601
|
Peng M, Watanabe S, Chan KWK, He Q, Zhao Y, Zhang Z, Lai X, Luo D, Vasudevan SG, Li G. Luteolin restricts dengue virus replication through inhibition of the proprotein convertase furin. Antiviral Res 2017; 143:176-185. [DOI: 10.1016/j.antiviral.2017.03.026] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 02/14/2017] [Accepted: 03/29/2017] [Indexed: 11/17/2022]
|
602
|
Paquin-Proulx D, Leal FE, Terrassani Silveira CG, Maestri A, Brockmeyer C, Kitchen SM, Cabido VD, Kallas EG, Nixon DF. T-cell Responses in Individuals Infected with Zika Virus and in Those Vaccinated Against Dengue Virus. Pathog Immun 2017; 2:274-292. [PMID: 28835931 PMCID: PMC5565216 DOI: 10.20411/pai.v2i2.188] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The outbreak of Zika virus (ZIKV) infection in Brazil has raised concerns that infection during pregnancy could cause microcephaly and other severe neurodevelopmental malformations in the fetus. The mechanisms by which ZIKV causes fetal abnormalities are largely unknown. The importance of pre-infection with dengue virus (DENV), or other flaviviruses endemic to Brazil, remains to be investigated. It has been reported that antibodies directed against DENV can increase ZIKV infectivity by antibody dependent enhancement (ADE), suggesting that a history of prior DENV infection might worsen the outcome of ZIKV infection. METHODS We used bioinformatics tools to design 18 peptides from the ZIKV envelope containing predicted HLA-I T-cell epitopes and investigated T-cell cross-reactivity between ZIKV-infected individuals and DENV-vaccinated subjects by IFNγ ELISPOT. RESULTS Three peptides induced IFNγ production in both ZIKV-infected subjects and in DENV-vaccinated individuals. Flow cytometry indicated that 1 ZIKV peptide induced a CD4+ T-cell response in DENV-vaccinated subjects. CONCLUSIONS We demonstrated that vaccination against DENV induced a T-cell response against ZIKV and identified one such CD4+ T-cell epitope. The ZIKV-reactive CD4+ T cells induced by DENV vaccination and identified in this study could contribute to the appearance of cross-reactive antibodies mediating ADE.
Collapse
Affiliation(s)
- Dominic Paquin-Proulx
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, D.C
| | - Fabio E. Leal
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, D.C
| | | | - Alvino Maestri
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Claudia Brockmeyer
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, D.C
| | - Shannon M. Kitchen
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, D.C
| | - Vinicius D. Cabido
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, D.C
| | - Esper G. Kallas
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Douglas F. Nixon
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, D.C
| |
Collapse
|
603
|
The tetravalent formulation of domain III-capsid proteins recalls memory B- and T-cell responses induced in monkeys by an experimental dengue virus infection. Clin Transl Immunology 2017; 6:e148. [PMID: 28748091 PMCID: PMC5518957 DOI: 10.1038/cti.2017.24] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 05/12/2017] [Indexed: 12/03/2022] Open
Abstract
Tetra DIIIC is a vaccine candidate against dengue virus (DENV) composed by four chimeric proteins that fuse the domain III of the envelope protein of each virus to the corresponding capsid protein. Containing B- and T-cell epitopes, these proteins form aggregates after the incubation with an immunostimulatory oligodeoxynucleotide, and their tetravalent formulation induces neutralizing antibodies and cellular immune response in mice and monkeys. Also, Tetra DIIIC protects mice after challenge with each DENV, and the monovalent formulation obtained from DENV-2 protects monkeys upon homologous viral challenge. However, in the last years, new evidences have arisen regarding domain III of DENV envelope protein as irrelevant target for neutralizing antibodies in humans. Nevertheless, vaccination with domain III induces a neutralizing antibody response that confers protection against re-infection. In addition, it has been demonstrated that the induction of a cellular immune response is essential to protect during the infection. This response can also avoid severe manifestations of dengue disease, associated to the antibody-dependent enhancement of the infection. In this study, we observed that Tetra DIIIC was able to boost the antiviral and neutralizing antibody responses previously generated in monkeys during an experimental DENV infection, demonstrating that domain III is targeted by B cells during the viral infection. Additionally, Tetra DIIIC successfully boosted the cellular immune response generated by the viruses, probably against T-cells epitopes in the capsid proteins. These results highlight the functionality of Tetra DIIIC as a vaccine candidate against DENV.
Collapse
|
604
|
Abstract
The vaccine against Dengue virus (DENV), Dengvaxia® (CYD), produced by Sanofi-Pasteur, has been registered by several national regulatory agencies; nevertheless, the performance and security of this vaccine have been challenged in a series of recent papers. In this work, we intend to contribute to the debate by analyzing the concept of an enhancing vaccine, presenting objections to the epidemiological model base of the concept and, likewise, presenting data that contradict that concept.
Collapse
Affiliation(s)
| | | | | | - José Ramos-Castañeda
- Instituto Nacional de Salud Pública, Cuernavaca, Mexico; Center for Tropical Diseases, University of Texas-Medical Branch, Galveston, TX, USA.
| |
Collapse
|
605
|
Lestari CSW, Yohan B, Yunita A, Meutiawati F, Hayati RF, Trimarsanto H, Sasmono RT. Phylogenetic and evolutionary analyses of dengue viruses isolated in Jakarta, Indonesia. Virus Genes 2017; 53:778-788. [PMID: 28600724 DOI: 10.1007/s11262-017-1474-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/03/2017] [Indexed: 02/01/2023]
Abstract
Dengue has affected Indonesia for the last five decades and become a major health problem in many cities in the country. Jakarta, the capital of Indonesia, reports dengue cases annually, with several outbreaks documented. To gain information on the dynamic and evolutionary history of dengue virus (DENV) in Jakarta, we conducted phylogenetic and evolutionary analyses of DENV isolated in 2009. Three hundred thirty-three dengue-suspected patients were recruited. Our data revealed that dengue predominantly affected young adults, and the majority of cases were due to secondary infection. A total of 171 virus isolates were successfully serotyped. All four DENV serotypes were circulating in the city, and DENV-1 was the predominant serotype. The DENV genotyping of 17 isolates revealed the presence of Genotypes I and IV in DENV-1, while DENV-2 isolates were grouped into the Cosmopolitan genotype. The grouping of isolates into Genotype I and II was seen for DENV-3 and DENV-4, respectively. Evolutionary analysis revealed the relatedness of Jakarta isolates with other isolates from other cities in Indonesia and isolates from imported cases in other countries. We revealed the endemicity of DENV and the role of Jakarta as the potential source of imported dengue cases in other countries. Our study provides genetic information regarding DENV from Jakarta, which will be useful for upstream applications, such as the study of DENV epidemiology and evolution and transmission dynamics.
Collapse
Affiliation(s)
- C S Whinie Lestari
- Center for Research and Development of Biomedical and Basic Health Technology, National Institute of Health Research and Development, Ministry of Health, Jakarta, Indonesia
| | - Benediktus Yohan
- Eijkman Institute for Molecular Biology, Ministry of Research, Technology, and Higher Education, Jakarta, Indonesia
| | - Anisa Yunita
- Center for Research and Development of Biomedical and Basic Health Technology, National Institute of Health Research and Development, Ministry of Health, Jakarta, Indonesia
| | - Febrina Meutiawati
- Eijkman Institute for Molecular Biology, Ministry of Research, Technology, and Higher Education, Jakarta, Indonesia
| | - Rahma Fitri Hayati
- Eijkman Institute for Molecular Biology, Ministry of Research, Technology, and Higher Education, Jakarta, Indonesia
| | - Hidayat Trimarsanto
- Eijkman Institute for Molecular Biology, Ministry of Research, Technology, and Higher Education, Jakarta, Indonesia
| | - R Tedjo Sasmono
- Eijkman Institute for Molecular Biology, Ministry of Research, Technology, and Higher Education, Jakarta, Indonesia.
| |
Collapse
|
606
|
Guy B, Noriega F, Ochiai RL, L’azou M, Delore V, Skipetrova A, Verdier F, Coudeville L, Savarino S, Jackson N. A recombinant live attenuated tetravalent vaccine for the prevention of dengue. Expert Rev Vaccines 2017; 16:1-13. [DOI: 10.1080/14760584.2017.1335201] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Bruno Guy
- Research & Development, Sanofi Pasteur, Lyon, France
| | | | | | - Maïna L’azou
- Global Epidemiology, Sanofi Pasteur, Lyon, France
| | | | | | | | | | | | | |
Collapse
|
607
|
Abboubakar H, Kamgang JC, Nkamba LN, Tieudjo D. Bifurcation thresholds and optimal control in transmission dynamics of arboviral diseases. J Math Biol 2017; 76:379-427. [PMID: 28589490 DOI: 10.1007/s00285-017-1146-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 04/10/2017] [Indexed: 12/24/2022]
Abstract
In this paper, we derive and analyse a model for the control of arboviral diseases which takes into account an imperfect vaccine combined with some other control measures already studied in the literature. We begin by analysing the basic model without control. We prove the existence of two disease-free equilibrium points and the possible existence of up to two endemic equilibrium points (where the disease persists in the population). We show the existence of a transcritical bifurcation and a possible saddle-node bifurcation and explicitly derive threshold conditions for both, including defining the basic reproduction number, [Formula: see text], which provides whether the disease can persist in the population or not. The epidemiological consequence of saddle-node bifurcation is that the classical requirement of having the reproduction number less than unity, while necessary, is no longer sufficient for disease elimination from the population. It is further shown that in the absence of disease-induced death, the model does not exhibit this phenomenon. The model is extended by reformulating the model as an optimal control problem, with the use of five time dependent controls, to assess the impact of vaccination combined with treatment, individual protection and two vector control strategies (killing adult vectors and reduction of eggs and larvae). By using optimal control theory, we establish conditions under which the spread of disease can be stopped, and we examine the impact of combined control tools on the transmission dynamic of disease. The Pontryagin's maximum principle is used to characterize the optimal control. Numerical simulations and efficiency analysis show that, vaccination combined with other control mechanisms, would reduce the spread of the disease appreciably.
Collapse
Affiliation(s)
- Hamadjam Abboubakar
- Laboratory of Analysis, Simulations and Tests (LASE), Department of Computer Engineering, UIT-University of Ngaoundere, P. O. Box 455, Ngaoundere, Cameroon.
| | - Jean Claude Kamgang
- Laboratory of Experimental Mathematics (LME), Department of Mathematics and Computer Science, ENSAI-University of Ngaoundere, P. O. Box 455, Ngaoundere, Cameroon
| | - Leontine Nkague Nkamba
- Department of Mathematics, Higher Teacher Training College, University of Yaounde I, P. O. Box 47, Yaoundé, Cameroon
| | - Daniel Tieudjo
- Laboratory of Experimental Mathematics (LME), Department of Mathematics and Computer Science, ENSAI-University of Ngaoundere, P. O. Box 455, Ngaoundere, Cameroon
| |
Collapse
|
608
|
Immunogenicity and Safety of a Booster Injection of DTap-IPV//Hib (Pentaxim) Administered Concomitantly With Tetravalent Dengue Vaccine in Healthy Toddlers 15-18 Months of Age in Mexico: A Randomized Trial. Pediatr Infect Dis J 2017; 36:602-608. [PMID: 28067718 DOI: 10.1097/inf.0000000000001542] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The live, attenuated, tetravalent dengue vaccine (CYD-TDV) is licensed in a number of dengue endemic countries for individuals ≥9 years of age. Before the integration of any vaccine into childhood vaccination schedules, a lack of immune interference and acceptable safety when coadministered with other recommended vaccines should be demonstrated. METHODS This randomized, multi-center phase III trial was conducted in Mexico. Healthy toddlers (n = 732) received a booster dose of a licensed pentavalent combination vaccine [diphtheria, tetanus, acellular pertussis, inactivated polio vaccine and Haemophilus influenzae type b (DTaP-IPV//Hib)] either concomitantly or sequentially, with the second dose of CYD-TDV administered as a 3-dose schedule. Antibody titers against diphtheria toxoid, tetanus toxoid and pertussis antigens were measured by enzyme-linked immunosorbent assay. Antibodies against poliovirus and dengue serotypes were measured using a plaque reduction neutralization test. Noninferiority was demonstrated for each of the DTaP-IPV//Hib antigens if the lower limit of the 2-sided 95% confidence interval of the difference in seroconversion rates between the 2 groups (CYD-TDV and placebo) was ≥10%. Safety of both vaccines was assessed. RESULTS Noninferiority in immune response was demonstrated for all DTaP-IPV//Hib antigens. After 3 doses of CYD-TDV, no difference was observed in the immune response for CYD-TDV between groups. There were no safety concerns during the study. CONCLUSION Coadministration of the DTaP-IPV//Hib booster vaccine with CYD-TDV has no observed impact on the immunogenicity or safety profile of the DTaP-IPV//Hib booster vaccine. No difference was observed on the CYD-TDV profile when administered concomitantly or sequentially with the DTaP-IPV//Hib booster vaccine.
Collapse
|
609
|
Moving forward with Takeda's live chimeric tetravalent dengue vaccine. THE LANCET INFECTIOUS DISEASES 2017; 17:566-568. [DOI: 10.1016/s1473-3099(17)30165-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 03/20/2017] [Indexed: 12/22/2022]
|
610
|
Ariff MI, Yahya A, Zaki R, Sarimin R, Mohamed Ghazali IM, Gill BS, Suli Z, Mohd. Yusof MA, Ahmad Lutfi N, Thye SL, Ismail F, Mahmud M, Bakri R. Evaluation of awareness & utilisation of clinical practise guideline for management of adult Dengue infection among Malaysia doctors. PLoS One 2017; 12:e0178137. [PMID: 28562626 PMCID: PMC5451025 DOI: 10.1371/journal.pone.0178137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 05/08/2017] [Indexed: 11/18/2022] Open
Abstract
Clinical Practice Guideline (CPG) provides evidence-based guidance for the management of Dengue Infection in adult patients. A cross sectional study was conducted to evaluate awareness and utilization of CPG among doctors in public or private hospitals and clinics in Malaysia. Doctors practicing only at hospital Medical and Emergency Departments were included, while private specialist clinics were excluded in this study. A multistage proportionate random sampling according to region (Central, Northern, Southern, Eastern, Sabah and Sarawak) was performed to select study participants. The overall response rate was 74% (84% for public hospitals, 82% for private hospitals, 70% for public clinics, and 64% for private clinics). The CPG Awareness and Utilization Feedback Form were used to determine the percentage in the study. The total numbers of respondent were 634 with response rate of 74%. The mean lengths of service of the respondent were 13.98 (11.55).A higher percentages of doctors from public facilities (99%) were aware of the CPG compared to those in private facilities (84%). The percentage of doctors utilising the CPG were also higher (98%) in public facilities compared to private facilities (86%). The percentage of Medical Officer in private facilities that utilizing the CPG were 84% compares to Medical Officer in public facilities 98%. The high percentage of doctors using the CPG in both public (97%) and private (94%) hospitals were also observed. However, only 69% of doctors in private clinics utilised the CPG compared to doctors in public clinics (98%). Doctors in both public and private facilities were aware of the dengue CPG. However, most doctors in private clinic were less likely to utilise the CPG. Therefore, there is a need to increase the level of CPG utilisation especially in private clinics.
Collapse
Affiliation(s)
- Mohd Izhar Ariff
- Department of Social & Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Abqariyah Yahya
- Julius Centre University Malaya, Department of Social & Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- * E-mail:
| | - Rafdzah Zaki
- Julius Centre University Malaya, Department of Social & Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Roza Sarimin
- Health Technology Assessment Section, Medical Development Division, Ministry of Health, Putrajaya, Malaysia
| | | | - Balvinder Singh Gill
- Information and Documentation Surveillance section, Disease Control Division, Ministry of Health, Putrajaya, Malaysia
| | - Zailiza Suli
- Health Technology Assessment Section, Medical Development Division, Ministry of Health, Putrajaya, Malaysia
| | | | - Nafisah Ahmad Lutfi
- Health Technology Assessment Section, Medical Development Division, Ministry of Health, Putrajaya, Malaysia
| | - Sin Lian Thye
- Health Technology Assessment Section, Medical Development Division, Ministry of Health, Putrajaya, Malaysia
| | - Fatanah Ismail
- Family Health Division, Ministry of Health, Putrajaya, Malaysia
- Institute for Health Management, Ministry of Health, Putrajaya, Malaysia
| | - Maimunah Mahmud
- Jinjang Health Clinic, Ministry of Health, Putrajaya, Malaysia
| | - Rugayah Bakri
- Health Technology Assessment Section, Medical Development Division, Ministry of Health, Putrajaya, Malaysia
- Health Technology Assessment Section, Medical Development Division, Ministry of Health, Putrajaya, Malaysia
| |
Collapse
|
611
|
Covalently linked dengue virus envelope glycoprotein dimers reduce exposure of the immunodominant fusion loop epitope. Nat Commun 2017; 8:15411. [PMID: 28534525 PMCID: PMC5457521 DOI: 10.1038/ncomms15411] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 03/23/2017] [Indexed: 12/22/2022] Open
Abstract
A problem in the search for an efficient vaccine against dengue virus is the immunodominance of the fusion loop epitope (FLE), a segment of the envelope protein E that is buried at the interface of the E dimers coating mature viral particles. Anti-FLE antibodies are broadly cross-reactive but poorly neutralizing, displaying a strong infection enhancing potential. FLE exposure takes place via dynamic ‘breathing' of E dimers at the virion surface. In contrast, antibodies targeting the E dimer epitope (EDE), readily exposed at the E dimer interface over the region of the conserved fusion loop, are very potent and broadly neutralizing. We here engineer E dimers locked by inter-subunit disulfide bonds, and show by X-ray crystallography and by binding to a panel of human antibodies that these engineered dimers do not expose the FLE, while retaining the EDE exposure. These locked dimers are strong immunogen candidates for a next-generation vaccine. The immunodominant epitope of dengue virus envelope protein (E) induces poorly neutralizing antibodies, which poses a problem for vaccine development. Here, the authors engineer covalently locked E dimers exposing an epitope that has been shown to induce potent and broadly neutralizing antibodies.
Collapse
|
612
|
Ong EZ, Budigi Y, Tan HC, Robinson LN, Rowley KJ, Winnett A, Hobbie S, Shriver Z, Babcock GJ, Ooi EE. Preclinical evaluation of VIS513, a therapeutic antibody against dengue virus, in non-human primates. Antiviral Res 2017; 144:44-47. [PMID: 28529000 DOI: 10.1016/j.antiviral.2017.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 12/31/2022]
Abstract
Despite useful in vivo activity, no therapeutic against dengue virus (DENV) has demonstrated efficacy in clinical trials. Herein, we explored dosing and virological endpoints to guide the design of human trials of VIS513, a pan-serotype anti-DENV IgG1 antibody, in non-human primates (NHPs). Dosing VIS513 pre- or post-peak viremia in NHPs neutralized infectious DENV although RNAemia remained detectable post-treatment; differential interaction of human IgGs with macaque Fc-gamma receptors may delay clearance of neutralized DENV. Our findings suggest useful antiviral utility of VIS513 and highlight an important consideration when evaluating virological endpoints of trials for anti-DENV biologics.
Collapse
Affiliation(s)
- Eugenia Z Ong
- Experimental Therapeutics Centre, Agency for Science, Technology and Research, Singapore; Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | | | - Hwee Cheng Tan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | | | | | | | - Sven Hobbie
- Visterra Singapore International Pte Ltd, Singapore
| | | | | | - Eng Eong Ooi
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore; Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore-MIT Alliance in Research and Technology, Infectious Diseases Interdisciplinary Research Group, Singapore.
| |
Collapse
|
613
|
Dengue vaccine safety signal: Immune enhancement, waning immunity, or chance occurrence? Vaccine 2017; 35:3452-3456. [PMID: 28528764 DOI: 10.1016/j.vaccine.2017.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 04/28/2017] [Accepted: 05/02/2017] [Indexed: 11/22/2022]
Abstract
A new dengue vaccine was associated with increased risk of hospitalized virologically-confirmed disease during year 3 of follow-up among children age 2-5years. Among hypotheses to explain this finding, we could not distinguish definitively between antibody dependent enhancement, waning immunity, or chance occurrence. However, any theory must account for the following: (a) the signal occurred mainly because of decreased dengue among controls rather than increased dengue among vaccinees; (b) among 48 data points, a statistically significant increase in hospitalization among vaccinated children occurred for only one age group, during one year, and in one region; (c) cumulative risk was similar for vaccinated vs. control children age 2-5years at the end of year 5 and lower for vaccinated vs. control children among older age groups; (d) the protective effect of vaccine against hospitalization decreased from years 1-2 to years 3-5 of follow-up for all age groups and regions.
Collapse
|
614
|
Bracho-Churio YT, Martínez-Vega RA, Rodriguez-Morales AJ, Díaz-Quijano RG, Luna-González ML, Diaz-Quijano FA. Determinants of felt demand for dengue vaccines in the North Caribbean region of Colombia. Ann Clin Microbiol Antimicrob 2017; 16:38. [PMID: 28506229 PMCID: PMC5432981 DOI: 10.1186/s12941-017-0213-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 05/06/2017] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND The increasing burden associated with dengue in Latin America makes it essential to understand the community's interest in acquiring vaccines, as an input to plan its introduction in endemic regions. The objective of this study is to learn the felt demand for dengue vaccines by estimating the willingness to pay and its associated factors in endemic communities of the North Caribbean region of Colombia. METHODS A population survey was administered from October to December 2015, including 1037 families in 11 municipalities in Colombia. One adult per family was interviewed on their perception and history of dengue. Participants received a description of four hypothetical scenarios of dengue vaccines, administered in a single dose or in 3 doses, with an effectiveness of 70% for 5 years or 95% for 30 years. The willingness to pay for each one of these vaccines was inquired vs. 5 hypothetical prices in Colombian pesos. RESULTS Most participants recognized dengue as a serious disease in children (99.3%) and adults (98.6%). 33 (3.2%) of the total respondents reported having suffered dengue and 19 (57.6%) of them required hospitalization. The price of the vaccine was inversely related to the willingness to pay. In addition, single dose vaccines (compared to 3 doses) and one with a protection of 95% for 30 years (compared to an effectiveness of 70% for 5 years), were associated with greater willingness to pay. Greater willingness to pay was observed among the respondents who considered it likely to get the disease, either themselves (OR 1.56; CI 95% 1.08-2.26) or their children (OR 1.89; CI 95% 1.28-2.81), in the next 5 years. The participants who have been diagnosed with dengue also showed greater willingness to pay (OR 1.89; CI 95% 1.01-3.54) compared to those who did not have this history. CONCLUSION Factors such as price, number of doses and effectiveness can independently influence the decision to purchase a vaccine against an endemic disease, such as dengue. Additionally, this study reveals that background and perceptions of the disease can affect individuals' interest in acquiring this type of preventive interventions.
Collapse
Affiliation(s)
- Yalil T. Bracho-Churio
- Organización Latinoamericana para el Fomento de la Investigación en Salud, Bucaramanga, Santander Colombia
| | - Ruth A. Martínez-Vega
- Organización Latinoamericana para el Fomento de la Investigación en Salud, Bucaramanga, Santander Colombia
| | - Alfonso J. Rodriguez-Morales
- Organización Latinoamericana para el Fomento de la Investigación en Salud, Bucaramanga, Santander Colombia
- Public Health and Infection Research Group, Faculty of Health Sciences, Universidad Tecnológica de Pereira, Pereira, Risaralda Colombia
| | - Ronald G. Díaz-Quijano
- Organización Latinoamericana para el Fomento de la Investigación en Salud, Bucaramanga, Santander Colombia
| | - María L. Luna-González
- Organización Latinoamericana para el Fomento de la Investigación en Salud, Bucaramanga, Santander Colombia
| | - Fredi A. Diaz-Quijano
- Department of Epidemiology, Faculdade de Saúde Pública, Universidade de São Paulo, Av. Dr. Arnaldo, 715, São Paulo, SP CEP-01246-904 Brazil
| |
Collapse
|
615
|
Dengue Virus Activates the AMP Kinase-mTOR Axis To Stimulate a Proviral Lipophagy. J Virol 2017; 91:JVI.02020-16. [PMID: 28298606 DOI: 10.1128/jvi.02020-16] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 03/02/2017] [Indexed: 01/08/2023] Open
Abstract
Robust dengue virus (DENV) replication requires lipophagy, a selective autophagy that targets lipid droplets. The autophagic mobilization of lipids leads to increased β-oxidation in DENV-infected cells. The mechanism by which DENV induces lipophagy is unknown. Here, we show that infection with DENV activates the metabolic regulator 5' adenosine-monophosphate activated kinase (AMPK), and that the silencing or pharmacological inhibition of AMPK activity decreases DENV replication and the induction of lipophagy. The activity of the mechanistic target of rapamycin complex 1 (mTORC1) decreases in DENV-infected cells and is inversely correlated with lipophagy induction. Constitutive activation of mTORC1 by depletion of tuberous sclerosis complex 2 (TSC2) inhibits lipophagy induction in DENV-infected cells and decreases viral replication. While AMPK normally stimulates TSC2-dependent inactivation of mTORC1 signaling, mTORC1 inactivation is independent of AMPK activation during DENV infection. Thus, DENV stimulates and requires AMPK signaling as well as AMPK-independent suppression of mTORC1 activity for proviral lipophagy.IMPORTANCE Dengue virus alters host cell lipid metabolism to promote its infection. One mechanism for altered metabolism is the induction of a selective autophagy that targets lipid droplets, termed lipophagy. Lipophagy mobilizes lipid stores, resulting in enhanced β-oxidation and viral replication. We show here that DENV infection activates and requires the central metabolic regulator AMPK for its replication and the induction of lipophagy. This is required for the induction of lipophagy, but not basal autophagy, in DENV-infected cells.
Collapse
|
616
|
Chacko AM, Watanabe S, Herr KJ, Kalimuddin S, Tham JY, Ong J, Reolo M, Serrano RM, Cheung YB, Low JG, Vasudevan SG. 18F-FDG as an inflammation biomarker for imaging dengue virus infection and treatment response. JCI Insight 2017; 2:93474. [PMID: 28469088 DOI: 10.1172/jci.insight.93474] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/04/2017] [Indexed: 01/18/2023] Open
Abstract
Development of antiviral therapy against acute viral diseases, such as dengue virus (DENV), suffers from the narrow window of viral load detection in serum during onset and clearance of infection and fever. We explored a biomarker approach using 18F-fluorodeoxyglucose (18F-FDG) PET in established mouse models for primary and antibody-dependent enhancement infection with DENV. 18F-FDG uptake was most prominent in the intestines and correlated with increased virus load and proinflammatory cytokines. Furthermore, a significant temporal trend in 18F-FDG uptake was seen in intestines and selected tissues over the time course of infection. Notably, 18F-FDG uptake and visualization by PET robustly differentiated treatment-naive groups from drug-treated groups as well as nonlethal from lethal infections with a clinical strain of DENV2. Thus, 18F-FDG may serve as a novel DENV infection-associated inflammation biomarker for assessing treatment response during therapeutic intervention trials.
Collapse
Affiliation(s)
- Ann-Marie Chacko
- Laboratory for Translational and Molecular Imaging, Cancer and Stem Cell Biology Programme, and
| | - Satoru Watanabe
- Programme in Emerging Infectious Disease, Duke-NUS Medical School, Singapore
| | - Keira J Herr
- Laboratory for Translational and Molecular Imaging, Cancer and Stem Cell Biology Programme, and
| | - Shirin Kalimuddin
- Department of Infectious Diseases, Singapore General Hospital, Singapore
| | - Jing Yang Tham
- Laboratory for Translational and Molecular Imaging, Cancer and Stem Cell Biology Programme, and
| | - Joanne Ong
- Laboratory for Translational and Molecular Imaging, Cancer and Stem Cell Biology Programme, and
| | - Marie Reolo
- Laboratory for Translational and Molecular Imaging, Cancer and Stem Cell Biology Programme, and
| | - Raymond Mf Serrano
- Laboratory for Translational and Molecular Imaging, Cancer and Stem Cell Biology Programme, and
| | - Yin Bun Cheung
- Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore.,Center for Child Health Research, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Jenny Gh Low
- Department of Infectious Diseases, Singapore General Hospital, Singapore
| | - Subhash G Vasudevan
- Programme in Emerging Infectious Disease, Duke-NUS Medical School, Singapore
| |
Collapse
|
617
|
Marcondes CB, Contigiani M, Gleiser RM. Emergent and Reemergent Arboviruses in South America and the Caribbean: Why So Many and Why Now? JOURNAL OF MEDICAL ENTOMOLOGY 2017; 54:509-532. [PMID: 28399216 DOI: 10.1093/jme/tjw209] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 10/20/2016] [Indexed: 06/07/2023]
Abstract
Varios arbovirus han emergido y/o reemergido en el Nuevo Mundo en las últimas décadas. Los virus Zika y chikungunya, anteriormente restringidos a África y quizás Asia, invadieron el continente, causando gran preocupación; además siguen ocurriendo brotes causados por el virus dengue en casi todos los países, con millones de casos por año. El virus West Nile invadió rápidamente América del Norte, y ya se han encontrado casos en América Central y del Sur. Otros arbovirus, como Mayaro y el virus de la encefalitis equina del este han aumentado su actividad y se han encontrado en nuevas regiones. Se han documentado cambios en la patogenicidad de algunos virus que conducen a enfermedades inesperadas. Una fauna diversa de mosquitos, cambios climáticos y en la vegetación, aumento de los viajes, y urbanizaciones no planificadas que generan condiciones adecuadas para la proliferación de Aedes aegypti (L.), Culex quinquefasciatus Say y otros mosquitos vectores, se han combinado para influir fuertemente en los cambios en la distribución y la incidencia de varios arbovirus. Se enfatiza la necesidad de realizar estudios exhaustivos de la fauna de mosquitos y modificaciones de las condiciones ambientales, sobre todo en las zonas urbanas fuertemente influenciadas por factores sociales, políticos y económicos.
Collapse
Affiliation(s)
- Carlos Brisola Marcondes
- Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil
| | - Marta Contigiani
- Emeritus Professor, Instituto de Virologia "Dr. J. M. Vanella", Enfermera Gordillo Gomez s/n, Ciudad Universitaria, National University of Córdoba, Córdoba, Argentina
| | - Raquel Miranda Gleiser
- Centro de Relevamiento y Evaluación de Recursos Agrícolas y Naturales (CREAN) - Instituto Multidisciplinario de Biología Vegetal (IMBIV), Universidad Nacional de Córdoba (UNC) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| |
Collapse
|
618
|
Whitehead SS, Durbin AP, Pierce KK, Elwood D, McElvany BD, Fraser EA, Carmolli MP, Tibery CM, Hynes NA, Jo M, Lovchik JM, Larsson CJ, Doty EA, Dickson DM, Luke CJ, Subbarao K, Diehl SA, Kirkpatrick BD. In a randomized trial, the live attenuated tetravalent dengue vaccine TV003 is well-tolerated and highly immunogenic in subjects with flavivirus exposure prior to vaccination. PLoS Negl Trop Dis 2017; 11:e0005584. [PMID: 28481883 PMCID: PMC5436874 DOI: 10.1371/journal.pntd.0005584] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 05/18/2017] [Accepted: 04/19/2017] [Indexed: 11/19/2022] Open
Abstract
Infection caused by the four serotypes of dengue virus (DENV-1-4) is a leading cause of mosquito-borne disease. Clinically-severe dengue disease is more common when secondary dengue infection occurs following prior infection with a heterologous dengue serotype. Other flaviviruses such as yellow fever virus, Japanese encephalitis virus, and Zika virus, can also elicit antibodies which are cross-reactive to DENV. As candidate dengue vaccines become available in endemic settings and for individuals who have received other flavivirus vaccines, it is important to examine vaccine safety and immunogenicity in these flavivirus-experienced populations. We performed a randomized, controlled trial of the National Institutes of Health live attenuated tetravalent dengue vaccine candidate (TV003) in fifty-eight individuals with prior exposure to flavivirus infection or vaccine. As in prior studies of this vaccine in flavivirus-naive volunteers, flavivirus-experienced subjects received two doses of vaccine six months apart and were followed closely for clinical events, laboratory changes, viremia, and neutralizing antibody titers. TV003 was well tolerated with few adverse events other than rash, which was predominately mild. Following one dose, 87% of vaccinees had an antibody response to all four serotypes (tetravalent response), suggesting a robust immune response. In addition, 76% of vaccinees were viremic; mean peak titers ranged from 0.68–1.1 log10 PFU/mL and did not differ by serotype. The second dose of TV003 was not associated with viremia, rash, or a sustained boost in antibody titers indicating that a single dose of the vaccine is likely sufficient to prevent viral replication and thus protect against disease. In comparison to the viremia and neutralizing antibody response elicited by TV003 in flavivirus-naïve subjects from prior studies, we found that subjects who were flavivirus-exposed prior to vaccination exhibited slightly higher DENV-3 viremia, higher neutralizing antibody titers to DENV-2, -3, and -4, and a higher tetravalent response frequency after TV003 administration. In summary, we demonstrate that the NIH tetravalent dengue vaccine TV003 is well-tolerated in flavivirus-experienced individuals and elicits robust post-vaccination neutralizing antibody titers. TRIAL REGISTRATION ClinicalTrials.gov NCT01506570.
Collapse
Affiliation(s)
- Stephen S. Whitehead
- Laboratory of Infectious Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Anna P. Durbin
- Center for Immunization Research, Johns Hopkins School of Public Health, Baltimore, Maryland; United States of America
| | - Kristen K. Pierce
- Vaccine Testing Center, Department of Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont, United States of America
| | - Dan Elwood
- Center for Immunization Research, Johns Hopkins School of Public Health, Baltimore, Maryland; United States of America
| | - Benjamin D. McElvany
- Vaccine Testing Center, Department of Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont, United States of America
| | - Ellen A. Fraser
- Vaccine Testing Center, Department of Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont, United States of America
| | - Marya P. Carmolli
- Vaccine Testing Center, Department of Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont, United States of America
| | - Cecilia M. Tibery
- Center for Immunization Research, Johns Hopkins School of Public Health, Baltimore, Maryland; United States of America
| | - Noreen A. Hynes
- Center for Immunization Research, Johns Hopkins School of Public Health, Baltimore, Maryland; United States of America
| | - Matthew Jo
- Center for Immunization Research, Johns Hopkins School of Public Health, Baltimore, Maryland; United States of America
| | - Janece M. Lovchik
- Center for Immunization Research, Johns Hopkins School of Public Health, Baltimore, Maryland; United States of America
| | - Catherine J. Larsson
- Vaccine Testing Center, Department of Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont, United States of America
| | - Elena A. Doty
- Vaccine Testing Center, Department of Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont, United States of America
| | - Dorothy M. Dickson
- Vaccine Testing Center, Department of Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont, United States of America
| | - Catherine J. Luke
- Laboratory of Infectious Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kanta Subbarao
- Laboratory of Infectious Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sean A. Diehl
- Vaccine Testing Center, Department of Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont, United States of America
| | - Beth D. Kirkpatrick
- Vaccine Testing Center, Department of Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont, United States of America
| |
Collapse
|
619
|
Shafie AA, Yeo HY, Coudeville L, Steinberg L, Gill BS, Jahis R, Amar-Singh Hss. The Potential Cost Effectiveness of Different Dengue Vaccination Programmes in Malaysia: A Value-Based Pricing Assessment Using Dynamic Transmission Mathematical Modelling. PHARMACOECONOMICS 2017; 35:575-589. [PMID: 28205150 DOI: 10.1007/s40273-017-0487-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
BACKGROUND Dengue disease poses a great economic burden in Malaysia. METHODS This study evaluated the cost effectiveness and impact of dengue vaccination in Malaysia from both provider and societal perspectives using a dynamic transmission mathematical model. The model incorporated sensitivity analyses, Malaysia-specific data, evidence from recent phase III studies and pooled efficacy and long-term safety data to refine the estimates from previous published studies. Unit costs were valued in $US, year 2013 values. RESULTS Six vaccination programmes employing a three-dose schedule were identified as the most likely programmes to be implemented. In all programmes, vaccination produced positive benefits expressed as reductions in dengue cases, dengue-related deaths, life-years lost, disability-adjusted life-years and dengue treatment costs. Instead of incremental cost-effectiveness ratios (ICERs), we evaluated the cost effectiveness of the programmes by calculating the threshold prices for a highly cost-effective strategy [ICER <1 × gross domestic product (GDP) per capita] and a cost-effective strategy (ICER between 1 and 3 × GDP per capita). We found that vaccination may be cost effective up to a price of $US32.39 for programme 6 (highly cost effective up to $US14.15) and up to a price of $US100.59 for programme 1 (highly cost effective up to $US47.96) from the provider perspective. The cost-effectiveness analysis is sensitive to under-reporting, vaccine protection duration and model time horizon. CONCLUSION Routine vaccination for a population aged 13 years with a catch-up cohort aged 14-30 years in targeted hotspot areas appears to be the best-value strategy among those investigated. Dengue vaccination is a potentially good investment if the purchaser can negotiate a price at or below the cost-effective threshold price.
Collapse
Affiliation(s)
- Asrul Akmal Shafie
- Discipline of Social and Administrative Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia (USM), 11800, George Town, Penang, Malaysia.
| | - Hui Yee Yeo
- Discipline of Social and Administrative Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia (USM), 11800, George Town, Penang, Malaysia
| | | | - Lucas Steinberg
- Sanofi Pasteur Malaysia, Unit TB-18-1, Level 18, Tower B, Plaza 33, No. 1 Jalan Kemajuan, Seksyen 13, 46200, Petaling Jaya, Selangor, Malaysia
| | - Balvinder Singh Gill
- Disease Control Division, Ministry of Health Malaysia, Block E1, E3, E6, E7 and E10, Parcel E, Federal Government Administration Centre, 62590, Putrajaya, Malaysia
| | - Rohani Jahis
- Disease Control Division, Ministry of Health Malaysia, Block E1, E3, E6, E7 and E10, Parcel E, Federal Government Administration Centre, 62590, Putrajaya, Malaysia
| | - Amar-Singh Hss
- Pediatric Department and Clinical Research Center, Hospital Raja Permaisuri Bainun Ipoh, Jalan Hospital, 30990, Ipoh, Perak, Malaysia
| |
Collapse
|
620
|
Low JGH, Ooi EE, Vasudevan SG. Current Status of Dengue Therapeutics Research and Development. J Infect Dis 2017; 215:S96-S102. [PMID: 28403438 PMCID: PMC5388029 DOI: 10.1093/infdis/jiw423] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Dengue is a significant global health problem. Even though a vaccine against dengue is now available, which is a notable achievement, its long-term protective efficacy against each of the 4 dengue virus serotypes remains to be definitively determined. Consequently, drugs directed at the viral targets or critical host mechanisms that can be used safely as prophylaxis or treatment to effectively ameliorate disease or reduce disease severity and fatalities are still needed to reduce the burden of dengue. This review will provide a brief account of the status of therapeutics research and development for dengue.
Collapse
Affiliation(s)
- Jenny G H Low
- Department of Infectious Diseases, Singapore General Hospital
| | - Eng Eong Ooi
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School.,Department of Microbiology and Immunology, National University of Singapore.,Singapore MIT Alliance in Research and Technology Infectious Diseases Interdisciplinary Research Group
| | - Subhash G Vasudevan
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School.,Department of Microbiology and Immunology, National University of Singapore
| |
Collapse
|
621
|
Kouretova J, Hammamy MZ, Epp A, Hardes K, Kallis S, Zhang L, Hilgenfeld R, Bartenschlager R, Steinmetzer T. Effects of NS2B-NS3 protease and furin inhibition on West Nile and Dengue virus replication. J Enzyme Inhib Med Chem 2017; 32:712-721. [PMID: 28385094 PMCID: PMC6445162 DOI: 10.1080/14756366.2017.1306521] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
West Nile virus (WNV) and Dengue virus (DENV) replication depends on the viral NS2B-NS3 protease and the host enzyme furin, which emerged as potential drug targets. Modification of our previously described WNV protease inhibitors by basic phenylalanine analogs provided compounds with reduced potency against the WNV and DENV protease. In a second series, their decarboxylated P1-trans-(4-guanidino)cyclohexylamide was replaced by an arginyl-amide moiety. Compound 4-(guanidinomethyl)-phenylacetyl-Lys-Lys-Arg-NH2 inhibits the NS2B-NS3 protease of WNV with an inhibition constant of 0.11 µM. Due to the similarity in substrate specificity, we have also tested the potency of our previously described multibasic furin inhibitors. Their further modification provided chimeric inhibitors with additional potency against the WNV and DENV proteases. A strong inhibition of WNV and DENV replication in cell culture was observed for the specific furin inhibitors, which reduced virus titers up to 10,000-fold. These studies reveal that potent inhibitors of furin can block the replication of DENV and WNV.
Collapse
Affiliation(s)
- Jenny Kouretova
- a Department of Pharmacy, Institute of Pharmaceutical Chemistry , Philipps University , Marburg , Germany.,b German Center for Infection Research (DZIF) , University of Marburg , Marburg , Germany
| | - M Zouhir Hammamy
- a Department of Pharmacy, Institute of Pharmaceutical Chemistry , Philipps University , Marburg , Germany
| | - Anton Epp
- a Department of Pharmacy, Institute of Pharmaceutical Chemistry , Philipps University , Marburg , Germany
| | - Kornelia Hardes
- a Department of Pharmacy, Institute of Pharmaceutical Chemistry , Philipps University , Marburg , Germany
| | - Stephanie Kallis
- c Department of Infectious Diseases, Molecular Virology , Heidelberg University , Heidelberg , Germany
| | - Linlin Zhang
- d Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck , Lübeck , Germany.,e German Center for Infection Research (DZIF) , University of Lübeck , Lübeck , Germany
| | - Rolf Hilgenfeld
- d Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck , Lübeck , Germany.,e German Center for Infection Research (DZIF) , University of Lübeck , Lübeck , Germany
| | - Ralf Bartenschlager
- c Department of Infectious Diseases, Molecular Virology , Heidelberg University , Heidelberg , Germany.,f German Center for Infection Research (DZIF) , Heidelberg University , Heidelberg , Germany
| | - Torsten Steinmetzer
- a Department of Pharmacy, Institute of Pharmaceutical Chemistry , Philipps University , Marburg , Germany.,b German Center for Infection Research (DZIF) , University of Marburg , Marburg , Germany
| |
Collapse
|
622
|
Lazo Vázquez L, Gil González L, Marcos López E, Pérez Fuentes Y, Cervetto de Armas L, Brown Richards E, Valdés Prado I, Suzarte Portal E, Cobas Acosta K, Yaugel Novoa M, Romero Fernández Y, Guillén Nieto G, Hermida Cruz L. Evaluation in Mice of the Immunogenicity of a Tetravalent Subunit Vaccine Candidate Against Dengue Virus Using Mucosal and Parenteral Immunization Routes. Viral Immunol 2017; 30:350-358. [PMID: 28418786 DOI: 10.1089/vim.2016.0150] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Our group has developed a subunit vaccine candidate against Dengue virus (DENV) based on two different viral regions, the domain III of the envelope protein and the capsid protein. The chimeric proteins for each serotype (DIIIC1-4), aggregated with the oligodeoxynucleotide 39 M, form the tetravalent formulation named Tetra DIIIC. Tetra DIIIC induces a protective immune response in mice when it is inoculated by intraperitoneal route. However, if children are the main targets for a DENV vaccine, then a needle-free route of administration should be attractive and advantageous. In this study, we evaluated for the first time, in vivo, a vaccine candidate against DENV based on recombinant proteins using the intranasal route. After three doses of Tetra DIIIC in mice, we measured the humoral immune response against the four DENV serotypes and the corresponding recombinant proteins. Moreover, the functionality of these antibodies was evaluated through a plaque reduction neutralization test. Finally, to assess the cellular immune response induced, we measured the IFN-γ-levels secreted by spleen cells after in vitro stimulation with DENV. The results presented in this study indicate that the intranasal immunization with Tetra DIIIC favors the generation of DENV-specific cell-mediated immunity. On the other hand, the immunization using intraperitoneal and intranasal routes, simultaneously, generate functional antibodies (anti-DIIIC and anti-DENV) and an in vitro response of IFN-γ secretion.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Iris Valdés Prado
- Center for Genetic Engineering and Biotechnology (CIGB) , Havana, Cuba
| | | | | | | | | | | | | |
Collapse
|
623
|
Valdés I, Marcos E, Suzarte E, Pérez Y, Brown E, Lazo L, Cobas K, Yaugel M, Rodríguez Y, Gil L, Guillén G, Hermida L. A dose-response study in mice of a tetravalent vaccine candidate composed of domain III-capsid proteins from dengue viruses. Arch Virol 2017; 162:2247-2256. [PMID: 28393307 DOI: 10.1007/s00705-017-3360-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/22/2017] [Indexed: 10/19/2022]
Abstract
Tetra DIIIC is a subunit vaccine candidate based on domain III of the envelope protein and the capsid protein of the four serotypes of dengue virus. This vaccine preparation contains the DIIIC proteins aggregated with a specific immunostimulatory oligodeoxynucleotide (ODN 39M). Tetra DIIIC has already been shown to be immunogenic and protective in mice and monkeys. In this study, we evaluated the immunogenicity in mice of several formulations of Tetra DIIIC containing different amounts of the recombinant proteins. The Tetra DIIIC formulation induced a humoral immune response against the four DENV serotypes, even at the lowest dose assayed. In contrast, the highest level of cell-mediated immunity, measured as frequency of IFNγ-producing cells, was detected in animals immunized with the lowest dose. The protective capacity of the tetravalent formulations was assessed using the mouse model of dengue virus encephalitis. Upon challenge, vaccinated mice showed significantly reduced virus replication in all tested groups. This study provides new information about the functionality of Tetra DIIIC as a vaccine candidate and also supports the crucial role of cell-mediated immunity in protection against dengue virus.
Collapse
Affiliation(s)
- Iris Valdés
- Vaccine Division, Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, P.O. Box 6162, 10 600, Havana 6, Cuba
| | - Ernesto Marcos
- Vaccine Division, Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, P.O. Box 6162, 10 600, Havana 6, Cuba
| | - Edith Suzarte
- Vaccine Division, Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, P.O. Box 6162, 10 600, Havana 6, Cuba
| | - Yusleidi Pérez
- Vaccine Division, Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, P.O. Box 6162, 10 600, Havana 6, Cuba
| | - Enma Brown
- Vaccine Division, Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, P.O. Box 6162, 10 600, Havana 6, Cuba
| | - Laura Lazo
- Vaccine Division, Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, P.O. Box 6162, 10 600, Havana 6, Cuba
| | - Karem Cobas
- Vaccine Division, Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, P.O. Box 6162, 10 600, Havana 6, Cuba
| | - Melyssa Yaugel
- Vaccine Division, Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, P.O. Box 6162, 10 600, Havana 6, Cuba
| | - Yadira Rodríguez
- Vaccine Division, Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, P.O. Box 6162, 10 600, Havana 6, Cuba
| | - Lázaro Gil
- Vaccine Division, Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, P.O. Box 6162, 10 600, Havana 6, Cuba.
| | - Gerardo Guillén
- Vaccine Division, Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, P.O. Box 6162, 10 600, Havana 6, Cuba
| | - Lisset Hermida
- Vaccine Division, Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, P.O. Box 6162, 10 600, Havana 6, Cuba.
| |
Collapse
|
624
|
Shim E. Cost-effectiveness of dengue vaccination in Yucatán, Mexico using a dynamic dengue transmission model. PLoS One 2017; 12:e0175020. [PMID: 28380060 PMCID: PMC5381893 DOI: 10.1371/journal.pone.0175020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 03/20/2017] [Indexed: 11/29/2022] Open
Abstract
Background The incidence of dengue fever (DF) is steadily increasing in Mexico, burdening health systems with consequent morbidities and mortalities. On December 9th, 2015, Mexico became the first country for which the dengue vaccine was approved for use. In anticipation of a vaccine rollout, analysis of the cost-effectiveness of the dengue vaccination program that quantifies the dynamics of disease transmission is essential. Methods We developed a dynamic transmission model of dengue in Yucatán, Mexico and its proposed vaccination program to incorporate herd immunity into our analysis of cost-effectiveness analysis. Our model also incorporates important characteristics of dengue epidemiology, such as clinical cross-immunity and susceptibility enhancement upon secondary infection. Using our model, we evaluated the cost-effectiveness and economic impact of an imperfect dengue vaccine in Yucatán, Mexico. Conclusions Our study indicates that a dengue vaccination program would prevent 90% of cases of symptomatic DF incidence as well as 90% of dengue hemorrhagic fever (DHF) incidence and dengue-related deaths annually. We conclude that a dengue vaccine program in Yucatán, Mexico would be very cost-effective as long as the vaccination cost per individual is less than $140 and $214 from health care and societal perspectives, respectively. Furthermore, at an exemplary vaccination cost of $250 USD per individual on average, dengue vaccination is likely to be cost-effective 43% and 88% of the time from health care and societal perspectives, respectively.
Collapse
Affiliation(s)
- Eunha Shim
- Department of Mathematics, Soongsil University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
625
|
Versiani AF, Astigarraga RG, Rocha ESO, Barboza APM, Kroon EG, Rachid MA, Souza DG, Ladeira LO, Barbosa-Stancioli EF, Jorio A, Da Fonseca FG. Multi-walled carbon nanotubes functionalized with recombinant Dengue virus 3 envelope proteins induce significant and specific immune responses in mice. J Nanobiotechnology 2017; 15:26. [PMID: 28376812 PMCID: PMC5379608 DOI: 10.1186/s12951-017-0259-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/20/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Dengue is the most prevalent arthropod-borne viral disease in the world. In this article we present results on the development, characterization and immunogenic evaluation of an alternative vaccine candidate against Dengue. METHODS The MWNT-DENV3E nanoconjugate was developed by covalent functionalization of carboxylated multi-walled carbon nanotubes (MWNT) with recombinant dengue envelope (DENV3E) proteins. The recombinant antigens were bound to the MWNT using a diimide-activated amidation process and the immunogen was characterized by TEM, AFM and Raman Spectroscopy. Furthermore, the immunogenicity of this vaccine candidate was evaluated in a murine model. RESULTS Immunization with MWNT-DENV3E induced comparable IgG responses in relation to the immunization with non-conjugated proteins; however, the inoculation of the nanoconjugate into mice generated higher titers of neutralizing antibodies. Cell-mediated responses were also evaluated, and higher dengue-specific splenocyte proliferation was observed in cell cultures derived from mice immunized with MWNT-DENV3E when compared to animals immunized with the non-conjugated DENV3E. CONCLUSIONS Despite the recent licensure of the CYD-TDV dengue vaccine in some countries, results from the vaccine's phase III trial have cast doubts about its overall efficacy and global applicability. While questions about the effectiveness of the CYD-TDV vaccine still lingers, it is wise to keep at hand an array of vaccine candidates, including alternative non-classical approaches like the one presented here.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/blood
- Antibodies, Viral/blood
- Antibody Formation
- Antigens, Viral/immunology
- Cell Proliferation
- Cytokines/immunology
- Dengue/immunology
- Dengue/prevention & control
- Dengue Vaccines/immunology
- Dengue Vaccines/therapeutic use
- Dengue Virus/immunology
- Female
- Immunity, Cellular
- Immunoglobulin G/blood
- Mice
- Mice, Inbred BALB C
- Microscopy, Atomic Force
- Microscopy, Electron, Transmission
- Nanoconjugates/chemistry
- Nanomedicine
- Nanotubes, Carbon/chemistry
- Recombinant Proteins/chemistry
- Recombinant Proteins/immunology
- Spectrum Analysis, Raman
- Spleen/cytology
- Vaccines, Subunit/immunology
- Vaccines, Subunit/therapeutic use
- Viral Envelope Proteins/immunology
Collapse
Affiliation(s)
- Alice F. Versiani
- Laboratory of Basic and Applied Virology, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - Ruiz G. Astigarraga
- Laboratory of Basic and Applied Virology, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - Eliseu S. O. Rocha
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - Ana Paula M. Barboza
- Laboratório de Nanoscopia, Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - Erna G. Kroon
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - Milene A. Rachid
- Departamento de Patologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - Daniele G. Souza
- Laboratory of Microorganism-Host Interaction, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - Luiz O. Ladeira
- Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - Edel F. Barbosa-Stancioli
- Laboratory of Basic and Applied Virology, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - Ado Jorio
- Laboratório de Nanoscopia, Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - Flávio G. Da Fonseca
- Laboratory of Basic and Applied Virology, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| |
Collapse
|
626
|
Scherwitzl I, Mongkolsapaja J, Screaton G. Recent advances in human flavivirus vaccines. Curr Opin Virol 2017; 23:95-101. [DOI: 10.1016/j.coviro.2017.04.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/07/2017] [Indexed: 11/25/2022]
|
627
|
Sáez-Llorens X, Tricou V, Yu D, Rivera L, Tuboi S, Garbes P, Borkowski A, Wallace D. Safety and immunogenicity of one versus two doses of Takeda's tetravalent dengue vaccine in children in Asia and Latin America: interim results from a phase 2, randomised, placebo-controlled study. THE LANCET. INFECTIOUS DISEASES 2017; 17:615-625. [PMID: 28365225 DOI: 10.1016/s1473-3099(17)30166-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/28/2017] [Accepted: 02/16/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Dengue is the most common mosquito-borne viral disease in human beings, and vector control has not halted its spread worldwide. A dengue vaccine for individuals aged 9 years and older has been licensed, but there remains urgent medical need for a vaccine that is safe and effective against all four dengue virus serotypes (DENV-1-4) in recipients of all ages. Here, we present the preplanned interim analyses at 6 months of a tetravalent dengue vaccine candidate (TDV), which is comprised of an attenuated DENV-2 virus strain (TDV-2) and three chimeric viruses containing the premembrane and envelope protein genes of DENV-1, DENV-3, and DENV-4 genetically engineered into the attenuated TDV-2 genome backbone (TDV-1, TDV-3, and TDV-4). METHODS An ongoing phase 2, randomised, double-blind, placebo-controlled trial of a TDV is being done at three sites in dengue-endemic countries (Dominican Republic, Panama, and the Philippines) to determine its safety and immunogenicity over 48 months in healthy participants aged 2-17 years who were randomly assigned (1:2:5:1) using an interactive web response system (stratified by age) to subcutaneous TDV injection (one 0·5 mL dose containing 2·5 × 104 plaque-forming units [PFU] of TDV-1; 6·3 × 103 PFU of TDV-2; 3·2 × 104 PFU of TDV-3; and 4·0 × 105 PFU of TDV-4) in different dose schedules (two-dose regimen at 0 and 3 months, one dose at 0 months, or one dose at 0 months and a booster at 12 months) or placebo. The primary endpoint of this 6 month interim analysis was geometric mean titres (GMTs) of neutralising antibodies against DENV-1-4 in the per-protocol immunogenicity subset at 1 month, 3 months, and 6 months after the first injection. Safety was assessed as a secondary outcome as percentage of participants with serious adverse events in all participants who were injected (safety set), and solicited and unsolicited adverse events (immunogenicity subset). This trial is registered with ClinicalTrials.gov, number NCT02302066. FINDINGS 1800 participants were enrolled between Dec 5, 2014, and Feb 13, 2015. 1794 participants were given study injection as follows: 200 participants were given two-dose regimen at 0 and 3 months (group 1), 398 were given one dose at 0 months (group 2), 998 were given one dose at 0 months and will be given (trial ongoing) a booster at 12 months (group 3), and 198 were given placebo (group 4). These 1794 participants were included in the safety set; 562 participants were randomly assigned to the immunogenicity subset, of which 503 were included in the per-protocol set. TDV elicited neutralising antibodies against all DENV serotypes, which peaked at 1 month and remained elevated above baseline at 6 months. At 6 months, GMTs of neutralising antibodies against DENV-1 were 489 (95% CI 321-746) for group 1, 434 (306-615) for group 2, 532 (384-738) for group 3, and 62 (32-120) for group 4; GMTs of neutralising antibodies against DENV-2 were 1565 (1145-2140) for group 1, 1639 (1286-2088) for group 2, 1288 (1031-1610) for group 3, and 86 (44-169) for group 4; GMTs of neutralising antibodies against DENV-3 were 160 (104-248) for group 1, 151 (106-214) for group 2, 173 (124-240) for group 3, and 40 (23-71) for group 4; and GMTs of neutralising antibodies against DENV-4 were 117 (79-175) for group 1, 110 (80-149) for group 2, 93 (69-125) for group 3, and 24 (15-38) for group 4. No vaccine-related serious adverse events occurred; 15 (3%) of 562 participants in the immunogenicity subset reported vaccine-related unsolicited adverse events. The reactogenicity profile of TDV was acceptable, and similar to previous findings with TDV. INTERPRETATION TDV is safe and immunogenic in individuals aged 2-17 years, irrespective of previous dengue exposure. A second TDV dose induced enhanced immunogenicity against DENV-3 and DENV-4 in children who were seronegative before vaccination. These data supported the initiation of phase 3 evaluation of the efficacy and safety of TDV given in a two-dose schedule 3 months apart, with analyses that take into account baseline age and dengue serostatus. FUNDING Takeda Vaccines.
Collapse
Affiliation(s)
- Xavier Sáez-Llorens
- Hospital del Niño Dr José Renán Esquivel, Panama City, Panama; Sistema Nacional de Investigación, SENACYT, Panama City, Panama
| | | | - Delia Yu
- De La Salle Health Sciences Institute, Dasmariñas, Philippines
| | - Luis Rivera
- Hospital Maternidad Nuestra Senora de La Altagracia, Santo Domingo, Dominican Republic
| | | | | | | | - Derek Wallace
- Takeda Pharmaceuticals International, Zürich, Switzerland
| |
Collapse
|
628
|
Patterns of Cellular Immunity Associated with Experimental Infection with rDEN2Δ30 (Tonga/74) Support Its Suitability as a Human Dengue Virus Challenge Strain. J Virol 2017; 91:JVI.02133-16. [PMID: 28148797 DOI: 10.1128/jvi.02133-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/28/2017] [Indexed: 11/20/2022] Open
Abstract
A deletion variant of the dengue virus (DENV) serotype 2 (DENV2) Tonga/74 strain lacking 30 nucleotides from its 3' untranslated region (rDEN2Δ30) has previously been established for use in a controlled human DENV challenge model. To evaluate if this model is appropriate for the derivation of correlates of protection for DENV vaccines on the basis of cellular immunity, we wanted to compare the cellular immune response to this challenge strain to the response induced by natural infection. To achieve this, we predicted HLA class I- and class II-restricted peptides from rDEN2Δ30 and used them in a gamma interferon enzyme-linked immunosorbent spot assay to interrogate CD8+ and CD4+ T cell responses in healthy volunteers infected with rDEN2Δ30. At the level of CD8 responses, vigorous ex vivo responses were detected in approximately 80% of donors. These responses were similar in terms of the magnitude and the numbers of epitopes recognized to the responses previously observed in peripheral blood mononuclear cells from donors from regions where DENV is hyperendemic. The similarity extended to the immunodominance hierarchy of the DENV nonstructural proteins, with NS3, NS5, and NS1 being dominant in both donor cohorts. At the CD4 level, the responses to rDEN2Δ30 vaccination were less vigorous than those to natural DENV infection and were more focused on nonstructural proteins. The epitopes recognized following rDEN2Δ30 infection and natural infection were largely overlapping for both the CD8 (100%) and CD4 (85%) responses. Finally, rDEN2Δ30 induced stronger CD8 responses than other, more attenuated DENV isolates.IMPORTANCE The lack of a known correlate of protection and the failure of a neutralizing antibody to correlate with protection against dengue virus have highlighted the need for a human DENV challenge model to better evaluate the candidate live attenuated dengue vaccines. In this study, we sought to characterize the immune profiles of rDEN2Δ30-infected subjects and to compare the profiles with those for subjects from areas where DENV is hyperendemic. Our data demonstrate that T cell responses to rDENV2Δ30 are largely similar to those to natural infection in terms of specificity, highlighting that the response to this virus in humans is appropriate as a model for the T cell response to primary DENV2 infection.
Collapse
|
629
|
Yamanaka A, Konishi E. Dengue-Immune Humans Have Higher Levels of Complement-Independent Enhancing Antibody than Complement-Dependent Neutralizing Antibody. Jpn J Infect Dis 2017; 70:579-581. [PMID: 28367878 DOI: 10.7883/yoken.jjid.2016.379] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Dengue is the most important arboviral disease worldwide. We previously reported that most inhabitants of dengue-endemic countries who are naturally immune to the disease have infection-enhancing antibodies whose in vitro activity does not decrease in the presence of complement (complement-independent enhancing antibodies, or CiEAb). Here, we compared levels of CiEAb and complement-dependent neutralizing antibodies (CdNAb) in dengue-immune humans. A typical antibody dose-response pattern obtained in our assay system to measure the balance between neutralizing and enhancing antibodies showed both neutralizing and enhancing activities depending on serum dilution factor. The addition of complement to the assay system increased the activity of neutralizing antibodies at lower dilutions, indicating the presence of CdNAb. In contrast, similar dose-response curves were obtained with and without complement at higher dilutions, indicating higher levels of CiEAb than CdNAb. For experimental support for the higher CiEAb levels, a cocktail of mouse monoclonal antibodies against dengue virus type 1 was prepared. The antibody dose-response curves obtained in this assay, with or without complement, were similar to those obtained with human serum samples when a high proportion of D1-V-3H12 (an antibody exhibiting only enhancing activity and thus a model for CiEAb) was used in the cocktail. This study revealed higher-level induction of CiEAb than CdNAb in humans naturally infected with dengue viruses.
Collapse
Affiliation(s)
- Atsushi Yamanaka
- BIKEN Endowed Department of Dengue Vaccine Development, Faculty of Tropical Medicine, Mahidol University.,BIKEN Endowed Department of Dengue Vaccine Development, Research Institute for Microbial Diseases, Osaka University.,Center for Infectious Diseases, Kobe University Graduate School of Medicine
| | - Eiji Konishi
- BIKEN Endowed Department of Dengue Vaccine Development, Faculty of Tropical Medicine, Mahidol University.,BIKEN Endowed Department of Dengue Vaccine Development, Research Institute for Microbial Diseases, Osaka University.,Center for Infectious Diseases, Kobe University Graduate School of Medicine
| |
Collapse
|
630
|
Al Nazawi AM, Aqili J, Alzahrani M, McCall PJ, Weetman D. Combined target site (kdr) mutations play a primary role in highly pyrethroid resistant phenotypes of Aedes aegypti from Saudi Arabia. Parasit Vectors 2017; 10:161. [PMID: 28347352 PMCID: PMC5368989 DOI: 10.1186/s13071-017-2096-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 03/20/2017] [Indexed: 11/10/2022] Open
Abstract
Background Pyrethroid resistance is a threat to effective vector control of Aedes aegypti, the vector of dengue, Zika and other arboviruses, but there are many major knowledge gaps on the mechanisms of resistance. In Jeddah and Makkah, the principal dengue-endemic areas of Saudi Arabia, pyrethroids are used widely for Ae. aegypti control but information about resistance remains sparse, and the underlying genetic basis is unknown. Findings from an ongoing study in this internationally significant area are reported here. Methods Aedes aegypti collected from each city were raised to adults and assayed for resistance to permethrin, deltamethrin (with and without the synergist piperonyl butoxide, PBO), fenitrothion, and bendiocarb. Two fragments of the voltage-gated sodium channel (Vgsc), encompassing four previously identified mutation sites, were sequenced and subsequently genotyped to determine associations with resistance. Expression of five candidate genes (CYP9J10, CYP9J28, CYP9J32, CYP9M6, ABCB4) previously associated with pyrethroid resistance was compared between assay survivors and controls. Results Jeddah and Makkah populations exhibited resistance to multiple insecticides and a similarly high prevalence of resistance to deltamethrin compared to a resistant Cayman strain, with a significant influence of age and exposure duration on survival. PBO pre-exposure increased pyrethroid mortality significantly in the Jeddah, but not the Makkah strain. Three potentially interacting Vgsc mutations were detected: V1016G and S989P were in perfect linkage disequilibrium in each strain and strongly predicted survival, especially in the Makkah strain, but were in negative linkage disequilibrium with 1534C, though some females with the Vgsc triple mutation were detected. The candidate gene CYP9J28 was significantly over-expressed in Jeddah compared to two susceptible reference strains, but none of the candidate genes was consistently up-regulated to a significant level in the Makkah strain. Conclusions Despite their proximity, Makkah and Jeddah exhibit significant differences in pyrethroid resistance phenotypes, with some evidence to suggest a different balance of mechanisms, for example with more impact associated with CYP450s in the Jeddah strain, and the dual kdr mutations 989P and 1016G in the more resistant Makkah strain. The results overall demonstrate a major role for paired target site mutations in pyrethroid resistance and highlight their utility for diagnostic monitoring. Electronic supplementary material The online version of this article (doi:10.1186/s13071-017-2096-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ashwaq M Al Nazawi
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK. .,Saudi Ministry of Health, Riyadh, Saudi Arabia.
| | - Jabir Aqili
- Saudi Ministry of Health, Riyadh, Saudi Arabia
| | | | - Philip J McCall
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| |
Collapse
|
631
|
Ladner J, Rodrigues M, Davis B, Besson MH, Audureau E, Saba J. Societal impact of dengue outbreaks: Stakeholder perceptions and related implications. A qualitative study in Brazil, 2015. PLoS Negl Trop Dis 2017; 11:e0005366. [PMID: 28278157 PMCID: PMC5344327 DOI: 10.1371/journal.pntd.0005366] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 01/28/2017] [Indexed: 11/19/2022] Open
Abstract
Background The growing burden of dengue in many countries worldwide and the difficulty of preventing outbreaks have increased the urgency to identify alternative public health management strategies and effective approaches to control and prevent dengue outbreaks. The objectives of this study were to understand the impact of dengue outbreak on different stakeholders in Brazil, to explore their perceptions of approaches used by governmental authorities to control and prevent dengue outbreaks and to define the challenges and implications of preventing future outbreaks. Methods In 2015, a qualitative study was conducted in two urban states in Brazil: São Paulo, which was experiencing an outbreak in 2015, and Rio de Janeiro, which experienced outbreaks in 2011 and 2012. Face-to-face interviews using a semi-structured questionnaire were conducted with nine different categories of stakeholders: health workers (physicians, nurses), hospital administrators, municipal government representatives, community members and leaders, school administrators, business leaders and vector control managers. Interviews were focused on the following areas: impact of the dengue outbreak, perceptions of control measures implemented by governmental authorities during outbreaks and challenges in preventing future dengue outbreaks. Results A total of 40 stakeholders were included in the study. Health workers and community members reported longer waiting times at hospitals due to the increased number of patients receiving care for dengue-related symptoms. Health workers and hospital administrators reported that there were no major interruptions in access to care. Overall financial impact of dengue outbreaks on households was greatest for low-income families. Despite prevention and control campaigns implemented between outbreak periods, various stakeholders reported that dengue prevention and control efforts performed by municipal authorities remained insufficient, suggesting that efforts should be reinforced and better coordinated by governmental authorities, particularly during outbreak periods. Conclusion The study shows that a dengue outbreak has a multisectorial impact in the medical, societal, economic and political sectors. The study provides useful insights and knowledge in different stakeholder populations that could guide local authorities and government officials in planning, designing and initiating public health programs. Research focused on a better understanding of how communities and political authorities respond to dengue outbreaks is a necessary component for designing and implementing plans to decrease the incidence and impact of dengue outbreaks in Brazil. Since the beginning of the 21st century, dengue fever has been a significant vector-borne arboviral disease; actually more than 3.9 billion people are at risk of infection in 128 countries. Dengue has become an increasing public health concern in Latin America, especially in Brazil, which has the highest incidence rate of dengue. Researches are needed to gain in-depth understanding of stakeholder and community reactions to outbreak and to explore the societal impact of dengue outbreaks. In 2015, a qualitative study was conducted in two urban states in Brazil, which experienced recent outbreaks. Longer waiting times at hospitals due to the increased number of patients receiving care for dengue-related symptoms were reported, but without interruptions in access to care. Various stakeholders reported that dengue prevention and control efforts performed by municipal authorities remained insufficient. The consequences of a dengue outbreak reach far beyond the patients, undermining medical, social, economic and political sectors. Research focused on a better understanding of how communities and political authorities respond to dengue outbreaks is a necessity for designing and implementing plans to control dengue outbreaks.
Collapse
Affiliation(s)
- Joël Ladner
- Rouen University Hospital, Epidemiology and Health Promotion Department, Rouen, France
- * E-mail: ,
| | | | | | | | - Etienne Audureau
- Paris Est University, Hôpital Henri Mondor Hospital, Public Health, Assistance Publique Hôpitaux de Paris, Créteil, France
| | | |
Collapse
|
632
|
Pang EL, Loh HS. Towards development of a universal dengue vaccine – How close are we? ASIAN PAC J TROP MED 2017; 10:220-228. [DOI: 10.1016/j.apjtm.2017.03.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 01/20/2017] [Accepted: 01/26/2017] [Indexed: 11/16/2022] Open
|
633
|
Yamanaka A, Moi ML, Takasaki T, Kurane I, Konishi E. Neutralizing and enhancing antibody responses to five genotypes of dengue virus type 1 (DENV-1) in DENV-1 patients. J Gen Virol 2017; 98:166-172. [PMID: 27911254 DOI: 10.1099/jgv.0.000669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dengue virus (DENV) has four distinct serotypes, DENV-1-4, with four to six genotypes in each serotype. The World Health Organization recommends tetravalent formulations including one genotype of each serotype as safe and effective dengue vaccines. Here, we investigated the impact of genotype on the neutralizing antibody responses to DENV-1 in humans. Convalescent sera collected from patients with primary infection of DENV-1 were examined for neutralizing antibody against single-round infectious particles of the five DENV-1 genotypes (GI-GV). In both GI- and GIV-infected patients, their neutralizing antibody titres against the five genotypes were similar, differing ≤4-fold from the homogenotypic responses. The enhancing activities against the five genotypes were also similar in these sera. Thus, the genotype strains of DENV-1 showed no significant antigenic differences in these patients, suggesting that GI- or GIV-derived vaccine antigens should induce equivalent levels of neutralizing antibodies against all DENV-1 genotypes.
Collapse
Affiliation(s)
- Atsushi Yamanaka
- BIKEN Endowed Department of Dengue Vaccine Development, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand.,BIKEN Endowed Department of Dengue Vaccine Development, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Meng Ling Moi
- Present address: Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan.,Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Tomohiko Takasaki
- Present address: Kanagawa Prefectural Institute of Public Health, Kanagawa, Japan.,Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Ichiro Kurane
- National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Eiji Konishi
- BIKEN Endowed Department of Dengue Vaccine Development, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan.,BIKEN Endowed Department of Dengue Vaccine Development, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand
| |
Collapse
|
634
|
Abstract
A recent unprecedented outbreak of Zika virus (ZIKV) in the Americas has been associated with microcephaly and other congenital malformations in infants as well as Guillain-Barre syndrome in adults. The development of a safe and effective ZIKV vaccine is therefore an urgent global health priority. Promising data from preclinical vaccine studies in mice and monkeys suggest that an effective vaccine will likely be possible, but important scientific challenges remain. Here we review the current state of ZIKV vaccine development. We discuss different vaccination strategies and we highlight challenges facing clinical evaluation of ZIKV vaccine candidates.
Collapse
Affiliation(s)
- Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA.
| | - Stephen J Thomas
- Upstate Medical University, State University of New York, Syracuse, NY 13210, USA
| | - Nelson L Michael
- Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| |
Collapse
|
635
|
Torresi J, Ebert G, Pellegrini M. Vaccines licensed and in clinical trials for the prevention of dengue. Hum Vaccin Immunother 2017; 13:1059-1072. [PMID: 28281864 DOI: 10.1080/21645515.2016.1261770] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Dengue has become a major global public health threat with almost half of the world's population living in at-risk areas. Vaccination would likely represent an effective strategy for the management of dengue disease in endemic regions, however to date there is only one licensed preventative vaccine for dengue infection. The development of a vaccine against dengue virus (DENV) has been hampered by an incomplete understanding of protective immune responses against DENV. The most clinically advanced dengue vaccine is the chimeric yellow fever-dengue vaccine (CYD) that employs the yellow fever virus 17D strain as the replication backbone (Chimerivax-DEN; CYD-TDV). This vaccine had an overall pooled protective efficacy of 65.6% but was substantially more effective against severe dengue and dengue hemorrhagic fever. Several other vaccine approaches have been developed including live attenuated chimeric dengue vaccines (DENVax and LAV Delta 30), DEN protein subunit V180 vaccine (DEN1-80E) and DENV DNA vaccines. These vaccines have been shown to be immunogenic in animals and also safe and immunogenic in humans. However, these vaccines are yet to progress to phase III trials to determine their protective efficacy against dengue. This review will summarize the details of vaccines that have progressed to clinical trials in humans.
Collapse
Affiliation(s)
- J Torresi
- a Department of Microbiology and Immunology , The Peter Doherty Institute for Infection and Immunity, University of Melbourne , Parkville , Victoria , Australia
| | - G Ebert
- b The Walter and Eliza Hall Institute of Medical Research , Parkville , Victoria , Australia
| | - M Pellegrini
- b The Walter and Eliza Hall Institute of Medical Research , Parkville , Victoria , Australia.,c Department of Medical Biology , The University of Melbourne , Parkville , Victoria , Australia
| |
Collapse
|
636
|
Pando-Robles V, Batista CV. Aedes-Borne Virus-Mosquito Interactions: Mass Spectrometry Strategies and Findings. Vector Borne Zoonotic Dis 2017; 17:361-375. [PMID: 28192064 DOI: 10.1089/vbz.2016.2040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aedes-borne viruses are responsible for high-impact neglected tropical diseases and unpredictable outbreaks such as the ongoing Zika epidemics. Aedes mosquitoes spread different arboviruses such as Dengue virus (DENV), Chikungunya virus (CHIKV), and Zika virus, among others, and are responsible for the continuous emergence and reemergence of these pathogens. These viruses have complex transmission cycles that include two hosts, namely the Aedes mosquito as a vector and susceptible vertebrate hosts. Human infection with arboviruses causes diseases that range from subclinical or mild to febrile diseases, encephalitis, and hemorrhagic fever. Infected mosquitoes do not show detectable signs of disease, even though the virus maintains a lifelong persistent infection. The infection of the Aedes mosquito by viruses involves a molecular crosstalk between cell and viral proteins. An understanding of how mosquito vectors and viruses interact is of fundamental interest, and it also offers novel perspectives for disease control. In recent years, mass spectrometry (MS)-based strategies in combination with bioinformatics have been successfully applied to identify and quantify global changes in cellular proteins, lipids, peptides, and metabolites in response to viral infection. Although the information about proteomics in the Aedes mosquito is limited, the information that has been reported can set up the basis for future studies. This review reflects how MS-based approaches have extended our understanding of Aedes mosquito biology and the development of DENV and CHIKV infection in the vector. Finally, this review discusses future challenges in the field.
Collapse
Affiliation(s)
- Victoria Pando-Robles
- 1 Laboratorio de Proteómica, Departamento de Infección e Inmunidad, Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, México
| | - Cesar V Batista
- 2 Laboratorio Universitario de Proteómica, Instituto de Biotecnología. Universidad Nacional Autónoma de México , Cuernavaca, México
| |
Collapse
|
637
|
Vanlerberghe V, Gómez-Dantés H, Vazquez-Prokopec G, Alexander N, Manrique-Saide P, Coelho G, Toledo ME, Ocampo CB, Van der Stuyft P. Changing paradigms in Aedes control: considering the spatial heterogeneity of dengue transmission. REVISTA PANAMERICANA DE SALUD PUBLICA = PAN AMERICAN JOURNAL OF PUBLIC HEALTH 2017; 41:e16. [PMID: 31391815 PMCID: PMC6660874 DOI: 10.26633/rpsp.2017.16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 05/18/2016] [Indexed: 12/13/2022]
Abstract
Current dengue vector control strategies, focusing on reactive implementation of insecticide-based interventions in response to clinically apparent disease manifestations, tend to be inefficient, short-lived, and unsustainable within the worldwide epidemiological scenario of virus epidemic recrudescence. As a result of a series of expert meetings and deliberations, a paradigm shift is occurring and a new strategy, using risk stratification at the city level in order to concentrate proactive, sustained efforts in areas at high risk for transmission, has emerged. In this article, the authors 1) outline this targeted, proactive intervention strategy, within the context of dengue epidemiology, the dynamics of its transmission, and current Aedes control strategies, and 2) provide support from published literature for the need to empirically test its impact on dengue transmission as well as on the size of disease outbreaks. As chikungunya and Zika viruses continue to expand their range, the need for a science-based, proactive approach for control of urban Aedes spp. mosquitoes will become a central focus of integrated disease management planning.
Collapse
Affiliation(s)
- Veerle Vanlerberghe
- General Epidemiology and Disease Control Unit Institute of Tropical Medicine Antwerp Belgium General Epidemiology and Disease Control Unit, Institute of Tropical Medicine, Antwerp, Belgium
| | - Hector Gómez-Dantés
- Instituto Nacional de Salud Publica CuernavacaMorelos Mexico Instituto Nacional de Salud Publica, Cuernavaca, Morelos, Mexico
| | - Gonzalo Vazquez-Prokopec
- Department of Environmental Sciences Emory University AtlantaGeorgia United States of America Department of Environmental Sciences, Emory University, Atlanta, Georgia, United States of America
| | - Neal Alexander
- London School of Hygiene and Tropical Medicine London United Kingdom London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Pablo Manrique-Saide
- Entomological Bioassays Unit Universidad Autónoma de Yucatán, Merida Yucatán Mexico Entomological Bioassays Unit, Universidad Autónoma de Yucatán, Merida, Yucatán, Mexico
| | - Giovanini Coelho
- National Dengue Control Program Brazilian Ministry of Health Brasília Brazil National Dengue Control Program, Brazilian Ministry of Health, Brasília, Brazil
| | - Maria Eugenia Toledo
- Department of Epidemiology Institute of Tropical Medicine "Pedro Kourí," Havana Cuba Department of Epidemiology, Institute of Tropical Medicine "Pedro Kourí," Havana, Cuba
| | - Clara B Ocampo
- International Training and Medical Research Center Cali Colombia International Training and Medical Research Center, Cali, Colombia
| | - Patrick Van der Stuyft
- Department of Public Health Ghent University Ghent Belgium Department of Public Health, Ghent University, Ghent, Belgium
| |
Collapse
|
638
|
Katzelnick LC, Coloma J, Harris E. Dengue: knowledge gaps, unmet needs, and research priorities. THE LANCET. INFECTIOUS DISEASES 2017; 17:e88-e100. [PMID: 28185868 DOI: 10.1016/s1473-3099(16)30473-x] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 08/29/2016] [Accepted: 10/18/2016] [Indexed: 01/09/2023]
Abstract
Dengue virus is a mosquito-borne pathogen that causes up to about 100 million cases of disease each year, placing a major public health, social, and economic burden on numerous low-income and middle-income countries. Major advances by investigators, vaccine developers, and affected communities are revealing new insights and enabling novel interventions and approaches to dengue prevention and control. Such research has highlighted further questions about both the basic understanding of dengue and efforts to develop new tools. In this report, the third in a Series on dengue, we discuss existing approaches to dengue diagnostics, disease prognosis, surveillance, and vector control in low-income and middle-income countries, as well as potential consequences of vaccine introduction. We also summarise current knowledge and recent insights into dengue epidemiology, immunology, and pathogenesis, and their implications for understanding natural infection and current and future vaccines.
Collapse
Affiliation(s)
- Leah C Katzelnick
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA, USA
| | - Josefina Coloma
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA, USA.
| |
Collapse
|
639
|
Castro MC, Wilson ME, Bloom DE. Disease and economic burdens of dengue. THE LANCET. INFECTIOUS DISEASES 2017; 17:e70-e78. [PMID: 28185869 DOI: 10.1016/s1473-3099(16)30545-x] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 11/28/2016] [Accepted: 11/29/2016] [Indexed: 01/07/2023]
Abstract
The burden of dengue is large and growing. More than half of the global population lives in areas with risk of dengue transmission. Uncertainty in burden estimates, however, challenges policy makers' ability to set priorities, allocate resources, and plan for interventions. In this report, the first in a Series on dengue, we explore the estimations of disease and economic burdens of dengue, and the major estimation challenges, limitations, and sources of uncertainty. We also reflect on opportunities to remedy these deficiencies. Point estimates of apparent dengue infections vary widely, although the confidence intervals of these estimates overlap. Cost estimates include different items, are mostly based on a single year of data, use different monetary references, are calculated from different perspectives, and are difficult to compare. Comprehensive estimates that decompose the cost by different stakeholders (as proposed in our framework), that consider the cost of epidemic years, and that account for productivity and tourism losses, are scarce. On the basis of these estimates, we propose the most comprehensive framework for estimating the economic burden of dengue in any region, differentiated by four very different domains of cost items and by three potential stakeholders who bear the costs. This framework can inform future estimations of the economic burden of dengue and generate demand for additional routine administrative data collection, or for systematic incorporation of additional questions in nationally representative surveys in dengue-endemic countries. Furthermore, scholars could use the framework to guide scenario simulations that consider ranges of possible values for cost items for which data are not yet available. Results would be valuable to policy makers and would also raise awareness among communities, potentially improving dengue control efforts.
Collapse
Affiliation(s)
- Marcia C Castro
- Department of Global Health and Population, Harvard TH Chan School of Public Health, Boston, MA, USA.
| | - Mary E Wilson
- Department of Global Health and Population, Harvard TH Chan School of Public Health, Boston, MA, USA; School of Medicine, University of California, San Francisco, CA, USA
| | - David E Bloom
- Department of Global Health and Population, Harvard TH Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
640
|
Pang T, Mak TK, Gubler DJ. Prevention and control of dengue-the light at the end of the tunnel. THE LANCET. INFECTIOUS DISEASES 2017; 17:e79-e87. [PMID: 28185870 DOI: 10.1016/s1473-3099(16)30471-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 10/16/2016] [Accepted: 10/19/2016] [Indexed: 12/20/2022]
Abstract
Advances in the development of new dengue control tools, including vaccines and vector control, herald a new era of desperately needed dengue prevention and control. The burden of dengue has expanded for decades, and now affects more than 120 countries. Complex, large-scale global forces have and will continue to contribute to the expansion of dengue, including population growth, unplanned urbanisation, and suboptimal mosquito control in urban centres. Although no so-called magic bullets are available, there is new optimism following the first licensure of a dengue vaccine and other promising vaccine candidates, and the development of novel vector control interventions to help control dengue and other expanding mosquito-borne diseases such as Zika virus. Implementation of effective and sustainable immunisation programmes to complement existing methods will add complexity to the health systems of affected countries, which have varying levels of robustness and maturity. Long-term high prioritisation and adequate resources are needed. The way forward is full commitment to addressing a complex disease with a set of solutions integrating vaccination and vector control methods. A whole systems approach is thus needed to integrate these various approaches and strategies for controlling dengue within the goal of universal health coverage. The ultimate objective of these interventions will be to reduce the disease burden in a sustainable and equitable manner.
Collapse
Affiliation(s)
- Tikki Pang
- Lee Kuan Yew School of Public Policy, National University of Singapore, Singapore.
| | - Tippi K Mak
- Regional Health & Community Outreach Division, Health Promotion Board, Singapore
| | - Duane J Gubler
- Emerging Infectious Diseases Programme, Duke-NUS Medical School, National University of Singapore, Singapore
| |
Collapse
|
641
|
Frabasile S, Koishi AC, Kuczera D, Silveira GF, Verri WA, Duarte dos Santos CN, Bordignon J. The citrus flavanone naringenin impairs dengue virus replication in human cells. Sci Rep 2017; 7:41864. [PMID: 28157234 PMCID: PMC5291091 DOI: 10.1038/srep41864] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/04/2017] [Indexed: 02/02/2023] Open
Abstract
Dengue is one of the most significant health problems in tropical and sub-tropical regions throughout the world. Nearly 390 million cases are reported each year. Although a vaccine was recently approved in certain countries, an anti-dengue virus drug is still needed. Fruits and vegetables may be sources of compounds with medicinal properties, such as flavonoids. This study demonstrates the anti-dengue virus activity of the citrus flavanone naringenin, a class of flavonoid. Naringenin prevented infection with four dengue virus serotypes in Huh7.5 cells. Additionally, experiments employing subgenomic RepDV-1 and RepDV-3 replicon systems confirmed the ability of naringenin to inhibit dengue virus replication. Antiviral activity was observed even when naringenin was used to treat Huh7.5 cells 24 h after dengue virus exposure. Finally, naringenin anti-dengue virus activity was demonstrated in primary human monocytes infected with dengue virus sertoype-4, supporting the potential use of naringenin to control dengue virus replication. In conclusion, naringenin is a suitable candidate molecule for the development of specific dengue virus treatments.
Collapse
Affiliation(s)
- Sandra Frabasile
- Sección Virologia, Facultad de Ciencias, Universidad de La República, 11400, Montevideo, Uruguay
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, ICC/FIOCRUZ/PR, Curitiba, Paraná, Brazil
| | - Andrea Cristine Koishi
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, ICC/FIOCRUZ/PR, Curitiba, Paraná, Brazil
| | - Diogo Kuczera
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, ICC/FIOCRUZ/PR, Curitiba, Paraná, Brazil
| | | | - Waldiceu Aparecido Verri
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Paraná, Brazil
| | | | - Juliano Bordignon
- Sección Virologia, Facultad de Ciencias, Universidad de La República, 11400, Montevideo, Uruguay
| |
Collapse
|
642
|
Godói IP, Santos AS, Reis EA, Lemos LLP, Brandão CMR, Alvares J, Acurcio FA, Godman B, Guerra Júnior AA. Consumer Willingness to Pay for Dengue Vaccine (CYD-TDV, Dengvaxia ®) in Brazil; Implications for Future Pricing Considerations. Front Pharmacol 2017; 8:41. [PMID: 28210223 PMCID: PMC5288336 DOI: 10.3389/fphar.2017.00041] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/19/2017] [Indexed: 01/24/2023] Open
Abstract
Introduction and Objective: Dengue virus is a serious global health problem with an estimated 3.97 billion people at risk for infection worldwide. In December 2015, the first vaccine (CYD-TDV) for dengue prevention was approved in Brazil, developed by Sanofi Pasteur. However, given that the vaccine will potentially be paid via the public health system, information is need regarding consumers' willingness to pay for the dengue vaccine in the country as well as discussions related to the possible inclusion of this vaccine into the public health system. This was the objective of this research. Methods: We conducted a cross-sectional study with residents of Greater Belo Horizonte, Minas Gerais, about their willingness to pay for the CYD-TDV vaccine. Results: 507 individuals were interviewed. These were mostly female (62.4%) had completed high school (62.17%), were working (74.4%), had private health insurance (64.5%) and did not have dengue (67.4%). The maximum median value of consumers' willingness to pay for CYD-TDV vaccine is US$33.61 (120.00BRL) for the complete schedule and US$11.20 (40.00BRL) per dose. At the price determined by the Brazil's regulatory chamber of pharmaceutical products market for the commercialization of Dengvaxia® for three doses, only 17% of the population expressed willingness to pay for this vaccine. Conclusion: Brazil is currently one of the largest markets for dengue vaccine and the price established is a key issue. We believe the manufacturer should asses the possibility of lower prices to reach a larger audience among the Brazilian population.
Collapse
Affiliation(s)
- Isabella P. Godói
- Programa de Pós-graduação em Medicamentos e Assistência Farmacêutica, Faculdade de Farmácia, Universidade Federal de Minas GeraisBelo Horizonte, Brazil
- SUS Collaborating Centre for Technology Assessment and Excellence in Health, Faculdade de Farmácia, Universidade Federal de Minas GeraisBelo Horizonte, Brazil
| | - André S. Santos
- Programa de Pós-graduação em Medicamentos e Assistência Farmacêutica, Faculdade de Farmácia, Universidade Federal de Minas GeraisBelo Horizonte, Brazil
| | - Edna A. Reis
- Department of Statistics, Exact Sciences Institute, Universidade Federal de Minas GeraisBelo Horizonte, Brazil
| | - Livia L. P. Lemos
- SUS Collaborating Centre for Technology Assessment and Excellence in Health, Faculdade de Farmácia, Universidade Federal de Minas GeraisBelo Horizonte, Brazil
- Programa de Pós-graduação em Saúde Pública, Faculdade de Medicina, Universidade Federal de Minas GeraisBelo Horizonte, Brazil
| | - Cristina M. R. Brandão
- Programa de Pós-graduação em Medicamentos e Assistência Farmacêutica, Faculdade de Farmácia, Universidade Federal de Minas GeraisBelo Horizonte, Brazil
| | - Juliana Alvares
- Programa de Pós-graduação em Medicamentos e Assistência Farmacêutica, Faculdade de Farmácia, Universidade Federal de Minas GeraisBelo Horizonte, Brazil
- SUS Collaborating Centre for Technology Assessment and Excellence in Health, Faculdade de Farmácia, Universidade Federal de Minas GeraisBelo Horizonte, Brazil
| | - Francisco A. Acurcio
- Programa de Pós-graduação em Medicamentos e Assistência Farmacêutica, Faculdade de Farmácia, Universidade Federal de Minas GeraisBelo Horizonte, Brazil
- SUS Collaborating Centre for Technology Assessment and Excellence in Health, Faculdade de Farmácia, Universidade Federal de Minas GeraisBelo Horizonte, Brazil
| | - Brian Godman
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Strathclyde UniversityGlasgow, UK
- Division of Clinical Pharmaclogy, Karolinska Institutet, Karolinska University HospitalStockholm, Sweden
| | - Augusto A. Guerra Júnior
- Programa de Pós-graduação em Medicamentos e Assistência Farmacêutica, Faculdade de Farmácia, Universidade Federal de Minas GeraisBelo Horizonte, Brazil
- SUS Collaborating Centre for Technology Assessment and Excellence in Health, Faculdade de Farmácia, Universidade Federal de Minas GeraisBelo Horizonte, Brazil
| |
Collapse
|
643
|
Henein S, Swanstrom J, Byers AM, Moser JM, Shaik SF, Bonaparte M, Jackson N, Guy B, Baric R, de Silva AM. Dissecting Antibodies Induced by a Chimeric Yellow Fever-Dengue, Live-Attenuated, Tetravalent Dengue Vaccine (CYD-TDV) in Naive and Dengue-Exposed Individuals. J Infect Dis 2017; 215:351-358. [PMID: 27932620 PMCID: PMC6392503 DOI: 10.1093/infdis/jiw576] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/21/2016] [Indexed: 11/13/2022] Open
Abstract
Sanofi Pasteur has developed a chimeric yellow fever-dengue, live-attenuated, tetravalent dengue vaccine (CYD-TDV) that is currently approved for use in several countries. In clinical trials, CYD-TDV was efficacious at reducing laboratory-confirmed cases of dengue disease. Efficacy varied by dengue virus (DENV) serotype and prevaccination dengue immune status. We compared the properties of antibodies in naive and DENV-exposed individuals who received CYD-TDV. We depleted specific populations of DENV-reactive antibodies from immune serum samples to estimate the contribution of serotype-cross-reactive and type-specific antibodies to neutralization. Subjects with no preexisting immunity to DENV developed neutralizing antibodies to all 4 serotypes of DENV. Further analysis demonstrated that DENV4 was mainly neutralized by type-specific antibodies whereas DENV1, DENV2, and DENV3 were mainly neutralized by serotype cross-reactive antibodies. When subjects with preexisting immunity to DENV were vaccinated, they developed higher levels of neutralizing antibodies than naive subjects who were vaccinated. In preimmune subjects, CYD-TDV boosted cross-reactive neutralizing antibodies while maintaining type-specific neutralizing antibodies acquired before vaccination. Our results demonstrate that the quality of neutralizing antibodies induced by CYD-TDV varies depending on DENV serotype and previous immune status. We discuss the implications of these results for understanding vaccine efficacy.
Collapse
Affiliation(s)
| | - Jesica Swanstrom
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina, Chapel Hill
| | | | | | | | | | | | | | - Ralph Baric
- Department of Microbiology and Immunology and
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina, Chapel Hill
| | | |
Collapse
|
644
|
Turtle L, Tatullo F, Bali T, Ravi V, Soni M, Chan S, Chib S, Venkataswamy MM, Fadnis P, Yaïch M, Fernandez S, Klenerman P, Satchidanandam V, Solomon T. Cellular Immune Responses to Live Attenuated Japanese Encephalitis (JE) Vaccine SA14-14-2 in Adults in a JE/Dengue Co-Endemic Area. PLoS Negl Trop Dis 2017; 11:e0005263. [PMID: 28135273 PMCID: PMC5279729 DOI: 10.1371/journal.pntd.0005263] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/15/2016] [Indexed: 11/21/2022] Open
Abstract
Background Japanese encephalitis (JE) virus (JEV) causes severe epidemic encephalitis across Asia, for which the live attenuated vaccine SA14-14-2 is being used increasingly. JEV is a flavivirus, and is closely related to dengue virus (DENV), which is co-endemic in many parts of Asia, with clinically relevant interactions. There is no information on the human T cell response to SA14-14-2, or whether responses to SA14-14-2 cross-react with DENV. We used live attenuated JE vaccine SA14-14-2 as a model for studying T cell responses to JEV infection in adults, and to determine whether these T cell responses are cross-reactive with DENV, and other flaviviruses. Methods We conducted a single arm, open label clinical trial (registration: clinicaltrials.gov NCT01656200) to study T cell responses to SA14-14-2 in adults in South India, an area endemic for JE and dengue. Results Ten out of 16 (62.5%) participants seroconverted to JEV SA14-14-2, and geometric mean neutralising antibody (NAb) titre was 18.5. Proliferation responses were commonly present before vaccination in the absence of NAb, indicating a likely high degree of previous flavivirus exposure. Thirteen of 15 (87%) participants made T cell interferon-gamma (IFNγ) responses against JEV proteins. In four subjects tested, at least some T cell epitopes mapped cross-reacted with DENV and other flaviviruses. Conclusions JEV SA14-14-2 was more immunogenic for T cell IFNγ than for NAb in adults in this JE/DENV co-endemic area. The proliferation positive, NAb negative combination may represent a new marker of long term immunity/exposure to JE. T cell responses can cross-react between JE vaccine and DENV in a co-endemic area, illustrating a need for greater knowledge on such responses to inform the development of next-generation vaccines effective against both diseases. Trial Registration clinicaltrials.gov (NCT01656200) The Flavivirus genus member Japanese encephalitis (JE) virus (JEV), causes severe brain disease in tens of thousands of children across Asia every year. JE is vaccine preventable, and the immune response to JEV plays a major role in disease outcome. However, the response to JEV is hard to study as JE affects young children in rural areas. Related flaviviruses, such as dengue virus (which has no good vaccine), can influence the outcome of JE, probably due to cross-reactive immune responses. T cells (a subset of white blood cells) respond to virus infections, but we know little about the timing and nature of T cell responses to JEV after infection and whether T cells are protective against JEV. We used the live JE vaccine SA14-14-2 as a model to study the immune response to JEV. We found T cell responses frequently after JE vaccination. In this small group of volunteers, many of whom were exposed to dengue virus, most of the T cell responses tested cross-reacted between JEV and dengue virus. However, only about two thirds of people made antibody responses to the vaccine. Studying these responses could help design new vaccines for use against JE and dengue in Asia.
Collapse
Affiliation(s)
- Lance Turtle
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- NIHR Health Protection Research Unit for Emerging and Zoonotic Infections, University of Liverpool, Liverpool, United Kingdom
- Tropical & Infectious Disease Unit, Royal Liverpool University Hospital, Liverpool, United Kingdom
- * E-mail: (LT); (VS)
| | - Filippo Tatullo
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- Dept of Neurovirology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| | - Tanushka Bali
- Dept of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Vasanthapuram Ravi
- Dept of Neurovirology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| | - Mohammed Soni
- Dept of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Sajesh Chan
- Dept of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Savita Chib
- Dept of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Manjunatha M. Venkataswamy
- Dept of Neurovirology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| | - Prachi Fadnis
- Dept of Neurovirology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| | | | - Stefan Fernandez
- Dept of Virology, Armed Forces Research Institute of Medical Science (AFRIMS), Bangkok, Thailand
| | - Paul Klenerman
- Translational Gastroenterology Unit, Nuffield Dept. of Medicine, University of Oxford, Peter Medawar Building for Pathogen Research, Oxford, United Kingdom
| | - Vijaya Satchidanandam
- Dept of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- * E-mail: (LT); (VS)
| | - Tom Solomon
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- NIHR Health Protection Research Unit for Emerging and Zoonotic Infections, University of Liverpool, Liverpool, United Kingdom
- Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| |
Collapse
|
645
|
Seroprevalence of dengue infection in the municipalities of Armenia, Calarcá, La Tebaida and Montenegro in Quindío, 2014. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2017; 37:34-41. [PMID: 28527246 DOI: 10.7705/biomedica.v37i1.3208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 04/15/2016] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Dengue is a serious public health problem in Colombia; it is prevalent in 90% of the municipalities in Quindío. Studies on its seroprevalence are required to address public health interventions. OBJECTIVE To establish the seroprevalence of dengue infection in neighborhoods with high incidence in the municipalities of Armenia, Calarcá, La Tebaida and Montenegro, Quindío, in 2014. MATERIALS AND METHODS We conducted a probabilistic, stratified, two-stage prevalence study. We interviewed 658 residents in the urban area of the selected municipalities. After they signed the informed consent, we took a blood sample to determine dengue IgG and IgM antibodies. RESULTS Seroprevalence of IgG in Quindío was 89,4%; in Armenia it was 88,7%, in Calarcá, 81,5%, in Montenegro, 91,8% and in La Tebaida 97,8%. IgM was 14, 2% in Quindío; in Armenia it was 11,5%, in Calarcá, 13,0%, in Montenegro, 13,1% and in La Tebaida, 28,9%. CONCLUSIONS We found a high prevalence of both IgG and IgM in the four municipalities. We had positive results for IgM in all age groups, which suggests recent infection. We also found simultaneous seropositivity for IgG and IgM (12.9%), which may indicate infection by another serotype or presence of infection in the past three months. A multisectoral approach is necessary for dengue control in Quindío.
Collapse
|
646
|
Xu M, Zuest R, Velumani S, Tukijan F, Toh YX, Appanna R, Tan EY, Cerny D, MacAry P, Wang CI, Fink K. A potent neutralizing antibody with therapeutic potential against all four serotypes of dengue virus. NPJ Vaccines 2017; 2:2. [PMID: 29263863 PMCID: PMC5627287 DOI: 10.1038/s41541-016-0003-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 10/28/2016] [Accepted: 11/02/2016] [Indexed: 02/04/2023] Open
Abstract
A therapy for dengue is still elusive. We describe the neutralizing and protective capacity of a dengue serotype-cross-reactive antibody isolated from the plasmablasts of a patient. Antibody SIgN-3C neutralized all four dengue virus serotypes at nano to picomolar concentrations and significantly decreased viremia of all serotypes in adult mice when given 2 days after infection. Moreover, mice were protected from pathology and death from a lethal dengue virus-2 infection. To avoid potential Fc-mediated uptake of immune complexes and ensuing enhanced infection, we introduced a LALA mutation in the Fc part. SIgN-3C-LALA was as efficient as the non-modified antibody in neutralizing dengue virus and in protecting mice while antibody-dependent enhancement was completely abrogated. The epitope of the antibody includes conserved amino acids in all three domains of the glycoprotein, which can explain its cross-reactivity. SIgN-3C-LALA neutralizes dengue virus both pre and post-attachment to host cells. These attributes likely contribute to the remarkable protective capacity of SIgN-3C.
Collapse
Affiliation(s)
- Meihui Xu
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Roland Zuest
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Sumathy Velumani
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Farhana Tukijan
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Ying Xiu Toh
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Ramapraba Appanna
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Ern Yu Tan
- Department of General Surgery, Tan Tock Seng Hospital, Singapore, Singapore
| | - Daniela Cerny
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Paul MacAry
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Cheng-I Wang
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Katja Fink
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
647
|
Abstract
The concept of neglected tropical diseases (NTDs) emerged more than a decade ago and has been recognised as a valid way to categorise diseases that affect the poorest individuals. Substantial progress in control and elimination has been achieved and policy momentum has been generated through continued bilateral, philanthropic, and non-governmental development organisation (NGDO) support, and donations of drugs from pharmaceutical companies. WHO has defined a Roadmap to reach 2020 targets, which was endorsed by member states in a World Health Assembly Resolution in 2013. NTDs have been included within the Sustainable Development Goal targets and are a crucial component of universal health coverage, conceptualised as "leaving no one behind". WHO reported that more than 1 billion people in 88 countries have benefited from preventive chemotherapy in 2014. The research agenda has defined the need for affordable products (diagnostics, drugs and insecticides). However challenges such as insecurity and weak health systems continue to prevail in the poorest countries, inhibiting progress in scaling up and also in achieving Roadmap goals.
Collapse
Affiliation(s)
- David H Molyneux
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, UK.
| | - Lorenzo Savioli
- Global Schistosomiasis Alliance, Chavannes de Bogis, Switzerland
| | - Dirk Engels
- Department of Control of Neglected Tropical Diseases, World Health Organization, Geneva, Switzerland
| |
Collapse
|
648
|
Gómez-Calderón C, Mesa-Castro C, Robledo S, Gómez S, Bolivar-Avila S, Diaz-Castillo F, Martínez-Gutierrez M. Antiviral effect of compounds derived from the seeds of Mammea americana and Tabernaemontana cymosa on Dengue and Chikungunya virus infections. Altern Ther Health Med 2017; 17:57. [PMID: 28100218 PMCID: PMC5241984 DOI: 10.1186/s12906-017-1562-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/05/2017] [Indexed: 11/25/2022]
Abstract
Background The transmission of Dengue virus (DENV) and Chikungunya virus (CHIKV) has increased worldwide, due in part to the lack of a specific antiviral treatment. For this reason, the search for compounds with antiviral potential, either as licensed drugs or in natural products, is a research priority. The objective of this study was to identify some of the compounds that are present in Mammea americana (M. americana) and Tabernaemontana cymosa (T. cymosa) plants and, subsequently, to evaluate their cytotoxicity in VERO cells and their potential antiviral effects on DENV and CHIKV infections in those same cells. Methods Dry ethanolic extracts of M. americana and T. cymosa seeds were subjected to open column chromatographic fractionation, leading to the identification of four compounds: two coumarins, derived from M. americana; and lupeol acetate and voacangine derived from T. cymosa.. The cytotoxicity of each compound was subsequently assessed by the MTT method (at concentrations from 400 to 6.25 μg/mL). Pre- and post-treatment antiviral assays were performed at non-toxic concentrations; the resulting DENV inhibition was evaluated by Real-Time PCR, and the CHIKV inhibition was tested by the plating method. The results were analyzed by means of statistical analysis. Results The compounds showed low toxicity at concentrations ≤ 200 μg/mL. The compounds coumarin A and coumarin B, which are derived from the M. americana plant, significantly inhibited infection with both viruses during the implementation of the two experimental strategies employed here (post-treatment with inhibition percentages greater than 50%, p < 0.01; and pre-treatment with percentages of inhibition greater than 40%, p < 0.01). However, the lupeol acetate and voacangine compounds, which were derived from the T. cymosa plant, only significantly inhibited the DENV infection during the post-treatment strategy (at inhibition percentages greater than 70%, p < 0.01). Conclusion In vitro, the coumarins are capable of inhibiting infection by DENV and CHIKV (with inhibition percentages above 50% in different experimental strategies), which could indicate that these two compounds are potential antivirals for treating Dengue and Chikungunya fever. Additionally, lupeol acetate and voacangine efficiently inhibit infection with DENV, also turning them into promising antivirals for Dengue fever.
Collapse
|
649
|
Sharp TM, Tomashek KM, Read JS, Margolis HS, Waterman SH. A New Look at an Old Disease: Recent Insights into the Global Epidemiology of Dengue. CURR EPIDEMIOL REP 2017; 4:11-21. [PMID: 28251039 PMCID: PMC5306284 DOI: 10.1007/s40471-017-0095-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW By all measures, the morbidity and mortality due to dengue are continuing to worsen worldwide. Although both early and recent studies have demonstrated regional differences in how dengue affects local populations, these findings were to varying extents related to disparate surveillance approaches. RECENT FINDINGS Recent studies have broadened the recognized spectrum of disease resulting from DENV infection, particularly in adults, and have also demonstrated new mechanisms of DENV spread both within and between populations. New results regarding the frequency and duration of homo- and heterotypic anti-DENV antibodies have provided important insights relevant to vaccine design and implementation. SUMMARY These observations and findings as well as difficulties in comparing the epidemiology of dengue within and between regions of the world underscore the need for population-based dengue surveillance worldwide. Enhanced surveillance should be implemented to complement passive surveillance in countries in the tropics to establish baseline data in order to define affected populations and evaluate the impact of dengue vaccines and novel vector control interventions.
Collapse
Affiliation(s)
- Tyler M. Sharp
- Dengue Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, 1324 Calle Cañada, San Juan, PR 00920-3860 USA
| | - Kay M. Tomashek
- Dengue Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, 1324 Calle Cañada, San Juan, PR 00920-3860 USA
| | - Jennifer S. Read
- Dengue Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, 1324 Calle Cañada, San Juan, PR 00920-3860 USA
| | - Harold S. Margolis
- Dengue Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, 1324 Calle Cañada, San Juan, PR 00920-3860 USA
| | - Stephen H. Waterman
- Dengue Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, 1324 Calle Cañada, San Juan, PR 00920-3860 USA
| |
Collapse
|
650
|
Godói IP, Lemos LLP, de Araújo VE, Bonoto BC, Godman B, Guerra Júnior AA. CYD-TDV dengue vaccine: systematic review and meta-analysis of efficacy, immunogenicity and safety. J Comp Eff Res 2017; 6:165-180. [PMID: 28084784 DOI: 10.2217/cer-2016-0045] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Dengue virus (DENV) is a serious global health problem. CYD-TDC (Dengvaxia®) was the first vaccine to gain regulatory approval to try and address this problem. AIM Summarize all available evidence on the immunogenicity, efficacy and safety of the CYD-TDV dengue vaccine. METHOD Meta-analysis and systematic review. RESULTS The best and worst immunogenicity results were for DENV4 and DENV1, respectively. Vaccine efficacy of 60% was derived from studies with participants aged 2-16 years old, with DENV4 and DENV2 presenting the best and worst results, respectively. Erythema and swelling were more frequent with CYD-TDV. No differences were detected for systemic adverse events. CONCLUSION CYD-TDV showed moderate efficacy in children and adolescents. From the immunogenicity results in adults, we can expect satisfactory efficacy from vaccination in this population.
Collapse
Affiliation(s)
- Isabella Piassi Godói
- Programa de Pós-graduação em Medicamentos e Assistência Farmacêutica, sala 1023, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, Minas Gerais, CEP 31270-901, Brazil.,SUS Collaborating Centre for Technology Assessment & Excellence in Health, sala 1042, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, Minas Gerais, CEP 31270-901, Brazil
| | - Livia Lovato Pires Lemos
- SUS Collaborating Centre for Technology Assessment & Excellence in Health, sala 1042, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, Minas Gerais, CEP 31270-901, Brazil
| | - Vânia Eloisa de Araújo
- Faculdade de Odontologia, Instituto de Ciências Biológicas e da Saúde, Pontifícia Universidade Católica de Minas Gerais, Av. Dom José Gaspar, 500 Coração Eucaristíco, Belo Horizonte, Minas Gerais, CEP 30535-901, Brazil
| | - Braúlio Cesar Bonoto
- Programa de Pós-graduação em Medicamentos e Assistência Farmacêutica, sala 1023, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, Minas Gerais, CEP 31270-901, Brazil
| | - Brian Godman
- University of Strathclyde Glasgow, Institute of Pharmacy & Biomedical Sciences, Pharmacoepidemiology, 161 Cathedral Street, Glasgow G4 0RE, UK.,Division of Clinical Pharmacology, Karolinska Institutet, Karolinska University Hospital, SE-141 86, Stockholm, Sweden
| | - Augusto Afonso Guerra Júnior
- Programa de Pós-graduação em Medicamentos e Assistência Farmacêutica, sala 1023, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, Minas Gerais, CEP 31270-901, Brazil.,SUS Collaborating Centre for Technology Assessment & Excellence in Health, sala 1042, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, Minas Gerais, CEP 31270-901, Brazil
| |
Collapse
|