51
|
Grijalva I, Li X, Marcillo A, Salzer JL, Levi AD. Expression of neurotrimin in the normal and injured adult human spinal cord. Spinal Cord 2005; 44:280-6. [PMID: 16172623 DOI: 10.1038/sj.sc.3101842] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
STUDY DESIGN Neurotrimin (Ntm) is a member of the family of neural cell adhesion molecules. Its expression pattern suggests that Ntm promotes axonal fasciculation, guides nerve fibers to specific targets and stabilizes synapses as it accumulates coincident with synaptogenesis. Strong labeling of Ntm was observed in motor and sensory areas of the postnatal rat cortex. It is not known whether Ntm is present in adult human spinal cord (SC). In the present study, a monoclonal antibody specific for Ntm (1B1), is applied to the first study of the expression of Ntm in normal and injured adult human SC. OBJECTIVE (1) To investigate the expression pattern of Ntm in adult normal human SC, and (2) to observe the changes of Ntm expression after SC injury and compare the differences between normal and injured adult human SC. METHODS Human SC tissue was obtained from necropsies of patients with (n=5) and without (n=4) SC injury. The 1B1 Ntm monoclonal antibody was used for immunohistochemical staining on paraffin embedded sections with an ABC kit. RESULTS (1) In total, 12 slides were analyzed for each group from both cervical and thoracic levels. Motor neurons and Clarke's neurons and glial-like cells were mild to moderately positive in all uninjured SC specimens. (2) In injured SC, no staining was observed in the injury epicenter between two and three levels proximally and distally, but was detected five levels away. (3) In patients older than 67 years of age, Ntm-positive inclusions were present in the white matter of the SC with or without injury. (4) Some meningeal cells were strongly Ntm-positive, especially in the uninjured human SC. CONCLUSION Ntm is expressed by motor and Clarke's neurons and glial cells in uninjured human SC. The downregulation of Ntm in the injured SC suggests that its expression is regulated by afferent input.
Collapse
Affiliation(s)
- I Grijalva
- Miami Project to Cure Paralysis, University of Miami School of Medicine, Miami, FL, USA
| | | | | | | | | |
Collapse
|
52
|
Hartwig C, Veske A, Krejcova S, Rosenberger G, Finckh U. Plexin B3 promotes neurite outgrowth, interacts homophilically, and interacts with Rin. BMC Neurosci 2005; 6:53. [PMID: 16122393 PMCID: PMC1215486 DOI: 10.1186/1471-2202-6-53] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Accepted: 08/25/2005] [Indexed: 12/24/2022] Open
Abstract
Background Plexins, known to date as receptors of semaphorins, are implicated in semaphorin-mediated axon repulsion and growth cone collapse. However, subtype-specific functions of the majority of the nine members of the mammalian plexin family are largely unknown. In order to investigate functional properties of B-plexins, we analyzed the expression of human and murine plexin B3 and expressed full-length human plexins B2 (B2) and B3 (B3) in NIH-3T3 cells. Results Unexpectedly, B3 strongly and B2 moderately stimulate neurite outgrowth of primary murine cerebellar neurons. Both plexins mediate Ca2+/Mg2+-dependent cell aggregation due to homophilic trans-interaction, which is strong in the case of B3 and moderate for B2. Using different deletion constructs we show that the sema domain of B3 is essential for homophilic interaction. Using yeast two-hybrid analysis, we identified the neuron-specific and calmodulin-binding Ras-related GTPase Rin as an interaction partner of the intracellular part of B3, but not of B2. Rin, also known for its neurite outgrowth-inducing characteristics, co-localizes and co-immunoprecipitates with B3 in co-transfected COS-7 cells. Conclusion Our data suggest an involvement of homophilic interaction of B3 in semaphorin-independent signaling mechanisms positively influencing neuronal morphogenesis or function. Furthermore the neuron-specific small GTPase Rin is involved in downstream signaling of plexin B3.
Collapse
Affiliation(s)
- Christine Hartwig
- Institut für Humangenetik, Universitätsklinikum Hamburg-Eppendorf, Universität Hamburg, Hamburg, Germany
| | - Andres Veske
- Institut für Humangenetik, Universitätsklinikum Hamburg-Eppendorf, Universität Hamburg, Hamburg, Germany
- Institute of Gene Technology, Tallinn Technical University, Tallinn, Estonia
| | - Sarka Krejcova
- Institut für Humangenetik, Universitätsklinikum Hamburg-Eppendorf, Universität Hamburg, Hamburg, Germany
| | - Georg Rosenberger
- Institut für Humangenetik, Universitätsklinikum Hamburg-Eppendorf, Universität Hamburg, Hamburg, Germany
| | - Ulrich Finckh
- Institut für Humangenetik, Universitätsklinikum Hamburg-Eppendorf, Universität Hamburg, Hamburg, Germany
- Laboratoriumsmedizin Dortmund, Dortmund, Germany
| |
Collapse
|
53
|
Li P, Prasad S, Mitchell D, Hachisuka A, Sawada JÍ, Al-Housseini AM, Gu Q. Postnatal expression profile of OBCAM implies its involvement in visual cortex development and plasticity. ACTA ACUST UNITED AC 2005; 16:291-9. [PMID: 15901654 PMCID: PMC1351221 DOI: 10.1093/cercor/bhi109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This study examined the expression of a neuron-specific cell adhesion molecule, OBCAM (opioid-binding cell adhesion molecule), at both the mRNA and protein levels in the cat primary visual cortex at various postnatal ages, using cDNA array analysis and immunocytochemistry. Results obtained using both methods showed that the expression level of OBCAM was high in young and low in older and adult visual cortex. OBCAM-immunoreactivities were associated predominantly with perikarya and dendrites of pyramidal neurons, and OBCAM-immunopositive neurons were present in all cortical layers. Immunostaining of OBCAM in adult visual cortex showed a reduced number of immunopositive neurons and neurites and relatively lower staining intensities as compared with younger animals. In addition, the number of OBCAM-immunopositive neurons was significantly higher in the visual cortex of 4-month-old animals dark-reared from birth than those in age-matched normally reared animals. These results suggest that OBCAM may play an important role in visual cortex development and plasticity.
Collapse
Affiliation(s)
- P. Li
- Brain Research Center, Neuroscience Graduate Program, and Department of Ophthalmology, University of British Columbia, Vancouver, BC, Canada
| | - S.S. Prasad
- Brain Research Center, Neuroscience Graduate Program, and Department of Ophthalmology, University of British Columbia, Vancouver, BC, Canada
| | - D.E. Mitchell
- Department of Psychology, Dalhousie University, Halifax, NS, Canada
| | - A. Hachisuka
- Division of Biochemistry and Immunochemistry, National Institute of Health Sciences, Tokyo, Japan and
| | - J.-Í. Sawada
- Division of Biochemistry and Immunochemistry, National Institute of Health Sciences, Tokyo, Japan and
| | - A. M. Al-Housseini
- Department of Neurobiology and Anatomy, and Neuroscience Program, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Q. Gu
- Brain Research Center, Neuroscience Graduate Program, and Department of Ophthalmology, University of British Columbia, Vancouver, BC, Canada
- Department of Neurobiology and Anatomy, and Neuroscience Program, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Address correspondence to Dr Q. Gu, Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| |
Collapse
|
54
|
Yamamoto K, Reiner A. Distribution of the limbic system-associated membrane protein (LAMP) in pigeon forebrain and midbrain. J Comp Neurol 2005; 486:221-42. [PMID: 15844168 DOI: 10.1002/cne.20562] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The limbic system-associated membrane protein (LAMP) is an adhesion molecule involved in specifying regional identity during development, and it is enriched in the neuropil of limbic brain regions in mammals but also found in some somatic structures. Although originally identified in rat, LAMP is present in diverse species, including avians. In this study, we used immunolabeling with a monoclonal antibody against rat LAMP to examine the distribution of LAMP in pigeon forebrain and midbrain. LAMP immunolabeling was prominent in many telencephalic regions previously noted as limbic in birds. These regions include the hippocampal complex, the medial nidopallium, and the ventromedial arcopallium. Subpallial targets of these pallial regions were also enriched in LAMP, such as the medial-most medial striatum. Whereas some telencephalic areas that have not been regarded as limbic were also LAMP-rich (e.g., the hyperpallium intercalatum and densocellulare of the Wulst, the mesopallium, and the intrapeduncular nucleus), most nonlimbic telencephalic areas were LAMP-poor (e.g., field L, the lateral nidopallium, and somatic basal ganglia). Similarly, in the diencephalon and midbrain, prominent LAMP labeling was observed in such limbic areas as the dorsomedial thalamus, the hypothalamus, the ventral tegmental area, and the central midbrain gray, as well as in a few nonlimbic areas such as nucleus rotundus, the shell of the nucleus pretectalis, the superficial tectum, and the parvocellular isthmic nucleus. Thus, as in mammals, LAMP in birds appears to be enriched in most known forebrain and midbrain limbic structures but is present as well in some somatic structures.
Collapse
Affiliation(s)
- Kei Yamamoto
- Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | |
Collapse
|
55
|
Pönniö T, Conneely OM. nor-1 regulates hippocampal axon guidance, pyramidal cell survival, and seizure susceptibility. Mol Cell Biol 2004; 24:9070-8. [PMID: 15456880 PMCID: PMC517886 DOI: 10.1128/mcb.24.20.9070-9078.2004] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nuclear receptor transcription factor, nor-1, is expressed during mammalian development predominantly in the nervous system and is induced in a cell-specific manner in nonneuronal cells in response to a variety of extracellular stimuli. To elucidate the essential developmental functions of this transcription factor, we have analyzed the consequences of its elimination on central nervous system development in mice. Here we show that null mutant mice lacking nor-1 respond with increased limbic seizure activity to the excitotoxic glutamate receptor agonist kainic acid. We demonstrate that these abnormalities are associated with defective postnatal hippocampal development exemplified by abnormal axonal guidance of dentate gyrus granule and mossy cells, disorganization of the pyramidal cell layer, and early postnatal death of pyramidal neurons in the CA1 field of the hippocampus. Our data indicate that nor-1 plays a critical role in neuronal survival and axonal guidance in the developing murine hippocampus and that hippocampal dysgenesis in nor-1-/- mice may be an underlying cause of seizure susceptibility.
Collapse
Affiliation(s)
- Tiia Pönniö
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houson, TX 77030, USA
| | | |
Collapse
|
56
|
Pimenta AF, Levitt P. Characterization of the genomic structure of the mouse limbic system-associated membrane protein (Lsamp) gene. Genomics 2004; 83:790-801. [PMID: 15081109 DOI: 10.1016/j.ygeno.2003.11.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2003] [Revised: 10/15/2003] [Accepted: 11/17/2003] [Indexed: 12/12/2022]
Abstract
The Lsamp gene encodes the limbic system-associated membrane protein (LAMP) an immunoglobulin (Ig) superfamily member with three Ig domains and a glycosylphosphatidylinositol anchor. LAMP is expressed by neurons composing the limbic system, is highly conserved between rodents and human, and has structural and functional properties that substantiate its role in the formation of limbic circuits. We report here the genomic organization of the Lsamp gene. The Lsamp gene is composed of 11 exons distributed over 2.2 megabases (Mb). Two exons 1 are separated by approximately 1.6 Mb and contribute to the unusual large size of the gene. Alternative spliced Lsamp mRNAs are generated from distinct promoter regions associated with the two exons 1 that encode distinct signal peptides and thus generate identical native mature polypetides. Additional diversity is created by the use of two small exons to include an insertion of 23 amino acids within the polypeptide C-terminal region of the mature protein. The genomic features of the Lsamp gene described here indicate an intricate mechanism of gene expression regulation that may be relevant in the context of human neuropsychiatric and neurological disorders, where LAMP expression may be altered.
Collapse
Affiliation(s)
- Aurea F Pimenta
- John F. Kennedy Center for Research on Human Development and Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.
| | | |
Collapse
|
57
|
Kõks S, Luuk H, Nelovkov A, Areda T, Vasar E. A screen for genes induced in the amygdaloid area during cat odor exposure. GENES BRAIN AND BEHAVIOR 2004; 3:80-9. [PMID: 15005716 DOI: 10.1046/j.1601-183x.2003.00047.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The aim of a present study was to identify the genes activated or inactivated in the amygdaloid area after the exposure to cat odor. Cat odor exposure was used to induce the ethologically relevant anxiety reaction in male rats. Differential expression of genes was analyzed using the cDNA Representational Difference Analysis (cDNA RDA). Differentially expressed mRNAs were identified by sequencing combined with database search and subsequently verified by dot blot analysis. Exposure of rats to cat odor induced avoidance of odor stimulus and suppressed the exploratory activity of animals. We found that during the cat odor exposure several genes with various functions were activated in the amygdaloid area of rat. Moreover, reverse subtraction resulted in a different set of genes that are inactivated during anxiety response. These genes can be classified according to their function as the neurotransmission related, enzymes, cell cycle regulating proteins and transcription factors. We found that during anxiety response the genes participating directly or indirectly in the synthesis of neurotransmitters (carboxypeptidase E, tyrosine 3-monooxygenase/tryptophan 5-mono-oxygenase activation protein, wolframin) were up regulated. Moreover, a number of genes involved in the signal transduction (Rho GTPase, neurochondrin, Ca/calmodulin-dependent protein kinase) were also activated. Additionally, reverse subtraction in control animals identified several up regulated genes having the antagonistic action to these genes (nischarin, Rab geranylgeranyl transferase). In conclusion, we were able to define the possible pathways linked to the regulation of anxiety response.
Collapse
Affiliation(s)
- S Kõks
- Department of Physiology, University of Tartu, Tartu, Estonia.
| | | | | | | | | |
Collapse
|
58
|
Koyama R, Yamada MK, Nishiyama N, Matsuki N, Ikegaya Y. Developmental switch in axon guidance modes of hippocampal mossy fibers in vitro. Dev Biol 2004; 267:29-42. [PMID: 14975715 DOI: 10.1016/j.ydbio.2003.11.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2003] [Revised: 10/07/2003] [Accepted: 11/11/2003] [Indexed: 10/26/2022]
Abstract
Hippocampal mossy fibers (MFs), axons of dentate granule cells, run through a narrow strip, called the stratum lucidum, and make synaptic contacts with CA3 pyramidal cells. This stereotyped pathfinding is assumed to require a tightly controlled guidance system, but the responsible mechanisms have not been proven directly. To clarify the cellular basis for the MF pathfinding, microslices of the dentate gyrus (DG) and Ammon's horn (AH) were topographically arranged in an organotypic explant coculture system. When collagen gels were interposed between DG and AH slices prepared from postnatal day 6 (P6) rats, the MFs passed across this intervening gap and reached CA3 stratum lucidum. Even when the recipient AH was chemically pre-fixed with paraformaldehyde, the axons were still capable of accessing their normal target area only if the DG and AH slices were directly juxtaposed without a collagen bridge. The data imply that diffusible and contact cues are both involved in MF guidance. To determine how these different cues contribute to MF pathfinding during development, a P6 DG slice was apposed simultaneously to two AH slices prepared from P0 and P13 rats. MFs projected normally to both the host slices, whereas they rarely invaded P0 AH when the two hosts were fixed. Early in development, therefore, the MFs are guided mainly by a chemoattractant gradient, and thereafter, they can find their trajectories by a contact factor, probably via fasciculation with pre-established MFs. The present study proposes a dynamic paradigm in CNS axon pathfinding, that is, developmental changes in axon guidance cues.
Collapse
Affiliation(s)
- Ryuta Koyama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | | | |
Collapse
|
59
|
Eagleson KL, Pimenta AF, Burns MM, Fairfull LD, Cornuet PK, Zhang L, Levitt P. Distinct domains of the limbic system-associated membrane protein (LAMP) mediate discrete effects on neurite outgrowth. Mol Cell Neurosci 2003; 24:725-40. [PMID: 14664821 DOI: 10.1016/s1044-7431(03)00237-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The limbic system-associated membrane protein (LAMP) is a glycosylphosphatidylinositol-anchored glycoprotein with three immunoglobulin (Ig) domains that can either enhance or inhibit neurite outgrowth depending upon the neuronal population examined. In the present study, we investigate the domains responsible for these activities. Domain deletion revealed that the N-terminal IgI domain is necessary and sufficient for the neurite-promoting activity observed in hippocampal neurons. In contrast, inhibition of neurite outgrowth in SCG neurons, which is mediated by heterophilic interactions, requires full-length LAMP, although selective inhibition of the second Ig domain, but not the first or third domains, prevented the inhibitory effect. This indicates that the IgII domain of LAMP harbors the neurite-inhibiting activity, but only in the context of the full-length configuration. Covasphere-binding analyses demonstrate IgI/IgI interactions, but no interaction between IgII and any other domain, consistent with the biological activities that each domain mediates. The data suggest that LAMP may serve as a bifunctional guidance molecule, with distinct structural domains contributing to the promotion and inhibition of neurite outgrowth.
Collapse
Affiliation(s)
- Kathie L Eagleson
- John F. Kennedy Center for Research on Human Development and Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.
| | | | | | | | | | | | | |
Collapse
|
60
|
Miyata S, Taguchi K, Maekawa S. Dendrite-associated opioid-binding cell adhesion molecule localizes at neurosecretory granules in the hypothalamic magnocellular neurons. Neuroscience 2003; 122:169-81. [PMID: 14596858 DOI: 10.1016/s0306-4522(03)00609-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Opioid-binding cell adhesion molecule (OBCAM) is a member of the immunoglobulin superfamily containing limbic system-associated membrane protein (IgLON) subgroup of glycosylphosphatidylinositol-anchored immunoglobulin cell adhesion molecules. We have previously found that OBCAM is localized preferentially to dendrites compared with somata and terminals of hypothalamic vasopressin-secreting magnocellular neurons. This localization indicates that OBCAM is one of the dendrite-associated cell adhesion molecules. In the present study, we further characterized the localization and the sorting mechanism, and activity-dependent changes of this molecule in vasopressin-secreting magnocellular dendrites. Confocal microscopic observation revealed the preferential localization of OBCAM at the neurosecretory granules in the vasopressin-positive dendrites. Electron microscopic observation using chromogen-intensified and gold-conjugated methods also demonstrated the OBCAM labeling at most of the neurosecretory granules within the dendrites, while the labeling within the somata was observed at only a few neurosecretory granules. I.c.v. colchicine administration resulted in the disappearance of OBCAM immunoreactivity from the dendrites and in its concomitant accumulation at the somata, suggesting that OBCAM is synthesized at the somata and transported to the dendrites by dendrite-associated neurosecretory granules. During the postnatal development, OBCAM immunoreactivity targeted to vasopressin-positive dendrites became clear from at least 3 weeks after birth, although it appeared at only a few somata 2 weeks after birth. Phosphatidylinositol specific phospholipase C treatment of the membrane fraction of the supraoptic homogenate solubilized OBCAM. Kilon, another IgLON member, was also shown to localize at the neurosecretory granules of vasopressin-positive dendrites via the glycosylphosphatidylinositol anchor. High K(+)-stimulation appeared to cause the diffusion of OBCAM-labeled gold particles from neurosecretory granules together with the exocytosis. These findings indicate that OBCAM is synthesized within the somata, attached to vasopressin neurosecretory granules via the glycosylphosphatidylinositol anchor, and transported to the dendrites. Moreover, the subcellular localization of OBCAM is changed in an activity-dependent manner.
Collapse
Affiliation(s)
- S Miyata
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| | | | | |
Collapse
|
61
|
Miyata S, Matsumoto N, Maekawa S. Polarized targeting of IgLON cell adhesion molecule OBCAM to dendrites in cultured neurons. Brain Res 2003; 979:129-36. [PMID: 12850579 DOI: 10.1016/s0006-8993(03)02888-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Opioid-binding cell adhesion molecule (OBCAM) belongs to the immunoglobulin superfamily CAMs and shows a dendritically polarized distribution in hypothalamic magnocellular neurons. In the present study, the cellular localization of OBCAM was monitored in cultured cortical and hippocampal neurons to examine its polarized distribution. Double labeling immunofluorescence microscopy after fixation showed only faint OBCAM immunoreactivity in the neuronal somata during the early stages of culture, whereas the immunoreactivity was strong in MAP2-positive somata and dendrites of fully polarized neurons after longer culture. Moreover, the immunoreactivity for OBCAM showed a punctate pattern in the dendrites similar to the immunostaining pattern of synapsin I. High resolution revealed close apposition with only a partial overlap of synapsin I and OBCAM immunoreactivities, suggesting the synaptic localization of OBCAM to the dendrites. When the fully polarized neurons were reacted with anti-OBCAM antibody before fixation, OBCAM immunoreactivity became stronger on the dendritic surface than the somatic surface. Extracellular immunoreactivity was eliminated with phosphatidylinositol-specific phospholipase C and this immunoreactivity resisted extraction with the nonionic detergent Triton X-100 at 4 degrees C, indicating that OBCAM is attached to the rafts via a glycosylphosphatidyl inositol anchor. These results indicate that OBCAM is efficiently targeted to the dendritic surface of fully polarized cortical and hippocampal neurons. OBCAM is, hence, concluded to be a dendrite-associated CAM in cortical and hippocampal neurons as in hypothalamic magnocellular neurons.
Collapse
Affiliation(s)
- Seiji Miyata
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, 606-8585, Kyoto, Japan.
| | | | | |
Collapse
|
62
|
Job C, Tan SS. Erratum to “Constructing the mammalian neocortex: the role of intrinsic factors”. Dev Biol 2003. [DOI: 10.1016/s0012-1606(03)00279-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
63
|
Abstract
The mammalian neocortex is subdivided into regions that are specialised for the processing of particular forms of information. These regions are distinct in terms of their cytoarchitecture, electrophysiology, and connectivity. How this regional diversity is generated through development is currently a topic of considerable interest and has centered upon two main issues. First, to what extent are these regions prespecified by intrinsic genetic mechanisms? Second, what is the influence of extrinsic activity in transmitting signals that ultimately shape functional regions? Historically, experimental evidence has tended to emphasise the role of extrinsic influences, but the identification and analysis of several genes that are expressed asymmetrically in the developing neocortex have tempered this viewpoint. We review current literature from the standpoint that intrinsic influences act early in neocortical development to generate molecular patterning whose main role is the guidance of long-range projections from the dorsal thalamus. Extrinsic influences appear to generate receptive fields for peripheral input, the summation of which determines the areal extent of particular neocortical region.
Collapse
Affiliation(s)
- Christopher Job
- Brain Development Laboratory, Howard Florey Institute, The University of Melbourne, Parkville, Victoria, Australia
| | | |
Collapse
|
64
|
Miyata S, Matsumoto N, Taguchi K, Akagi A, Iino T, Funatsu N, Maekawa S. Biochemical and ultrastructural analyses of IgLON cell adhesion molecules, Kilon and OBCAM in the rat brain. Neuroscience 2003; 117:645-58. [PMID: 12617969 DOI: 10.1016/s0306-4522(02)00873-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Kilon (kindred of IgLON) and opioid-binding cell adhesion molecule belong to the IgLON subgroup of immunoglobulin superfamily together with the limbic system-associated membrane protein and neurotrimin. In the present study, we have analyzed biochemical and ultrastructural characterization of Kilon and opioid-binding cell adhesion molecule such as regional and developmental expression patterns, light and electron microscopic localization, and intermolecular interactions. Western blotting revealed a widespread distribution pattern of Kilon with high expression levels in the olfactory bulb, cerebral cortex, diencephalon, hippocampus, and cerebellum and low expression levels in the medulla oblongata and spinal cord. In contrast, opioid-binding cell adhesion molecule showed a regionally restricted expression pattern with high levels only in the cerebral cortex and hippocampus. Expression of Kilon and opioid-binding cell adhesion molecule was increased gradually during postnatal development and maintained until adulthood. Light microscopic immunohistochemistry demonstrated that the localization of opioid-binding cell adhesion molecule and Kilon coincided well with that of vesicle-associated membrane protein 2, a synaptic marker protein, in the cerebral cortex and hippocampus of adult brain. In the cerebellum, Kilon-immunoreactive puncta were observed to colocalize well with that of vesicle-associated membrane protein 2, while opioid-binding cell adhesion molecule immunoreactivity was observed only at part of synaptic glomeruli in the granular layer and rare in the molecular layer. Electron microscopic analysis revealed that Kilon and opioid-binding cell adhesion molecule immunoreactivity was observed mainly at postsynaptic sites of dendritic and somatic synapses in adult cerebral cortex and hippocampus. Only trace levels of Kilon and opioid-binding cell adhesion molecule were detected in the soluble fraction of a cortical homogenate, although a substantial amount of F3 was present in the soluble fraction. A binding analysis using a cross-linker and the immunoprecipitation technique demonstrated that Kilon and opioid-binding cell adhesion molecule interacted heterophilically and homophilically. These findings show that Kilon and opioid-binding cell adhesion molecule are clearly distinguishable from each other in regional expression and localization, and binding patterns. These differences possibly represent diverse functions of each IgLON molecule.
Collapse
Affiliation(s)
- S Miyata
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| | | | | | | | | | | | | |
Collapse
|
65
|
Shu SY, Bao XM, Ning Q, Wu YM, Wang J, Leonard BE. New component of the limbic system: Marginal division of the neostriatum that links the limbic system to the basal nucleus of Meynert. J Neurosci Res 2003; 71:751-7. [PMID: 12584733 DOI: 10.1002/jnr.10518] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The limbic system refers to a group of connected neural regions that are associated with motivation, learning, and memory. The marginal division (MrD) is a zone located at the caudal border of the neostriatum in mammalian brains that has been shown to be involved in learning and memory. In a previous study, c-fos expression showed functional connections between the MrD, basal nucleus of Meynert (NBM) and limbic system (Shu et al., 1988a, 1999). In the present study, to explore the relationship between these regions, the expression of limbic system-associated membrane protein (LAMP) was investigated using molecular and immunohistochemical methods. Synaptic and functional connections between the MrD and the NBM were studied also using tract tracing, electron microscopic and behavioral methods. LAMP is thought to be a marker of the limbic system and expression of LAMP protein and mRNA was observed in both the MrD and the limbic system. From such results, it is concluded that the MrD is a new component of the limbic system. Fibers from the MrD were observed projecting and synapsing on cholinergic neurons of the NBM. As reduction of learning and memory was induced by lesioning the projection from the MrD to the NBM, it would seem that the MrD modulates the learning and memory function of the NBM. In conclusion, the results of these studies suggest that the MrD is a new component of the limbic system, and there are functional and structural connections between the MrD, NBM and limbic system. The MrD seems to act as a link between the limbic system and the NBM, and plays a role in learning and memory.
Collapse
Affiliation(s)
- Si Yun Shu
- Institute for Neuroscience of the First Military Medical University, Zhu-Jiang Hospital, Guangzhou, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
66
|
Bekirov IH, Needleman LA, Zhang W, Benson DL. Identification and localization of multiple classic cadherins in developing rat limbic system. Neuroscience 2003; 115:213-27. [PMID: 12401335 DOI: 10.1016/s0306-4522(02)00375-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Classic cadherins are multifunctional adhesion proteins that play roles in tissue histogenesis, neural differentiation, neurite outgrowth and synapse formation. Several lines of evidence suggest that classic cadherins may establish regional or laminar recognition cues by virtue of their differential expression and tight, and principally homophilic, cell adhesion. As a first step toward investigating the role this family plays in generating limbic system connectivity, we used RT-PCR to amplify type I and type II classic cadherins present in rat hippocampus during the principal period of synaptogenesis. We identified nine different cadherins, one of which, cadherin-9, is novel in hippocampus. Using in situ hybridization, we compared the cellular and regional distribution of five of the cadherins (N, 6, 8, 9 and 10) during the first two postnatal weeks in hippocampus, subiculum, entorhinal cortex, cingulate cortex, anterior thalamus, hypothalamus and amygdala. We find that each cadherin is differentially distributed in distinct, but highly overlapping fields that largely correspond to known anatomical boundaries and are often coordinately expressed in interconnected regions. For example, cadherin-6 expression defines CA1 and its principal target, the subiculum; cadherin-10 is differentially expressed in CA1 and CA3 in a manner correlating with the organization of interconnecting Schaffer collateral axons; and cadherin-9 shows a striking concentration in CA3. Some cadherin mRNAs are highly restricted to particular anatomical fields over the entire time course, while others are more broadly expressed and become concentrated within particular domains coincident with the timing of afferent ingrowth. Our data indicate that classic cadherins are sufficiently diverse and differentially distributed to support a role in cell surface recognition and adhesion during the formation of limbic system connectivity.
Collapse
Affiliation(s)
- I H Bekirov
- Fishberg Research Center for Neurobiology, Box 1065/Neurobiology, Mount Sinai School of Medicine, 1425 Madison Avenue, New York, NY 10029, USA
| | | | | | | |
Collapse
|
67
|
Harris TJC, Siu CH. Reciprocal raft-receptor interactions and the assembly of adhesion complexes. Bioessays 2002; 24:996-1003. [PMID: 12386930 DOI: 10.1002/bies.10172] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cell adhesion complexes are critical for the physical coordination of cell-cell interactions and the morphogenesis of tissues and organs. Many adhesion receptors are anchored to the plasma membrane by a glycosylphosphatidylinositol (GPI) moiety and are thereby partitioned into membrane rafts. In this review, we focus on reciprocal interactions between rafts and adhesion molecules, leading to receptor clustering and raft expansion and stability. A model for a three-stage adhesion complex assembly process is also proposed. First, GPI-anchored adhesion molecules are recruited into rafts, which in turn promote receptor cis-oligomerization and thereby produce precursory complexes primed for avid trans-interactions. Second, trans-interactions of the receptors cross-link and stabilize large amalgams of rafts at sites of adhesion complex assembly. Finally, the enlarged and stabilized rafts acquire enhanced abilities to recruit the cytoskeleton and induce signaling. This process exemplifies how the domain structure of the plasma membrane can impact the function of its receptors.
Collapse
Affiliation(s)
- Tony J C Harris
- Banting and Best Department of Medical Research, University of Toronto, Ontario, Canada
| | | |
Collapse
|
68
|
Barlow JZ, Kelley KA, Bozdagi O, Huntley GW. Testing the role of the cell-surface molecule Thy-1 in regeneration and plasticity of connectivity in the CNS. Neuroscience 2002; 111:837-52. [PMID: 12031407 DOI: 10.1016/s0306-4522(02)00023-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Thy-1 is a cell-surface signaling molecule of the Ig superfamily implicated in the regulation of neurite outgrowth, synaptic function and plasticity. There is, however, no consensus as to its precise function in the nervous system, and it remains unclear or untested as to what its role is in the development, maintenance and plasticity of neuronal connectivity in the intact brain and whether it is essential for any of the purported functions which have been attributed to it based largely on in vitro bioassays. Here, we have engineered transgenic mice with a targeted deletion of the Thy-1 gene and, after characterizing the development of their corticospinal and thalamocortical pathways, subjected them at adulthood to paradigms of axonal regeneration and plasticity which can be readily induced during development. Quantitative analyses of the brains and spinal cords of adult null mutants showed normal cellular organization, normal anatomical features of the corticospinal and thalamocortical pathways, and basic neurophysiological properties of thalamocortical synaptic transmission which were quantitatively indistinguishable from wild-type mice. Despite the absence of Thy-1, corticospinal axons in adult mutants failed to exhibit overt regeneration following spinal cord lesion; likewise, the terminal arbors of ventrobasal thalamocortical axons also failed to reorganize in adult barrel cortex in response to whisker cautery, although they did so during a developmental critical period identical to that displayed by wild-type mice.Taken together, these results suggest that Thy-1 is not essential for the normal development and maintenance of major axon pathways and functional synaptic connections, nor would it appear to be critically important for inhibiting or promoting axonal growth, regeneration and plasticity in the developing and mature CNS.
Collapse
Affiliation(s)
- J Z Barlow
- Fishberg Research Center for Neurobiology and Program in Cell Adhesion, Box 1065, The Mount Sinai School of Medicine, 1425 Madison Avenue, New York, NY 10029-6574, USA
| | | | | | | |
Collapse
|
69
|
Gil OD, Zhang L, Chen S, Ren YQ, Pimenta A, Zanazzi G, Hillman D, Levitt P, Salzer JL. Complementary expression and heterophilic interactions between IgLON family members neurotrimin and LAMP. JOURNAL OF NEUROBIOLOGY 2002; 51:190-204. [PMID: 11984841 DOI: 10.1002/neu.10050] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Neurotrimin (Ntm) and the limbic system-associated membrane protein (LAMP) are members of the IgLON (LAMP, OBCAM, Ntm) family of glycorylphosphatidylinositol anchored neural cell adhesion molecules. We previously reported that LAMP and Ntm promote adhesion and neurite outgrowth via a homophilic mechanism, suggesting that these proteins promote the formation of specific neuronal circuits by homophilic interactions. In this report, we have further characterized the expression and binding specificity of Ntm. Using a newly generated monoclonal antibody to Ntm, we demonstrated that this protein is largely expressed in a complementary pattern to that of LAMP in the nervous system, with co-expression at a few sites. Ntm is expressed at high levels in sensory-motor cortex and, of particular note, is transiently expressed in neurons of cortical barrel fields and corresponding thalamic "barreloids." Binding of a recombinant, soluble form of Ntm to CHO cells expressing either Ntm or LAMP demonstrates that Ntm and LAMP interact both homophilically and heterophilically. In contrast to conventional growth-promoting activity of Ig superfamily members, LAMP strongly inhibits the outgrowth of Ntm-expressing dorsal root ganglion (DRG) neurons in a heterophilic manner. These anatomical and functional data support the concept that homophilic and heterophilic interactions between IgLON family members are likely to play a role in the specification of neuronal projections via growth promoting and inhibiting effects, respectively.
Collapse
Affiliation(s)
- Orlando D Gil
- Department of Cell Biology, New York University School of Medicine, 550 First Avenue, New York, New York 10016, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Defective proboscis extension response (DPR), a member of the Ig superfamily required for the gustatory response to salt. J Neurosci 2002. [PMID: 11978823 DOI: 10.1523/jneurosci.22-09-03463.2002] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Gustatory stimuli, such as sugar, induce a behavioral response in Drosophila that involves extension of the proboscis and consumption of the sugar-containing solution. Addition of salt to the sugar solution inhibits this behavioral response. However, the mechanisms and gene products involved in the salt aversion response have not been described. Here, we report the identification of a locus, defective proboscis extension response (dpr), that is required for salt aversion. dpr was expressed in a subset of primary neurons in the gustatory organs and encoded a protein with two Ig-like domains, a single putative transmembrane domain, and a short region C terminal to the transmembrane segment. In addition, DPR defines a large previously unknown group of > or =20 highly related Ig-containing proteins.
Collapse
|
71
|
Tisay KT, St John JA, Key B. Expression of specific glycoconjugates in both primary and secondary olfactory pathways in BALB/C mice. J Comp Neurol 2002; 443:213-25. [PMID: 11807832 DOI: 10.1002/cne.10107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Binding of cell surface carbohydrates to their receptors specifically promotes axon growth and synaptogenesis in select regions of the developing nervous system. In some cases these interactions depend upon cell-cell adhesion mediated by the same glycoconjugates present on the surface of apposing cells or their processes. We have previously shown that the plant lectin Dolichos biflorus agglutinin (DBA) binds to a subpopulation of mouse primary olfactory neurons whose axons selectively fasciculate prior to terminating in the olfactory bulb. In the present study, we investigated whether these glycoconjugates were also expressed by postsynaptic olfactory neurons specifically within the olfactory pathway. We show here for the first time that DBA ligands were expressed both by a subset of primary olfactory neurons as well as by the postsynaptic mitral/tufted cells in BALB/C mice. These glycoconjugates were first detected on mitral/tufted cell axons during the early postnatal period, at a time when there is considerable synaptogenesis and synaptic remodelling in the primary olfactory cortex. This is one of the few examples of the selective expression of molecules in contiguous axon tracts in the mammalian nervous system. These results suggest that glycoconjugates recognized by DBA may have a specific role in the formation and maintenance of neural connections within a select functional pathway in the brain.
Collapse
Affiliation(s)
- Katarina T Tisay
- Department of Anatomy and Developmental Biology, School of Biomedical Sciences, University of Queensland, Brisbane 4072, Australia
| | | | | |
Collapse
|
72
|
Monuki ES, Walsh CA. Mechanisms of cerebral cortical patterning in mice and humans. Nat Neurosci 2001; 4 Suppl:1199-206. [PMID: 11687830 DOI: 10.1038/nn752] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
All the higher mental and cognitive functions unique to humans depend on the neocortex ('new' cortex, referring to its relatively recent appearance in evolution), which is divided into discrete areas that subserve distinct functions, such as language, movement and sensation. With a few notable exceptions, all neocortical areas have six layers of neurons and a remarkably similar thickness and overall cell density, despite subtle differences in their cellular architecture. Furthermore, all neocortical areas are formed over roughly the same time period during development and provide little hint at early developmental stages of the rich functional diversity that becomes apparent as development comes to an end. How these areas are formed has long fascinated developmental neuroscientists, because the formation of new cortical areas, with the attendant appearance of new cortical functions, is what must have driven the evolution of mammalian behavior.
Collapse
Affiliation(s)
- E S Monuki
- Division of Neurogenetics, Beth Israel Deaconess Medical Center, and Department of Neurology, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
73
|
Abstract
Spinal cord injury (SCI) leads to induction and/or suppression of several genes, the interplay of which governs the neuronal death and subsequent loss of motor function. Using GeneChip, the present study analyzed changes in the mRNA abundance at 3 and 24 h after SCI in adult rats. SCI was induced at T9 level by the New York University impactor by dropping a 10-g weight from a height of 25 mm. Several transcription factors, immediate early genes, heat-shock proteins, pro-inflammatory genes were up-regulated by 3 h, and persisted at 24 h, after SCI. On the other hand, some neurotransmitter receptors and transporters, ion channels, kinases and structural proteins were down-regulated by 3 h, and persisted at 24 h, after SCI. Several genes that play a role in growth/differentiation, survival and neuroprotection were up-regulated at 24 h after SCI. Using real-time quantitative PCR, the changes observed by GeneChip were confirmed for seven up-regulated (interleukin-6, heat-shock protein-70, heme oxygenase-1, suppressor of cytokine signaling 2, suppressor of cytokine signaling 3, interferon regulatory factor-1, neuropeptide Y), two down-regulated (vesicular GABA transporter and cholecystokinin precursor) and two unchanged (Cu/Zn-superoxide dismutase and phosphatidyl inositol-3-kinase) genes. The present study shows that inflammation, neurotransmitter dysfunction, increased transcription, ionic imbalance and cytoskeletal damage starts as early as 3 h after SCI. In addition to these effects, 24 h after SCI the repair and regeneration process begins in an attempt to stabilize the injured spinal cord.
Collapse
Affiliation(s)
- G Song
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, Wisconsin 53792, USA
| | | | | | | | | |
Collapse
|
74
|
Akutagawa E, Konishi M. A monoclonal antibody specific to a song system nuclear antigen in estrildine finches. Neuron 2001; 31:545-56. [PMID: 11545714 DOI: 10.1016/s0896-6273(01)00388-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This paper describes a monoclonal antibody that recognizes a molecule whose expression is mostly restricted to some of the forebrain areas that control singing behavior in adult estrildine species studied, including the zebra, Bengalese, and spice finches. When the song system displays extreme sexual dimorphism, as in these species, antibody staining occurs only in the male's song nuclei. However, protein expression is identical in both sexes of estrildine finches, in which females also have a well-developed song system. Canaries appear to lack the protein, but it can be induced in female zebra finches by early estrogen treatment. Antibody staining patterns in the zebra finch show that the protein's expression is developmentally regulated to coincide with the abrupt increase in the volume and cell size of the male's or the estrogen-treated female's song system.
Collapse
Affiliation(s)
- E Akutagawa
- Division of Biology 216-76, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
75
|
Cyclic nucleotide-mediated regulation of hippocampal mossy fiber development: a target-specific guidance. J Neurosci 2001. [PMID: 11487641 DOI: 10.1523/jneurosci.21-16-06181.2001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The mossy fibers (MFs) arising from dentate granule cells project primarily onto a narrow segment of the proximal dendrites of hippocampal CA3 pyramidal cells. The mechanisms underlying this specific MF target selection are not fully understood. To investigate the cellular basis for development of the stereotyped MF trajectories, we have arranged the fascia dentata and hippocampal Ammon's horn tissues in diverse topographical patterns in organotypic explant coculture systems. Here we show that cyclic nucleotide signaling pathways regulate the MF pathfinding. When the dentate gyrus explants were ectopically placed facing the CA3 stratum oriens of hippocampal slices, MFs crossed the border between cocultures and reached their appropriate target area in the Ammon's horn, as assessed by membrane tracer labeling, Timm staining, electrophysiological recording of synaptic responses, and optical analyses using a voltage-sensitive dye. This lamina-specific MF innervation was disrupted by pharmacological blockade of cGMP pathway. Similar apposition of the dentate grafts near the CA1 region of host slices rarely resulted in MF ingrowth into the Ammon's horn. Under blockade of cAMP pathway, however, the MFs were capable of making allopatric synapses with CA1 neurons. These data were further supported by the pharmacological data obtained from granule cells dispersed over hippocampal slice cultures. Thus, our findings suggest that the stereotyped MF extension is mediated by at least two distinct factors, i.e., an attractant derived from the CA3 region and a repellent from the CA1 region. These factors may be regulated differently by cAMP and cGMP signaling pathways.
Collapse
|
76
|
Kimura Y, Katoh A, Kaneko T, Takahama K, Tanaka H. Two members of the IgLON family are expressed in a restricted region of the developing chick brain and neural crest. Dev Growth Differ 2001; 43:257-63. [PMID: 11422291 DOI: 10.1046/j.1440-169x.2001.00570.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The precise expression patterns of two IgLON genes, CEPU-1 and limbic system-associated membrane protein (LAMP), were studied during early embryogenesis. It was found that expression of both was localized to restricted regions of the brain and neural crest. In the developing neural tube, CEPU-1 was expressed in the isthmus and a restricted region of the hindbrain, whereas LAMP was expressed in the anterior midbrain. Most neural crest cells expressed LAMP, whereas CEPU-1 expression was limited to crest cells derived from the hindbrain. These results suggest that members of the IgLON family have important roles during embryogenesis, particularly in brain formation and differentiation.
Collapse
Affiliation(s)
- Y Kimura
- Department of Functional Genomics, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.
| | | | | | | | | |
Collapse
|
77
|
Ishida T, Penta K, Rezaee M, Yang E, Wohlgemuth J, Quertermous T. Cloning of an immunoglobulin family adhesion molecule selectively expressed by endothelial cells. J Biol Chem 2001; 276:16223-31. [PMID: 11279107 DOI: 10.1074/jbc.m100630200] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To gain fundamental information regarding the molecular basis of endothelial cell adhesive interactions during vascular formation, we have cloned and characterized a unique cell adhesion molecule. This molecule, named endothelial cell-selective adhesion molecule (ESAM), is a new member of the immunoglobulin superfamily. The conceptual protein encoded by cDNA clones consists of V-type and C2-type immunoglobulin domains as well as a hydrophobic signal sequence, a single transmembrane region, and a cytoplasmic domain. Northern blot analysis showed ESAM to be selectively expressed in cultured human and murine vascular endothelial cells and revealed high level expression in lung and heart and low level expression in kidney and skin. In situ hybridization analysis indicated that ESAM is primarily expressed in the developing vasculature of the embryo in an endothelial cell-restricted pattern. Epitope-tagged ESAM was shown to co-localize with cadherins and catenins in cell-cell junctions. In aggregation assays employing ESAM-expressing Chinese hamster ovary cells, this novel molecule was shown to mediate cell-cell adhesion through homophilic interactions. The endothelial cell-selective expression of this immunoglobulin-like adhesion molecule coupled with its in vitro functional profile strongly suggests a role in cell-cell interactions that is critical for vascular development or function.
Collapse
|
78
|
Lodge AP, McNamee CJ, Howard MR, Reed JE, Moss DJ. Identification and characterization of CEPU-Se-A secreted isoform of the IgLON family protein, CEPU-1. Mol Cell Neurosci 2001; 17:746-60. [PMID: 11312609 DOI: 10.1006/mcne.2001.0964] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
CEPU-1/Neurotrimin is a neuronal glycoprotein thought to play a role in axon guidance and cell-cell recognition. It is a member of the IgLON family, has three C2 domains, and is attached to the plasma membrane by a GPI-anchor. We report here the characterisation of an alternatively-spliced isoform of CEPU-1 that is secreted. This isoform, termed CEPU-Se, is coexpressed with CEPU-1 in retina, cerebellum, and DRG neurons. In the cerebellum CEPU-1/CEPU-Se is expressed predominantly on granule cells and in the molecular layer. Divalent but not monovalent CEPU-Se interacts with CEPU-1 and other IgLONs, suggesting that the ability of CEPU-Se to modify the activity of the IgLON family may require an additional cofactor. CEPU-Se does not support the outgrowth of DRG neurons or the extension of established growth cones; however, neurite outgrowth on laminin is unaffected by CEPU-Se. Our data suggest that CEPU-Se may act to modulate the ability of CEPU-1, LAMP, and OBCAM to influence neurite outgrowth.
Collapse
Affiliation(s)
- A P Lodge
- Department of Human Anatomy and Cell Biology, The University of Liverpool, New Medical School, Ashton Street, Liverpool L69 3GE, United Kingdom
| | | | | | | | | |
Collapse
|
79
|
Bräuer AU, Savaskan NE, Plaschke M, Prehn S, Ninnemann O, Nitsch R. IG-molecule Kilon shows differential expression pattern from LAMP in the developing and adult rat hippocampus. Hippocampus 2001; 10:632-44. [PMID: 11153709 DOI: 10.1002/1098-1063(2000)10:6<632::aid-hipo1001>3.0.co;2-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cell recognition molecules of the immunoglobulin superfamily are involved in the formation, establishment, and plasticity of neural circuits in the central nervous system (CNS). We used a polymerase chain reaction-based approach to specifically amplify molecules with conserved sequence elements of immunoglobulin-like domains. This approach enabled us to isolate Kilon, a novel immunoglobulin that has been described by Funatsu et al. (J Biol Chem 1999;274: 8224-8230) from the hippocampus. The sequence of Kilon shows a high degree of homology to that of the chicken protein neurotractin, a molecule involved in neurite outgrowth and capable of interacting with LAMP. In situ hybridization analysis was performed to analyze the Kilon mRNA distribution in the developing and adult rat brain and to compare it to that of LAMP mRNA. Kilon mRNA was found to be specifically expressed in the dentate gyrus (DG) of the adult rat, whereas LAMP transcripts were present in all regions of the hippocampal formation. These results were corroborated by RT-PCR semiquantification of gene expression in microdissected tissue prepared from the DG and the CA1 region of the hippocampus. We also performed mRNA expression analysis of both genes following hippocampal deafferentation and seizure, but neither Kilon nor LAMP gene expression showed significant alterations after lesioning on the in situ hybridization level. Our results show that the expression patterns of Kilon and LAMP during development and in the mature hippocampus are clearly distinguishable from one another, which suggests different roles for these related molecules in the hippocampus.
Collapse
Affiliation(s)
- A U Bräuer
- Institute of Anatomy, Department of Cell and Neurobiology, Humboldt University Hospital (Charité), Berlin, Germany
| | | | | | | | | | | |
Collapse
|
80
|
Lowenstein DH. Structural reorganization of hippocampal networks caused by seizure activity. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2001; 45:209-36. [PMID: 11130900 DOI: 10.1016/s0074-7742(01)45012-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- D H Lowenstein
- Harvard Medical School and Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
81
|
Hedin-Pereira C, deMoraes EC, Santiago MF, Méndez-Otero R, Lent R. Migrating neurons cross a reelin-rich territory to form an organized tissue out of embryonic cortical slices. Eur J Neurosci 2000; 12:4536-40. [PMID: 11122364 DOI: 10.1046/j.0953-816x.2000.01332.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this study we show that the radial migration of neuronal precursors out of cerebral cortex of embryonic brain slices cultured for 4-7 days gives rise to an organized tissue that forms de novo off developing slices. In our in vitro preparations, migrating neuronal precursors overshot the marginal zone, as did the elongation of radial glial processes out of the slices. These cells detached from radial glia at a distance from the cortex and differentiated into pyramidal and nonpyramidal profiles that expressed different neuronal markers. Glial precursors were shown to proliferate in the slice and in the neotissue, and to differentiate into astrocytes. We show that cells expressing reelin in the marginal zone of embryonic cortical slices persist after a week in culture, which implies that neuronal migration is not necessarily hindered by the presumed stop signals provided by reelin in the marginal zone. Furthermore, our results provide a new model for in vitro studies of migration and differentiation during cortical development.
Collapse
Affiliation(s)
- C Hedin-Pereira
- Programa de Neurobiologia, Instituto de Biofísica Carlos Chagas Filho, UFRJ, Centro de Ciências da Saúde, Bl. G, Cidade Universitária, 21949-900, Rio de Janeiro, Brazil.
| | | | | | | | | |
Collapse
|
82
|
Lodge AP, Howard MR, McNamee CJ, Moss DJ. Co-localisation, heterophilic interactions and regulated expression of IgLON family proteins in the chick nervous system. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 82:84-94. [PMID: 11042360 DOI: 10.1016/s0169-328x(00)00184-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The chick glycoprotein GP55 has been shown to inhibit the growth and adhesion of DRG and forebrain neurons. GP55 consists of several members of the IgLON family, a group of glycoproteins including LAMP, OBCAM, CEPU-1 (chick)/neurotrimin (rat) and neurotractin (chick)/kilon (rat) thought to play a role in the guidance of growing axons. IgLONs belong to the Ig superfamily and have three C2 domains and a glycosyl phosphatidylinositol anchor which tethers them to the neuronal plasma membrane. We have now completed the deduced amino acid sequence for two isoforms of chicken OBCAM and used recombinant LAMP, OBCAM and CEPU-1 to raise antisera specific to these three IgLONs. LAMP and CEPU-1 are co-expressed on DRG and sympathetic neurons, while both overlapping and distinct expression patterns for LAMP, OBCAM and CEPU-1 are observed in retina. Analysis of IgLON mRNA expression reveals that alternatively spliced forms of LAMP and CEPU-1 are developmentally regulated. In an attempt to understand how the IgLONs function, we have begun to characterise their molecular interactions. LAMP and CEPU-1 have already been shown to interact homophilically. We now confirm that OBCAM will bind homophilically and also that LAMP, OBCAM and CEPU-1 will interact heterophilically with each other. We propose that IgLON activity will depend on the complement of IgLONs expressed by each neuron.
Collapse
Affiliation(s)
- A P Lodge
- Department of Human Anatomy and Cell Biology, The University of Liverpool, New Medical School, Ashton St., L69 3GE, Liverpool, UK
| | | | | | | |
Collapse
|
83
|
Hachisuka A, Nakajima O, Yamazaki T, Sawada J. Developmental expression of opioid-binding cell adhesion molecule (OBCAM) in rat brain. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2000; 122:183-91. [PMID: 10960687 DOI: 10.1016/s0165-3806(00)00072-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Opioid-binding cell adhesion molecule (OBCAM), a neuron-specific protein, consists of three immunoglobulin (Ig)-like domains anchored to the membrane through a glycosylphosphatidylinositol (GPI)-tail. OBCAM has been presumed to play a role as a cell adhesion/recognition molecule, but its function has not been fully elucidated. We investigated the developmental expression of OBCAM in rat brain by using a monoclonal anti-OBCAM peptide antibody (OBC53). OBCAM was clearly detectable on embryonic day 16 (E16) as assessed by immunoblotting. The expression level increased by the second postnatal week and was maintained at a constant level until week 17. During the early developmental period OBCAM was found to be expressed on postmitotic neurons and to be strongly expressed in at the fiber tracts containing expanding axons, in contrast to the adult brain, in which OBCAM is principally expressed in the gray matter. These findings suggest that the function of OBCAM involves axonal outgrowth.
Collapse
Affiliation(s)
- A Hachisuka
- Division of Biochemistry and Immunochemistry, National Institute of Health Sciences, Setagaya, Tokyo 158-8501, Japan
| | | | | | | |
Collapse
|
84
|
Wilson MT, Snow DM. Chondroitin sulfate proteoglycan expression pattern in hippocampal development: potential regulation of axon tract formation. J Comp Neurol 2000; 424:532-46. [PMID: 10906718 DOI: 10.1002/1096-9861(20000828)424:3<532::aid-cne10>3.0.co;2-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A variety of molecular influences in the extracellular matrix (ECM) interact with developing axons to guide the formation of hippocampal axon pathways. One of these influences may be chondroitin sulfate proteoglycans (CSPGs), which are known to inhibit axonal extension during development and following central nervous system injury. In this study, we examined the role of CSPGs and cell adhesion molecules in the regulation of axon tract formation during hippocampal development. We used indirect immunofluorescence to examine the developmental pattern of CSPG expression relative to axon tracts that express the cell adhesion molecule L1. Additionally, we used dissociated and explant cell cultures to examine the effects of CSPGs on hippocampal axon development in vitro. In vivo, we found that the CSPG neurocan is expressed throughout the alveus, neuropil layers, and parts of the dentate gyrus from E16 to P2. The CSPG phosphacan is expressed primarily in the neuropil layers at postnatal stages. After E18, intense labeling of neurocan was observed in regions of the alveus surrounding L1-expressing axon fascicles. In vitro, axons from brain regions that project through the alveus during development would not grow across CSPG substrata, in a concentration-dependent manner. In addition, hippocampal axons from dissociated neuron cultures only traveled across CSPG substrata as fasciculated axon bundles. These findings implicate CSPG in the regulation of axon trajectory and fasciculation during hippocampal axon tract formation.
Collapse
Affiliation(s)
- M T Wilson
- Department of Anatomy and Neurobiology, University of Kentucky, Lexington, Kentucky 40536-0298, USA
| | | |
Collapse
|
85
|
Miyata S, Funatsu N, Matsunaga W, Kiyohara T, Sokawa Y, Maekawa S. Expression of the IgLON cell adhesion molecules Kilon and OBCAM in hypothalamic magnocellular neurons. J Comp Neurol 2000; 424:74-85. [PMID: 10888740 DOI: 10.1002/1096-9861(20000814)424:1<74::aid-cne6>3.0.co;2-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The vasopressin (AVP) and oxytocin (OXT) magnocellular neurons in the hypothalamic supraoptic (SON) and paraventricular nuclei (PVN) display reversible structural plasticity of neurons and glial cells under different conditions of neuropeptide secretion. In the present study, we investigated the expression of two immunoglobulin superfamily (IgSF) proteins, Kilon and OBCAM, in the magnocellular neurons by using monoclonal antibodies. Anti-Kilon antibody reacted specifically with the bacterially expressed recombinant Kilon but not with the recombinant OBCAM, and similarly anti-OBCAM antibody specifically recognized the recombinant OBCAM. Western blotting analysis revealed the specific expression of Kilon and OBCAM in the SON homogenates. Although Kilon and OBCAM of the SON homogenates were present as the insoluble form, most Kilon was present in the Triton-insoluble fraction, and OBCAM was localized mainly in the Triton-soluble fraction. Immunocytochemistry revealed Kilon and OBCAM immunoreactivity in the magnocellular neurons of the SON and PVN of the rat hypothalamus compared with outside of the SON and PVN in the hypothalamus. The double-labeling study with confocal microscopy further demonstrated that Kilon immunoreactivity was observed mainly in the dendrites of AVP-secreting neurons and also occasionally OXT-secreting neurons. However, OBCAM immunoreactivity was exclusively seen in the dendrites of AVP-secreting magnocellular neurons. Chronic physiological stimulation by 2% NaCl had no effect on the expression levels of either IgLON protein in the SON. Our study thus demonstrated specific expression of Kilon and OBCAM in the hypothalamic magnocellular neurons, particularly in dendrites, suggesting that they confer on magnocellular neurons the ability to rearrange dendritic connectivity.
Collapse
Affiliation(s)
- S Miyata
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto 606-8585, Japan.
| | | | | | | | | | | |
Collapse
|
86
|
Mallamaci A, Muzio L, Chan CH, Parnavelas J, Boncinelli E. Area identity shifts in the early cerebral cortex of Emx2-/- mutant mice. Nat Neurosci 2000; 3:679-86. [PMID: 10862700 DOI: 10.1038/76630] [Citation(s) in RCA: 208] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The specification of area identities in the cerebral cortex is a complex process, primed by intrinsic cortical cues and refined after the arrival of afferent fibers from the thalamus. Little is known about the genetic control of the early steps of this process, but the distinctive expression pattern of the homeogene Emx2 in the developing cortex has prompted suggestions that it is critical in this context. We tested this hypothesis using Emx2 -/- mice. We found that the normal spectrum of cortical areal identities was encoded in these mutants, but areas with caudal-medial identities were reduced and those with anterior-lateral identities were relatively expanded in the cortex.
Collapse
Affiliation(s)
- A Mallamaci
- Department of Biological and Technological Research (DIBIT), Istituto Scientifico H. San Raffaele, via Olgettina 58, 20132 Milan, Italy
| | | | | | | | | |
Collapse
|
87
|
Abstract
Thy-1 is a cell-surface molecule of the immunoglobulin superfamily which is expressed at high levels in the mature nervous system. Thy-1 has been implicated in regulating axonal outgrowth and synaptic function, but little is known regarding its cellular localization and expression in the central nervous system (CNS) during development or in adulthood. In this study, Thy-1 gene expression and protein localization were examined in sensory-motor and related areas of the adult and postnatally developing mouse CNS. Thy-1 mRNA expression was restricted to neurons; immunoreactivity was densely distributed throughout the neuropil of all regions examined, often delineated the neuronal plasmalemma, and labeled axons in white matter tracts of the brain and spinal cord. In adulthood, immunolabeling was regionally widespread and was present relatively homogeneously throughout all cell-dense layers of sensory-motor cortex, throughout most thalamic nuclei, globus pallidus, and spinal cord. Developmentally, however, Thy-1 expression and localization exhibited a spatially and temporally staggered sequence leading to the adult pattern. In sensory-motor cortex, Thy-1 expression in layer V preceded expression in other layers; in the barrel field, labeling of barrel septa preceeded a gradually increasing intensity of immunolabeling of barrel centers; in the thalamus, Thy-1 exhibited a differential onset and temporal pattern of expression across different nuclei associated with motor, sensory, or limbic systems; in the caudate nucleus, Thy-1 expression was greatest during the first postnatal week of life before declining during subsequent development. Taken together, the adult distribution and developmental patterns leading to it form a unique profile in comparison with other structurally related glycosyl-phosphatidylinositol (GPI)-anchored neural cell adhesion molecules. The pattern and timing of Thy-1 expression across layers and nuclei during early postnatal development are more complex than previously recognized, thus perhaps reflecting varied roles for Thy-1 in aspects of structural or functional maturation which proceed independently of the timing of neurogenesis, migration, and dendritic and axonal growth.
Collapse
Affiliation(s)
- J Z Barlow
- Fishberg Research Center for Neurobiology and Program in Cell Adhesion, The Mount Sinai School of Medicine, New York, New York 10029-6574, USA
| | | |
Collapse
|
88
|
Chen H, Bagri A, Zupicich JA, Zou Y, Stoeckli E, Pleasure SJ, Lowenstein DH, Skarnes WC, Chédotal A, Tessier-Lavigne M. Neuropilin-2 regulates the development of selective cranial and sensory nerves and hippocampal mossy fiber projections. Neuron 2000; 25:43-56. [PMID: 10707971 DOI: 10.1016/s0896-6273(00)80870-3] [Citation(s) in RCA: 288] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Neuropilin-1 and neuropilin-2 bind differentially to different class 3 semaphorins and are thought to provide the ligand-binding moieties in receptor complexes mediating repulsive responses to these semaphorins. Here, we have studied the function of neuropilin-2 through analysis of a neuropilin-2 mutant mouse, which is viable and fertile. Repulsive responses of sympathetic and hippocampal neurons to Sema3F but not to Sema3A are abolished in the mutant. Marked defects are observed in the development of several cranial nerves, in the initial central projections of spinal sensory axons, and in the anterior commissure, habenulo-interpeduncular tract, and the projections of hippocampal mossyfiber axons in the infrapyramidal bundle. Our results show that neuropilin-2 is an essential component of the Sema3F receptor and identify key roles for neuropilin-2 in axon guidance in the PNS and CNS.
Collapse
Affiliation(s)
- H Chen
- Department of Anatomy, Howard Hughes Medical Institute, University of California, San Francisco 94243-0452, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Rapoport SI. How did the human brain evolve? A proposal based on new evidence from in vivo brain imaging during attention and ideation. Brain Res Bull 1999; 50:149-65. [PMID: 10566976 DOI: 10.1016/s0361-9230(99)00095-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It is proposed that brain evolution in nonhuman primates and humans was facilitated by heritable differences in neuroplasticity and in the number of neurons and synapses available during childhood and adolescence, therefore, in differences in modifiability and elaboration of neuronal networks in brains of immature primate genotypes. These differences were exploited when a primate population was forced to adapt to a new cognitively or behaviorally demanding milieu, to select more cognitively and brain competent adults who could best compete and reproduce in this new milieu, extending their genes within the population. Two recently solidified concepts suggest a mechanism for this evolutionary process: (1) "Association" neocortex can be activated by attention and ideation in the absence of sensory or motor contributions, as demonstrated by in vivo imaging and direct brain recording. (2) Activation of the immature brain can promote and stabilize neuronal networks that would disappear or otherwise lose their function by adulthood. Taking these two ideas together, it is proposed that the "thought" processes of attention and ideation, when used by immature primates to adapt to new cognitive or behavioral stresses, led by the repeated selection of genotype to more cognitively able, larger-brained species with more extensive "association" cortex and related regions.
Collapse
Affiliation(s)
- S I Rapoport
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
90
|
Hachisuka A, Nakajima O, Yamazaki T, Sawada J. Localization of opioid-binding cell adhesion molecule (OBCAM) in adult rat brain. Brain Res 1999; 842:482-6. [PMID: 10526147 DOI: 10.1016/s0006-8993(99)01831-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We investigated the tissue distribution and brain localization of opioid-binding cell adhesion molecule (OBCAM) in the adult rats by immunoblotting and immunohistochemistry using a monoclonal anti-OBCAM peptide antibody that is specific for OBCAM. OBCAM was preferentially expressed in the central nervous system (CNS) and at a very low level in the spleen. Within the brain, OBCAM was distributed in almost all the gray matter, but little or no immunoreactive OBCAM was found in the white matter. Morphologically, the distribution pattern of OBCAM immunoreactivity was very similar to that of synaptophysin, suggesting a role in the synaptic machinery.
Collapse
Affiliation(s)
- A Hachisuka
- Division of Biochemistry and Immunochemistry, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya, Tokyo, Japan
| | | | | | | |
Collapse
|
91
|
Kimura Y, Shirabe K, Fukushima M, Takeshita M, Tanaka H. CEPU-1, an immunoglobulin superfamily molecule, has cell adhesion activity and shows dynamic expression patterns in chick embryonic spinal cord. Neurosci Res 1999; 34:245-55. [PMID: 10576547 DOI: 10.1016/s0168-0102(99)00057-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In an attempt to isolate novel molecules involved in motoneuron differentiation and target muscle innervation during embryogenesis, we performed mRNA differential display analysis by comparing cDNAs of motoneurons purified by immunopanning from different portions along the rostro-caudal axis of chick embryonic spinal cord, and cloned an immunoglobulin superfamily protein named C30. By sequence comparison, C30 was shown to be an alternatively spliced isoform of CEPU-1, which was formerly reported as a member of the immunoglobulin superfamily specifically expressed in cerebellar Purkinje cells (Spaltmann and Brummendorf, 1996, J. Neurosci. 16, 1770-1779). We analyzed the expression pattern of CEPU-1 both at the mRNA and protein levels in the spinal cord of the chick embryo. Until stage 23, CEPU-1 was expressed faintly in the ventral part of the neural tube but gradually it became localized to a specific group of cells. In the motor column, CEPU-1 was expressed transiently in many columnar layers. A C30-transfected cell line showed Ca(2+)-independent cell-cell binding activity. These results suggest a role for CEPU-1 in specific axon guidance and/or fasciculation of motoneurons during development.
Collapse
Affiliation(s)
- Y Kimura
- Division of Developmental Neurobiology, Kumamoto University Graduate School of Medical Sciences, Japan.
| | | | | | | | | |
Collapse
|
92
|
|
93
|
Masserini M, Palestini P, Pitto M. Glycolipid-enriched caveolae and caveolae-like domains in the nervous system. J Neurochem 1999; 73:1-11. [PMID: 10386949 DOI: 10.1046/j.1471-4159.1999.0730001.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recent years have been characterized by a booming interest in research on caveolae and caveolae-like membrane domains. The interest in this subject grew further, when their involvement in fundamental membrane-associated events, such as signal transmission and lipid/protein sorting, was postulated. Substantial progress has been reached in understanding the biological role of membrane domains in eukaryotic cells. The neuron, however, which perhaps represents one of the greatest challenges to research on membrane traffic and function, has only been partially investigated. The purpose of the present review is to survey this issue in the nervous system. We confine ourselves to the presence of membrane domains in the nervous system and discuss this in the context of three facts: first, glycolipids are peculiarly enriched in both caveolae and caveolae-like domains and are particularly abundant in the nervous system; second, the neuron is characterized by a basic dual polarity, similar in this respect to other polarized cells, where the role of glycolipid-enriched domains for lipid/protein sorting has been better ascertained; and third, neurons evolved from, and are related to, simpler eukaryotic cells, allowing us to find analogies with more investigated nonneuronal cells.
Collapse
Affiliation(s)
- M Masserini
- Department of Medical Chemistry and Biochemistry, University of Milano, Italy
| | | | | |
Collapse
|
94
|
Marg A, Sirim P, Spaltmann F, Plagge A, Kauselmann G, Buck F, Rathjen FG, Brümmendorf T. Neurotractin, a novel neurite outgrowth-promoting Ig-like protein that interacts with CEPU-1 and LAMP. J Cell Biol 1999; 145:865-76. [PMID: 10330412 PMCID: PMC2133198 DOI: 10.1083/jcb.145.4.865] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/1998] [Revised: 04/07/1999] [Indexed: 11/22/2022] Open
Abstract
The formation of axon tracts in nervous system histogenesis is the result of selective axon fasciculation and specific growth cone guidance in embryonic development. One group of proteins implicated in neurite outgrowth, fasciculation, and guidance is the neural members of the Ig superfamily (IgSF). In an attempt to identify and characterize new proteins of this superfamily in the developing nervous system, we used a PCR-based strategy with degenerated primers that represent conserved sequences around the characteristic cysteine residues of Ig-like domains. Using this approach, we identified a novel neural IgSF member, termed neurotractin. This GPI-linked cell surface glycoprotein is composed of three Ig-like domains and belongs to the IgLON subgroup of neural IgSF members. It is expressed in two isoforms with apparent molecular masses of 50 and 37 kD, termed L-form and S-form, respectively. Monoclonal antibodies were used to analyze its biochemical features and histological distribution. Neurotractin is restricted to subsets of developing commissural and longitudinal axon tracts in the chick central nervous system. Recombinant neurotractin promotes neurite outgrowth of telencephalic neurons and interacts with the IgSF members CEPU-1 (KD = 3 x 10(-8) M) and LAMP. Our data suggest that neurotractin participates in the regulation of neurite outgrowth in the developing brain.
Collapse
Affiliation(s)
- A Marg
- Max-Delbrück-Center for Molecular Medicine, D-13092 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
95
|
Kollins KM, Powell SK, Rivas RJ. GPI-anchored human placental alkaline phosphatase has a nonpolarized distribution on the cell surface of mouse cerebellar granule neurons in vitro. JOURNAL OF NEUROBIOLOGY 1999; 39:119-41. [PMID: 10213458 DOI: 10.1002/(sici)1097-4695(199904)39:1<119::aid-neu10>3.0.co;2-m] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The glycosyl phosphatidylinositol (GPI) lipid anchor, which directs GPI-anchored proteins to the apical cell surface in certain polarized epithelial cell types, has been proposed to act as an axonal protein targeting signal in neurons. However, as several GPI-anchored proteins have been found on both the axonal and somatodendritic cell-surface domains of a variety of neuronal cell types, the role of the GPI anchor in protein localization to the axon remains unclear. To begin to address the role of the GPI anchor in neuronal protein localization, we used a replication-incompetent retroviral vector to express a model GPI-anchored protein, human placental alkaline phosphatase (hPLAP), in early postnatal mouse cerebellar granule neurons developing in vitro. Purified granule neurons were cultured in large mitotically active cellular reaggregates to allow retroviral infection of undifferentiated, proliferating granule neuron precursors. To more easily visualize hPLAP localization during the sequence of differentiation of single postmitotic granule neurons, reaggregates were dissociated following infection, plated as high-density monolayers, and maintained for 1-9 days under serum-free culture conditions. As we previously demonstrated for uninfected granule neurons developing in monolayer culture, hPLAP-expressing granule neurons likewise developed in vitro through a series of discrete temporal stages highly similar to those observed in situ. hPLAP-expressing granule neurons first extended either a single neurite or two axonal processes, and subsequently attained a mature, well-polarized morphology consisting of multiple short dendrites and one or two axons that extended up to 3 mm across the culture substratum. hPLAP was expressed uniformly on the entire cell surface at each stage of granule neuron differentiation. Thus, it appears that the GPI anchor is not sufficient to confer axonal localization to an exogenous GPI-anchored protein expressed in a well-polarized primary neuronal cell type in vitro; other signals, such as those present in the extracellular domain of these proteins, may be necessary for the polarized targeting or retention of axon-specific GPI-anchored proteins.
Collapse
Affiliation(s)
- K M Kollins
- Department of Biology, University of Maryland, College Park 20742-4415, USA
| | | | | |
Collapse
|
96
|
Funatsu N, Miyata S, Kumanogoh H, Shigeta M, Hamada K, Endo Y, Sokawa Y, Maekawa S. Characterization of a novel rat brain glycosylphosphatidylinositol-anchored protein (Kilon), a member of the IgLON cell adhesion molecule family. J Biol Chem 1999; 274:8224-30. [PMID: 10075727 DOI: 10.1074/jbc.274.12.8224] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In the central nervous system, many cell adhesion molecules are known to participate in the establishment and remodeling of the neural circuit. Some of the cell adhesion molecules are known to be anchored to the membrane by the glycosylphosphatidylinositol (GPI) inserted to their C termini, and many GPI-anchored proteins are known to be localized in a Triton-insoluble membrane fraction of low density or so-called "raft." In this study, we surveyed the GPI-anchored proteins in the Triton-insoluble low density fraction from 2-week-old rat brain by solubilization with phosphatidylinositol-specific phospholipase C. By Western blotting and partial peptide sequencing after the deglycosylation with peptide N-glycosidase F, the presence of Thy-1, F3/contactin, and T-cadherin was shown. In addition, one of the major proteins, having an apparent molecular mass of 36 kDa after the peptide N-glycosidase F digestion, was found to be a novel protein. The result of cDNA cloning showed that the protein is an immunoglobulin superfamily member with three C2 domains and has six putative glycosylation sites. Since this protein shows high sequence similarity to IgLON family members including LAMP, OBCAM, neurotrimin, CEPU-1, AvGP50, and GP55, we termed this protein Kilon (a kindred of IgLON). Kilon-specific monoclonal antibodies were produced, and Western blotting analysis showed that expression of Kilon is restricted to brain, and Kilon has an apparent molecular mass of 46 kDa in SDS-polyacrylamide gel electrophoresis in its expressed form. In brain, the expression of Kilon is already detected in E16 stage, and its level gradually increases during development. Kilon immunostaining was observed in the cerebral cortex and hippocampus, in which the strongly stained puncta were observed on dendrites and soma of pyramidal neurons.
Collapse
Affiliation(s)
- N Funatsu
- Department of Biotechnology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Abnormal targeting of developing hippocampal mossy fibers after epileptiform activities via L-type Ca2+ channel activation in vitro. J Neurosci 1999. [PMID: 9880600 DOI: 10.1523/jneurosci.19-02-00802.1999] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The hippocampal mossy fibers, which originate from the dentate granule cells, develop mainly in the early postnatal period and are involved in numerous pathological processes. In this study, hippocampal slices prepared from premature rats were cultivated in the presence of convulsants to evaluate the influences of epileptiform activities on mossy fiber ontogeny. Electrophysiological and histochemical analyses revealed that prolonged hyperexcitability inhibited proper growth of the mossy fibers and caused ectopic innervation to the stratum oriens and the dentate molecular layer. These phenomena were prevented by pharmacological blockade of L-type Ca2+ channels, which did not affect convulsant-evoked ictal bursts. After single-pulse stimulation of the stratum granulosum in the slices cultured under paroxysmal conditions, the dentate gyrus displayed excessive excitation, but synaptic transmission to the CA3 region was hypoactive. However, brief repetitive stimulation elicited delayed epileptiform discharges in the CA3 region that were inhibited by an NMDA receptor antagonist. Chronic treatment with an L-type Ca2+ channel blocker ameliorated such aberrant neurotransmissions. These results suggest that ictal neuron activities at the developmental stage of the mossy fibers bring about the errant maturation associated with hippocampal dysfunction, which may form a cellular basis for the sequelae of childhood epilepsy, including chronic epilepsy or cognitive deficits. Thus I propose that L-type Ca2+ channel blockers can ameliorate the aversive prognosis of childhood epilepsy.
Collapse
|
98
|
Arimatsu Y, Kojima M, Ishida M. Area- and lamina-specific organization of a neuronal subpopulation defined by expression of latexin in the rat cerebral cortex. Neuroscience 1999; 88:93-105. [PMID: 10051192 DOI: 10.1016/s0306-4522(98)00185-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The aim of the present study was to investigate the density, laminar distribution, size, morphology, and neurotransmitter phenotype of rat cortical neurons expressing latexin, an inhibitor of carboxypeptidase A. Immunohistochemical analyses established that latexin-immunoreactive neurons are restricted essentially to the infragranular layers of lateral cortical areas in the rat. The overall density, laminar or sublaminar localization, and cell size distribution of latexin-positive neurons differed substantially across cytoarchitectonic areas within lateral cortex. Numerous latexin-positive neurons had the morphology of modified pyramidal cells especially of layer VI. The vast majority of latexin-positive neurons were glutamate-immunoreactive in the six lateral neocortical areas examined, while neurons immunoreactive for both latexin and GABA were virtually absent. Thus the majority of latexin-positive neurons are likely to be excitatory projection neurons. The area- and lamina-specific distribution of the latexin-expressing subpopulation of glutamate-immunoreactive neurons is a distinctive feature that may contribute to the functional specialization of the lateral cortical areas.
Collapse
Affiliation(s)
- Y Arimatsu
- Mitsubishi Kasei Institute of Life Sciences, Tokyo, Japan
| | | | | |
Collapse
|
99
|
Abstract
Membrane-associated signals expressed in restricted domains of the developing cerebral cortex may mediate axon target recognition during the establishment of thalamocortical projections, which form in a highly precise manner during development. To test this hypothesis, we first analyzed the outgrowth of thalamic explants from limbic and nonlimbic nuclei on membrane substrates prepared from limbic cortex and neocortex. The results show that different thalamic fiber populations are able to discriminate between membrane substrates prepared from target and nontarget cortical regions. A candidate molecule that could mediate selective choice in the thalamocortical system is the limbic system-associated membrane protein (LAMP), which is an early marker of cortical and subcortical limbic regions (Pimenta et al.,1995) that can promote outgrowth of limbic axons. Limbic thalamic and cortical axons showed preferences for recombinant LAMP (rLAMP) in a stripe assay. Incubation of cortical membranes with an antibody against LAMP prevented the ability of limbic thalamic fibers to distinguish between membranes from limbic cortex and neocortex. Strikingly, nonlimbic thalamic fibers also responded to LAMP, but in contrast to limbic thalamic fibers, rLAMP inhibited branch formation and acted as a repulsive axonal guidance signal for nonlimbic thalamic axons. The present studies indicate that LAMP fulfills a role as a selective guidance cue in the developing thalamocortical system.
Collapse
|
100
|
Neurotrimin mediates bifunctional effects on neurite outgrowth via homophilic and heterophilic interactions. J Neurosci 1998. [PMID: 9801370 DOI: 10.1523/jneurosci.18-22-09312.1998] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neurotrimin (Ntm) together with the limbic system-associated membrane protein (LAMP) and the opioid-binding cell adhesion molecule (OBCAM) comprise the IgLON family of neural cell adhesion molecules. These glycosylphosphatidylinositol (GPI)-anchored proteins are expressed in distinct neuronal systems. In the case of Ntm, its expression pattern suggests a role in the development of thalamocortical and pontocerebellar projections (Struyket al., 1995). We have now characterized Ntm's function in cell adhesion and in neurite outgrowth. Cross-linking studies of transfected cells show that Ntm forms noncovalent homodimers and multimers at the cell surface. Ntm mediates homophilic adhesion, as evidenced by the reaggregation of the transfected cells and the specific binding of an Ntm-Fc chimera to these cells. Consistent with these results, Ntm-Fc binds to neurons that express Ntm at high levels, e.g., dorsal root ganglion (DRG) and hippocampal neurons. It does not bind to DRG neurons treated with phosphatidylinositol-specific phospholipase C (PI-PLC) or to sympathetic neurons that do not express Ntm or other members of the IgLON family at significant levels. Ntm promotes the outgrowth of DRG neurons, even after PI-PLC treatment, suggesting that its effects on outgrowth are mediated by heterophilic interactions. Of particular note, both membrane-bound and soluble Ntm inhibit the outgrowth of sympathetic neurons. These results strongly suggest that Ntm, and other members of the IgLON family, regulate the development of neuronal projections via attractive and repulsive mechanisms that are cell type specific and are mediated by homophilic and heterophilic interactions.
Collapse
|