein known as CREB/BDNF pathway plays have critical functions in the pathogenesis of depression as the same of mechanisms related to antidepressants. However, the putative causal significance of the CREB/BDNF signaling cascade in the gut-brain axis in depression remains unknown. Also interventions such as probiotics supplementation and exercise can influence microbiome also improve bidirectional communication of gut and brain. In this review we aim to explain the BDNF/CREB signaling pathway and gut microbiota dysfunction and then evaluate the potential role of probiotics, prebiotics, and exercise as a therapeutic target in the gut microbiota dysfunction induced depression. The current narrative review will specifically focus on the impact of exercise and diet on the intestinal microbiota component, as well as the effect that these therapies may have on the microbiota to alleviate depressive symptoms. Finally, we look at how BDNF/CREB signaling pathway may exert distinct effects on depression and gut microbiota dysfunction.
Collapse
Affiliation(s)
- Somaieh Matin
- Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Digestive Diseases Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Masoomeh Dadkhah
- Pharmaceutical Sciences Research center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
44
|
Baart AM, Mensink M, Witteman BJM. The impact of running on gastrointestinal symptoms in patients with irritable bowel syndrome. Neurogastroenterol Motil 2024; 36:e14707. [PMID: 37964184 DOI: 10.1111/nmo.14707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/13/2023] [Accepted: 10/25/2023] [Indexed: 11/16/2023]
Abstract
INTRODUCTION Physical activity has been suggested to alleviate gastrointestinal (GI) symptoms in patients with irritable bowel syndrome (IBS); however, evidence is scarce. Running has become increasingly popular and may be beneficial for patients with IBS. To obtain more insight in the potential application of running as therapy, we aimed to explore the impact of running and its intensity on GI symptoms in patients with IBS. METHODS Data from a large observational study in runners were used for this nested case-control study, which included 153 runners with IBS and 153 controls. All participants had completed a questionnaire on personal characteristics, running characteristics and GI symptoms. Regarding GI symptoms, the severity of nine symptoms was asked, both at rest and during and/or shortly (up to 3 h) after running. Each symptom could be scored on a scale from 0 (not bothersome) to 100 (very bothersome), resulting in a maximum total score of 900 points. KEY RESULTS The prevalence and total severity score of GI symptoms were higher in runners with IBS than in controls, both at rest and during running. Among runners with IBS, the median (25th-75th percentile) total severity score during/after running was significantly lower than at rest (118 [50-200] vs. 150 [90-217]), while in controls no significant difference between running and rest was observed. Analyses stratified for running intensity revealed that the beneficial effect in runners with IBS was present when their most intensive training session was moderately intensive or intensive but not very intensive. CONCLUSIONS & INFERENCES Running, particularly on moderate intensity, could have a beneficial effect on GI symptoms in patients with IBS.
Collapse
Affiliation(s)
- A Mireille Baart
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
- Sports Valley, Department of Sports Medicine, Gelderse Vallei Hospital, Ede, The Netherlands
| | - Marco Mensink
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Ben J M Witteman
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
- Department of Gastroenterology and Hepatology, Gelderse Vallei Hospital, Ede, The Netherlands
| |
Collapse
|
45
|
Rogers S, Charles A, Thomas RM. The Prospect of Harnessing the Microbiome to Improve Immunotherapeutic Response in Pancreatic Cancer. Cancers (Basel) 2023; 15:5708. [PMID: 38136254 PMCID: PMC10741649 DOI: 10.3390/cancers15245708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/24/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Pancreatic ductal adenocarcinoma cancer (PDAC) is projected to become the second leading cause of cancer-related death in the United States by 2030. Patients are often diagnosed with advanced disease, which explains the dismal 5-year median overall survival rate of ~12%. Immunotherapy has been successful in improving outcomes in the past decade for a variety of malignancies, including gastrointestinal cancers. However, PDAC is historically an immunologically "cold" tumor, one with an immunosuppressive environment and with restricted entry of immune cells that have limited the success of immunotherapy in these tumors. The microbiome, the intricate community of microorganisms present on and within humans, has been shown to contribute to many cancers, including PDAC. Recently, its role in tumor immunology and response to immunotherapy has generated much interest. Herein, the current state of the interaction of the microbiome and immunotherapy in PDAC is discussed with a focus on needed areas of study in order to harness the immune system to combat pancreatic cancer.
Collapse
Affiliation(s)
- Sherise Rogers
- Department of Medicine, Division of Hematology and Oncology, University of Florida College of Medicine, Gainesville, FL 32610, USA;
| | - Angel Charles
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610, USA;
| | - Ryan M. Thomas
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610, USA;
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL 32603, USA
| |
Collapse
|
46
|
Koleničová V, Vňuková MS, Anders M, Fišerová M, Raboch J, Ptáček R. A Review Article on Exercise Intolerance in Long COVID: Unmasking the Causes and Optimizing Treatment Strategies. Med Sci Monit 2023; 29:e941079. [PMID: 37897034 PMCID: PMC10619330 DOI: 10.12659/msm.941079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/20/2023] [Indexed: 10/29/2023] Open
Abstract
There is a growing body of research on SARS-CoV-2 (PASC), previously known as the post-COVID syndrome, a chronic condition characterized by symptoms that persist after SARS-CoV-2 infection. Among these symptoms, feelings of physical exhaustion and prolonged fatigue are particularly prevalent and can significantly impact patients' quality of life. These symptoms are associated with reduced overall physical capacity, decreased daily physical activity, malaise after intense training, and intolerance to physical activity (IFA). IFA, described as a reduced ability to perform physical activities typical for the patient's age, can often lead to a sedentary lifestyle. Prolonged physical inactivity can cause deterioration in the overall physical condition and disrupt mitochondrial function, triggering a vicious cycle of gradual symptom worsening. The underlying causes of PASC remain unclear; however, several biochemical mechanisms have been discussed to explain the body's energy depletion, and a multidisciplinary approach that combines physical and cognitive rehabilitation and lifestyle interventions such as exercise and diet modifications has been suggested to improve the overall health and well-being of PASC patients. This critical review aims to review the existing research on the possible causes and links among chronic fatigue, reduced physical activity, and exercise intolerance in patients with PASC. Further research into the underlying causes and treatment of PASC and the importance of developing individualized treatment is needed to address each patient's unique health requirements.
Collapse
|
47
|
Pedroza Matute S, Iyavoo S. Exploring the gut microbiota: lifestyle choices, disease associations, and personal genomics. Front Nutr 2023; 10:1225120. [PMID: 37867494 PMCID: PMC10585655 DOI: 10.3389/fnut.2023.1225120] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023] Open
Abstract
The gut microbiota is a rich and dynamic ecosystem that actively interacts with the human body, playing a significant role in the state of health and disease of the host. Diet, exercise, mental health, and other factors have exhibited the ability to influence the gut bacterial composition, leading to changes that can prevent and improve, or favor and worsen, both intestinal and extra-intestinal conditions. Altered gut microbial states, or 'dysbiosis', associated with conditions and diseases are often characterized by shifts in bacterial abundance and diversity, including an impaired Firmicutes to Bacteroidetes ratio. By understanding the effect of lifestyle on the gut microbiota, personalized advice can be generated to suit each individual profile and foster the adoption of lifestyle changes that can both prevent and ameliorate dysbiosis. The delivery of effective and reliable advice, however, depends not only on the available research and current understanding of the topic, but also on the methods used to assess individuals and to discover the associations, which can introduce bias at multiple stages. The aim of this review is to summarize how human gut microbial variability is defined and what lifestyle choices and diseases have shown association with gut bacterial composition. Furthermore, popular methods to investigate the human gut microbiota are outlined, with a focus on the possible bias caused by the lack of use of standardized methods. Finally, an overview of the current state of personalized advice based on gut microbiota testing is presented, underlining its power and limitations.
Collapse
Affiliation(s)
| | - Sasitaran Iyavoo
- Nkaarco Diagnostics Limited, Norwich, United Kingdom
- School of Chemistry, College of Health and Science, University of Lincoln, Lincoln, United Kingdom
| |
Collapse
|
48
|
Hwang DJ, Koo JH, Kim TK, Jang YC, Hyun AH, Yook JS, Yoon CS, Cho JY. Exercise as an antidepressant: exploring its therapeutic potential. Front Psychiatry 2023; 14:1259711. [PMID: 37772067 PMCID: PMC10523322 DOI: 10.3389/fpsyt.2023.1259711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023] Open
Abstract
The COVID-19 pandemic has increased the prevalence of depressive disorders worldwide, requiring alternative treatments beyond medication and psychotherapy. Exercise has positive effects on the brain; therefore, it has emerged as a promising therapeutic option for individuals with depression. Considerable research involving humans and animals offers compelling evidence to support the mental health benefits of physical activity or exercise mediated by the regulation of complex theoretical paradigms. However, challenges such as conducting long-term follow-up assessments and considering individual characteristics remain in human studies despite extensive efforts. While animal studies provide valuable insights into the potential benefits of exercise and its impact on outcomes related to depression and anxiety in rodents exposed to different stress paradigms, translating the findings to humans requires careful evaluation. More research is needed to establish precise exercise prescription guidelines and to better understand the complex relationship between exercise and depressive disorders. Therefore, this concise review explores the evidence supporting exercise intervention as an antidepressant treatment and its underlying mechanisms.
Collapse
Affiliation(s)
- Dong-Joo Hwang
- Exercise Biochemistry Laboratory, Korea National Sport University, Seoul, Republic of Korea
- Sport Science Institute, Korea National Sport University, Seoul, Republic of Korea
| | - Jung-Hoon Koo
- Exercise Biochemistry Laboratory, Korea National Sport University, Seoul, Republic of Korea
| | - Tae-Kyung Kim
- Exercise Biochemistry Laboratory, Korea National Sport University, Seoul, Republic of Korea
- Sport Science Institute, Korea National Sport University, Seoul, Republic of Korea
| | - Yong-Chul Jang
- Exercise Biochemistry Laboratory, Korea National Sport University, Seoul, Republic of Korea
| | - Ah-Hyun Hyun
- Exercise Biochemistry Laboratory, Korea National Sport University, Seoul, Republic of Korea
| | - Jang-Soo Yook
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Chang-Sun Yoon
- Department of Physical Education, Korea National Sport University, Seoul, Republic of Korea
| | - Joon-Yong Cho
- Exercise Biochemistry Laboratory, Korea National Sport University, Seoul, Republic of Korea
| |
Collapse
|
49
|
Muñoz-Rodríguez D, Bourqqia-Ramzi M, García-Esteban MT, Murciano-Cespedosa A, Vian A, Lombardo-Hernández J, García-Pérez P, Conejero F, Mateos González Á, Geuna S, Herrera-Rincon C. Bioelectrical State of Bacteria Is Linked to Growth Dynamics and Response to Neurotransmitters: Perspectives for the Investigation of the Microbiota-Brain Axis. Int J Mol Sci 2023; 24:13394. [PMID: 37686197 PMCID: PMC10488255 DOI: 10.3390/ijms241713394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Inter-cellular communication is mediated by a sum of biochemical, biophysical, and bioelectrical signals. This might occur not only between cells belonging to the same tissue and/or animal species but also between cells that are, from an evolutionary point of view, far away. The possibility that bioelectrical communication takes place between bacteria and nerve cells has opened exciting perspectives in the study of the gut microbiota-brain axis. The aim of this paper is (i) to establish a reliable method for the assessment of the bioelectrical state of two bacterial strains: Bacillus subtilis (B. subtilis) and Limosilactobacillus reuteri (L. reuteri); (ii) to monitor the bacterial bioelectrical profile throughout its growth dynamics; and (iii) to evaluate the effects of two neurotransmitters (glutamate and γ-aminobutyric acid-GABA) on the bioelectrical signature of bacteria. Our results show that membrane potential (Vmem) and the proliferative capacity of the population are functionally linked in B. subtilis in each phase of the cell cycle. Remarkably, we demonstrate that bacteria respond to neural signals by changing Vmem properties. Finally, we show that Vmem changes in response to neural stimuli are present also in a microbiota-related strain L. reuteri. Our proof-of-principle data reveal a new methodological approach for the better understanding of the relation between bacteria and the brain, with a special focus on gut microbiota. Likewise, this approach will open exciting perspectives in the study of the inter-cellular mechanisms which regulate the bi-directional communication between bacteria and neurons and, ultimately, for designing gut microbiota-brain axis-targeted treatments for neuropsychiatric diseases.
Collapse
Affiliation(s)
- David Muñoz-Rodríguez
- Biomathematics Unit, Data Analysis & Computational Tools for Biology Research Group, Department of Biodiversity, Ecology & Evolution, and Modeling, Complutense University of Madrid, 28040 Madrid, Spain
- Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy
| | - Marwane Bourqqia-Ramzi
- Biomathematics Unit, Data Analysis & Computational Tools for Biology Research Group, Department of Biodiversity, Ecology & Evolution, and Modeling, Complutense University of Madrid, 28040 Madrid, Spain
- Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy
| | - Maria Teresa García-Esteban
- Department of Genetics, Physiology and Microbiology, Complutense University of Madrid, 28040 Madrid, Spain (A.V.)
| | - Antonio Murciano-Cespedosa
- Biomathematics Unit, Data Analysis & Computational Tools for Biology Research Group, Department of Biodiversity, Ecology & Evolution, and Modeling, Complutense University of Madrid, 28040 Madrid, Spain
- Neuro-Computing and Neuro-Robotics Research Group, Neural Plasticity Research Group Instituto Investigación Sanitaria Hospital Clínico San Carlos (IdISSC), Complutense University of Madrid, 28040 Madrid, Spain
| | - Alejandro Vian
- Department of Genetics, Physiology and Microbiology, Complutense University of Madrid, 28040 Madrid, Spain (A.V.)
| | - Juan Lombardo-Hernández
- Biomathematics Unit, Data Analysis & Computational Tools for Biology Research Group, Department of Biodiversity, Ecology & Evolution, and Modeling, Complutense University of Madrid, 28040 Madrid, Spain
- Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy
| | - Pablo García-Pérez
- Biomathematics Unit, Data Analysis & Computational Tools for Biology Research Group, Department of Biodiversity, Ecology & Evolution, and Modeling, Complutense University of Madrid, 28040 Madrid, Spain
| | - Francisco Conejero
- Biomathematics Unit, Data Analysis & Computational Tools for Biology Research Group, Department of Biodiversity, Ecology & Evolution, and Modeling, Complutense University of Madrid, 28040 Madrid, Spain
| | - Álvaro Mateos González
- NYU-ECNU Institute of Mathematical Sciences, Shanghai New York University, Shanghai 200122, China;
| | - Stefano Geuna
- Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy
| | - Celia Herrera-Rincon
- Biomathematics Unit, Data Analysis & Computational Tools for Biology Research Group, Department of Biodiversity, Ecology & Evolution, and Modeling, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
50
|
Kim HJ, Kim YJ, Kim YJ, Baek JH, Kim HS, Kim IY, Seong JK. Microbiota influences host exercise capacity via modulation of skeletal muscle glucose metabolism in mice. Exp Mol Med 2023; 55:1820-1830. [PMID: 37542180 PMCID: PMC10474268 DOI: 10.1038/s12276-023-01063-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 04/17/2023] [Accepted: 04/30/2023] [Indexed: 08/06/2023] Open
Abstract
The microbiota enhances exercise performance and regulates host physiology and energy metabolism by producing beneficial metabolites via bacterial fermentation. In this study, we discovered that germ-free (GF) mice had a reduced capacity for aerobic exercise as well as low oxygen consumption rates and glucose availability. Surprisingly, GF mice showed lower body weight gain and lower fat mass than specific pathogen-free (SPF) mice. Therefore, we hypothesized that these paradoxical phenotypes could be mediated by a compensatory increase in lipolysis in adipose tissues owing to impaired glucose utilization in skeletal muscle. Our data revealed that gut microbiota depletion impairs host aerobic exercise capacity via the deterioration of glucose storage and utilization. The improved browning ability of GF mice may have contributed to the lean phenotype and negatively affected energy generation. These adaptations limit obesity in GF mice but impede their immediate fuel supply during exercise, resulting in decreased exercise performance.
Collapse
Affiliation(s)
- Hye Jin Kim
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
- Korea Mouse Phenotyping Center (KMPC), Seoul National University, 08826, Seoul, Republic of Korea
| | - Youn Ju Kim
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
- Korea Mouse Phenotyping Center (KMPC), Seoul National University, 08826, Seoul, Republic of Korea
- BK21 Program for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yong Jae Kim
- Korea Mouse Phenotyping Center (KMPC), Seoul National University, 08826, Seoul, Republic of Korea
| | - Ji Hyeon Baek
- Korea Mouse Phenotyping Center (KMPC), Seoul National University, 08826, Seoul, Republic of Korea
| | - Hak Su Kim
- Korea Mouse Phenotyping Center (KMPC), Seoul National University, 08826, Seoul, Republic of Korea
| | - Il Yong Kim
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
- Korea Mouse Phenotyping Center (KMPC), Seoul National University, 08826, Seoul, Republic of Korea
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.
- Korea Mouse Phenotyping Center (KMPC), Seoul National University, 08826, Seoul, Republic of Korea.
- BK21 Program for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.
- Interdisciplinary Program for Bioinformatics, Program for Cancer Biology and BIO-MAX/N-Bio Institute, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|