1
|
Xie H, Xiong T, Guan J, Han Y, Feng H, Xu F, Chen S, Li J, Xie Z, Liu D, Chen R. Induction of mitochondrial damage via the CREB3L1/miR-34c/COX1 axis by porcine epidemic diarrhea virus infection facilitates pathogenicity. J Virol 2025; 99:e0059124. [PMID: 40071922 PMCID: PMC11998543 DOI: 10.1128/jvi.00591-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 12/23/2024] [Indexed: 03/26/2025] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a primary cause of viral diarrhea in neonatal piglets, leading to substantial economic losses in the swine industry globally. It primarily targets epithelial cells of the small intestine, compromising intestinal function and resulting in the death of affected animals. As mitochondria are essential for maintaining gut health, this study investigates the effects of PEDV infection on mitochondrial function in small intestinal epithelial cells and its subsequent impacts. Using small RNA sequencing, fluorescence in situ hybridization, dual luciferase reporter assay, gene overexpression, and silencing experiments, we investigated the mitochondrial structural and functional impairments induced by PEDV infection in jejunum epithelial cells of piglets and characterized the regulatory pattern of miRNAs in mitochondria of jejunum epithelial cells during PEDV infection. The results indicate that PEDV infection leads to the upregulation and mitochondrial localization of the nuclear-encoded microRNA, miR-34c, which in turn suppresses COX1 expression. The activation of the miR-34c/COX1 axis diminishes mitochondrial complex III, IV, and V activities, depletes ATP, lowers mitochondrial oxygen consumption, induces mitochondrial depolarization, increases the accumulation of mitochondrial reactive oxygen species (mtROS), and stimulates mitophagy. Furthermore, we confirm that CREB3L1 acts as an upstream transcription factor regulating the miR-34c/COX1 axis during PEDV infection, modulating mitochondrial damage in the epithelial cells of the jejunum. These findings demonstrate for the first time that PEDV infection activates the miR-34c/COX1 axis via the transcription factor CREB3L1 and regulates the nuclear-mitochondrial communication and mitochondrial fate, providing a new perspective on the pathogenesis of PEDV.IMPORTANCEThis study reveals the mechanism by which the porcine epidemic diarrhea virus (PEDV) disrupts mitochondrial function in piglets, enhancing viral pathogenicity. By demonstrating how PEDV infection upregulates miR-34c, leading to COX1 suppression and subsequent mitochondrial dysfunction, the research highlights a novel aspect of viral manipulation of host cellular mechanisms. These findings provide a deeper understanding of the PEDV pathogenesis and identify potential targets for therapeutic intervention, advancing efforts to mitigate the economic impact of PEDV on the swine industry.
Collapse
Affiliation(s)
- Hangao Xie
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Zhaoqing Branch Centre of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
| | - Ting Xiong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Zhaoqing Branch Centre of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
| | - Jinlian Guan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Zhaoqing Branch Centre of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
| | - Yin Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Zhaoqing Branch Centre of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
| | - Haixia Feng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Fei Xu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Sixuan Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jiahui Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ziwei Xie
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Zhaoqing Branch Centre of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
| | - Dingxiang Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Zhaoqing Branch Centre of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
- Integrative Microbiology Research Centre, South China Agricultural University Integrative Microbiology Research Centre, Guangzhou, China
| | - Ruiai Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Zhaoqing Branch Centre of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
- Key Laboratory of Manufacture Technology of Veterinary Bioproducts, Ministry of Agriculture and Rural Affairs, Beijing, China
- Guangdong Enterprise Key Laboratory of Biotechnology R&D of Veterinary Biologics, Zhaoqing, China
- Zhaoqing Dahuanong Biology Medicine Co. Ltd., Zhaoqing, China
| |
Collapse
|
2
|
Sommer F, Bernardes JP, Best L, Sommer N, Hamm J, Messner B, López-Agudelo VA, Fazio A, Marinos G, Kadibalban AS, Ito G, Falk-Paulsen M, Kaleta C, Rosenstiel P. Life-long microbiome rejuvenation improves intestinal barrier function and inflammaging in mice. MICROBIOME 2025; 13:91. [PMID: 40176137 PMCID: PMC11963433 DOI: 10.1186/s40168-025-02089-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 03/10/2025] [Indexed: 04/04/2025]
Abstract
BACKGROUND Alterations in the composition and function of the intestinal microbiota have been observed in organismal aging across a broad spectrum of animal phyla. Recent findings, which have been derived mostly in simple animal models, have even established a causal relationship between age-related microbial shifts and lifespan, suggesting microbiota-directed interventions as a potential tool to decelerate aging processes. To test whether a life-long microbiome rejuvenation strategy could delay or even prevent aging in non-ruminant mammals, we performed recurrent fecal microbial transfer (FMT) in mice throughout life. Transfer material was either derived from 8-week-old mice (young microbiome, yMB) or from animals of the same age as the recipients (isochronic microbiome, iMB) as control. Motor coordination and strength were analyzed by rotarod and grip strength tests, intestinal barrier function by serum LAL assay, transcriptional responses by single-cell RNA sequencing, and fecal microbial community properties by 16S rRNA gene profiling and metagenomics. RESULTS Colonization with yMB improved coordination and intestinal permeability compared to iMB. yMB encoded fewer pro-inflammatory factors and altered metabolic pathways favoring oxidative phosphorylation. Ecological interactions among bacteria in yMB were more antagonistic than in iMB implying more stable microbiome communities. Single-cell RNA sequencing analysis of intestinal mucosa revealed a salient shift of cellular phenotypes in the yMB group with markedly increased ATP synthesis and mitochondrial pathways as well as a decrease of age-dependent mesenchymal hallmark transcripts in enterocytes and TA cells, but reduced inflammatory signaling in macrophages. CONCLUSIONS Taken together, we demonstrate that life-long and repeated transfer of microbiota material from young mice improved age-related processes including coordinative ability (rotarod), intestinal permeability, and both metabolic and inflammatory profiles mainly of macrophages but also of other immune cells. Video Abstract.
Collapse
Affiliation(s)
- Felix Sommer
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, 24105, Germany
| | - Joana P Bernardes
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, 24105, Germany
| | - Lena Best
- Institute of Experimental Medicine, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, 24105, Germany
| | - Nina Sommer
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, 24105, Germany
| | - Jacob Hamm
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, 24105, Germany
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center, Göttingen, Germany
| | - Berith Messner
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, 24105, Germany
| | - Víctor A López-Agudelo
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, 24105, Germany
| | - Antonella Fazio
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, 24105, Germany
- Department of Medicine I, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Georgios Marinos
- Institute of Experimental Medicine, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, 24105, Germany
- CAU Innovation Gmbh, Christian-Albrechts-University, Kiel, 24118, Germany
| | - A Samer Kadibalban
- Institute of Experimental Medicine, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, 24105, Germany
| | - Go Ito
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, 24105, Germany
- Department of Gastroenterology and Hepatology, Institute of Science Tokyo, Tokyo, Japan
- The Center for Personalized Medicine for Healthy Aging, Institute of Science Tokyo, Tokyo, Japan
| | - Maren Falk-Paulsen
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, 24105, Germany
| | - Christoph Kaleta
- Institute of Experimental Medicine, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, 24105, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, 24105, Germany.
| |
Collapse
|
3
|
Kaden T, Alonso‐Román R, Stallhofer J, Gresnigt MS, Hube B, Mosig AS. Leveraging Organ-on-Chip Models to Investigate Host-Microbiota Dynamics and Targeted Therapies for Inflammatory Bowel Disease. Adv Healthc Mater 2025; 14:e2402756. [PMID: 39491534 PMCID: PMC12004439 DOI: 10.1002/adhm.202402756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/29/2024] [Indexed: 11/05/2024]
Abstract
Inflammatory bowel disease (IBD) is an idiopathic gastrointestinal disease with drastically increasing incidence rates. Due to its multifactorial etiology, a precise investigation of the pathogenesis is extremely difficult. Although reductionist cell culture models and more complex disease models in animals have clarified the understanding of individual disease mechanisms and contributing factors of IBD in the past, it remains challenging to bridge research and clinical practice. Conventional 2D cell culture models cannot replicate complex host-microbiota interactions and stable long-term microbial culture. Further, extrapolating data from animal models to patients remains challenging due to genetic and environmental diversity leading to differences in immune responses. Human intestine organ-on-chip (OoC) models have emerged as an alternative in vitro model approach to investigate IBD. OoC models not only recapitulate the human intestinal microenvironment more accurately than 2D cultures yet may also be advantageous for the identification of important disease-driving factors and pharmacological interventions targets due to the possibility of emulating different complexities. The predispositions and biological hallmarks of IBD focusing on host-microbiota interactions at the intestinal mucosal barrier are elucidated here. Additionally, the potential of OoCs to explore microbiota-related therapies and personalized medicine for IBD treatment is discussed.
Collapse
Affiliation(s)
- Tim Kaden
- Dynamic42 GmbH07745JenaGermany
- Institute of Biochemistry IICenter for Sepsis Control and CareJena University Hospital07747JenaGermany
| | - Raquel Alonso‐Román
- Department of Microbial Pathogenicity MechanismsLeibniz Institute for Natural Product Research and Infection Biology – Hans‐Knöll‐Institute07745JenaGermany
- Cluster of Excellence Balance of the MicroverseFriedrich Schiller University Jena07745JenaGermany
- Junior Research Group Adaptive Pathogenicity StrategiesLeibniz Institute for Natural Product Research and Infection Biology – Hans‐Knöll‐Institute07745JenaGermany
| | | | - Mark S. Gresnigt
- Cluster of Excellence Balance of the MicroverseFriedrich Schiller University Jena07745JenaGermany
- Junior Research Group Adaptive Pathogenicity StrategiesLeibniz Institute for Natural Product Research and Infection Biology – Hans‐Knöll‐Institute07745JenaGermany
| | - Bernhard Hube
- Department of Microbial Pathogenicity MechanismsLeibniz Institute for Natural Product Research and Infection Biology – Hans‐Knöll‐Institute07745JenaGermany
- Cluster of Excellence Balance of the MicroverseFriedrich Schiller University Jena07745JenaGermany
- Institute of MicrobiologyFaculty of Biological SciencesFriedrich Schiller University07743JenaGermany
| | - Alexander S. Mosig
- Institute of Biochemistry IICenter for Sepsis Control and CareJena University Hospital07747JenaGermany
- Cluster of Excellence Balance of the MicroverseFriedrich Schiller University Jena07745JenaGermany
| |
Collapse
|
4
|
Wang Z, He Z, Chang X, Xie L, Song Y, Wu H, Zhang H, Wang S, Zhang X, Bai Y. Mitochondrial damage-associated molecular patterns: New perspectives for mitochondria and inflammatory bowel diseases. Mucosal Immunol 2025; 18:290-298. [PMID: 39920995 DOI: 10.1016/j.mucimm.2025.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 12/17/2024] [Accepted: 01/30/2025] [Indexed: 02/10/2025]
Abstract
Mitochondria are key regulators of inflammatory responses and mitochondrial dysfunction is closely linked to various inflammatory diseases. Increasing genetic and experimental evidence suggests that mitochondria play a critical role in inflammatory bowel disease (IBD). In the complex environment of the intestinal tract, intestinal epithelial cells (IECs) and their mitochondria possess unique phenotypic features, shaping each other and regulating intestinal homeostasis and inflammation through diverse mechanisms. Here, we focus on intestinal inflammation in IBD induced by mitochondrial damage-associated molecular patterns (mtDAMPs), which comprise mitochondrial components and metabolic products. The pathogenic mechanisms of mtDAMP signaling pathways mediated by two major mtDAMPs, mitochondrial DNA (mtDNA) and mitochondrial reactive oxygen species (mtROS), are discussed.
Collapse
Affiliation(s)
- Zhijie Wang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang 310006, China; Hangzhou Institute of Digestive Diseases, Hangzhou, Zhejiang, China; National Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Zixuan He
- National Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, China; National Key Laboratory of Immunology and Inflammation, Naval Medical University, Shanghai 200433, China
| | - Xin Chang
- National Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, China; National Key Laboratory of Immunology and Inflammation, Naval Medical University, Shanghai 200433, China
| | - Lu Xie
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang 310006, China; Hangzhou Institute of Digestive Diseases, Hangzhou, Zhejiang, China
| | - Yihang Song
- National Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, China; National Key Laboratory of Immunology and Inflammation, Naval Medical University, Shanghai 200433, China
| | - Haicong Wu
- National Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, China; National Key Laboratory of Immunology and Inflammation, Naval Medical University, Shanghai 200433, China
| | - Hao Zhang
- The Sixth Student Team, College of Basic Medical Sciences, Naval Medical University, Shanghai 200433, China
| | - Shuling Wang
- National Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, China; National Key Laboratory of Immunology and Inflammation, Naval Medical University, Shanghai 200433, China
| | - Xiaofeng Zhang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang 310006, China; Hangzhou Institute of Digestive Diseases, Hangzhou, Zhejiang, China.
| | - Yu Bai
- National Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, China; National Key Laboratory of Immunology and Inflammation, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
5
|
Makdissi S, Loudhaief R, George S, Weller T, Salim M, Malick A, Mu Y, Parsons BD, Di Cara F. Alterations in ether phospholipids metabolism activate the conserved UPR-Xbp1- PDIA3/ERp60 signaling to maintain intestinal homeostasis. iScience 2025; 28:111946. [PMID: 40034858 PMCID: PMC11872617 DOI: 10.1016/j.isci.2025.111946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/07/2024] [Accepted: 01/30/2025] [Indexed: 03/05/2025] Open
Abstract
Intestinal epithelium regeneration and homeostasis must be tightly regulated. Alteration of epithelial homeostasis is a major contributing factor to diseases such as colorectal cancer and inflammatory bowel diseases. Many pathways involved in epithelial regeneration have been identified, but more regulators remain undiscovered. Metabolism has emerged as an overlooked regulator of intestinal epithelium homeostasis. Using the model organism Drosophila melanogaster, we found that ether lipids metabolism is required to maintain intestinal epithelial homeostasis. Its dysregulation in intestinal progenitors causes the activation of the unfolded protein response of the endoplasmic reticulum (UPR) that triggers Xbp1 and upregulates the conserved disulfide isomerase PDIA3/ERp60. Activation of the Xbp1-ERp60 signaling causes Jak/Stat-mediated increase in progenitor cells, compromising epithelial barrier function and survival in males but not females. This study identified ether lipids-PDIA3/ERp60 as a key regulator of intestinal progenitor homeostasis in health that, if altered, causes pathological conditions in the intestinal epithelium.
Collapse
Affiliation(s)
- Stephanie Makdissi
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada
| | - Rihab Loudhaief
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada
| | - Smitha George
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada
| | - Tabatha Weller
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Minna Salim
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Ahsan Malick
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada
| | - Yizhu Mu
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada
| | - Brendon D. Parsons
- Department of Laboratory Medicine & Pathology, Faculty of Medicine & Dentistry -University of Alberta, Edmonton, AB, Canada
| | - Francesca Di Cara
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada
| |
Collapse
|
6
|
Zeng X, Yin L, Zhang Y, Wang Q, Li J, Yin Y, Wang Q, Li J, Yang H. Dietary Iron Alleviates Dextran Sodium Sulfate-Induced Intestinal Injury by Regulating Regeneration of Intestinal Stem Cells in Weaned Mice. Biol Trace Elem Res 2025:10.1007/s12011-025-04546-9. [PMID: 39998602 DOI: 10.1007/s12011-025-04546-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/06/2025] [Indexed: 02/27/2025]
Abstract
Iron deficiency is the most common comorbidity of inflammatory bowel disease (IBD), but the effect of iron supplementation on the repair processes of intestinal injury in weaned mice is unknown. This study aimed to evaluate the potential mechanism of dietary iron on intestinal injury and intestinal regeneration in the dextran sodium sulfate (DSS)-induced colitis of the weaned mouse model. The mice were fed either a control diet containing (45.00 mg/kg Fe) or iron supplemental (448.30 mg/kg Fe) diet for 14 days, followed by a 7-day oral administration of 2.5% DSS to all mice. The result showed that at day 0 of the recovery period (0 DRP), the impact of iron on the gut index and intestinal morphology was found to be more significant in weaned mice compared to adult mice. At 3 DRP, the iron diet alleviated inflammation-induced weight loss, shortening of colon length, thickening of the muscle layer, and disruption of gut morphology. At 0, 3, and 7 DRP, we found that an iron diet increased intestinal stem cell (ISC) viability and protected epithelial integrity. Furthermore, FeSO4 significantly enhanced organoid viability and increased mRNA expression of differentiation, ISC, and retinol metabolism-related marker genes in the organoids compared with the control group. Overall, this study demonstrates that the iron diet accelerates intestinal regeneration after intestinal injury in weaned mice by activating the retinol metabolic pathway to regulate the proliferation and differentiation of ISCs.
Collapse
Affiliation(s)
- Xianglin Zeng
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Lanmei Yin
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Chinese Academy of Sciences, Changsha, 410125, Hunan, China.
| | - Yitong Zhang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Qianqian Wang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Jun Li
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Yuebang Yin
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Qiye Wang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Jianzhong Li
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Huansheng Yang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Chinese Academy of Sciences, Changsha, 410125, Hunan, China.
| |
Collapse
|
7
|
Sridhar A, Bakke I, Gopalakrishnan S, Osoble NMM, Hammarqvist EP, Pettersen HPS, Sandvik AK, Østvik AE, Hansen MD, Bruland T. Tofacitinib and budesonide treatment affect stemness and chemokine release in IBD patient-derived colonoids. Sci Rep 2025; 15:3753. [PMID: 39885201 PMCID: PMC11782514 DOI: 10.1038/s41598-025-86314-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/09/2025] [Indexed: 02/01/2025] Open
Abstract
Restoration of the intestinal epithelial barrier is crucial for achieving mucosal healing, the therapeutic goal for inflammatory bowel disease (IBD). During homeostasis, epithelial renewal is maintained by crypt stem cells and progenitors that cease to divide as they differentiate into mature colonocytes. Inflammation is a major effector of mucosal damage in IBD and has been found to affect epithelial stemness, regeneration and cellular functions. However, the impact of immune cell-modulating IBD drugs on epithelial homeostasis and repair is poorly understood. It is likely that these drugs will have distinct mechanisms of action (MOA) in intestinal epithelium relevant for homeostasis that will vary among patients. We investigated cellular effects of pan-Janus Kinase (JAK) inhibitor tofacitinib and the corticosteroid budesonide on uninflamed and TNF + Poly(I:C) stimulated human colon organoids (colonoids) from healthy donors and IBD-patients. Our findings reveal that although both tofacitinib and budesonide exhibit anti-inflammatory effects, tofacitinib increased colonoid size and proliferation during differentiation, and promoted epithelial stemness. In contrast, budesonide decreased colonoid size and showed no consistent effect on proliferation or stemness. Our study demonstrates the value of employing human colonoids to investigate how IBD drugs affect intestinal epithelial cells and inter-individual variations relevant to mucosal healing and personalized IBD treatment.
Collapse
Affiliation(s)
- Arun Sridhar
- Department of Clinical and Molecular Medicine (IKOM), Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, Prinsesse Kristinas gt. 1, Trondheim, 7030, Norway
- Department of Gastroenterology and Hepatology, Clinic of Medicine, St. Olav's University Hospital, Trondheim, Norway
| | - Ingunn Bakke
- Department of Clinical and Molecular Medicine (IKOM), Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, Prinsesse Kristinas gt. 1, Trondheim, 7030, Norway.
- Clinic of Laboratory Medicine, St. Olav's University Hospital, Trondheim, Norway.
| | - Shreya Gopalakrishnan
- Department of Clinical and Molecular Medicine (IKOM), Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, Prinsesse Kristinas gt. 1, Trondheim, 7030, Norway
| | - Nimo Mukhtar Mohamud Osoble
- Department of Clinical and Molecular Medicine (IKOM), Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, Prinsesse Kristinas gt. 1, Trondheim, 7030, Norway
| | - Emilie Prytz Hammarqvist
- Department of Clinical and Molecular Medicine (IKOM), Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, Prinsesse Kristinas gt. 1, Trondheim, 7030, Norway
| | - Henrik P Sahlin Pettersen
- Department of Clinical and Molecular Medicine (IKOM), Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, Prinsesse Kristinas gt. 1, Trondheim, 7030, Norway
- Clinic of Laboratory Medicine, St. Olav's University Hospital, Trondheim, Norway
- Department of Pathology, St. Olav's University Hospital, Trondheim, Norway
| | - Arne Kristian Sandvik
- Department of Clinical and Molecular Medicine (IKOM), Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, Prinsesse Kristinas gt. 1, Trondheim, 7030, Norway
- Department of Gastroenterology and Hepatology, Clinic of Medicine, St. Olav's University Hospital, Trondheim, Norway
| | - Ann Elisabet Østvik
- Department of Clinical and Molecular Medicine (IKOM), Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, Prinsesse Kristinas gt. 1, Trondheim, 7030, Norway
- Department of Gastroenterology and Hepatology, Clinic of Medicine, St. Olav's University Hospital, Trondheim, Norway
| | - Marianne Doré Hansen
- Department of Clinical and Molecular Medicine (IKOM), Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, Prinsesse Kristinas gt. 1, Trondheim, 7030, Norway
- Clinic of Laboratory Medicine, St. Olav's University Hospital, Trondheim, Norway
| | - Torunn Bruland
- Department of Clinical and Molecular Medicine (IKOM), Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, Prinsesse Kristinas gt. 1, Trondheim, 7030, Norway
- Department of Gastroenterology and Hepatology, Clinic of Medicine, St. Olav's University Hospital, Trondheim, Norway
| |
Collapse
|
8
|
Su Y, Li J, Chen Y, Bao J, Lei Z, Ma M, Zhang W, Liu Q, Xu B, Hu T, Hu Y. α-Methyl-Tryptophan Inhibits SLC6A14 Expression and Exhibits Immunomodulatory Effects in Crohn's Disease. J Inflamm Res 2025; 18:1127-1145. [PMID: 39877135 PMCID: PMC11774106 DOI: 10.2147/jir.s495855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/19/2025] [Indexed: 01/31/2025] Open
Abstract
Introduction Crohn's disease (CD) is a chronic inflammatory condition of the intestines with a rising global incidence. Traditional diagnostic and therapeutic methods have limitations, necessitating the exploration of more effective strategies. Methods In this study, we employed the Gene Expression Omnibus database to identify genes that are differentially expressed in CD. RT-PCR and immunohistochemical analysis were used to SLC6A14 RNA and protein expression in the colons of CD mice and CD tissues from patients. The mouse model of CD was induced by dextran sodium sulfate (DSS). Infiltrating immune cells in mouse model were screened by flow cytometry. Results We discovered that SLC6A14 is significantly overexpressed in CD samples, and its expression is positively correlated with the degree of infiltration by CD4+ and CD8+ T cells. The elevated levels of SLC6A14 RNA and protein were confirmed in clinical CD tissues. The SLC6A14 inhibitor α-methyl-tryptophan (α-MT) significantly decreased the expression of SLC6A14 RNA and protein in the colons of CD mice. The α-MT treatment group also exhibited reduced levels of cytokines involved in T cell differentiation (IFN-γ and TNF-α) and the expression of immune cell surface markers CXCR-3 and LAG-3. Flow cytometry analysis revealed a significant increase in the infiltration of CD4+ and CD8+ T cells in the DSS-treated group compared to the control group. Conversely, the α-MT treatment group showed a significant reduction in CD4+ and CD8+ T cell infiltration and the restoration of intestinal parameters in CD mice. These findings underscore the role of SLC6A14 in regulating intestinal immune cell infiltration during CD progression. Discussion Our findings suggest that SLC6A14 could serve as a potential diagnostic biomarker and therapeutic target for CD. Furthermore, α-MT offers a novel approach for the clinical diagnosis and treatment of CD by targeting SLC6A14 for therapeutic intervention.
Collapse
Affiliation(s)
- YongCheng Su
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, People’s Republic of China
| | - Jiangquan Li
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, People’s Republic of China
| | - Yijia Chen
- Department of Gastroenterology, The National Key Clinical Specialty, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361004, People’s Republic of China
| | - Jiachen Bao
- Department of Gastroenterology, The National Key Clinical Specialty, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361004, People’s Republic of China
| | - Ziyu Lei
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, People’s Republic of China
| | - Miaomiao Ma
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, People’s Republic of China
| | - Wenqing Zhang
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, People’s Republic of China
| | - Qian Liu
- Integrated Chinese and Western Medicine Institute for Children Health & Drug Innovation, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
| | - Beibei Xu
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, People’s Republic of China
| | - Tianhui Hu
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, People’s Republic of China
- Integrated Chinese and Western Medicine Institute for Children Health & Drug Innovation, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
| | - Yiqun Hu
- Department of Gastroenterology, The National Key Clinical Specialty, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361004, People’s Republic of China
| |
Collapse
|
9
|
Bao LL, Yu YQ, González-Acera M, Patankar JV, Giessl A, Sturm G, Kühl AA, Atreya R, Erkert L, Gámez-Belmonte R, Krug SM, Schmid B, Tripal P, Chiriac MT, Hildner K, Siegmund B, Wirtz S, Stürzl M, Mohamed Abdou M, Trajanoski Z, Neurath MF, Zorzano A, Becker C. Epithelial OPA1 links mitochondrial fusion to inflammatory bowel disease. Sci Transl Med 2025; 17:eadn8699. [PMID: 39813315 DOI: 10.1126/scitranslmed.adn8699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 10/01/2024] [Accepted: 12/18/2024] [Indexed: 01/18/2025]
Abstract
Dysregulation at the intestinal epithelial barrier is a driver of inflammatory bowel disease (IBD). However, the molecular mechanisms of barrier failure are not well understood. Here, we demonstrate dysregulated mitochondrial fusion in intestinal epithelial cells (IECs) of patients with IBD and show that impaired fusion is sufficient to drive chronic intestinal inflammation. We found reduced expression of mitochondrial fusion-related genes, such as the dynamin-related guanosine triphosphatase (GTPase) optic atrophy 1 (OPA1), and fragmented mitochondrial networks in crypt IECs of patients with IBD. Mice with Opa1 deficiency in the gut epithelium (Opa1i∆IEC) spontaneously developed chronic intestinal inflammation with mucosal ulcerations and immune cell infiltration. Intestinal inflammation in Opa1i∆IEC mice was driven by microbial translocation and associated with epithelial progenitor cell death and gut barrier dysfunction. Opa1-deficient epithelial cells and human organoids exposed to a pharmacological OPA1 inhibitor showed disruption of the mitochondrial network with mitochondrial fragmentation and changes in mitochondrial size, ultrastructure, and function, resembling changes observed in patient samples. Pharmacological inhibition of the GTPase dynamin-1-like protein in organoids derived from Opa1i∆IEC mice partially reverted this phenotype. Together, our data demonstrate a role for epithelial OPA1 in regulating intestinal immune homeostasis and epithelial barrier function. Our data provide a mechanistic explanation for the observed mitochondrial dysfunction in IBD and identify mitochondrial fusion as a potential therapeutic target in this disease.
Collapse
Affiliation(s)
- Li-Li Bao
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91052 Erlangen, Germany
| | - Yu-Qiang Yu
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91052 Erlangen, Germany
| | - Miguel González-Acera
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91052 Erlangen, Germany
| | - Jay V Patankar
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91052 Erlangen, Germany
| | - Andreas Giessl
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Gregor Sturm
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Anja A Kühl
- Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- iPATH.Berlin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117 Berlin, Germany
| | - Raja Atreya
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91052 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
| | - Lena Erkert
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91052 Erlangen, Germany
| | - Reyes Gámez-Belmonte
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91052 Erlangen, Germany
| | - Susanne M Krug
- Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Benjamin Schmid
- Optical Imaging Centre Erlangen (OICE), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - Philipp Tripal
- Optical Imaging Centre Erlangen (OICE), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - Mircea T Chiriac
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91052 Erlangen, Germany
| | - Kai Hildner
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91052 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
| | - Britta Siegmund
- Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Stefan Wirtz
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91052 Erlangen, Germany
| | - Michael Stürzl
- Division of Molecular and Experimental Surgery, Department of Surgery, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Mariam Mohamed Abdou
- Division of Molecular and Experimental Surgery, Department of Surgery, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Zlatko Trajanoski
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Markus F Neurath
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91052 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
| | - Antonio Zorzano
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Christoph Becker
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91052 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
| |
Collapse
|
10
|
Ramalho S, Alkan F, Prekovic S, Jastrzebski K, Barberà EP, Hoekman L, Altelaar M, de Heus C, Liv N, Rodríguez-Colman MJ, Yilmaz M, van der Kammen R, Fedry J, de Gooijer MC, Suijkerbuijk SJE, Faller WJ, Silva J. NAC regulates metabolism and cell fate in intestinal stem cells. SCIENCE ADVANCES 2025; 11:eadn9750. [PMID: 39772672 PMCID: PMC11708876 DOI: 10.1126/sciadv.adn9750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025]
Abstract
Intestinal stem cells (ISCs) face the challenge of integrating metabolic demands with unique regenerative functions. Studies have shown an intricate interplay between metabolism and stem cell capacity; however, it is still not understood how this process is regulated. Combining ribosome profiling and CRISPR screening in intestinal organoids, we identify the nascent polypeptide-associated complex (NAC) as a key mediator of this process. Our findings suggest that NAC is responsible for relocalizing ribosomes to the mitochondria and regulating ISC metabolism. Upon NAC inhibition, intestinal cells show decreased import of mitochondrial proteins, which are needed for oxidative phosphorylation, and, consequently, enable the cell to maintain a stem cell identity. Furthermore, we show that overexpression of NACα is sufficient to drive mitochondrial respiration and promote ISC identity. Ultimately, our results reveal the pivotal role of NAC in regulating ribosome localization, mitochondrial metabolism, and ISC function, providing insights into the potential mechanism behind it.
Collapse
Affiliation(s)
- Sofia Ramalho
- Division of Oncogenomics, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Ferhat Alkan
- Division of Oncogenomics, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Stefan Prekovic
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Katarzyna Jastrzebski
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Eric Pintó Barberà
- Division of Oncogenomics, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Liesbeth Hoekman
- Proteomics Facility, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Cecilia de Heus
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Nalan Liv
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Maria J. Rodríguez-Colman
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Mehmet Yilmaz
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Rob van der Kammen
- Division of Oncogenomics, Netherlands Cancer Institute, Amsterdam, Netherlands
| | | | - Mark C. de Gooijer
- Division of Pharmacology, Netherlands Cancer Institute, Amsterdam, Netherlands
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- The Christie NHS Foundation Trust, Manchester, UK
| | - Saskia Jacoba Elisabeth Suijkerbuijk
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - William J. Faller
- Division of Oncogenomics, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Joana Silva
- Division of Oncogenomics, Netherlands Cancer Institute, Amsterdam, Netherlands
| |
Collapse
|
11
|
Zhang M, Lv H, Bai X, Ruan G, Li Q, Lin K, Yang H, Qian J. Disrupted mitochondrial morphology and function exacerbate inflammation in elderly-onset ulcerative colitis. Immun Ageing 2025; 22:4. [PMID: 39794776 PMCID: PMC11721460 DOI: 10.1186/s12979-024-00494-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/21/2024] [Indexed: 01/13/2025]
Abstract
BACKGROUND The characteristics of ulcerative colitis (UC) in the elderly are quite different from the young population. Mitochondrial injury is a key mechanism regulating both aging and inflammation. This study aims to reveal the role of mitochondrial damage in the pathogenesis of adult- and elderly-onset UC. METHODS RNA-sequencing of colonic mucosa from adult- and elderly-onset UC patients was performed. Mitochondria-related differentially expressive genes (mDEGs) and immune cell infiltration analysis were identified and performed in colonic tissues from UC patients. Mice aged 6-8 weeks and 20-24 months were administered 2% dextran sodium sulphate (DSS) for 7 days to induce colitis. Mitochondrial morphological changes and ATP levels were evaluated in the colons of mice. Mechanistically, we explored the association of key mDEG with reactive oxygen species (ROS), oxygen consumption rates, NLRP3/IL-1β pathway in HCT116 cell line. RESULTS Thirty mDEGs were identified between adult- and elderly-onset UC, which were related primarily to mitochondrial respiratory function and also had significant correlation with different infiltrates of immune cells. Compared with young colitis mice, DSS-induced colitis in the aged mice exhibited more severe inflammation, damaged mitochondrial structure and lower ATP levels in colonic tissues. ALDH1L1 was identified as a hub DEG through protein-protein interaction networks of RNA-seq, which was downregulated in UC patients or colitis mice versus healthy controls. In tumor necrosis factor-alpha-stimulated HCT116 cells, mitochondrial ROS, NLRP3 and IL-1β expression increased less and mitochondrial respiration had an upregulated trend after knocking down ALDH1L1. CONCLUSION There are significant differences in mitochondrial structure, ATP production and mitochondria-related gene expression between adult- and elderly-onset UC, which have a potential link with cytokine pathways and immune microenvironment. The more prominent mitochondrial injury may be a key factor for more severe inflammatory response and poorer outcome in elderly-onset UC.
Collapse
Affiliation(s)
- Mengmeng Zhang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong Lv
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyin Bai
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Gechong Ruan
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qing Li
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China
| | - Kai Lin
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong Yang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jiaming Qian
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
12
|
Mansouri P, Mansouri P, Behmard E, Najafipour S, Kouhpayeh A, Farjadfar A. Novel targets for mucosal healing in inflammatory bowel disease therapy. Int Immunopharmacol 2025; 144:113544. [PMID: 39571265 DOI: 10.1016/j.intimp.2024.113544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 10/13/2024] [Accepted: 10/28/2024] [Indexed: 12/15/2024]
Abstract
Inflammatory bowel disease (IBD) is a chronic condition affecting the gastrointestinal tract, primarily manifesting as ulcerative colitis (UC) or Crohn's disease (CD). Both inflammation and disruption of the intestinal epithelial barrier are key factors in IBD pathogenesis. Substantial evidence has revealed a significant association between aberrant immune responses and impairment of the intestinal epithelial barrier in IBD pathogenesis. The components of the intestinal epithelium, particularly goblet cells and Paneth cells, are crucial to gut homeostasis, as they secrete mucin, antimicrobial peptides (AMPs), and cytokines. Furthermore, impairment of epithelial integrity, which is regulated by tight junctions, is a hallmark of IBD pathology. While common treatments for IBD, such as anti-inflammatory drugs, target various signaling pathways with varying efficacies, therapeutic approaches focused on mucosal and epithelial barrier healing have been largely neglected. Moreover, high costs, side effects, and insufficient or inconsistent therapeutic outcomes remain major drawbacks of conventional anti-IBD drugs. Recent studies on epithelial barrier regeneration and permeability reduction have introduced promising therapeutic targets, including farnesoid X receptor (FXR), urokinase-type plasminogen activator (uPA)-urokinase-type plasminogen activator receptor (uPAR) interaction, fecal microbiota transplantation (FMT), and insulin receptor (INSR). Notably, the simultaneous targeting of intestinal inflammation and promotion of epithelial barrier healing shows promise for efficient IBD treatment. Future research should explore targeted therapies and combination treatments, including natural remedies, microbiota colonization, stem cell approaches, and computer-aided drug design. It is also crucial to focus on accurate prognosis and developing a thorough understanding of IBD development mechanisms.
Collapse
Affiliation(s)
- Pardis Mansouri
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran; Department of Medical Biotechnology, Fasa University of Medical Sciences, Fasa, Iran
| | - Pegah Mansouri
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran; Department of Medical Biotechnology, Fasa University of Medical Sciences, Fasa, Iran
| | - Esmaeil Behmard
- School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran; Zarrin Avaye Kowsar Salamat (ZAX Company), Fasa, Iran
| | - Sohrab Najafipour
- School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran; Zarrin Avaye Kowsar Salamat (ZAX Company), Fasa, Iran
| | - Amin Kouhpayeh
- Department of Pharmacology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran; Zarrin Avaye Kowsar Salamat (ZAX Company), Fasa, Iran.
| | - Akbar Farjadfar
- Department of Medical Biotechnology, Fasa University of Medical Sciences, Fasa, Iran; Zarrin Avaye Kowsar Salamat (ZAX Company), Fasa, Iran.
| |
Collapse
|
13
|
Schlößer S, Ullrich AL, Modares NF, Schmitz MA, Schöneich J, Zhang K, Richter I, Robrahn L, Schraven S, Nagai JS, Haange SB, Jennings SAV, Clavel T, Rolle-Kampczyk U, Kiessling F, Costa IG, Muncan V, Repnik U, von Bergen M, Dupont A, Hornef MW. Salmonella infection accelerates postnatal maturation of the intestinal epithelium. Proc Natl Acad Sci U S A 2025; 122:e2403344122. [PMID: 39793046 PMCID: PMC11725846 DOI: 10.1073/pnas.2403344122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 11/26/2024] [Indexed: 01/12/2025] Open
Abstract
Postnatal establishment of enteric metabolic, host-microbial and immune homeostasis is the result of precisely timed and tightly regulated developmental and adaptive processes. Here, we show that infection with the invasive enteropathogen Salmonella Typhimurium results in accelerated maturation of the neonatal epithelium with premature appearance of antimicrobial, metabolic, developmental, and regenerative features of the adult tissue. Using conditional Myd88-deficient mice, we identify the critical contribution of immune cell-derived mediators. Cytokine stimulation of neonatal intestinal epithelial stem cell organoids suggests a network of synergistic and antagonistic cytokine effects with a significant contribution of IL-22, IL-4/IL-13, TNF, and IL-6 to infection-induced enterocyte reprogramming. Our findings demonstrate that the infection-associated immune cell activation disrupts physiological postnatal tissue maturation and may thereby worsen clinical outcomes and alter the neonatal-adult transition.
Collapse
Grants
- SFB 1382 403224013 Deutsche Forschungsgemeinschaft (DFG)
- SFB 1382 403224013 Deutsche Forschungsgemeinschaft (DFG)
- SFB 1382 403224013 Deutsche Forschungsgemeinschaft (DFG)
- SFB/TRR359 491676693 Deutsche Forschungsgemeinschaft (DFG)
- SFB/TRR359 491676693 Deutsche Forschungsgemeinschaft (DFG)
- SPP2225 HO2236/18-1 Deutsche Forschungsgemeinschaft (DFG)
- SPP2389 DU 1803/2-1 Deutsche Forschungsgemeinschaft (DFG)
- DU-1803/1 Deutsche Forschungsgemeinschaft (DFG)
- eMed Consortia Fibromap Bundesministerium für Bildung und Forschung (BMBF)
- eMed Consortia Fibromap Bundesministerium für Bildung und Forschung (BMBF)
- START RWTH Aachen | Medizinische Fakultät, RWTH Aachen University (Faculty of Medicine, RWTH Aachen University)
- START RWTH Aachen | Medizinische Fakultät, RWTH Aachen University (Faculty of Medicine, RWTH Aachen University)
- Advanced Grant EarlyLife 101019157 EC | ERC | HORIZON EUROPE European Research Council (ERC)
- START RWTH Aachen | Medizinische Fakultät, RWTH Aachen University (Faculty of Medicine, RWTH Aachen University)
- START RWTH Aachen | Medizinische Fakultät, RWTH Aachen University (Faculty of Medicine, RWTH Aachen University)
- IRS seed fund RWTH Aachen University (RWTH Aachen)
- START RWTH Aachen | Medizinische Fakultät, RWTH Aachen University (Faculty of Medicine, RWTH Aachen University)
Collapse
Affiliation(s)
- Stefan Schlößer
- Institute of Medical Microbiology, Rheinisch-Westfälische Technische Hochschule Aachen University Hospital, Aachen52074, Germany
| | - Anna-Lena Ullrich
- Institute of Medical Microbiology, Rheinisch-Westfälische Technische Hochschule Aachen University Hospital, Aachen52074, Germany
| | - Nastaran Fazel Modares
- Institute of Medical Microbiology, Rheinisch-Westfälische Technische Hochschule Aachen University Hospital, Aachen52074, Germany
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover30625, Germany
| | - Matthias A. Schmitz
- Institute of Medical Microbiology, Rheinisch-Westfälische Technische Hochschule Aachen University Hospital, Aachen52074, Germany
| | - Johannes Schöneich
- Institute of Medical Microbiology, Rheinisch-Westfälische Technische Hochschule Aachen University Hospital, Aachen52074, Germany
| | - Kaiyi Zhang
- Institute of Medical Microbiology, Rheinisch-Westfälische Technische Hochschule Aachen University Hospital, Aachen52074, Germany
| | - Isabel Richter
- Institute of Medical Microbiology, Rheinisch-Westfälische Technische Hochschule Aachen University Hospital, Aachen52074, Germany
| | - Laura Robrahn
- Institute for Computational Genomics, Rheinisch-Westfälische Technische Hochschule Aachen University Hospital, Aachen52074, Germany
- Department of General, Visceral and Transplantation Surgery, Rheinisch-Westfälische Technische Hochschule Aachen University Hospital, Aachen52074, Germany
| | - Sarah Schraven
- Institute for Experimental Molecular Imaging, Rheinisch-Westfälische Technische Hochschule Aachen University Hospital, Aachen52074, Germany
| | - James S. Nagai
- Institute for Computational Genomics, Rheinisch-Westfälische Technische Hochschule Aachen University Hospital, Aachen52074, Germany
| | - Sven-Bastiaan Haange
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH—Helmholtz-Zentrum für Umweltforschung, Leipzig04318, Germany
| | - Susan A. V. Jennings
- Functional Microbiome Research Group, Institute of Medical Microbiology, Rheinisch-Westfälische Technische Hochschule Aachen University Hospital, Aachen52074, Germany
| | - Thomas Clavel
- Functional Microbiome Research Group, Institute of Medical Microbiology, Rheinisch-Westfälische Technische Hochschule Aachen University Hospital, Aachen52074, Germany
- Euregional Microbiome Center, Rheinisch-Westfälische Technische Hochschule Aachen University Hospital, Aachen52074, Germany
| | - Ulrike Rolle-Kampczyk
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH—Helmholtz-Zentrum für Umweltforschung, Leipzig04318, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, Rheinisch-Westfälische Technische Hochschule Aachen University Hospital, Aachen52074, Germany
| | - Ivan G. Costa
- Institute for Computational Genomics, Rheinisch-Westfälische Technische Hochschule Aachen University Hospital, Aachen52074, Germany
| | - Vanesa Muncan
- Department of Gastroenterology and Hepatology, Tytgat Institute for Intestinal and Liver Research, Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam UMC University of Amsterdam, Amsterdam1015 BK, The Netherlands
| | - Urska Repnik
- Central Microscopy, Christian Albrechts University, Kiel24118, Germany
| | - Martin von Bergen
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH—Helmholtz-Zentrum für Umweltforschung, Leipzig04318, Germany
| | - Aline Dupont
- Institute of Medical Microbiology, Rheinisch-Westfälische Technische Hochschule Aachen University Hospital, Aachen52074, Germany
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover30625, Germany
| | - Mathias W. Hornef
- Institute of Medical Microbiology, Rheinisch-Westfälische Technische Hochschule Aachen University Hospital, Aachen52074, Germany
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover30625, Germany
- Euregional Microbiome Center, Rheinisch-Westfälische Technische Hochschule Aachen University Hospital, Aachen52074, Germany
| |
Collapse
|
14
|
Shay JES, Yilmaz ÖH. Dietary and metabolic effects on intestinal stem cells in health and disease. Nat Rev Gastroenterol Hepatol 2025; 22:23-38. [PMID: 39358589 DOI: 10.1038/s41575-024-00980-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/05/2024] [Indexed: 10/04/2024]
Abstract
Diet and nutritional metabolites exhibit wide-ranging effects on health and disease partly by altering tissue composition and function. With rapidly rising rates of obesity, there is particular interest in how obesogenic diets influence tissue homeostasis and risk of tumorigenesis; epidemiologically, these diets have a positive correlation with various cancers, including colorectal cancer. The gastrointestinal tract is a highly specialized, continuously renewing tissue with a fundamental role in nutrient uptake and is, in turn, influenced by diet composition and host metabolic state. Intestinal stem cells are found at the base of the intestinal crypt and can generate all mature lineages that comprise the intestinal epithelium and are uniquely influenced by host diet, metabolic by-products and energy dynamics. Similarly, tumour growth and metabolism can also be shaped by nutrient availability and host diet. In this Review, we discuss how different diets and metabolic changes influence intestinal stem cells in homeostatic and pathological conditions, as well as tumorigenesis. We also discuss how dietary changes and composition affect the intestinal epithelium and its surrounding microenvironment.
Collapse
Affiliation(s)
- Jessica E S Shay
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ömer H Yilmaz
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.
| |
Collapse
|
15
|
Wang D, Wu N, Li P, Zhang X, Xie W, Li S, Wang D, Kuang Y, Chen S, Liu Y. Eicosapentaenoic acid enhances intestinal stem cell-mediated colonic epithelial regeneration by activating the LSD1-WNT signaling pathway. J Adv Res 2024:S2090-1232(24)00628-3. [PMID: 39743214 DOI: 10.1016/j.jare.2024.12.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 12/26/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025] Open
Abstract
INTRODUCTION Inflammatory bowel disease (IBD) is often associated with impaired proliferation and differentiation of intestinal stem cells (ISCs). Eicosapentaenoic acid (EPA), which is predominantly found in fish oil, has been recognized for its intestinal health benefits, although the potential mechanisms are not well understood. OBJECTIVES This study aimed to investigate the regulatory role and mechanism of EPA in colonic epithelial regeneration, specifically from the perspective of ISCs. METHODS Wild-type mice whose diet was supplemented with 5% EPA-enriched fish oil were subjected to dextran sulfate sodium (DSS) to induce colitis. We utilized intestinal organoids, ISC-specific lysine-specific demethylase 1 (LSD1) knockout mice, and WNT inhibitor-treated mice to explore how EPA influences ISC proliferation and differentiation. ISC proliferation, differentiation and apoptosis were assessed using tdTomato and propidium iodide tracer testing, histological analyses, and immunofluorescence staining. RESULTS EPA treatment significantly mitigated the symptoms of DSS-induced acute colitis, as evidenced by lower body weight loss and decreased disease activity index, histological scores and proinflammatory cytokine levels. Additionally, EPA increased the numbers of proliferative cells, absorptive cells, goblet cells, and enteroendocrine cells, which enhanced the regeneration of intestinal epithelium. Pretreatment with EPA increased ISC proliferation and differentiation, and protected against TNF-α-induced cell death in intestinal organoids. Mechanistically, EPA upregulated G protein-coupled receptor 120 (GPR120) to induce LSD1 expression, which facilitated ISC proliferation and differentiation in organoids. ISC-specific ablation of LSD1 negated the protective effect of EPA on DSS-induced colitis in mice. Moreover, EPA administration activated the WNT signaling pathway downstream of LSD1 in ISCs, while inhibiting WNT signaling abolished the beneficial effects of EPA. CONCLUSIONS These findings demonstrate that EPA promotes ISC proliferation and differentiation, thereby enhancing colonic epithelial regeneration through the activation of LSD1-WNT signaling. Consequently, dietary supplementation with EPA represents a promising alternative therapeutic strategy for managing IBD.
Collapse
Affiliation(s)
- Dan Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Nianbang Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Pei Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiaojuan Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Wenshuai Xie
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shunkang Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Ding Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yanling Kuang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shaokui Chen
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
16
|
Holani R, Bar-Yoseph H, Krekhno Z, Serapio-Palacios A, Moon KM, Stacey RG, Donald KA, Deng W, Bressler B, Magaña AA, Foster LJ, Atser MG, Johnson JD, Finlay B. Bile acid-induced metabolic changes in the colon promote Enterobacteriaceae expansion and associate with dysbiosis in Crohn's disease. Sci Signal 2024; 17:eadl1786. [PMID: 39689182 DOI: 10.1126/scisignal.adl1786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 06/10/2024] [Accepted: 11/25/2024] [Indexed: 12/19/2024]
Abstract
Bile acids (BAs) affect the growth of potentially pathogenic commensals, including those from the Enterobacteriaceae family, which are frequently overrepresented in inflammatory bowel disease (IBD). BAs are normally reabsorbed in the ileum for recycling and are often increased in the colonic lumina of patients with IBD, including those with Crohn's disease (CD). Here, we investigated the influence of BAs on gut colonization by Enterobacteriaceae. We found increased abundance of Enterobacteriaceae in the colonic mucosae of patients with CD with a concomitant decrease in the transporters that resorb BAs in the ileum. The increase in Enterobacteriaceae colonization was greater in the colons of patients who had undergone terminal ileum resection compared with those with intact ileum, leading us to hypothesize that BAs promote intestinal colonization by Enterobacteriaceae. Exposure of human colonic epithelial cell lines to BAs reduced mitochondrial respiration, increased oxygen availability, and enhanced the epithelial adherence of several Enterobacteriaceae members. In a publicly available human dataset, mucosal Enterobacteriaceae was negatively associated with the expression of genes related to mitochondrial function. In a murine model, increased intestinal BA availability enhanced colonization by Escherichia coli in a manner that depended on bacterial respiration. Together, our findings demonstrate that BAs reduce mitochondrial respiration in the colon, leading to an increase in oxygen availability that facilitates Enterobacteriaceae colonization. This identification of BAs as facilitators of host-commensal interactions may be relevant to multiple intestinal diseases.
Collapse
Affiliation(s)
- Ravi Holani
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Haggai Bar-Yoseph
- Department of Gastroenterology, Rambam Health Care Campus, Haifa, Israel
- Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Zakhar Krekhno
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Antonio Serapio-Palacios
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kyung-Mee Moon
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Biochemistry and Molecular Biology Department, University of British Columbia, Vancouver, British Columbia, Canada
| | - Richard G Stacey
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Katherine A Donald
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wanyin Deng
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Brian Bressler
- Division of Gastroenterology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Armando A Magaña
- Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Leonard J Foster
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Biochemistry and Molecular Biology Department, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael G Atser
- Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - James D Johnson
- Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Barton Finlay
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
- Biochemistry and Molecular Biology Department, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
17
|
Kang LI, Sarullo K, Marsh JN, Lu L, Khonde P, Ma C, Haritunians T, Mujukian A, Mengesha E, McGovern DPB, Stappenbeck TS, Swamidass SJ, Liu TC. Development of a deep learning algorithm for Paneth cell density quantification for inflammatory bowel disease. EBioMedicine 2024; 110:105440. [PMID: 39536395 PMCID: PMC11605460 DOI: 10.1016/j.ebiom.2024.105440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/13/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Alterations in ileal Paneth cell (PC) density have been described in gut inflammatory diseases such as Crohn's disease (CD) and could be used as a biomarker for disease prognosis. However, quantifying PCs is time-intensive, a barrier for clinical workflow. Deep learning (DL) has transformed the development of robust and accurate tools for complex image evaluation. Our aim was to use DL to quantify PCs for use as a quantitative biomarker. METHODS A retrospective cohort of whole slide images (WSI) of ileal tissue samples from patients with/without inflammatory bowel disease (IBD) was used for the study. A pathologist-annotated training set of WSI were used to train a U-net two-stage DL model to quantify PC number, crypt number, and PC density. For validation, a cohort of 48 WSIs were manually quantified by study pathologists and compared to the DL algorithm, using root mean square error (RMSE) and the coefficient of determination (r2) as metrics. To test the value of PC quantification as a biomarker, resection specimens from patients with CD (n = 142) and without IBD (n = 48) patients were analysed with the DL model. Finally, we compared time to disease recurrence in patients with CD with low versus high DL-quantified PC density using Log-rank test. FINDINGS Initial one-stage DL model showed moderate accuracy in predicting PC density in cross-validation tests (RMSE = 1.880, r2 = 0.641), but adding a second stage significantly improved accuracy (RMSE = 0.802, r2 = 0.748). In the validation of the two-stage model compared to expert pathologists, the algorithm showed good performance up to RMSE = 1.148, r2 = 0.708. The retrospective cross-sectional cohort had mean ages of 62.1 years in the patients without IBD and 38.6 years for the patients with CD. In the non-IBD cohort, 43.75% of the patients were male, compared to 49.3% of the patients with CD. Analysis by the DL model showed significantly higher PC density in non-IBD controls compared to the patients with CD (4.04 versus 2.99 PC/crypt). Finally, the algorithm quantification of PCs density in patients with CD showed patients with the lowest 25% PC density (Quartile 1) have significantly shorter recurrence-free interval (p = 0.0399). INTERPRETATION The current model performance demonstrates the feasibility of developing a DL-based tool to measure PC density as a predictive biomarker for future clinical practice. FUNDING This study was funded by the National Institutes of Health (NIH).
Collapse
Affiliation(s)
- Liang-I Kang
- Department of Pathology & Immunology, Washington University in St. Louis School of Medicine, 660 South Euclid Avenue, Campus Box 8118, Saint Louis, MO, 63110, United States
| | - Kathryn Sarullo
- Department of Pathology & Immunology, Washington University in St. Louis School of Medicine, 660 South Euclid Avenue, Campus Box 8118, Saint Louis, MO, 63110, United States
| | - Jon N Marsh
- Department of Pathology & Immunology, Washington University in St. Louis School of Medicine, 660 South Euclid Avenue, Campus Box 8118, Saint Louis, MO, 63110, United States
| | - Liang Lu
- Department of Pathology & Immunology, Washington University in St. Louis School of Medicine, 660 South Euclid Avenue, Campus Box 8118, Saint Louis, MO, 63110, United States
| | - Pooja Khonde
- Department of Pathology & Immunology, Washington University in St. Louis School of Medicine, 660 South Euclid Avenue, Campus Box 8118, Saint Louis, MO, 63110, United States
| | - Changqing Ma
- Department of Pathology & Immunology, Washington University in St. Louis School of Medicine, 660 South Euclid Avenue, Campus Box 8118, Saint Louis, MO, 63110, United States
| | - Talin Haritunians
- The F. Widjaja Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA, 90048, United States
| | - Angela Mujukian
- The F. Widjaja Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA, 90048, United States
| | - Emebet Mengesha
- The F. Widjaja Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA, 90048, United States
| | - Dermot P B McGovern
- The F. Widjaja Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA, 90048, United States
| | - Thaddeus S Stappenbeck
- Department of Inflammation and Immunity, Cleveland Clinic Foundation, Mail Code NE30, 9500 Euclid Avenue, Cleveland, OH, 44195, United States
| | - S Joshua Swamidass
- Department of Pathology & Immunology, Washington University in St. Louis School of Medicine, 660 South Euclid Avenue, Campus Box 8118, Saint Louis, MO, 63110, United States.
| | - Ta-Chiang Liu
- Department of Pathology & Immunology, Washington University in St. Louis School of Medicine, 660 South Euclid Avenue, Campus Box 8118, Saint Louis, MO, 63110, United States.
| |
Collapse
|
18
|
Xie B, Zhang A, Li C, Liu Y, Deng Y, Li R, Qin H, Wu B, He T, Lan D. Differential analysis of sorting nexin 10 and sterol regulatory element-binding protein 2 expression in inflammatory bowel disease. Immunol Res 2024; 72:1417-1423. [PMID: 39412576 DOI: 10.1007/s12026-024-09539-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/04/2024] [Indexed: 02/06/2025]
Abstract
Sorting nexin 10 (SNX10) expression induces intestinal barrier dysfunction and inflammatory responses; in contrast, its inhibition promotes intestinal mucosal healing through sterol regulatory element-binding protein 2 (SREBP2)-mediated cholesterol synthesis. However, its regulatory mechanism for the pathogenesis of inflammatory bowel disease (IBD) remains unclear. In this study, we examined SNX10 and SREBP2 expression in ulcerative colitis (UC) and Crohn's disease (CD). A total of 30 and 28 patients with UC and CD, respectively, were recruited. The expression of SNX10 and SREBP2 in the colonic mucosa was measured by immunohistochemistry (IHC). We discovered that patients with CD had significantly higher expression levels of SNX10 and SREBP2 than patients with UC and healthy controls. In addition, the expression of SREBP2 in patients with UC was significantly higher than that in healthy controls. In our study, we indicated that SNX10 and SREBP2 may serve as biomarkers for identifying patients with UC and CD, thereby providing a clinical therapeutic strategy for the treatment of IBD by inhibiting SNX10.
Collapse
Affiliation(s)
- Bicheng Xie
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Yunnan Digestive Disease Clinical Medical Center, No. 157, Jingbi Road, Kunming, 650032, Yunnan, China
| | - Anxing Zhang
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Yunnan Digestive Disease Clinical Medical Center, No. 157, Jingbi Road, Kunming, 650032, Yunnan, China
| | - Canmei Li
- Department of Oncology, Dali Bai Autonomous Prefecture People's Hospital, Dali, 671000, Yunnan, China
| | - Yu Liu
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Yunnan Digestive Disease Clinical Medical Center, No. 157, Jingbi Road, Kunming, 650032, Yunnan, China
| | - Yao Deng
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Yunnan Digestive Disease Clinical Medical Center, No. 157, Jingbi Road, Kunming, 650032, Yunnan, China
| | - Ruochang Li
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Yunnan Digestive Disease Clinical Medical Center, No. 157, Jingbi Road, Kunming, 650032, Yunnan, China
| | - Haichun Qin
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Yunnan Digestive Disease Clinical Medical Center, No. 157, Jingbi Road, Kunming, 650032, Yunnan, China
| | - Bian Wu
- Department of General Surgery II, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Yunnan Key Laboratory of Innovative Application of Traditional Chinese Medicine, No. 157, Jingbi Road, Kunming, 650032, Yunnan, China.
| | - Tian He
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Yunnan Digestive Disease Clinical Medical Center, No. 157, Jingbi Road, Kunming, 650032, Yunnan, China.
| | - Danfeng Lan
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Yunnan Digestive Disease Clinical Medical Center, No. 157, Jingbi Road, Kunming, 650032, Yunnan, China.
| |
Collapse
|
19
|
Schwärzler J, Mayr L, Grabherr F, Tilg H, Adolph TE. Epithelial metabolism as a rheostat for intestinal inflammation and malignancy. Trends Cell Biol 2024; 34:913-927. [PMID: 38341347 DOI: 10.1016/j.tcb.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/06/2024] [Accepted: 01/12/2024] [Indexed: 02/12/2024]
Abstract
The gut epithelium protects the host from a potentially hostile environment while allowing nutrient uptake that is vital for the organism. To maintain this delicate task, the gut epithelium has evolved multilayered cellular functions ranging from mucus production to hormone release and orchestration of mucosal immunity. Here, we review the execution of intestinal epithelial metabolism in health and illustrate how perturbation of epithelial metabolism affects experimental gut inflammation and tumorigenesis. We also discuss the impact of environmental factors and host-microbe interactions on epithelial metabolism in the context of inflammatory bowel disease and colorectal cancer. Insights into epithelial metabolism hold promise to unravel mechanisms of organismal health that may be therapeutically exploited in humans in the future.
Collapse
Affiliation(s)
- Julian Schwärzler
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, and Metabolism, Medical University of Innsbruck, Innsbruck, Austria.
| | - Lisa Mayr
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Felix Grabherr
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, and Metabolism, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
20
|
Zhang R, Perekatt A, Chen L. Metabolic regulation of intestinal homeostasis: molecular and cellular mechanisms and diseases. MedComm (Beijing) 2024; 5:e776. [PMID: 39465140 PMCID: PMC11502721 DOI: 10.1002/mco2.776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/21/2024] [Accepted: 09/22/2024] [Indexed: 10/29/2024] Open
Abstract
Metabolism serves not only as the organism's energy source but also yields metabolites crucial for maintaining tissue homeostasis and overall health. Intestinal stem cells (ISCs) maintain intestinal homeostasis through continuous self-renewal and differentiation divisions. The intricate relationship between metabolic pathways and intestinal homeostasis underscores their crucial interplay. Metabolic pathways have been shown to directly regulate ISC self-renewal and influence ISC fate decisions under homeostatic conditions, but the cellular and molecular mechanisms remain incompletely understood. Understanding the intricate involvement of various pathways in maintaining intestinal homeostasis holds promise for devising innovative strategies to address intestinal diseases. Here, we provide a comprehensive review of recent advances in the regulation of intestinal homeostasis. We describe the regulation of intestinal homeostasis from multiple perspectives, including the regulation of intestinal epithelial cells, the regulation of the tissue microenvironment, and the key role of nutrient metabolism. We highlight the regulation of intestinal homeostasis and ISC by nutrient metabolism. This review provides a multifaceted perspective on how intestinal homeostasis is regulated and provides ideas for intestinal diseases and repair of intestinal damage.
Collapse
Affiliation(s)
- Ruolan Zhang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human DiseaseSoutheast UniversityNanjingChina
| | - Ansu Perekatt
- Department of Chemistry and Chemical BiologyStevens Institute of TechnologyHobokenNew JerseyUSA
| | - Lei Chen
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human DiseaseSoutheast UniversityNanjingChina
- Institute of Microphysiological SystemsSoutheast UniversityNanjingChina
| |
Collapse
|
21
|
Weber-Stiehl S, Taubenheim J, Järke L, Röcken C, Schreiber S, Aden K, Kaleta C, Rosenstiel P, Sommer F. Hexokinase 2 expression in apical enterocytes correlates with inflammation severity in patients with inflammatory bowel disease. BMC Med 2024; 22:490. [PMID: 39444028 PMCID: PMC11515617 DOI: 10.1186/s12916-024-03710-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Inflammation is characterized by a metabolic switch promoting glycolysis and lactate production. Hexokinases (HK) catalyze the first reaction of glycolysis and inhibition of epithelial HK2 protected from colitis in mice. HK2 expression has been described as elevated in patients with intestinal inflammation; however, there is conflicting data from few cohorts especially with severely inflamed individuals; thus, systematic studies linking disease activity with HK2 levels are needed. METHODS We examined the relationship between HK2 expression and inflammation severity using bulk transcriptome data derived from the mucosa of thoroughly phenotyped inflammatory bowel disease (IBD) patients of two independent cohorts including both subtypes Crohn's disease (CD) and ulcerative colitis (UC). Publicly available single-cell RNA sequencing data were analyzed, and immunofluorescence staining on colonic biopsies of unrelated patients with intestinal inflammation was performed to confirm the RNA-based findings on cellular and protein level. RESULTS HK2 expression gradually increased from mild to intermediate inflammation, yet strongly declined at high inflammation scores. Expression of epithelial marker genes also declined at high inflammation scores, whereas that of candidate immune marker genes increased, indicating a cellular remodeling of the mucosa during inflammation with an infiltration of HK2-negative immune cells and a loss of terminal differentiated epithelial cells in the apical epithelium-the main site of HK2 expression. Normalizing for the enterocyte loss clearly identified epithelial HK2 expression as gradually increasing with disease activity and remaining elevated at high inflammation scores. HK2 protein expression was mostly restricted to brush border enterocytes, and these cells along with HK2 levels vanished with increasing disease severity. CONCLUSIONS Our findings clearly define dysregulated epithelial HK2 expression as an indicator of disease activity in intestinal inflammation and suggest targeted HK2-inhibition as a potential therapeutic avenue.
Collapse
Affiliation(s)
- Saskia Weber-Stiehl
- Institute of Clinical Molecular Biology, University of Kiel, Rosalind-Franklin-Straße 12, Kiel, 24105, Germany
| | - Jan Taubenheim
- Institute of Experimental Medicine, University of Kiel & University Hospital Schleswig-Holstein, Michaelisstr. 5, Kiel, 24105, Germany
| | - Lea Järke
- Institute of Clinical Molecular Biology, University of Kiel, Rosalind-Franklin-Straße 12, Kiel, 24105, Germany
| | - Christoph Röcken
- Department of Pathology, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3/House U33, Kiel, 24105, Germany
| | - Stefan Schreiber
- Department of Internal Medicine I, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, 24105, Germany
| | - Konrad Aden
- Institute of Clinical Molecular Biology, University of Kiel, Rosalind-Franklin-Straße 12, Kiel, 24105, Germany
- Department of Internal Medicine I, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, 24105, Germany
| | - Christoph Kaleta
- Institute of Experimental Medicine, University of Kiel & University Hospital Schleswig-Holstein, Michaelisstr. 5, Kiel, 24105, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, University of Kiel, Rosalind-Franklin-Straße 12, Kiel, 24105, Germany
| | - Felix Sommer
- Institute of Clinical Molecular Biology, University of Kiel, Rosalind-Franklin-Straße 12, Kiel, 24105, Germany.
| |
Collapse
|
22
|
Chen SM, Guo BJ, Feng AQ, Wang XL, Zhang SL, Miao CY. Pathways regulating intestinal stem cells and potential therapeutic targets for radiation enteropathy. MOLECULAR BIOMEDICINE 2024; 5:46. [PMID: 39388072 PMCID: PMC11467144 DOI: 10.1186/s43556-024-00211-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
Radiotherapy is a pivotal intervention for cancer patients, significantly impacting their treatment outcomes and survival prospects. Nevertheless, in the course of treating those with abdominal, pelvic, or retroperitoneal malignant tumors, the procedure inadvertently exposes adjacent intestinal tissues to radiation, posing risks of radiation-induced enteropathy upon reaching threshold doses. Stem cells within the intestinal crypts, through their controlled proliferation and differentiation, support the critical functions of the intestinal epithelium, ensuring efficient nutrient absorption while upholding its protective barrier properties. Intestinal stem cells (ISCs) regulation is intricately orchestrated by diverse signaling pathways, among which are the WNT, BMP, NOTCH, EGF, Hippo, Hedgehog and NF-κB, each contributing to the complex control of these cells' behavior. Complementing these pathways are additional regulators such as nutrient metabolic states, and the intestinal microbiota, all of which contribute to the fine-tuning of ISCs behavior in the intestinal crypts. It is the harmonious interplay among these signaling cascades and modulating elements that preserves the homeostasis of intestinal epithelial cells (IECs), thereby ensuring the gut's overall health and function. This review delves into the molecular underpinnings of how stem cells respond in the context of radiation enteropathy, aiming to illuminate potential biological targets for therapeutic intervention. Furthermore, we have compiled a summary of several current treatment methodologies. By unraveling these mechanisms and treatment methods, we aspire to furnish a roadmap for the development of novel therapeutics, advancing our capabilities in mitigating radiation-induced intestinal damage.
Collapse
Affiliation(s)
- Si-Min Chen
- Department of Pharmacology, Second Military Medical University/Naval Medical University, 325 Guo He Road, Shanghai, 200433, China
| | - Bing-Jie Guo
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - An-Qiang Feng
- Department of Digestive Disease, Xuzhou Central Hospital, Xuzhou, China
| | - Xue-Lian Wang
- School of Medicine, Shanghai University, Shanghai, China
| | - Sai-Long Zhang
- Department of Pharmacology, Second Military Medical University/Naval Medical University, 325 Guo He Road, Shanghai, 200433, China.
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University/Naval Medical University, 325 Guo He Road, Shanghai, 200433, China.
| |
Collapse
|
23
|
Zhao D, Ravikumar V, Leach TJ, Kraushaar D, Lauder E, Li L, Sun Y, Oravecz-Wilson K, Keller ET, Chen F, Maneix L, Jenq RR, Britton R, King KY, Santibanez AE, Creighton CJ, Rao A, Reddy P. Inflammation-induced epigenetic imprinting regulates intestinal stem cells. Cell Stem Cell 2024; 31:1447-1464.e6. [PMID: 39232559 PMCID: PMC11963838 DOI: 10.1016/j.stem.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/25/2024] [Accepted: 08/09/2024] [Indexed: 09/06/2024]
Abstract
It remains unknown whether and how intestinal stem cells (ISCs) adapt to inflammatory exposure and whether the adaptation leaves scars that will affect their subsequent regeneration. We investigated the consequences of inflammation on Lgr5+ ISCs in well-defined clinically relevant models of acute gastrointestinal graft-versus-host disease (GI GVHD). Utilizing single-cell transcriptomics, as well as organoid, metabolic, epigenomic, and in vivo models, we found that Lgr5+ ISCs undergo metabolic changes that lead to the accumulation of succinate, which reprograms their epigenome. These changes reduced the ability of ISCs to differentiate and regenerate ex vivo in serial organoid cultures and also in vivo following serial transplantation. Furthermore, ISCs demonstrated a reduced capacity for in vivo regeneration despite resolution of the initial inflammatory exposure, demonstrating the persistence of the maladaptive impact induced by the inflammatory encounter. Thus, inflammation imprints the epigenome of ISCs in a manner that persists and affects their sensitivity to adapt to future stress or challenges.
Collapse
Affiliation(s)
- Dongchang Zhao
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Department of Internal Medicine, Houston, TX 77030, USA
| | - Visweswaran Ravikumar
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tyler J Leach
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Department of Internal Medicine, Houston, TX 77030, USA
| | - Daniel Kraushaar
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Department of Internal Medicine, Houston, TX 77030, USA
| | - Emma Lauder
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Department of Internal Medicine, Houston, TX 77030, USA; Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, MI 48109, USA
| | - Lu Li
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Department of Internal Medicine, Houston, TX 77030, USA
| | - Yaping Sun
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Department of Internal Medicine, Houston, TX 77030, USA
| | - Katherine Oravecz-Wilson
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, MI 48109, USA
| | - Evan T Keller
- Department of Urology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Fengju Chen
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Department of Internal Medicine, Houston, TX 77030, USA
| | - Laure Maneix
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Department of Internal Medicine, Houston, TX 77030, USA
| | - Robert R Jenq
- Department of Genomic Medicine and Stem Cell Transplantation, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Robert Britton
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Department of Internal Medicine, Houston, TX 77030, USA
| | - Katherine Y King
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Department of Internal Medicine, Houston, TX 77030, USA
| | - Ana E Santibanez
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Department of Internal Medicine, Houston, TX 77030, USA
| | - Chad J Creighton
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Department of Internal Medicine, Houston, TX 77030, USA
| | - Arvind Rao
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Pavan Reddy
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Department of Internal Medicine, Houston, TX 77030, USA; Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, MI 48109, USA.
| |
Collapse
|
24
|
Hung CT, Ma C, Panda SK, Trsan T, Hodel M, Frein J, Foster A, Sun S, Wu HT, Kern J, Mishra R, Jain U, Ho YC, Colonna M, Stappenbeck TS, Liu TC. Western diet reduces small intestinal intraepithelial lymphocytes via FXR-Interferon pathway. Mucosal Immunol 2024; 17:1019-1028. [PMID: 38992433 DOI: 10.1016/j.mucimm.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
The prevalence of obesity in the United States has continued to increase over the past several decades. Understanding how diet-induced obesity modulates mucosal immunity is of clinical relevance. We previously showed that consumption of a high fat, high sugar "Western" diet (WD) reduces the density and function of small intestinal Paneth cells, a small intestinal epithelial cell type with innate immune function. We hypothesized that obesity could also result in repressed gut adaptive immunity. Using small intestinal intraepithelial lymphocytes (IEL) as a readout, we found that in non-inflammatory bowel disease (IBD) subjects, high body mass index correlated with reduced IEL density. We recapitulated this in wild type (WT) mice fed with WD. A 4-week WD consumption was able to reduce IEL but not splenic, blood, or bone marrow lymphocytes, and the effect was reversible after another 2 weeks of standard diet (SD) washout. Importantly, WD-associated IEL reduction was not dependent on the presence of gut microbiota, as WD-fed germ-free mice also showed IEL reduction. We further found that WD-mediated Farnesoid X Receptor (FXR) activation in the gut triggered IEL reduction, and this was partially mediated by intestinal phagocytes. Activated FXR signaling stimulated phagocytes to secrete type I IFN, and inhibition of either FXR or type I IFN signaling within the phagocytes prevented WD-mediated IEL loss. Therefore, WD consumption represses both innate and adaptive immunity in the gut. These findings have significant clinical implications in the understanding of how diet modulates mucosal immunity.
Collapse
Affiliation(s)
- Chen-Ting Hung
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, United States
| | - Changqing Ma
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, United States
| | - Santosh K Panda
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, United States
| | - Tihana Trsan
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, United States
| | - Miki Hodel
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, United States
| | - Jennifer Frein
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, United States
| | - Amanda Foster
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, United States
| | - Shengxiang Sun
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, United States
| | - Hung-Ting Wu
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, United States
| | - Justin Kern
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, United States
| | - Richa Mishra
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, United States
| | - Umang Jain
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, United States
| | - Ya-Chi Ho
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519, United States
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, United States
| | - Thaddeus S Stappenbeck
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Ta-Chiang Liu
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, United States.
| |
Collapse
|
25
|
Adams L, Li X, Burchmore R, Goodwin RJA, Wall DM. Microbiome-derived metabolite effects on intestinal barrier integrity and immune cell response to infection. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001504. [PMID: 39392674 PMCID: PMC11469068 DOI: 10.1099/mic.0.001504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024]
Abstract
The gut microbiota exerts a significant influence on human health and disease. While compositional changes in the gut microbiota in specific diseases can easily be determined, we lack a detailed mechanistic understanding of how these changes exert effects at the cellular level. However, the putative local and systemic effects on human physiology that are attributed to the gut microbiota are clearly being mediated through molecular communication. Here, we determined the effects of gut microbiome-derived metabolites l-tryptophan, butyrate, trimethylamine (TMA), 3-methyl-4-(trimethylammonio)butanoate (3,4-TMAB), 4-(trimethylammonio)pentanoate (4-TMAP), ursodeoxycholic acid (UDCA), glycocholic acid (GCA) and benzoate on the first line of defence in the gut. Using in vitro models of intestinal barrier integrity and studying the interaction of macrophages with pathogenic and non-pathogenic bacteria, we could ascertain the influence of these metabolites at the cellular level at physiologically relevant concentrations. Nearly all metabolites exerted positive effects on barrier function, but butyrate prevented a reduction in transepithelial resistance in the presence of the pathogen Escherichia coli, despite inducing increased apoptosis and exerting increased cytotoxicity. Induction of IL-8 was unaffected by all metabolites, but GCA stimulated increased intra-macrophage growth of E. coli and tumour necrosis-alpha (TNF-α) release. Butyrate, 3,4-TMAB and benzoate all increased TNF-α release independent of bacterial replication. These findings reiterate the complexity of understanding microbiome effects on host physiology and underline that microbiome metabolites are crucial mediators of barrier function and the innate response to infection. Understanding these metabolites at the cellular level will allow us to move towards a better mechanistic understanding of microbiome influence over host physiology, a crucial step in advancing microbiome research.
Collapse
Affiliation(s)
- Lauren Adams
- School of Infection and Immunology, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow, G12 8TA, UK
| | - Xiang Li
- School of Infection and Immunology, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow, G12 8TA, UK
| | - Richard Burchmore
- School of Infection and Immunology, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow, G12 8TA, UK
| | - Richard J. A. Goodwin
- School of Infection and Immunology, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow, G12 8TA, UK
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, CB4 0WG, UK
| | - Daniel M. Wall
- School of Infection and Immunology, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow, G12 8TA, UK
| |
Collapse
|
26
|
Wu S, Liu H, Yi J, Xu M, Jiang J, Tao J, Wu B. β-arrestin1 protects intestinal tight junction through promoting mitofusin 2 transcription to drive parkin-dependent mitophagy in colitis. Gastroenterol Rep (Oxf) 2024; 12:goae084. [PMID: 39246845 PMCID: PMC11379473 DOI: 10.1093/gastro/goae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/04/2024] [Accepted: 03/04/2024] [Indexed: 09/10/2024] Open
Abstract
Background Intestinal barrier defect is an essential inflammatory bowel disease (IBD) pathogenesis. Mitochondrial dysfunction results in energy deficiency and oxidative stress, which contribute to the pathogenesis of IBD. β-arrestin1 (ARRB1) is a negative regulator that promotes G protein-coupled receptors desensitization, endocytosis, and degradation. However, its role in maintaining the intestinal barrier remains unclear. Methods Dextran sulfate sodium-induced colitis was performed in ARRB1 knockout and wild-type mice. Intestinal permeability and tight junction proteins were measured to evaluate the intestinal barrier. Mitochondria function and mitophagic flux in mice and cell lines were detected. Finally, the interaction between ARRB1 and mitofusin 2 was investigated by co-immunoprecipitation and dual luciferase assay. Results We identified that ARRB1 protected the intestinal tight junction barrier against experimental colitis in vivo. ARRB1 deficiency was accompanied by abnormal mitochondrial morphology, lower adenosine triphosphate (ATP) production, and severe oxidative stress. In vitro, the knockdown of ARRB1 reduced ATP levels and mitochondrial membrane potential while increasing reactive oxygen species levels and oxidative stress. Upon ARRB1 ablation, mitophagy was inhibited, accompanied by decreased LC3BII, phosphatase and tension homologue-induced protein kinase1 (PINK1), and parkin, but increased p62 expression. Mitophagy inhibition via PINK1 siRNA or mitochondrial division inhibitor 1 impaired ARRB1-mediated tight junction protection. The interaction of ARRB1 with E2F1 activated mitophagy by enhancing the transcription of mitofusin 2. Conclusions Our results suggest that ARRB1 is critical to maintaining the intestinal tight junction barrier by promoting mitophagy. These results reveal a novel link between ARRB1 and the intestinal tight junction barrier, which provides theoretical support for colitis treatment.
Collapse
Affiliation(s)
- Shuyun Wu
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
| | - Huiling Liu
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
| | - Jiazhi Yi
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Minyi Xu
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
| | - Jie Jiang
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
| | - Jin Tao
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
| | - Bin Wu
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
27
|
Encarnacion-Garcia MR, De la Torre-Baez R, Hernandez-Cueto MA, Velázquez-Villegas LA, Candelario-Martinez A, Sánchez-Argáez AB, Horta-López PH, Montoya-García A, Jaimes-Ortega GA, Lopez-Bailon L, Piedra-Quintero Z, Carrasco-Torres G, De Ita M, Figueroa-Corona MDP, Muñoz-Medina JE, Sánchez-Uribe M, Ortiz-Fernández A, Meraz-Ríos MA, Silva-Olivares A, Betanzos A, Baay-Guzman GJ, Navarro-Garcia F, Villa-Treviño S, Garcia-Sierra F, Cisneros B, Schnoor M, Ortíz-Navarrete VF, Villegas-Sepúlveda N, Valle-Rios R, Medina-Contreras O, Noriega LG, Nava P. IFN-γ stimulates Paneth cell secretion through necroptosis mTORC1 dependent. Eur J Immunol 2024; 54:e2350716. [PMID: 38837757 DOI: 10.1002/eji.202350716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/07/2024]
Abstract
Immune mediators affect multiple biological functions of intestinal epithelial cells (IECs) and, like Paneth and Paneth-like cells, play an important role in intestinal epithelial homeostasis. IFN-γ a prototypical proinflammatory cytokine disrupts intestinal epithelial homeostasis. However, the mechanism underlying the process remains unknown. In this study, using in vivo and in vitro models we demonstrate that IFN-γ is spontaneously secreted in the small intestine. Furthermore, we observed that this cytokine stimulates mitochondrial activity, ROS production, and Paneth and Paneth-like cell secretion. Paneth and Paneth-like secretion downstream of IFN-γ, as identified here, is mTORC1 and necroptosis-dependent. Thus, our findings revealed that the pleiotropic function of IFN-γ also includes the regulation of Paneth cell function in the homeostatic gut.
Collapse
Affiliation(s)
- Maria R Encarnacion-Garcia
- Departament of Physiology, Biophysics, and Neurosciences, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico
| | - Raúl De la Torre-Baez
- Departament of Physiology, Biophysics, and Neurosciences, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico
| | - María A Hernandez-Cueto
- Clinical Laboratory of Infectology, National Hospital "La Raza" Medical Center, IMSS, Mexico City, Mexico
| | - Laura A Velázquez-Villegas
- Physiology of Nutrition Department, The National Institute of Health Sciences and Nutrition "Salvador Zubirán", Mexico City, Mexico
| | - Aurora Candelario-Martinez
- Departament of Physiology, Biophysics, and Neurosciences, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico
| | - Ana Beatriz Sánchez-Argáez
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico
| | - Perla H Horta-López
- Departament of Physiology, Biophysics, and Neurosciences, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico
| | - Armando Montoya-García
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico
| | - Gustavo Alberto Jaimes-Ortega
- Immunology and Proteomics Research Laboratory, Children's Hospital of Mexico "Federico Gómez" (HIMFG), Mexico City, Mexico
- Experimental Biology Postgraduate Program, Department of Biological and Health Sciences, Metropolitan Autonomous University (UAM), Mexico City, Mexico
| | - Luis Lopez-Bailon
- Immunology Department and Immunology Postgraduate Program, National School of Biological Sciences of the National Polytechnic Institute (ENCB-IPN), Mexico City, Mexico
| | - Zayda Piedra-Quintero
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico
| | - Gabriela Carrasco-Torres
- CICATA Unidad Morelos, Instituto Politécnico Nacional, Boulevard de la Tecnología, 1036 Z-1, P 2/2, Atlacholoaya, 62790, México
| | - Marlon De Ita
- Department of Genetics and Molecular Biology, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico
- Medical Research Unit in Human Genetics, UMAE Children's Hospital, National Medical Center "Siglo XXI", IMSS, Ciudad de México, 06720, Mexico
| | - María Del Pilar Figueroa-Corona
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico
| | - José Esteban Muñoz-Medina
- Clinical Laboratory of Infectology, National Hospital "La Raza" Medical Center, IMSS, Mexico City, Mexico
| | - Magdalena Sánchez-Uribe
- Pathological Anatomy, Specialized hospital "Dr. Antonio Fraga Mouret", National Hospital "La Raza" Medical Center, IMSS, Ciudad de México, México
| | - Arturo Ortiz-Fernández
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico
| | - Marco Antonio Meraz-Ríos
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico
| | - Angélica Silva-Olivares
- Departament of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico
| | - Abigail Betanzos
- Departament of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico
| | | | - Fernando Navarro-Garcia
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico
| | - Saúl Villa-Treviño
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico
| | - Francisco Garcia-Sierra
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico
| | - Bulmaro Cisneros
- Department of Genetics and Molecular Biology, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico
| | - Michael Schnoor
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico
| | - Vianney F Ortíz-Navarrete
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico
| | - Nicolás Villegas-Sepúlveda
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico
| | - Ricardo Valle-Rios
- Immunology and Proteomics Research Laboratory, Children's Hospital of Mexico "Federico Gómez" (HIMFG), Mexico City, Mexico
- University Research Unit, Research Division, Faculty of Medicine, National Autonomous University of Mexico-Children's Hospital of Mexico "Federico Gomez" (UNAM-HIMFG), Mexico City, Mexico
| | - Oscar Medina-Contreras
- Epidemiology, Endocrinology & Nutrition Research Unit, Children's Hospital of Mexico "Federico Gomez", Mexico City, Mexico
| | - Lilia G Noriega
- Physiology of Nutrition Department, The National Institute of Health Sciences and Nutrition "Salvador Zubirán", Mexico City, Mexico
| | - Porfirio Nava
- Departament of Physiology, Biophysics, and Neurosciences, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico
| |
Collapse
|
28
|
Bao W, Lyu J, Feng G, Guo L, Zhao D, You K, Liu Y, Li H, Du P, Chen D, Shen X. Aloe emodin promotes mucosal healing by modifying the differentiation fate of enteroendocrine cells via regulating cellular free fatty acid sensitivity. Acta Pharm Sin B 2024; 14:3964-3982. [PMID: 39309505 PMCID: PMC11413701 DOI: 10.1016/j.apsb.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/08/2024] [Accepted: 04/12/2024] [Indexed: 09/25/2024] Open
Abstract
The proper differentiation and reorganization of the intestinal epithelial cell population is critical to mucosal regeneration post injury. Label retaining cells (LRCs) expressing SRY-box transcription factor 9 (SOX9) promote epithelial repair by replenishing LGR5+ intestinal stem cells (ISCs). While, LRCs are also considered precursor cells for enteroendocrine cells (EECs) which exacerbate mucosal damage in inflammatory bowel disease (IBD). The factors that determine LRC-EEC differentiation and the effect of intervening in LRC-EEC differentiation on IBD remain unclear. In this study, we investigated the effects of a natural anthraquinone called aloe emodin (derived from the Chinese herb rhubarb) on mucosal healing in IBD models. Our findings demonstrated that aloe emodin effectively interfered with the differentiation to EECs and preserved a higher number of SOX9+ LRCs, thereby promoting mucosal healing. Furthermore, we discovered that aloe emodin acted as an antagonist of free fatty acid receptors (FFAR1), suppressing the FFAR1-mediated Gβγ/serine/threonine-protein kinase (AKT) pathway and promoting the translocation of forkhead box protein O1 (FOXO1) into the nucleus, ultimately resulting in the intervention of differentiation fate. These findings reveal the effect of free fatty acid accessibility on EEC differentiation and introduce a strategy for promoting mucosal healing in IBD by regulating the FFAR1/AKT/FOXO1 signaling pathway.
Collapse
Affiliation(s)
- Weilian Bao
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201210, China
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Jiaren Lyu
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201210, China
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Guize Feng
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Linfeng Guo
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Dian Zhao
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Keyuan You
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Yang Liu
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Haidong Li
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Peng Du
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Shanghai Colorectal Cancer Research Center, Shanghai 200092, China
| | - Daofeng Chen
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Xiaoyan Shen
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201210, China
| |
Collapse
|
29
|
Nyström JH, Heikkilä TRH, Thapa K, Pulli I, Törnquist K, Toivola DM. Colonocyte keratins stabilize mitochondria and contribute to mitochondrial energy metabolism. Am J Physiol Gastrointest Liver Physiol 2024; 327:G438-G453. [PMID: 38860856 PMCID: PMC11427106 DOI: 10.1152/ajpgi.00220.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/12/2024]
Abstract
Keratin intermediate filaments form dynamic filamentous networks, which provide mechanical stability, scaffolding, and protection against stress to epithelial cells. Keratins and other intermediate filaments have been increasingly linked to the regulation of mitochondrial function and homeostasis in different tissues and cell types. While deletion of keratin 8 (K8-/-) in mouse colon elicits a colitis-like phenotype, epithelial hyperproliferation, and blunted mitochondrial ketogenesis, the role of K8 in colonocyte mitochondrial function and energy metabolism is unknown. We used two K8 knockout mouse models and CRISPR/Cas9 K8-/- colorectal adenocarcinoma Caco-2 cells to answer this question. The results show that K8-/- colonocyte mitochondria in vivo are smaller and rounder and that mitochondrial motility is increased in K8-/- Caco-2 cells. Furthermore, K8-/- Caco-2 cells displayed diminished mitochondrial respiration and decreased mitochondrial membrane potential compared with controls, whereas glycolysis was not affected. The levels of mitochondrial respiratory chain complex proteins and mitochondrial regulatory proteins mitofusin-2 and prohibitin were decreased both in vitro in K8-/- Caco-2 cells and in vivo in K8-/- mouse colonocytes, and reexpression of K8 into K8-/- Caco-2 cells normalizes the mitofusin-2 levels. Mitochondrial Ca2+ is an important regulator of mitochondrial energy metabolism and homeostasis, and Caco-2 cells lacking K8 displayed decreased levels and altered dynamics of mitochondrial matrix and cytoplasmic Ca2+. In summary, these novel findings attribute an important role for colonocyte K8 in stabilizing mitochondrial shape and movement and maintaining mitochondrial respiration and Ca2+ signaling. Further, how these metabolically compromised colonocytes are capable of hyperproliferating presents an intriguing question for future studies.NEW & NOTEWORTHY In this study, we show that colonocyte intermediate filament protein keratin 8 is important for stabilizing mitochondria and maintaining mitochondrial energy metabolism, as keratin 8-deficient colonocytes display smaller, rounder, and more motile mitochondria, diminished mitochondrial respiration, and altered Ca2+ dynamics. Changes in fusion-regulating proteins are rescued with reexpression of keratin 8. These alterations in colonocyte mitochondrial homeostasis contribute to keratin 8-associated colitis pathophysiology.
Collapse
Affiliation(s)
- Joel H Nyström
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Taina R H Heikkilä
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Keshav Thapa
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Ilari Pulli
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Kid Törnquist
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki, Helsinki, Finland
| | - Diana M Toivola
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku and Åbo Akademi University, Turku, Finland
- Turku Center for Disease Modeling, University of Turku, Turku, Finland
| |
Collapse
|
30
|
Kong C, Yang M, Yue N, Zhang Y, Tian C, Wei D, Shi R, Yao J, Wang L, Li D. Restore Intestinal Barrier Integrity: An Approach for Inflammatory Bowel Disease Therapy. J Inflamm Res 2024; 17:5389-5413. [PMID: 39161679 PMCID: PMC11330754 DOI: 10.2147/jir.s470520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/02/2024] [Indexed: 08/21/2024] Open
Abstract
The intestinal barrier maintained by various types of columnar epithelial cells, plays a crucial role in regulating the interactions between the intestinal contents (such as the intestinal microbiota), the immune system, and other components. Dysfunction of the intestinal mucosa is a significant pathophysiological mechanism and clinical manifestation of inflammatory bowel disease (IBD). However, current therapies for IBD primarily focus on suppressing inflammation, and no disease-modifying treatments specifically target the epithelial barrier. Given the side effects associated with chronic immunotherapy, effective alternative therapies that promote mucosal healing are highly attractive. In this review, we examined the function of intestinal epithelial barrier function and the mechanisms of behind its disruption in IBD. We illustrated the complex process of intestinal mucosal healing and proposed therapeutic approaches to promote mucosal healing strategies in IBD. These included the application of stem cell transplantation and organ-like tissue engineering approaches to generate new intestinal tissue. Finally, we discussed potential strategies to restore the function of the intestinal barrier as a treatment for IBD.
Collapse
Affiliation(s)
- Chen Kong
- The Second Clinical Medical College, Jinan University; Shenzhen, Guangdong, People’s Republic of China
| | - Meifeng Yang
- Department of Hematology, Yantian District People’s Hospital, Shenzhen, Guangdong, People’s Republic of China
| | - Ningning Yue
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, People’s Republic of China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention, Huizhou, Guangdong, People’s Republic of China
| | - Chengmei Tian
- Department of Emergency, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| | - Daoru Wei
- Department of Rehabilitation, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| | - Ruiyue Shi
- The Second Clinical Medical College, Jinan University; Shenzhen, Guangdong, People’s Republic of China
| | - Jun Yao
- The Second Clinical Medical College, Jinan University; Shenzhen, Guangdong, People’s Republic of China
| | - Lisheng Wang
- The Second Clinical Medical College, Jinan University; Shenzhen, Guangdong, People’s Republic of China
| | - Defeng Li
- The Second Clinical Medical College, Jinan University; Shenzhen, Guangdong, People’s Republic of China
| |
Collapse
|
31
|
Urbauer E, Aguanno D, Mindermann N, Omer H, Metwaly A, Krammel T, Faro T, Remke M, Reitmeier S, Bärthel S, Kersting J, Huang Z, Xian F, Schmidt M, Saur D, Huber S, Stecher B, List M, Gómez-Varela D, Steiger K, Allez M, Rath E, Haller D. Mitochondrial perturbation in the intestine causes microbiota-dependent injury and gene signatures discriminative of inflammatory disease. Cell Host Microbe 2024; 32:1347-1364.e10. [PMID: 39013472 DOI: 10.1016/j.chom.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 05/13/2024] [Accepted: 06/20/2024] [Indexed: 07/18/2024]
Abstract
Mitochondrial dysfunction is associated with inflammatory bowel diseases (IBDs). To understand how microbial-metabolic circuits contribute to intestinal injury, we disrupt mitochondrial function in the epithelium by deleting the mitochondrial chaperone, heat shock protein 60 (Hsp60Δ/ΔIEC). This metabolic perturbation causes self-resolving tissue injury. Regeneration is disrupted in the absence of the aryl hydrocarbon receptor (Hsp60Δ/ΔIEC;AhR-/-) involved in intestinal homeostasis or inflammatory regulator interleukin (IL)-10 (Hsp60Δ/ΔIEC;Il10-/-), causing IBD-like pathology. Injury is absent in the distal colon of germ-free (GF) Hsp60Δ/ΔIEC mice, highlighting bacterial control of metabolic injury. Colonizing GF Hsp60Δ/ΔIEC mice with the synthetic community OMM12 reveals expansion of metabolically flexible Bacteroides, and B. caecimuris mono-colonization recapitulates the injury. Transcriptional profiling of the metabolically impaired epithelium reveals gene signatures involved in oxidative stress (Ido1, Nos2, Duox2). These signatures are observed in samples from Crohn's disease patients, distinguishing active from inactive inflammation. Thus, mitochondrial perturbation of the epithelium causes microbiota-dependent injury with discriminative inflammatory gene profiles relevant for IBD.
Collapse
Affiliation(s)
- Elisabeth Urbauer
- Chair of Nutrition and Immunology, Technical University of Munich, Gregor-Mendel-Strasse 2, 85354 Freising, Germany
| | - Doriane Aguanno
- Chair of Nutrition and Immunology, Technical University of Munich, Gregor-Mendel-Strasse 2, 85354 Freising, Germany
| | - Nora Mindermann
- Chair of Nutrition and Immunology, Technical University of Munich, Gregor-Mendel-Strasse 2, 85354 Freising, Germany
| | - Hélène Omer
- Chair of Nutrition and Immunology, Technical University of Munich, Gregor-Mendel-Strasse 2, 85354 Freising, Germany
| | - Amira Metwaly
- Chair of Nutrition and Immunology, Technical University of Munich, Gregor-Mendel-Strasse 2, 85354 Freising, Germany
| | - Tina Krammel
- Chair of Nutrition and Immunology, Technical University of Munich, Gregor-Mendel-Strasse 2, 85354 Freising, Germany
| | - Tim Faro
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, 80337 Munich, Germany
| | - Marianne Remke
- Institute of Pathology, Technical University of Munich, 81675 Munich, Germany
| | - Sandra Reitmeier
- Chair of Nutrition and Immunology, Technical University of Munich, Gregor-Mendel-Strasse 2, 85354 Freising, Germany
| | - Stefanie Bärthel
- Division of Translational Cancer Research, German Cancer Research Center and German Cancer Consortium, 69120 Heidelberg, Germany; Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany; Institute of Experimental Cancer Therapy, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Johannes Kersting
- Data Science in Systems Biology, TUM School of Life Sciences, Technical University of Munich, Maximus-von-Imhof Forum 3, 85354 Freising, Germany
| | - Zihua Huang
- Data Science in Systems Biology, TUM School of Life Sciences, Technical University of Munich, Maximus-von-Imhof Forum 3, 85354 Freising, Germany
| | - Feng Xian
- Systems Biology of Pain, Division of Pharmacology & Toxicology, Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria
| | - Manuela Schmidt
- Systems Biology of Pain, Division of Pharmacology & Toxicology, Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria
| | - Dieter Saur
- Division of Translational Cancer Research, German Cancer Research Center and German Cancer Consortium, 69120 Heidelberg, Germany; Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany; Institute of Experimental Cancer Therapy, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Samuel Huber
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Bärbel Stecher
- Max von Pettenkofer-Institute for Hygiene and Clinical Microbiology, Ludwig-Maximilians University of Munich, 80336 Munich, Germany; German Center for Infection Research, Partner site LMU Munich, 80336 Munich, Germany
| | - Markus List
- Data Science in Systems Biology, TUM School of Life Sciences, Technical University of Munich, Maximus-von-Imhof Forum 3, 85354 Freising, Germany; Munich Data Science Institute (MDSI), Technical University of Munich, 85748 Garching, Germany
| | - David Gómez-Varela
- Systems Biology of Pain, Division of Pharmacology & Toxicology, Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria
| | - Katja Steiger
- Institute of Pathology, Technical University of Munich, 81675 Munich, Germany
| | - Matthieu Allez
- Department of Gastroenterology, Hôpital Saint-Louis, APHP, INSERM UMRS 1160, Paris Diderot, Sorbonne Paris-Cité University, 75010 Paris, France
| | - Eva Rath
- Chair of Nutrition and Immunology, Technical University of Munich, Gregor-Mendel-Strasse 2, 85354 Freising, Germany
| | - Dirk Haller
- Chair of Nutrition and Immunology, Technical University of Munich, Gregor-Mendel-Strasse 2, 85354 Freising, Germany; ZIEL - Institute for Food & Health, Technical University of Munich, 85354 Freising, Germany.
| |
Collapse
|
32
|
Wang H, Li X, Zhang Q, Fu C, Jiang W, Xue J, Liu S, Meng Q, Ai L, Zhi X, Deng S, Liang W. Autophagy in Disease Onset and Progression. Aging Dis 2024; 15:1646-1671. [PMID: 37962467 PMCID: PMC11272186 DOI: 10.14336/ad.2023.0815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/15/2023] [Indexed: 11/15/2023] Open
Abstract
Autophagy is a biological phenomenon whereby components of cells can self-degrade using autophagosomes. During this process, cells can clear dysfunctional organelles or unwanted elements. Autophagy can recycle unnecessary biomolecules into new components or sometimes, even destroy the cells themselves. This cellular process was first observed in 1962 by Keith R. Porter et al. Since then, autophagy has been studied for over 60 years, and much has been learned on the topic. Nevertheless, the process is still not fully understood. It has been proven, for example, that autophagy can be a positive force for maintaining good health by removing older or damaged cells. By contrast, autophagy is also involved in the onset and progression of various conditions caused by pathogenic infections. These diseases generally involve several important organs in the human body, including the liver, kidney, heart, and central nervous system. The regulation of the defects of autophagy defects may potentially be used to treat some diseases. This review comprehensively discusses recent research frontiers and topics of interest regarding autophagy-related diseases.
Collapse
Affiliation(s)
- Hao Wang
- Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, Guangdong, China.
| | - Xiushen Li
- Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, Guangdong, China.
| | - Qi Zhang
- Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, Guangdong, China.
| | - Chengtao Fu
- School of Medicine, Huzhou University, Zhejiang, China.
| | - Wenjie Jiang
- Department of Artificial Intelligence and Data Science, Hebei University of Technology, Tianjin, China.
| | - Jun Xue
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China.
| | - Shan Liu
- Bioimaging Core of Shenzhen Bay Laboratory Shenzhen, China.
| | - Qingxue Meng
- Technology Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China.
| | - Lisha Ai
- Department of Teaching and Research, Shenzhen University General Hospital, Shenzhen, Guangdong, China.
| | - Xuejun Zhi
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China.
| | - Shoulong Deng
- National Health Commission of China (NHC) Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China.
| | - Weizheng Liang
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China.
| |
Collapse
|
33
|
Haque PS, Kapur N, Barrett TA, Theiss AL. Mitochondrial function and gastrointestinal diseases. Nat Rev Gastroenterol Hepatol 2024; 21:537-555. [PMID: 38740978 PMCID: PMC12036329 DOI: 10.1038/s41575-024-00931-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/10/2024] [Indexed: 05/16/2024]
Abstract
Mitochondria are dynamic organelles that function in cellular energy metabolism, intracellular and extracellular signalling, cellular fate and stress responses. Mitochondria of the intestinal epithelium, the cellular interface between self and enteric microbiota, have emerged as crucial in intestinal health. Mitochondrial dysfunction occurs in gastrointestinal diseases, including inflammatory bowel diseases and colorectal cancer. In this Review, we provide an overview of the current understanding of intestinal epithelial cell mitochondrial metabolism, function and signalling to affect tissue homeostasis, including gut microbiota composition. We also discuss mitochondrial-targeted therapeutics for inflammatory bowel diseases and colorectal cancer and the evolving concept of mitochondrial impairment as a consequence versus initiator of the disease.
Collapse
Affiliation(s)
- Parsa S Haque
- Division of Gastroenterology and Hepatology, Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Neeraj Kapur
- Department of Medicine, Division of Digestive Diseases and Nutrition, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Terrence A Barrett
- Department of Medicine, Division of Digestive Diseases and Nutrition, University of Kentucky College of Medicine, Lexington, KY, USA
- Lexington Veterans Affairs Medical Center Kentucky, Lexington, KY, USA
| | - Arianne L Theiss
- Division of Gastroenterology and Hepatology, Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, USA.
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, USA.
| |
Collapse
|
34
|
Cotton MJ, Ariel P, Chen K, Walcott VA, Dixit M, Breau KA, Hinesley CM, Kedziora KM, Tang CY, Zheng A, Magness ST, Burclaff J. An in vitro platform for quantifying cell cycle phase lengths in primary human intestinal epithelial cells. Sci Rep 2024; 14:15195. [PMID: 38956443 PMCID: PMC11219882 DOI: 10.1038/s41598-024-66042-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024] Open
Abstract
The intestinal epithelium dynamically controls cell cycle, yet no experimental platform exists for directly analyzing cell cycle phases in non-immortalized human intestinal epithelial cells (IECs). Here, we present two reporters and a complete platform for analyzing cell cycle phases in live primary human IECs. We interrogate the transcriptional identity of IECs grown on soft collagen, develop two fluorescent cell cycle reporter IEC lines, design and 3D print a collagen press to make chamber slides for optimal imaging while supporting primary human IEC growth, live image cell cycle dynamics, then assemble a computational pipeline building upon free-to-use programs for semi-automated analysis of cell cycle phases. The PIP-FUCCI construct allows for assigning cell cycle phase from a single image of living cells, and our PIP-H2A construct allows for semi-automated direct quantification of cell cycle phase lengths using our publicly available computational pipeline. Treating PIP-FUCCI IECs with oligomycin demonstrates that inhibiting mitochondrial respiration lengthens G1 phase, and PIP-H2A cells allow us to measure that oligomycin differentially lengthens S and G2/M phases across heterogeneous IECs. These platforms provide opportunities for future studies on pharmaceutical effects on the intestinal epithelium, cell cycle regulation, and more.
Collapse
Affiliation(s)
- Michael J Cotton
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27599, USA
| | - Pablo Ariel
- Microscopy Services Laboratory, Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kaiwen Chen
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27599, USA
| | - Vanessa A Walcott
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Michelle Dixit
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27599, USA
| | - Keith A Breau
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Caroline M Hinesley
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Katarzyna M Kedziora
- Department of Cell Biology, Center for Biologic Imaging (CBI), University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Cynthia Y Tang
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Anna Zheng
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Scott T Magness
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27599, USA.
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Joseph Burclaff
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27599, USA.
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
35
|
Ma C, Haritunians T, Gremida AK, Syal G, Shah J, Yang S, Ramos Del Aguila de Rivers C, Storer CE, Chen L, Mengesha E, Mujukian A, Hanna M, Fleshner P, Binion DG, VanDussen KL, Stappenbeck TS, Head RD, Ciorba MA, McGovern DPB, Liu TC. Ileal Paneth Cell Phenotype is a Cellular Biomarker for Pouch Complications in Ulcerative Colitis. J Crohns Colitis 2024; 18:jjae105. [PMID: 38953127 PMCID: PMC11637519 DOI: 10.1093/ecco-jcc/jjae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND & AIMS Biomarkers that integrate genetic and environmental factors and predict outcome in complex immune diseases such as inflammatory bowel disease (IBD; including Crohn's disease [CD] and ulcerative colitis [UC]) are needed. We showed that morphologic patterns of ileal Paneth cells (Paneth cell phenotype [PCP]; a surrogate for PC function) is one such cellular biomarker for CD. Given the shared features between CD and UC, we hypothesized that PCP is also associated with molecular/genetic features and outcome in UC. Because PC density is highest in the ileum, we further hypothesized that PCP predicts outcome in UC subjects who underwent total colectomy and ileal pouch-anal anastomosis (IPAA). METHODS Uninflamed ileal resection margins from UC subjects with colectomy and IPAA were used for PCP and transcriptomic analyses. PCP was defined using defensin 5 immunofluorescence. Genotyping was performed using Immunochip. UC transcriptomic and genotype associations of PCP were incorporated with data from CD subjects to identify common IBD-related pathways and genes that regulate PCP. RESULTS The prevalence of abnormal ileal PCP was 27%, comparable to that seen in CD. Combined analysis of UC and CD subjects showed that abnormal PCP was associated with transcriptomic pathways of secretory granule maturation and polymorphisms in innate immunity genes. Abnormal ileal PCP at the time of colectomy was also associated with pouch complications including de novo CD in the pouch and time to first episode of pouchitis. CONCLUSIONS Ileal PCP is biologically and clinically relevant in UC and can be used as a biomarker in IBD.
Collapse
Affiliation(s)
- Changqing Ma
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Talin Haritunians
- F. Widjaja Foundation Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Anas K Gremida
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Gaurav Syal
- F. Widjaja Foundation Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Janaki Shah
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Shaohong Yang
- F. Widjaja Foundation Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Chad E Storer
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Ling Chen
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Emebet Mengesha
- F. Widjaja Foundation Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Angela Mujukian
- F. Widjaja Foundation Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Mary Hanna
- F. Widjaja Foundation Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Phillip Fleshner
- F. Widjaja Foundation Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - David G Binion
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Kelli L VanDussen
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Thaddeus S Stappenbeck
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Richard D Head
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Matthew A Ciorba
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Dermot P B McGovern
- F. Widjaja Foundation Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ta-Chiang Liu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
36
|
Xie X, Huang C. Role of the gut-muscle axis in mitochondrial function of ageing muscle under different exercise modes. Ageing Res Rev 2024; 98:102316. [PMID: 38703951 DOI: 10.1016/j.arr.2024.102316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/29/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
The fundamental role of the gut microbiota through the gut-muscle axis in skeletal muscle ageing is increasingly recognised. Metabolites derived from the intestinal microbiota are essential in maintaining skeletal muscle function and metabolism. The energy produced by mitochondria and moderate levels of reactive oxygen species can contribute to this process. Metabolites can effectively target the mitochondria, slowing the progression of muscle ageing and potentially representing a marker of ageing-related skeletal muscle loss. Moreover, mitochondria can contribute to the immune response, gut microbiota biodiversity, and maintenance of the intestinal barrier function. However, the causal relationship between mitochondrial function and gut microbiota crosstalk remains poorly understood. In addition to elucidating the regulatory pathways of the gut-muscle axis during the ageing process, we focused on the potential role of the "exercise-gut-muscle axis", which represents a pathway under stimulation from different exercise modes to induce mitochondrial adaptations, skeletal muscle metabolism and maintain intestinal barrier function and biodiversity stability. Meanwhile, different exercise modes can induce mitochondrial adaptations and skeletal muscle metabolism and maintain intestinal barrier function and biodiversity. Resistance exercise may promote mitochondrial adaptation, increase the cross-sectional area of skeletal muscle and muscle hypertrophy, and promote muscle fibre and motor unit recruitment. Whereas endurance exercise promotes mitochondrial biogenesis, aerobic capacity, and energy utilisation, activating oxidative metabolism-related pathways to improve skeletal muscle metabolism and function. This review describes the effects of different exercise modes through the gut-muscle axis and how they act through mitochondria in ageing to define the current state of the field and issues requiring resolution.
Collapse
Affiliation(s)
- Xiaoting Xie
- Department of Sports Science, Zhejiang University, Hangzhou, China; Laboratory for Digital Sports and Health, College of Education, Zhejiang University, Hangzhou, China
| | - Cong Huang
- Department of Sports Science, Zhejiang University, Hangzhou, China; Laboratory for Digital Sports and Health, College of Education, Zhejiang University, Hangzhou, China; Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
37
|
Ragab M, Schlichting H, Hicken M, Mester P, Hirose M, Almeida LN, Christiansen L, Ibrahim S, Tews HC, Divanovic S, Sina C, Derer S. Azathioprine promotes intestinal epithelial cell differentiation into Paneth cells and alleviates ileal Crohn's disease severity. Sci Rep 2024; 14:12879. [PMID: 38839896 PMCID: PMC11153537 DOI: 10.1038/s41598-024-63730-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/30/2024] [Indexed: 06/07/2024] Open
Abstract
Paneth cells (PCs), a subset of intestinal epithelial cells (IECs) found at the base of small intestinal crypts, play an essential role in maintaining intestinal homeostasis. Altered PCs function is associated with diverse intestinal pathologies, including ileal Crohn's disease (CD). CD patients with ileal involvement have been previously demonstrated to display impairment in PCs and decreased levels of anti-microbial peptides. Although the immunosuppressive drug Azathioprine (AZA) is widely used in CD therapy, the impact of AZA on IEC differentiation remains largely elusive. In the present study, we hypothesized that the orally administered drug AZA also exerts its effect through modulation of the intestinal epithelium and specifically via modulation of PC function. AZA-treated CD patients exhibited an ileal upregulation of AMPs on both mRNA and protein levels compared to non-AZA treated patients. Upon in vitro AZA stimulation, intestinal epithelial cell line MODE-K exhibited heightened expression levels of PC marker in concert with diminished cell proliferation but boosted mitochondrial OXPHOS activity. Moreover, differentiation of IECs, including PCs differentiation, was boosted in AZA-treated murine small intestinal organoids and was associated with decreased D-glucose consumption and decreased growth rates. Of note, AZA treatment strongly decreased Lgr5 mRNA expression as well as Ki67 positive cells. Further, AZA restored dysregulated PCs associated with mitochondrial dysfunction. AZA-dependent inhibition of IEC proliferation is accompanied by boosted mitochondria function and IEC differentiation into PC.
Collapse
Affiliation(s)
- Mohab Ragab
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Heidi Schlichting
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Maren Hicken
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Patricia Mester
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital, Regensburg, Germany
| | - Misa Hirose
- Lübeck Institute of Experimental Dermatology and Center for Research On Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Larissa N Almeida
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Lea Christiansen
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Saleh Ibrahim
- Lübeck Institute of Experimental Dermatology and Center for Research On Inflammation of the Skin, University of Lübeck, Lübeck, Germany
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Hauke Christian Tews
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital, Regensburg, Germany
| | - Senad Divanovic
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Christian Sina
- Institute of Nutritional Medicine and 1st Department of Medicine, Division of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Stefanie Derer
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany.
| |
Collapse
|
38
|
Herren R, Geva-Zatorsky N. Spatial features of skip lesions in Crohn's disease. Trends Immunol 2024; 45:470-481. [PMID: 38782626 DOI: 10.1016/j.it.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
Skip lesions are an enigmatic spatial feature characterizing Crohn's disease (CD). They comprise inflamed and adjacent non-inflamed tissue sections with a clear demarcation. Currently, spatial features of the human gastrointestinal (GI) system lack clarity regarding the organization of microbes, mucus, tissue, and host cells during inflammation. New technologies with multiplexing abilities and innovative approaches provide ways of examining the spatial organization of inflamed and non-inflamed tissues in CD, which may open new avenues for diagnosis, prognosis, and treatment. In this review, we present evidence of the relevance of spatial context in patients with CD and the methods and ideas recently published in studies of spatiality during inflammation. With this review, we aim to provide inspiration for further research to address existing gaps.
Collapse
Affiliation(s)
- Rachel Herren
- Department of Cell Biology and Cancer Science, Rappaport Technion Integrated Cancer Center (RTICC), Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3525422 Haifa, Israel
| | - Naama Geva-Zatorsky
- Department of Cell Biology and Cancer Science, Rappaport Technion Integrated Cancer Center (RTICC), Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3525422 Haifa, Israel; CIFAR, MaRS Centre, West Tower 661 University Avenue, Suite 505, Toronto, ON M5G 1M1, Canada.
| |
Collapse
|
39
|
Foppa C, Rizkala T, Repici A, Hassan C, Spinelli A. Microbiota and IBD: Current knowledge and future perspectives. Dig Liver Dis 2024; 56:911-922. [PMID: 38008696 DOI: 10.1016/j.dld.2023.11.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/18/2023] [Accepted: 11/09/2023] [Indexed: 11/28/2023]
Abstract
Inflammatory Bowel Disease (IBD) is a chronic relapsing-remitting disease with a remarkable increase in incidence worldwide and a substantial disease burden. Although the pathophysiology is not fully elucidated yet an aberrant immune reaction against the intestinal microbiota and the gut microbial dysbiosis have been identified to play a major role. The composition of gut microbiota in IBD patients is distinct from that of healthy individuals, with certain organisms predominating over others. Differences in the microbial dysbiosis have been also observed between Crohn Disease (CD) and Ulcerative Colitis (UC). A disruption of the microbiota's balance can lead to inflammation and intestinal damage. Microbiota composition in IBD can be affected both by endogenous (i.e., interaction with the immune system and intestinal epithelial cells) and exogenous (i.e., medications, surgery, diet) factors. The complex interplay between the gut microbiota and IBD is an area of great interest for understanding disease pathogenesis and developing new treatments. The purpose of this review is to summarize the latest evidence on the role of microbiota in IBD pathogenesis and to explore possible future areas of research.
Collapse
Affiliation(s)
- Caterina Foppa
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090, Milan, Italy; IRCCS Humanitas Research Hospital, Division of Colon and Rectal Surgery, via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - Tommy Rizkala
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090, Milan, Italy
| | - Alessandro Repici
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090, Milan, Italy; IRCCS Humanitas Research Hospital, Division of Gastroenterology and Digestive Endoscopy Unit, via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - Cesare Hassan
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090, Milan, Italy; IRCCS Humanitas Research Hospital, Division of Gastroenterology and Digestive Endoscopy Unit, via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - Antonino Spinelli
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090, Milan, Italy; IRCCS Humanitas Research Hospital, Division of Colon and Rectal Surgery, via Manzoni 56, Rozzano, 20089, Milan, Italy.
| |
Collapse
|
40
|
Singh MK, Shin Y, Han S, Ha J, Tiwari PK, Kim SS, Kang I. Molecular Chaperonin HSP60: Current Understanding and Future Prospects. Int J Mol Sci 2024; 25:5483. [PMID: 38791521 PMCID: PMC11121636 DOI: 10.3390/ijms25105483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Molecular chaperones are highly conserved across evolution and play a crucial role in preserving protein homeostasis. The 60 kDa heat shock protein (HSP60), also referred to as chaperonin 60 (Cpn60), resides within mitochondria and is involved in maintaining the organelle's proteome integrity and homeostasis. The HSP60 family, encompassing Cpn60, plays diverse roles in cellular processes, including protein folding, cell signaling, and managing high-temperature stress. In prokaryotes, HSP60 is well understood as a GroEL/GroES complex, which forms a double-ring cavity and aids in protein folding. In eukaryotes, HSP60 is implicated in numerous biological functions, like facilitating the folding of native proteins and influencing disease and development processes. Notably, research highlights its critical involvement in sustaining oxidative stress and preserving mitochondrial integrity. HSP60 perturbation results in the loss of the mitochondria integrity and activates apoptosis. Currently, numerous clinical investigations are in progress to explore targeting HSP60 both in vivo and in vitro across various disease models. These studies aim to enhance our comprehension of disease mechanisms and potentially harness HSP60 as a therapeutic target for various conditions, including cancer, inflammatory disorders, and neurodegenerative diseases. This review delves into the diverse functions of HSP60 in regulating proteo-homeostasis, oxidative stress, ROS, apoptosis, and its implications in diseases like cancer and neurodegeneration.
Collapse
Affiliation(s)
- Manish Kumar Singh
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.H.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Centre for Genomics, SOS Zoology, Jiwaji University, Gwalior 474011, India;
| | - Yoonhwa Shin
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.H.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sunhee Han
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.H.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joohun Ha
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.H.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Pramod K. Tiwari
- Centre for Genomics, SOS Zoology, Jiwaji University, Gwalior 474011, India;
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.H.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.H.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
41
|
Ren X, Liu Q, Zhou P, Zhou T, Wang D, Mei Q, Flavell RA, Liu Z, Li M, Pan W, Zhu S. DHX9 maintains epithelial homeostasis by restraining R-loop-mediated genomic instability in intestinal stem cells. Nat Commun 2024; 15:3080. [PMID: 38594251 PMCID: PMC11004185 DOI: 10.1038/s41467-024-47235-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 03/26/2024] [Indexed: 04/11/2024] Open
Abstract
Epithelial barrier dysfunction and crypt destruction are hallmarks of inflammatory bowel disease (IBD). Intestinal stem cells (ISCs) residing in the crypts play a crucial role in the continuous self-renewal and rapid recovery of intestinal epithelial cells (IECs). However, how ISCs are dysregulated in IBD remains poorly understood. Here, we observe reduced DHX9 protein levels in IBD patients, and mice with conditional DHX9 depletion in the intestinal epithelium (Dhx9ΔIEC) exhibit an increased susceptibility to experimental colitis. Notably, Dhx9ΔIEC mice display a significant reduction in the numbers of ISCs and Paneth cells. Further investigation using ISC-specific or Paneth cell-specific Dhx9-deficient mice demonstrates the involvement of ISC-expressed DHX9 in maintaining epithelial homeostasis. Mechanistically, DHX9 deficiency leads to abnormal R-loop accumulation, resulting in genomic instability and the cGAS-STING-mediated inflammatory response, which together impair ISC function and contribute to the pathogenesis of IBD. Collectively, our findings highlight R-loop-mediated genomic instability in ISCs as a risk factor in IBD.
Collapse
Affiliation(s)
- Xingxing Ren
- Hefei National Research Center for Physical Sciences at the Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, China
- Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Department of Gastroenterology, Third Affiliated Hospital of Guangzhou Medical University, 510145, Guangzhou, China
| | - Qiuyuan Liu
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Peirong Zhou
- Department of Gastroenterology, Third Affiliated Hospital of Guangzhou Medical University, 510145, Guangzhou, China
| | - Tingyue Zhou
- Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Decai Wang
- Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qiao Mei
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Zhanju Liu
- Center for IBD Research, Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Mingsong Li
- Department of Gastroenterology, Third Affiliated Hospital of Guangzhou Medical University, 510145, Guangzhou, China.
| | - Wen Pan
- Hefei National Research Center for Physical Sciences at the Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, China.
- Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Shu Zhu
- Hefei National Research Center for Physical Sciences at the Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, China.
- Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- School of Data Science, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
42
|
Sun Q, Bibi S, Xue Y, Du M, Chew B, Zhu MJ. Dietary purple potato supplement attenuates DSS-induced colitis in mice: impact on mitochondrial function. J Nutr Biochem 2024; 126:109585. [PMID: 38253109 DOI: 10.1016/j.jnutbio.2024.109585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 12/18/2023] [Accepted: 01/17/2024] [Indexed: 01/24/2024]
Abstract
Inflammatory bowel disease (IBD) is a condition characterized by disrupted intestinal barrier function, abnormal immune response, and mucosal structure loss. This study evaluated the beneficial role of purple potato (PP) supplementation against IBD symptoms using a murine model of dextran sulfate sodium (DSS)-induced colitis, and further explored the underlying mechanisms. Six-week-old C57BL/6J male mice were randomized into two groups and fed a standard rodent diet with or without 10% PP powder for 7 weeks. At the 5th week of dietary supplements, mice in each group were further divided into two subgroups and were either induced with or without 2.5% DSS induction for 7 days, followed by 7 days of recovery. Data showed that PP supplementation ameliorated the disease activity index in DSS-treated mice and reversed the colonic structure loss, mucosal damage, macrophage infiltration, and pro-inflammatory cytokine secretion induced by DSS in the colonic tissue. PP supplementation also restored the levels of tight junction proteins and caudal type homeobox 2 in DSS-treated mice. Furthermore, dietary PP enhanced peroxisome proliferator-activated receptor-γ coactivator-1α signaling pathway, mitochondrial biogenesis, mitochondrial proteostasis, and protein-folding capacity. In summary, dietary PP ameliorated DSS-induced colitis and improved gut structures and barrier function, which was associated with improved mitochondrial function. These results support further investigation of PP as a potential dietary intervention for IBD.
Collapse
Affiliation(s)
- Qi Sun
- School of Food Science, Washington State University, Pullman, WA, USA
| | - Shima Bibi
- School of Food Science, Washington State University, Pullman, WA, USA
| | - Yansong Xue
- School of Food Science, Washington State University, Pullman, WA, USA
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, WA, USA
| | - Boon Chew
- School of Food Science, Washington State University, Pullman, WA, USA
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA, USA.
| |
Collapse
|
43
|
Hoang N, Brooks K, Edwards K. Sex-specific colonic mitochondrial dysfunction in the indomethacin-induced rat model of inflammatory bowel disease. Front Physiol 2024; 15:1341742. [PMID: 38595640 PMCID: PMC11002206 DOI: 10.3389/fphys.2024.1341742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/06/2024] [Indexed: 04/11/2024] Open
Abstract
Introduction: Inflammatory bowel disease (IBD) is characterized by chronic inflammation of the gastrointestinal tract and encompasses Crohn's Disease and Ulcerative Colitis. Women appear to have more severe and recurring symptoms of IBD compared to men, most likely due to hormonal fluctuations. Studies have shown that mitochondrial dysfunction plays a role in the development of inflammation and there is evidence of colon mitochondrial alterations in IBD models and patients. In this study we have identified the presence of sex-specific colon mitochondrial dysfunction in a rat model of IBD. Methods: Eight-week-old male and female rats were treated with indomethacin to induce IBD and mitoTEMPO was administered daily either after or before induction of IBD and until euthanasia. Colons were collected for histology and mitochondrial experiments. Intact mitochondrial respiration, reactive oxygen species (mtROS), the activities of the individual electron transport complexes and the activities of the antioxidant enzymes were measured to assess mitochondrial function. Results: IBD male rats showed a decrease in citrate synthase activity, cardiolipin levels, catalase activity and an increase in mtROS production. IBD females show a decrease in intact colon mitochondrial respiration, colon mitochondria respiratory control ratio (RCR), complex I activity, complex IV activity, and an increase in mtROS. Interestingly, control females showed a significantly higher rate of complex I and II-driven intact mitochondrial respiration, MCFA oxidation, complex II activity, complex III activity, and complex IV activity compared to control males. The use of a mitochondrial-targeted therapy, mitoTEMPO, improved the disease and colon mitochondrial function in female IBD rats. However, in the males there was no observed improvement, likely due to the decrease in catalase activity. Conclusion: Our study provides a better understanding of the role mitochondria in the development of IBD and highlights sex differences in colon mitochondrial function. It also opens an avenue for the development of strategies to re-establish normal mitochondrial function that could provide more options for preventive and therapeutic interventions for IBD.
Collapse
Affiliation(s)
| | | | - Kristin Edwards
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
44
|
Hensel IV, Éliás S, Steinhauer M, Stoll B, Benfatto S, Merkt W, Krienke S, Lorenz HM, Haas J, Wildemann B, Resnik-Docampo M. SLE serum induces altered goblet cell differentiation and leakiness in human intestinal organoids. EMBO Mol Med 2024; 16:547-574. [PMID: 38316934 PMCID: PMC10940301 DOI: 10.1038/s44321-024-00023-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/21/2023] [Accepted: 01/05/2024] [Indexed: 02/07/2024] Open
Abstract
Human intestinal epithelial cells are the interface between luminal content and basally residing immune cells. They form a tight monolayer that constantly secretes mucus creating a multilayered protective barrier. Alterations in this barrier can lead to increased permeability which is common in systemic lupus erythematosus (SLE) patients. However, it remains unexplored how the barrier is affected. Here, we present an in vitro model specifically designed to examine the effects of SLE on epithelial cells. We utilize human colon organoids that are stimulated with serum from SLE patients. Combining transcriptomic with functional analyses revealed that SLE serum induced an expression profile marked by a reduction of goblet cell markers and changed mucus composition. In addition, organoids exhibited imbalanced cellular composition along with enhanced permeability, altered mitochondrial function, and an interferon gene signature. Similarly, transcriptomic analysis of SLE colon biopsies revealed a downregulation of secretory markers. Our work uncovers a crucial connection between SLE and intestinal homeostasis that might be promoted in vivo through the blood, offering insights into the causal connection of barrier dysfunction and autoimmune diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Wolfgang Merkt
- Division of Rheumatology, Department of Medicine V, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Krienke
- Division of Rheumatology, Department of Medicine V, University Hospital Heidelberg, Heidelberg, Germany
| | - Hanns-Martin Lorenz
- Division of Rheumatology, Department of Medicine V, University Hospital Heidelberg, Heidelberg, Germany
| | - Jürgen Haas
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - Brigitte Wildemann
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
45
|
Lechuga S, Marino-Melendez A, Naydenov NG, Zafar A, Braga-Neto MB, Ivanov AI. Regulation of Epithelial and Endothelial Barriers by Molecular Chaperones. Cells 2024; 13:370. [PMID: 38474334 PMCID: PMC10931179 DOI: 10.3390/cells13050370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
The integrity and permeability of epithelial and endothelial barriers depend on the formation of tight junctions, adherens junctions, and a junction-associated cytoskeleton. The establishment of this junction-cytoskeletal module relies on the correct folding and oligomerization of its protein components. Molecular chaperones are known regulators of protein folding and complex formation in different cellular compartments. Mammalian cells possess an elaborate chaperone network consisting of several hundred chaperones and co-chaperones. Only a small part of this network has been linked, however, to the regulation of intercellular adhesions, and the systematic analysis of chaperone functions at epithelial and endothelial barriers is lacking. This review describes the functions and mechanisms of the chaperone-assisted regulation of intercellular junctions. The major focus of this review is on heat shock protein chaperones, their co-chaperones, and chaperonins since these molecules are the focus of the majority of the articles published on the chaperone-mediated control of tissue barriers. This review discusses the roles of chaperones in the regulation of the steady-state integrity of epithelial and vascular barriers as well as the disruption of these barriers by pathogenic factors and extracellular stressors. Since cytoskeletal coupling is essential for junctional integrity and remodeling, chaperone-assisted assembly of the actomyosin cytoskeleton is also discussed.
Collapse
Affiliation(s)
- Susana Lechuga
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (S.L.); (A.M.-M.); (N.G.N.); (A.Z.); (M.B.B.-N.)
| | - Armando Marino-Melendez
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (S.L.); (A.M.-M.); (N.G.N.); (A.Z.); (M.B.B.-N.)
| | - Nayden G. Naydenov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (S.L.); (A.M.-M.); (N.G.N.); (A.Z.); (M.B.B.-N.)
| | - Atif Zafar
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (S.L.); (A.M.-M.); (N.G.N.); (A.Z.); (M.B.B.-N.)
| | - Manuel B. Braga-Neto
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (S.L.); (A.M.-M.); (N.G.N.); (A.Z.); (M.B.B.-N.)
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Andrei I. Ivanov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (S.L.); (A.M.-M.); (N.G.N.); (A.Z.); (M.B.B.-N.)
| |
Collapse
|
46
|
Moutin EB, Bons J, Giavara G, Lourenco F, Pan D, Burton JB, Shah S, Colombé M, Gascard P, Tlsty T, Schilling B, Winton DJ. Extracellular Matrix Orchestration of Tissue Remodeling in the Chronically Inflamed Mouse Colon. Cell Mol Gastroenterol Hepatol 2024; 17:639-656. [PMID: 38199279 PMCID: PMC10905044 DOI: 10.1016/j.jcmgh.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/12/2024]
Abstract
BACKGROUND & AIMS Chronic inflammatory illnesses are debilitating and recurrent conditions associated with significant comorbidities, including an increased risk of developing cancer. Extensive tissue remodeling is a hallmark of such illnesses, and is both a consequence and a mediator of disease progression. Despite previous characterization of epithelial and stromal remodeling during inflammatory bowel disease, a complete understanding of its impact on disease progression is lacking. METHODS A comprehensive proteomic pipeline using data-independent acquisition was applied to decellularized colon samples from the Muc2 knockout (Muc2KO) mouse model of colitis for an in-depth characterization of extracellular matrix remodeling. Unique proteomic profiles of the matrisomal landscape were extracted from prepathologic and overt colitis. Integration of proteomics and transcriptomics data sets extracted from the same murine model produced network maps describing the orchestrating role of matrisomal proteins in tissue remodeling during the progression of colitis. RESULTS The in-depth proteomic workflow used here allowed the addition of 34 proteins to the known colon matrisomal signature. Protein signatures of prepathologic and pathologic colitic states were extracted, differentiating the 2 states by expression of small leucine-rich proteoglycans. We outlined the role of this class and other matrisomal proteins in tissue remodeling during colitis, as well as the potential for coordinated regulation of cell types by matrisomal ligands. CONCLUSIONS Our work highlights a central role for matrisomal proteins in tissue remodeling during colitis and defines orchestrating nodes that can be exploited in the selection of therapeutic targets.
Collapse
Affiliation(s)
- Elisa B Moutin
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Joanna Bons
- Buck Institute for Research on Aging, Novato, California
| | - Giada Giavara
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Filipe Lourenco
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Deng Pan
- Department of Pathology, University of California, San Francisco, California
| | | | - Samah Shah
- Buck Institute for Research on Aging, Novato, California
| | - Mathilde Colombé
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Philippe Gascard
- Department of Pathology, University of California, San Francisco, California
| | - Thea Tlsty
- Department of Pathology, University of California, San Francisco, California
| | | | - Douglas J Winton
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, United Kingdom.
| |
Collapse
|
47
|
Metwaly A, Haller D. The TNF∆ARE Model of Crohn's Disease-like Ileitis. Inflamm Bowel Dis 2024; 30:132-145. [PMID: 37756666 DOI: 10.1093/ibd/izad205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Indexed: 09/29/2023]
Abstract
Crohn's disease (CD) is one of the 2 main phenotypes of inflammatory bowel diseases (IBDs); CD ischaracterized by a discontinuous, spontaneously recurring, transmural immunopathology that largely affects the terminal ileum. Crohn's disease exhibits both a relapsing and progressive course, and its prevalence is on the rise globally, mirroring the trends of industrialization. While the precise pathogenesis of CD remains unknown, various factors including immune cell dysregulation, microbial dysbiosis, genetic susceptibility, and environmental factors have been implicated in disease etiology. Animal models, particularly ileitis mouse models, have provided valuable tools for studying the specific mechanisms underlying CD, allowing longitudinal assessment and sampling in interventional preclinical studies. Furthermore, animal models assess to evaluate the distinct role that bacterial and dietary antigens play in causing inflammation, using germ-free animals, involving the introduction of individual bacteria (monoassociation studies), and experimenting with well-defined dietary components. An ideal animal model for studying IBD, specifically CD, should exhibit an inherent intestinal condition that arises spontaneously and closely mimics the distinct transmural inflammation observed in the human disease, particularly in the terminal ileum. We have recently characterized the impact of disease-relevant, noninfectious microbiota and specific bacteria in a mouse model that replicates CD-like ileitis, capturing the intricate nature of human CD, namely the TNF∆ARE mouse model. Using germ-free mice, we studied the impact of different diets on the expansion of disease-relevant pathobionts and on the severity of inflammation. In this review article, we review some of the currently available ileitis mouse models and discuss in detail the TNF∆ARE model of CD-like Ileitis.
Collapse
Affiliation(s)
- Amira Metwaly
- Chair of Nutrition and Immunology, Technical University of Munich, Freising, Germany
| | - Dirk Haller
- Chair of Nutrition and Immunology, Technical University of Munich, Freising, Germany
- ZIEL Institute for Food and Health, Technical University of Munich, Freising, Germany
| |
Collapse
|
48
|
Candeias E, Pereira-Santos AR, Empadinhas N, Cardoso SM, Esteves ARF. The Gut-Brain Axis in Alzheimer's and Parkinson's Diseases: The Catalytic Role of Mitochondria. J Alzheimers Dis 2024; 100:413-429. [PMID: 38875045 DOI: 10.3233/jad-240524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Accumulating evidence suggests that gut inflammation is implicated in neuroinflammation in Alzheimer's and Parkinson's diseases. Despite the numerous connections it remains unclear how the gut and the brain communicate and whether gut dysbiosis is the cause or consequence of these pathologies. Importantly, several reports highlight the importance of mitochondria in the gut-brain axis, as well as in mechanisms like gut epithelium self-renewal, differentiation, and homeostasis. Herein we comprehensively address the important role of mitochondria as a cellular hub in infection and inflammation and as a link between inflammation and neurodegeneration in the gut-brain axis. The role of mitochondria in gut homeostasis and as well the crosstalk between mitochondria and gut microbiota is discussed. Significantly, we also review studies highlighting how gut microbiota can ultimately affect the central nervous system. Overall, this review summarizes novel findings regarding this cross-talk where the mitochondria has a main role in the pathophysiology of both Alzheimer's and Parkinson's disease strengthen by cellular, animal and clinical studies.
Collapse
Affiliation(s)
- Emanuel Candeias
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Ana Raquel Pereira-Santos
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Ph.D. Programme in Biomedicine and Experimental Biology (PDBEB), Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Nuno Empadinhas
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Sandra Morais Cardoso
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Institute of Cellular and Molecular Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ana Raquel Fernandes Esteves
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
49
|
Salahuddin M, Hiramatsu K, Al-Amin M, Imai Y, Kita K. Low dietary carbohydrate induces structural alterations in enterocytes of the chicken ileum. Anim Sci J 2024; 95:e13919. [PMID: 38287469 DOI: 10.1111/asj.13919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/29/2023] [Accepted: 01/05/2024] [Indexed: 01/31/2024]
Abstract
We investigated the role of dietary carbohydrates in the maintenance of the enterocyte microvillar structure in the chicken ileum. Male chickens were divided into the control and three experimental groups, and the experimental groups were fed diets containing 50%, 25%, and 0% carbohydrates of the control diet. The structural alterations in enterocytes were examined using transmission electron microscopy and immunofluorescent techniques for β-actin and villin. Glucagon-like peptide (GLP)-2 and proglucagon mRNA were detected by immunohistochemistry and in situ hybridization, respectively. Fragmentation and wide gap spaces were frequently observed in the microvilli of the 25% and 0% groups. The length, width, and density of microvilli were also decreased in the experimental groups. The experimental groups had shorter terminal web extensions, and there were substantial changes in the mitochondrial density between the control and experimental groups. Intensities of β-actin and villin immunofluorescence observed on the apical surface of enterocytes were lower in the 0% group. The frequency of GLP-2-immunoreactive and proglucagon mRNA-expressing cells decreased with declining dietary carbohydrate levels. This study revealed that dietary carbohydrates contribute to the structural maintenance of enterocyte microvilli in the chicken ileum. The data from immunohistochemistry and in situ hybridization assays suggest the participation of GLP-2 in this maintenance system.
Collapse
Affiliation(s)
- Md Salahuddin
- Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, Kami-ina, Nagano, Japan
| | - Kohzy Hiramatsu
- Laboratory of Animal Functional Anatomy (LAFA), Faculty of Agriculture, Shinshu University, Kami-ina, Nagano, Japan
| | - Md Al-Amin
- Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, Kami-ina, Nagano, Japan
| | - Yuriko Imai
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Kami-ina, Nagano, Japan
| | - Kazumi Kita
- Laboratory of Animal Nutrition, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| |
Collapse
|
50
|
Chen J, Ruan X, Sun Y, Lu S, Hu S, Yuan S, Li X. Multi-omic insight into the molecular networks of mitochondrial dysfunction in the pathogenesis of inflammatory bowel disease. EBioMedicine 2024; 99:104934. [PMID: 38103512 PMCID: PMC10765009 DOI: 10.1016/j.ebiom.2023.104934] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/15/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND Mitochondrial dysfunction has been linked to the development of inflammatory bowel disease (IBD), but the genetic pathophysiology was not fully elucidated. We employed Mendelian randomization and colocalization analyses to investigate the associations between mitochondrial-related genes and IBD via integrating multi-omics. METHODS Summary-level data of mitochondrial gene methylation, expression and protein abundance levels were obtained from corresponding methylation, expression and protein quantitative trait loci studies, respectively. We obtained genetic associations with IBD and its two subtypes from the Inflammatory Bowel Disease Genetics Consortium (discovery), the UK Biobank (replication), and the FinnGen study (replication). We performed summary-data-based Mendelian randomization analysis to assess the associations of mitochondrial gene-related molecular features with IBD. Colocalization analysis was further conducted to assess whether the identified signal pairs shared a causal genetic variant. FINDINGS After integrating the multi-omics data between mQTL-eQTL and eQTL-pQTL, we identified two mitochondrial genes, i.e., PARK7 and ACADM, with tier 1 evidence for their associations with IBD and ulcerative colitis (UC). PDK1 and FISI genes were associated with UC risk with tier 2 and tier 3 evidence, respectively. The methylation of cg05467918 in ACADM was associated with lower expression of ACADM, which fits with the positive effect of cg05467918 methylation on UC risk. Consistently, the inverse associations between gene methylation and gene expression were also observed in PARK7 (cg10385390) and PDK1 (cg17679246), which were corroborated with the protective role in UC. At circulating protein level, genetically predicted higher levels of PARK7 (OR 0.36, 95% CI 0.25-0.52) and HINT1 (OR 0.47, 95% CI 0.30-0.74) were inversely associated with IBD risk; genetically predicted higher level of HINT1 was associated with a decreased risk of Crohn's disease (CD) (OR 0.26, 95% CI 0.14-0.49) and a higher level of ACADM (OR 0.67, 95% CI 0.55-0.83), PDK1 (OR 0.63, 95% CI 0.49-0.81), FIS1 (OR 0.63, 95% CI 0.47-0.83) was associated with a decreased risk of UC. INTERPRETATION We found that the mitochondrial PARK7 gene was putatively associated with IBD risk, and mitochondrial FIS1, PDK1, and ACADM genes were associated with UC risk with evidence from multi-omics levels. This study identified mitochondrial genes in relation to IBD, which may enhance the understanding of the pathogenic mechanisms of IBD development. FUNDING XL is supported by the Natural Science Fund for Distinguished Young Scholars of Zhejiang Province (LR22H260001) and Healthy Zhejiang One Million People Cohort (K-20230085).
Collapse
Affiliation(s)
- Jie Chen
- Department of Big Data in Health Science, School of Public Health and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xixian Ruan
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yuhao Sun
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Shiyuan Lu
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Shixian Hu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
| | - Shuai Yuan
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Xue Li
- Department of Big Data in Health Science, School of Public Health and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|