51
|
Ouyang L, Dan Y, Hua W, Shao Z, Duan D. Therapeutic effect of omega-3 fatty acids on T cell-mediated autoimmune diseases. Microbiol Immunol 2020; 64:563-569. [PMID: 32401403 DOI: 10.1111/1348-0421.12800] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 04/22/2020] [Accepted: 05/05/2020] [Indexed: 01/14/2023]
Abstract
The present study was to demonstrate that the G protein coupled receptors serve as targets for the treatment of autoimmune disease such as rheumatoid arthritis and multiple sclerosis. Rats received pristane at the base of the tail. Affected joints were counted daily. The T cell mediated autoimmune diseases such as pristine-induced arthritis (PIA) and autoimmune encephalomyelitis (EAE) in a rat model were profoundly ameliorated by treatment with the specific G protein couple receptors 120 (GPR120) stimuli omega-3 fatty acids (ω-3 FAs). Our study further revealed that the activation of GPR120 by ω-3 FAs can result in a decrease of phosphorylated transforming growth factor-β activated kinase 1 (TAK1), and further inhibit the downstream IKKβ/I-κB pathway and the terminal NF-κB activation which serves as a mediator of T cell activation. ω-3 Fatty acids exhibited an inhibitory effect on TAK1 by enhancing the association of β-arrestin2 and TAK1 binding protein 1 (TAB1), thus the disassociation of TAB1 from the TAB1/TAK1 complex renders a limited effect on β-arrestin2 signaling as an innate immunity regulation. GPR120 is a functional receptor of ω-3 fatty acids in T cell-mediated autoimmune disease compared with its effect on innate immunity.
Collapse
Affiliation(s)
- Liu Ouyang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yang Dan
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wenbin Hua
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zengwu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Deyu Duan
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
52
|
Vilas-Boas EA, Karabacz N, Marsiglio-Librais GN, Valle MMR, Nalbach L, Ampofo E, Morgan B, Carpinelli AR, Roma LP. Chronic activation of GPR40 does not negatively impact upon BRIN-BD11 pancreatic β-cell physiology and function. Pharmacol Rep 2020; 72:1725-1737. [PMID: 32274767 PMCID: PMC7704488 DOI: 10.1007/s43440-020-00101-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/18/2020] [Accepted: 03/21/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Free fatty acids (FFAs) are known for their dual effects on insulin secretion and pancreatic β-cell survival. Short-term exposure to FFAs, such as palmitate, increases insulin secretion. On the contrary, long-term exposure to saturated FFAs results in decreased insulin secretion, as well as triggering oxidative stress and endoplasmic reticulum (ER) stress, culminating in cell death. The effects of FFAs can be mediated either via their intracellular oxidation and consequent effects on cellular metabolism or via activation of the membrane receptor GPR40. Both pathways are likely to be activated upon both short- and long-term exposure to FFAs. However, the precise role of GPR40 in β-cell physiology, especially upon chronic exposure to FFAs, remains unclear. METHODS We used the GPR40 agonist (GW9508) and antagonist (GW1100) to investigate the impact of chronically modulating GPR40 activity on BRIN-BD11 pancreatic β-cells physiology and function. RESULTS We observed that chronic activation of GPR40 did not lead to increased apoptosis, and both proliferation and glucose-induced calcium entry were unchanged compared to control conditions. We also observed no increase in H2O2 or superoxide levels and no increase in the ER stress markers p-eIF2α, CHOP and BIP. As expected, palmitate led to increased H2O2 levels, decreased cell viability and proliferation, as well as decreased metabolism and calcium entry. These changes were not counteracted by the co-treatment of palmitate-exposed cells with the GPR40 antagonist GW1100. CONCLUSIONS Chronic activation of GPR40 using GW9508 does not negatively impact upon BRIN-BD11 pancreatic β-cells physiology and function. The GPR40 antagonist GW1100 does not protect against the deleterious effects of chronic palmitate exposure. We conclude that GPR40 is probably not involved in mediating the toxicity associated with chronic palmitate exposure.
Collapse
Affiliation(s)
- Eloisa Aparecida Vilas-Boas
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo (USP), Sao Paulo, SP, Brazil.,Department of Biophysics, Center for Human and Molecular Biology, Saarland University, Universität Des Saarlandes, CIPMM, Geb. 48, 66421, Homburg/Saar, Germany
| | - Noémie Karabacz
- Department of Biophysics, Center for Human and Molecular Biology, Saarland University, Universität Des Saarlandes, CIPMM, Geb. 48, 66421, Homburg/Saar, Germany
| | | | - Maíra Melo Rezende Valle
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - Lisa Nalbach
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg/Saar, Germany
| | - Emmanuel Ampofo
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg/Saar, Germany
| | - Bruce Morgan
- Institute of Biochemistry, Center for Human and Molecular Biology (ZHMB), Saarland University, 66123, Saarbrücken, Germany
| | - Angelo Rafael Carpinelli
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - Leticia Prates Roma
- Department of Biophysics, Center for Human and Molecular Biology, Saarland University, Universität Des Saarlandes, CIPMM, Geb. 48, 66421, Homburg/Saar, Germany.
| |
Collapse
|
53
|
Munhoz AC, Vilas-Boas EA, Panveloski-Costa AC, Leite JSM, Lucena CF, Riva P, Emilio H, Carpinelli AR. Intermittent Fasting for Twelve Weeks Leads to Increases in Fat Mass and Hyperinsulinemia in Young Female Wistar Rats. Nutrients 2020; 12:E1029. [PMID: 32283715 PMCID: PMC7230500 DOI: 10.3390/nu12041029] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/02/2020] [Accepted: 04/06/2020] [Indexed: 02/06/2023] Open
Abstract
Fasting is known to cause physiological changes in the endocrine pancreas, including decreased insulin secretion and increased reactive oxygen species (ROS) production. However, there is no consensus about the long-term effects of intermittent fasting (IF), which can involve up to 24 hours of fasting interspersed with normal feeding days. In the present study, we analyzed the effects of alternate-day IF for 12 weeks in a developing and healthy organism. Female 30-day-old Wistar rats were randomly divided into two groups: control, with free access to standard rodent chow; and IF, subjected to 24-hour fasts intercalated with 24-hours of free access to the same chow. Alternate-day IF decreased weight gain and food intake. Surprisingly, IF also elevated plasma insulin concentrations, both at baseline and after glucose administration collected during oGTT. After 12 weeks of dietary intervention, pancreatic islets displayed increased ROS production and apoptosis. Despite their lower body weight, IF animals had increased fat reserves and decreased muscle mass. Taken together, these findings suggest that alternate-day IF promote β -cell dysfunction, especially in developing animals. More long-term research is necessary to define the best IF protocol to reduce side effects.
Collapse
Affiliation(s)
- Ana Cláudia Munhoz
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, 1524 Professor Lineu Prestes avenue, Butanta, São Paulo 05508-900, Brazil; (E.A.V.-B.); (A.C.P.-C.); (J.S.M.L.); (C.F.L.); (P.R.); (A.R.C.)
| | - Eloisa Aparecida Vilas-Boas
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, 1524 Professor Lineu Prestes avenue, Butanta, São Paulo 05508-900, Brazil; (E.A.V.-B.); (A.C.P.-C.); (J.S.M.L.); (C.F.L.); (P.R.); (A.R.C.)
| | - Ana Carolina Panveloski-Costa
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, 1524 Professor Lineu Prestes avenue, Butanta, São Paulo 05508-900, Brazil; (E.A.V.-B.); (A.C.P.-C.); (J.S.M.L.); (C.F.L.); (P.R.); (A.R.C.)
| | - Jaqueline Santos Moreira Leite
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, 1524 Professor Lineu Prestes avenue, Butanta, São Paulo 05508-900, Brazil; (E.A.V.-B.); (A.C.P.-C.); (J.S.M.L.); (C.F.L.); (P.R.); (A.R.C.)
| | - Camila Ferraz Lucena
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, 1524 Professor Lineu Prestes avenue, Butanta, São Paulo 05508-900, Brazil; (E.A.V.-B.); (A.C.P.-C.); (J.S.M.L.); (C.F.L.); (P.R.); (A.R.C.)
| | - Patrícia Riva
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, 1524 Professor Lineu Prestes avenue, Butanta, São Paulo 05508-900, Brazil; (E.A.V.-B.); (A.C.P.-C.); (J.S.M.L.); (C.F.L.); (P.R.); (A.R.C.)
| | - Henriette Emilio
- Department of General Biology, Ponta Grossa State University, 4748 General Carlos Cavalcanti avenue, Uvaranas, Parana, PR 84030-900, Brazil;
| | - Angelo R. Carpinelli
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, 1524 Professor Lineu Prestes avenue, Butanta, São Paulo 05508-900, Brazil; (E.A.V.-B.); (A.C.P.-C.); (J.S.M.L.); (C.F.L.); (P.R.); (A.R.C.)
| |
Collapse
|
54
|
Choi W, Choe S, Lau GW. Inactivation of FOXA2 by Respiratory Bacterial Pathogens and Dysregulation of Pulmonary Mucus Homeostasis. Front Immunol 2020; 11:515. [PMID: 32269574 PMCID: PMC7109298 DOI: 10.3389/fimmu.2020.00515] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/06/2020] [Indexed: 01/21/2023] Open
Abstract
Forkhead box (FOX) proteins are transcriptional factors that regulate various cellular processes. This minireview provides an overview of FOXA2 functions, with a special emphasis on the regulation airway mucus homeostasis in both healthy and diseased lungs. FOXA2 plays crucial roles during lung morphogenesis, surfactant protein production, goblet cell differentiation and mucin expression. In healthy airways, FOXA2 exerts a tight control over goblet cell development and mucin biosynthesis. However, in diseased airways, microbial infections and proinflammatory responses deplete FOXA2 expression, resulting in uncontrolled goblet cell hyperplasia and metaplasia, mucus hypersecretion, and impaired mucociliary clearance of pathogens. Furthermore, accumulated mucus clogs the airways and creates a niche environment for persistent microbial colonization and infection, leading to acute exacerbation and deterioration of pulmonary function in patients with chronic lung diseases. Various studies have shown that FOXA2 inhibition is mediated through induction of antagonistic EGFR and IL-13R-STAT6 signaling pathways as well as through posttranslational modifications induced by microbial infections. An improved understanding of how bacterial pathogens inactivate FOXA2 may pave the way for developing therapeutics that preserve the protein's function, which in turn, will improve the mucus status and mucociliary clearance of pathogens, reduce microbial-mediated acute exacerbation and restore lung function in patients with chronic lung diseases.
Collapse
Affiliation(s)
- Woosuk Choi
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Shawn Choe
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Gee W Lau
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
55
|
Zhang G, Zou H, Geng N, Ding N, Wang Y, Zhang J, Zou C. Fenoxycarb and methoxyfenozide (RH-2485) affected development and chitin synthesis through disturbing glycometabolism in Lymantria dispar larvae. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 163:64-75. [PMID: 31973871 DOI: 10.1016/j.pestbp.2019.10.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 07/04/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
Fenoxycarb as a juvenile hormone analogue and methoxyfenozide (RH-2485) as a 20-hydroxyecdysone (20E) agonist are two main insect growth regulators (IGRs) used for pest control, whose insecticidal mechanisms had been widely reported in past decades. However, there were few studies focused on their effects on the carbohydrate metabolism of insects. Here, we reported that two IGRs (fenoxycarb and RH-2485) significantly affected growth and development of L. dispar larvae and caused larval lethality. Furthermore, both contens of three sugars (glycogen, threhalose, glucose) in four tissues (fat body, midgut, hemolymph and epidermis) and trehalase activity in three tissues (fat body, midgut and hemolymph) of L. dispar larvae were markedly affected by these two IGRs. Moreover, we found that mRNA expression levels of LdTPS, LdTre1 and LdTre2 in L. dispar larvae were dramatically suppressed by two IGRs. Additionally, chitin content in both midgut and epidermis decreased significantly after L. dispar larvae treated with fenoxycarb or RH-2485. Summarily, these results indicated that these two IGRs disturbed glycometabolism in L. dispar larvae, resulting in impeding chitin synthesis, generating new epidermis failure, disrupting molting and larval lethality in the end.
Collapse
Affiliation(s)
- Guocai Zhang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Hang Zou
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Nannan Geng
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Nan Ding
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Yuejie Wang
- Library of Northeast Forestry University, Harbin 150040, PR China
| | - Jie Zhang
- College of Life Science, Northeast Forestry University, Harbin 150040, PR China
| | - Chuanshan Zou
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
56
|
Las G, Oliveira MF, Shirihai OS. Emerging roles of β-cell mitochondria in type-2-diabetes. Mol Aspects Med 2020; 71:100843. [PMID: 31918997 DOI: 10.1016/j.mam.2019.100843] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/23/2019] [Accepted: 12/27/2019] [Indexed: 10/25/2022]
Abstract
Type-2-Diabetes (T2D) is the most common metabolic disease in the world today. It erupts as a result of peripheral insulin resistance combined with hyperinsulinemia followed by suppression of insulin secretion from pancreatic β-cells. Mitochondria play a central role in β-cells by sensing glucose and also by mediating the suppression of insulin secretion in T2D. Here, we will summarize the evidence accumulated for the roles of β-cells mitochondria in T2D. We will present an updated view on how mitochondria in β-cells have been associated with T2D, from the genetic, bioenergetic, redox and structural points of view. The emerging picture is that mitochondrial structure and dysfunction directly contribute to β-cell function and in the pathogenesis of T2D.
Collapse
Affiliation(s)
- Guy Las
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Marcus F Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal Do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, Brazil.
| | - Orian S Shirihai
- Division of Endocrinology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
57
|
Saika A, Nagatake T, Kishino S, Park S, Honda T, Matsumoto N, Shimojou M, Morimoto S, Tiwari P, Node E, Hirata S, Hosomi K, Kabashima K, Ogawa J, Kunisawa J. 17( S),18( R)-epoxyeicosatetraenoic acid generated by cytochrome P450 BM-3 from Bacillus megaterium inhibits the development of contact hypersensitivity via G-protein-coupled receptor 40-mediated neutrophil suppression. FASEB Bioadv 2020; 2:59-71. [PMID: 32123857 PMCID: PMC6996328 DOI: 10.1096/fba.2019-00061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 07/24/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022] Open
Abstract
Dietary intake of ω3 polyunsaturated fatty acids such as eicosapentaenoic acid and docosahexaenoic acid is beneficial for health control. We recently identified 17,18-epoxyeicosatetraenoic acid (17,18-EpETE) as a lipid metabolite endogenously generated from eicosapentaenoic acid that exhibits potent anti-allergic and anti-inflammatory properties. However, chemically synthesized 17,18-EpETE is enantiomeric due to its epoxy group-17(S),18(R)-EpETE and 17(R),18(S)-EpETE. In this study, we demonstrated stereoselective differences of 17(S),18(R)-EpETE and 17(R),18(S)-EpETE in amelioration of skin contact hypersensitivity and found that anti-inflammatory activity was detected in 17(S),18(R)-EpETE, but not in 17(R),18(S)-EpETE. In addition, we found that cytochrome P450 BM-3 derived from Bacillus megaterium stereoselectively converts EPA into 17(S),18(R)-EpETE, which effectively inhibited the development of skin contact hypersensitivity by inhibiting neutrophil migration in a G protein-coupled receptor 40-dependent manner. These results suggest the new availability of a bacterial enzyme to produce a beneficial lipid mediator, 17(S),18(R)-EpETE, in a stereoselective manner. Our findings highlight that bacterial enzymatic conversion of fatty acid is a promising strategy for mass production of bioactive lipid metabolites.
Collapse
Affiliation(s)
- Azusa Saika
- Laboratory of Vaccine MaterialsCenter for Vaccine and Adjuvant ResearchLaboratory of Gut Environmental SystemNational Institutes of Biomedical InnovationHealth and Nutrition (NIBIOHN)OsakaJapan
- Graduate School of Pharmaceutical SciencesOsaka UniversityOsakaJapan
| | - Takahiro Nagatake
- Laboratory of Vaccine MaterialsCenter for Vaccine and Adjuvant ResearchLaboratory of Gut Environmental SystemNational Institutes of Biomedical InnovationHealth and Nutrition (NIBIOHN)OsakaJapan
| | - Shigenobu Kishino
- Division of Applied Life SciencesGraduate School of AgricultureKyoto UniversityKyotoJapan
| | - Si‐Bum Park
- Division of Applied Life SciencesGraduate School of AgricultureKyoto UniversityKyotoJapan
| | - Tetsuya Honda
- Department of DermatologyGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Naomi Matsumoto
- Laboratory of Vaccine MaterialsCenter for Vaccine and Adjuvant ResearchLaboratory of Gut Environmental SystemNational Institutes of Biomedical InnovationHealth and Nutrition (NIBIOHN)OsakaJapan
| | - Michiko Shimojou
- Laboratory of Vaccine MaterialsCenter for Vaccine and Adjuvant ResearchLaboratory of Gut Environmental SystemNational Institutes of Biomedical InnovationHealth and Nutrition (NIBIOHN)OsakaJapan
| | - Sakiko Morimoto
- Laboratory of Vaccine MaterialsCenter for Vaccine and Adjuvant ResearchLaboratory of Gut Environmental SystemNational Institutes of Biomedical InnovationHealth and Nutrition (NIBIOHN)OsakaJapan
| | - Prabha Tiwari
- Laboratory of Vaccine MaterialsCenter for Vaccine and Adjuvant ResearchLaboratory of Gut Environmental SystemNational Institutes of Biomedical InnovationHealth and Nutrition (NIBIOHN)OsakaJapan
| | - Eri Node
- Laboratory of Vaccine MaterialsCenter for Vaccine and Adjuvant ResearchLaboratory of Gut Environmental SystemNational Institutes of Biomedical InnovationHealth and Nutrition (NIBIOHN)OsakaJapan
| | - So‐ichiro Hirata
- Laboratory of Vaccine MaterialsCenter for Vaccine and Adjuvant ResearchLaboratory of Gut Environmental SystemNational Institutes of Biomedical InnovationHealth and Nutrition (NIBIOHN)OsakaJapan
- Graduate School of MedicineKobe UniversityHyogoJapan
| | - Koji Hosomi
- Laboratory of Vaccine MaterialsCenter for Vaccine and Adjuvant ResearchLaboratory of Gut Environmental SystemNational Institutes of Biomedical InnovationHealth and Nutrition (NIBIOHN)OsakaJapan
| | - Kenji Kabashima
- Department of DermatologyGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Jun Ogawa
- Division of Applied Life SciencesGraduate School of AgricultureKyoto UniversityKyotoJapan
| | - Jun Kunisawa
- Laboratory of Vaccine MaterialsCenter for Vaccine and Adjuvant ResearchLaboratory of Gut Environmental SystemNational Institutes of Biomedical InnovationHealth and Nutrition (NIBIOHN)OsakaJapan
- Graduate School of Pharmaceutical SciencesOsaka UniversityOsakaJapan
- Graduate School of MedicineKobe UniversityHyogoJapan
- International Research and Development Center for Mucosal VaccinesThe Institute of Medical ScienceThe University of TokyoTokyoJapan
- Graduate School of MedicineGraduate School of DentistryOsaka UniversityOsakaJapan
| |
Collapse
|
58
|
Li Z, Zhou Z, Zhang L. Current status of GPR40/FFAR1 modulators in medicinal chemistry (2016–2019): a patent review. Expert Opin Ther Pat 2019; 30:27-38. [DOI: 10.1080/13543776.2020.1698546] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zheng Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, PR China
- Key Laboratory of New Drug Discovery and Evaluation of ordinary universities of Guangdong province, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Zongtao Zhou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Luyong Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, PR China
- Key Laboratory of New Drug Discovery and Evaluation of ordinary universities of Guangdong province, Guangdong Pharmaceutical University, Guangzhou, PR China
- Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou, PR China
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, PR China
| |
Collapse
|
59
|
Abstract
Olfactory and taste receptors are expressed primarily in the nasal olfactory epithelium and gustatory taste bud cells, where they transmit real-time sensory signals to the brain. However, they are also expressed in multiple extra-nasal and extra-oral tissues, being implicated in diverse biological processes including sperm chemotaxis, muscle regeneration, bronchoconstriction and bronchodilatation, inflammation, appetite regulation and energy metabolism. Elucidation of the physiological roles of these ectopic receptors is revealing potential therapeutic and diagnostic applications in conditions including wounds, hair loss, asthma, obesity and cancers. This Review outlines current understanding of the diverse functions of ectopic olfactory and taste receptors and assesses their potential to be therapeutically exploited.
Collapse
|
60
|
Funcke JB, Scherer PE. Beyond adiponectin and leptin: adipose tissue-derived mediators of inter-organ communication. J Lipid Res 2019; 60:1648-1684. [PMID: 31209153 PMCID: PMC6795086 DOI: 10.1194/jlr.r094060] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/17/2019] [Indexed: 01/10/2023] Open
Abstract
The breakthrough discoveries of leptin and adiponectin more than two decades ago led to a widespread recognition of adipose tissue as an endocrine organ. Many more adipose tissue-secreted signaling mediators (adipokines) have been identified since then, and much has been learned about how adipose tissue communicates with other organs of the body to maintain systemic homeostasis. Beyond proteins, additional factors, such as lipids, metabolites, noncoding RNAs, and extracellular vesicles (EVs), released by adipose tissue participate in this process. Here, we review the diverse signaling mediators and mechanisms adipose tissue utilizes to relay information to other organs. We discuss recently identified adipokines (proteins, lipids, and metabolites) and briefly outline the contributions of noncoding RNAs and EVs to the ever-increasing complexities of adipose tissue inter-organ communication. We conclude by reflecting on central aspects of adipokine biology, namely, the contribution of distinct adipose tissue depots and cell types to adipokine secretion, the phenomenon of adipokine resistance, and the capacity of adipose tissue to act both as a source and sink of signaling mediators.
Collapse
Affiliation(s)
- Jan-Bernd Funcke
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX
| | - Philipp E Scherer
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
61
|
Acute antinociceptive effect of fish oil or its major compounds, eicosapentaenoic and docosahexaenoic acids on diabetic neuropathic pain depends on opioid system activation. Behav Brain Res 2019; 372:111992. [DOI: 10.1016/j.bbr.2019.111992] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 05/08/2019] [Accepted: 05/28/2019] [Indexed: 01/18/2023]
|
62
|
Dong X, Zhao SX, Xu BQ, Zhang YQ. Gynura divaricata ameliorates hepatic insulin resistance by modulating insulin signalling, maintaining glycolipid homeostasis and reducing inflammation in type 2 diabetic mice. Toxicol Res (Camb) 2019; 8:928-938. [PMID: 32206302 DOI: 10.1039/c9tx00191c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 09/25/2019] [Indexed: 12/27/2022] Open
Abstract
Diabetes mellitus, one of the fastest growing epidemics worldwide, has become a serious health problem in modern society. Gynura divaricata (GD), an edible medicinal plant, has been shown to have hypoglycaemic effects. The molecular mechanisms by which GD improves hepatic insulin resistance (IR) in mice with type 2 diabetes (T2D) remain largely unknown. The aerial parts of GD were prepared in a lyophilized powder, which was added into the diet of T2D mice for 4 weeks. GD could result in an obvious decrease in fasting blood glucose and insulin levels in T2D mice. Meanwhile, the underlying mechanisms involved in the insulin-signalling pathway, glucose metabolism, lipid metabolism and inflammatory reaction in the liver tissue were also investigated by western blot, which indicated that GD further ameliorated hepatic IR by activating the PI3K/p-AKT pathway, decreasing the levels of hepatic phosphoenolpyruvate carboxykinase and glucose-6-phosphatase and increasing the levels of glucokinase and peroxisome proliferator-activated receptor-γ in the livers of T2D mice. GD has the potential to alleviate both hyperglycaemia and hepatic IR in T2D mice. Therefore, GD might be a promising functional food or medicine for T2D treatment.
Collapse
Affiliation(s)
- Xuan Dong
- National Engineering Laboratory for Modern Silk , School of Biology and Basic Medical Sciences , Soochow University , RM702-2303 , No. 199 , Renai Road , Dushuhu Higher Edu. Town , Suzhou , P R China . ; ; ; ; ; Tel: +86-0512-65880181
| | - Shu-Xiang Zhao
- National Engineering Laboratory for Modern Silk , School of Biology and Basic Medical Sciences , Soochow University , RM702-2303 , No. 199 , Renai Road , Dushuhu Higher Edu. Town , Suzhou , P R China . ; ; ; ; ; Tel: +86-0512-65880181
| | - Bing-Qing Xu
- National Engineering Laboratory for Modern Silk , School of Biology and Basic Medical Sciences , Soochow University , RM702-2303 , No. 199 , Renai Road , Dushuhu Higher Edu. Town , Suzhou , P R China . ; ; ; ; ; Tel: +86-0512-65880181
| | - Yu-Qing Zhang
- National Engineering Laboratory for Modern Silk , School of Biology and Basic Medical Sciences , Soochow University , RM702-2303 , No. 199 , Renai Road , Dushuhu Higher Edu. Town , Suzhou , P R China . ; ; ; ; ; Tel: +86-0512-65880181
| |
Collapse
|
63
|
Kimura I, Ichimura A, Ohue-Kitano R, Igarashi M. Free Fatty Acid Receptors in Health and Disease. Physiol Rev 2019; 100:171-210. [PMID: 31487233 DOI: 10.1152/physrev.00041.2018] [Citation(s) in RCA: 599] [Impact Index Per Article: 99.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fatty acids are metabolized and synthesized as energy substrates during biological responses. Long- and medium-chain fatty acids derived mainly from dietary triglycerides, and short-chain fatty acids (SCFAs) produced by gut microbial fermentation of the otherwise indigestible dietary fiber, constitute the major sources of free fatty acids (FFAs) in the metabolic network. Recently, increasing evidence indicates that FFAs serve not only as energy sources but also as natural ligands for a group of orphan G protein-coupled receptors (GPCRs) termed free fatty acid receptors (FFARs), essentially intertwining metabolism and immunity in multiple ways, such as via inflammation regulation and secretion of peptide hormones. To date, several FFARs that are activated by the FFAs of various chain lengths have been identified and characterized. In particular, FFAR1 (GPR40) and FFAR4 (GPR120) are activated by long-chain saturated and unsaturated fatty acids, while FFAR3 (GPR41) and FFAR2 (GPR43) are activated by SCFAs, mainly acetate, butyrate, and propionate. In this review, we discuss the recent reports on the key physiological functions of the FFAR-mediated signaling transduction pathways in the regulation of metabolism and immune responses. We also attempt to reveal future research opportunities for developing therapeutics for metabolic and immune disorders.
Collapse
Affiliation(s)
- Ikuo Kimura
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo, Japan; and Department of Biochemistry, Kyoto University Graduate School of Pharmaceutical Science, Sakyo, Kyoto, Japan
| | - Atsuhiko Ichimura
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo, Japan; and Department of Biochemistry, Kyoto University Graduate School of Pharmaceutical Science, Sakyo, Kyoto, Japan
| | - Ryuji Ohue-Kitano
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo, Japan; and Department of Biochemistry, Kyoto University Graduate School of Pharmaceutical Science, Sakyo, Kyoto, Japan
| | - Miki Igarashi
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo, Japan; and Department of Biochemistry, Kyoto University Graduate School of Pharmaceutical Science, Sakyo, Kyoto, Japan
| |
Collapse
|
64
|
On S, Kim HY, Kim HS, Park J, Kang KW. Involvement of G-Protein-Coupled Receptor 40 in the Inhibitory Effects of Docosahexaenoic Acid on SREBP1-Mediated Lipogenic Enzyme Expression in Primary Hepatocytes. Int J Mol Sci 2019; 20:E2625. [PMID: 31142011 PMCID: PMC6600346 DOI: 10.3390/ijms20112625] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/23/2019] [Accepted: 05/26/2019] [Indexed: 12/13/2022] Open
Abstract
Nonalcoholic fatty liver disease is a frequent liver malady, which can progress to cirrhosis, the end-stage liver disease if proper treatment is not applied. Omega-3 fatty acids, such as docosahexaenoic acid (DHA) and eicosapentaenoic acid, have been clinically proven to lower serum triglyceride levels. Various physiological activities of omega-3 fatty acids are due to their agonistic actions on G-protein-coupled receptor 40 (GPR40) and GPR120. Lipid droplets (LD) accumulation in hepatocytes confirmed that DHA treatment reduced the number of larger ( >10 μm2) LDs, as well as the total area of LDs. Moreover, DHA lowered protein and mRNA expression levels of lipogenic enzymes such as fatty acid synthase (FAS), acetyl-CoA carboxylase and stearoyl-CoA desaturase-1 (SCD-1) in primary hepatocytes incubated with liver X receptor (LXR) agonist T0901317 or high glucose and insulin. DHA also decreased protein expression of nuclear and precursor sterol response-element binding protein (SREBP)-1, a key lipogenesis transcription factor. We further found that exposure of murine primary hepatocytes to DHA for 12 h increased GPR40 and GPR120 mRNA levels. Specific agonists (Compound A for GPR120 and AMG-1638 for GPR40), hepatocytes from GPR120 knock-out mice and GPR40 selective antagonist (GW1100) were used to assess whether DHA's antilipogenic effects are mediated through GPR120 or GPR40. Compound A did not decrease SREBP-1 and FAS protein expression in hepatocytes exposed to T0901317 or high glucose with insulin. Moreover, DHA downregulated lipogenesis enzyme expression in GPR120-null hepatocytes. In contrast, AMG-1638 lowered SREBP-1 and SCD-1 protein levels. Additionally, GW1100, a GPR40 antagonist, reversed the antilipogenic effects of DHA. Collectively, our data demonstrate that DHA downregulates the expression SREBP-1-mediated lipogenic enzymes via GPR40 in primary hepatocytes.
Collapse
Affiliation(s)
- Seungtae On
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea.
| | - Hyun Young Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea.
| | - Hyo Seon Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea.
| | - Jeongwoo Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea.
| | - Keon Wook Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
65
|
Imai Y, Cousins RS, Liu S, Phelps BM, Promes JA. Connecting pancreatic islet lipid metabolism with insulin secretion and the development of type 2 diabetes. Ann N Y Acad Sci 2019; 1461:53-72. [PMID: 30937918 DOI: 10.1111/nyas.14037] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/24/2019] [Accepted: 01/30/2019] [Indexed: 02/06/2023]
Abstract
Obesity is the major contributing factor for the increased prevalence of type 2 diabetes (T2D) in recent years. Sustained positive influx of lipids is considered to be a precipitating factor for beta cell dysfunction and serves as a connection between obesity and T2D. Importantly, fatty acids (FA), a key building block of lipids, are a double-edged sword for beta cells. FA acutely increase glucose-stimulated insulin secretion through cell-surface receptor and intracellular pathways. However, chronic exposure to FA, combined with elevated glucose, impair the viability and function of beta cells in vitro and in animal models of obesity (glucolipotoxicity), providing an experimental basis for the propensity of beta cell demise under obesity in humans. To better understand the two-sided relationship between lipids and beta cells, we present a current view of acute and chronic handling of lipids by beta cells and implications for beta cell function and health. We also discuss an emerging role for lipid droplets (LD) in the dynamic regulation of lipid metabolism in beta cells and insulin secretion, along with a potential role for LD under nutritional stress in beta cells, and incorporate recent advancement in the field of lipid droplet biology.
Collapse
Affiliation(s)
- Yumi Imai
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa
| | - Ryan S Cousins
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, Virginia
| | - Siming Liu
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa
| | - Brian M Phelps
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, Virginia
| | - Joseph A Promes
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa
| |
Collapse
|
66
|
High Carbohydrate High Fat Diet Induced Hepatic Steatosis and Dyslipidemia Were Ameliorated by Psidium guajava Leaf Powder Supplementation in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:1897237. [PMID: 30854003 PMCID: PMC6378023 DOI: 10.1155/2019/1897237] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/15/2018] [Accepted: 12/27/2018] [Indexed: 12/23/2022]
Abstract
Psidium guajava leaf is reported to contain many bioactive polyphenols which play an important role in the prevention and treatment of various diseases. Our investigation aimed to study the effect of Psidium guajava leaf powder supplementation on obesity and liver status by using experimental rats. To study the effects of guava leaf supplementation in high fat diet induced obesity, rats were randomly divided into four experimental groups (n=7), control (group I), control + guava leaf (group II), HCHF (group III), and HCHF + guava leaf (group IV). At the end of the experimental period (56 days), glucose intolerance, liver enzymes activities, antioxidant enzymes activities, and lipid and cholesterol profiles were evaluated. Our results revealed that guava leaf powder supplementation showed a significant reduction in fat deposition in obese rats. Moreover, liver enzyme functions were increased in high fat diet fed rats compared to the control rats significantly which were further ameliorated by guava leaf powder supplementation in high fat diet fed rats. High fat diet feeding also decreased the antioxidant enzyme functions and increased the lipid peroxidation products compared to the control rats. Guava leaf powder supplementation in high fat diet fed rats reduced the oxidative stress markers and reestablished antioxidant enzyme system in experimental animals. Guava leaf powder supplementation in high fat diet fed rats also showed a relative decrease in inflammatory cells infiltration and collagen deposition in the liver compared to the high fat diet fed rats. The present study suggests that the supplementation of guava leaf powder prevents obesity, improves glucose intolerance, and decreases inflammation and oxidative stress in liver of high carbohydrate high fat diet fed rats.
Collapse
|
67
|
Hernández-Cáceres MP, Toledo-Valenzuela L, Díaz-Castro F, Ávalos Y, Burgos P, Narro C, Peña-Oyarzun D, Espinoza-Caicedo J, Cifuentes-Araneda F, Navarro-Aguad F, Riquelme C, Troncoso R, Criollo A, Morselli E. Palmitic Acid Reduces the Autophagic Flux and Insulin Sensitivity Through the Activation of the Free Fatty Acid Receptor 1 (FFAR1) in the Hypothalamic Neuronal Cell Line N43/5. Front Endocrinol (Lausanne) 2019; 10:176. [PMID: 30972025 PMCID: PMC6446982 DOI: 10.3389/fendo.2019.00176] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 03/01/2019] [Indexed: 12/13/2022] Open
Abstract
Chronic consumption of high fat diets (HFDs), rich in saturated fatty acids (SatFAs) like palmitic acid (PA), is associated with the development of obesity and obesity-related metabolic diseases such as type II diabetes mellitus (T2DM). Previous studies indicate that PA accumulates in the hypothalamus following consumption of HFDs; in addition, HFDs consumption inhibits autophagy and reduces insulin sensitivity. Whether malfunction of autophagy specifically in hypothalamic neurons decreases insulin sensitivity remains unknown. PA does activate the Free Fatty Acid Receptor 1 (FFAR1), also known as G protein-coupled receptor 40 (GPR40); however, whether FFAR1 mediates the effects of PA on hypothalamic autophagy and insulin sensitivity has not been shown. Here, we demonstrate that exposure to PA inhibits the autophagic flux and reduces insulin sensitivity in a cellular model of hypothalamic neurons (N43/5 cells). Furthermore, we show that inhibition of autophagy and the autophagic flux reduces insulin sensitivity in hypothalamic neuronal cells. Interestingly, the inhibition of the autophagic flux, and the reduction in insulin sensitivity are prevented by pharmacological inhibition of FFAR1. Our findings show that dysregulation of autophagy reduces insulin sensitivity in hypothalamic neuronal cells. In addition, our data suggest FFAR1 mediates the ability of PA to inhibit autophagic flux and reduce insulin sensitivity in hypothalamic neuronal cells. These results reveal a novel cellular mechanism linking PA-rich diets to decreased insulin sensitivity in the hypothalamus and suggest that hypothalamic autophagy might represent a target for future T2DM therapies.
Collapse
Affiliation(s)
- María Paz Hernández-Cáceres
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Autophagy Research Center, Santiago, Chile
| | - Lilian Toledo-Valenzuela
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Autophagy Research Center, Santiago, Chile
| | - Francisco Díaz-Castro
- Autophagy Research Center, Santiago, Chile
- Research Laboratory of Nutrition and Physical Activity, Institute of Nutrition and Food Technology, Universidad de Chile, Santiago, Chile
| | - Yenniffer Ávalos
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Autophagy Research Center, Santiago, Chile
| | - Paulina Burgos
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Autophagy Research Center, Santiago, Chile
| | - Carla Narro
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Autophagy Research Center, Santiago, Chile
| | - Daniel Peña-Oyarzun
- Autophagy Research Center, Santiago, Chile
- Advanced Center for Chronic Diseases and Center for Molecular Studies of the Cell, Universidad de Chile, Santiago, Chile
- Facultad de Odontología, Instituto de Investigación en Ciencias Odontológicas, Universidad de Chile, Santiago, Chile
| | - Jasson Espinoza-Caicedo
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Autophagy Research Center, Santiago, Chile
| | - Flavia Cifuentes-Araneda
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Autophagy Research Center, Santiago, Chile
| | - Fernanda Navarro-Aguad
- Laboratory of Differentiation and Pathology, Department of Cell and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cecilia Riquelme
- Laboratory of Differentiation and Pathology, Department of Cell and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo Troncoso
- Autophagy Research Center, Santiago, Chile
- Research Laboratory of Nutrition and Physical Activity, Institute of Nutrition and Food Technology, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases and Center for Molecular Studies of the Cell, Universidad de Chile, Santiago, Chile
| | - Alfredo Criollo
- Autophagy Research Center, Santiago, Chile
- Advanced Center for Chronic Diseases and Center for Molecular Studies of the Cell, Universidad de Chile, Santiago, Chile
- Facultad de Odontología, Instituto de Investigación en Ciencias Odontológicas, Universidad de Chile, Santiago, Chile
| | - Eugenia Morselli
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Autophagy Research Center, Santiago, Chile
- *Correspondence: Eugenia Morselli
| |
Collapse
|
68
|
Zhu K, Qian L, Lin Y, An L, Mu G, Ma G, Ren L. Pioglitazone Ameliorates Atorvastatin-Induced Islet Cell Dysfunction through Activation of FFA1 in INS-1 Cells. J Diabetes Res 2019; 2019:5245063. [PMID: 30863781 PMCID: PMC6378042 DOI: 10.1155/2019/5245063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 11/14/2018] [Accepted: 12/31/2018] [Indexed: 11/17/2022] Open
Abstract
Increasing evidence shows that statins increase the risk of new-onset diabetes mellitus, but the exact mechanism is not clearly known. Free fatty acid receptor 1 (FFA1) has been recognized to mediate insulin secretion, and pioglitazone has direct effects on glucose-stimulated insulin secretion in addition to the reversion of insulin resistance. In this study, we found that atorvastatin decreased potassium-stimulated insulin secretion and inhibited the expression of FFA1, PDX-1, and BETA2/NeuroD in INS-1 cells. Further study demonstrated that pioglitazone prevented the impairment of insulin secretion induced by atorvastatin and enhanced the expression of FFA1, PDX-1, and BETA2/NeuroD reduced by atorvastatin in INS-1 cells. In addition, the preventive effect of pioglitazone on atorvastatin-induced impairment of insulin secretion and the enhancement of the expression of PDX-1 and BETA2/NeuroD was abolished by knockdown of FFA1 using siRNA or the PLC inhibitor, U-73122, respectively. Ultimately, FFA1 may mediate the atorvastatin-induced pancreatic β-cell dysfunction and pioglitazone may ameliorate this deleterious effect through the upregulation of FFA1 expression.
Collapse
Affiliation(s)
- Kongbo Zhu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Dingjiaqiao Road, Nanjing 210009, China
| | - Linglin Qian
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Dingjiaqiao Road, Nanjing 210009, China
| | - Yanshan Lin
- Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Dingjiaqiao Road, Nanjing 210009, China
| | - Li An
- Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Dingjiaqiao Road, Nanjing 210009, China
| | - Guangjian Mu
- Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Dingjiaqiao Road, Nanjing 210009, China
| | - Genshan Ma
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Dingjiaqiao Road, Nanjing 210009, China
| | - Liqun Ren
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Dingjiaqiao Road, Nanjing 210009, China
- Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Dingjiaqiao Road, Nanjing 210009, China
| |
Collapse
|
69
|
Kim M, Gu GJ, Koh YS, Lee SH, Na YR, Seok SH, Lim KM. Fasiglifam (TAK-875), a G Protein-Coupled Receptor 40 (GPR40) Agonist, May Induce Hepatotoxicity through Reactive Oxygen Species Generation in a GPR40-Dependent Manner. Biomol Ther (Seoul) 2018; 26:599-607. [PMID: 29429148 PMCID: PMC6254646 DOI: 10.4062/biomolther.2017.225] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 01/08/2023] Open
Abstract
Fasiglifam (TAK-875) a G-protein coupled receptor 40 (GPR40) agonist, significantly improves hyperglycemia without hypoglycemia and weight gain, the major side effects of conventional anti-diabetics. Unfortunately, during multi-center Phase 3 clinical trials, unexpected liver toxicity resulted in premature termination of its development. Here, we investigated whether TAK-875 directly inflicts toxicity on hepatocytes and explored its underlying mechanism of toxicity. TAK-875 decreased viability of 2D and 3D cultures of HepG2, a human hepatocarcinoma cell line, in concentration- (>50 μM) and time-dependent manners, both of which corresponded with ROS generation. An antioxidant, N-acetylcysteine, attenuated TAK-875-mediated hepatotoxicity, which confirmed the role of ROS generation. Of note, knockdown of GPR40 using siRNA abolished the hepatotoxicity of TAK-875 and attenuated ROS generation. In contrast, TAK-875 induced no cytotoxicity in fibroblasts up to 500 μM. Supporting the hepatotoxic potential of TAK-875, exposure to TAK-875 resulted in increased mortality of zebrafish larvae at 25 μM. Histopathological examination of zebrafish exposed to TAK-875 revealed severe hepatotoxicity as manifested by degenerated hypertrophic hepatocytes with cytoplasmic vacuolation and acentric nuclei, confirming that TAK-875 may induce direct hepatotoxicity and that ROS generation may be involved in a GPR40-dependent manner.
Collapse
Affiliation(s)
- MinJeong Kim
- College of Pharmacology, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Gyo Jeong Gu
- Department of Microbiology and Immunology and Institute of Endemic Disease, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Yun-Sook Koh
- College of Pharmacology, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Su-Hyun Lee
- Biosolutions Co., Seoul 01811, Republic of Korea
| | - Yi Rang Na
- Department of Microbiology and Immunology and Institute of Endemic Disease, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Seung Hyeok Seok
- Department of Microbiology and Immunology and Institute of Endemic Disease, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Kyung-Min Lim
- College of Pharmacology, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
70
|
Li J, Song J, Li X, Rock SB, Sinner HF, Weiss HL, Weiss T, Townsend CM, Gao T, Evers BM. FFAR4 Is Involved in Regulation of Neurotensin Release From Neuroendocrine Cells and Male C57BL/6 Mice. Endocrinology 2018; 159:2939-2952. [PMID: 29796668 PMCID: PMC6486825 DOI: 10.1210/en.2018-00284] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/10/2018] [Indexed: 02/07/2023]
Abstract
Neurotensin (NT), a 13 amino-acid peptide, is predominantly released from enteroendocrine cells of the small bowel in response to fat ingestion. Free fatty acid receptors (FFARs) FFAR1 and FFAR4 regulate secretion of gut hormones and insulin. Here, we show that docosahexaenoic acid, a long-chain fatty acid, has the most dramatic effect on NT release. FFAR1 agonists slightly stimulate and FFAR4 agonists dramatically stimulate and amplify NT secretion. Double knockdown of FFAR1 and FFAR4 decreases NT release, whereas overexpression of FFAR4, but not FFAR1, increases NT release. Administration of cpdA, an FFAR4 agonist, but not TAK-875, a selective FFAR1 agonist, increases plasma NT levels and further increases olive oil-stimulated plasma NT levels. Inhibition of MAPK kinase (MEK)/ERK1/2 decreased fatty acid-stimulated NT release but increased AMP-activated protein kinase (AMPK) phosphorylation. In contrast, inhibition of AMPK further increased NT secretion and ERK1/2 phosphorylation mediated by FFAR1 or FFAR4. Our results indicate that FFAR4 plays a more critical role than FFAR1 in mediation of fat-regulated NT release and in inhibitory crosstalk between MEK/ERK1/2 and AMPK in the control of NT release downstream of FFAR1 and FFAR4.
Collapse
Affiliation(s)
- Jing Li
- Department of Surgery, University of Kentucky, Lexington, Kentucky
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - Jun Song
- Department of Surgery, University of Kentucky, Lexington, Kentucky
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - Xian Li
- Department of Surgery, University of Kentucky, Lexington, Kentucky
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - Stephanie B Rock
- Department of Surgery, University of Kentucky, Lexington, Kentucky
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - Heather F Sinner
- Department of Surgery, University of Kentucky, Lexington, Kentucky
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - Heidi L Weiss
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - Todd Weiss
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - Courtney M Townsend
- Department of Surgery, The University of Texas Medical Branch, Galveston, Texas
| | - Tianyan Gao
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - B Mark Evers
- Department of Surgery, University of Kentucky, Lexington, Kentucky
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
- Correspondence: B. Mark Evers, MD, University of Kentucky, Markey Cancer Center, CC140 Roach Building, Lexington, Kentucky 40536. E-mail:
| |
Collapse
|
71
|
Chen JJ, Gong YH, He L. Role of GPR40 in pathogenesis and treatment of Alzheimer's disease and type 2 diabetic dementia. J Drug Target 2018; 27:347-354. [PMID: 29929407 DOI: 10.1080/1061186x.2018.1491979] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
G-protein coupled receptor 40 (GPR40) is also known as free fatty acid receptor 1. It is a typical 7 transmembrane receptor and currently the natural receptor of the saturated or unsaturated long-chain fatty acids. It could trigger the intracellular signalling pathway when combined with the free long-chain fatty acids, thereby controlling cells physiological function. In this review, we summarised the relationships and the potential mechanisms between the promising target GPR40, and pathogenesis and treatment of Alzheimer's disease and type 2 diabetic dementia. It may provide a theoretical reference for the development of clinical drug targeting GPR40.
Collapse
Affiliation(s)
- Jing-Jing Chen
- a Department of Pharmacology , China Pharmaceutical University , Nanjing , China
| | - Yu-Hang Gong
- a Department of Pharmacology , China Pharmaceutical University , Nanjing , China
| | - Ling He
- a Department of Pharmacology , China Pharmaceutical University , Nanjing , China
| |
Collapse
|
72
|
Recio C, Lucy D, Iveson P, Iqbal AJ, Valaris S, Wynne G, Russell AJ, Choudhury RP, O'Callaghan C, Monaco C, Greaves DR. The Role of Metabolite-Sensing G Protein-Coupled Receptors in Inflammation and Metabolic Disease. Antioxid Redox Signal 2018; 29:237-256. [PMID: 29117706 DOI: 10.1089/ars.2017.7168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Great attention has been placed on the link between metabolism and immune function giving rise to the term "immunometabolism." It is widely accepted that inflammation and oxidative stress are key processes that underlie metabolic complications during obesity, diabetes, and atherosclerosis. Therefore, identifying the mechanisms and mediators that are involved in the regulation of both inflammation and metabolic homeostasis is of high scientific and therapeutic interest. Recent Advances: G protein-coupled receptors (GPCRs) that signal in response to metabolites have emerged as attractive therapeutic targets in inflammatory disease. Critical Issues and Future Directions: In this review, we discuss recent findings about the physiological role of the main metabolite-sensing GPCRs, their implication in immunometabolic disorders, their principal endogenous and synthetic ligands, and their potential as drug targets in inflammation and metabolic disease. Antioxid. Redox Signal. 29, 237-256.
Collapse
Affiliation(s)
- Carlota Recio
- 1 Sir William Dunn School of Pathology, University of Oxford , Oxford, Great Britain
| | - Daniel Lucy
- 2 Department of Chemistry, University of Oxford , Oxford, Great Britain
| | - Poppy Iveson
- 1 Sir William Dunn School of Pathology, University of Oxford , Oxford, Great Britain
| | - Asif J Iqbal
- 1 Sir William Dunn School of Pathology, University of Oxford , Oxford, Great Britain
| | - Sophia Valaris
- 1 Sir William Dunn School of Pathology, University of Oxford , Oxford, Great Britain
| | - Graham Wynne
- 2 Department of Chemistry, University of Oxford , Oxford, Great Britain
| | - Angela J Russell
- 2 Department of Chemistry, University of Oxford , Oxford, Great Britain
| | - Robin P Choudhury
- 3 Radcliffe Department of Medicine, University of Oxford , Oxford, Great Britain
| | - Chris O'Callaghan
- 4 Nuffield Department of Medicine, University of Oxford , Oxford, Great Britain
| | - Claudia Monaco
- 5 Kennedy Institute for Rheumatology, University of Oxford , Oxford, Great Britain
| | - David R Greaves
- 1 Sir William Dunn School of Pathology, University of Oxford , Oxford, Great Britain
| |
Collapse
|
73
|
Eleazu C, Charles A, Eleazu K, Achi N. Free fatty acid receptor 1 as a novel therapeutic target for type 2 diabetes mellitus-current status. Chem Biol Interact 2018; 289:32-39. [PMID: 29704509 DOI: 10.1016/j.cbi.2018.04.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/21/2018] [Accepted: 04/24/2018] [Indexed: 02/07/2023]
Abstract
The incidence of type 2 diabetes mellitus (T2DM) has been on the increase in recent times. Although several oral treatments for T2DM are available, some of them have been found to elicit undesirable side effects. This therefore underscores the need for new treatment options with lesser side effects than the existing ones for people with T2DM. Free fatty acid receptor 1 (FFAR1), also known as GPR40, belongs to a class of G-protein coupled receptors that are encoded by FFAR1 genes in humans. It is expressed in the pancreatic β-cells and it is activated by medium- and long-chain saturated and unsaturated fatty acids. Thus it responds to endogenous medium and long chain unsaturated fatty acids, resulting in enhancement of insulin secretion during increased glucose levels. The glucose dependency of insulin secretion has made this receptor a very good target for developing therapies that could be efficacious with fewer side effects than the existing therapies for the treatment of T2DM. Given that tremendous efforts have been made in recent times in developing novel FFAR1 agonists with antidiabetic potentials, this article provides a current status of knowledge on the efforts made so far in developing novel FFAR1 agonists that would be of relevance in the management of T2DM.
Collapse
Affiliation(s)
- Chinedum Eleazu
- Federal University, Ndufu-Alike, Ikwo, Ebonyi State, Nigeria.
| | - Ayogu Charles
- Federal University, Ndufu-Alike, Ikwo, Ebonyi State, Nigeria
| | - Kate Eleazu
- Ebonyi State University Abakaliki, Ebonyi State, Nigeria
| | - Ngozi Achi
- Michael Okpara University of Agriculture, Umudike, Nigeria
| |
Collapse
|
74
|
Acosta-Montaño P, García-González V. Effects of Dietary Fatty Acids in Pancreatic Beta Cell Metabolism, Implications in Homeostasis. Nutrients 2018; 10:nu10040393. [PMID: 29565831 PMCID: PMC5946178 DOI: 10.3390/nu10040393] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/02/2018] [Accepted: 03/13/2018] [Indexed: 12/26/2022] Open
Abstract
Fatty acids are involved in several metabolic processes, including the development of metabolic and cardiovascular diseases. In recent years a disease that has received escalated interest is type 2 diabetes (T2D). Many contributing factors including a high-caloric diet rich in dietary saturated fats have been broadly characterized as triggers of T2D. Insulin resistance resulting from a high saturated fat diet leads to alterations in lipid cellular intake and accumulation which generate lipotoxic conditions, a key phenomenon in the metabolism of β-cells. Alternatively, unsaturated fatty acids have been described to show opposite effects in pancreatic β-cells. The purpose of this work is to perform a critical analysis of the complex role of saturated and unsaturated fatty acids in β-cell metabolism. We discuss the diverse effects main dietary fatty acids have upon pancreatic β-cell metabolism as a key factor to maintain homeostasis by focusing in the cellular and molecular mechanisms involved in the development and progression of T2D. For instance, modifications in protein homeostasis as well as the intracellular management of lipid metabolism which are associated with inflammatory pathways. These conditions initiate critical metabolic rearrangements, that in turn have repercussions on insulin β-cell metabolism. This review allows an integral and broad understanding of different functions of fatty acids inside β-cells, being important metabolites for novel therapeutic targets in T2D treatment.
Collapse
Affiliation(s)
- Paloma Acosta-Montaño
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, Mexico.
| | - Víctor García-González
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, Mexico.
| |
Collapse
|
75
|
Alquier T, Poitout V. Considerations and guidelines for mouse metabolic phenotyping in diabetes research. Diabetologia 2018; 61:526-538. [PMID: 29143855 PMCID: PMC5805661 DOI: 10.1007/s00125-017-4495-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/12/2017] [Indexed: 02/07/2023]
Abstract
Mice are the most commonly used species in preclinical research on the pathophysiology of metabolic diseases. Although they are extremely useful for identifying pathways, mechanisms and genes regulating glucose and energy homeostasis, the specificities of the various mouse models and methodologies used to investigate a metabolic phenotype can have a profound impact on experimental results and their interpretation. This review aims to: (1) describe the most commonly used experimental tests to assess glucose and energy homeostasis in mice; (2) provide some guidelines regarding the design, analysis and interpretation of these tests, as well as for studies using genetic models; and (3) identify important caveats and confounding factors that must be taken into account in the interpretation of findings.
Collapse
Affiliation(s)
- Thierry Alquier
- Montreal Diabetes Research Center and Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 rue Saint-Denis, Office R08-418, Montreal, QC, H2X 0A9, Canada.
- Department of Medicine, Université de Montréal, Montreal, QC, Canada.
| | - Vincent Poitout
- Montreal Diabetes Research Center and Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 rue Saint-Denis, Office R08-418, Montreal, QC, H2X 0A9, Canada
- Department of Medicine, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
76
|
Abstract
The gastrointestinal tract represents the largest interface between the human body and the external environment. It must continuously monitor and discriminate between nutrients that need to be assimilated and harmful substances that need to be expelled. The different cells of the gut epithelium are therefore equipped with a subtle chemosensory system that communicates the sensory information to several effector systems involved in the regulation of appetite, immune responses, and gastrointestinal motility. Disturbances or adaptations in the communication of this sensory information may contribute to the development or maintenance of disease. This is a new emerging research field in which perception of taste can be considered as a novel key player participating in the regulation of gut function. Specific diets or agonists that target these chemosensory signaling pathways may be considered as new therapeutic targets to tune adequate physiological processes in the gut in health and disease.
Collapse
Affiliation(s)
- S Steensels
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, 3000 Leuven, Belgium;
| | - I Depoortere
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, 3000 Leuven, Belgium;
| |
Collapse
|
77
|
Syed I, Lee J, Moraes-Vieira PM, Donaldson CJ, Sontheimer A, Aryal P, Wellenstein K, Kolar MJ, Nelson AT, Siegel D, Mokrosinski J, Farooqi IS, Zhao JJ, Yore MM, Peroni OD, Saghatelian A, Kahn BB. Palmitic Acid Hydroxystearic Acids Activate GPR40, Which Is Involved in Their Beneficial Effects on Glucose Homeostasis. Cell Metab 2018; 27:419-427.e4. [PMID: 29414687 PMCID: PMC5807007 DOI: 10.1016/j.cmet.2018.01.001] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 08/24/2017] [Accepted: 01/03/2018] [Indexed: 12/28/2022]
Abstract
Palmitic acid hydroxystearic acids (PAHSAs) are endogenous lipids with anti-diabetic and anti-inflammatory effects. PAHSA levels are reduced in serum and adipose tissue of insulin-resistant people and high-fat diet (HFD)-fed mice. Here, we investigated whether chronic PAHSA treatment enhances insulin sensitivity and which receptors mediate PAHSA effects. Chronic PAHSA administration in chow- and HFD-fed mice raises serum and tissue PAHSA levels ∼1.4- to 3-fold. This improves insulin sensitivity and glucose tolerance without altering body weight. PAHSA administration in chow-fed, but not HFD-fed, mice augments insulin and glucagon-like peptide (GLP-1) secretion. PAHSAs are selective agonists for GPR40, increasing Ca+2 flux, but not intracellular cyclic AMP. Blocking GPR40 reverses improvements in glucose tolerance and insulin sensitivity in PAHSA-treated chow- and HFD-fed mice and directly inhibits PAHSA augmentation of glucose-stimulated insulin secretion in human islets. In contrast, GLP-1 receptor blockade in PAHSA-treated chow-fed mice reduces PAHSA effects on glucose tolerance, but not on insulin sensitivity. Thus, PAHSAs activate GPR40, which is involved in their beneficial metabolic effects.
Collapse
Affiliation(s)
- Ismail Syed
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Center for Life Sciences, Room 747, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Jennifer Lee
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Center for Life Sciences, Room 747, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Pedro M Moraes-Vieira
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Center for Life Sciences, Room 747, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Cynthia J Donaldson
- Clayton Foundation Laboratories for Peptide Biology, Helmsley Center for Genomic Medicine, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Alexandra Sontheimer
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Center for Life Sciences, Room 747, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Pratik Aryal
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Center for Life Sciences, Room 747, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Kerry Wellenstein
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Center for Life Sciences, Room 747, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Matthew J Kolar
- Clayton Foundation Laboratories for Peptide Biology, Helmsley Center for Genomic Medicine, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Andrew T Nelson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Dionicio Siegel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Jacek Mokrosinski
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge CB2 0QQ, UK
| | - I Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge CB2 0QQ, UK
| | - Juan Juan Zhao
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Center for Life Sciences, Room 747, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Mark M Yore
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Center for Life Sciences, Room 747, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Odile D Peroni
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Center for Life Sciences, Room 747, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Alan Saghatelian
- Clayton Foundation Laboratories for Peptide Biology, Helmsley Center for Genomic Medicine, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Barbara B Kahn
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Center for Life Sciences, Room 747, 330 Brookline Avenue, Boston, MA 02215, USA.
| |
Collapse
|
78
|
20-HETE promotes glucose-stimulated insulin secretion in an autocrine manner through FFAR1. Nat Commun 2018; 9:177. [PMID: 29330456 PMCID: PMC5766607 DOI: 10.1038/s41467-017-02539-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 12/07/2017] [Indexed: 01/02/2023] Open
Abstract
The long-chain fatty acid receptor FFAR1 is highly expressed in pancreatic β-cells. Synthetic FFAR1 agonists can be used as antidiabetic drugs to promote glucose-stimulated insulin secretion (GSIS). However, the physiological role of FFAR1 in β-cells remains poorly understood. Here we show that 20-HETE activates FFAR1 and promotes GSIS via FFAR1 with higher potency and efficacy than dietary fatty acids such as palmitic, linoleic, and α-linolenic acid. Murine and human β-cells produce 20-HETE, and the ω-hydroxylase-mediated formation and release of 20-HETE is strongly stimulated by glucose. Pharmacological inhibition of 20-HETE formation and blockade of FFAR1 in islets inhibits GSIS. In islets from type-2 diabetic humans and mice, glucose-stimulated 20-HETE formation and 20-HETE-dependent stimulation of GSIS are strongly reduced. We show that 20-HETE is an FFAR1 agonist, which functions as an autocrine positive feed-forward regulator of GSIS, and that a reduced glucose-induced 20-HETE formation contributes to inefficient GSIS in type-2 diabetes. FFAR1 receptor is highly expressed in beta cells and its activation has been suggested as therapy against type-2 diabetes. Here, Tunaru et al. show that 20-hydroxyeicosatetraenoic acid, produced within the islets upon glucose stimulation, acts in an autocrine manner to stimulate insulin secretion via FFAR1 activation.
Collapse
|
79
|
Oh YS, Bae GD, Baek DJ, Park EY, Jun HS. Fatty Acid-Induced Lipotoxicity in Pancreatic Beta-Cells During Development of Type 2 Diabetes. Front Endocrinol (Lausanne) 2018; 9:384. [PMID: 30061862 PMCID: PMC6054968 DOI: 10.3389/fendo.2018.00384] [Citation(s) in RCA: 202] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/25/2018] [Indexed: 12/20/2022] Open
Abstract
Type 2 diabetes is caused by chronic insulin resistance and progressive decline in beta-cell function. Optimal beta-cell function and mass is essential for glucose homeostasis and beta-cell impairment leads to the development of diabetes. Elevated levels of circulating fatty acids (FAs) and disturbances in lipid metabolism regulation are associated with obesity, and they are major factors influencing the increase in the incidence of type 2 diabetes. Chronic free FA (FFA) treatment induces insulin resistance and beta-cell dysfunction; therefore, reduction of elevated plasma FFA levels might be an important therapeutic target in obesity and type 2 diabetes. Lipid signals via receptors, and intracellular mechanisms are involved in FFA-induced apoptosis. In this paper, we discuss lipid actions in beta cells, including effects on metabolic pathways and stress responses, to help further understand the molecular mechanisms of lipotoxicity-induced type 2 diabetes.
Collapse
Affiliation(s)
- Yoon S. Oh
- Department of Food and Nutrition, Eulji University, Seongnam, South Korea
- *Correspondence: Yoon S. Oh
| | - Gong D. Bae
- Department of Molecular Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, South Korea
| | - Dong J. Baek
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, South Korea
| | - Eun-Young Park
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, South Korea
| | - Hee-Sook Jun
- Department of Molecular Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, South Korea
- Gachon Institute of Pharmaceutical Science, College of Pharmacy, Gachon University, Incheon, South Korea
- Gachon University Gil Medical Center, Gachon Medical and Convergence Institute, Incheon, South Korea
| |
Collapse
|
80
|
Paternoster S, Falasca M. Dissecting the Physiology and Pathophysiology of Glucagon-Like Peptide-1. Front Endocrinol (Lausanne) 2018; 9:584. [PMID: 30364192 PMCID: PMC6193070 DOI: 10.3389/fendo.2018.00584] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/14/2018] [Indexed: 12/11/2022] Open
Abstract
An aging world population exposed to a sedentary life style is currently plagued by chronic metabolic diseases, such as type-2 diabetes, that are spreading worldwide at an unprecedented rate. One of the most promising pharmacological approaches for the management of type 2 diabetes takes advantage of the peptide hormone glucagon-like peptide-1 (GLP-1) under the form of protease resistant mimetics, and DPP-IV inhibitors. Despite the improved quality of life, long-term treatments with these new classes of drugs are riddled with serious and life-threatening side-effects, with no overall cure of the disease. New evidence is shedding more light over the complex physiology of GLP-1 in health and metabolic diseases. Herein, we discuss the most recent advancements in the biology of gut receptors known to induce the secretion of GLP-1, to bridge the multiple gaps into our understanding of its physiology and pathology.
Collapse
|
81
|
Nagatake T, Shiogama Y, Inoue A, Kikuta J, Honda T, Tiwari P, Kishi T, Yanagisawa A, Isobe Y, Matsumoto N, Shimojou M, Morimoto S, Suzuki H, Hirata SI, Steneberg P, Edlund H, Aoki J, Arita M, Kiyono H, Yasutomi Y, Ishii M, Kabashima K, Kunisawa J. The 17,18-epoxyeicosatetraenoic acid-G protein-coupled receptor 40 axis ameliorates contact hypersensitivity by inhibiting neutrophil mobility in mice and cynomolgus macaques. J Allergy Clin Immunol 2017; 142:470-484.e12. [PMID: 29288079 DOI: 10.1016/j.jaci.2017.09.053] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 08/02/2017] [Accepted: 09/14/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Metabolites of eicosapentaenoic acid exert various physiologic actions. 17,18-Epoxyeicosatetraenoic acid (17,18-EpETE) is a recently identified new class of antiallergic and anti-inflammatory lipid metabolite of eicosapentaenoic acid, but its effects on skin inflammation and the underlying mechanisms remain to be investigated. OBJECTIVE We evaluated the effectiveness of 17,18-EpETE for control of contact hypersensitivity in mice and cynomolgus macaques. We further sought to reveal underlying mechanisms by identifying the responsible receptor and cellular target of 17,18-EpETE. METHODS Contact hypersensitivity was induced by topical application of 2,4-dinitrofluorobenzene. Skin inflammation and immune cell populations were analyzed by using flow cytometric, immunohistologic, and quantitative RT-PCR analyses. Neutrophil mobility was examined by means of imaging analysis in vivo and neutrophil culture in vitro. The receptor for 17,18-EpETE was identified by using the TGF-α shedding assay, and the receptor's involvement in the anti-inflammatory effects of 17,18-EpETE was examined by using KO mice and specific inhibitor treatment. RESULTS We found that preventive or therapeutic treatment with 17,18-EpETE ameliorated contact hypersensitivity by inhibiting neutrophil mobility in mice and cynomolgus macaques. 17,18-EpETE was recognized by G protein-coupled receptor (GPR) 40 (also known as free fatty acid receptor 1) and inhibited chemoattractant-induced Rac activation and pseudopod formation in neutrophils. Indeed, the antiallergic inflammatory effect of 17,18-EpETE was abolished in the absence or inhibition of GPR40. CONCLUSION 17,18-EpETE inhibits neutrophil mobility through GPR40 activation, which is a potential therapeutic target to control allergic inflammatory diseases.
Collapse
Affiliation(s)
- Takahiro Nagatake
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Japan
| | - Yumiko Shiogama
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, NIBIOHN, Tsukuba, Japan
| | - Asuka Inoue
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Junichi Kikuta
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Japan
| | - Tetsuya Honda
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Prabha Tiwari
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Japan
| | - Takayuki Kishi
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Atsushi Yanagisawa
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Japan
| | - Yosuke Isobe
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Naomi Matsumoto
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Japan
| | - Michiko Shimojou
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Japan
| | - Sakiko Morimoto
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Japan
| | - Hidehiko Suzuki
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Japan
| | - So-Ichiro Hirata
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Japan; Department of Microbiology and Immunology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Pär Steneberg
- Umea Center for Molecular Medicine, Umea University, Umea, Sweden
| | - Helena Edlund
- Umea Center for Molecular Medicine, Umea University, Umea, Sweden
| | - Junken Aoki
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Graduate School of Medical Life Science, Yokohama City University, Tsurumi-ku, Yokohama, Japan; Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Minato-ku, Tokyo, Japan
| | - Hiroshi Kiyono
- Division of Mucosal Immunology, Department of Microbiology and Immunology and International Research and Development Center for Mucosal Vaccines, Institute of Medical Science, University of Tokyo, Tokyo, Japan; Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yasuhiro Yasutomi
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, NIBIOHN, Tsukuba, Japan; Division of Immunoregulation, Department of Molecular and Experimental Medicine, Mie University Graduate School of Medicine, Tsu, Japan
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Japan
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Japan; Department of Microbiology and Immunology, Kobe University Graduate School of Medicine, Kobe, Japan; Division of Mucosal Immunology, Department of Microbiology and Immunology and International Research and Development Center for Mucosal Vaccines, Institute of Medical Science, University of Tokyo, Tokyo, Japan; Graduate School of Medicine, Graduate School of Pharmaceutical Sciences, Graduate School of Dentistry, Osaka University, Suita, Japan.
| |
Collapse
|
82
|
Joyal JS, Gantner ML, Smith LEH. Retinal energy demands control vascular supply of the retina in development and disease: The role of neuronal lipid and glucose metabolism. Prog Retin Eye Res 2017; 64:131-156. [PMID: 29175509 DOI: 10.1016/j.preteyeres.2017.11.002] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/11/2017] [Accepted: 11/15/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Jean-Sébastien Joyal
- Department of Pediatrics, Pharmacology and Ophthalmology, CHU Sainte-Justine Research Center, Université de Montréal, Montreal, Qc, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, Qc, Canada.
| | - Marin L Gantner
- The Lowy Medical Research Institute, La Jolla, United States
| | - Lois E H Smith
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, 300 Longwood Avenue, Boston MA 02115, United States.
| |
Collapse
|
83
|
Thirunavukkarasan M, Wang C, Rao A, Hind T, Teo YR, Siddiquee AAM, Goghari MAI, Kumar AP, Herr DR. Short-chain fatty acid receptors inhibit invasive phenotypes in breast cancer cells. PLoS One 2017; 12:e0186334. [PMID: 29049318 PMCID: PMC5648159 DOI: 10.1371/journal.pone.0186334] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/01/2017] [Indexed: 02/07/2023] Open
Abstract
Short chain fatty acids (2 to 6 carbons in length) are ubiquitous lipids that are present in human plasma at micromolar concentrations. In addition to serving as metabolic precursors for lipid and carbohydrate synthesis, they also act as cognate ligands for two known G protein-coupled receptors (GPCRs), FFAR2 and FFAR3. While there is evidence that these receptors may inhibit the progression of colorectal cancer, their roles in breast cancer cells are largely unknown. We evaluated the effects of enforced overexpression of these receptors in two phenotypically distinct breast cancer cell lines: MCF7 and MDA-MD-231. Our results demonstrate that both receptors inhibit cell invasiveness, but through different signaling processes. In invasive, mesenchymal-like MDA-MB-231 cells, FFAR2 inhibits the Hippo-Yap pathway and increases expression of adhesion protein E-cadherin, while FFAR3 inhibits MAPK signaling. Both receptors have the net effect of reducing actin polymerization and invasion of cells through a Matrigel matrix. These effects were absent in the less invasive, epithelial-like MCF7 cells. Correspondingly, there is reduced expression of both receptors in invasive breast carcinoma and in aggressive triple-negative breast tumors, relative to normal breast tissue. Cumulatively, our data suggest that the activation of cognate receptors by short chain fatty acids drives breast cancer cells toward a non-invasive phenotype and therefore may inhibit metastasis.
Collapse
Affiliation(s)
| | - Chao Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Angad Rao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Tatsuma Hind
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Pharmacology, University of British Columbia, Vancouver, BC, Canada
| | - Yuan Ru Teo
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Abrar Al-Mahmood Siddiquee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
- National University Cancer Institute, Singapore, Singapore
- Department of Biological Sciences, University of North Texas, Denton, TX, United States of America
| | - Deron R. Herr
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Biology, San Diego State University, San Diego, CA, United States of America
- * E-mail:
| |
Collapse
|
84
|
Auger C, Samadi O, Jeschke MG. The biochemical alterations underlying post-burn hypermetabolism. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2633-2644. [PMID: 28219767 PMCID: PMC5563481 DOI: 10.1016/j.bbadis.2017.02.019] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/22/2017] [Accepted: 02/15/2017] [Indexed: 12/12/2022]
Abstract
A severe burn can trigger a hypermetabolic state which lasts for years following the injury, to the detriment of the patient. The drastic increase in metabolic demands during this phase renders it difficult to meet the body's nutritional requirements, thus increasing muscle, bone and adipose catabolism and predisposing the patient to a host of disorders such as multi-organ dysfunction and sepsis, or even death. Despite advances in burn care over the last 50 years, due to the multifactorial nature of the hypermetabolic phenomenon it is difficult if not impossible to precisely identify and pharmacologically modulate the biological mediators contributing to this substantial metabolic derangement. Here, we discuss biomarkers and molecules which play a role in the induction and mediation of the hypercatabolic condition post-thermal injury. Furthermore, this thorough review covers the development of the factors released after burns, how they induce cellular and metabolic dysfunction, and how these factors can be targeted for therapeutic interventions to restore a more physiological metabolic phenotype after severe thermal injuries. This article is part of a Special Issue entitled: Immune and Metabolic Alterations in Trauma and Sepsis edited by Dr. Raghavan Raju.
Collapse
Affiliation(s)
- Christopher Auger
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, M4N 3M5, Canada
| | - Osai Samadi
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, M4N 3M5, Canada
| | - Marc G Jeschke
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, M4N 3M5, Canada.
| |
Collapse
|
85
|
Qian J, Gu Y, Wu C, Yu F, Chen Y, Zhu J, Yao X, Bei C, Zhu Q. Agonist-induced activation of human FFA1 receptor signals to extracellular signal-regulated kinase 1 and 2 through Gq- and Gi-coupled signaling cascades. Cell Mol Biol Lett 2017; 22:13. [PMID: 28747926 PMCID: PMC5522598 DOI: 10.1186/s11658-017-0043-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 07/07/2017] [Indexed: 12/18/2022] Open
Abstract
Background FFA1 is abundantly expressed in the liver, skeletal muscle, monocytes and nervous system, but is particularly abundant in pancreatic β cells. It is widely believed that FFA1 exerts its regulatory roles in a variety of physiological and pathological functions. In response to oleic acid, FFA1 has been shown to induce the activation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) through a mechanism involving EGFR transactivation in a breast cancer cell line. However, the underlying molecular mechanism for ERK1/2 activation mediated by n-6 free fatty acid (LA) in HEK293 cells remains to be further elucidated. Methods A FLAG-FFA1 vector was stably expressed in HEK293 cells. Western blot analysis was applied to investigate the change in LA-induced ERK1/2 phosphorylation change in response to kinase inhibitors. Arrestin-2/3-specific siRNA was used to analyze the effect of arrestin-2/3 knockdown on FFA1-mediated ERK1/2 activation. Results We proved that activation of ERK1/2 by LA was rapid, peaking at 5 min. Further experiments proved that FFA1 couples to a Gq protein and activates PI-PLC, which induces the IP3/Ca2+ and DAG/PKC signal pathways, both of which are involved in ERK1/2 activation. We also showed that there is no EGFR transactivation, arrestin-2/3 or Gβγ pathway participation in ERK1/2 phosphorylation. Treating cells with PTX abolished ERK1/2 activation at a late time point (≥20 min), indicating a critical role for Gi subunits in FFA1-mediated ERK1/2 activation. Conclusions Our study provides a detailed delineation of the LA-mediated activation of ERK1/2 in HEK293 cells that are stably transfected with human FFA1. We also present evidence of Gi/Gq-induced synergism in the regulation of ERK1/2 phosphorylation. These observations may provide new insights into the pharmacological effects of FFA1 and the physiological functions modulated by FFA1-mediated activation of ERK1/2. Electronic supplementary material The online version of this article (doi:10.1186/s11658-017-0043-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jing Qian
- Huzhou University Schools of Nursing and Medicine, Huzhou University, HuZhou, 313000 China
| | - Yuyang Gu
- Huzhou University Schools of Nursing and Medicine, Huzhou University, HuZhou, 313000 China
| | - Chun Wu
- Institute of Biochemistry, College of Life Science, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058 China
| | - Feng Yu
- Huzhou University Schools of Nursing and Medicine, Huzhou University, HuZhou, 313000 China
| | - Yuqi Chen
- Huzhou University Schools of Nursing and Medicine, Huzhou University, HuZhou, 313000 China
| | - Jingmei Zhu
- Huzhou University Schools of Nursing and Medicine, Huzhou University, HuZhou, 313000 China
| | - Xingyi Yao
- Huzhou University Schools of Nursing and Medicine, Huzhou University, HuZhou, 313000 China
| | - Chen Bei
- Huzhou University Schools of Nursing and Medicine, Huzhou University, HuZhou, 313000 China
| | - Qingqing Zhu
- Huzhou University Schools of Nursing and Medicine, Huzhou University, HuZhou, 313000 China
| |
Collapse
|
86
|
Tsuda N, Kawaji A, Sato T, Takagi M, Higashi C, Kato Y, Ogawa K, Naba H, Ohkouchi M, Nakamura M, Hosaka Y, Sakaki J. A novel free fatty acid receptor 1 (GPR40/FFAR1) agonist, MR1704, enhances glucose-dependent insulin secretion and improves glucose homeostasis in rats. Pharmacol Res Perspect 2017; 5. [PMID: 28805970 PMCID: PMC5684856 DOI: 10.1002/prp2.340] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/09/2017] [Accepted: 06/13/2017] [Indexed: 11/17/2022] Open
Abstract
Activation of G protein‐coupled receptor 40/Free fatty acid receptor 1 (GPR40/FFAR1), which is highly expressed in pancreatic β cells, is considered an important pharmacologic target for the treatment of type 2 diabetes mellitus. The aim of this study was to determine the effect of MR1704, a novel GPR40/FFAR1 agonist, on glucose homeostasis in rats. MR1704 is a highly potent and selective, orally bioavailable agonist with similar in vitro potencies among humans, mice, and rats. Treatment of rat islets with MR1704 increased glucose‐dependent insulin secretion. Augmentation of glucose‐dependent insulin secretion was abolished by adding a GPR40/FFAR1 antagonist. In mouse, insulinoma MIN6 cells, palmitic acid induced the activity of caspase 3/7 after a 72‐h exposure, while pharmacologically active concentrations of MR1704 did not. In an oral glucose tolerance test in normal Sprague‐Dawley rats, orally administered MR1704 (1–10 mg·kg−1) reduced plasma glucose excursion and enhanced insulin secretion, but MR1704 did not induce hypoglycemia, even at 300 mg·kg−1, in fasted Sprague‐Dawley rats. In addition, orally administered MR1704 reduced plasma glucose excursion and enhanced insulin secretion in diabetic Goto‐Kakizaki rats. Oral administration of MR1704 once daily to Goto‐Kakizaki rats reduced their blood glucose levels during a 5‐week treatment period without reducing pancreatic insulin content; as a result, hemoglobin A1C levels significantly decreased. These results suggest that MR1704 improves glucose homeostasis through glucose‐dependent insulin secretion with a low risk of hypoglycemia and pancreatic toxicity. MR1704 shows promise as a new, glucose‐lowering drug to treat type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Naoto Tsuda
- Research Center, Mochida Pharmaceutical Company Limited, Shizuoka, Japan
| | - Atsuko Kawaji
- Research Center, Mochida Pharmaceutical Company Limited, Shizuoka, Japan
| | - Toshihiro Sato
- Research Center, Mochida Pharmaceutical Company Limited, Shizuoka, Japan
| | - Mitsuhiro Takagi
- Research Center, Mochida Pharmaceutical Company Limited, Shizuoka, Japan
| | - Chika Higashi
- Research Center, Mochida Pharmaceutical Company Limited, Shizuoka, Japan
| | - Yutaka Kato
- Research Center, Mochida Pharmaceutical Company Limited, Shizuoka, Japan
| | - Kumiko Ogawa
- Research Center, Mochida Pharmaceutical Company Limited, Shizuoka, Japan
| | - Hiroyasu Naba
- Research Center, Mochida Pharmaceutical Company Limited, Shizuoka, Japan
| | - Munetaka Ohkouchi
- Research Center, Mochida Pharmaceutical Company Limited, Shizuoka, Japan
| | - Masaki Nakamura
- Research Center, Mochida Pharmaceutical Company Limited, Shizuoka, Japan
| | - Yoshitaka Hosaka
- Research Center, Mochida Pharmaceutical Company Limited, Shizuoka, Japan
| | - Junichi Sakaki
- Research Center, Mochida Pharmaceutical Company Limited, Shizuoka, Japan
| |
Collapse
|
87
|
Sabrautzki S, Kaiser G, Przemeck GKH, Gerst F, Lorza-Gil E, Panse M, Sartorius T, Hoene M, Marschall S, Häring HU, Hrabě de Angelis M, Ullrich S. Point mutation of Ffar1 abrogates fatty acid-dependent insulin secretion, but protects against HFD-induced glucose intolerance. Mol Metab 2017; 6:1304-1312. [PMID: 29031729 PMCID: PMC5641630 DOI: 10.1016/j.molmet.2017.07.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 07/05/2017] [Accepted: 07/11/2017] [Indexed: 01/06/2023] Open
Abstract
Objective The fatty acid receptor 1 (FFAR1/GPR40) mediates fatty acid-dependent augmentation of glucose-induced insulin secretion (GIIS) in pancreatic β-cells. Genetically engineered Ffar1-knockout/congenic mice univocally displayed impaired fatty acid-mediated insulin secretion, but in vivo experiments delivered controversial results regarding the function of FFAR1 in glucose homeostasis and liver steatosis. This study presents a new coisogenic mouse model carrying a point mutation in Ffar1 with functional consequence. These mice reflect the situations in humans in which point mutations can lead to protein malfunction and disease development. Methods The Munich N-ethyl-N-nitrosourea (ENU) mutagenesis-derived F1 archive containing over 16,800 sperms and corresponding DNA samples was screened for mutations in the coding region of Ffar1. Two missense mutations (R258W and T146S) in the extracellular domain of the protein were chosen and homozygote mice were generated. The functional consequence of these mutations was examined in vitro in isolated islets and in vivo in chow diet and high fat diet fed mice. Results Palmitate, 50 μM, and the FFAR1 agonist TUG-469, 3 μM, stimulated insulin secretion in islets of Ffar1T146S/T146S mutant mice and of wild-type littermates, while in islets of Ffar1R258W/R258W mutant mice, these stimulatory effects were abolished. Insulin content and mRNA levels of Ffar1, Glp1r, Ins2, Slc2a2, Ppara, and Ppard were not significantly different between wild-type and Ffar1R258W/R258W mouse islets. Palmitate exposure, 600 μM, significantly increased Ppara mRNA levels in wild-type but not in Ffar1R258W/R258W mouse islets. On the contrary, Slc2a2 mRNA levels were significantly reduced in both wild-type and Ffar1R258W/R258W mouse islets after palmitate treatment. HFD feeding induced glucose intolerance in wild-type mice. Ffar1R258W/R258W mutant mice remained glucose tolerant although their body weight gain, liver steatosis, insulin resistance, and plasma insulin levels were not different from those of wild-type littermates. Worth mentioning, fasting plasma insulin levels were lower in Ffar1R258W/R258W mice. Conclusion A point mutation in Ffar1 abrogates the stimulatory effect of palmitate on GIIS, an effect that does not necessarily translate to HFD-induced glucose intolerance. Generation of mice carrying point mutations in Ffar1 using ENU. FFAR1 point mutation R258W abrogates fatty acid-induced insulin secretion. Dysfunctional FFAR1 inhibits the development of diet-induced glucose intolerance.
Collapse
Affiliation(s)
- Sibylle Sabrautzki
- Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Institute of Experimental Genetics and the German Mouse Clinic, 85764 Neuherberg, Germany; Research Unit Comparative Medicine, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Gabriele Kaiser
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen (IDM), 72076 Tübingen, Germany
| | - Gerhard K H Przemeck
- Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Institute of Experimental Genetics and the German Mouse Clinic, 85764 Neuherberg, Germany
| | - Felicia Gerst
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen (IDM), 72076 Tübingen, Germany
| | - Estela Lorza-Gil
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen (IDM), 72076 Tübingen, Germany
| | - Madhura Panse
- University Hospital Tübingen, Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Medicine, Nephrology and Clinical Chemistry, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany
| | - Tina Sartorius
- University Hospital Tübingen, Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Medicine, Nephrology and Clinical Chemistry, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany
| | - Miriam Hoene
- University Hospital Tübingen, Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Medicine, Nephrology and Clinical Chemistry, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany
| | - Susan Marschall
- Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Institute of Experimental Genetics and the German Mouse Clinic, 85764 Neuherberg, Germany
| | - Hans-Ulrich Häring
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen (IDM), 72076 Tübingen, Germany; University Hospital Tübingen, Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Medicine, Nephrology and Clinical Chemistry, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany
| | - Martin Hrabě de Angelis
- Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Institute of Experimental Genetics and the German Mouse Clinic, 85764 Neuherberg, Germany; Chair of Experimental Genetics, School of Life Sciences Weihenstephan, Technische Universität München, Alte Akademie 8, 85354 München, Germany
| | - Susanne Ullrich
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen (IDM), 72076 Tübingen, Germany; University Hospital Tübingen, Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Medicine, Nephrology and Clinical Chemistry, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany.
| |
Collapse
|
88
|
Sankoda A, Harada N, Iwasaki K, Yamane S, Murata Y, Shibue K, Thewjitcharoen Y, Suzuki K, Harada T, Kanemaru Y, Shimazu-Kuwahara S, Hirasawa A, Inagaki N. Long-Chain Free Fatty Acid Receptor GPR120 Mediates Oil-Induced GIP Secretion Through CCK in Male Mice. Endocrinology 2017; 158:1172-1180. [PMID: 28324023 DOI: 10.1210/en.2017-00090] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/09/2017] [Indexed: 12/14/2022]
Abstract
Free fatty acid receptors GPR120 and GPR40 are involved in the secretion of gut hormones. GPR120 and GPR40 are expressed in enteroendocrine K cells, and their activation induces the secretion of the incretin glucose-dependent insulinotropic polypeptide (GIP). However, the role of these receptors in fat-induced GIP secretion in vivo and the associated mechanisms are unclear. In this study, we investigated corn oil-induced GIP secretion in GPR120-knockout (GPR120-/-) and GPR40-knockout (GPR40-/-) mice. Oil-induced GIP secretion was reduced by 50% and 80% in GPR120-/- and GPR40-/- mice, respectively, compared with wild-type mice. This was not associated with a significant difference in K-cell number or GIP content in K cells, nor messenger RNA levels of the lipid receptor GPR119, nor bile acid receptors TGR5 and farnesoid X receptor. GPR120-/- and GPR40-/- mice also exhibited substantially decreased levels of cholecystokinin (CCK), a hormone from I cells that promotes bile and pancreatic lipase secretion, and this decrease was associated with impaired gallbladder contraction. Notably, treatment with a CCK analog resulted in recovery of oil-induced GIP secretion in GPR120-/- mice but not in GPR40-/- mice. These results indicate that corn oil-induced GIP secretion from K cells involves both GPR120 and GPR40 signaling pathways, and GPR120-induced GIP secretion is indirectly mediated by CCK.
Collapse
Affiliation(s)
- Akiko Sankoda
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Norio Harada
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Kanako Iwasaki
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Shunsuke Yamane
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Yuki Murata
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Kimitaka Shibue
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Yotsapon Thewjitcharoen
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Kazuyo Suzuki
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Takanari Harada
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Yoshinori Kanemaru
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Satoko Shimazu-Kuwahara
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Akira Hirasawa
- Department of Genomic Drug Discovery Science, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
89
|
Li Z, Xu X, Huang W, Qian H. Free Fatty Acid Receptor 1 (FFAR1) as an Emerging Therapeutic Target for Type 2 Diabetes Mellitus: Recent Progress and Prevailing Challenges. Med Res Rev 2017; 38:381-425. [DOI: 10.1002/med.21441] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/23/2017] [Accepted: 02/14/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Zheng Li
- Center of Drug Discovery, State Key Laboratory of Natural Medicines; China Pharmaceutical University; 24 Tongjiaxiang Nanjing 210009 P.R. China
| | - Xue Xu
- Key Laboratory of Drug Quality Control and Pharmacovigilance; China Pharmaceutical University; 24 Tongjiaxiang Nanjing 210009 P.R. China
| | - Wenlong Huang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines; China Pharmaceutical University; 24 Tongjiaxiang Nanjing 210009 P.R. China
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease; China Pharmaceutical University; 24 Tongjiaxiang Nanjing 210009 P.R. China
| | - Hai Qian
- Center of Drug Discovery, State Key Laboratory of Natural Medicines; China Pharmaceutical University; 24 Tongjiaxiang Nanjing 210009 P.R. China
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease; China Pharmaceutical University; 24 Tongjiaxiang Nanjing 210009 P.R. China
| |
Collapse
|
90
|
Agrawal A, Alharthi A, Vailati-Riboni M, Zhou Z, Loor JJ. Expression of fatty acid sensing G-protein coupled receptors in peripartal Holstein cows. J Anim Sci Biotechnol 2017; 8:20. [PMID: 28261474 PMCID: PMC5331663 DOI: 10.1186/s40104-017-0150-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 02/09/2017] [Indexed: 12/22/2022] Open
Abstract
Background G-protein coupled receptors (GPCR), also referred as Free Fatty Acid Receptors (FFAR), are widely studied within human medicine as drug targets for metabolic disorders. To combat metabolic disorders prevalent in dairy cows during the transition period, which co-occur with negative energy balance and changes to lipid and glucose metabolism, it may be helpful to identify locations and roles of FFAR and other members of the GPCR family in bovine tissues. Results Quantitative RT-PCR (qPCR) of subcutaneous adipose, liver, and PMNL samples during the transition period (-10, +7, and +20 or +30 d) were used for expression profiling of medium- (MCFA) and long-chain fatty acid (LCFA) receptors GPR120 and GPR40, MCFA receptor GPR84, and niacin receptor HCAR2/3. Adipose samples were obtained from cows with either high (HI; BCS ≥ 3.75) or low (LO; BCS ≤ 3.25) body condition score (BCS) to examine whether FFAR expression is correlated with this indicator of health and body reserves. Supplementation of rumen-protected methionine (MET), which may improve immune function and production postpartum, was also compared with unsupplemented control (CON) cows for liver and blood polymorphonuclear leukocytes (PMNL) samples. In adipose tissue, GPR84 and GPR120 were differentially expressed over time, while GPR40 was not expressed; in PMNL, GPR40 was differentially expressed over time and between MET vs. CON, GPR84 expression differed only between dietary groups, and GPR120 was not expressed; in liver, GPCR were either not expressed or barely detectable. Conclusions The data indicate that there is likely not a direct role in liver for the selected GPCR during the transition period, but they do play variable roles in adipose and PMN. In future, these receptors may prove useful targets and/or markers for peripartal metabolism and immunity. Electronic supplementary material The online version of this article (doi:10.1186/s40104-017-0150-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alea Agrawal
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, 1207 West Gregory Drive, Urbana, IL 61801 USA
| | - Abdulrahman Alharthi
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, 1207 West Gregory Drive, Urbana, IL 61801 USA
| | - Mario Vailati-Riboni
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, 1207 West Gregory Drive, Urbana, IL 61801 USA
| | - Zheng Zhou
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, 1207 West Gregory Drive, Urbana, IL 61801 USA
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, 1207 West Gregory Drive, Urbana, IL 61801 USA
| |
Collapse
|
91
|
Kolar GR, Grote SM, Yosten GLC. Targeting orphan G protein-coupled receptors for the treatment of diabetes and its complications: C-peptide and GPR146. J Intern Med 2017; 281:25-40. [PMID: 27306986 PMCID: PMC6092955 DOI: 10.1111/joim.12528] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
G protein-coupled receptors (GPCRs) are the most abundant receptor family encoded by the human genome and are the targets of a high percentage of drugs currently in use or in clinical trials for the treatment of diseases such as diabetes and its associated complications. Thus, orphan GPCRs, for which the ligand is unknown, represent an important untapped source of therapeutic potential for the treatment of many diseases. We have identified the previously orphan GPCR, GPR146, as the putative receptor of proinsulin C-peptide, which may prove to be an effective treatment for diabetes-associated complications. For example, we have found a potential role of C-peptide and GPR146 in regulating the function of the retinal pigment epithelium, a monolayer of cells in the retina that serves as part of the blood-retinal barrier and is disrupted in diabetic macular oedema. However, C-peptide signalling in this cell type appears to depend at least in part on extracellular glucose concentration and its interaction with insulin. In this review, we discuss the therapeutic potential of orphan GPCRs with a special focus on C-peptide and GPR146, including past and current strategies used to 'deorphanize' this diverse family of receptors, past successes and the inherent difficulties of this process.
Collapse
Affiliation(s)
- G R Kolar
- Department of Pathology, St Louis University School of Medicine, St Louis, MO, USA
| | - S M Grote
- Department of Pharmacology and Physiology, St Louis University School of Medicine, St Louis, MO, USA
| | - G L C Yosten
- Department of Pharmacology and Physiology, St Louis University School of Medicine, St Louis, MO, USA
| |
Collapse
|
92
|
Abstract
Overfeeding of fat can cause various metabolic disorders including obesity and type 2 diabetes (T2D). Diet provided free fatty acids (FFAs) are not only essential nutrients, but they are also recognized as signaling molecules, which stimulate various important biological functions. Recently, several G protein-coupled receptors (GPCRs), including FFA1-4, have been identified as receptors of FFAs by various physiological and pharmacological studies. FFAs exert physiological functions through these FFA receptors (FFARs) depending on carbon chain length and degree of unsaturation. Functional analyses have revealed that several important metabolic processes, such as peptide hormone secretion, cell maturation and nerve activities, are regulated by FFARs and thereby FFARs contribute to the energy homeostasis through these physiological functions. Hence, FFARs are expected to be promising pharmacological targets for metabolic disorders since imbalances in energy homeostasis lead to metabolic disorders. In human, it is established that different responses of individuals to endogenous ligands and chemical drugs may be due to differences in the ability of such ligands to activate nucleotide polymorphic variants of receptors. However, the clear links between genetic variations that are involved in metabolic disorders and polymorphisms receptors have been relatively difficult to assess. In this review, I summarize current literature describing physiological functions of FFARs and genetic variations of those receptors to discuss the potential of FFARs as drug targets for metabolic disorders.
Collapse
Affiliation(s)
- Atsuhiko Ichimura
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29, Sakyo-ku, yoshidashimoadachi-cho, Kyoto, 606-8501, Japan.
| |
Collapse
|
93
|
Abstract
Of the 415 million people suffering from diabetes worldwide, 90% have type 2 diabetes. Type 2 diabetes is characterized by hyperglycemia and occurs in obese individuals as a result of insulin resistance and inadequate insulin levels. Accordingly, diabetes drugs are tailored to enhance glucose disposal or target the pancreatic islet β cell to increase insulin secretion. The majority of the present-day insulin secretagogues, however, increase the risk of iatrogenic hypoglycemia, and hence alternatives are actively sought. The long-chain fatty acid, G protein-coupled receptor FFA1/Gpr40, is expressed in β cells, and its activation potentiates insulin secretion in a glucose-dependent manner. Preclinical data indicate that FFA1 agonism is an effective treatment to restore glucose homeostasis in rodent models of diabetes. This initial success prompted clinical trials in type 2 diabetes patients, the results of which were promising; however, the field suffered a significant setback when the lead compound TAK-875/fasiglifam was withdrawn from clinical development due to liver safety concerns. Nevertheless, recent developments have brought to light a surprising complexity of FFA1 agonist action, signaling diversity, and biological outcomes, raising hopes that with a greater understanding of the mechanisms at play the second round will be more successful.
Collapse
Affiliation(s)
- Julien Ghislain
- Montreal Diabetes Research Center, University of Montreal, Montreal, QC, Canada
- CRCHUM, University of Montreal, 900 rue St Denis, Montreal, QC, Canada, H2X 0A9
| | - Vincent Poitout
- Montreal Diabetes Research Center, University of Montreal, Montreal, QC, Canada.
- CRCHUM, University of Montreal, 900 rue St Denis, Montreal, QC, Canada, H2X 0A9.
- Department of Medicine, University of Montreal, Montreal, QC, Canada.
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC, Canada.
| |
Collapse
|
94
|
Suckow AT, Briscoe CP. Key Questions for Translation of FFA Receptors: From Pharmacology to Medicines. Handb Exp Pharmacol 2017; 236:101-131. [PMID: 27873087 DOI: 10.1007/164_2016_45] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The identification of fatty acids as ligands for the G-protein coupled free fatty acid (FFA) receptor family over 10 years ago led to intensive chemistry efforts to find small-molecule ligands for this class of receptors. Identification of potent, selective modulators of the FFA receptors and their utility in medicine has proven challenging, in part due to their complex pharmacology. Nevertheless, ligands have been identified that are sufficient for exploring the therapeutic potential of this class of receptors in rodents and, in the case of FFA1, FFA2, FFA4, and GPR84, also in humans. Expression profiling, the phenotyping of FFA receptor knockout mice, and the results of studies exploring the effects of these ligands in rodents have uncovered a number of indications where engagement of one or a combination of FFA receptors might provide some clinical benefit in areas including diabetes, inflammatory bowel syndrome, Alzheimer's, pain, and cancer. In this chapter, we will review the clinical potential of modulating FFA receptors based on preclinical and in some cases clinical studies with synthetic ligands. In particular, key aspects and challenges associated with small-molecule ligand identification and FFA receptor pharmacology will be addressed with a view of the hurdles that need to be overcome to fully understand the potential of the receptors as therapeutic targets.
Collapse
Affiliation(s)
| | - Celia P Briscoe
- Epigen Biosciences, 10225 Barnes Canyon Rd, San Diego, CA, 92121, USA.
| |
Collapse
|
95
|
Albert BB, de Bock M, Derraik JG, Brennan CM, Biggs JB, Hofman PL, Cutfield WS. Non-Dipping and Cardiometabolic Profile: A Study on Normotensive Overweight Middle-Aged Men. Heart Lung Circ 2016; 25:1218-1225. [DOI: 10.1016/j.hlc.2016.04.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/16/2016] [Accepted: 04/08/2016] [Indexed: 10/21/2022]
|
96
|
Aizawa F, Nishinaka T, Yamashita T, Nakamoto K, Kurihara T, Hirasawa A, Kasuya F, Miyata A, Tokuyama S. GPR40/FFAR1 deficient mice increase noradrenaline levels in the brain and exhibit abnormal behavior. J Pharmacol Sci 2016; 132:249-254. [PMID: 27979701 DOI: 10.1016/j.jphs.2016.09.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 09/08/2016] [Accepted: 09/28/2016] [Indexed: 11/17/2022] Open
Abstract
The free fatty acid receptor 1 (GPR40/FFAR1) is a G protein-coupled receptor, which is activated by long chain fatty acids. We have previously demonstrated that activation of brain GPR40/FFAR1 exerts an antinociceptive effect that is mediated by the modulation of the descending pain control system. However, it is unclear whether brain GPR40/FFAR1 contributes to emotional function. In this study, we investigated the involvement of GPR40/FFAR1 in emotional behavior using GPR40/FFAR1 deficient (knockout, KO) mice. The emotional behavior in wild and KO male mice was evaluated at 9-10 weeks of age by the elevated plus-maze test, open field test, social interaction test, and sucrose preference test. Brain monoamines levels were measured using LC-MS/MS. The elevated plus-maze test and open field tests revealed that the KO mice reduced anxiety-like behavior. There were no differences in locomotor activity or social behavior between the wild and KO mice. In the sucrose preference test, the KO mice showed reduction in sucrose preference and intake. The level of noradrenaline was higher in the hippocampus, medulla oblongata, hypothalamus and midbrain of KO mice. Therefore, these results suggest that brain GPR40/FFAR1 is associated with anxiety- and depression-related behavior regulated by the increment of noradrenaline in the brain.
Collapse
Affiliation(s)
- Fuka Aizawa
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan
| | - Takashi Nishinaka
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan
| | - Takuya Yamashita
- Biochemical Toxicology Laboratory, School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan
| | - Kazuo Nakamoto
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan
| | - Takashi Kurihara
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima 890-8544, Japan
| | - Akira Hirasawa
- Department of Pharmacogenomics, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Fumiyo Kasuya
- Biochemical Toxicology Laboratory, School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan
| | - Atsuro Miyata
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima 890-8544, Japan
| | - Shogo Tokuyama
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan.
| |
Collapse
|
97
|
Rendina-Ruedy E, Graef JL, Davis MR, Hembree KD, Gimble JM, Clarke SL, Lucas EA, Smith BJ. Strain differences in the attenuation of bone accrual in a young growing mouse model of insulin resistance. J Bone Miner Metab 2016; 34:380-94. [PMID: 26058493 DOI: 10.1007/s00774-015-0685-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 05/09/2015] [Indexed: 12/24/2022]
Abstract
Skeletal fractures are considered a chronic complication of type 2 diabetes mellitus (T2DM), but the etiology of compromised bone quality that develops over time remains uncertain. This study investigated the concurrent alterations in metabolic and skeletal changes in two mouse strains, a responsive (C57BL/6) and a relatively resistant (C3H/HeJ) strain, to high-fat diet-induced glucose intolerance. Four-week-old male C57BL/6 and C3H/HeJ mice were randomized to a control (Con = 10 % kcal fat) or high-fat (HF = 60 % kcal fat) diet for 2, 8, or 16 weeks. Metabolic changes, including blood glucose, plasma insulin and leptin, and glucose tolerance were monitored over time in conjunction with alterations in bone structure and turn over. Elevated fasting glucose occurred in both the C57BL/6 and C3H/HeJ strains on the HF diet at 2 and 8 weeks, but only in the C57BL/6 strain at 16 weeks. Both strains on the HF diet demonstrated impaired glucose tolerance at each time point. The C57BL/6 mice on the HF diet exhibited lower whole-body bone mineral density (BMD) by 8 and 16 weeks, but the C3H/HeJ strain had no evidence of bone loss until 16 weeks. Analyses of bone microarchitecture revealed that trabecular bone accrual in the distal femur metaphysis was attenuated in the C57BL/6 mice on the HF diet at 8 and 16 weeks. In contrast, the C3H/HeJ mice were protected from the deleterious effects of the HF diet on trabecular bone. Alterations in gene expression from the femur revealed that several toll-like receptor (TLR)-4 targets (Atf4, Socs3, and Tlr4) were regulated by the HF diet in the C57BL/6 strain, but not in the C3H/HeJ strain. Structural changes observed only in the C57BL/6 mice were accompanied with a decrease in osteoblastogenesis after 8 and 16 weeks on the HF diet, suggesting a TLR-4-mediated mechanism in the suppression of bone formation. Both the C57BL/6 and C3H/HeJ mice demonstrated an increase in osteoclastogenesis after 8 weeks on the HF diet; however, bone turnover was decreased in the C57BL/6 with prolonged hyperglycemia. Further investigation is needed to understand how hyperglycemia and hyperinsulinemia suppress bone turnover in the context of T2DM and the role of TLR-4 in this response.
Collapse
Affiliation(s)
- Elizabeth Rendina-Ruedy
- Department of Nutritional Sciences, HSci 420 Oklahoma State University, Stillwater, OK, 74078, USA
| | - Jennifer L Graef
- Department of Nutritional Sciences, HSci 420 Oklahoma State University, Stillwater, OK, 74078, USA
| | - McKale R Davis
- Department of Nutritional Sciences, HSci 420 Oklahoma State University, Stillwater, OK, 74078, USA
| | - Kelsey D Hembree
- Department of Nutritional Sciences, HSci 420 Oklahoma State University, Stillwater, OK, 74078, USA
| | - Jeffrey M Gimble
- Stem Cell Biology Laboratory, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Stephen L Clarke
- Department of Nutritional Sciences, HSci 420 Oklahoma State University, Stillwater, OK, 74078, USA
| | - Edralin A Lucas
- Department of Nutritional Sciences, HSci 420 Oklahoma State University, Stillwater, OK, 74078, USA
| | - Brenda J Smith
- Department of Nutritional Sciences, HSci 420 Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
98
|
Sargsyan E, Artemenko K, Manukyan L, Bergquist J, Bergsten P. Oleate protects beta-cells from the toxic effect of palmitate by activating pro-survival pathways of the ER stress response. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1151-1160. [PMID: 27344025 DOI: 10.1016/j.bbalip.2016.06.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 06/11/2016] [Accepted: 06/20/2016] [Indexed: 12/20/2022]
Abstract
Long-term exposure of beta cells to saturated fatty acids impairs insulin secretion and increases apoptosis. In contrast, unsaturated fatty acids protect beta-cells from the long-term negative effects of saturated fatty acids. We aimed to identify the mechanisms underlying this protective action of unsaturated fatty acids. To address the aim, insulin-secreting MIN6 cells were exposed to palmitate in the absence or presence of oleate and analyzed by using nano-LC MS/MS based proteomic approach. Important findings were validated by using alternative approaches. Proteomic analysis identified 34 proteins differentially expressed in the presence of palmitate compared to control samples. These proteins play a role in insulin processing, mitochondrial function, metabolism of biomolecules, calcium homeostasis, exocytosis, receptor signaling, ER protein folding, antioxidant activity and anti-apoptotic function. When oleate was also present during culture, expression of 15 proteins was different from the expression in the presence of palmitate alone. Most of the proteins affected by oleate are targets of the ER stress response and play a pro-survival role in beta cells such as protein folding and antioxidative defence. We conclude that restoration of pro-survival pathways of the ER stress response is a major mechanism underlying the protective effect of unsaturated fatty acids in beta-cells treated with saturated fatty acids.
Collapse
Affiliation(s)
- Ernest Sargsyan
- Department of Medical Cell Biology, Uppsala University, Box 571, 75123 Uppsala, Sweden.
| | | | - Levon Manukyan
- Department of Medical Cell Biology, Uppsala University, Box 571, 75123 Uppsala, Sweden
| | - Jonas Bergquist
- Department of Chemistry, Uppsala University, Uppsala, Sweden; SciLifeLab, Uppsala University, Uppsala, Sweden
| | - Peter Bergsten
- Department of Medical Cell Biology, Uppsala University, Box 571, 75123 Uppsala, Sweden
| |
Collapse
|
99
|
Milligan G, Shimpukade B, Ulven T, Hudson BD. Complex Pharmacology of Free Fatty Acid Receptors. Chem Rev 2016; 117:67-110. [PMID: 27299848 DOI: 10.1021/acs.chemrev.6b00056] [Citation(s) in RCA: 210] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
G protein-coupled receptors (GPCRs) are historically the most successful family of drug targets. In recent times it has become clear that the pharmacology of these receptors is far more complex than previously imagined. Understanding of the pharmacological regulation of GPCRs now extends beyond simple competitive agonism or antagonism by ligands interacting with the orthosteric binding site of the receptor to incorporate concepts of allosteric agonism, allosteric modulation, signaling bias, constitutive activity, and inverse agonism. Herein, we consider how evolving concepts of GPCR pharmacology have shaped understanding of the complex pharmacology of receptors that recognize and are activated by nonesterified or "free" fatty acids (FFAs). The FFA family of receptors is a recently deorphanized set of GPCRs, the members of which are now receiving substantial interest as novel targets for the treatment of metabolic and inflammatory diseases. Further understanding of the complex pharmacology of these receptors will be critical to unlocking their ultimate therapeutic potential.
Collapse
Affiliation(s)
- Graeme Milligan
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow , Glasgow G12 8QQ, Scotland, United Kingdom
| | - Bharat Shimpukade
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark , Campusvej 55, DK-5230 Odense M, Denmark
| | - Trond Ulven
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark , Campusvej 55, DK-5230 Odense M, Denmark
| | - Brian D Hudson
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow , Glasgow G12 8QQ, Scotland, United Kingdom
| |
Collapse
|
100
|
Wang S, Dougherty EJ, Danner RL. PPARγ signaling and emerging opportunities for improved therapeutics. Pharmacol Res 2016; 111:76-85. [PMID: 27268145 DOI: 10.1016/j.phrs.2016.02.028] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 02/29/2016] [Indexed: 01/23/2023]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-activated nuclear receptor that regulates glucose and lipid metabolism, endothelial function and inflammation. Rosiglitazone (RGZ) and other thiazolidinedione (TZD) synthetic ligands of PPARγ are insulin sensitizers that have been used for the treatment of type 2 diabetes. However, undesirable side effects including weight gain, fluid retention, bone loss, congestive heart failure, and a possible increased risk of myocardial infarction and bladder cancer, have limited the use of TZDs. Therefore, there is a need to better understand PPARγ signaling and to develop safer and more effective PPARγ-directed therapeutics. In addition to PPARγ itself, many PPARγ ligands including TZDs bind to and activate G protein-coupled receptor 40 (GPR40), also known as free fatty acid receptor 1. GPR40 signaling activates stress kinase pathways that ultimately regulate downstream PPARγ responses. Recent studies in human endothelial cells have demonstrated that RGZ activation of GPR40 is essential to the optimal propagation of PPARγ genomic signaling. RGZ/GPR40/p38 MAPK signaling induces and activates PPARγ co-activator-1α, and recruits E1A binding protein p300 to the promoters of target genes, markedly enhancing PPARγ-dependent transcription. Therefore in endothelium, GPR40 and PPARγ function as an integrated signaling pathway. However, GPR40 can also activate ERK1/2, a proinflammatory kinase that directly phosphorylates and inactivates PPARγ. Thus the role of GPR40 in PPARγ signaling may have important implications for drug development. Ligands that strongly activate PPARγ, but do not bind to or activate GPR40 may be safer than currently approved PPARγ agonists. Alternatively, biased GPR40 agonists might be sought that activate both p38 MAPK and PPARγ, but not ERK1/2, avoiding its harmful effects on PPARγ signaling, insulin resistance and inflammation. Such next generation drugs might be useful in treating not only type 2 diabetes, but also diverse chronic and acute forms of vascular inflammation such as atherosclerosis and septic shock.
Collapse
Affiliation(s)
- Shuibang Wang
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Edward J Dougherty
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert L Danner
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|