51
|
Edwards S, Lalor PF, Tuncer C, Adams DH. Vitronectin in human hepatic tumours contributes to the recruitment of lymphocytes in an alpha v beta3-independent manner. Br J Cancer 2006; 95:1545-54. [PMID: 17088900 PMCID: PMC2360745 DOI: 10.1038/sj.bjc.6603467] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The degree of lymphocyte infiltration is a prognostic factor in liver cancer, but to date the mechanisms by which lymphocytes infiltrate into and are retained in hepatic tumours are poorly understood. We hypothesised that the extracellular matrix glycoprotein vitronectin, a major component of the stroma of hepatic tumours, might play a role in the recruitment and retention of tumour-infiltrating lymphocytes (TIL). Thus, we investigated the ability of vitronectin to support migration and adhesion of TIL isolated from hepatocellular carcinoma and colorectal hepatic metastases. Soluble vitronectin-induced dose-dependent migration of TIL in in vitro chemotaxis and haptotaxis assays and vitronectin in tissue sections was able to support TIL adhesion to tumour stroma. Neither adhesion nor migration was inhibited by a function blocking mAb against the major vitronectin receptor αvβ3 and we were unable to detect αvβ3 on TIL in vitro or in vivo on tumour tissue. However, TIL did express high levels of urokinase-type plasminogen activator receptor (uPAR) and inhibitory antibodies and amiloride both significantly inhibited TIL adhesion to vitronectin and reduced transendothelial migration of lymphocytes across liver endothelium in vitro. Thus, we provide evidence that vitronectin in liver tumours can support the recruitment and retention of effector lymphocytes by an uPAR-dependent mechanism.
Collapse
Affiliation(s)
- S Edwards
- Liver Research Group, Department of Medicine, 5th Floor, Institute of Biomedical Research, Wolfson Drive, The Medical School, University of Birmingham, Birmingham B15 2TT, UK
| | - P F Lalor
- Liver Research Group, Department of Medicine, 5th Floor, Institute of Biomedical Research, Wolfson Drive, The Medical School, University of Birmingham, Birmingham B15 2TT, UK
- E-mail:
| | - C Tuncer
- Liver Research Group, Department of Medicine, 5th Floor, Institute of Biomedical Research, Wolfson Drive, The Medical School, University of Birmingham, Birmingham B15 2TT, UK
| | - D H Adams
- Liver Research Group, Department of Medicine, 5th Floor, Institute of Biomedical Research, Wolfson Drive, The Medical School, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
52
|
Courtneidge SA, Azucena EF, Pass I, Seals DF, Tesfay L. The SRC substrate Tks5, podosomes (invadopodia), and cancer cell invasion. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2006; 70:167-71. [PMID: 16869750 DOI: 10.1101/sqb.2005.70.014] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Some years ago, we employed a screen of phage cDNA expression libraries to identify novel substrates of the protein tyrosine kinase Src. One of these, Tks5 (previously known as Fish), is a large scaffolding protein with an amino-terminal PX domain and five SH3 domains. In normal fibroblasts, Tks5 is cytoplasmic, but the protein is found in podosomes when the cells are transformed with Src. Using short interfering RNA technology, we have shown that Tks5 is required for podosome formation. Furthermore, cells with reduced Tks5 expression are poorly invasive through Matrigel. Tks5 is expressed and localized to podosomes in invasive human cancer cell lines and in tumor tissue, particularly breast cancers and melanomas. In these cells too, Tks5 is required for invasion. Our future work will focus on the identification of the binding partners of Tks5 that are responsible for podosome formation and invasion, and on determining the role of Tks5 in animal models of metastasis.
Collapse
Affiliation(s)
- S A Courtneidge
- The Van Andel Research Institute, Grand Rapids, Michigan 49505, USA
| | | | | | | | | |
Collapse
|
53
|
Jamaluddin MS. Aspirin upregulates expression of urokinase type plasminogen activator receptor (uPAR) gene in human colon cancer cells through AP1. Biochem Biophys Res Commun 2006; 348:618-27. [PMID: 16893520 DOI: 10.1016/j.bbrc.2006.07.098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Accepted: 07/20/2006] [Indexed: 01/04/2023]
Abstract
In this study, the effects of acetylsalicylic acid (aspirin) on the expression of uPAR and the mechanism by which it regulates expression of uPAR was examined in two different colon cancer cell lines HCT116 and GEO, respectively. The study shows that under physiological concentration, aspirin upregulates steady-state level expression of uPAR mRNA as well as expression of uPAR protein. Using a transient transfection assay, a region corresponding to -1 to -398 region of uPAR promoter has been identified which shows maximum responsiveness to aspirin treatment and found that this region is sufficient for the aspirin-induced up-regulation of uPAR. A stable integration of a single copy of this region coupled to luciferase reporter gene into the HCT116 genome also behaved similarly. Using gel mobility shift assays, it is found that the distal AP1 region between -171 and -186 is responsible for the aspirin-induced up-regulation of uPAR. Mutation of this region reduced up-regulation. Supershift assays identify that the bound proteins at this region are c-Jun and Fra-1. Real-time PCR analysis showed more than 4-fold increase in the binding of c-Jun and a 1.6-fold increase in the binding of Fra-1 in this region and this up-regulation corresponds to an increased binding of acetylated histone H4 in this region. Since an increase in the expression of uPAR corresponds to an increase in the migration of the cell, a migration assay was performed and result showed a 3-fold increased migration of HCT116 cells through the vitronectin-coated layer. Thus, an AP1 mediated pathway for aspirin induced up-regulation of uPAR has been identified.
Collapse
Affiliation(s)
- Md Saha Jamaluddin
- Department of Pharmacology, School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
54
|
Lanza A, Cirillo N, Femiano F, Gombos F. How does acantholysis occur in pemphigus vulgaris: a critical review. J Cutan Pathol 2006; 33:401-12. [PMID: 16776715 DOI: 10.1111/j.0303-6987.2006.00523.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Pemphigus vulgaris is a life-threatening autoimmune blistering disease targeting skin and mucous membranes, characterized by disruption of keratinocytes' adhesion termed acantholysis. Today multiple classes of targets are considered to play a role in the genesis of the acantholysis; of these, the classical pemphigus antigens, desmosomal cadherins (desmoglein 1 and 3) are the best characterized and considered as the most important. Additional antigens include the novel epithelial acetylcholine receptors (alpha9 and pemphaxin). Thus, acantholysis in pemphigus seems to result from a cooperative action of antibodies to different keratinocyte self-antigens, but the mechanisms by which epithelial cleft occurs are not yet clearly understood. In fact, the binding of the autoantibodies to these targets generates a plethora of biological effects due, on one hand, to their direct interference with adhesive function and, on the other, to more complex events involving intracellular pathways that modify proteases activity or calcium metabolism, leading to loss of cell-cell adhesion.
Collapse
Affiliation(s)
- Alessandro Lanza
- Regional Center on Craniofacial Malformations, School of Medicine, II University of Naples, 80100 Naples, Italy.
| | | | | | | |
Collapse
|
55
|
Chen KM, Liu JY, Lai SC, Hsu LS, Lee HH. Association of plasminogen activators and matrix metalloproteinase-9 proteolytic cascade with blood-CNS barrier damage of angiostrongyliasis. Int J Exp Pathol 2006; 87:113-9. [PMID: 16623755 PMCID: PMC2517353 DOI: 10.1111/j.0959-9673.2006.00459.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Blood-central nervous system (blood-CNS) barrier breakdown, an important pathophysiological event in meningitis, results in extravasation of leucocytes into subarachnoid space. The blood-CNS barrier disruption is mediated by primarily two enzyme systems, the plasminogen activators (PAs) and matrix metalloproteinases (MMPs). The present study showed that the activities of tissue-type PA (tPA), urokinase-type activator (uPA) and MMP-9 in cerebrospinal-like fluid (CSF-like fluid) were significantly increased in mice with eosinophilic meningitis compared with uninfected mice. Eosinophilia significantly correlated with tPA, uPA and MMP-9 activities, and albumin concentration. In addition, when GM6001, a specific matrix metalloproteinase blocker, was injected into infected mice, MMP-9 activity and total protein concentrations declined from their preinjection highs. These results suggest that the PAs and MMP-9 proteolytic cascade may be associated with blood-CNS barrier disruption in eosinophilic meningitis caused by Angiostrongylus cantonensis.
Collapse
Affiliation(s)
- Ke-Min Chen
- Department of Parasitology, Chung Shan Medical University, Taichung 402, Taiwan.
| | | | | | | | | |
Collapse
|
56
|
Slivova V, Zaloga G, DeMichele SJ, Mukerji P, Huang YS, Siddiqui R, Harvey K, Valachovicova T, Sliva D. Green tea polyphenols modulate secretion of urokinase plasminogen activator (uPA) and inhibit invasive behavior of breast cancer cells. Nutr Cancer 2006; 52:66-73. [PMID: 16091006 DOI: 10.1207/s15327914nc5201_9] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Many epidemiological studies have suggested that consumption of green tea may decrease the risk of cancer. The chemopreventive effect of green tea polyphenols (GTP) has been demonstrated through the inhibition of cell proliferation and angiogenesis in cell culture and animal models of breast cancer. Metastasis of breast cancer is the major reason for the high mortality of breast cancer patients and is directly linked to the invasive behavior of breast cancer cells. Cancer metastasis consists of several interdependent processes including cancer cell adhesion, cancer cell migration, and invasion of cancer cells. In this study, we evaluated the effect of GTP on human breast cancer cells, and we show that in addition to inhibiting cell growth, GTP also suppressed the invasive behavior of MDA-MB-231 cells. These anti-invasive effects of GTP were the result of the inhibition of constitutively active transcription factors AP-1 and NF-kappaB, which further suppressed secretion of urokinase plasminogen activator (uPA) from breast cancer cells. Based on these results, it can be hypothesized that GTP treatment resulted in the inhibition of formation of signaling complexes responsible for cell adhesion and migration (uPA, uPA receptor, vitronectin, integrin receptor) and cell invasion (uPA, uPA receptor). Our results indicate that GTP may contribute to the anticancer effects of green tea by inhibiting the invasive behavior of cancer cells.
Collapse
Affiliation(s)
- Veronika Slivova
- Cancer Research Laboratory, Methodist Research Institute, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Shah K, Vincent F. Divergent roles of c-Src in controlling platelet-derived growth factor-dependent signaling in fibroblasts. Mol Biol Cell 2005; 16:5418-32. [PMID: 16135530 PMCID: PMC1266437 DOI: 10.1091/mbc.e05-03-0263] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The vast complexity of platelet-derived growth factor (PDGF)-induced downstream signaling pathways is well known, but the precise roles of critical players still elude us due to our lack of specific and temporal control over their activities. Accordingly, although Src family members are some of the better characterized effectors of PDGFbeta signaling, considerable controversy still surrounds their precise functions. To address these questions and limitations, we applied a chemical-genetic approach to study the role of c-Src at the cellular level, in defined signaling cascades; we also uncovered novel phosphorylation targets and defined its influence on transcriptional events. The spectacular control of c-Src on actin reorganization and chemotaxis was delineated by global substrate labeling and transcriptional analysis, revealing multiple cytoskeletal proteins and chemotaxis promoting genes to be under c-Src control. Additionally, this tool revealed the contrasting roles of c-Src in controlling DNA synthesis, where it transmits conflicting inputs via the phosphatidylinositol 3 kinase and Ras pathways. Finally, this study reveals a mechanism by which Src family kinases may control PDGF-mediated responses both at transcriptional and translational levels.
Collapse
Affiliation(s)
- Kavita Shah
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA.
| | | |
Collapse
|
58
|
Kwak SH, Mitra S, Bdeir K, Strassheim D, Park JS, Kim JY, Idell S, Cines D, Abraham E. The kringle domain of urokinase-type plasminogen activator potentiates LPS-induced neutrophil activation through interaction with {alpha}V{beta}3 integrins. J Leukoc Biol 2005; 78:937-45. [PMID: 16033814 DOI: 10.1189/jlb.0305158] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Urokinase plasminogen activator (uPA) is a serine protease that catalyzes the conversion of plasminogen to plasmin. In addition, uPA has been shown to have proinflammatory properties, particularly in potentiating lipopolysaccharide (LPS)-induced neutrophil responses. To explore the mechanisms by which uPA exerts these effects, we examined the ability of specific uPA domains to increase cytokine expression in murine and human neutrophils stimulated with LPS. Whereas the addition of intact uPA to neutrophils cultured with LPS increased mRNA and protein levels of interleukin-1beta, macrophage-inflammatory protein-2, and tumor necrosis factor alpha, deletion of the kringle domain (KD) from uPA resulted in loss of these potentiating effects. Addition of purified uPA KD to LPS-stimulated neutrophils increased cytokine expression to a degree comparable with that produced by single-chain uPA. Inclusion of the arginine-glycine-aspartic but not the arginine-glycine-glutamic peptide to neutrophil cultures blocked uPA kringle-induced potentiation of proinflammatory responses, demonstrating that interactions between the KD and integrins were involved. Antibodies to alpha(V) or beta(3) integrins or to the combination of alpha(V)beta(3) prevented uPA kringle-induced enhancement of expression of proinflammatory cytokines and also of adhesion of neutrophils to the uPA KD. These results demonstrate that the KD of uPA, through interaction with alpha(V)beta(3) integrins, potentiates neutrophil activation.
Collapse
Affiliation(s)
- Sang-Hyun Kwak
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Jin H, Song YP, Boel G, Kochar J, Pancholi V. Group A streptococcal surface GAPDH, SDH, recognizes uPAR/CD87 as its receptor on the human pharyngeal cell and mediates bacterial adherence to host cells. J Mol Biol 2005; 350:27-41. [PMID: 15922359 DOI: 10.1016/j.jmb.2005.04.063] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Revised: 04/22/2005] [Accepted: 04/26/2005] [Indexed: 11/16/2022]
Abstract
Streptococcal surface dehydrogenase (SDH) is a multifunctional, anchorless protein present on the surface of group A Streptococcus (GAS). It plays a regulatory role in GAS-mediated intracellular signaling events in human pharyngeal cells. Using ligand-binding assays, we have identified an approximately 55 kDa protein as an SDH-specific receptor protein on the surface of Detroit human pharyngeal cells. LC-MS/MS analyses identified this SDH-binding pharyngeal cell-surface-exposed membrane-bound protein as uPAR (urokinase plasminogen activator receptor)/CD87. Ligand-binding assays also revealed that only the N-terminal domain (D1) of uPAR bound to SDH. uPAR-D1 more specifically bound to the C-terminal alpha-helix and two immediate flanking regions of the S-loop of the SDH molecule. Site-directed mutagenesis in GAS resulting in SDH with altered C-terminal ends, and the removal of uPAR from pharyngeal cells by phosphatidylinositol-phopsholipase C treatment decreased GAS ability to adhere to pharyngeal cells. When compared to uninfected Detroit pharyngeal cells, GAS-infected pharyngeal cells showed a transient but a significant increase in the expression of uPAR-specific mRNA, and a prolonged recycling process of uPAR on the cell surface. Together, these results indicate that the specific streptococcal surface protein-pharyngeal cell receptor interaction mediated by SDH and uPAR is modulated during GAS infection of human pharyngeal cells. This interaction significantly contributes to bacterial adherence and thus may play a significant role in GAS pathogenesis by regulating intracellular signaling events in pharyngeal cells.
Collapse
Affiliation(s)
- Hong Jin
- Laboratory of Bacterial Pathogenesis, Public Health Research Institute, At The International Center for Public Health, 225 Warren Street, Newark, NJ 07103-3535, USA
| | | | | | | | | |
Collapse
|
60
|
Abu-Ali S, Sugiura T, Takahashi M, Shiratsuchi T, Ikari T, Seki K, Hiraki A, Matsuki R, Shirasuna K. Expression of the urokinase receptor regulates focal adhesion assembly and cell migration in adenoid cystic carcinoma cells. J Cell Physiol 2005; 203:410-9. [PMID: 15521066 DOI: 10.1002/jcp.20242] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Adenoid cystic carcinoma (AdCC) cell lines (ACCS and ACCT) showed higher migration responses and adhesion to the extracellular matrix (ECM), especially types I and IV collagen, than did the oral squamous cell carcinoma (SCC) lines (NA and TF). The response to collagens was largely and exclusively inhibited by anti-alpha(2) integrin antibody. Moreover, AdCC cell lines expressed higher surface levels of urokinase-type plasminogen activator receptor (uPAR) than did SCC cell lines. When AdCC cells were plated on collagen, the surface level of uPAR was increased, and numerous focal adhesions consisting of uPAR, vinculin, and paxillin were assembled; whereas collagen-stimulated SCC cell counterparts or AdCC cells plated on other types of ECM, such as fibronectin, failed to assemble such definite focal adhesions. In order to elucidate the association of uPAR with collagen-induced events, an ACCS-AS cell line transfected with a vector expressing antisense uPAR RNA was established and shown to have reduced uPAR (about 10% that of parental ACCS at both the protein and mRNA levels). ACCS-AS showed a strong reduction of collagen-stimulated migration and focal adhesion assembly of alpha(2) integrin, vinculin, and paxillin. These findings suggest that AdCC has a proclivity for migrating to types I and IV collagens due to the overexpression of uPAR, which plays a key role in focal adhesion assembly and migration.
Collapse
Affiliation(s)
- Samah Abu-Ali
- Department of Oral and Maxillofacial Surgery, Graduate School of Dental Science, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Renckens R, Roelofs JJTH, de Waard V, Florquin S, Lijnen HR, Carmeliet P, van der Poll T. The role of plasminogen activator inhibitor type 1 in the inflammatory response to local tissue injury. J Thromb Haemost 2005; 3:1018-25. [PMID: 15869599 DOI: 10.1111/j.1538-7836.2005.01311.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND The plasma levels of the plasminogen activator-inhibitor type 1 (PAI-1) are consistently elevated in patients with sterile tissue injury, often accompanied by a systemic acute phase protein response. It remains unknown, however, whether and to what extent PAI-1 affects the host response to trauma. METHODS AND RESULTS By using the well-established murine model of turpentine-induced tissue injury we compared local and systemic inflammatory responses in PAI-1 gene-deficient (PAI-1-/-) and normal wild-type (Wt) mice. Subcutaneous turpentine injection elicited strong increases in PAI-1 protein concentration in plasma and at the site of injury, but not in liver. PAI-1 mRNA was locally increased and expressed mainly by macrophages and endothelial cells. PAI-1 deficiency greatly enhanced the early influx of neutrophils to the site of inflammation, which was associated with increased edema and necrosis at 8 h after injection. Furthermore, PAI-1-/- mice showed a reduced early interleukin (IL)-6 induction with subsequently lower acute phase protein levels and a much slower recovery of body weight loss. CONCLUSION These findings suggest that PAI-1 is not merely a marker of tissue injury but plays a functional role in the local and systemic host response to trauma.
Collapse
Affiliation(s)
- R Renckens
- Laboratory of Experimental Internal Medicine, Academic Medical Center, University of Amsterdam, Netherlands.
| | | | | | | | | | | | | |
Collapse
|
62
|
Rangaswami H, Bulbule A, Kundu GC. JNK1 differentially regulates osteopontin-induced nuclear factor-inducing kinase/MEKK1-dependent activating protein-1-mediated promatrix metalloproteinase-9 activation. J Biol Chem 2005; 280:19381-92. [PMID: 15757900 DOI: 10.1074/jbc.m414204200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have recently demonstrated that nuclear factor-inducing kinase (NIK) plays a crucial role in osteopontin (OPN)-induced mitogen-activated protein kinase/I kappa B alpha kinase-dependent nuclear factor kappa B (NF kappa B)-mediated promatrix metalloproteinase-9 activation (Rangaswami, H., Bulbule, A., and Kundu, G. C. (2004) J. Biol. Chem. 279, 38921-38935). However, the molecular mechanism(s) by which OPN regulates NIK/MEKK1-dependent activating protein-1 (AP-1)-mediated promatrix metalloproteinase-9 activation and whether JNK1 plays any role in regulating both these pathways that control the cell motility are not well defined. Here we report that OPN induces alpha v beta3 integrin-mediated MEKK1 phosphorylation and MEKK1-dependent JNK1 phosphorylation and activation. Overexpression of NIK enhances OPN-induced c-Jun expression, whereas overexpressed NIK had no role in OPN-induced JNK1 phosphorylation and activation. Sustained activation of JNK1 by overexpression of wild type but not kinase negative MEKK1 resulted in suppression of ERK1/2 activation. But this did not affect the OPN-induced NIK-dependent ERK1/2 activation. OPN stimulated both NIK and MEKK1-dependent c-Jun expression, leading to AP-1 activation, whereas NIK-dependent AP-1 activation is independent of JNK1. OPN also enhanced JNK1-dependent/independent AP-1-mediated urokinase type plasminogen activator (uPA) secretion, uPA-dependent promatrix metalloproteinase-9 (MMP-9) activation, cell motility, and invasion. OPN stimulates tumor growth, and the levels of c-Jun, AP-1, urokinase type plasminogen activator, and MMP-9 were higher in OPN-induced tumor compared with control. To our knowledge this is first report that OPN induces NIK/MEKK1-mediated JNK1-dependent/independent AP-1-mediated pro-MMP-9 activation and regulates the negative crosstalk between NIK/ERK1/2 and MEKK1/JNK1 pathways that ultimately controls the cell motility, invasiveness, and tumor growth.
Collapse
|
63
|
Magill C, Katz BA, Mackman RL. Emerging therapeutic targets in oncology: urokinase-type plasminogen activator system. ACTA ACUST UNITED AC 2005. [DOI: 10.1517/14728222.3.1.109] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
64
|
Frankenne F, Noel A, Bajou K, Sounni NE, Goffin F, Masson V, Munaut C, Remacle A, Foidart JM. Molecular interactions involving urokinase plasminogen activator (uPA), its receptor (uPAR) and its inhibitor, plasminogen activator inhibitor-1 (PAI-1), as new targets for tumour therapy. ACTA ACUST UNITED AC 2005. [DOI: 10.1517/14728222.3.3.469] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
65
|
García Mediero JM, Ferruelo Alonso A, Páez Borda A, Luján Galán M, Angulo Cuesta J, Chiva Robles V, Berenguer Sánchez A. Efecto de polifenoles de la dieta mediterránea sobre la proliferación y mediadores de la invasividad “in vitro” de la línea de cáncer vesical murino MB-49. Actas Urol Esp 2005; 29:743-9. [PMID: 16304905 DOI: 10.1016/s0210-4806(05)73335-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To evaluate the effect of different polyphenols on the proliferation and invasive capacity of MB-49 murine bladder tumor cell lines and to identify the mediators involved in this process. MATERIALS AND METHODS MB-49 murine bladder cancer cells were cultured in media supplemented with resveratrol, rutin, morin, quercetin, gallic acid and tannic acid (all of them are polyphenols usually present in Mediterranean diet) for periods of 24, 48 and 72 hours to quantify the expression of urokinase-type plasminogen activator (uPA) and its receptor (uPAR) in the culture medium, as well as of metalloproteinase-9 (MMP-9) and cell proliferation. RESULTS All the polyphenols studied significantly inhibited proliferation of MB-49 cells, varying according to the time periods and doses used. The cells in the media supplemented with the nutrients to study did not show inhibition of mRNA expression of urokinase-type plasminogen activator (uPA) or its high affinity receptor (uPAR). It was even slightly increased in certain cases. However, mRNA expression of metalloproteinase-9 was strongly inhibited. CONCLUSIONS The polyphenols present in our usual diet exert an effect on the proliferation and mediators of bladder tumor invasiveness in MB-49 cells.
Collapse
|
66
|
Affiliation(s)
- Marcel Levi
- Department of Internal Medicine (F-4), Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| | | | | |
Collapse
|
67
|
Ferland C, Flamand N, Davoine F, Chakir J, Laviolette M. IL-16 activates plasminogen-plasmin system and promotes human eosinophil migration into extracellular matrix via CCR3-chemokine-mediated signaling and by modulating CD4 eosinophil expression. THE JOURNAL OF IMMUNOLOGY 2004; 173:4417-24. [PMID: 15383572 DOI: 10.4049/jimmunol.173.7.4417] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Increased eosinophil counts are a major feature of asthmatic airways. Eosinophil recruitment requires migration through epithelium and tissue extracellular matrix by activation of proteases. We assessed the capacity of IL-16, a CD4(+) cell chemotactic factor, to induce migration of eosinophils through a reconstituted basement membrane and evaluated the proteases, mediators, and receptors involved in this migration. IL-16 added to lower chambers of Invasion Chambers elicited eosinophil migration through Matrigel. This effect was decreased by inhibition of the plasminogen-plasmin system (Abs against urokinase plasminogen activator receptor or plasminogen depletion), but not by anti-matrix metalloproteinase-9 Abs. Abs against CD4 also inhibited IL-16-induced eosinophil migration. At the baseline level, few eosinophils (4.6% positive cells with a mean fluorescence of 0.9) expressed surface membrane CD4, while most permeabilized eosinophils (68% positive cells with a mean fluorescence of 18) express the CD4 Ag. TNF-pretreatment increased surface membrane CD4(+) expression by 6-fold as previously described, and increased IL-16-induced cell migration by 2.2-fold. Incubation of eosinophils with IL-16 also increased surface membrane CD4 expression by 5.4-fold, supporting the role of CD4 as receptor for IL-16. Abs against CCR3, eotaxin, or RANTES blocked IL-16-induced migration. In conclusion, IL-16 promotes eosinophil migration in vitro, by activating the plasminogen-plasmin system and increasing the membrane expression of its receptor. This effect is initiated via CD4 and mediated via the release of CCR3 ligand chemokines. Interestingly, most eosinophils express intracellular CD4. Hence, IL-16 may play an important role in the recruitment of blood eosinophils to the bronchial mucosa of asthmatics.
Collapse
Affiliation(s)
- Claudine Ferland
- Unité de Recherche en Pneumologie, Centre de Recherche de l'Hôpital Laval, Institut Universitaire de Cardiologie et de Pneumologie de l'Université Laval, Sainte-Foy, Québec, Canada
| | | | | | | | | |
Collapse
|
68
|
Selleri C, Montuori N, Ricci P, Visconte V, Carriero MV, Sidenius N, Serio B, Blasi F, Rotoli B, Rossi G, Ragno P. Involvement of the urokinase-type plasminogen activator receptor in hematopoietic stem cell mobilization. Blood 2004; 105:2198-205. [PMID: 15494432 DOI: 10.1182/blood-2004-06-2424] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated the involvement of the urokinase-type plasminogen-activator receptor (uPAR) in granulocyte-colony-stimulating factor (G-CSF)-induced mobilization of CD34+ hematopoietic stem cells (HSCs) from 16 healthy donors. Analysis of peripheral blood mononuclear cells (PBMNCs) showed an increased uPAR expression after G-CSF treatment in CD33+ myeloid and CD14+ monocytic cells, whereas mobilized CD34+ HSCs remained uPAR negative. G-CSF treatment also induced an increase in serum levels of soluble uPAR (suPAR). Cleaved forms of suPAR (c-suPAR) were released in vitro by PBMNCs and were also detected in the serum of G-CSF-treated donors. c-suPAR was able to chemoattract CD34+ KG1 leukemia cells and CD34+ HSCs, as documented by their in vitro migratory response to a chemotactic suPAR-derived peptide (uPAR84-95). uPAR84-95 induced CD34+ KG1 and CD34+ HSC migration by activating the high-affinity fMet-Leu-Phe (fMLP) receptor (FPR). In addition, uPAR84-95 inhibited CD34+ KG1 and CD34+ HSC in vitro migration toward the stromal-derived factor 1 (SDF1), thus suggesting the heterologous desensitization of its receptor, CXCR4. Finally, uPAR84-95 treatment significantly increased the output of clonogenic progenitors from long-term cultures of CD34+ HSCs. Our findings demonstrate that G-CSF-induced upregulation of uPAR on circulating CD33+ and CD14+ cells is associated with increased uPAR shedding, which leads to the appearance of serum c-suPAR. c-suPAR could contribute to the mobilization of HSCs by promoting their FPR-mediated migration and by inducing CXCR4 desensitization.
Collapse
Affiliation(s)
- Carmine Selleri
- Division of Hematology, Istituto di Endocrinologia ed Oncologia Sperimentale (IEOS), Consiglio Nazionale delle Ricerche, Via Pansini 5, I-80131, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Roelofs JJTH, Rowshani AT, van den Berg JG, Claessen N, Aten J, ten Berge IJM, Weening JJ, Florquin S. Expression of urokinase plasminogen activator and its receptor during acute renal allograft rejection. Kidney Int 2004; 64:1845-53. [PMID: 14531820 DOI: 10.1046/j.1523-1755.2003.00261.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND In inflammation, urokinase plasminogen activator (uPA) and its receptor (uPAR) play an important role in fibrinolysis and in activation and chemotaxis of neutrophils and lymphocytes. Moreover, the uPA/uPAR system is involved in processes that affect turnover of the extracellular matrix (ECM). The aim of this study was to determine the local and systemic release of uPAR, and the expression of uPA and uPAR in renal tissues during acute renal allograft rejection. METHODS Blood, urine, and tissue samples were collected from 33 patients diagnosed with acute allograft rejection and from 14 transplant patients without rejection. From 10 healthy volunteers, blood and urine were collected as a control. In urine and blood samples, the levels of uPAR were determined by enzyme-linked immunosorbent assay (ELISA). Immunostaining and in situ hybridization for uPA and uPAR were performed on renal biopsies. RESULTS uPAR was detectable at low levels in serum and urine of healthy volunteers and was increased in nonrejecting allograft recipients. Serum and urine levels of uPAR were higher in transplant recipients with rejection compared to nonrejectors. The urine and serum levels of uPAR correlated with the renal function. Immunostaining and in situ hybridization showed an up-regulation of both uPA and uPAR in rejection biopsies. Nonrejected grafts displayed no expression of uPA and uPAR by immunostaining, or of uPAR by in situ hybridization. uPA was detected in a limited number of tubular epithelial cells by in situ hybridization. During rejection, lymphocytes as well as tubular epithelial cells showed uPA and uPAR expression. In the vascular types of rejection, strong expression of uPA was also seen in the entire vessel wall, while uPAR was expressed by the endothelium. CONCLUSION This study shows that (1) uPA and uPAR are up-regulated during acute renal allograft rejection; (2) uPAR levels in urine and serum correlate with serum creatinine levels, and (3) uPA and uPAR are produced by inflammatory cells, tubular epithelium, and vascular endothelium during acute renal allograft rejection.
Collapse
Affiliation(s)
- Joris J T H Roelofs
- Department of Pathology and Renal Transplant Unit, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Noel A, Maillard C, Rocks N, Jost M, Chabottaux V, Sounni NE, Maquoi E, Cataldo D, Foidart JM. Membrane associated proteases and their inhibitors in tumour angiogenesis. J Clin Pathol 2004; 57:577-84. [PMID: 15166260 PMCID: PMC1770325 DOI: 10.1136/jcp.2003.014472] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cell surface proteolysis is an important mechanism for generating biologically active proteins that mediate a range of cellular functions and contribute to biological processes such as angiogenesis. Although most studies have focused on the plasminogen system and matrix metalloproteinases (MMPs), recently there has been an increase in the identification of membrane associated proteases, including serine proteases, ADAMs, and membrane-type MMPs (MT-MMPs). Normally, protease activity is tightly controlled by tissue inhibitors of MMPs (TIMPs) and plasminogen activator inhibitors (PAIs). The balance between active proteases and inhibitors is thought to determine the occurrence of proteolysis in vivo. High concentrations of proteolytic system components correlate with poor prognosis in many cancers. Paradoxically, high (not low) PAI-1 or TIMP concentrations predict poor survival in patients with various cancers. Recent observations indicate a much more complex role for protease inhibitors in tumour progression and angiogenesis than initially expected. As knowledge in the field of protease biology has improved, the unforeseen complexities of cell associated enzymes and their interaction with physiological inhibitors have emerged, often revealing unexpected mechanisms of action.
Collapse
Affiliation(s)
- A Noel
- Laboratory of Tumour and Development Biology, University of Liège, Sart Tilman, B-4000 Liège, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Béné MC, Castoldi G, Knapp W, Rigolin GM, Escribano L, Lemez P, Ludwig WD, Matutes E, Orfao A, Lanza F, van't Veer M. CD87 (urokinase-type plasminogen activator receptor), function and pathology in hematological disorders: a review. Leukemia 2004; 18:394-400. [PMID: 14671631 DOI: 10.1038/sj.leu.2403250] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The analysis of CD87 (urokinase-type plasminogen activator receptor - uPAR) expression has a potential role in the diagnostic or prognostic work-up of several hematological malignancies, particularly acute leukemia and multiple myeloma. The distribution of CD87 in acute myeloid leukemia (AML) varies according to the FAB subtype (highest expression in M5 and lowest in M0). Functionally, it is conceivable that the expression of CD87 could contribute to the invasive properties of the leukemic cells towards the skin and mucosal tissues as reflected by the clinical behavior of CD87 high cases. The lack of or weaker expression of CD87 on blast cells from ALL patients supports the concept that CD87 investigation might help in the distinction of AMLs from lymphoid malignancies. Among lymphoproliferative disorders, the expression of CD87 is exclusively found in pathological plasma cells. Since plasma cells also coexpress some adhesion molecules such as CD138 and CD56, this observation is consistent with the capacity of these cells to home in the bone compartment. High levels of soluble uPAR appear to represent an independent factor predicting worse prognosis and extramedullary involvement in multiple myeloma.
Collapse
Affiliation(s)
- M C Béné
- GEIL, Groupe d'Etude Immunologique des Leucémies, Immunology Laboratory, University Hospital of Nancy, Vandoeuvre les Nancy, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Muth H, Maus U, Wygrecka M, Lohmeyer J, Grimminger F, Seeger W, Günther A. Pro- and antifibrinolytic properties of human pulmonary microvascular versus artery endothelial cells: impact of endotoxin and tumor necrosis factor-alpha. Crit Care Med 2004; 32:217-26. [PMID: 14707582 DOI: 10.1097/01.ccm.0000104941.89570.5f] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Microvascular thrombosis is a common feature of acute inflammatory lung injury, as occurs in sepsis and acute respiratory distress syndrome, but the underlying pathomechanisms are presently not fully understood. DESIGN Experimental. SETTING University laboratory. SUBJECTS Lung endothelial cells. INTERVENTIONS We characterized the expression of tissue-type and urokinase-type plasminogen activator (t-PA and u-PA) as well as plasminogen activator inhibitor (PAI)-1 and PAI-2 in human endothelial cells (EC) from the microvascular pulmonary circulation (HMVEC-L) and compared it with that of EC from pulmonary artery (HPAEC) and umbilical vein (HUVEC) under baseline conditions and upon stimulation with either tumor necrosis factor-alpha or lipopolysaccharide. MEASUREMENTS AND MAIN RESULTS Real-time reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay were employed for quantification of messenger RNA and protein concentrations. Under baseline conditions, comparable PAI-1 expression was noted in all EC. HPAEC were characterized by significantly higher baseline expression of t-PA and PAI-2 compared with HUVEC and HMVEC-L. In contrast, u-PA messenger RNA concentrations were found to be significantly higher in nonstimulated HMVEC-L compared with HUVEC and HPAEC. In all EC, stimulation with tumor necrosis factor-alpha and lipopolysaccharide increased the expression of PAI-1, PAI-2, and u-PA and decreased t-PA expression. The changes in messenger RNA content were reflected by corresponding changes in the protein concentrations. CONCLUSIONS High baseline u-PA expression is a prominent feature of human lung microvascular EC, whereas pulmonary artery EC are characterized by high t-PA concentrations. Microbial and inflammatory challenge provokes up-regulation of PAI-1 and PAI-2 and down-regulation of t-PA in both macro- and microvascular pulmonary EC, which may favor local fibrin deposition.
Collapse
Affiliation(s)
- H Muth
- Department of Internal Medicine, Justus-Liebig-University Giessen, Germany
| | | | | | | | | | | | | |
Collapse
|
73
|
Pancholi V, Fontan P, Jin H. Plasminogen-mediated group A streptococcal adherence to and pericellular invasion of human pharyngeal cells. Microb Pathog 2004; 35:293-303. [PMID: 14580393 DOI: 10.1016/j.micpath.2003.08.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Alpha-enolase (SEN) is a strong plasminogen-binding protein on the surface of group A streptococci (GAS). By flow cytometry and immunofluorescence analyses and using human enolase-specific antibody, human pharyngeal cells (Detroit 562) also were found to express enolase on their surface. Detroit 562 cells preferentially bound to Lys-plasminogen and this binding was inhibited in the presence of a lysine analog, epsilon-aminocaproic acid and by carboxypeptidase-B treatment suggesting that the C-terminal lysine residue of the putative pharyngeal cell receptor(s) may play an important role in plasminogen-binding. The increased plasminogen-binding in the presence of free enolase indicated the presence of an enolase/SEN-specific receptor on the pharyngeal cell surface. GAS, when precoated with Lys-plasminogen, adhered to pharyngeal cells significantly more in numbers than when precoated with fibronectin or laminin. Similarly, GAS adhered also significantly more in numbers to pharyngeal cells which were precoated with Lys-plasminogen. GAS adhered similarly in high numbers when incubated with pharyngeal cells in the presence of soluble plasminogen. The de novo pharyngeal cell-bound protease activity, created as a result of activation of bound plasminogen by t-PA, indicated its potential role in pericellular fibrinolytic activity. Further GAS with tPA-activated plasminogen bound on their surface penetrated through Transwell-grown pharyngeal cells in significantly higher numbers. Together, the results presented in this study highlight a novel function of plasminogen in streptococcal adherence to pharyngeal cells and a newly discovered streptococcal ability to pericellularly invade pharyngeal cells as a result of tPA/endogenous plasminogen activator-mediated proteolytic activity.
Collapse
Affiliation(s)
- Vijay Pancholi
- Laboratory of Bacterial Pathogenesis, Public Health Research Institute, The International Center for Public Health, 225 Warren Street, W450T, Newark, NJ 07103-3535, USA.
| | | | | |
Collapse
|
74
|
Rustamzadeh E, Li C, Doumbia S, Hall WA, Vallera DA. Targeting the over-expressed urokinase-type plasminogen activator receptor on glioblastoma multiforme. J Neurooncol 2004; 65:63-75. [PMID: 14649886 DOI: 10.1023/a:1026238331739] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A recombinant fusion protein targeting the urokinase-type plasminogen activator receptor (uPAR) and delivering a potent catalytic toxin has the advantage of simultaneously targeting both over-expressed uPAR on glioblastoma cells and on the tumor neovasculature. Such a hybrid protein was synthesized consisting of the noninternalizing amino-terminal fragment (ATF) of urokinase-type plasminogen activator (uPA) for binding, and the catalytic portion of diphtheria toxin (DT) for killing, and the translocation enhancing region (TER) of DT for internalization. The protein was highly selective for human glioblastoma in vitro and in vivo. In vivo, this DT/ATF hybrid called DTAT caused the regression of small subcutaneous uPAR-expressing tumors with minimal toxicity to critical organs. In vitro, DTAT killed only uPAR-positive glioblastoma cell lines and human endothelial cells in the form of the HUVEC cell line. Killing was selective and blockable with specific antibody. DTAT was highly effective against tumor cells cultured from glioblastoma multiforme patients and in vitro mixing experiments combining DTAT with DTIL13 another highly effective anti-glioblastoma agent showed that the mixture was as toxic as the most potent immunotoxin. In this article, we review our progress to date with DTAT.
Collapse
Affiliation(s)
- Edward Rustamzadeh
- Department of Neurosurgery, University of Minnesota Cancer Center, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
75
|
Daroqui MC, Puricelli LI, Urtreger AJ, Elizalde PV, Lanuza GM, Bal de Kier Joffé E. Involvement of TGF-beta(s)/T(beta)Rs system in tumor progression of murine mammary adenocarcinomas. Breast Cancer Res Treat 2004; 80:287-301. [PMID: 14503801 DOI: 10.1023/a:1024910332621] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We studied the expression of TGF-beta/T(beta)R system and its biological role in tumor development, in M3 and MM3 murine mammary adenocarcinomas with different metastasizing capability and in LM3 and LMM3 derived cell lines. All the studied cells secreted TGF-beta(s) and expressed T(beta)Rs. While the proliferation of the poorly metastatic M3 cells was significantly inhibited by 4 ng/ml TGF-beta(s), the highly metastatic MM3 cells were only slightly inhibited in response to the highest dose used. LM3 and LMM3 cells, highly invasive and metastatic, were totally refractory to TGF-beta antiproliferative effect. The role of TGF-beta in modulating key proteolytic cascades in tumor progression was also studied. TGF-beta(s) enhanced metalloproteinases production in all the studied cells while induced a stimulatory net effect on plasmin system activity only in the more metastatic cells. Our results in this murine mammary tumor lineage support the concept that dissociation of TGF-beta regulated growth control versus proteolytic enzyme pathways promotes tumor dissemination.
Collapse
Affiliation(s)
- M Cecilia Daroqui
- Research Area, Institute of Oncology Angel H. Roffo, University of Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
76
|
Das R, Mahabeleshwar GH, Kundu GC. Osteopontin induces AP-1-mediated secretion of urokinase-type plasminogen activator through c-Src-dependent epidermal growth factor receptor transactivation in breast cancer cells. J Biol Chem 2004; 279:11051-64. [PMID: 14704150 DOI: 10.1074/jbc.m310256200] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We have recently reported that osteopontin (OPN) stimulates cell motility and nuclear factor kappaB-mediated secretion of urokinase-type plasminogen activator (uPA) through phosphatidylinositol 3-kinase/Akt signaling pathways in breast cancer cells (Das, R., Mahabeleshwar, G. H., and Kundu, G. C. (2003) J. Biol. Chem. 278, 28593-28606). However, the role(s) of OPN on AP-1-mediated uPA secretion and cell motility and the involvement of c-Src/epidermal growth factor receptor (EGFR) in these processes in breast cancer cells are not well defined. In this study we report that OPN induces alpha(v)beta(3) integrin-mediated c-Src kinase activity in both highly invasive (MDA-MB-231) and low invasive (MCF-7) breast cancer cells. Ligation of OPN with alpha(v)beta(3) integrin induces kinase activity and tyrosine phosphorylation of EGFR in MDA-MB-231 and wild type EGFR-transfected MCF-7 cells, and this was inhibited by the dominant negative form of c-Src (dn c-Src) indicating that c-Src kinase plays a crucial role in this process. OPN induces association between alpha(v)beta(3) integrin and EGFR on the cell membrane in a macromolecular form with c-Src. Furthermore, OPN induces alpha(v)beta(3) integrin/EGFR-mediated ERK1/2 phosphorylation and AP-1 activation. Moreover, dn c-Src also suppressed the OPN-induced phosphatidylinositol (PI) 3-kinase activity in these cells indicating that c-Src acts as master switch in regulating MEK/ERK1/2 and phosphatidylinositol 3-kinase/Akt signaling pathways. OPN-induced ERK phosphorylation, AP-1 activation, uPA secretion, and cell motility were suppressed when cells were transfected with dn c-Src or pretreated with alpha(v)beta(3) integrin antibody, c-Src kinase inhibitor (pp2), EGFR tyrosine kinase inhibitor (PD153035), and MEK-1 inhibitor (PD98059). To our knowledge, this is the first report that OPN induces alpha(v)beta(3) integrin-mediated AP-1 activity and uPA secretion by activating c-Src/EGFR/ERK signaling pathways and further demonstrates a functional molecular link between OPN-induced integrin/c-Src-dependent EGFR phosphorylation and ERK/AP-1-mediated uPA secretion, and all of these ultimately control the motility of breast cancer cells.
Collapse
Affiliation(s)
- Riku Das
- National Center for Cell Science (NCCS), NCCS Complex, Pune 411 007, India
| | | | | |
Collapse
|
77
|
Derbise A, Song YP, Parikh S, Fischetti VA, Pancholi V. Role of the C-terminal lysine residues of streptococcal surface enolase in Glu- and Lys-plasminogen-binding activities of group A streptococci. Infect Immun 2004; 72:94-105. [PMID: 14688086 PMCID: PMC343989 DOI: 10.1128/iai.72.1.94-105.2004] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2003] [Accepted: 09/22/2003] [Indexed: 11/20/2022] Open
Abstract
Streptococcal surface enolase (SEN) is a major plasminogen-binding protein of group A streptococci. Our earlier biochemical studies have suggested that the region responsible for this property is likely located at the C-terminal end of the SEN molecule. In the present study, the gene encoding SEN was cloned from group A streptococci M6 isolate D471. A series of mutations in the sen gene corresponding to the C-terminal region (428KSFYNLKK435) of the SEN molecule were created by either deleting one or more terminal lysine residues or replacing them with leucine. All purified recombinant SEN proteins with altered C-terminal ends were found to be enzymatically active and were analyzed for their Glu- and Lys-plasminogen-binding activities. Wild-type SEN bound to Lys-plasminogen with almost three times more affinity than to Glu-plasminogen. However, the recombinant mutant SEN proteins with a deletion of Lys434-435 or with K435L and K434-435L replacements showed a significant decrease in Glu- and Lys-plasminogen-binding activities. Accordingly, a streptococcal mutant expressing SEN-K434-435L showed a significant decrease in Glu- and Lys-plasminogen-binding activities. Biochemical and functional analyses of the isogenic mutant strain revealed a significant decrease in its abilities to cleave a chromogenic tripeptide substrate, acquire plasminogen from human plasma, and penetrate the extracellular matrix. Together, these data indicate that the last two C-terminal lysine residues of surface-exposed SEN contribute significantly to the plasminogen-binding activity of intact group A streptococci and hence to their ability to exploit host properties to their own advantage in tissue invasion.
Collapse
Affiliation(s)
- Anne Derbise
- Laboratory of Bacterial Pathogenesis, Public Health Research Institute, International Center for Public Health, Newark, New Jersey 07103-3535, USA
| | | | | | | | | |
Collapse
|
78
|
Shetty J, Wolkowicz MJ, Digilio LC, Klotz KL, Jayes FL, Diekman AB, Westbrook VA, Farris EM, Hao Z, Coonrod SA, Flickinger CJ, Herr JC. SAMP14, a novel, acrosomal membrane-associated, glycosylphosphatidylinositol-anchored member of the Ly-6/urokinase-type plasminogen activator receptor superfamily with a role in sperm-egg interaction. J Biol Chem 2003; 278:30506-15. [PMID: 12788941 DOI: 10.1074/jbc.m301713200] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report a new member of the Ly-6/urokinase-type plasminogen activator receptor (uPAR) superfamily of receptors, SAMP14, which is retained on the inner acrosomal membrane of the human spermatozoan following the acrosome reaction and may play a role in fertilization. The SAMP14 sequence predicted a glycosylphosphatidylinositol (GPI)-anchored protein with a signal peptide, a transmembrane domain near the carboxyl terminus, and a putative transamidase cleavage site in the proprotein. Attachment of SAMP14 to the membrane by a lipid anchor was confirmed by its sensitivity to phosphatidylinositol phospholipase C. SAMP14 has a single functional domain similar to the Ly-6 and urokinase plasminogen activator receptor superfamily of proteins, and the gene mapped to 19q13.33, near the PLAUR locus for uPAR at 19q13.2. Northern and dot blotting showed that SAMP14 expression was testis-specific. Indirect immunofluorescence and immunoelectron microscopy with antisera to purified recombinant SAMP14 localized the protein to outer and inner acrosomal membranes as well as the acrosomal matrix of ejaculated human sperm. Acrosome-reacted sperm demonstrated SAMP14 immunofluorescence, indicating its retention on the inner acrosomal membrane following the acrosome reaction. However, SAMP14 localized to the entire sperm when unwashed swim-up sperm from the ejaculate were stained, indicating that some SAMP14 is loosely associated with the plasma membrane. Antibodies against recombinant SAMP14 inhibited both the binding and the fusion of human sperm to zona free hamster eggs, suggesting that SAMP14 may have a role in sperm-egg interaction. SAMP14 represents a GPI-anchored putative receptor in the Ly-6/uPAR family that is exposed on the inner acrosomal membrane after the acrosome reaction.
Collapse
Affiliation(s)
- Jagathpala Shetty
- Department of Cell Biology, Center for Research in Contraceptive and Reproductive Health, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Das R, Mahabeleshwar GH, Kundu GC. Osteopontin stimulates cell motility and nuclear factor kappaB-mediated secretion of urokinase type plasminogen activator through phosphatidylinositol 3-kinase/Akt signaling pathways in breast cancer cells. J Biol Chem 2003; 278:28593-606. [PMID: 12771144 DOI: 10.1074/jbc.m303445200] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have recently reported that osteopontin (OPN) induces nuclear factor kappaB (NFkappaB)-mediated promatrix metalloproteinase-2 activation through IkappaBalpha/IKK signaling pathways and that curcumin (diferulolylmethane) down-regulates these pathways (Philip, S., and Kundu, G. C. (2003) J. Biol. Chem. 278, 14487-14497). However, the molecular mechanism by which upstream kinases regulate the OPN-induced NFkappaB activation and urokinase type plasminogen activator (uPA) secretion in human breast cancer cells is not well defined. Here we report that OPN induces the phosphatidylinositol 3'-kinase (PI 3'-kinase) activity and phosphorylation of Akt in highly invasive MDA-MB-231 and low invasive MCF-7 cells. The OPN-induced Akt phosphorylation was inhibited when cells were transfected with a dominant negative mutant of the p85 domain of PI 3-kinase (Deltap85) and enhanced when cells were transfected with an activated form of PI 3-kinase (p110CAAX), indicating that PI 3'-kinase is involved in Akt phosphorylation. OPN enhances the interaction between IkappaBalpha kinase (IKK) and phosphorylated Akt. OPN also induces NFkappaB activation through phosphorylation and degradation of IkappaBalpha by inducing the IKK activity. However, both pharmacological (wortmannin and LY294002) and genetic (Deltap85) inhibitors of PI 3'-kinase inhibited OPN-induced Akt phosphorylation, IKK activity, and NFkappaB activation through phosphorylation and degradation of IkappaBalpha. OPN also enhances uPA secretion, cell motility, and extracellular matrix invasion. Furthermore, cells transfected with Deltap85 or the super-repressor form of IkappaBalpha suppressed the OPN-induced uPA secretion and cell motility, whereas cells transfected with p110CAAX enhanced these effects. Pretreatment of cells with PI 3-kinase inhibitors or NFkappaB inhibitory peptide (SN-50) reduced the OPN-induced uPA secretion, cell motility, and invasion. To our knowledge, this is first report that OPN induces NFkappaB activity and uPA secretion by activating PI 3'-kinase/Akt/IKK-mediated signaling pathways and further demonstrates a functional molecular link between OPN-induced PI 3'-kinase-dependent Akt phosphorylation and NFkappaB-mediated uPA secretion, and all of these ultimately control the motility of breast cancer cells.
Collapse
Affiliation(s)
- Riku Das
- National Center for Cell Science (NCCS), NCCS Complex, Pune 411 007, India
| | | | | |
Collapse
|
80
|
Abraham E, Gyetko MR, Kuhn K, Arcaroli J, Strassheim D, Park JS, Shetty S, Idell S. Urokinase-type plasminogen activator potentiates lipopolysaccharide-induced neutrophil activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:5644-51. [PMID: 12759445 DOI: 10.4049/jimmunol.170.11.5644] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Urokinase plasminogen activator (uPA) is a serine protease that catalyzes the conversion of plasminogen to plasmin. Although increased circulating levels of uPA are present in endotoxemia and sepsis, conditions in which activated neutrophils contribute to the development of acute organ dysfunction, the ability of uPA to participate directly in LPS-induced neutrophil activation has not been examined. In the present experiments, we show that uPA can enhance activation of neutrophils exposed to submaximal stimulatory doses of LPS. In particular, uPA increased LPS-induced activation of intracellular signaling pathways, including Akt and c-Jun N-terminal kinase, nuclear translocation of the transcriptional regulatory factor NF-kappa B, and expression of proinflammatory cytokines, including IL-1 beta, macrophage-inflammatory protein-2, and TNF-alpha. There was no effect of uPA on LPS-induced activation of p38 mitogen-activated protein kinase in neutrophils. Transgenic mice unable to produce uPA (uPA(-/-)) were protected from endotoxemia-induced lung injury, as determined by development of lung edema, pulmonary neutrophil accumulation, lung IL-1 beta, macrophage-inflammatory protein-2, and TNF-alpha cytokine levels. These results demonstrate that uPA can potentiate LPS-induced neutrophil responses and also suggest that such effects are sufficiently important in vivo to play a major contributory role in neutrophil-mediated inflammatory responses, such as the development of acute lung injury.
Collapse
Affiliation(s)
- Edward Abraham
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Health Sciences Center, Denver, CO 80262, USA.
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Dai E, Guan H, Liu L, Little S, McFadden G, Vaziri S, Cao H, Ivanova IA, Bocksch L, Lucas A. Serp-1, a viral anti-inflammatory serpin, regulates cellular serine proteinase and serpin responses to vascular injury. J Biol Chem 2003; 278:18563-72. [PMID: 12637546 DOI: 10.1074/jbc.m209683200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Complex DNA viruses have tapped into cellular serpin responses that act as key regulatory steps in coagulation and inflammatory cascades. Serp-1 is one such viral serpin that effectively protects virus-infected tissues from host inflammatory responses. When given as purified protein, Serp-1 markedly inhibits vascular monocyte invasion and plaque growth in animal models. We have investigated mechanisms of viral serpin inhibition of vascular inflammatory responses. In vascular injury models, Serp-1 altered early cellular plasminogen activator (tissue plasminogen activator), inhibitor (PAI-1), and receptor (urokinase-type plasminogen activator) expression (p < 0.01). Serp-1, but not a reactive center loop mutant, up-regulated PAI-1 serpin expression in human endothelial cells. Treatment of endothelial cells with antibody to urokinase-type plasminogen activator and vitronectin blocked Serp-1-induced changes. Significantly, Serp-1 blocked intimal hyperplasia (p < 0.0001) after aortic allograft transplant (p < 0.0001) in PAI-1-deficient mice. Serp-1 also blocked plaque growth after aortic isograft transplant and after wire-induced injury (p < 0.05) in PAI-1-deficient mice indicating that increase in PAI-1 expression is not required for Serp-1 to block vasculopathy development. Serp-1 did not inhibit plaque growth in uPAR-deficient mice after aortic allograft transplant. We conclude that the poxviral serpin, Serp-1, attenuates vascular inflammatory responses to injury through a pathway mediated by native uPA receptors and vitronectin.
Collapse
Affiliation(s)
- Erbin Dai
- Vascular Biology Research Group, John P. Robarts' Research Institute, University of Western Ontario, London, Ontario N6A 5K8, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Zhang G, Kim H, Cai X, López-Guisa JM, Alpers CE, Liu Y, Carmeliet P, Eddy AA. Urokinase receptor deficiency accelerates renal fibrosis in obstructive nephropathy. J Am Soc Nephrol 2003; 14:1254-1271. [PMID: 12707394 DOI: 10.1097/01.asn.0000064292.37793.fb] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The urokinase cellular receptor (uPAR) recognizes the N-terminal growth factor domain of urokinase-type plasminogen activator (uPA) and is expressed by several cell types. The present study was designed to test the hypothesis that uPAR regulates the renal fibrogenic response to chronic injury. Groups of uPAR wild-type (+/+) and deficient (-/-) mice were investigated between 3 and 14 d after unilateral ureteral obstruction (UUO) or sham surgery. Not detected in normal kidneys, uPAR mRNA was expressed in response to UUO in the +/+ mice. By in situ hybridization, uPAR mRNA transcripts were detected in renal tubules and interstitial cells of the obstructed uPAR+/+ kidneys. The severity of renal fibrosis, based on the measurement of total collagen (13.5 +/- 1.5 versus 9.8 +/- 1.0 microg/mg kidney on day 14; -/- versus +/+) and interstitial area stained by Masson trichrome (22 +/- 4% versus 14 +/- 3% on day 14; -/- versus +/+) was significantly greater in the uPAR-/- mice. In the absence of uPAR, renal uPA activity was significantly decreased compared with the wild-type animals after UUO (62 +/- 20 versus 135 +/- 13 units at day 3 UUO; 74 +/- 17 versus 141 +/- 16 at day 7 UUO; 98 +/- 20 versus 165 +/- 10 at day 14 UUO; -/- versus +/+). In contrast, renal expression of several genes that regulate plasmin activity were similar in both genotypes, including uPA, tPA, PAI-1, protease nexin-1, and alpha2-antiplasmin. Worse renal fibrosis in the uPAR-/- mice appears to be TGF-beta-independent, as TGF-beta activity was actually reduced by 65% in the -/- mice despite similar renal TGF-beta1 mRNA levels. Significantly lower levels of the major 2.3-kb transcript and the 69-kd active protein of hepatocyte growth factor (HGF), a known anti-fibrotic growth factor, in the uPAR-/- mice suggests a potential link between HGF and the renoprotective effects of uPAR. These data suggest that renal uPAR attenuates the fibrogenic response to renal injury, an outcome that is mediated in part by urokinase-dependent but plasminogen-independent functions.
Collapse
Affiliation(s)
- Guoqiang Zhang
- Division of Nephrology, University of Washington, Children's Hospital and Regional Medical Center, 4800 Sand Point Way NE, Seattle, WA 98105, USA
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Gruss CJ, Satyamoorthy K, Berking C, Lininger J, Nesbit M, Schaider H, Liu ZJ, Oka M, Hsu MY, Shirakawa T, Li G, Bogenrieder T, Carmeliet P, El-Deiry WS, Eck SL, Rao JS, Baker AH, Bennet JT, Crombleholme TM, Velazquez O, Karmacharya J, Margolis DJ, Wilson JM, Detmar M, Skobe M, Robbins PD, Buck C, Herlyn M. Stroma formation and angiogenesis by overexpression of growth factors, cytokines, and proteolytic enzymes in human skin grafted to SCID mice. J Invest Dermatol 2003; 120:683-92. [PMID: 12648235 DOI: 10.1046/j.1523-1747.2003.12112.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Reorganization of skin during wound healing, inflammatory disorders, or cancer growth is the result of expression changes of multiple genes associated with tissue morphogenesis. We wanted to identify proteins involved in skin remodeling and select those that may be targeted for agonistic or antagonist therapeutic approaches in various disease processes. Full-thickness human skin was grafted to severe combined immunodeficient mice and injected intradermally with 38 different adenoviral vectors inserted with 37 different genes coding for growth factors, cytokines, proteolytic enzymes and their inhibitors, adhesion receptors, oncogenes, and tumor suppressor genes. Responses were characterized for infiltration of inflammatory cells, vascular density, matrix formation, fibroblast-like cell proliferation, and epidermal hyperplasia. Of the 17 growth factor vectors, 16 induced histological changes in human skin. Members of the VEGF and angiopoietin families induced neovascularization. PDGFs and TGF-betas stimulated connective tissue formation, and the chemokines IL-8 and MCP-1 attracted inflammatory neutrophils and monocytes, respectively. The serine protease uPA induced a vascular response similar to that of VEGF. Vectors with adhesion receptors, oncogenes and tumor suppressor genes had, with few exceptions, little effects on skin architecture. The overall results suggest that adenoviral vectors can effectively remodel the architecture of human skin for studies in morphogenesis, inflammatory skin disorders, wound healing, and cancer development.
Collapse
Affiliation(s)
- Claus J Gruss
- The Wistar Institute, Philadelphia, PA Center for Transgene Technology and Gene Therapy, Flanders Interuniversity Institute, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Abstract
The ability of the liver to regenerate after resection has been known for many years. Two reports from Germany in the late 1800s probably mark the introduction of the phenomenon into the scientific literature, but in the early 1900s the first reviews of this subject had appeared in the English literature. Predating these early scientific reports the legends from the Greek mythology described the fate of Prometheus. As punishment for defying Zeus and revealing the secret of fire to man, Prometheus was chained to a rock and each day had part of his liver ripped out by an eagle which, returning the following day, repeated the torture because his liver regenerated itself overnight. Although the speed of regeneration in the Greek legend is somewhat greater than that observed either clinically or in the laboratory, the myth does serve to emphasise the remarkable ability of the liver to repeatedly regenerate following repeated resections. This review aims to summarise the more recent literature concerning the early molecular events accompanying liver regeneration and to integrate this with the existing knowledge of this subject.
Collapse
Affiliation(s)
- David Mangnall
- University Department of Surgical and Anaesthetic Sciences, K Floor, Royal Hallamshire Hospital, Glossop Road S10 2JF, UK.
| | | | | |
Collapse
|
85
|
Kim KS, Hong YK, Joe YA, Lee Y, Shin JY, Park HE, Lee IH, Lee SY, Kang DK, Chang SI, Chung SI. Anti-angiogenic activity of the recombinant kringle domain of urokinase and its specific entry into endothelial cells. J Biol Chem 2003; 278:11449-56. [PMID: 12529357 DOI: 10.1074/jbc.m212358200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Urokinase plasminogen activator (uPA) belongs to a family of proteins that contains kringle domain and plays an important role in inflammation, tissue remodeling, angiogenesis, and tumor metastasis by pericellular plasminogen activation. Kringle domains of plasminogen have been shown to demonstrate anti-angiogenic and anti-tumor activities. Here, we report our investigation of the kringle domain of uPA for anti-angiogenic activity and a possible cellular mechanism of action. The recombinant kringle domain of uPA (Asp(45)-Lys(135)) (UK1) inhibited endothelial cell proliferation stimulated by basic fibroblast growth factor, vascular endothelial growth factor (VEGF), or epidermal growth factor. It also inhibited migration of endothelial cells induced by VEGF or uPA, and in vivo angiogenesis on the chick chorioallantoic membrane. It did not block plasminogen activation by activated uPA in clot lysis and chromogenic substrate assays. Neither binding of UK1 to immobilized uPA receptor nor competitive inhibition of uPA binding were confirmed by real-time interaction analysis. However, internalization of UK1 followed by translocation from cytosol to nucleus was determined to be specific to endothelial cells. It also elicited a transient increase of Ca(2+) flux of more than 2-fold within 2 min of exposure in an endothelial cell-specific manner. These results suggest that the kringle domain of uPA exhibits anti-angiogenic activity and that its anti-angiogenic activity may occur through a different mechanism from inhibition of uPA-uPA receptor interaction or uPA proteolytic activity and may be associated with endothelial-cell specific internalization not mediated by the uPA receptor.
Collapse
Affiliation(s)
- Kwang Sei Kim
- Cancer Research Institute, Catholic Research Institutes of Medical Sciences, The Catholic University of Korea, Seoul 137-701, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Lucerna M, Mechtcheriakova D, Kadl A, Schabbauer G, Schäfer R, Gruber F, Koshelnick Y, Müller HD, Issbrücker K, Clauss M, Binder BR, Hofer E. NAB2, a corepressor of EGR-1, inhibits vascular endothelial growth factor-mediated gene induction and angiogenic responses of endothelial cells. J Biol Chem 2003; 278:11433-40. [PMID: 12427750 DOI: 10.1074/jbc.m204937200] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study we have investigated the role of a specific corepressor of EGR-1, NAB2, to down-regulate vascular endothelial growth factor (VEGF)-induced gene expression in endothelial cells and to inhibit angiogenesis. Firstly, we show a reciprocal regulation of EGR-1 and NAB2 following VEGF treatment. During the initial phase EGR-1 is rapidly induced and NAB2 levels are down-regulated. This is followed by a reduction of EGR-1 and a concomitant increase of NAB2. Secondly, using the tissue factor gene as a readout for VEGF-induced and EGR-1-regulated gene expression we demonstrate that NAB2 can completely block VEGF-induced tissue factor reporter gene activity. Thirdly, by adenovirus-mediated expression we show that NAB2 inhibits up-regulation of tissue factor, VEGF receptor-1, and urokinase plasminogen activator mRNAs even when a combination of VEGF and bFGF is used for induction. In addition, NAB2 overexpression significantly reduced tubule and sprout formation in two different in vitro angiogenesis assays and largely prevented the invasion of cells and formation of vessel-like structures in the murine Matrigel model. These data suggest that NAB2 regulation represents a mechanism to guarantee transient EGR-1 activity following exposure of endothelial cells to VEGF and that NAB2 overexpression could be used to inhibit signals involved in the early phase of angiogenesis.
Collapse
Affiliation(s)
- Markus Lucerna
- Department of Vascular Biology and Thrombosis Research, Vienna International Research Cooperation Center, University of Vienna, Brunnerstrasse 59, A-1235 Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Rigolin GM, Tieghi A, Ciccone M, Bragotti LZ, Cavazzini F, Della Porta M, Castagnari B, Carroccia R, Guerra G, Cuneo A, Castoldi G. Soluble urokinase-type plasminogen activator receptor (suPAR) as an independent factor predicting worse prognosis and extra-bone marrow involvement in multiple myeloma patients. Br J Haematol 2003; 120:953-9. [PMID: 12648064 DOI: 10.1046/j.1365-2141.2003.04176.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The urokinase-type plasminogen activator (uPA) system, which consists of a proteinase (uPA), a receptor (uPAR or CD87) and inhibitors, is involved in proteolysis, cell migration, tissue remodelling, angiogenesis and cell adhesion. Recent findings suggest that malignant plasma cells express uPA and uPAR. The expression of these factors could represent a process by which myeloma plasma cells interact with the bone marrow (BM) environment and influence important biological events such as bone matrix degradation, plasma cell invasion and homing and, possibly, clinical evolution. We evaluated uPAR (CD87) and its soluble form (suPAR) in 49 multiple myeloma (MM) patients and correlated their expression and levels with clinico-biological characteristics of the disease. Flow cytometric analysis demonstrated that CD87 was expressed in all MM patients. High CD87 expression was associated with higher intensity of expression of CD56 (P = 0.038), CD38 (P = 0.058) and CD138 (P = 0.054) and CD45bright positivity (P = 0.014). suPAR levels correlated positively with soluble serum CD138 (P = 0.001), creatinine (P = 0.001), beta2-microglobulin (P < 0.001), disease stage (P = 0.017) and extra-BM involvement (P = 0.002). In the 46 evaluable patients, multivariate analysis showed that high levels of suPAR (P = 0.0214) and disease stage (P = 0.0064) were predictive of extra-BM involvement. In multivariate Cox analysis, 13q deletion (P = 0.0278), high soluble serum CD138 (P = 0.0201) and high suPAR (P = 0.0229) were the only parameters that independently affected survival. We conclude that CD87 is expressed on myeloma plasma cells and that suPAR, which predicts extra-BM involvement and poor prognosis, possibly represents a molecule with a relevant role in the biology of MM.
Collapse
Affiliation(s)
- Gian Matteo Rigolin
- Section of Haematology, Department of Biomedical Sciences, University of Ferrara, Ferrara, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Tavian D, Salvi A, De Petro G, Barlati S. Stable expression of antisense urokinase mRNA inhibits the proliferation and invasion of human hepatocellular carcinoma cells. Cancer Gene Ther 2003; 10:112-20. [PMID: 12536199 DOI: 10.1038/sj.cgt.7700533] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2002] [Indexed: 11/09/2022]
Abstract
Urokinase-type plasminogen activator (u-PA) plays a key role in malignant tumor behavior. We have previously shown that the expression of high levels of u-PA mRNA in human hepatocellular carcinoma (HCC) biopsies was inversely correlated with the survival of the patients. In order to evaluate the involvement of u-PA in the invasive and infiltrating properties of HCC cells, the SKHep1C3 cell line was stably transfected with an expression vector containing the 5' portion (257 bp) of u-PA cDNA in the antisense orientation. u-PA mRNA expression and its protein level and enzymatic activity were specifically inhibited in the antisense transfectants. A comparable inhibition of the u-PA receptor (u-PAR) mRNA and protein was also evidenced in the antisense transfected cells compared with the control ones. At the functional level, the SKHep1C3-AS cells showed a significant reduction in proliferation, Matrigel invasion, and motility assays compared to parental and vector-alone cells. These results indicate that u-PA is an essential factor in the growth and invasiveness of human hepatocarcinoma cells. Antisense u-PA strategy might be a potential approach to reduce tumor growth as well as the invasive capacity of the malignant cells in HCC.
Collapse
MESH Headings
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/therapy
- Cell Division/drug effects
- Cell Division/genetics
- Cell Movement/genetics
- Fluorescent Antibody Technique
- Genetic Therapy/methods
- Humans
- Immunoblotting
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms/therapy
- Neoplasm Invasiveness
- Polymerase Chain Reaction/methods
- RNA, Antisense/biosynthesis
- RNA, Antisense/genetics
- RNA, Antisense/pharmacology
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Messenger/pharmacology
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Urokinase Plasminogen Activator
- Transfection
- Tumor Cells, Cultured
- Urokinase-Type Plasminogen Activator/antagonists & inhibitors
- Urokinase-Type Plasminogen Activator/genetics
- Urokinase-Type Plasminogen Activator/metabolism
Collapse
Affiliation(s)
- Daniela Tavian
- Division of Biology and Genetics, Department of Biomedical Sciences and Biotechnology, IDET Center of Excellence, University of Brescia, Brescia, Italy
| | | | | | | |
Collapse
|
89
|
Liang OD, Chavakis T, Linder M, Bdeir K, Kuo A, Preissner KT. Binding of urokinase plasminogen activator to gp130 via a putative urokinase-binding consensus sequence. Biol Chem 2003; 384:229-36. [PMID: 12675515 DOI: 10.1515/bc.2003.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Urokinase-type plasminogen activator (uPA) and its receptor (uPAR) are instrumental in cellular activities during inflammation, angiogenesis and tumor metastasis. Recent studies suggest that uPA might exert its function on cell proliferation and migration in a uPAR-independent manner or through an adaptor to the uPA-uPAR system. By applying phage display technology, we have identified a putative uPA-binding consensus sequence BXXSSXXB (where B represents a basic amino acid and X represents any amino acid), which has no apparent sequence correlation to uPAR. This uPA-binding motif apparently recognizes the kringle domain of the protease and has an agonistic effect on uPA binding to immobilized uPAR, thereby possibly serving as part of an adaptor component for uPAR signaling. As a result of protein database searches, this motif was found in the extracellular domain of several cell surface proteins, some of which were proposed to be associated with the uPA-uPAR system. Among these, gp130, a common signal transducer for cytokines, was identified as a uPA-binding protein. The specificity of this interaction was demonstrated by inhibition of uPA binding to immobilized gp130 with soluble gp130. Furthermore, the binding could be partially inhibited by a uPA-binding consensus sequence-containing fusion protein in a dose-dependent manner, with an IC50 of approximately 1 microM, indicating that the uPA-binding motif is apparently involved in the uPA-gp130 interaction. The association of gp130 with uPA may link the uPA-uPAR system to various signal transduction pathways.
Collapse
Affiliation(s)
- Olin D Liang
- Institut für Biochemie, Fachbereich Humanmedizin, Justus-Liebig-Universität, Friedrichstr. 24, D-35392 Giessen, Germany
| | | | | | | | | | | |
Collapse
|
90
|
Sliva D, Labarrere C, Slivova V, Sedlak M, Lloyd FP, Ho NWY. Ganoderma lucidum suppresses motility of highly invasive breast and prostate cancer cells. Biochem Biophys Res Commun 2002; 298:603-12. [PMID: 12408995 DOI: 10.1016/s0006-291x(02)02496-8] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A dried powder from basidiomycetous fungi, Ganoderma lucidum, has been used in East Asia in therapies for several different diseases, including cancer. However, the molecular mechanisms involved in the biological actions of Ganoderma are not well understood. We have recently demonstrated that phosphatidylinositol 3-kinase (PI 3-kinase) and nuclear factor-kappaB (NF-kappaB) regulate motility of highly invasive human breast cancer cells by the secretion of urokinase-type plasminogen activator (uPA). In this study, we investigated the effect of G. lucidum on highly invasive breast and prostate cancer cells. Here we show that spores or dried fruiting body of G. lucidum inhibit constitutively active transcription factors AP-1 and NF-kappaB in breast MDA-MB-231 and prostate PC-3 cancer cells. Furthermore, Ganoderma inhibition of expression of uPA and uPA receptor (uPAR), as well secretion of uPA, resulted in the suppression of the migration of MDA-MB-231 and PC-3 cells. Our data suggest that spores and unpurified fruiting body of G. lucidum inhibit invasion of breast and prostate cancer cells by a common mechanism and could have potential therapeutic use for cancer treatment.
Collapse
Affiliation(s)
- Daniel Sliva
- Cancer Research Laboratory, Methodist Research Institute, 1800 N Capitol Avenue E504, Indianapolis, IN 46202, USA.
| | | | | | | | | | | |
Collapse
|
91
|
Leksa V, Godár S, Cebecauer M, Hilgert I, Breuss J, Weidle UH, Horejsí V, Binder BR, Stockinger H. The N terminus of mannose 6-phosphate/insulin-like growth factor 2 receptor in regulation of fibrinolysis and cell migration. J Biol Chem 2002; 277:40575-82. [PMID: 12189157 DOI: 10.1074/jbc.m207979200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Leukocyte migration to sites of inflammation is a multistep process involving transient adhesion to the endothelium followed by cell surface-controlled proteolysis for transmigration through the vessel wall and chemotactic movement within tissues. One of the key players in this machinery appears to be the urokinase-type plasminogen activator (uPA)/uPA receptor system. The role of uPA and its receptor (CD87) in plasminogen (Plg) activation, cell adhesion, and chemotaxis is well established; however, less is known of how these activities are regulated. Here we provide evidence that the mannose 6-phosphate/insulin-like growth factor 2 receptor (CD222) controls CD87-mediated functions. Expression of human CD222 in CD222-/- mouse fibroblasts down-regulated Plg activation, cell adhesion, and chemotaxis induced by the uPA/CD87 system. In addition, we demonstrate that the N-terminal region of CD222, which is similar to the Plg-binding site of streptokinase, plays a crucial role in binding of CD87 and Plg. A peptide derived from this region in CD222 is able to disrupt the physical interaction of CD222 with CD87 and, furthermore, mimics the inhibitory effects of CD222 on CD87 functions. Taken together, our results indicate a novel role for CD222 in regulation of fibrinolysis, cell adhesion, and migration.
Collapse
Affiliation(s)
- Vladimír Leksa
- Institute of Immunology, Vienna International Research Cooperation Center at Novartis Forschungs-institut, University of Vienna, Vienna A-1235, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Horn LC, Pippig S, Raptis G, Fischer U, Köhler U, Hentschel B, Martin R. Clinical relevance of urokinase-type plasminogen activator and its inhibitor type 1 (PAI-1) in squamous cell carcinoma of the uterine cervix. Aust N Z J Obstet Gynaecol 2002; 42:383-6. [PMID: 12403286 DOI: 10.1111/j.0004-8666.2002.00385.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE The expression of uPA and PAI-1 as parameters of tumour-associated proteolysis has been implicated in the process of tumour cell invasion and the metastatic process. However, there is limited information on the impact of these parameters in cervical carcinoma. METHODS Quantitative levels for uPA (n = 114) and PAI-1 (n = 103) were researched in operatively treated, surgically staged squamous cell cancer of the uterine cervix, using an ELISA-technique. Results were assessed regarding their impact in predicting pelvic lymph nodes metastases, tumour recurrence rate and recurrence free survival (RFS) using uni- and multivariate analysis. RESULTS Median levels of both parameters were significantly higher in tumour tissue than in normal cervical tissue (p < 0.001). Detection of uPA gave no useful prognostic information. PAI-1 concentration showed a positive correlation with advanced tumour stage (p = 0.008), but no significant correlation with nodal status (pN0: 2.6 vs. pN1: 4.0 ng/mg protein; p = 0.092). Using a cut-off level of 2.4 ng/mg protein, patients with elevated PAI-1 levels demonstrated reduced RFS (45.9 versus 52.9 months; p = 0.1). Multivariate analysis, including nodal status, tumour stage, lymphovascular space involvement and grading failed to demonstrate any prognostic impact of uPA and PAI-1. CONCLUSIONS The results indicate, that PAI-1 expression is of some prognostic impact in cervical cancer, indicating an association of elevated PAI levels with local tumour progression and reduced recurrence-free survival.
Collapse
Affiliation(s)
- L C Horn
- Institute of Pathology, University of Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|
93
|
Sidenius N, Andolfo A, Fesce R, Blasi F. Urokinase regulates vitronectin binding by controlling urokinase receptor oligomerization. J Biol Chem 2002; 277:27982-90. [PMID: 12034711 DOI: 10.1074/jbc.m111736200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Adhesion of monocytes to the extracellular matrix is mediated by a direct high affinity interaction between cell-surface urokinase-type plasminogen activator (uPA) receptor (uPAR) and the extracellular matrix protein vitronectin. We demonstrate a tight connection between uPA-regulated uPAR oligomerization and high affinity binding to immobilized vitronectin. We find that binding of soluble uPAR (suPAR) to immobilized vitronectin is strictly ligand-dependent with a linear relationship between the observed binding and the concentration of ligand added. Nevertheless, a comparison of experimentally obtained binding curves to those generated using a simple equilibrium model suggests that the high affinity vitronectin-binding pro-uPA.suPAR complex contains two molecules of suPAR. In co-immunoprecipitation experiments, using different epitope-tagged suPAR molecules, suPAR/suPAR co-immunoprecipitation displayed a similar uPA dose dependence as that observed for vitronectin binding, demonstrating that the high affinity vitronectin-binding complex indeed contains oligomeric suPAR. Structurally, the kringle domain of uPA was found to be critical for the formation of the vitronectin-binding competent complex because the amino-terminal fragment, but not the growth factor-like domain, behaved as a full-length uPA. Our data represent the first demonstration of functional, ligand-induced uPAR oligomerization having extensive implications for glycosylphosphatidylinositol-anchored receptors in general, and for the biology of the uPA/uPAR system in particular.
Collapse
Affiliation(s)
- Nicolai Sidenius
- Molecular Genetics Unit, DIBIT, Università Vita-Salute San Raffaele, 20132 Milan, Italy.
| | | | | | | |
Collapse
|
94
|
Abstract
Plasminogen activator inhibitor-1 (PAI-1) is a serine protease inhibitor that was isolated 20 years ago. First recognized as an inhibitor of intravascular fibrinolysis, it is now evident that PAI-1 is a multifunctional protein with actions that may be dependent on or independent of its protease inhibitory effects. The latter often involve interactions between PAI-1 and vitronectin or the urokinase receptor. The protease-inhibitory actions of PAI-1 extend beyond fibrinolysis and include extracellular matrix turnover and activation of several proenzymes and latent growth factors. PAI-1 has been implicated in several renal pathogenetic processes, including thrombotic microangiopathies and proliferative and/or crescentic glomerulopathies. Most recently, it has become clear that PAI-1 also plays a pivotal role in progressive renal disease, both glomerulosclerosis and tubulointerstitial fibrosis. An active area of present research interest, untold stories are likely to be uncovered soon.
Collapse
Affiliation(s)
- Allison A Eddy
- Children's Hospital and Regional Medical Center, University of Washington, Seattle, Washington 98105, USA.
| |
Collapse
|
95
|
Alfano M, Sidenius N, Panzeri B, Blasi F, Poli G. Urokinase-urokinase receptor interaction mediates an inhibitory signal for HIV-1 replication. Proc Natl Acad Sci U S A 2002; 99:8862-7. [PMID: 12084931 PMCID: PMC124389 DOI: 10.1073/pnas.142078099] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2002] [Indexed: 11/18/2022] Open
Abstract
Elevated levels of soluble urokinase-type plasminogen activator (uPA) receptor, CD87/u-PAR, predict survival in individuals infected with HIV-1. Here, we report that pro-uPA (or uPA) inhibits HIV-1 expression in U937-derived chronically infected promonocytic U1 cells stimulated with phorbol 12-myristate 13-acetate (PMA) or tumor necrosis factor-alpha (TNF-alpha). However, pro-uPA did not inhibit PMA or TNF-alpha-dependent activation of nuclear factor-kB or activation protein-1 in U1 cells. Cell-associated HIV protein synthesis also was not decreased by pro-uPA, although the release of virion-associated reverse transcriptase activity was substantially inhibited, suggesting a functional analogy between pro-uPA and the antiviral effects of IFNs. Indeed, cell disruption reversed the inhibitory effect of pro-uPA on activated U1 cells, and ultrastructural analysis confirmed that virions were preferentially retained within cell vacuoles in pro-uPA treated cells. Neither expression of endogenous IFNs nor activation of the IFN-inducible Janus kinase/signal transducer and activator of transcription pathway were induced by pro-uPA. Pro-uPA also inhibited acute HIV replication in monocyte-derived macrophages and activated peripheral blood mononuclear cells, although with great inter-donor variability. However, pro-uPA inhibited HIV replication in acutely infected promonocytic U937 cells and in ex vivo cultures of lymphoid tissue infected in vitro. Because these effects occurred at concentrations substantially lower than those affecting thrombolysis, pro-uPA may represent a previously uncharacterized class of antiviral agents mimicking IFNs in their inhibitory effects on HIV expression and replication.
Collapse
Affiliation(s)
- Massimo Alfano
- AIDS Immunopathogenesis Unit, Department of Immunology and Infectious Diseases, San Raffaele Scientific Institute, Via Olgettina n.58, 20132 Milan, Italy
| | | | | | | | | |
Collapse
|
96
|
Rijneveld AW, Levi M, Florquin S, Speelman P, Carmeliet P, van Der Poll T. Urokinase receptor is necessary for adequate host defense against pneumococcal pneumonia. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:3507-11. [PMID: 11907112 DOI: 10.4049/jimmunol.168.7.3507] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cell recruitment is a multistep process regulated by cytokines, chemokines, and growth factors. Previous work has indicated that the urokinase plasminogen activator receptor (uPAR) may also play a role in this mechanism, presumably by an interaction with the beta(2) integrin CD11b/CD18. Indeed, an essential role of uPAR in neutrophil recruitment during pulmonary infection has been demonstrated for beta(2) integrin-dependent respiratory pathogens. We investigated the role of uPAR and urokinase plasminogen activator (uPA) during pneumonia caused by a beta(2) integrin-independent respiratory pathogen, Streptococcus pneumoniae. uPAR-deficient (uPAR(-/-)), uPA-deficient (uPA(-/-)), and wild-type (Wt) mice were intranasally inoculated with 10(5) CFU S. pneumoniae. uPAR(-/-) mice showed reduced granulocyte accumulation in alveoli and lungs when compared with Wt mice, which was associated with more S. pneumoniae CFU in lungs, enhanced dissemination of the infection, and a reduced survival. In contrast, uPA(-/-) mice showed enhanced host defense, with more neutrophil influx and less pneumococci in the lungs compared with Wt mice. These data suggest that uPAR is necessary for adequate recruitment of neutrophils into the alveoli and lungs during pneumonia caused by S. pneumoniae, a pathogen eliciting a beta(2) integrin-independent inflammatory response. This function is even more pronounced when uPAR is unoccupied by uPA.
Collapse
MESH Headings
- Animals
- Bronchoalveolar Lavage Fluid/cytology
- Bronchoalveolar Lavage Fluid/immunology
- Bronchoalveolar Lavage Fluid/microbiology
- Cell Movement/genetics
- Cell Movement/immunology
- Chemokines/biosynthesis
- Colony Count, Microbial
- Cytokines/biosynthesis
- Lung/enzymology
- Lung/microbiology
- Lung/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Pneumonia, Pneumococcal/immunology
- Pneumonia, Pneumococcal/microbiology
- Pneumonia, Pneumococcal/mortality
- Pneumonia, Pneumococcal/pathology
- Receptors, Cell Surface/deficiency
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/physiology
- Receptors, Urokinase Plasminogen Activator
- Streptococcus pneumoniae/growth & development
- Survival Analysis
- Urokinase-Type Plasminogen Activator/deficiency
- Urokinase-Type Plasminogen Activator/genetics
- Urokinase-Type Plasminogen Activator/metabolism
Collapse
Affiliation(s)
- Anita W Rijneveld
- Department of Experimental Internal Medicine, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
97
|
Locati M, Deuschle U, Massardi ML, Martinez FO, Sironi M, Sozzani S, Bartfai T, Mantovani A. Analysis of the gene expression profile activated by the CC chemokine ligand 5/RANTES and by lipopolysaccharide in human monocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:3557-62. [PMID: 11907119 DOI: 10.4049/jimmunol.168.7.3557] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The gene expression profile induced by the CC chemokine ligand (CCL) 5/RANTES in human monocytes was examined using the oligonucleotide array technology. Of 5600 transcripts examined, 42 were consistently induced by CCL5, and none were suppressed. Chemokine-inducible transcripts could be clustered in functional groups, including selected cytokines and receptors (e.g., IL-1beta, CCL2/monocyte chemotactic protein-1, and the CCL5 receptor CCR1) and molecules involved in extracellular matrix recognition and digestion (e.g., CD44 splice transcripts, urokinase-type plasminogen activator receptor, matrix metalloprotease (MMP)-9, and MMP-19). Transcript expression, confirmed by quantitative real-time PCR analysis for selected genes, was associated with protein induction for some (e.g., CCL2), but not all (e.g., IL-1beta), transcripts examined. The chemokine-induced gene profile was distinct from that activated by LPS, a prototypic phagocyte activator. Although certain transcripts were stimulated by both agonists (e.g., IL-1beta and CCL2), others were induced only by either LPS (e.g., TNF-alpha and IL-6) or CCL5 (e.g., MMP-19) or were divergently regulated (e.g., CCR1). Thus, CCL5, a prototypic CC inflammatory chemokine, activates a restricted transcriptional program in monocytes distinct from that induced by the prototypic pathogen-derived proinflammatory stimulant LPS. Chemokine-induced chemokines production could represent a novel amplification loop of leukocyte recruitment, while a subset of chemokine-inducible transcripts could be involved in monocyte extravasation and tissue invasion.
Collapse
Affiliation(s)
- Massimo Locati
- Istituto di Patologia Generale, Università degli Studi di Milano, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Resnati M, Pallavicini I, Wang JM, Oppenheim J, Serhan CN, Romano M, Blasi F. The fibrinolytic receptor for urokinase activates the G protein-coupled chemotactic receptor FPRL1/LXA4R. Proc Natl Acad Sci U S A 2002; 99:1359-64. [PMID: 11818541 PMCID: PMC122195 DOI: 10.1073/pnas.022652999] [Citation(s) in RCA: 276] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2001] [Accepted: 12/06/2001] [Indexed: 11/18/2022] Open
Abstract
The function of urokinase and its receptor is essential for cell migration in pathological conditions, as shown by the analysis of knockout mice phenotypes. How a protease of a fibrinolytic pathway can induce migration is not understood and no link between this protease and migration-promoting G protein-coupled receptors has been described. We now show that FPRL1/LXA4R, a G protein-coupled receptor for a number of polypeptides and for the endogenous lipoxin A4 (LXA4), is the link between urokinase-type plasminogen activator (uPA) and migration as it directly interacts with an activated, soluble, cleaved form of uPA receptor (uPAR) (D2D3(88-274)) to induce chemotaxis. In this article we show that (i) both uPAR and FPRL1/LXA4R are necessary for the chemotactic activity of uPA whereas FPRL1/LXA4R is sufficient to mediate D2D3(88-274)-induced cell migration. (ii) Inhibition or desensitization of FPRL1/LXA4R by antibodies or specific ligands specifically prevents chemotaxis induced by D2D3(88-274) in THP-1 cells and human peripheral blood monocytes. (iii) Desensitization of FPRL1/LXA4R prevents the activation of tyrosine kinase Hck induced by D2D3(88-274). (iv) D2D3(88-274) directly binds to FPRL1/LXA4R and is competed by two specific FPRL1/LXA4R agonists, the synthetic MMK-1 peptide and a stable analog of LXA4. Thus, a naturally produced cleaved form of uPAR is a unique endogenous chemotactic agonist for FPRL1/LXA4R receptor and its activity can be antagonized by specific ligands. These results provide the first direct link, to our knowledge, between the fibrinolytic machinery and the inflammatory response, demonstrating that uPA-derived peptide fragments can activate a specific chemotactic receptor.
Collapse
MESH Headings
- Animals
- Cell Line
- Chemotaxis, Leukocyte/drug effects
- Chemotaxis, Leukocyte/physiology
- GTP-Binding Proteins/metabolism
- Humans
- Hydroxyeicosatetraenoic Acids/metabolism
- Leukemia, Basophilic, Acute
- Lipoxins
- Monocytes/physiology
- N-Formylmethionine Leucyl-Phenylalanine/pharmacology
- Peptides/pharmacology
- Plasminogen Activators/metabolism
- Protein-Tyrosine Kinases/metabolism
- Rats
- Receptors, Cell Surface/metabolism
- Receptors, Formyl Peptide
- Receptors, Immunologic/physiology
- Receptors, Lipoxin
- Receptors, Peptide/physiology
- Receptors, Urokinase Plasminogen Activator
- Tumor Cells, Cultured
- Urokinase-Type Plasminogen Activator/metabolism
Collapse
Affiliation(s)
- M Resnati
- Molecular Genetics Unit, Department of Cell Biology and Functional Genomics, DIBIT-Istituto Scientifico San Raffaele and Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
99
|
Choi YK, Yoon BI, Kook YH, Won YS, Kim JH, Lee CH, Hyun BH, Oh GT, Sipley J, Kim DY. Overexpression of urokinase-type plasminogen activator in human gastric cancer cell line (AGS) induces tumorigenicity in severe combined immunodeficient mice. Jpn J Cancer Res 2002; 93:151-6. [PMID: 11856478 PMCID: PMC5926960 DOI: 10.1111/j.1349-7006.2002.tb01253.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The significance of urokinase-type plasminogen activator (uPA) expression in gastric cancer development was tested by using a human uPA cDNA transfection approach and an in vivo severe combined immunodeficient (SCID) mouse model. The AGS gastric cancer cell line, which has urokinase-type plasminogen-activator receptor (uPAR) but lacks uPA, was transfected with a plasmid containing human uPA cDNA and injected into the backs of SCID mice. Compared with the parent AGS cells, uPA protein secretion in AGS-2-, AGS-4-, and AGS-8-transfected cells increased by 26.1-, 34.6-, and 4.8-fold, respectively (P < 0.05). mRNA expression levels of uPA in the AGS-4 clone were much stronger than those in AGS-2 and AGS-8 clones. After the cancer cells (2 x 10(6)) were injected s.c. into the SCID mice, a palpable mass was observed at the injection site at around 140 days post-injection, followed by accelerated growth of the xenograft up to 180 days post-injection only in the high uPA-producing clone (AGS-4). These results suggest that continuous and high production of uPA by tumor cells is one of the important factors reflecting the malignancy of gastric cancer cells.
Collapse
Affiliation(s)
- Yang-Kyu Choi
- Korea Research Institute of Bioscience and Biotechnology, Taejon, 305-333, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Devy L, Blacher S, Grignet-Debrus C, Bajou K, Masson V, Gerard RD, Gils A, Carmeliet G, Carmeliet P, Declerck PJ, Nöel A, Foidart JM. The pro- or antiangiogenic effect of plasminogen activator inhibitor 1 is dose dependent. FASEB J 2002; 16:147-54. [PMID: 11818362 DOI: 10.1096/fj.01-0552com] [Citation(s) in RCA: 199] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Plasminogen activator inhibitor 1 (PAI-1) is believed to control proteolytic activity and cell migration during angiogenesis. We previously demonstrated in vivo that this inhibitor is necessary for optimal tumor invasion and vascularization. We also showed that PAI-1 angiogenic activity is associated with its control of plasminogen activation but not with the regulation of cell-matrix interaction. To dissect the role of the various components of the plasminogen activation system during angiogenesis, we have adapted the aortic ring assay to use vessels from gene-inactivated mice. The single deficiency of tPA, uPA, or uPAR, as well as combined deficiencies of uPA and tPA, did not dramatically affect microvessel formation. Deficiency of plasminogen delayed microvessel outgrowth. Lack of PAI-1 completely abolished angiogenesis, demonstrating its importance in the control of plasmin-mediated proteolysis. Microvessel outgrowth from PAI-1-/- aortic rings could be restored by adding exogenous PAI-1 (wild-type serum or purified recombinant PAI-1). Addition of recombinant PAI-1 led to a bell-shaped angiogenic response clearly showing that PAI-1 is proangiogenic at physiological concentrations and antiangiogenic at higher levels. Using specific PAI-1 mutants, we could demonstrate that PAI-1 promotes angiogenesis at physiological (nanomolar) concentrations through its antiproteolytic activity rather than by interacting with vitronectin.
Collapse
Affiliation(s)
- Laetitia Devy
- Laboratory of Tumor and Developmental Biology, University of Liège, Tour de Pathologie (B23), Sart-Tilman, B-4000 Liège, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|