51
|
Highly diversified shrew hepatitis B viruses corroborate ancient origins and divergent infection patterns of mammalian hepadnaviruses. Proc Natl Acad Sci U S A 2019; 116:17007-17012. [PMID: 31371507 DOI: 10.1073/pnas.1908072116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Shrews, insectivorous small mammals, pertain to an ancient mammalian order. We screened 693 European and African shrews for hepatitis B virus (HBV) homologs to elucidate the enigmatic genealogy of HBV. Shrews host HBVs at low prevalence (2.5%) across a broad geographic and host range. The phylogenetically divergent shrew HBVs comprise separate species termed crowned shrew HBV (CSHBV) and musk shrew HBV (MSHBV), each containing distinct genotypes. Recombination events across host orders, evolutionary reconstructions, and antigenic divergence of shrew HBVs corroborated ancient origins of mammalian HBVs dating back about 80 million years. Resurrected CSHBV replicated in human hepatoma cells, but human- and tupaia-derived primary hepatocytes were resistant to hepatitis D viruses pseudotyped with CSHBV surface proteins. Functional characterization of the shrew sodium taurocholate cotransporting polypeptide (Ntcp), CSHBV/MSHBV surface peptide binding patterns, and infection experiments revealed lack of Ntcp-mediated entry of shrew HBV. Contrastingly, HBV entry was enabled by the shrew Ntcp. Shrew HBVs universally showed mutations in their genomic preCore domains impeding hepatitis B e antigen (HBeAg) production and resembling those observed in HBeAg-negative human HBV. Deep sequencing and in situ hybridization suggest that HBeAg-negative shrew HBVs cause intense hepatotropic monoinfections and low within-host genomic heterogeneity. Geographical clustering and low MSHBV/CSHBV-specific seroprevalence suggest focal transmission and high virulence of shrew HBVs. HBeAg negativity is thus an ancient HBV infection pattern, whereas Ntcp usage for entry is not evolutionarily conserved. Shrew infection models relying on CSHBV/MSHBV revertants and human HBV will allow comparative assessments of HBeAg-mediated HBV pathogenesis, entry, and species barriers.
Collapse
|
52
|
Evaluation of HBV-Like Circulation in Wild and Farm Animals from Brazil and Uruguay. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16152679. [PMID: 31357451 PMCID: PMC6695864 DOI: 10.3390/ijerph16152679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/02/2019] [Accepted: 07/08/2019] [Indexed: 12/20/2022]
Abstract
The origin of the hepatitis B virus is a subject of wide deliberation among researchers. As a result, increasing academic interest has focused on the spread of the virus in different animal species. However, the sources of viral infection for many of these animals are unknown since transmission may occur from animal to animal, human to human, animal to human, and human to animal. The aim of this study was to evaluate hepadnavirus circulation in wild and farm animals (including animals raised under wild or free conditions) from different sites in Brazil and Uruguay using serological and molecular tools. A total of 487 domestic wild and farm animals were screened for hepatitis B virus (HBV) serological markers and tested via quantitative and qualitative polymerase chain reaction (PCR) to detect viral DNA. We report evidence of HBsAg (surface antigen of HBV) and total anti-HBc (HBV core antigen) markers as well as low-copy hepadnavirus DNA among domestic and wild animals. According to our results, which were confirmed by partial genome sequencing, as the proximity between humans and animals increases, the potential for pathogen dispersal also increases. A wider knowledge and understanding of reverse zoonoses should be sought for an effective One Health response.
Collapse
|
53
|
He WQ, Chen XJ, Wen YQ, Li YZ, He H, Chen Q. Detection of Hepatitis B Virus-Like Nucleotide Sequences in Liver Samples from Murine Rodents and Asian House Shrews. Vector Borne Zoonotic Dis 2019; 19:781-783. [PMID: 31216240 DOI: 10.1089/vbz.2018.2424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In recent years, hepatitis B virus (HBV) has been detected in some species of animals. In this study, we found HBV-like nucleotide sequences in murine rodents and Asian house shrews (Suncus murinus) collected in China. A total of 801 animals were trapped. We found that 0.48% (3/624) of the murine rodents and 1.69% (3/177) of Asian house shrews were positive for HBV-like DNA. Detection of HBV-like DNA in brown rats (Rattus norvegicus), rice-field rat (Rattus losea), and Asian house shrews indicated that these species of animals might be hosts for HBV. However, none of the HBV-like DNA-positive animals was additionally positive for anti-HBV antibodies or hepatitis B surface antigen. A 585 bp nucleic acid sequence, mapping to a hepadnavirus, was extracted from rice-field rat, and bores strong resemblance to human HBV genotype B sequences. Further research is required to investigate the hepadnaviruses within the murine rodent and Asian house shrew populations to uncover the origin and zoonotic potential of HBV.
Collapse
Affiliation(s)
- Wen-Qiao He
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xue-Jiao Chen
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yu-Qi Wen
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yong-Zhi Li
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Huan He
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Qing Chen
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
54
|
A Novel Orthohepadnavirus Identified in a Dead Maxwell's Duiker ( Philantomba maxwellii) in Taï National Park, Côte d'Ivoire. Viruses 2019; 11:v11030279. [PMID: 30893858 PMCID: PMC6466360 DOI: 10.3390/v11030279] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/11/2019] [Accepted: 03/16/2019] [Indexed: 12/16/2022] Open
Abstract
New technologies enable viral discovery in a diversity of hosts, providing insights into viral evolution. We used one such approach, the virome capture sequencing for vertebrate viruses (VirCapSeq-VERT) platform, on 21 samples originating from six dead Maxwell’s duikers (Philantomba maxwellii) from Taï National Park, Côte d’Ivoire. We detected the presence of an orthohepadnavirus in one animal and characterized its 3128 bp genome. The highest viral copy numbers were detected in the spleen, followed by the lung, blood, and liver, with the lowest copy numbers in the kidney and heart; the virus was not detected in the jejunum. Viral copy numbers in the blood were in the range known from humans with active chronic infections leading to liver histolytic damage, suggesting this virus could be pathogenic in duikers, though many orthohepadnaviruses appear to be apathogenic in other hosts, precluding a formal test of this hypothesis. The virus was not detected in 29 other dead duiker samples from the Côte d’Ivoire and Central African Republic, suggesting either a spillover event or a low prevalence in these populations. Phylogenetic analysis placed the virus as a divergent member of the mammalian clade of orthohepadnaviruses, though its relationship to other orthohepadnaviruses remains uncertain. This represents the first orthohepadnavirus described in an artiodactyl. We have tentatively named this new member of the genus Orthohepadnavirus (family Hepadnaviridae), Taï Forest hepadnavirus. Further studies are needed to determine whether it, or some close relatives, are present in a broader range of artiodactyls, including livestock.
Collapse
|
55
|
Diversity and Evolution of Viral Pathogen Community in Cave Nectar Bats ( Eonycteris spelaea). Viruses 2019; 11:v11030250. [PMID: 30871070 PMCID: PMC6466414 DOI: 10.3390/v11030250] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/07/2019] [Accepted: 03/07/2019] [Indexed: 12/12/2022] Open
Abstract
Bats are unique mammals, exhibit distinctive life history traits and have unique immunological approaches to suppression of viral diseases upon infection. High-throughput next-generation sequencing has been used in characterizing the virome of different bat species. The cave nectar bat, Eonycteris spelaea, has a broad geographical range across Southeast Asia, India and southern China, however, little is known about their involvement in virus transmission. Here we investigate the diversity and abundance of viral communities from a colony of Eonycteris spelaea residing in Singapore. Our results detected 47 and 22 different virus families from bat fecal and urine samples, respectively. Among these, we identify a large number of virus families including Adenoviridae, Flaviviridae, Reoviridae, Papillomaviridae, Paramyxoviridae, Parvoviridae, Picornaviridae, and Polyomaviridae. In most cases, viral sequences from Eonycteris spelaea are genetically related to a group of bat viruses from other bat genera (e.g., Eidolon, Miniopterus, Rhinolophus and Rousettus). The results of this study improve our knowledge of the host range, spread and evolution of several important viral pathogens. More significantly, our findings provide a baseline to study the temporal patterns of virus shedding and how they correlate with bat phenological trends.
Collapse
|
56
|
Nie FY, Tian JH, Lin XD, Yu B, Xing JG, Cao JH, Holmes EC, Ma RZ, Zhang YZ. Discovery of a highly divergent hepadnavirus in shrews from China. Virology 2019; 531:162-170. [PMID: 30884426 PMCID: PMC7172195 DOI: 10.1016/j.virol.2019.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 12/11/2022]
Abstract
Limited sampling means that relatively little is known about the diversity and evolutionary history of mammalian members of the Hepadnaviridae (genus Orthohepadnavirus). An important case in point are shrews, the fourth largest group of mammals, but for which there is limited knowledge on the role they play in viral evolution and emergence. Here, we report the discovery of a novel shrew hepadnavirus. The newly discovered virus, denoted shrew hepatitis B virus (SHBV), is divergent to be considered a new species of Orthohepadnavirus. Phylogenetic analysis revealed that these viruses were usually most closely related to TBHBV (tent-making bat hepatitis B virus), known to be able to infect human hepatocytes, and had a similar genome structure, although SHBV fell in a more basal position in the surface protein phylogeny. In sum, these data suggest that shrews are natural hosts for hepadnaviruses and may have played an important role in their long-term evolution. A highly divergent hepadnavirus was identified in shrews in China. The shrew virus represents a novel species of mammalian orthohepadnaviruses. The shrew virus grouped with TBHBV in some genes, previously shown to be able to infect human hepatocytes. Cross-species virus transmission occurred among the three shrew species.
Collapse
Affiliation(s)
- Fang-Yuan Nie
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; State Key Laboratory for Infectious Disease Prevention and Control; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; Department of Zoonoses, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Jun-Hua Tian
- Wuhan Center for Disease Control and Prevention, Wuhan, China
| | - Xian-Dan Lin
- Wenzhou Center for Disease Control and Prevention, Wenzhou, Zhejiang Province, China
| | - Bin Yu
- Wuhan Center for Disease Control and Prevention, Wuhan, China
| | - Jian-Guang Xing
- Wencheng Center for Disease Control and Prevention, Wencheng, Zhejiang Province, China
| | - Jian-Hai Cao
- Longwan Center for Disease Control and Prevention, Longwan District, Wenzhou, Zhejiang Province, China
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia; Shanghai Public Health Clinical Center & Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Runlin Z Ma
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | - Yong-Zhen Zhang
- State Key Laboratory for Infectious Disease Prevention and Control; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; Department of Zoonoses, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China; Shanghai Public Health Clinical Center & Institute of Biomedical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
57
|
Hiller T, Rasche A, Brändel SD, König A, Jeworowski L, Teague O'Mara M, Cottontail V, Page RA, Glebe D, Drexler JF, Tschapka M. Host Biology and Anthropogenic Factors Affect Hepadnavirus Infection in a Neotropical Bat. ECOHEALTH 2019; 16:82-94. [PMID: 30564998 PMCID: PMC7088011 DOI: 10.1007/s10393-018-1387-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 05/07/2023]
Abstract
The tent-making bat hepatitis B virus (TBHBV) is a hepadnavirus closely related to human hepatitis B virus. The ecology of TBHBV is unclear. We show that it is widespread and highly diversified in Peters' tent-making bats (Uroderma bilobatum) within Panama, while local prevalence varied significantly between sample sites, ranging from 0 to 14.3%. Females showed significantly higher prevalence than males, and pregnant females were more often acutely infected than non-reproductive ones. The distribution of TBHBV in bats was significantly affected by forest cover, with higher infection rates in areas with lower forest cover. Our data indicate that loss of natural habitat may lead to positive feedback on the biotic factors driving infection possibility. These results underline the necessity of multidisciplinary studies for a better understanding of mechanisms in pathogen-host relationships and for predictions in disease ecology.
Collapse
Affiliation(s)
- Thomas Hiller
- Institute for Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein Allee 11, 89081, Ulm, Germany.
- Smithsonian Tropical Research Institute, Apartado, 0843-03092, Balboa, Ancon, Republic of Panama.
| | - Andrea Rasche
- Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Institute of Virology, Berlin, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Stefan Dominik Brändel
- Institute for Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein Allee 11, 89081, Ulm, Germany
- Smithsonian Tropical Research Institute, Apartado, 0843-03092, Balboa, Ancon, Republic of Panama
| | - Alexander König
- Institute of Medical Virology, Justus Liebig University, Giessen, Germany
- German Reference Center for Hepatitis B and D Viruses, Justus Liebig University, Giessen, Germany
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Giessen, Germany
| | - Lara Jeworowski
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
| | - M Teague O'Mara
- Smithsonian Tropical Research Institute, Apartado, 0843-03092, Balboa, Ancon, Republic of Panama
- Department of Migration and Immuno-Ecology, Max Planck Institute for Ornithology, Radolfzell, Germany
- Department of Biology, University of Konstanz, Constance, Germany
| | - Veronika Cottontail
- Institute for Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein Allee 11, 89081, Ulm, Germany
| | - Rachel A Page
- Smithsonian Tropical Research Institute, Apartado, 0843-03092, Balboa, Ancon, Republic of Panama
| | - Dieter Glebe
- Institute of Medical Virology, Justus Liebig University, Giessen, Germany
- German Reference Center for Hepatitis B and D Viruses, Justus Liebig University, Giessen, Germany
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Giessen, Germany
| | - Jan Felix Drexler
- Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Institute of Virology, Berlin, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
| | - Marco Tschapka
- Institute for Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein Allee 11, 89081, Ulm, Germany
- Smithsonian Tropical Research Institute, Apartado, 0843-03092, Balboa, Ancon, Republic of Panama
| |
Collapse
|
58
|
Rasche A, Sander AL, Corman VM, Drexler JF. Evolutionary biology of human hepatitis viruses. J Hepatol 2019; 70:501-520. [PMID: 30472320 PMCID: PMC7114834 DOI: 10.1016/j.jhep.2018.11.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/09/2018] [Accepted: 11/10/2018] [Indexed: 02/06/2023]
Abstract
Hepatitis viruses are major threats to human health. During the last decade, highly diverse viruses related to human hepatitis viruses were found in animals other than primates. Herein, we describe both surprising conservation and striking differences of the unique biological properties and infection patterns of human hepatitis viruses and their animal homologues, including transmission routes, liver tropism, oncogenesis, chronicity, pathogenesis and envelopment. We discuss the potential for translation of newly discovered hepatitis viruses into preclinical animal models for drug testing, studies on pathogenesis and vaccine development. Finally, we re-evaluate the evolutionary origins of human hepatitis viruses and discuss the past and present zoonotic potential of their animal homologues.
Collapse
Affiliation(s)
- Andrea Rasche
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, 10117 Berlin, Germany,German Center for Infection Research (DZIF), Germany
| | - Anna-Lena Sander
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, 10117 Berlin, Germany
| | - Victor Max Corman
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, 10117 Berlin, Germany,German Center for Infection Research (DZIF), Germany
| | - Jan Felix Drexler
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, 10117 Berlin, Germany; German Center for Infection Research (DZIF), Germany.
| |
Collapse
|
59
|
Evolution of Hepatitis B Virus Receptor NTCP Reveals Differential Pathogenicities and Species Specificities of Hepadnaviruses in Primates, Rodents, and Bats. J Virol 2019; 93:JVI.01738-18. [PMID: 30541833 DOI: 10.1128/jvi.01738-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/16/2018] [Indexed: 12/21/2022] Open
Abstract
Human hepatitis B virus (HBV) is a global health problem, affecting more than 250 million people worldwide. HBV-like viruses, named orthohepadnaviruses, also naturally infect nonhuman primates, rodents, and bats, but their pathogenicity and evolutionary history are unclear. Here, we determined the evolutionary history of the HBV receptors NTCP and GPC5 over millions of years of primate, rodent, and bat evolution. We use this as a proxy to understand the pathogenicity of orthohepadnaviruses in mammalian hosts and to determine the implications for species specificity. We found that NTCP, but not GPC5, has evolved under positive selection in primates (27 species), rodents (18 species), and bats (21 species) although at distinct residues. Notably, the positively selected codons map to the HBV-binding sites in primate NTCP, suggesting past genetic "arms races" with pathogenic orthohepadnaviruses. In rodents, the positively selected codons fall outside and within the presumed HBV-binding sites, which may contribute to the restricted circulation of rodent orthohepadnaviruses. In contrast, the presumed HBV-binding motifs in bat NTCP are conserved, and none of the positively selected codons map to this region. This suggests that orthohepadnaviruses may bind to different surfaces in bat NTCP. Alternatively, the patterns may reflect adaptive changes associated with metabolism rather than pathogens. Overall, our findings further point to NTCP as a naturally occurring genetic barrier for cross-species transmissions in primates, which may contribute to the narrow host range of HBV. In contrast, this constraint seems less important in bats, which may correspond to greater orthohepadnavirus circulation and diversity.IMPORTANCE Chronic infection with hepatitis B virus (HBV) is a major cause of liver disease and cancer in humans. Mammalian HBV-like viruses are also found in nonhuman primates, rodents, and bats. As for most viruses, HBV requires a successful interaction with a host receptor for replication. Cellular receptors are thus key determinants of host susceptibility as well as specificity. One hallmark of pathogenic virus-host relationships is the reciprocal evolution of host receptor and viral envelope proteins, as a result of their antagonistic interaction over time. The dynamics of these so-called "evolutionary arms races" can leave signatures of adaptive selection, which in turn reveal the evolutionary history of the virus-host interaction as well as viral pathogenicity and the genetic determinants of species specificity. Here, we show how HBV-like viruses have shaped the evolutionary history of their mammalian host receptor, as a result of their ancient pathogenicity, and decipher the genetic determinants of cross-species transmissions.
Collapse
|
60
|
A Single Adaptive Mutation in Sodium Taurocholate Cotransporting Polypeptide Induced by Hepadnaviruses Determines Virus Species Specificity. J Virol 2019; 93:JVI.01432-18. [PMID: 30541857 DOI: 10.1128/jvi.01432-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/05/2018] [Indexed: 12/14/2022] Open
Abstract
Hepatitis B virus (HBV) and its hepadnavirus relatives infect a wide range of vertebrates, from fish to human. Hepadnaviruses and their hosts have a long history of acquiring adaptive mutations. However, there are no reports providing direct molecular evidence for such a coevolutionary "arms race" between hepadnaviruses and their hosts. Here, we present evidence suggesting that the adaptive evolution of the sodium taurocholate cotransporting polypeptide (NTCP), an HBV receptor, has been influenced by virus infection. Evolutionary analysis of the NTCP-encoding genes from 20 mammals showed that most NTCP residues are highly conserved among species, exhibiting evolution under negative selection (dN/dS ratio [ratio of nonsynonymous to synonymous evolutionary changes] of <1); this observation implies that the evolution of NTCP is restricted by maintaining its original protein function. However, 0.7% of NTCP amino acid residues exhibit rapid evolution under positive selection (dN/dS ratio of >1). Notably, a substitution at amino acid (aa) 158, a positively selected residue, converting the human NTCP to a monkey-type sequence abrogated the capacity to support HBV infection; conversely, a substitution at this residue converting the monkey Ntcp to the human sequence was sufficient to confer HBV susceptibility. Together, these observations suggested a close association of the aa 158 positive selection with the pressure by virus infection. Moreover, the aa 158 sequence determined attachment of the HBV envelope protein to the host cell, demonstrating the mechanism whereby HBV infection would create positive selection at this NTCP residue. In summary, we provide the first evidence in agreement with the function of hepadnavirus as a driver for inducing adaptive mutation in host receptor.IMPORTANCE HBV and its hepadnavirus relatives infect a wide range of vertebrates, with a long infectious history (hundreds of millions of years). Such a long history generally allows adaptive mutations in hosts to escape from infection while simultaneously allowing adaptive mutations in viruses to overcome host barriers. However, there is no published molecular evidence for such a coevolutionary arms race between hepadnaviruses and hosts. In the present study, we performed coevolutionary phylogenetic analysis between hepadnaviruses and the sodium taurocholate cotransporting polypeptide (NTCP), an HBV receptor, combined with virological experimental assays for investigating the biological significance of NTCP sequence variation. Our data provide the first molecular evidence supporting that HBV-related hepadnaviruses drive adaptive evolution in the NTCP sequence, including a mechanistic explanation of how NTCP mutations determine host viral susceptibility. Our novel insights enhance our understanding of how hepadnaviruses evolved with their hosts, permitting the acquisition of strong species specificity.
Collapse
|
61
|
Bennett AJ, Bushmaker T, Cameron K, Ondzie A, Niama FR, Parra HJ, Mombouli JV, Olson SH, Munster VJ, Goldberg TL. Diverse RNA viruses of arthropod origin in the blood of fruit bats suggest a link between bat and arthropod viromes. Virology 2018; 528:64-72. [PMID: 30576861 DOI: 10.1016/j.virol.2018.12.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/09/2018] [Accepted: 12/10/2018] [Indexed: 12/22/2022]
Abstract
Bats host diverse viruses due to their unique ecology, behavior, and immunology. However, the role of other organisms with which bats interact in nature is understudied as a contributor to bat viral diversity. We discovered five viruses in the blood of fruit bats (Hypsignathus monstrosus) from the Republic of Congo. Of these five viruses, four have phylogenetic and genomic features suggesting an arthropod origin (a dicistrovirus, a nodavirus, and two tombus-like viruses), while the fifth (a hepadnavirus) is clearly of mammalian origin. We also report the parallel discovery of related tombus-like viruses in fig wasps and primitive crane flies from bat habitats, as well as high infection rates of bats with haemosporidian parasites (Hepatocystis sp.). These findings suggest transmission between arthropods and bats, perhaps through ingestion or hyperparasitism (viral infection of bat parasites). Some "bat-associated" viruses may be epidemiologically linked to bats through their ecological associations with invertebrates.
Collapse
Affiliation(s)
- Andrew J Bennett
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Trenton Bushmaker
- Laboratory of Virology, Virus Ecology Unit, Division of Intramural Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, USA
| | - Kenneth Cameron
- Wildlife Conservation Society, Wildlife Health Program, 2300 Southern Boulevard, Bronx, NY, USA
| | - Alain Ondzie
- Wildlife Conservation Society, Wildlife Health Program, 2300 Southern Boulevard, Bronx, NY, USA
| | - Fabien R Niama
- Laboratoire National de Santé Publique, Brazzaville, Republic of Congo
| | | | | | - Sarah H Olson
- Wildlife Conservation Society, Wildlife Health Program, 2300 Southern Boulevard, Bronx, NY, USA
| | - Vincent J Munster
- Laboratory of Virology, Virus Ecology Unit, Division of Intramural Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, USA
| | - Tony L Goldberg
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
62
|
Mandl JN, Schneider C, Schneider DS, Baker ML. Going to Bat(s) for Studies of Disease Tolerance. Front Immunol 2018; 9:2112. [PMID: 30294323 PMCID: PMC6158362 DOI: 10.3389/fimmu.2018.02112] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/28/2018] [Indexed: 12/31/2022] Open
Abstract
A majority of viruses that have caused recent epidemics with high lethality rates in people, are zoonoses originating from wildlife. Among them are filoviruses (e.g., Marburg, Ebola), coronaviruses (e.g., SARS, MERS), henipaviruses (e.g., Hendra, Nipah) which share the common features that they are all RNA viruses, and that a dysregulated immune response is an important contributor to the tissue damage and hence pathogenicity that results from infection in humans. Intriguingly, these viruses also all originate from bat reservoirs. Bats have been shown to have a greater mean viral richness than predicted by their phylogenetic distance from humans, their geographic range, or their presence in urban areas, suggesting other traits must explain why bats harbor a greater number of zoonotic viruses than other mammals. Bats are highly unusual among mammals in other ways as well. Not only are they the only mammals capable of powered flight, they have extraordinarily long life spans, with little detectable increases in mortality or senescence until high ages. Their physiology likely impacted their history of pathogen exposure and necessitated adaptations that may have also affected immune signaling pathways. Do our life history traits make us susceptible to generating damaging immune responses to RNA viruses or does the physiology of bats make them particularly tolerant or resistant? Understanding what immune mechanisms enable bats to coexist with RNA viruses may provide critical fundamental insights into how to achieve greater resilience in humans.
Collapse
Affiliation(s)
- Judith N. Mandl
- Department of Physiology, McGill University, Montreal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
- McGill Research Center for Complex Traits, McGill University, Montreal, QC, Canada
| | - Caitlin Schneider
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
- McGill Research Center for Complex Traits, McGill University, Montreal, QC, Canada
| | - David S. Schneider
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, United States
| | - Michelle L. Baker
- Australian Animal Health Laboratory, Health and Biosecurity Business Unit, Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC, Australia
| |
Collapse
|
63
|
Smc5/6 Antagonism by HBx Is an Evolutionarily Conserved Function of Hepatitis B Virus Infection in Mammals. J Virol 2018; 92:JVI.00769-18. [PMID: 29848586 DOI: 10.1128/jvi.00769-18] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 12/14/2022] Open
Abstract
Chronic infection with hepatitis B virus (HBV) is a major cause of liver disease and cancer in humans. HBVs (family Hepadnaviridae) have been associated with mammals for millions of years. Recently, the Smc5/6 complex, known for its essential housekeeping functions in genome maintenance, was identified as an antiviral restriction factor of human HBV. The virus has, however, evolved to counteract this defense mechanism by degrading the complex via its regulatory HBx protein. Whether the antiviral activity of the Smc5/6 complex against hepadnaviruses is an important and evolutionarily conserved function is unknown. In this study, we used an evolutionary and functional approach to address this question. We first performed phylogenetic and positive selection analyses of the Smc5/6 complex subunits and found that they have been conserved in primates and mammals. Yet, Smc6 showed marks of adaptive evolution, potentially reminiscent of a virus-host "arms race." We then functionally tested the HBx proteins from six divergent hepadnaviruses naturally infecting primates, rodents, and bats. We demonstrate that despite little sequence homology, these HBx proteins efficiently degraded mammalian Smc5/6 complexes, independently of the host species and of the sites under positive selection. Importantly, all HBx proteins also rescued the replication of an HBx-deficient HBV in primary human hepatocytes. These findings point to an evolutionarily conserved requirement for Smc5/6 inactivation by HBx, showing that Smc5/6 antiviral activity has been an important defense mechanism against hepadnaviruses in mammals. It will be interesting to investigate whether Smc5/6 may further be a restriction factor of other, yet-unidentified viruses that may have driven some of its adaptation.IMPORTANCE Infection with hepatitis B virus (HBV) led to 887,000 human deaths in 2015. HBV has been coevolving with mammals for millions of years. Recently, the Smc5/6 complex, which has essential housekeeping functions, was identified as a restriction factor of human HBV antagonized by the regulatory HBx protein. Here we address whether the antiviral activity of Smc5/6 is an important evolutionarily conserved function. We found that all six subunits of Smc5/6 have been conserved in primates, with only Smc6 showing signatures of an "evolutionary arms race." Using evolution-guided functional analyses that included infections of primary human hepatocytes, we demonstrated that HBx proteins from very divergent mammalian HBVs could all efficiently antagonize Smc5/6, independently of the host species and sites under positive selection. These findings show that Smc5/6 antiviral activity against HBV is an important function in mammals. They also raise the intriguing possibility that Smc5/6 may restrict other, yet-unidentified viruses.
Collapse
|
64
|
Schlabe S, Bremen KV, Aldabbagh S, Glebe D, Bremer CM, Marsen T, Mellin W, Cristanziano VD, Eis-Hübinger AM, Spengler U. Hepatitis B virus subgenotype F3 reactivation with vaccine escape mutations: A case report and review of the literature. World J Hepatol 2018; 10:509-516. [PMID: 30079137 PMCID: PMC6068847 DOI: 10.4254/wjh.v10.i7.509] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/08/2018] [Accepted: 06/08/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B represents a global health threat because its chronic course and sequelae contribute to a high morbidity and mortality. Hepatitis B virus (HBV) infection can be controlled by vaccines, antiviral treatment, and by interrupting transmission. Rare vaccine escape mutants are serious because they eliminate vaccine protection. Here, we present a 74-year-old vaccinated patient with HBV reactivation 11 years after kidney transplantation. The patient was HBV-positive but HBsAg-negative prior to vaccination 6 years before transplantation. The reactivated virus was HBV genotype F3 with vaccine escape mutations G145R, P120Q, and Q129P. The patient was successfully treated with entecavir. The epidemiological reasons for this subgenotype, which is extremely rare in Western Europe, were unclear. This case illustrates that second-generation vaccines are not always effective in a specific group of patients.
Collapse
Affiliation(s)
- Stefan Schlabe
- German Center of Infectious Diseases Research (DZIF), Partner-Site Cologne-Bonn, Bonn-Cologne35392, Germany
- Department of Internal Medicine I, University Hospital of Bonn, Bonn 53127, Germany
| | - Kathrin van Bremen
- German Center of Infectious Diseases Research (DZIF), Partner-Site Cologne-Bonn, Bonn-Cologne35392, Germany
- Department of Internal Medicine I, University Hospital of Bonn, Bonn 53127, Germany
| | - Souhaib Aldabbagh
- German Center of Infectious Diseases Research (DZIF), Partner-Site Cologne-Bonn, Bonn-Cologne35392, Germany
- Institute of Virology, University Hospital of Bonn, Bonn 53127, Germany
| | - Dieter Glebe
- Institute of Medical Virology, Justus Liebig University Giessen, National Reference Center for Hepatitis B and D Viruses, Biomedical Research Center Seltersberg, Giessen 35392, Germany
- German Center of Infectious Diseases Research (DZIF), Partner-Site Giessen, Giessen 35392, Germany
| | - Corinna M Bremer
- Institute of Medical Virology, Justus Liebig University Giessen, National Reference Center for Hepatitis B and D Viruses, Biomedical Research Center Seltersberg, Giessen 35392, Germany
- German Center of Infectious Diseases Research (DZIF), Partner-Site Giessen, Giessen 35392, Germany
| | - Tobias Marsen
- Practice of Nephrology and Dialysis, Nephrological Center Cologne-Lindenthal, Cologne 50937, Germany
| | - Walter Mellin
- Practice of Pathology and Cytology, Cologne 50931, Germany
| | | | - Anna M Eis-Hübinger
- German Center of Infectious Diseases Research (DZIF), Partner-Site Cologne-Bonn, Bonn-Cologne35392, Germany
- Institute of Virology, University Hospital of Bonn, Bonn 53127, Germany
| | - Ulrich Spengler
- German Center of Infectious Diseases Research (DZIF), Partner-Site Cologne-Bonn, Bonn-Cologne35392, Germany
- Department of Internal Medicine I, University Hospital of Bonn, Bonn 53127, Germany
| |
Collapse
|
65
|
Characterization of Three Novel Linear Neutralizing B-Cell Epitopes in the Capsid Protein of Swine Hepatitis E Virus. J Virol 2018; 92:JVI.00251-18. [PMID: 29669835 DOI: 10.1128/jvi.00251-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/10/2018] [Indexed: 01/13/2023] Open
Abstract
Hepatitis E virus (HEV) causes liver disease in humans and is thought to be a zoonotic infection, with domestic animals, including swine and rabbits, being a reservoir. One of the proteins encoded by the virus is the capsid protein. This is likely the major immune-dominant protein and a target for vaccination. Four monoclonal antibodies (MAbs), three novel, 1E4, 2C7, and 2G9, and one previously characterized, 1B5, were evaluated for binding to the capsid protein from genotype 4 swine HEV. The results indicated that 625DFCP628, 458PSRPF462, and 407EPTV410 peptides on the capsid protein comprised minimal amino acid sequence motifs recognized by 1E4, 2C7, and 2G9, respectively. The data suggested that 2C7 and 2G9 epitopes were partially exposed on the surface of the capsid protein. Truncated genotype 4 swine HEV capsid protein (sp239, amino acids 368 to 606) can exist in multimeric forms. Preincubation of swine HEV with 2C7, 2G9, or 1B5 before addition to HepG2 cells partially blocked sp239 cell binding and inhibited swine HEV infection. The study indicated that 2C7, 2G9, and 1B5 partially blocked swine HEV infection of rabbits better than 1E4 or normal mouse IgG. The cross-reactivity of antibodies suggested that capsid epitopes recognized by 2C7 and 2G9 are common to HEV strains infecting most host species. Collectively, MAbs 2C7, 2G9, and 1B5 were shown to recognize three novel linear neutralizing B-cell epitopes of genotype 4 HEV capsid protein. These results enhance understanding of HEV capsid protein structure to guide vaccine and antiviral design.IMPORTANCE Genotype 3 and 4 HEVs are zoonotic viruses. Here, genotype 4 HEV was studied due to its prevalence in human populations and pig herds in China. To improve HEV disease diagnosis and prevention, a better understanding of the antigenic structure and neutralizing epitopes of HEV capsid protein are needed. In this study, the locations of three novel linear B-cell recognition epitopes within genotype 4 swine HEV capsid protein were characterized. Moreover, the neutralizing abilities of three MAbs specific for this protein, 2C7, 2G9, and 1B5, were studied in vitro and in vivo Collectively, these findings reveal structural details of genotype 4 HEV capsid protein and should facilitate development of applications for the design of vaccines and antiviral drugs for broader prevention, detection, and treatment of HEV infection of diverse human and animal hosts.
Collapse
|
66
|
A novel hepatitis B virus species discovered in capuchin monkeys sheds new light on the evolution of primate hepadnaviruses. J Hepatol 2018; 68:1114-1122. [PMID: 29428874 DOI: 10.1016/j.jhep.2018.01.029] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 01/19/2018] [Accepted: 01/27/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS All known hepatitis B virus (HBV) genotypes occur in humans and hominoid Old World non-human primates (NHPs). The divergent woolly monkey HBV (WMHBV) forms another orthohepadnavirus species. The evolutionary origins of HBV are unclear. METHODS We analysed sera from 124 Brazilian monkeys collected during 2012-2016 for hepadnaviruses using molecular and serological tools, and conducted evolutionary analyses. RESULTS We identified a novel orthohepadnavirus species in capuchin monkeys (capuchin monkey hepatitis B virus [CMHBV]). We found CMHBV-specific antibodies in five animals and high CMHBV concentrations in one animal. Non-inflammatory, probably chronic infection was consistent with an intact preCore domain, low genetic variability, core deletions in deep sequencing, and no elevated liver enzymes. Cross-reactivity of antisera against surface antigens suggested antigenic relatedness of HBV, CMHBV, and WMHBV. Infection-determining CMHBV surface peptides bound to the human HBV receptor (human sodium taurocholate co-transporting polypeptide), but preferentially interacted with the capuchin monkey receptor homologue. CMHBV and WMHBV pseudotypes infected human hepatoma cells via the human sodium taurocholate co-transporting polypeptide, and were poorly neutralised by HBV vaccine-derived antibodies, suggesting that cross-species infections may be possible. Ancestral state reconstructions and sequence distance comparisons associated HBV with humans, whereas primate hepadnaviruses as a whole were projected to NHP ancestors. Co-phylogenetic analyses yielded evidence for co-speciation of hepadnaviruses and New World NHP. Bayesian hypothesis testing yielded strong support for an association of the HBV stem lineage with hominoid ancestors. Neither CMHBV nor WMHBV was likely the ancestor of the divergent human HBV genotypes F/H found in American natives. CONCLUSIONS Our data suggest ancestral co-speciation of hepadnaviruses and NHP, and an Old World origin of the divergent HBV genotypes F/H. The identification of a novel primate hepadnavirus offers new perspectives for urgently needed animal models of chronic hepatitis B. LAY SUMMARY The origins of HBV are unclear. The new orthohepadnavirus species from Brazilian capuchin monkeys resembled HBV in elicited infection patterns and could infect human liver cells using the same receptor as HBV. Evolutionary analyses suggested that primate HBV-related viruses might have emerged in African ancestors of New World monkeys millions of years ago. HBV was associated with hominoid primates, including humans and apes, suggesting evolutionary origins of HBV before the formation of modern humans. HBV genotypes found in American natives were divergent from those found in American monkeys, and likely introduced along prehistoric human migration. Our results elucidate the evolutionary origins and dispersal of primate HBV, identify a new orthohepadnavirus reservoir, and enable new perspectives for animal models of hepatitis B.
Collapse
|
67
|
Virus entry and its inhibition to prevent and treat hepatitis B and hepatitis D virus infections. Curr Opin Virol 2018; 30:68-79. [DOI: 10.1016/j.coviro.2018.04.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 12/13/2022]
|
68
|
Yang L, Wu J, Hu T, Qin S, Deng B, Liu J, Zhang F, He B, Tu C. Genetic diversity of bat orthohepadnaviruses in China and a proposed new nomenclature. INFECTION GENETICS AND EVOLUTION 2018; 63:135-143. [PMID: 29842981 PMCID: PMC7173211 DOI: 10.1016/j.meegid.2018.05.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 05/23/2018] [Accepted: 05/25/2018] [Indexed: 01/24/2023]
Abstract
The orthohepadnaviruses, which include the major human pathogen hepatitis B virus, exist in a wide range of hosts. Since 2013, a large group of orthohepadnaviruses has been identified in bats worldwide and classified as 4 species within the genus Orthohepadnavirus. To further investigate orthohepadnaviruses in the Chinese bat population, 554 archived bat samples from 20 colonies covering 3 southern provinces were screened with results showing that 9 (1.6%) were positive. A systematic phylogenetic analysis has indicated the need for a new nomenclature for bat hepatitis B virus-like viruses: BtHBV, with the addition of 3 new species, one being divided into 6 genotypes. Viruses identified here shared 9.0–19.2% full genome divergence and classified into 3 different genotypes. This study illustrates the genetic diversity of orthohepadnaviruses in the Chinese bat population, and emphasizes need for further investigation of their public health significance. Three new orthohepadnaviral lineages were identified in Chinese bats. A new nomenclature was proposed for bat hepatitis B virus-like viruses. This study indicates genetic diversity of orthohepadnaviruses in Chinese bats.
Collapse
Affiliation(s)
- Ling'en Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, Jilin Province, China; Fujian A&F University, College of Animal Science, Fuzhou, Fujian Province, China
| | - Jianmin Wu
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, Guangxi Province, China
| | - Tingsong Hu
- Centers for Disease Control and Prevention of Chengdu Military Command, Kunming, Yunnan Province, China
| | - Shaomin Qin
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, Guangxi Province, China
| | - Bo Deng
- Centers for Disease Control and Prevention of Chengdu Military Command, Kunming, Yunnan Province, China
| | - Jinfeng Liu
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, Guangxi Province, China
| | - Fuqiang Zhang
- Centers for Disease Control and Prevention of Chengdu Military Command, Kunming, Yunnan Province, China.
| | - Biao He
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, Jilin Province, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu Province, China.
| | - Changchun Tu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, Jilin Province, China; Fujian A&F University, College of Animal Science, Fuzhou, Fujian Province, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu Province, China.
| |
Collapse
|
69
|
A Novel Hepadnavirus Identified in an Immunocompromised Domestic Cat in Australia. Viruses 2018; 10:v10050269. [PMID: 29772771 PMCID: PMC5977262 DOI: 10.3390/v10050269] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/10/2018] [Accepted: 05/14/2018] [Indexed: 12/23/2022] Open
Abstract
High-throughput transcriptome sequencing allows for the unbiased detection of viruses in host tissues. The application of this technique to immunosuppressed animals facilitates the detection of viruses that might otherwise be excluded or contained in immunocompetent individuals. To identify potential viral pathogens infecting domestic cats we performed high-throughput transcriptome sequencing of tissues from cats infected with feline immunodeficiency virus (FIV). A novel member of the Hepadnaviridae, tentatively named domestic cat hepadnavirus, was discovered in a lymphoma sample and its complete 3187 bp genome characterized. Phylogenetic analysis placed the domestic cat hepadnavirus as a divergent member of mammalian orthohepadnaviruses that exhibits no close relationship to any other virus. DNA extracted from whole blood from pet cats was positive for the novel hepadnavirus by PCR in 6 of 60 (10%) FIV-infected cats and 2 of 63 (3.2%) FIV-uninfected cats. The higher prevalence of hepadnavirus viraemia detected in FIV-infected cats mirrors that seen in human immunodeficiency virus-infected humans coinfected with hepatitis B virus. In summary, we report the first hepadnavirus infection in a carnivore and the first in a companion animal. The natural history, epidemiology and pathogenic potential of domestic cat hepadnavirus merits additional investigation.
Collapse
|
70
|
Mühlemann B, Jones TC, Damgaard PDB, Allentoft ME, Shevnina I, Logvin A, Usmanova E, Panyushkina IP, Boldgiv B, Bazartseren T, Tashbaeva K, Merz V, Lau N, Smrčka V, Voyakin D, Kitov E, Epimakhov A, Pokutta D, Vicze M, Price TD, Moiseyev V, Hansen AJ, Orlando L, Rasmussen S, Sikora M, Vinner L, Osterhaus ADME, Smith DJ, Glebe D, Fouchier RAM, Drosten C, Sjögren KG, Kristiansen K, Willerslev E. Ancient hepatitis B viruses from the Bronze Age to the Medieval period. Nature 2018; 557:418-423. [PMID: 29743673 DOI: 10.1038/s41586-018-0097-z] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 04/06/2018] [Indexed: 12/16/2022]
Abstract
Hepatitis B virus (HBV) is a major cause of human hepatitis. There is considerable uncertainty about the timescale of its evolution and its association with humans. Here we present 12 full or partial ancient HBV genomes that are between approximately 0.8 and 4.5 thousand years old. The ancient sequences group either within or in a sister relationship with extant human or other ape HBV clades. Generally, the genome properties follow those of modern HBV. The root of the HBV tree is projected to between 8.6 and 20.9 thousand years ago, and we estimate a substitution rate of 8.04 × 10-6-1.51 × 10-5 nucleotide substitutions per site per year. In several cases, the geographical locations of the ancient genotypes do not match present-day distributions. Genotypes that today are typical of Africa and Asia, and a subgenotype from India, are shown to have an early Eurasian presence. The geographical and temporal patterns that we observe in ancient and modern HBV genotypes are compatible with well-documented human migrations during the Bronze and Iron Ages1,2. We provide evidence for the creation of HBV genotype A via recombination, and for a long-term association of modern HBV genotypes with humans, including the discovery of a human genotype that is now extinct. These data expose a complexity of HBV evolution that is not evident when considering modern sequences alone.
Collapse
Affiliation(s)
- Barbara Mühlemann
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Terry C Jones
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, UK.,Institute of Virology, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | | | - Morten E Allentoft
- Centre for GeoGenetics, Natural History Museum, University of Copenhagen, Copenhagen, Denmark
| | - Irina Shevnina
- Archaeological Laboratory, Faculty of History and Law, A. A. Baitursynov Kostanay State University, Kostanay, Kazakhstan
| | - Andrey Logvin
- Archaeological Laboratory, Faculty of History and Law, A. A. Baitursynov Kostanay State University, Kostanay, Kazakhstan
| | - Emma Usmanova
- Saryarka Archaeological Institute, Karaganda State University, Karaganda, Kazakhstan
| | | | - Bazartseren Boldgiv
- Department of Biology, School of Arts and Sciences, National University of Mongolia, Ulaanbaatar, Mongolia
| | - Tsevel Bazartseren
- Laboratory of Virology, Institute of Veterinary Medicine, Mongolian University of Life Sciences, Ulaanbaatar, Mongolia
| | | | - Victor Merz
- Pavlodar State University, Pavlodar, Kazakhstan
| | - Nina Lau
- Centre for Baltic and Scandinavian Archaeology, Schleswig, Germany
| | - Václav Smrčka
- Institute for History of Medicine and Foreign Languages of the First Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | - Egor Kitov
- N. N. Miklouho-Maklay Institute of Ethnology and Anthropology, Russian Academy of Sciences, Moscow, Russia
| | - Andrey Epimakhov
- South Ural Department, Institute of History and Archaeology UBRAS, South Ural State University, Chelyabinsk, Russia
| | - Dalia Pokutta
- Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
| | | | - T Douglas Price
- Department of Historical Studies, University of Gothenburg, Gothenburg, Sweden
| | - Vyacheslav Moiseyev
- Department of Physical Anthropology, Peter the Great Museum of Anthropology and Ethnography, Saint-Petersburg, Russia
| | - Anders J Hansen
- Centre for GeoGenetics, Natural History Museum, University of Copenhagen, Copenhagen, Denmark
| | - Ludovic Orlando
- Centre for GeoGenetics, Natural History Museum, University of Copenhagen, Copenhagen, Denmark.,Laboratoire d'Anthropobiologie Moléculaire et d'Imagerie de Synthèse, CNRS UMR 5288, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Simon Rasmussen
- Department of Bio and Health Informatics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Martin Sikora
- Centre for GeoGenetics, Natural History Museum, University of Copenhagen, Copenhagen, Denmark
| | - Lasse Vinner
- Centre for GeoGenetics, Natural History Museum, University of Copenhagen, Copenhagen, Denmark
| | - Albert D M E Osterhaus
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Derek J Smith
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Dieter Glebe
- Institute of Medical Virology, Justus Liebig University of Giessen, Giessen, Germany.,National Reference Centre for Hepatitis B and D Viruses, German Center for Infection Research (DZIF), Giessen, Germany
| | - Ron A M Fouchier
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Christian Drosten
- Institute of Virology, Charité, Universitätsmedizin Berlin, Berlin, Germany.,German Center for Infection Research (DZIF), Braunschweig, Germany
| | - Karl-Göran Sjögren
- Department of Historical Studies, University of Gothenburg, Gothenburg, Sweden
| | | | - Eske Willerslev
- Centre for GeoGenetics, Natural History Museum, University of Copenhagen, Copenhagen, Denmark. .,Cambridge GeoGenetics Group, Department of Zoology, University of Cambridge, Cambridge, UK. .,Wellcome Trust Sanger Institute, Hinxton, UK.
| |
Collapse
|
71
|
A metagenomic viral discovery approach identifies potential zoonotic and novel mammalian viruses in Neoromicia bats within South Africa. PLoS One 2018; 13:e0194527. [PMID: 29579103 PMCID: PMC5868816 DOI: 10.1371/journal.pone.0194527] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/05/2018] [Indexed: 01/02/2023] Open
Abstract
Species within the Neoromicia bat genus are abundant and widely distributed in Africa. It is common for these insectivorous bats to roost in anthropogenic structures in urban regions. Additionally, Neoromicia capensis have previously been identified as potential hosts for Middle East respiratory syndrome (MERS)-related coronaviruses. This study aimed to ascertain the gastrointestinal virome of these bats, as viruses excreted in fecal material or which may be replicating in rectal or intestinal tissues have the greatest opportunities of coming into contact with other hosts. Samples were collected in five regions of South Africa over eight years. Initial virome composition was determined by viral metagenomic sequencing by pooling samples and enriching for viral particles. Libraries were sequenced on the Illumina MiSeq and NextSeq500 platforms, producing a combined 37 million reads. Bioinformatics analysis of the high throughput sequencing data detected the full genome of a novel species of the Circoviridae family, and also identified sequence data from the Adenoviridae, Coronaviridae, Herpesviridae, Parvoviridae, Papillomaviridae, Phenuiviridae, and Picornaviridae families. Metagenomic sequencing data was insufficient to determine the viral diversity of certain families due to the fragmented coverage of genomes and lack of suitable sequencing depth, as some viruses were detected from the analysis of reads-data only. Follow up conventional PCR assays targeting conserved gene regions for the Adenoviridae, Coronaviridae, and Herpesviridae families were used to confirm metagenomic data and generate additional sequences to determine genetic diversity. The complete coding genome of a MERS-related coronavirus was recovered with additional amplicon sequencing on the MiSeq platform. The new genome shared 97.2% overall nucleotide identity to a previous Neoromicia-associated MERS-related virus, also from South Africa. Conventional PCR analysis detected diverse adenovirus and herpesvirus sequences that were widespread throughout Neoromicia populations in South Africa. Furthermore, similar adenovirus sequences were detected within these populations throughout several years. With the exception of the coronaviruses, the study represents the first report of sequence data from several viral families within a Southern African insectivorous bat genus; highlighting the need for continued investigations in this regard.
Collapse
|
72
|
Van Nguyen D, Van Nguyen C, Bonsall D, Ngo TT, Carrique-Mas J, Pham AH, Bryant JE, Thwaites G, Baker S, Woolhouse M, Simmonds P. Detection and Characterization of Homologues of Human Hepatitis Viruses and Pegiviruses in Rodents and Bats in Vietnam. Viruses 2018; 10:v10030102. [PMID: 29495551 PMCID: PMC5869495 DOI: 10.3390/v10030102] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 02/19/2018] [Accepted: 02/23/2018] [Indexed: 12/20/2022] Open
Abstract
Rodents and bats are now widely recognised as important sources of zoonotic virus infections in other mammals, including humans. Numerous surveys have expanded our knowledge of diverse viruses in a range of rodent and bat species, including their origins, evolution, and range of hosts. In this study of pegivirus and human hepatitis-related viruses, liver and serum samples from Vietnamese rodents and bats were examined by PCR and sequencing. Nucleic acids homologous to human hepatitis B, C, E viruses were detected in liver samples of 2 (1.3%) of 157 bats, 38 (8.1%), and 14 (3%) of 470 rodents, respectively. Hepacivirus-like viruses were frequently detected (42.7%) in the bamboo rat, Rhizomys pruinosus, while pegivirus RNA was only evident in 2 (0.3%) of 638 rodent serum samples. Complete or near-complete genome sequences of HBV, HEV and pegivirus homologues closely resembled those previously reported from rodents and bats. However, complete coding region sequences of the rodent hepacivirus-like viruses substantially diverged from all of the currently classified variants and potentially represent a new species in the Hepacivirus genus. Of the viruses identified, their routes of transmission and potential to establish zoonoses remain to be determined.
Collapse
MESH Headings
- Animals
- Chiroptera/virology
- Genome, Viral
- Hepatitis Viruses/classification
- Hepatitis Viruses/genetics
- Hepatitis, Viral, Animal/diagnosis
- Hepatitis, Viral, Animal/epidemiology
- Hepatitis, Viral, Animal/virology
- Hepatitis, Viral, Human/diagnosis
- Hepatitis, Viral, Human/epidemiology
- Hepatitis, Viral, Human/virology
- Humans
- Phylogeny
- Public Health Surveillance
- RNA, Viral
- Rodentia/virology
- Vietnam/epidemiology
- Zoonoses/epidemiology
- Zoonoses/virology
Collapse
Affiliation(s)
- Dung Van Nguyen
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK.
| | - Cuong Van Nguyen
- Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City 700000, Vietnam.
| | - David Bonsall
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK.
| | - Tue Tri Ngo
- Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City 700000, Vietnam.
| | - Juan Carrique-Mas
- Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City 700000, Vietnam.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford OX3 7FZ, UK.
| | - Anh Hong Pham
- Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City 700000, Vietnam.
| | - Juliet E Bryant
- Fondation Mérieux, Centre International de Recherche en Infectiologie (CIRI), 69365 Lyon CEDEX 07, France.
| | - Guy Thwaites
- Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City 700000, Vietnam.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford OX3 7FZ, UK.
| | - Stephen Baker
- Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City 700000, Vietnam.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford OX3 7FZ, UK.
- The London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK.
| | - Mark Woolhouse
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK.
| | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK.
| |
Collapse
|
73
|
Yinda CK, Ghogomu SM, Conceição-Neto N, Beller L, Deboutte W, Vanhulle E, Maes P, Van Ranst M, Matthijnssens J. Cameroonian fruit bats harbor divergent viruses, including rotavirus H, bastroviruses, and picobirnaviruses using an alternative genetic code. Virus Evol 2018; 4:vey008. [PMID: 29644096 PMCID: PMC5888411 DOI: 10.1093/ve/vey008] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Most human emerging infectious diseases originate from wildlife and bats are a major reservoir of viruses, a few of which have been highly pathogenic to humans. In some regions of Cameroon, bats are hunted and eaten as a delicacy. This close proximity between human and bats provides ample opportunity for zoonotic events. To elucidate the viral diversity of Cameroonian fruit bats, we collected and metagenomically screened eighty-seven fecal samples of Eidolon helvum and Epomophorus gambianus fruit bats. The results showed a plethora of known and novel viruses. Phylogenetic analyses of the eleven gene segments of the first complete bat rotavirus H genome, showed clearly separated clusters of human, porcine, and bat rotavirus H strains, not indicating any recent interspecies transmission events. Additionally, we identified and analyzed a bat bastrovirus genome (a novel group of recently described viruses, related to astroviruses and hepatitis E viruses), confirming their recombinant nature, and provide further evidence of additional recombination events among bat bastroviruses. Interestingly, picobirnavirus-like RNA-dependent RNA polymerase gene segments were identified using an alternative mitochondrial genetic code, and further principal component analyses suggested that they may have a similar lifestyle to mitoviruses, a group of virus-like elements known to infect the mitochondria of fungi. Although identified bat coronavirus, parvovirus, and cyclovirus strains belong to established genera, most of the identified partitiviruses and densoviruses constitute putative novel genera in their respective families. Finally, the results of the phage community analyses of these bats indicate a very diverse geographically distinct bat phage population, probably reflecting different diets and gut bacterial ecosystems.
Collapse
Affiliation(s)
- Claude Kwe Yinda
- Laboratory of Viral Metagenomics
- Laboratory for Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute, KU Leuven – University of Leuven, B-3000 Leuven, Belgium
| | - Stephen Mbigha Ghogomu
- Molecular and Cell Biology Laboratory, Biotechnology Unit, Department of Biochemistry and Molecular Biology, University of Buea, Buea, 237, Cameroon
| | - Nádia Conceição-Neto
- Laboratory of Viral Metagenomics
- Laboratory for Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute, KU Leuven – University of Leuven, B-3000 Leuven, Belgium
| | | | | | | | - Piet Maes
- Laboratory for Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute, KU Leuven – University of Leuven, B-3000 Leuven, Belgium
| | - Marc Van Ranst
- Laboratory for Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute, KU Leuven – University of Leuven, B-3000 Leuven, Belgium
| | | |
Collapse
|
74
|
Extensive diversity and evolution of hepadnaviruses in bats in China. Virology 2017; 514:88-97. [PMID: 29153861 PMCID: PMC7172093 DOI: 10.1016/j.virol.2017.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 11/05/2017] [Accepted: 11/06/2017] [Indexed: 01/04/2023]
Abstract
To better understand the evolution of hepadnaviruses, we sampled bats from Guizhou, Henan and Zhejiang provinces, China, and rodents from Zhejiang province. Genetically diverse hepadnaviruses were identified in a broad range of bat species, with an overall prevalence of 13.3%. In contrast, no rodent hepadnaviruses were identified. The newly discovered bat hepadnaviruses fell into two distinct phylogenetic groups. The viruses within the first group exhibited high diversity, with some closely related to viruses previously identified in Yunnan province. Strikingly, the newly discovered viruses sampled from Jiyuan city in the second phylogenetic group were most closely related to those found in bats from West Africa, suggestive of a long-term association between bats and hepadnaviruses. A co-phylogenetic analysis revealed frequent cross-species transmission among bats from different species, genera, and families. Overall, these data suggest that there are likely few barriers to the cross-species transmission of bat hepadnaviruses. Diverse hepadnaviruses are identified in a broad range of bat species in China. Some of them were closely related to those previously identified in China. The viruses from Jiyuan were most closely related to Gabon bat hepadnaviruses. Newly discovered viruses did not clustered by bat species or geographic location. Frequent cross-species transmission among different bat species was observed.
Collapse
|
75
|
Wang P, Mo R, Lai R, Xu Y, Lu J, Zhao G, Liu Y, Cao Z, Wang X, Li Z, Lin L, Zhou H, Cai W, Wang H, Bao S, Xiang X, Xie Q. Genetic variations of NTCP are associated with susceptibility to HBV infection and related hepatocellular carcinoma. Oncotarget 2017; 8:105407-105424. [PMID: 29285260 PMCID: PMC5739647 DOI: 10.18632/oncotarget.22211] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/21/2017] [Indexed: 12/13/2022] Open
Abstract
Sodium taurocholate cotransporting polypeptide (NTCP), encoded by gene SLC10A1, is a receptor for hepatitis B virus (HBV). The aim of the current study was to investigate the role of NTCP polymorphisms in HBV susceptibility, cirrhosis and hepatocarcinogenesis. A total 1221 cases [including 866 chronic hepatitis B (CHB), 238 liver cirrhosis (LC), 117 hepatocellular carcinoma (HCC) patients] and 1232 healthy controls (HCs) were recruited, and 6 single nucleotide polymorphisms (SNPs) were genotyped. Meta-analysis was executed among 14591 CHBs and 12396 HCs to determine the association between NTCP polymorphisms and HBV infection, cirrhosis or hepatocarcinogenesis. The frequency of rs2296651-GA was inversely correlated with CHB, LC or HCC patients [adjusted OR(95%CI)=0.16(0.11-0.23), p<0.001; 0.34(0.21-0.55), p=0.001; or 0.46(0.25-0.83), p=0.008], respectively, compared with HCs. Meta-analysis also showed that NTCP rs2296651-GA was inversely associated with HBV infection [OR(95%CI)=0.532(0.287-0.986), p=0.028, codominant] or HBV-related HCC [OR(95%CI)=0.701(0.564-0.872), p=0.001, recessive]. Furthermore, the frequency of rs943277-GA was positively correlated with HBV infection [adjusted OR(95%CI)=2.42(1.05-5.54), p=0.032, codominant]. Our data suggest that NTCP mutants contribute to the susceptibility of HBV infection or HBV-related HCC.
Collapse
Affiliation(s)
- Peng Wang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Translational Lab of Liver Diseases, Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ruidong Mo
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Translational Lab of Liver Diseases, Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Rongtao Lai
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Translational Lab of Liver Diseases, Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yumin Xu
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Translational Lab of Liver Diseases, Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jie Lu
- Translational Lab of Liver Diseases, Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Gangde Zhao
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Translational Lab of Liver Diseases, Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuhan Liu
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Translational Lab of Liver Diseases, Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhujun Cao
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Translational Lab of Liver Diseases, Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaolin Wang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Translational Lab of Liver Diseases, Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ziqiang Li
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Translational Lab of Liver Diseases, Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lanyi Lin
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Huijuan Zhou
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wei Cai
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hui Wang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shisan Bao
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Discipline of Pathology, School of Medical Sciences and Bosch Institute, The University of Sydney, New South Wales 2006, Australia
| | - Xiaogang Xiang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Translational Lab of Liver Diseases, Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qing Xie
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Translational Lab of Liver Diseases, Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
76
|
Yu Y, Scheel TKH, Luna JM, Chung H, Nishiuchi E, Scull MA, Echeverría N, Ricardo-Lax I, Kapoor A, Lipkin IW, Divers TJ, Antczak DF, Tennant BC, Rice CM. miRNA independent hepacivirus variants suggest a strong evolutionary pressure to maintain miR-122 dependence. PLoS Pathog 2017; 13:e1006694. [PMID: 29084265 PMCID: PMC5679655 DOI: 10.1371/journal.ppat.1006694] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 11/09/2017] [Accepted: 10/14/2017] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) requires the liver specific micro-RNA (miRNA), miR-122, to replicate. This was considered unique among RNA viruses until recent discoveries of HCV-related hepaciviruses prompting the question of a more general miR-122 dependence. Among hepaciviruses, the closest known HCV relative is the equine non-primate hepacivirus (NPHV). Here, we used Argonaute cross-linking immunoprecipitation (AGO-CLIP) to confirm AGO binding to the single predicted miR-122 site in the NPHV 5'UTR in vivo. To study miR-122 requirements in the absence of NPHV-permissive cell culture systems, we generated infectious NPHV/HCV chimeric viruses with the 5' end of NPHV replacing orthologous HCV sequences. These chimeras were viable even in cells lacking miR-122, although miR-122 presence enhanced virus production. No other miRNAs bound this region. By random mutagenesis, we isolated HCV variants partially dependent on miR-122 as well as robustly replicating NPHV/HCV variants completely independent of any miRNAs. These miRNA independent variants even replicate and produce infectious particles in non-hepatic cells after exogenous delivery of apolipoprotein E (ApoE). Our findings suggest that miR-122 independent HCV and NPHV variants have arisen and been sampled during evolution, yet miR-122 dependence has prevailed. We propose that hepaciviruses may use this mechanism to guarantee liver tropism and exploit the tolerogenic liver environment to avoid clearance and promote chronicity.
Collapse
Affiliation(s)
- Yingpu Yu
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY, United States of America
| | - Troels K. H. Scheel
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY, United States of America
- Copenhagen Hepatitis C Program, Department of Infectious Diseases, Hvidovre Hospital, and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Joseph M. Luna
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY, United States of America
| | - Hachung Chung
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY, United States of America
| | - Eiko Nishiuchi
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY, United States of America
| | - Margaret A. Scull
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY, United States of America
| | - Natalia Echeverría
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY, United States of America
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Inna Ricardo-Lax
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY, United States of America
| | - Amit Kapoor
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, United States of America
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States of America
| | - Ian W. Lipkin
- Center for Infection and Immunity, Mailman School of Public Health and College of Physicians & Surgeons, Columbia University, New York, NY, United States of America
| | - Thomas J. Divers
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Douglas F. Antczak
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Bud C. Tennant
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY, United States of America
| |
Collapse
|
77
|
Hu D, Zhu C, Wang Y, Ai L, Yang L, Ye F, Ding C, Chen J, He B, Zhu J, Qian H, Xu W, Feng Y, Tan W, Wang C. Virome analysis for identification of novel mammalian viruses in bats from Southeast China. Sci Rep 2017; 7:10917. [PMID: 28883450 PMCID: PMC5589946 DOI: 10.1038/s41598-017-11384-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/23/2017] [Indexed: 11/09/2022] Open
Abstract
Bats have been shown as important mammal resevoirs to carry a variety of zoonotic pathogens. To analyze pathogenic species in bats from southeast coastal regions of China, we performed metagenomic sequencing technology for high throughput sequencing of six sentinels from southeast coastal area of China. We obtained 5,990,261 high quality reads from intestine and lung tissue of 235 bats, including 2,975,371 assembled sequences. 631,490 reads predicted overlapping sequences for the open reading frame (ORF), which accounts for 2.37% of all the sequences (15,012/631,490). Further, the acquired virus sequences were classified into 25 viral families, including 16 vertebrate viruses, four plant viruses and five insect viruses. All bat samples were screened by specific PCR and phylogenetic analysis. Using these techniques, we discovered many novel bat viruses and some bat viruses closely-related to known human/animal pathogens, including coronavirus, norovirus, adenovirus, bocavirus, astrovirus, and circovirus. In summary, this study extended our understanding of bats as the viral reservoirs. Additionally, it also provides a basis for furher studying the transmission of viruses from bats to humans.
Collapse
Affiliation(s)
- Dan Hu
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.,Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, 210002, China
| | - Changqiang Zhu
- Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, 210002, China
| | - Yi Wang
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.,Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, 210002, China
| | - Lele Ai
- Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, 210002, China
| | - Lu Yang
- Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, 210002, China
| | - Fuqiang Ye
- Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, 210002, China
| | - Chenxi Ding
- Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, 210002, China
| | - Jiafeng Chen
- Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, 210002, China
| | - Biao He
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin, China
| | - Jin Zhu
- Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, 210002, China
| | - Hui Qian
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Wenrong Xu
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Youjun Feng
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Weilong Tan
- Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, 210002, China.
| | - Changjun Wang
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China. .,Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, 210002, China.
| |
Collapse
|
78
|
Lauber C, Seitz S, Mattei S, Suh A, Beck J, Herstein J, Börold J, Salzburger W, Kaderali L, Briggs JAG, Bartenschlager R. Deciphering the Origin and Evolution of Hepatitis B Viruses by Means of a Family of Non-enveloped Fish Viruses. Cell Host Microbe 2017; 22:387-399.e6. [PMID: 28867387 PMCID: PMC5604429 DOI: 10.1016/j.chom.2017.07.019] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/10/2017] [Accepted: 07/29/2017] [Indexed: 02/07/2023]
Abstract
Hepatitis B viruses (HBVs), which are enveloped viruses with reverse-transcribed DNA genomes, constitute the family Hepadnaviridae. An outstanding feature of HBVs is their streamlined genome organization with extensive gene overlap. Remarkably, the ∼1,100 bp open reading frame (ORF) encoding the envelope proteins is fully nested within the ORF of the viral replicase P. Here, we report the discovery of a diversified family of fish viruses, designated nackednaviruses, which lack the envelope protein gene, but otherwise exhibit key characteristics of HBVs including genome replication via protein-primed reverse-transcription and utilization of structurally related capsids. Phylogenetic reconstruction indicates that these two virus families separated more than 400 million years ago before the rise of tetrapods. We show that HBVs are of ancient origin, descending from non-enveloped progenitors in fishes. Their envelope protein gene emerged de novo, leading to a major transition in viral lifestyle, followed by co-evolution with their hosts over geologic eras. Nackednaviruses are non-enveloped fish viruses related to hepadnaviruses Both virus families separated from a common ancestor >400 million years ago The envelope protein gene of hepadnaviruses emerged through two distinct processes Hepadnaviruses mainly co-evolve with hosts while nackednaviruses jump between hosts
Collapse
Affiliation(s)
- Chris Lauber
- Institute for Medical Informatics and Biometry, Technische Universität Dresden, 01307 Dresden, Germany
| | - Stefan Seitz
- University of Heidelberg, Department of Infectious Diseases, Molecular Virology, 69120 Heidelberg, Germany.
| | - Simone Mattei
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Alexander Suh
- Department of Evolutionary Biology, Evolutionary Biology Centre (EBC), Uppsala University, 75236 Uppsala, Sweden
| | - Jürgen Beck
- Department of Internal Medicine 2/Molecular Biology, University Hospital Freiburg, 79106 Freiburg, Germany
| | - Jennifer Herstein
- Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jacob Börold
- University of Heidelberg, Department of Infectious Diseases, Molecular Virology, 69120 Heidelberg, Germany
| | | | - Lars Kaderali
- Institute for Medical Informatics and Biometry, Technische Universität Dresden, 01307 Dresden, Germany; Institute for Bioinformatics, University Medicine Greifswald, 17487 Greifswald, Germany
| | - John A G Briggs
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Ralf Bartenschlager
- University of Heidelberg, Department of Infectious Diseases, Molecular Virology, 69120 Heidelberg, Germany; Division of Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
79
|
Wang B, Yang XL, Li W, Zhu Y, Ge XY, Zhang LB, Zhang YZ, Bock CT, Shi ZL. Detection and genome characterization of four novel bat hepadnaviruses and a hepevirus in China. Virol J 2017; 14:40. [PMID: 28222808 PMCID: PMC5320732 DOI: 10.1186/s12985-017-0706-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 02/04/2017] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND In recent years, novel hepadnaviruses, hepeviruses, hepatoviruses, and hepaciviruses have been discovered in various species of bat around the world, indicating that bats may act as natural reservoirs for these hepatitis viruses. In order to further assess the distribution of hepatitis viruses in bat populations in China, we tested the presence of these hepatitis viruses in our archived bat liver samples that originated from several bat species and various geographical regions in China. METHODS A total of 78 bat liver samples (involving two families, five genera, and 17 species of bat) were examined using nested or heminested reverse transcription PCR (RT-PCR) with degenerate primers. Full-length genomic sequences of two virus strains were sequenced followed by phylogenetic analyses. RESULTS Four samples were positive for hepadnavirus, only one was positive for hepevirus, and none of the samples were positive for hepatovirus or hepacivirus. The hepadnaviruses were discovered in the horseshoe bats, Rhinolophus sinicus and Rhinolophus affinis, and the hepevirus was found in the whiskered bat Myotis davidii. The full-length genomic sequences were determined for one of the two hepadnaviruses identified in R. sinicus (designated BtHBVRs3364) and the hepevirus (designated BtHEVMd2350). A sequence identity analysis indicated that BtHBVRs3364 had the highest degree of identity with a previously reported hepadnavirus from the roundleaf bat, Hipposideros pomona, from China, and BtHEVMd2350 had the highest degree of identity with a hepevirus found in the serotine bat, Eptesicus serotinus, from Germany, but it exhibited high levels of divergence at both the nucleotide and the amino acid levels. CONCLUSIONS This is the first study to report that the Chinese horseshoe bat and the Chinese whiskered bat have been found to carry novel hepadnaviruses and a novel hepevirus, respectively. The discovery of BtHBVRs3364 further supports the significance of host switches evolution while opposing the co-evolutionary theory associated with hepadnaviruses. According to the latest criterion of the International Committee on Taxonomy of Viruses (ICTV), we hypothesize that BtHEVMd2350 represents an independent genotype within the species Orthohepevirus D of the family Hepeviridae.
Collapse
Affiliation(s)
- Bo Wang
- CAS Key Laboratory of Special Pathogens and Biosafety and Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Xing-Lou Yang
- CAS Key Laboratory of Special Pathogens and Biosafety and Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Wen Li
- CAS Key Laboratory of Special Pathogens and Biosafety and Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yan Zhu
- CAS Key Laboratory of Special Pathogens and Biosafety and Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xing-Yi Ge
- CAS Key Laboratory of Special Pathogens and Biosafety and Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Li-Biao Zhang
- Guangdong Institute of Applied Biological Resource, Guangzhou, 510260, China
| | - Yun-Zhi Zhang
- Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Diseases Control and Prevention, Dali, 671000, China
| | - Claus-Thomas Bock
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Zheng-Li Shi
- CAS Key Laboratory of Special Pathogens and Biosafety and Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
80
|
Woodchuck sodium taurocholate cotransporting polypeptide supports low-level hepatitis B and D virus entry. Virology 2017; 505:1-11. [PMID: 28213271 DOI: 10.1016/j.virol.2017.02.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 02/07/2017] [Accepted: 02/08/2017] [Indexed: 12/15/2022]
Abstract
Sodium taurocholate cotransporting polypeptide (NTCP) is the functional receptor for human hepatitis B virus (HBV) and its satellite hepatitis D virus (HDV). Species barriers to HBV/HDV infection are mainly determined at entry level by variations in the sequences of particular NTCP orthologs. In this study, we sought to determine whether the NTCP ortholog in woodchuck (Marmota monax), woodchuck NTCP (wNTCP) supports viral infection. We found that wNTCP is capable of supporting HBV/HDV infection in HepG2 cells, but to much lower extent than human NTCP (hNTCP), which is about 90% reduction of hNTCP. Comprehensive site-directed mutagenesis mapping of hNTCP and wNTCP revealed that the residue at position 263 is a novel site crucial for viral entry. The important role of site 263 in infection is conserved among NTCP orthologs and may therefore be a potential target for blocking the viral entry.
Collapse
|
81
|
Johnson RI, Smith IL. Virus discovery in bats. MICROBIOLOGY AUSTRALIA 2017. [DOI: 10.1071/ma17008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Comprising approximately 20% of known mammalian species, bats are abundant throughout the world1. In recent years, bats have been shown to be the reservoir host for many highly pathogenic viruses, leading to increased attempts to identify other zoonotic bat-borne viruses. These efforts have led to the discovery of over 200 viruses in bats and many more viral nucleic acid sequences from 27 different viral families2,3 (Table 1). Over half of the world’s recently emerged infectious diseases originated in wildlife15, with the genetic diversity of viruses greater in bats than in any other animal16. As humans continue to encroach on the habitat of bats, the risk of spillover of potentially zoonotic viruses is also continuing to increase. Therefore, the surveillance of bats and discovery of novel pathogens is necessary to prepare for these spillover events17.
Collapse
|
82
|
Illingworth RS, Hölzenspies JJ, Roske FV, Bickmore WA, Brickman JM. Polycomb enables primitive endoderm lineage priming in embryonic stem cells. eLife 2016; 5. [PMID: 27723457 PMCID: PMC5056788 DOI: 10.7554/elife.14926] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 09/23/2016] [Indexed: 12/17/2022] Open
Abstract
Mouse embryonic stem cells (ESCs), like the blastocyst from which they are derived, contain precursors of the epiblast (Epi) and primitive endoderm (PrEn) lineages. While transient in vivo, these precursor populations readily interconvert in vitro. We show that altered transcription is the driver of these coordinated changes, known as lineage priming, in a process that exploits novel polycomb activities. We find that intragenic levels of the polycomb mark H3K27me3 anti-correlate with changes in transcription, irrespective of the gene's developmental trajectory or identity as a polycomb target. In contrast, promoter proximal H3K27me3 is markedly higher for PrEn priming genes. Consequently, depletion of this modification stimulates the degree to which ESCs are primed towards PrEn when challenged to differentiate, but has little effect on gene expression in self-renewing ESC culture. These observations link polycomb with dynamic changes in transcription and stalled lineage commitment, allowing cells to explore alternative choices prior to a definitive decision.
Collapse
Affiliation(s)
- Robert S Illingworth
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Jurriaan J Hölzenspies
- The Danish Stem Cell Centre - DanStem, University of Copenhagen, Copenhagen, Denmark.,MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, Univeristy of Edinburgh, Edinburgh, United Kingdom
| | - Fabian V Roske
- The Danish Stem Cell Centre - DanStem, University of Copenhagen, Copenhagen, Denmark
| | - Wendy A Bickmore
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Joshua M Brickman
- The Danish Stem Cell Centre - DanStem, University of Copenhagen, Copenhagen, Denmark.,MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, Univeristy of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
83
|
Novel highly divergent reassortant bat rotaviruses in Cameroon, without evidence of zoonosis. Sci Rep 2016; 6:34209. [PMID: 27666390 PMCID: PMC5035928 DOI: 10.1038/srep34209] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 09/09/2016] [Indexed: 11/28/2022] Open
Abstract
Bats are an important reservoir for zoonotic viruses. To date, only three RVA strains have been reported in bats in Kenya and China. In the current study we investigated the genetic diversity of RVAs in fecal samples from 87 straw-colored fruit bats living in close contact with humans in Cameroon using viral metagenomics. Five (near) complete RVA genomes were obtained. A single RVA strain showed a partial relationship with the Kenyan bat RVA strain, whereas the other strains were completely novel. Only the VP7 and VP4 genes showed significant variability, indicating the occurrence of frequent reassortment events. Comparing these bat RVA strains with currently used human RVA screening primers indicated that most of the novel VP7 and VP4 segments would not be detected in routine epidemiological screening studies. Therefore, novel consensus screening primers were developed and used to screen samples from infants with gastroenteritis living in close proximity with the studied bat population. Although RVA infections were identified in 36% of the infants, there was no evidence of zoonosis. This study identified multiple novel bat RVA strains, but further epidemiological studies in humans will have to assess if these viruses have the potential to cause gastroenteritis in humans.
Collapse
|
84
|
Stading BR, Osorio JE, Velasco-Villa A, Smotherman M, Kingstad-Bakke B, Rocke TE. Infectivity of attenuated poxvirus vaccine vectors and immunogenicity of a raccoonpox vectored rabies vaccine in the Brazilian Free-tailed bat (Tadarida brasiliensis). Vaccine 2016; 34:5352-5358. [PMID: 27650872 PMCID: PMC5543807 DOI: 10.1016/j.vaccine.2016.08.088] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/24/2016] [Accepted: 08/27/2016] [Indexed: 12/25/2022]
Abstract
Bats (Order Chiroptera) are an abundant group of mammals with tremendous ecological value as insectivores and plant dispersers, but their role as reservoirs of zoonotic diseases has received more attention in the last decade. With the goal of managing disease in free-ranging bats, we tested modified vaccinia Ankara (MVA) and raccoon poxvirus (RCN) as potential vaccine vectors in the Brazilian Free-tailed bat (Tadarida brasiliensis), using biophotonic in vivo imaging and immunogenicity studies. Animals were administered recombinant poxviral vectors expressing the luciferase gene (MVA-luc, RCN-luc) through oronasal (ON) or intramuscular (IM) routes and subsequently monitored for bioluminescent signal indicative of viral infection. No clinical illness was noted after exposure to any of the vectors, and limited luciferase expression was observed. Higher and longer levels of expression were observed with the RCN-luc construct. When given IM, luciferase expression was limited to the site of injection, while ON exposure led to initial expression in the oral cavity, often followed by secondary replication at another location, likely the gastric mucosa or gastric associated lymphatic tissue. Viral DNA was detected in oral swabs up to 7 and 9 days post infection (dpi) for MVA and RCN, respectively. While no live virus was detected in oral swabs from MVA-infected bats, titers up to 3.88 x 104 PFU/ml were recovered from oral swabs of RCN-infected bats. Viral DNA was also detected in fecal samples from two bats inoculated IM with RCN, but no live virus was recovered. Finally, we examined the immunogenicity of a RCN based rabies vaccine (RCN-G) following ON administration. Significant rabies neutralizing antibody titers were detected in the serum of immunized bats using the rapid fluorescence focus inhibition test (RFFIT). These studies highlight the safety and immunogenicity of attenuated poxviruses and their potential use as vaccine vectors in bats.
Collapse
Affiliation(s)
- Ben R Stading
- University of Wisconsin - Madison, School of Veterinary Medicine, 1656 Linden Dr., Madison, WI 53706, USA; U.S. Geological Survey, National Wildlife Health Center, 6006 Schroeder Rd., Madison, WI 53711, USA.
| | - Jorge E Osorio
- University of Wisconsin - Madison, School of Veterinary Medicine, 1656 Linden Dr., Madison, WI 53706, USA.
| | - Andres Velasco-Villa
- Centers for Disease Control and Prevention, 1600 Clifton Rd., Atlanta, GA 30333, USA.
| | | | - Brock Kingstad-Bakke
- University of Wisconsin - Madison, School of Veterinary Medicine, 1656 Linden Dr., Madison, WI 53706, USA.
| | - Tonie E Rocke
- U.S. Geological Survey, National Wildlife Health Center, 6006 Schroeder Rd., Madison, WI 53711, USA.
| |
Collapse
|
85
|
Unusual Features of Sodium Taurocholate Cotransporting Polypeptide as a Hepatitis B Virus Receptor. J Virol 2016; 90:8302-13. [PMID: 27384660 DOI: 10.1128/jvi.01153-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 07/03/2016] [Indexed: 01/05/2023] Open
Abstract
UNLABELLED Cell culture (cc)-derived hepatitis B virus (HBV) can infect differentiated HepaRG cells, but efficient infection requires addition of polyethylene glycol (PEG) during inoculation. Identification of sodium taurocholate cotransporting polypeptide (NTCP) as an HBV receptor enabled ccHBV infection of NTCP reconstituted HepG2 cells, although very little hepatitis B surface antigen (HBsAg) is produced. We found infection by patient serum-derived HBV (sHBV), which required purification of viral particles through ultracentrifugation or PEG precipitation, was PEG independent and much more efficient in HepaRG cells than in HepG2/NTCP cells. In contrast to hepatitis B e antigen (HBeAg), HBsAg was not a reliable marker of productive sHBV infection at early time points. A low HBsAg/HBeAg ratio by ccHBV-infected HepG2/NTCP cells was attributable to dimethyl sulfoxide (DMSO) in culture medium, NTCP overexpression, and HBV genotype D. HepG2/NTCP cells released more viral antigens than HepG2 cells after HBV genome delivery by adeno-associated virus, and stable expression of NTCP in a ccHBV producing cell line increased viral mRNAs, proteins, replicative DNA, and covalently closed circular DNA. NTCP protein expression in HepG2/NTCP cells, despite being driven by the cytomegalovirus promoter, was markedly increased by DMSO treatment. This at least partly explains ability of DMSO to promote ccHBV infection in such cell lines. In conclusion, NTCP appeared inefficient to mediate infection by serum-derived HBV. It could promote HBV RNA transcription while inhibiting HBsAg secretion. Efficient PEG-independent sHBV infection of HepaRG cells permits comparative studies of diverse clinical HBV isolates and will help identify additional factors on virion surface promoting attachment to hepatocytes. IMPORTANCE Currently in vitro infection with hepatitis B virus (HBV) depends on cell culture-derived HBV inoculated in the presence of polyethylene glycol. We found patient serum-derived HBV could efficiently infect differentiated HepaRG cells independent of polyethylene glycol, which represents a more physiological infection system. Serum-derived HBV has poor infectivity in HepG2 cells reconstituted with sodium taurocholate cotransporting polypeptide (NTCP), the currently accepted HBV receptor. Moreover, HepG2/NTCP cells secreted very little hepatitis B surface antigen after infection with cell culture-derived HBV, which was attributed to NTCP overexpression, genotype D virus, and dimethyl sulfoxide added to culture medium. NTCP could promote HBV RNA transcription, protein expression, and DNA replication in HepG2 cells stably transfected with HBV DNA, while dimethyl sulfoxide could increase NTCP protein level despite transcriptional control by a cytomegalovirus promoter. Therefore, this study revealed several unusual features of NTCP as an HBV receptor and established conditions for efficient serum virus infection in vitro.
Collapse
|
86
|
Abstract
Bats are hosts of a range of viruses, including ebolaviruses, and many important human viral infections, such as measles and mumps, may have their ancestry traced back to bats. Here, I review viruses of all viral families detected in global bat populations. The viral diversity in bats is substantial, and viruses with all known types of genomic structures and replication strategies have been discovered in bats. However, the discovery of viruses is not geographically even, with some apparently undersampled regions, such as South America. Furthermore, some bat families, including those with global or wide distributions such as Emballonuridae and Miniopteridae, are underrepresented on viral databases. Future studies, including those that address these sampling gaps along with those that develop our understanding of viral-host relationships, are highlighted.
Collapse
Affiliation(s)
- David T S Hayman
- Molecular Epidemiology and Public Health Laboratory, Infectious Disease Research Centre, Hopkirk Research Institute, Massey University, Palmerston North 4442, New Zealand;
| |
Collapse
|
87
|
Distinct Viral Lineages from Fish and Amphibians Reveal the Complex Evolutionary History of Hepadnaviruses. J Virol 2016; 90:7920-33. [PMID: 27334580 DOI: 10.1128/jvi.00832-16] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/17/2016] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED Hepadnaviruses (hepatitis B viruses [HBVs]) are the only animal viruses that replicate their DNA by reverse transcription of an RNA intermediate. Until recently, the known host range of hepadnaviruses was limited to mammals and birds. We obtained and analyzed the first amphibian HBV genome, as well as several prototype fish HBVs, which allow the first comprehensive comparative genomic analysis of hepadnaviruses from four classes of vertebrates. Bluegill hepadnavirus (BGHBV) was characterized from in-house viral metagenomic sequencing. The African cichlid hepadnavirus (ACHBV) and the Tibetan frog hepadnavirus (TFHBV) were discovered using in silico analyses of the whole-genome shotgun and transcriptome shotgun assembly databases. Residues in the hydrophobic base of the capsid (core) proteins, designated motifs I, II, and III, are highly conserved, suggesting that structural constraints for proper capsid folding are key to capsid protein evolution. Surface proteins in all vertebrate HBVs contain similar predicted membrane topologies, characterized by three transmembrane domains. Most striking was the fact that BGHBV, ACHBV, and the previously described white sucker hepadnavirus did not form a fish-specific monophyletic group in the phylogenetic analysis of all three hepadnaviral genes. Notably, BGHBV was more closely related to the mammalian hepadnaviruses, indicating that cross-species transmission events have played a major role in viral evolution. Evidence of cross-species transmission was also observed with TFHBV. Hence, these data indicate that the evolutionary history of the hepadnaviruses is more complex than previously realized and combines both virus-host codivergence over millions of years and host species jumping. IMPORTANCE Hepadnaviruses are responsible for significant disease in humans (hepatitis B virus) and have been reported from a diverse range of vertebrates as both exogenous and endogenous viruses. We report the full-length genome of a novel hepadnavirus from a fish and the first hepadnavirus genome from an amphibian. The novel fish hepadnavirus, sampled from bluegills, was more closely related to mammalian hepadnaviruses than to other fish viruses. This phylogenetic pattern reveals that, although hepadnaviruses have likely been associated with vertebrates for hundreds of millions of years, they have also been characterized by species jumping across wide phylogenetic distances.
Collapse
|
88
|
Morikawa K, Suda G, Sakamoto N. Viral life cycle of hepatitis B virus: Host factors and druggable targets. Hepatol Res 2016; 46:871-7. [PMID: 26776362 DOI: 10.1111/hepr.12650] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 01/09/2016] [Accepted: 01/12/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Kenichi Morikawa
- Division of Gastroenterology and Hepatology, Hokkaido University Hospital, Sapporo, Japan.,Division of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Goki Suda
- Division of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Naoya Sakamoto
- Division of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
89
|
Witkowski PT, Drexler JF, Kallies R, Ličková M, Bokorová S, Mananga GD, Szemes T, Leroy EM, Krüger DH, Drosten C, Klempa B. Phylogenetic analysis of a newfound bat-borne hantavirus supports a laurasiatherian host association for ancestral mammalian hantaviruses. INFECTION GENETICS AND EVOLUTION 2016; 41:113-119. [DOI: 10.1016/j.meegid.2016.03.036] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/21/2016] [Accepted: 03/31/2016] [Indexed: 11/27/2022]
|
90
|
Abstract
Since the first antiviral drug, idoxuridine, was approved in 1963, 90 antiviral drugs categorized into 13 functional groups have been formally approved for the treatment of the following 9 human infectious diseases: (i) HIV infections (protease inhibitors, integrase inhibitors, entry inhibitors, nucleoside reverse transcriptase inhibitors, nonnucleoside reverse transcriptase inhibitors, and acyclic nucleoside phosphonate analogues), (ii) hepatitis B virus (HBV) infections (lamivudine, interferons, nucleoside analogues, and acyclic nucleoside phosphonate analogues), (iii) hepatitis C virus (HCV) infections (ribavirin, interferons, NS3/4A protease inhibitors, NS5A inhibitors, and NS5B polymerase inhibitors), (iv) herpesvirus infections (5-substituted 2'-deoxyuridine analogues, entry inhibitors, nucleoside analogues, pyrophosphate analogues, and acyclic guanosine analogues), (v) influenza virus infections (ribavirin, matrix 2 protein inhibitors, RNA polymerase inhibitors, and neuraminidase inhibitors), (vi) human cytomegalovirus infections (acyclic guanosine analogues, acyclic nucleoside phosphonate analogues, pyrophosphate analogues, and oligonucleotides), (vii) varicella-zoster virus infections (acyclic guanosine analogues, nucleoside analogues, 5-substituted 2'-deoxyuridine analogues, and antibodies), (viii) respiratory syncytial virus infections (ribavirin and antibodies), and (ix) external anogenital warts caused by human papillomavirus infections (imiquimod, sinecatechins, and podofilox). Here, we present for the first time a comprehensive overview of antiviral drugs approved over the past 50 years, shedding light on the development of effective antiviral treatments against current and emerging infectious diseases worldwide.
Collapse
Affiliation(s)
- Erik De Clercq
- KU Leuven-University of Leuven, Rega Institute for Medical Research, Department of Microbiology and Immunology, Leuven, Belgium
| | - Guangdi Li
- KU Leuven-University of Leuven, Rega Institute for Medical Research, Department of Microbiology and Immunology, Leuven, Belgium Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
91
|
Pumpens P, Grens E. The true story and advantages of the famous Hepatitis B virus core particles: Outlook 2016. Mol Biol 2016; 50:489-509. [DOI: 10.1134/s0026893316040099] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 01/14/2016] [Indexed: 01/02/2025]
|
92
|
Seiz PL, Mohr C, Wilkinson DE, Ziebuhr J, Schüttler CG, Gerlich WH, Glebe D. Characterization of the 3rd International Standard for hepatitis B virus surface antigen (HBsAg). J Clin Virol 2016; 82:166-172. [PMID: 27345250 DOI: 10.1016/j.jcv.2016.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/16/2016] [Accepted: 05/17/2016] [Indexed: 12/01/2022]
Abstract
BACKGROUND HBsAg is the most important marker for laboratory diagnosis of HBV infection. Validation and quality control of HBsAg tests requires International Standards (IS). Recently the 2nd IS was replaced by the 3rd IS. Both IS are made from plasma-derived hepatitis B vaccines, but production and geographical origin are different. OBJECTIVE Characterization of the HBsAg in the source material (SM) for the 3rd IS and comparison with the 2nd IS and native HBsAg. STUDY DESIGN The SM was analyzed using solid-phase immunoassays, quantitative immune electrophoresis, ultracentrifugation, immunoblotting and HBV DNA sequencing. RESULTS The plasma-derived HBsAg of the SM originated from at least two different HBV strains, both of subgenotype (sgt) B4, typical for Vietnam. The HBsAg subtype was heterogeneous with ayw1 and adw2. The HBsAg concentration was 23,700 IU/ml as determined by solid-phase immunoassay; immune electrophoresis calibrated with sgt B2 revealed a concentration of 24,500 IU/ml while calibration with sgt D1 provided lower values. Proteins in the SM are heterogeneous in size containing only traces of preS. The protein subunits are partially cross-linked. CONCLUSIONS The antigenicity of the 3rd IS is suitable for HBsAg calibration in laboratory tests. In contrast to the 2nd IS, the 3rd IS is representative for a highly endemic region. Similar to the 2nd IS and different from native HBsAg, preS domains are depleted, protein subunits are partially cross-linked and the HBsAg particles are partially aggregated in the 3rd IS. The HBV subgenotype differences between the two IS may lead to variations in different quantitative assays.
Collapse
Affiliation(s)
- Pia L Seiz
- Institute of Medical Virology, Justus Liebig University Giessen, National Reference Centre for Hepatitis B and D Viruses, German Center for Infection Research, Biomedical Research Center Seltersberg, Schubertstr. 81, 35392 Giessen, Germany
| | - Christina Mohr
- Institute of Medical Virology, Justus Liebig University Giessen, National Reference Centre for Hepatitis B and D Viruses, German Center for Infection Research, Biomedical Research Center Seltersberg, Schubertstr. 81, 35392 Giessen, Germany
| | - Dianna E Wilkinson
- National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, Hertfordshire, EN6 3QG UK
| | - John Ziebuhr
- Institute of Medical Virology, Justus Liebig University Giessen, National Reference Centre for Hepatitis B and D Viruses, German Center for Infection Research, Biomedical Research Center Seltersberg, Schubertstr. 81, 35392 Giessen, Germany
| | - Christian G Schüttler
- Institute of Medical Virology, Justus Liebig University Giessen, National Reference Centre for Hepatitis B and D Viruses, German Center for Infection Research, Biomedical Research Center Seltersberg, Schubertstr. 81, 35392 Giessen, Germany
| | - Wolfram H Gerlich
- Institute of Medical Virology, Justus Liebig University Giessen, National Reference Centre for Hepatitis B and D Viruses, German Center for Infection Research, Biomedical Research Center Seltersberg, Schubertstr. 81, 35392 Giessen, Germany
| | - Dieter Glebe
- Institute of Medical Virology, Justus Liebig University Giessen, National Reference Centre for Hepatitis B and D Viruses, German Center for Infection Research, Biomedical Research Center Seltersberg, Schubertstr. 81, 35392 Giessen, Germany.
| |
Collapse
|
93
|
Zhang Z, Zehnder B, Damrau C, Urban S. Visualization of hepatitis B virus entry - novel tools and approaches to directly follow virus entry into hepatocytes. FEBS Lett 2016; 590:1915-26. [PMID: 27149321 DOI: 10.1002/1873-3468.12202] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/14/2016] [Accepted: 04/26/2016] [Indexed: 12/15/2022]
Abstract
Hepatitis B virus (HBV) is a widespread human pathogen, responsible for chronic infections of ca. 240 million people worldwide. Until recently, the entry pathway of HBV into hepatocytes was only partially understood. The identification of human sodium taurocholate cotransporting polypeptide (NTCP) as a bona fide receptor of HBV has provided us with new tools to investigate this pathway in more details. Combined with advances in virus visualization techniques, approaches to directly visualize HBV cell attachment, NTCP interaction, virion internalization and intracellular transport are now becoming feasible. This review summarizes our current understanding of how HBV specifically enters hepatocytes, and describes possible visualization strategies applicable for a deeper understanding of the underlying cell biological processes.
Collapse
Affiliation(s)
- Zhenfeng Zhang
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Germany
| | - Benno Zehnder
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Germany
| | - Christine Damrau
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Germany
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Germany.,German Center of Infectious Diseases (DZIF), Heidelberg, Germany
| |
Collapse
|
94
|
Evidence for widespread infection of African bats with Crimean-Congo hemorrhagic fever-like viruses. Sci Rep 2016; 6:26637. [PMID: 27217069 PMCID: PMC4877572 DOI: 10.1038/srep26637] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/03/2016] [Indexed: 11/23/2022] Open
Abstract
Crimean Congo hemorrhagic fever virus (CCHFV) is a highly virulent tick-borne pathogen that causes hemorrhagic fever in humans. The geographic range of human CCHF cases largely reflects the presence of ticks. However, highly similar CCHFV lineages occur in geographically distant regions. Tick-infested migratory birds have been suggested, but not confirmed, to contribute to the dispersal. Bats have recently been shown to carry nairoviruses distinct from CCHFV. In order to assess the presence of CCHFV in a wide range of bat species over a wide geographic range, we analyzed 1,135 sera from 16 different bat species collected in Congo, Gabon, Ghana, Germany, and Panama. Using a CCHFV glycoprotein-based indirect immunofluorescence test (IIFT), we identified reactive antibodies in 10.0% (114/1,135) of tested bats, pertaining to 12/16 tested species. Depending on the species, 3.6%–42.9% of cave-dwelling bats and 0.6%–7.1% of foliage-living bats were seropositive (two-tailed t-test, p = 0.0447 cave versus foliage). 11/30 IIFT-reactive sera from 10 different African bat species had neutralizing activity in a virus-like particle assay. Neutralization of full CCHFV was confirmed in 5 of 7 sera. Widespread infection of cave-dwelling bats may indicate a role for bats in the life cycle and geographic dispersal of CCHFV.
Collapse
|
95
|
Engineering Hepadnaviruses as Reporter-Expressing Vectors: Recent Progress and Future Perspectives. Viruses 2016; 8:v8050125. [PMID: 27171106 PMCID: PMC4885080 DOI: 10.3390/v8050125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/21/2016] [Accepted: 04/29/2016] [Indexed: 12/18/2022] Open
Abstract
The Hepadnaviridae family of small, enveloped DNA viruses are characterized by a strict host range and hepatocyte tropism. The prototype hepatitis B virus (HBV) is a major human pathogen and constitutes a public health problem, especially in high-incidence areas. Reporter-expressing recombinant viruses are powerful tools in both studies of basic virology and development of antiviral therapeutics. In addition, the highly restricted tropism of HBV for human hepatocytes makes it an ideal tool for hepatocyte-targeting in vivo applications such as liver-specific gene delivery. However, compact genome organization and complex replication mechanisms of hepadnaviruses have made it difficult to engineer replication-competent recombinant viruses that express biologically-relevant cargo genes. This review analyzes difficulties associated with recombinant hepadnavirus vector development, summarizes and compares the progress made in this field both historically and recently, and discusses future perspectives regarding both vector design and application.
Collapse
|
96
|
Ehlen L, Tödtmann J, Specht S, Kallies R, Papies J, Müller MA, Junglen S, Drosten C, Eckerle I. Epithelial cell lines of the cotton rat (Sigmodon hispidus) are highly susceptible in vitro models to zoonotic Bunya-, Rhabdo-, and Flaviviruses. Virol J 2016; 13:74. [PMID: 27142375 PMCID: PMC4855710 DOI: 10.1186/s12985-016-0531-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/24/2016] [Indexed: 01/27/2023] Open
Abstract
Background Small mammals such as bats and rodents have been increasingly recognized as reservoirs of novel potentially zoonotic pathogens. However, few in vitro model systems to date allow assessment of zoonotic viruses in a relevant host context. The cotton rat (Sigmodon hispidus) is a New World rodent species that has a long-standing history as an experimental animal model due to its unique susceptibility to human viruses. Furthermore, wild cotton rats are associated with a large variety of known or potentially zoonotic pathogens. Methods A method for the isolation and culture of airway epithelial cell lines recently developed for bats was applied for the generation of rodent airway and renal epithelial cell lines from the cotton rat. Continuous cell lines were characterized for their epithelial properties as well as for their interferon competence. Susceptibility to members of zoonotic Bunya-, Rhabdo-, and Flaviviridae, in particular Rift Valley fever virus (RVFV), vesicular stomatitis virus (VSV), West Nile virus (WNV), and tick-borne encephalitis virus (TBEV) was tested. Furthermore, novel arthropod-derived viruses belonging to the families Bunya-, Rhabdo-, and Mesoniviridae were tested. Results We successfully established airway and kidney epithelial cell lines from the cotton rat, and characterized their epithelial properties. Cells were shown to be interferon-competent. Viral infection assays showed high-titre viral replication of RVFV, VSV, WNV, and TBEV, as well as production of infectious virus particles. No viral replication was observed for novel arthropod-derived members of the Bunya-, Rhabdo-, and Mesoniviridae families in these cell lines. Conclusion In the current study, we showed that newly established cell lines from the cotton rat can serve as host-specific in vitro models for viral infection experiments. These cell lines may also serve as novel tools for virus isolation, as well as for the investigation of virus-host interactions in a relevant host species.
Collapse
Affiliation(s)
- Lukas Ehlen
- Institute of Virology, University of Bonn Medical Centre, Sigmund-Freud-Strasse 25, 53127, Bonn, Germany
| | - Jan Tödtmann
- Institute of Virology, University of Bonn Medical Centre, Sigmund-Freud-Strasse 25, 53127, Bonn, Germany
| | - Sabine Specht
- Institute for Medical Microbiology, Immunology & Parasitology (IMMIP), University of Bonn Medical Centre, Sigmund-Freud-Strasse 25, 53127, Bonn, Germany.,Present address: Institute of Laboratory Animal Science, University of Zurich, Zurich, Switzerland
| | - René Kallies
- Institute of Virology, University of Bonn Medical Centre, Sigmund-Freud-Strasse 25, 53127, Bonn, Germany.,Present address: Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Jan Papies
- Institute of Virology, University of Bonn Medical Centre, Sigmund-Freud-Strasse 25, 53127, Bonn, Germany
| | - Marcel A Müller
- Institute of Virology, University of Bonn Medical Centre, Sigmund-Freud-Strasse 25, 53127, Bonn, Germany
| | - Sandra Junglen
- Institute of Virology, University of Bonn Medical Centre, Sigmund-Freud-Strasse 25, 53127, Bonn, Germany
| | - Christian Drosten
- Institute of Virology, University of Bonn Medical Centre, Sigmund-Freud-Strasse 25, 53127, Bonn, Germany
| | - Isabella Eckerle
- Institute of Virology, University of Bonn Medical Centre, Sigmund-Freud-Strasse 25, 53127, Bonn, Germany.
| |
Collapse
|
97
|
Winer BY, Ding Q, Gaska JM, Ploss A. In vivo models of hepatitis B and C virus infection. FEBS Lett 2016; 590:1987-99. [PMID: 27009462 DOI: 10.1002/1873-3468.12157] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/16/2016] [Accepted: 03/22/2016] [Indexed: 12/17/2022]
Abstract
Globally, more than 500 million individuals are chronically infected with hepatitis B (HBV), delta (HDV), and/or C (HCV) viruses, which can result in severe liver disease. Mechanistic studies of viral persistence and pathogenesis have been hampered by the scarcity of animal models. The limited species and cellular host range of HBV, HDV, and HCV, which robustly infect only humans and chimpanzees, have posed challenges for creating such animal models. In this review, we will discuss the barriers to interspecies transmission and the progress that has been made in our understanding of the HBV, HDV, and HCV life cycles. Additionally, we will highlight a variety of approaches that overcome these barriers and thus facilitate in vivo studies of these hepatotropic viruses.
Collapse
Affiliation(s)
| | - Qiang Ding
- Department of Molecular Biology, Princeton University, NJ, USA
| | - Jenna M Gaska
- Department of Molecular Biology, Princeton University, NJ, USA
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, NJ, USA
| |
Collapse
|
98
|
Li W, Urban S. Entry of hepatitis B and hepatitis D virus into hepatocytes: Basic insights and clinical implications. J Hepatol 2016; 64:S32-S40. [PMID: 27084034 PMCID: PMC7114860 DOI: 10.1016/j.jhep.2016.02.011] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/05/2016] [Accepted: 02/07/2016] [Indexed: 12/30/2022]
Abstract
For almost three decades following the discovery of the human Hepatitis B Virus (HBV) the early events of virus infection (attachment to hepatocytes, specific binding to a receptor on hepatocytes) remained enigmatic. The gradual improvement of tissue culture systems for HBV has enabled the identification of viral determinants for viral infectivity and facilitated the discovery of the human sodium taurocholate co-transporting polypeptide (hNTCP) as a liver specific receptor of HBV and its satellite, the human Hepatitis Delta Virus (HDV). These findings are currently leading basic and clinical research activities in new directions. (1) Stable hNTCP-expressing cell lines have become a valuable platform to study the full HBV replication cycle from its native template, the cccDNA. (2) The suitability of NTCP complemented cell culture systems for high throughput screening approaches will facilitate identification of novel host factors involved in HBV replication (including those that determine the peculiar host specificity of HBV infection) and will enable identification and development of novel drug candidates for improved therapeutics. (3) Since NTCP is a major host-specific restriction factor for HBV and HDV, hNTCP-expressing animals provide the basis for future susceptible in vivo models. (4) The concept obtained with the entry inhibitor Myrcludex B demonstrates that NTCP is a suitable target for clinical interference with viral entry. This will foster further clinical approaches aiming at curative combination therapies.
Collapse
Affiliation(s)
- Wenhui Li
- National Institute of Biological Sciences, Beijing 102206, China.
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany; German Center of Infectious Diseases (DZIF), Heidelberg, Germany.
| |
Collapse
|
99
|
Sureau C, Negro F. The hepatitis delta virus: Replication and pathogenesis. J Hepatol 2016; 64:S102-S116. [PMID: 27084031 DOI: 10.1016/j.jhep.2016.02.013] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/01/2016] [Accepted: 02/10/2016] [Indexed: 02/06/2023]
Abstract
Hepatitis delta virus (HDV) is a defective virus and a satellite of the hepatitis B virus (HBV). Its RNA genome is unique among animal viruses, but it shares common features with some plant viroids, including a replication mechanism that uses a host RNA polymerase. In infected cells, HDV genome replication and formation of a nucleocapsid-like ribonucleoprotein (RNP) are independent of HBV. But the RNP cannot exit, and therefore propagate, in the absence of HBV, as the latter supplies the propagation mechanism, from coating the HDV RNP with the HBV envelope proteins for cell egress to delivery of the HDV virions to the human hepatocyte target. HDV is therefore an obligate satellite of HBV; it infects humans either concomitantly with HBV or after HBV infection. HDV affects an estimated 15 to 20 million individuals worldwide, and the clinical significance of HDV infection is more severe forms of viral hepatitis--acute or chronic--, and a higher risk of developing cirrhosis and hepatocellular carcinoma in comparison to HBV monoinfection. This review covers molecular aspects of HDV replication cycle, including its interaction with the helper HBV and the pathogenesis of infection in humans.
Collapse
Affiliation(s)
- Camille Sureau
- Molecular Virology laboratory, Institut National de la Transfusion Sanguine (INTS), CNRS INSERM U1134, Paris, France.
| | - Francesco Negro
- Division of Gastroenterology and Hepatology, University Hospitals, Geneva, Switzerland; Division of Clinical Pathology, University Hospitals, Geneva, Switzerland.
| |
Collapse
|
100
|
Yang J, Yang Y, Xia M, Wang L, Zhou W, Yang Y, Jiang Y, Wang H, Qian J, Jin L, Wang X. A genetic variant of the NTCP gene is associated with HBV infection status in a Chinese population. BMC Cancer 2016; 16:211. [PMID: 26968990 PMCID: PMC4788942 DOI: 10.1186/s12885-016-2257-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/08/2016] [Indexed: 12/23/2022] Open
Abstract
Background To investigate whether genetic variants of the HBV receptor gene NTCP are associated with HBV infection in the Han Chinese population. Methods We sequenced the entire 23 kb NTCP gene from 111 HBeAg-positive HBsAg carriers (PSE group), 110 HBeAg-negative HBsAg carriers (PS group), and 110 control subjects. Then, we performed association analyses of suggestively significant SNPs with HBV infection in 1075 controls, 1936 PSs and 639 PSEs. Results In total, 109 rare variants (74 novel) and 38 single nucleotide polymorphisms (SNPs, one novel) were screened. Of the seven non-synonymous rare variants, six were singletons and one was a double hit. All three damaging rare singletons presented exclusively in the PSE group. Of the five SNPs validated in all 3650 subjects, the T allele of rs4646287 was significantly decreased (p = 0.002) in the PS group (10.1 %) and PSE group (8.1 %) compared to the controls (10.9 %) and was decreased to 7.4 % in the PSE hepatocellular carcinoma (HCC) subgroup. Additionally, rs4646287-T was associated with a 0.68-fold (95 % CI = 0.51–0.89, p = 0.006) decreased risk of PSE compared with the controls. The NTCP mRNA level was lower in HCC tissues in “CT + TT” carriers than in “CC” carriers. Conclusions We found a genetic variant (rs4646287) located in intron 1 of NTCP that may be associated with increased risk of HBV infection in Han Chinese. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2257-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jingmin Yang
- Epidemiology unit of MOE Key Laboratory of Contemporary Anthropology and State Key Laboratory of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, 220 Handan Rd., Shanghai, 200433, China.,China Medical City Institute of Health Sciences, 1 Yaocheng Road, Taizhou, Jiangsu, 225300, China
| | - Yuan Yang
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China.,Department of Health Statistics, Second Military Medical University, Shanghai, 200433, China
| | - Mingying Xia
- Epidemiology unit of MOE Key Laboratory of Contemporary Anthropology and State Key Laboratory of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, 220 Handan Rd., Shanghai, 200433, China.,China Medical City Institute of Health Sciences, 1 Yaocheng Road, Taizhou, Jiangsu, 225300, China
| | - Lianghui Wang
- Epidemiology unit of MOE Key Laboratory of Contemporary Anthropology and State Key Laboratory of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, 220 Handan Rd., Shanghai, 200433, China.,China Medical City Institute of Health Sciences, 1 Yaocheng Road, Taizhou, Jiangsu, 225300, China
| | - Weiping Zhou
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China.,National Innovation Alliance for Hepatitis & Liver Cancer, Shanghai, 200438, China
| | - Yajun Yang
- Epidemiology unit of MOE Key Laboratory of Contemporary Anthropology and State Key Laboratory of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, 220 Handan Rd., Shanghai, 200433, China.,China Medical City Institute of Health Sciences, 1 Yaocheng Road, Taizhou, Jiangsu, 225300, China
| | - Yueming Jiang
- Epidemiology unit of MOE Key Laboratory of Contemporary Anthropology and State Key Laboratory of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, 220 Handan Rd., Shanghai, 200433, China.,China Medical City Institute of Health Sciences, 1 Yaocheng Road, Taizhou, Jiangsu, 225300, China
| | - Hongyang Wang
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China.,Department of Health Statistics, Second Military Medical University, Shanghai, 200433, China.,National Innovation Alliance for Hepatitis & Liver Cancer, Shanghai, 200438, China
| | - Ji Qian
- Epidemiology unit of MOE Key Laboratory of Contemporary Anthropology and State Key Laboratory of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, 220 Handan Rd., Shanghai, 200433, China. .,China Medical City Institute of Health Sciences, 1 Yaocheng Road, Taizhou, Jiangsu, 225300, China. .,Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China. .,Department of Oncology, Fudan University Shanghai Medical College, Shanghai, 200032, China.
| | - Li Jin
- Epidemiology unit of MOE Key Laboratory of Contemporary Anthropology and State Key Laboratory of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, 220 Handan Rd., Shanghai, 200433, China. .,China Medical City Institute of Health Sciences, 1 Yaocheng Road, Taizhou, Jiangsu, 225300, China.
| | - Xiaofeng Wang
- Epidemiology unit of MOE Key Laboratory of Contemporary Anthropology and State Key Laboratory of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, 220 Handan Rd., Shanghai, 200433, China. .,China Medical City Institute of Health Sciences, 1 Yaocheng Road, Taizhou, Jiangsu, 225300, China.
| |
Collapse
|