51
|
Wu D, Yang H, Zhao Y, Sharan C, Goodwin JS, Zhou L, Guo Y, Guo Z. 2-Aminopurine inhibits lipid accumulation induced by apolipoprotein E-deficient lipoprotein in macrophages: potential role of eukaryotic initiation factor-2alpha phosphorylation in foam cell formation. J Pharmacol Exp Ther 2008; 326:395-405. [PMID: 18463320 PMCID: PMC3383833 DOI: 10.1124/jpet.107.134833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We previously reported that apolipoprotein (Apo) E-deficient, ApoB48-containing (E(-)/B48) lipoproteins inhibited expression of lysosomal hydrolase and transformed mouse peritoneal macrophages (MPMs) into foam cells. The present study examined the effect of 2-aminopurine (2-AP), an inhibitor of eukaryotic initiation factor (eIF)-2alpha phosphorylation, on E(-)/B48 lipoprotein-induced changes in gene expression and foam cell formation. Our data demonstrated that E(-)/B48 lipoproteins enhanced phosphorylation of eIF-2alpha in macrophages. Incubation of MPMs with E(-)/B48 lipoproteins inhibited the translation efficiency of mRNAs encoding lysosomal acid lipase, cathepsin B, and cation-dependent mannose 6 phosphate receptor, with a parallel reduction in the level of these proteins. Addition of 2-AP to the culture media alleviated the suppressive effect of E(-)/B48 lipoproteins on lysosomal hydrolase mRNA translation, increased macrophage degradation of E(-)/B48 lipoproteins, and inhibited foam cell formation. Transfection of MPMs with a nonphosphorylatable eIF-2alpha mutant also attenuated the suppressive effect of E(-)/B48 lipoproteins on expression of lysosomal acid lipase, associated with a reduced accumulation of cellular cholesterol esters. This is the first demonstration that ApoE-deficient lipoproteins inhibit lysosomal hydrolase synthesis and transform macrophages into foam cells through induction of eIF-2alpha phosphorylation.
Collapse
Affiliation(s)
- Dongfang Wu
- Department of Cardiovascular Biology, Meharry Medical College, Nashville, TN 37208, USA
| | | | | | | | | | | | | | | |
Collapse
|
52
|
Svenson KL, Ahituv N, Durgin RS, Savage H, Magnani PA, Foreman O, Paigen B, Peters LL. A new mouse mutant for the LDL receptor identified using ENU mutagenesis. J Lipid Res 2008; 49:2452-62. [PMID: 18632552 DOI: 10.1194/jlr.m800303-jlr200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In an effort to discover new mouse models of cardiovascular disease using N-ethyl-N-nitrosourea (ENU) mutagenesis followed by high-throughput phenotyping, we have identified a new mouse mutation, C699Y, in the LDL receptor (Ldlr), named wicked high cholesterol (WHC). When WHC was compared with the widely used Ldlr knockout (KO) mouse, notable phenotypic differences between strains were observed, such as accelerated atherosclerotic lesion formation and reduced hepatosteatosis in the ENU mutant after a short exposure to an atherogenic diet. This loss-of-function mouse model carries a single base mutation in the Ldlr gene on an otherwise pure C57BL/6J (B6) genetic background, making it a useful new tool for understanding the pathophysiology of atherosclerosis and for evaluating additional genetic modifiers regulating hyperlipidemia and atherogenesis. Further investigation of genomic differences between the ENU mutant and KO strains may reveal previously unappreciated sequence functionality.
Collapse
|
53
|
Véniant MM, Beigneux AP, Bensadoun A, Fong LG, Young SG. Lipoprotein size and susceptibility to atherosclerosis--insights from genetically modified mouse models. Curr Drug Targets 2008; 9:174-89. [PMID: 18336235 DOI: 10.2174/138945008783755629] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
High plasma levels of the apo-B-containing lipoproteins are casually implicated in the pathogenesis of atherosclerosis. This finding, backed by decades of animal and human studies, has sparked interest in defining which classes of apo-B-containing lipoprotein particles are most atherogenic. Although small LDL particles and larger remnant lipoproteins both appear to be atherogenic, it has been difficult to discern which particles are the most atherogenic. Here, we summarize several mouse models that have provided insights into this issue. The influence of lipoprotein size on susceptibility to atherosclerosis was examined by studying the phenotypes of two strains of mice with virtually identical levels of plasma cholesterol--Ldlr(-/-)Apob(100/100) and Apoe(-/-) Apob(100/100) mice. The Ldlr(-/-) Apob(100/100) mice, where the cholesterol is in small LDL particles, had far more atherosclerosis than Apoe(-/-) Apob(100/100) mice, where virtually all of the cholesterol was in larger, VLDL-sized particles. Another intriguing animal model is the Gpihbp1-deficient mouse. GPIHBP1 is an endothelial cell platform for lipolysis, and mice lacking this protein have an accumulation of large, triglyceride-rich lipoproteins. Defining the extent of atherosclerosis in these mice should provide new insights into the atherogenicity of large, triglyceride-rich lipoproteins.
Collapse
|
54
|
Abstract
Atherosclerosis is a self-sustaining inflammatory fibroproliferative disease that progresses in discrete stages and involves a number of cell types and effector molecules. The potential importance of the coagulation, anticoagulation, and fibrinolytic systems in atherosclerosis is based on the observation that fibrin deposits and fibrin degradation products are resident in atherosclerotic plaques. A number of investigations have been conducted to probe the relationships between components of the hemostasis system and atherosclerosis; and these types of studies proliferated after the availability of mice genetically manipulated to emphasize the impact of genes of interest. In order to summarize recent progress in this area, this review is focused on mice lacking individual hemostasis genes and their contributions to steps of the atherosclerotic process.
Collapse
Affiliation(s)
- Takayuki Iwaki
- W. M. Keck Center for Transgene Research, and the Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Victoria A. Ploplis
- W. M. Keck Center for Transgene Research, and the Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Francis J. Castellino
- W. M. Keck Center for Transgene Research, and the Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556 USA
| |
Collapse
|
55
|
Lloyd DJ, McCormick J, Helmering J, Kim KW, Wang M, Fordstrom P, Kaufman SA, Lindberg RA, Véniant MM. Generation and characterization of two novel mouse models exhibiting the phenotypes of the metabolic syndrome: Apob48-/-Lepob/ob mice devoid of ApoE or Ldlr. Am J Physiol Endocrinol Metab 2008; 294:E496-505. [PMID: 18160459 DOI: 10.1152/ajpendo.00509.2007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The metabolic syndrome is a group of disorders including obesity, insulin resistance, atherogenic dyslipidemia, hyperglycemia, and hypertension. To date, few animal models have been described to recapitulate the phenotypes of the syndrome. In this study, we generated and characterized two lines of triple-knockout mice that are deficient in either apolipoprotein E (Apoe(-/-)) or low-density lipoprotein receptor (Ldlr(-/-)) and express no leptin (Lep(ob/ob)) or apolipoprotein B-48 but exclusively apolipoprotein B-100 (Apob(100/100)). These two lines are referred to as Apoe triple-knockout-Apoe 3KO (Apoe(-/-)Apob(100/100)Lep(ob/ob)) and Ldlr triple-knockout-Ldlr 3KO (Ldlr(-/-)Apob(100/100)Lep(ob/ob)) mice. Both lines develop obesity, hyperinsulinemia, hyperlipidemia, hypertension, and atherosclerosis. However, only Apoe 3KO mice are hyperglycemic and glucose intolerant and are more obese than Ldlr 3KO mice. To evaluate the utility of these lines as pharmacological models, we treated both with leptin and found that leptin therapy ameliorated most metabolic derangements. Leptin was more effective in improving glucose tolerance in Ldlr 3KO than Apoe 3KO animals. The reduction of plasma cholesterol by leptin in Ldlr 3KO mice can be accounted for by its suppressive effect on food intake. However, in Apoe 3KO mice, leptin further reduced plasma cholesterol independently of its effect on food intake, and this improvement correlated with a smaller plaque lesion area. These effects suggest a direct role of leptin in modulating VLDL levels and, likewise, the lesion areas in VLDL-enriched animals. These two lines of mice represent new models with features of the metabolic syndrome and will be useful in testing therapies targeted for combating the human condition.
Collapse
Affiliation(s)
- David J Lloyd
- Department of Metabolic Disorders, Amgen Incorporated, Thousand Oaks, California 91320, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Chilton FH, Rudel LL, Parks JS, Arm JP, Seeds MC. Mechanisms by which botanical lipids affect inflammatory disorders. Am J Clin Nutr 2008; 87:498S-503S. [PMID: 18258646 DOI: 10.1093/ajcn/87.2.498s] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Changes in diet over the past century have markedly altered the consumption of fatty acids. The dramatic increase in the ingestion of saturated and n-6 fatty acids and concomitant decrease in n-3 fatty acids are thought to be a major driver of the increase in the incidence of inflammatory diseases such as asthma, allergy, and atherosclerosis. The central objective of the Center for Botanical Lipids at Wake Forest University School of Medicine and the Brigham and Women's Hospital is to delineate the mechanisms by which fatty acid-based dietary supplements inhibit inflammation leading to chronic human diseases such as cardiovascular disease and asthma. The key question that this center addresses is whether botanical n-6 and n-3 fatty acids directly block recognized biochemical pathways or the expression of critical genes that lead to asthma and atherosclerosis. Dietary supplementation with flaxseed oil, borage oil, and echium oil affects the biochemistry of fatty acid metabolism and thus the balance of proinflammatory mediators and atherogenic lipids. Supplementation studies have begun to identify key molecular and genetic mechanisms that regulate the production of lipid mediators involved in inflammatory and hyperlipidemic diseases. Echium oil and other oils containing stearidonic acid as well as botanical oil combinations (such as echium and borage oils) hold great promise for modulating inflammatory diseases.
Collapse
Affiliation(s)
- Floyd H Chilton
- Center for Botanical Lipids, Wake Forest University, Winston Salem, NC, USA.
| | | | | | | | | |
Collapse
|
57
|
Wågsäter D, Björk H, Zhu C, Björkegren J, Valen G, Hamsten A, Eriksson P. ADAMTS-4 and -8 are inflammatory regulated enzymes expressed in macrophage-rich areas of human atherosclerotic plaques. Atherosclerosis 2008; 196:514-22. [PMID: 17606262 DOI: 10.1016/j.atherosclerosis.2007.05.018] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Revised: 05/10/2007] [Accepted: 05/14/2007] [Indexed: 10/23/2022]
Abstract
OBJECTIVES Remodeling of extracellular matrix (ECM) plays an important role in inflammatory disorders such as atherosclerosis. ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) is a recently described family of proteinases that is able to degrade the ECM proteins aggrecan and versican expressed in blood vessels. The purpose of the present study was to analyze the expression and regulation of several ADAMTSs before and after macrophage differentiation and after stimulation with IFN-gamma, IL-1beta and TNF-alpha. ADAMTS expression was also examined during atherosclerosis development in mice and in human atherosclerotic plaques. METHODS AND RESULTS Real time RTPCR showed that, of the nine different ADAMTS members examined, only ADAMTS-4 and -8 were induced during monocyte to macrophage differentiation, which was also seen at protein level. Macrophage expression of ADAMTS-4, -7, -8 and -9 mRNA were enhanced upon stimulation with IFN-gamma or TNF-alpha. Furthermore, immunohistochemical analyses revealed that ADAMTS-4 and -8 were expressed in macrophage rich areas of human atherosclerotic carotid plaques and coronary unstable plaques. In addition, ADAMTS-4 expression was upregulated during the development of atherosclerosis in LDLR(-/-)ApoB(100/100) mice. Whereas ADAMTS-4 expression was low in non-atherosclerotic aortas, it was significantly higher in aortas from 30-40-week old atherosclerotic animals. CONCLUSION The present study suggests that ADAMTS-4 and -8 are inflammatory regulated enzymes expressed in macrophage-rich areas of atherosclerotic plaques. This is the first study associating ADAMTS-4 and -8 expression with atherosclerosis. However, further experiments are required to understand the physiological and pathological functions of ADAMTS in the vascular wall, and tools to measure ADAMTS activity need to be developed.
Collapse
Affiliation(s)
- Dick Wågsäter
- Atherosclerosis Research Unit, King Gustav V Research Institute, Department of Medicine, Karolinska Institute, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
58
|
Lo CM, Nordskog BK, Nauli AM, Zheng S, Vonlehmden SB, Yang Q, Lee D, Swift LL, Davidson NO, Tso P. Why does the gut choose apolipoprotein B48 but not B100 for chylomicron formation? Am J Physiol Gastrointest Liver Physiol 2008; 294:G344-52. [PMID: 18006607 DOI: 10.1152/ajpgi.00123.2007] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Chylomicrons produced by the human gut contain apolipoprotein (apo) B48, whereas very-low-density lipoproteins made by the liver contain apo B100. To study how these molecules function during lipid absorption, we examined the process as it occurs in apobec-1 knockout mice (able to produce only apo B100; KO) and in wild-type mice (of which the normally functioning intestine makes apo B48, WT). Using the lymph fistula model, we studied the process of lipid absorption when animals were intraduodenally infused with a lipid emulsion (4 or 6 micromol/h of triolein). KO mice transported triacylglycerol (TG) as efficiently as WT mice when infused with the lower lipid dose; when infused with 6 micromol/h of triolein, however, KO mice transported significantly less TG to lymph than WT mice, leading to the accumulation of mucosal TG. Interestingly, the size of lipoprotein particles from both KO and WT mice were enlarged to chylomicron-size particles during absorption of the higher dose. These increased-size particles produced by KO mice were not associated with increased apo AIV secretion. However, we found that the gut of the KO mice secreted fewer apo B molecules to lymph (compared with WT), during both fasting and lipid infusion, leading us to conclude that the KO gut produced fewer numbers of TG-rich lipoproteins (including chylomicron) than the wild-type animals. The reduced apo B secretion in KO mice was not related to reduced microsomal triglyceride transfer protein lipid transfer activity. We propose that apo B48 is the preferred protein for the gut to coat chylomicrons to ensure efficient chylomicron formation and lipid absorption.
Collapse
Affiliation(s)
- Chun-Min Lo
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Zhang P, Boudyguina E, Wilson MD, Gebre AK, Parks JS. Echium oil reduces plasma lipids and hepatic lipogenic gene expression in apoB100-only LDL receptor knockout mice. J Nutr Biochem 2007; 19:655-63. [PMID: 18155507 DOI: 10.1016/j.jnutbio.2007.08.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Accepted: 08/23/2007] [Indexed: 11/27/2022]
Abstract
We tested the hypothesis that dietary supplementation with echium oil (EO), which is enriched in stearidonic acid (SDA; 18:4 n-3), the product of Delta-6 desaturation of 18:3 n-3, will decrease plasma triglyceride (TG) concentrations and result in conversion of SDA to eicosapentaenoic acid (EPA) in the liver. Mildly hypertriglyceridemic mice (apoB100-only LDLrKO) were fed a basal diet containing 10% calories as palm oil (PO) and 0.2% cholesterol for 4 weeks, after which they were randomly assigned to experimental diets consisting of the basal diet plus supplementation of 10% of calories as PO, EO or fish oil (FO) for 8 weeks. The EO and FO experimental diets decreased plasma TG and VLDL lipid concentration, and hepatic TG content compared to PO, and there was a significant correlation between hepatic TG content and plasma TG concentration among diet groups. EO fed mice had plasma and liver lipid EPA enrichment that was greater than PO-fed mice but less than FO-fed mice. Down-regulation of several genes involved in hepatic TG biosynthesis was similar for mice fed EO and FO and significantly lower compared to those fed PO. In conclusion, EO may provide a botanical alternative to FO for reduction of plasma TG concentrations.
Collapse
Affiliation(s)
- Ping Zhang
- Section on Lipid Sciences, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | | | |
Collapse
|
60
|
Xie Y, Luo J, Kennedy S, Davidson NO. Conditional intestinal lipotoxicity in Apobec-1-/- Mttp-IKO mice: a survival advantage for mammalian intestinal apolipoprotein B mRNA editing. J Biol Chem 2007; 282:33043-51. [PMID: 17855359 DOI: 10.1074/jbc.m705386200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mammalian small intestinal lipid absorption requires the coordinated interactions of apolipoprotein B (apoB) and the microsomal triglyceride transfer protein (Mttp). The observation that apoB100 displays greater dependence on Mttp availability than does apoB48 prompted us to examine the phenotype of Mttp deletion in an Apobec-1(-/-) background (i.e. apoB100 Mttp-IKO). 20% apoB100 Mttp-IKO mice died on a chow diet, and >90% died following high fat feeding (versus 0 and 11% apoB48 Mttp-IKO mice, respectively). Intestinal adaptation occurred in apoB48 Mttp-IKO mice in response to high fat feeding, evidenced by increased bromodeoxyuridine incorporation and villus lengthening, changes that did not occur in apoB100 Mttp-IKO mice. There was an exaggerated unfolded protein response (UPR), which became more pronounced in apoB100 Mttp-IKO mice. To examine the role of endoplasmic reticulum stress and the UPR in the lipotoxic effects of Mttp deletion, we administered tauroursodeoxycholate to apoB100 Mttp-IKO mice upon initiation of high fat feeding. Tauroursodeoxycholate administration abrogated the UPR but produced an unexpected acceleration in the onset of lethality in apoB100 Mttp-IKO mice. The findings demonstrate that there is activation of the UPR with lethal lipotoxicity in conditional intestinal apoB100 Mttp-IKO mice. Together the data provide the first plausible biological evidence for a survival advantage for mammalian intestinal apoB mRNA editing.
Collapse
Affiliation(s)
- Yan Xie
- Department of Medicine, Washington University School of Medicine, 660 South Euclid, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
61
|
Wu D, Sharan C, Yang H, Goodwin JS, Zhou L, Grabowski GA, Du H, Guo Z. Apolipoprotein E-deficient lipoproteins induce foam cell formation by downregulation of lysosomal hydrolases in macrophages. J Lipid Res 2007; 48:2571-8. [PMID: 17720994 DOI: 10.1194/jlr.m700217-jlr200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Apolipoprotein E (apoE) deficiency has been suggested to induce foam cell formation. Using lipoproteins obtained from wild-type mice and apoE-deficient mice expressing apoB-48 but not apoB-100, we studied apoE-deficient lipoprotein-induced changes in lipoprotein catabolism and protein expression in mouse peritoneal macrophages (MPMs). Our data demonstrate that incubation of MPMs with apoE-deficient lipoproteins induced intracellular lipoprotein, cholesteryl ester, and triglyceride accumulation, which was associated with a time-related decline in apoE-deficient lipoprotein degradation in MPMs. Confocal microscopy analysis indicated that the accumulated lipids were localized in lysosomes. ApoE-deficient lipoproteins reduced the protein levels of lysosomal acid lipase, cathepsin B, and cation-dependent mannose 6 phosphate receptor (MPR46). Exogenous apoE reduced apoE-deficient lipoprotein-induced lipid accumulation and attenuated the suppressive effect of apoE-deficient lipoproteins on lysosomal hydrolase and MPR46 expression. Although oxidized lipoproteins also increased lipid contents in MPMs, exogenous apoE could not attenuate oxidized lipoprotein-induced lipid accumulation. Our in vivo studies also showed that feeding apoE-deficient mice a high-fat diet resulted in cholesteryl ester and triglyceride accumulation and reduced lysosomal hydrolase expression in MPMs. These data suggest that apoE-deficient lipoproteins increase cellular lipid contents through pathways different from those activated by oxidized lipoproteins and that reducing lysosomal hydrolases in macrophages might be a mechanism by which apoE-deficient lipoproteins result in intralysosomal lipoprotein accumulation, thereby inducing foam cell formation.
Collapse
Affiliation(s)
- DongFang Wu
- Department of Cardiovascular Biology, Meharry Medical College, Nashville, TN 37208, USA
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Kovacs A, Tornvall P, Nilsson R, Tegnér J, Hamsten A, Björkegren J. Human C-reactive protein slows atherosclerosis development in a mouse model with human-like hypercholesterolemia. Proc Natl Acad Sci U S A 2007; 104:13768-73. [PMID: 17702862 PMCID: PMC1959457 DOI: 10.1073/pnas.0706027104] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Increased baseline values of the acute-phase reactant C-reactive protein (CRP) are significantly associated with future cardiovascular disease, and some in vitro studies have claimed that human CRP (hCRP) has proatherogenic effects. in vivo studies in apolipoprotein E-deficient mouse models, however, have given conflicting results. We bred atherosclerosis-prone mice (Apob(100/100)Ldlr(-/-)), which have human-like hypercholesterolemia, with hCRP transgenic mice (hCRP(+/0)) and studied lesion development at 15, 30, 40, and 50 weeks of age. Atherosclerotic lesions were smaller in hCRP(+/0)Apob(100/100)Ldlr(-/-) mice than in hCRP(0/0)Apob(100/100)Ldlr(-/-) controls, as judged from the lesion surface areas of pinned-out aortas from mice at 40 and 50 weeks of age. In lesions from 40-week-old mice, mRNA expression levels of several genes in the proteasome degradation pathway were higher in hCRP(+/0)Apob(100/100)Ldlr(-/-) mice than in littermate controls, as shown by global gene expression profiles. These results were confirmed by real-time PCR, which also indicated that the activities of those genes were the same at 30 and 40 weeks in hCRP(+/0)Apob(100/100)Ldlr(-/-) mice but were significantly lower at 40 weeks than at 30 weeks in controls. Our results show that hCRP is not proatherogenic but instead slows atherogenesis, possibly through proteasome-mediated protein degradation.
Collapse
Affiliation(s)
- Alexander Kovacs
- Atherosclerosis Research Unit, Center for Molecular Medicine, Department of Medicine, and
| | - Per Tornvall
- Cardiology Unit, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, 171 76 Stockholm, Sweden; and
| | - Roland Nilsson
- Computational Medicine Group
- Computational Biology Group, Department of Physics, Linköping Institute for Technology, Linköping University, 581 83 Linköping, Sweden
| | - Jesper Tegnér
- Computational Medicine Group
- Computational Biology Group, Department of Physics, Linköping Institute for Technology, Linköping University, 581 83 Linköping, Sweden
| | - Anders Hamsten
- Atherosclerosis Research Unit, Center for Molecular Medicine, Department of Medicine, and
- Cardiology Unit, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, 171 76 Stockholm, Sweden; and
| | - Johan Björkegren
- Computational Medicine Group
- To whom correspondence should be addressed at:
Computational Medicine Group, Atherosclerosis Research Unit, King Gustaf V Research Institute, Karolinska Institutet, Karolinska Hospital, 171 76 Stockholm, Sweden. E-mail:
| |
Collapse
|
63
|
Tirziu D, Moodie KL, Zhuang ZW, Singer K, Helisch A, Dunn JF, Li W, Singh J, Simons M. Delayed Arteriogenesis in Hypercholesterolemic Mice. Circulation 2005; 112:2501-9. [PMID: 16230502 DOI: 10.1161/circulationaha.105.542829] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
Hypercholesterolemia has been reported to inhibit ischemia-induced angiogenesis. To address its effects on arteriogenesis, we investigated arterial growth in hypercholesterolemic low-density lipoprotein receptor
−/−
/ApoB-48
−/−
(HCE) mice.
Methods and Results—
The extent and the time course of arteriogenesis after femoral artery ligation was evaluated in HCE and strain-matched control mice. Distal limb perfusion was measured by laser Doppler imaging, whereas MRI was used to visualize arterial flow and micro-computed tomography to assess vascular growth. After femoral artery ligation, serial laser Doppler imaging demonstrated significantly delayed restoration of perfusion in untreated HCE compared with control mice (day 3, 0.09 versus 0.19,
P
<0.05). Treatment with Ad-PR39 in control mice led to a significant restoration of arterial blood flow and tissue perfusion at day 3, whereas in HCE mice, hindlimb perfusion began increasing only by day 7. Micro-CT analysis confirmed increased growth of smaller arterioles (16 to 63 μm in diameter) in the Ad-PR39–treated control compared with HCE mice. The delay in arteriogenesis in HCE mice correlated with delayed tissue appearance of F4/80
+
cells. Analysis of gene expression after Ad-PR39 treatment demonstrated that HCE mice had significantly reduced expression of FGF receptor 1, hypoxia-inducible factor-1α, vascular cell adhesion molecule-1, macrophage scavenger receptor-1, and cyclophilin A compared with controls 3 days after arterial ligation that equalized by day 7, mimicking relative changes in arteriogenesis and tissue perfusion.
Conclusions—
Hypercholesterolemia results in delayed native arteriogenesis because of reduced early monocyte/macrophage influx and delayed and impaired arterial growth response to growth factor therapy.
Collapse
Affiliation(s)
- Daniela Tirziu
- Angiogenesis Research Center, Department of Medicine, Dartmouth Medical School, Lebanon, NH, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Wang HH, Wang DQH. Reduced susceptibility to cholesterol gallstone formation in mice that do not produce apolipoprotein B48 in the intestine. Hepatology 2005; 42:894-904. [PMID: 16175613 DOI: 10.1002/hep.20867] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
It has been found that polymorphisms in the apolipoprotein (APO)-B gene are associated with cholesterol gallstones in humans. We hypothesized that APO-B plays a major regulatory role in the response of biliary cholesterol secretion to high dietary cholesterol and contributes to cholesterol gallstone formation. In the present study, we investigated whether lack of expression of intestinal Apob48 or Apob100 reduces susceptibility to cholesterol gallstones by decreasing intestinal absorption and biliary secretion of cholesterol in male mice homozygous for an "APO-B48 only" allele (Apob(48/48)), an "APO-B100 only" allele (Apob(100/100)), or a wild-type APO-B allele (Apob+/+) before and during an 8-week lithogenic diet. We found that cholesterol absorption was significantly decreased as a result of the APO-B48 deficiency in Apob(100/100) mice compared with wild-type and Apob(48/48) mice, regardless of whether chow or the lithogenic diet was administered. Consequently, hepatic cholesterol synthesis was significantly increased in Apob(100/100) mice compared with wild-type and Apob(48/48) mice. On chow, the APO-B100 deficiency in Apob(48/48) mice with reduced plasma levels of LDL/VLDL--but not HDL cholesterol--induced relative hyposecretion of biliary bile salts and phospholipids accompanying normal biliary cholesterol secretion. Compared with Apob(48/48) and wild-type mice, lithogenic diet-fed Apob(100/100) mice displayed significantly lower secretion rates of biliary cholesterol, but not phospholipid or bile salts, which results in significant decreases in prevalence rates, numbers, and sizes of gallstones. In conclusion, absence of expression of intestinal Apob48, but not Apob100, reduces biliary cholesterol secretion and cholelithogenesis, possibly by decreasing intestinal absorption and hepatic bioavailability.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily G, Member 5
- ATP Binding Cassette Transporter, Subfamily G, Member 8
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- Animals
- Apolipoprotein B-100
- Apolipoprotein B-48
- Apolipoproteins B/genetics
- Apolipoproteins B/metabolism
- Bile Acids and Salts/biosynthesis
- Bile Acids and Salts/metabolism
- Cholesterol, Dietary/blood
- Cholesterol, Dietary/pharmacokinetics
- Disease Susceptibility
- Female
- Gallstones/epidemiology
- Gallstones/genetics
- Gallstones/metabolism
- Intestinal Absorption
- Intestine, Small/metabolism
- Lipoproteins/genetics
- Lipoproteins/metabolism
- Liver/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Prevalence
- RNA, Messenger/analysis
Collapse
Affiliation(s)
- Helen H Wang
- Department of Medicine, Liver Center and Gastroenterology Division, Beth Israel Deaconess Medical Center, Harvard Medical School and Harvard Digestive Diseases Center, Boston, MA 02215, USA
| | | |
Collapse
|
65
|
|
66
|
Wu D, Yang H, Xiang W, Zhou L, Shi M, Julies G, Laplante JM, Ballard BR, Guo Z. Heterozygous mutation of ataxia-telangiectasia mutated gene aggravates hypercholesterolemia in apoE-deficient mice. J Lipid Res 2005; 46:1380-7. [PMID: 15863839 DOI: 10.1194/jlr.m400430-jlr200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Individuals with a heterozygous mutation at the ataxia-telangiectasia mutated gene (ATM) have been reported to be predisposed to ischemic heart disease. This report examined for the first time the effect of a heterozygous ATM mutation (ATM(+)(/-)) on plasma lipid levels and atherosclerosis intensity using ATM(+/-), ATM(+)(/+) (wild type), ATM(+)(/+)/LDLR(-)(/-) (low density lipoprotein receptor knockout), ATM(+)(/-)/LDLR(-)(/-), ATM(+)(/+)/ApoE(-)(/-) (apolipoprotein E knockout), and ATM(+)(/-)/ApoE(-)(/-) mice. Our data demonstrated that the plasma cholesterol and triglyceride levels in ATM(+)(/-) and ATM(+)(/-)/LDLR(-)(/-) mice were approximately the same as those in ATM(+)(/+) and ATM(+)(/+)/LDLR(-)(/-) control mice, respectively. In contrast, the plasma cholesterol level was significantly higher in ATM(+)(/-)/ApoE(-)(/-) mice than in ATM(+)(/+)/ApoE(-)(/-) control mice. In addition, the ATM(+)(/-)/ApoE(-)(/-) mice showed higher plasma apoB-48 levels, slower clearance for plasma apoB-48-carrying lipoproteins, and more advanced atherosclerotic lesions in the aorta compared with the ATM(+)(/+)/ApoE(-)(/-) mice. These novel results suggest that the product of ATM is involved in an apoE-independent pathway for catabolism of apoB-48-carrying remnants; therefore, superimposition of a heterozygous ATM mutation onto an ApoE deficiency background reduces the clearance of apoB-48-carrying lipoproteins from the blood circulation and promotes the formation of atherosclerosis.
Collapse
Affiliation(s)
- Dongfang Wu
- Department of Pathology, Anatomy, and Cell Biology, Meharry Medical College, Nashville, TN 37208, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Conde-Knape K, Okada K, Ramakrishnan R, Shachter NS. Overexpression of apoC-III produces lesser hypertriglyceridemia in apoB-48-only gene-targeted mice than in apoB-100-only mice. J Lipid Res 2004; 45:2235-44. [PMID: 15342689 DOI: 10.1194/jlr.m400185-jlr200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The adaptive value of apolipoprotein B-48 (apoB-48), the truncated form of apoB produced by the intestine, in lipid metabolism remains unclear. We crossed human apoC-III transgenic mice with mice expressing either apoB-48 only (apoB48/48) or apoB-100 only (apoB100/100). Cholesterol levels were higher in apoB48/48 mice than in apoB100/100 mice but triglyceride levels were similar. Lipid levels were increased by the apoC-III transgene. However, triglyceride levels were significantly higher in apoB100/100C-III than in apoB48/48C-III mice (895 +/- 395 mg/dl vs. 690 +/- 252 mg/dl; P <0.01), whereas cholesterol levels were higher in the apoB48/48C-III mice than in apoB100/100C-III (144 +/- 35 mg/dl vs. 94 +/- 30 mg/dl; P <0.00001). Triglyceride clearance from VLDL was impaired to a greater extent in apoB100/100C-III vs. apoB100/100 mice than in apoB48/48C-III vs. apoB48/48 mice. Triglyceride secretion rates were no different in apoC-III transgenic mice than in their nontransgenic littermates. ApoB-48 triglyceride-rich lipoproteins were more resistant to the triglyceride-increasing effects of apoC-III but appeared more sensitive to the remnant clearance inhibition. Our findings support a coordinated role for apoB-48 in facilitating the delivery of dietary triglycerides to the periphery. Consistent with such a mechanism, glucose levels were significantly higher in apoB48/48 mice vs. apoB100/100 mice, perhaps on the basis of metabolic competition.
Collapse
Affiliation(s)
- Karin Conde-Knape
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | | | | | | |
Collapse
|
68
|
Nassir F, Xie Y, Patterson BW, Luo J, Davidson NO. Hepatic secretion of small lipoprotein particles in apobec-1-/- mice is regulated by the LDL receptor. J Lipid Res 2004; 45:1649-59. [PMID: 15145984 DOI: 10.1194/jlr.m300505-jlr200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Recent studies have examined the role of the LDL receptor (LDLR) in regulating murine hepatic lipoprotein production and apolipoprotein B (apoB) secretion, with divergent conclusions from in vivo versus in vitro approaches. We have re-examined this question, both in vivo and in vitro, using apobec-1-/- mice to model the pattern of human hepatic apoB-100 secretion. Hepatic triglyceride production in vivo (using Triton WR-1339) was unchanged in wild-type (WT) C57BL/6, apobec-1-/-, ldlr-/-, and [apobec-1-/-, ldlr-/-] mice, while apoB-100 production (using [35S]methionine incorporation) was increased > 2-fold in [apobec-1-/-, ldlr-/-] mice. Although > 90% of newly synthesized apoB floated within the d < 1.006 fraction of serum from all genotypes, fast-performance liquid chromatography separation revealed that nascent triglyceride-rich particles from [apobec-1-/-, ldlr-/-] mice, but not WT, apobec-1-/-, or ldlr-/- mice, distributed into smaller (intermediate and LDL-sized) particles. Studies in isolated hepatocytes from these different genotypes confirmed secretion of smaller particles exclusively from [apobec-1-/-, ldlr-/-] mice, and pulse-chase analysis demonstrated increased secretion of apoB-100 with virtual elimination of posttranslational degradation. These results directly support the suggestion that the LDLR regulates hepatic apoB-100 production and modulates secretion of small, triglyceride-rich particles, both in vivo and in vitro.
Collapse
Affiliation(s)
- Fatiha Nassir
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
69
|
Whitman SC. A practical approach to using mice in atherosclerosis research. Clin Biochem Rev 2004; 25:81-93. [PMID: 18516202 PMCID: PMC1853358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
This review discusses the application-side of using mice as an animal model of atherosclerosis, and is directed towards the researcher new to using mice to perform atherosclerosis studies. Although this review will comment on many of the current mouse models that are available, noting their strengths and weaknesses, the majority of this review is relevant to planning experiments involving either apolipoprotein (apo) E deficient or low-density lipoprotein (LDL) receptor deficient mice. Subject matter covered includes a description of the types of lesions expected to form in apoE deficient and LDL receptor deficient mice, the age of the mouse when these various types of lesion are expected to form, and finally, a description of the most popular methods used to perform both biochemical and morphometric analysis of atherosclerotic lesions.
Collapse
Affiliation(s)
- Stewart C Whitman
- The University of Ottawa Heart Institute, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
70
|
Chen Z, Fitzgerald RL, Li G, Davidson NO, Schonfeld G. Hepatic secretion of apoB-100 is impaired in hypobetalipoproteinemic mice with an apoB-38.9-specifying allele. J Lipid Res 2004; 45:155-63. [PMID: 13130124 DOI: 10.1194/jlr.m300275-jlr200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Apolipoprotein B (apoB) truncation-specifying mutations cause familial hypobetalipoproteinemia (FHBL). Lipoprotein kinetics studies have shown that production rates of apoB-100 are reduced by 70-80% in heterozygous FHBL humans, instead of the expected 50%. To develop suitable mouse models to study the underlying mechanism, apoB-38.9-only (Apob(38.9/38.9)) mice were crossbred with Apobec-1 knockout (Apobec-1(-/-)) mice or apoB-100-only (Apob(100/100)) mice to produce two lines of apoB-38.9 heterozygous mice that produce only apoB-38.9 and apoB-100, namely Apobec-1(-/-)/Apob(38.9/+) and Apob(38.9/100) mice. In vivo rates of apoB-100 secretion were measured using [35S]Met/Cys to label proteins and Triton WR-1339 to block apoB-100 VLDL lipolysis/uptake. Rates of secretion were reduced by 80%, rather than the expected 50%, in both Apobec-1(-/-)/Apob(38.9/+) and Apob(38.9/100) mice compared with those of the respective Apobec-1(-/-)/Apob(+/+) and Apob(100/100) control mice. Continuous labeling and pulse-chase experiments in primary hepatocyte cultures revealed that rates of apoB-100 synthesis by Apobec-1(-/-)/Apob(38.9/+) and Apob(38.9/100) hepatocytes were reduced to the expected 50% of those of the respective controls, but the efficiency of secretion of apoB-100 was significantly lower in apoB-38.9 heterozygous hepatocytes. The greater-than-expected decreases in apoB-100 production rates of FHBL heterozygous humans appear to be attributable to a defect in secretion rather than in the synthesis of apoB-100 from the unaffected apoB allele.
Collapse
Affiliation(s)
- Zhouji Chen
- Division of Atherosclerosis, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | | | | | |
Collapse
|
71
|
Hammad SM, Hazen-Martin DJ, Sohn M, Eldridge L, Powell-Braxton L, Won W, Lyons TJ. Nephropathy in a Hypercholesterolemic Mouse Model with Streptozotocin-Induced Diabetes. Kidney Blood Press Res 2003; 26:351-61. [PMID: 14610340 DOI: 10.1159/000073942] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2003] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS The contribution of preexisting hypercholesterolemia to diabetic nephropathy remains unclear. We assessed the impact of hypercholesterolemia on diabetic nephropathy using a double knockout (DKO) mouse, null for the low-density lipoprotein receptor (LDLRNDASH;/NDASH;) and the apoB mRNA editing catalytic polypeptide 1 (APOBEC1NDASH;/NDASH;). METHODS Wild-type (WT) and DKO mice received sham or streptozotocin injections at age 7 weeks, yielding control (WT-C, DKO-C) and diabetic (WT-D, DKO-D) groups. At sacrifice (age 40 weeks), albuminuria was determined by ELISA, and kidney sections were examined by light and electron microscopy. RESULTS Albuminuria increased in diabetic mice (WT-D: 82.4 +/- 37.2 microg/18 h; DKO-D: 58.0 +/- 45.7 microg/18 h) versusnondiabetic controls (WT-C: 10.2 +/- 7.2 microg/18 h; DKO-C: 8.6 +/- 5.3 microg/18 h) (p LT; 0.0001), but was unaffected by hypercholesterolemia. Light microscopy of kidney sections demonstrated increased collagen levels in glomeruli in WT-D mice, but not in DKO-D mice or either control group. Electron microscopy showed a thickened glomerular basement membrane in WT-D mice only. The proximal tubular basement membrane thickness was increased in both diabetic groups versusnondiabetic controls (p LT; 0.01); in WT-D mice this was attributable to collagen accumulation, but in DKO-D mice it was mainly caused by lipid vacuoles. CONCLUSIONS In this animal model, preexisting hypercholesterolemia did not exacerbate either glomerular lesions of diabetes (collagen accumulation, basement membrane thickening) or albuminuria, but appeared to mitigate these effects. Furthermore, the combination of hypercholesterolemia and diabetes resulted in a significant lipid accumulation in the tubular basement membrane.
Collapse
Affiliation(s)
- Samar M Hammad
- Division of Endocrinology, Diabetes, and Medical Genetics, Medical University of South Carolina, Charleston 29425, USA.
| | | | | | | | | | | | | |
Collapse
|
72
|
Xie Y, Nassir F, Luo J, Buhman K, Davidson NO. Intestinal lipoprotein assembly in apobec-1-/- mice reveals subtle alterations in triglyceride secretion coupled with a shift to larger lipoproteins. Am J Physiol Gastrointest Liver Physiol 2003; 285:G735-46. [PMID: 12816761 DOI: 10.1152/ajpgi.00202.2003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mammalian enterocytes express apolipoprotein (apo)B-48, which is produced after posttranscriptional RNA editing of the nuclear apoB-100 transcript by the catalytic deaminase apobec-1. Earlier studies in apobec-1-/- mice revealed an apoB-100-only lipoprotein profile but no gross defects in triglyceride absorption. However, subtle defects may have been obscured by the mixed genetic background. In addition, the intrinsic susceptibility to proteolytic degradation of intestinal apoB-100 and apoB-48 has been questioned. Accordingly, we examined triglyceride absorption, intestinal apoB expression, and lipoprotein secretion in apobec-1-/- mice backcrossed into a C57BL/6 background. Inbred apobec-1-/- mice absorb triglyceride normally, yet secrete triglyceride-rich lipoproteins more slowly than wild-type congenic controls. There was comparable induction of apoB synthesis in response to fat feeding in both genotypes, but apoB-100 was preferentially retained and more extensively degraded than apoB-48. By contrast, synthesis, secretion, and content of apo A-IV were indistinguishable in apobec-1-/- and wild-type mice with 100% recovery, suggesting no degradation of this apoprotein in either genotype. Newly secreted lipoproteins from isolated enterocytes of wild-type mice revealed apoB-48 in both high-density lipoproteins and very low-density lipoproteins. By contrast, apobec-1-/- mice secreted apoB-100-containing particles that were almost exclusively in the low and very low-density lipoproteins range with no apoB-100-containing high-density lipoproteins. These studies establish the existence of preferential degradation of intestinal apoB-100 and subtle defects in triglyceride secretion in apobec-1-/- mice, coupled with a shift to the production of larger particles, findings that suggest an important divergence in intestinal lipoprotein assembly pathways with the different isoforms of apoB.
Collapse
Affiliation(s)
- Yan Xie
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
73
|
Chen Z, Fitzgerald RL, Saffitz JE, Semenkovich CF, Schonfeld G. Amino terminal 38.9% of apolipoprotein B-100 is sufficient to support cholesterol-rich lipoprotein production and atherosclerosis. Arterioscler Thromb Vasc Biol 2003; 23:668-74. [PMID: 12615667 DOI: 10.1161/01.atv.0000062701.02853.ae] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Carboxyl terminal truncation of apolipoprotein (apo)B-100 and apoB-48 impairs their capacity for triglyceride transport, but the ability of the resultant truncated apoB to transport cholesterol and to support atherosclerosis has not been adequately studied. The atherogenicity of apoB-38.9 was determined in this study by using our apoB-38.9-only (Apob38.9/38.9) mice. METHODS AND RESULTS ApoB-38.9-lipoproteins (Lp-B38.9) circulate at very low levels in Apob38.9/38.9 mice as small LDLs or HDLs. Disruption of apoE gene in these mice caused accumulation of large amounts of betaVLDL-like LpB-38.9 in plasma. These betaVLDL particles were more enriched with cholesteryl esters but poor in triglycerides compared with the apoB-48-betaVLDL of the apoB-wild-type/apoE-null (Apob+/+/Apoe-/-) mice. Likewise, apoB-38.9-VLDL secreted by cultured Apob38.9/38.9 mouse hepatocytes also had higher ratios of total cholesterol to triglycerides than apoB-48-VLDL secreted by the apoB-48-only hepatocytes. Thus, despite its impaired triglyceride-transporting capacity, apoB-38.9 has a relatively intact capacity for cholesterol transport. Spontaneous aortic atherosclerotic lesions were examined in apoB-38.9-only/apoE-null (Apob38.9/38.9/Apoe-/-) mice at ages 9 and 13 months. Extensive lesions were found in the Apob38.9/38.9/Apoe-/- mice as well as in their Apob+/38.9/Apoe-/- and Apob+/+/Apoe-/- littermates. CONCLUSIONS Deleting the C-terminal 20% from apoB-48 does not impair its ability to transport cholesterol and to support atherosclerosis, thus narrowing the "atherogenic region" of apoB.
Collapse
Affiliation(s)
- Zhouji Chen
- Department of Medicine, Washington University School of Medicine, Box 8046, 660 South Euclid Avenue, St Louis, MO 63110, USA.
| | | | | | | | | |
Collapse
|
74
|
Lieu HD, Withycombe SK, Walker Q, Rong JX, Walzem RL, Wong JS, Hamilton RL, Fisher EA, Young SG. Eliminating atherogenesis in mice by switching off hepatic lipoprotein secretion. Circulation 2003; 107:1315-21. [PMID: 12628954 DOI: 10.1161/01.cir.0000054781.50889.0c] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND LDL receptor-deficient "apolipoprotein (apo)-B100-only" mice (Ldlr-/-Apob100/100 have elevated LDL cholesterol levels on a chow diet and develop severe aortic atherosclerosis. We hypothesized that both the hypercholesterolemia and the susceptibility to atherosclerosis could be eliminated by switching off hepatic lipoprotein production. METHODS AND RESULTS We bred Ldlr-/-Apob100/100 mice that were homozygous for a conditional allele for Mttp (the gene for microsomal triglyceride transfer protein) and the inducible Mx1-Cre transgene. In these animals, which we called "Reversa mice," the hypercholesterolemia could be reversed, without modifying the diet or initiating a hypolipidemic drug, by the transient induction of Cre expression in the liver. After Cre induction, hepatic Mttp expression was virtually eliminated (as judged by quantitative real-time PCR), hepatic lipoprotein secretion was abolished (as judged by electron microscopy), and LDLs were virtually eliminated from the plasma. Intestinal lipoprotein production was unaffected. In mice fed a chow diet, Cre induction reduced plasma cholesterol levels from 233.9+/-46.0 to 37.2+/-6.5 mg/dL. In mice fed a high-fat diet, cholesterol levels fell from 525.7+/-32.2 to 100.6+/-14.3 mg/dL. The elimination of hepatic lipoprotein production completely prevented both the development of atherosclerosis and the changes in gene expression that accompany atherogenesis. CONCLUSIONS We developed mice in which hypercholesterolemia can be reversed with a genetic switch. These mice will be useful for understanding gene-expression changes that accompany the reversal of hypercholesterolemia and atherosclerosis.
Collapse
Affiliation(s)
- Hsiao D Lieu
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94141-9100, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Abstract
The overexpression of proteins as transgenes or by adenovirus-mediated gene transfer as well as the disruption of genes by homologous DNA recombination in the mouse provide powerful tools to dissect the role of individual proteins in complex biological pathways. These and similar techniques have been widely used to characterize the function of most of the players involved in lipoprotein metabolism. These models are expected to greatly advance the finding of new therapeutic strategies for the treatment of disorders of lipoprotein metabolism.
Collapse
Affiliation(s)
- Peter Marschang
- Department of Molecular Genetics, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9046, USA
| | | |
Collapse
|
76
|
Hinsdale ME, Sullivan PM, Mezdour H, Maeda N. ApoB-48 and apoB-100 differentially influence the expression of type-III hyperlipoproteinemia in APOE*2 mice. J Lipid Res 2002; 43:1520-8. [PMID: 12235184 DOI: 10.1194/jlr.m200103-jlr200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Apolipoprotein E (apoE) is essential for the clearance of plasma chylomicron and VLDL remnants. The human APOE locus is polymorphic and 5-10% of APOE*2 homozygotes exhibit type-III hyperlipoproteinemia (THL), while the remaining homozygotes have less than normal plasma cholesterol. In contrast, mice expressing APOE*2 in place of the mouse Apoe (Apoe(2/2) mice) are markedly hyperlipoproteinemic, suggesting a species difference in lipid metabolism (e.g., editing of apolipoprotein B) enhances THL development. Since apoB-100 has an LDLR binding site absent in apoB-48, we hypothesized that the Apoe(2/2) THL phenotype would improve if all Apoe(2/2) VLDL contained apoB-100. To test this, we crossed Apoe(2/2) mice with mice lacking the editing enzyme for apoB (Apobec(-/-)). Consistent with an increase in remnant clearance, Apoe(2/2). Apobec(-/-) mice have a significant reduction in IDL/LDL cholesterol (IDL/LDL-C) compared with Apoe(2/2) mice. However, Apoe(2/2).Apobec(-/-) mice have twice as much VLDL triglyceride as Apoe(2/2) mice. In vitro tests show the apoB-100-containing VLDL are poorer substrates for lipoprotein lipase than apoB-48-containing VLDL. Thus, despite a lowering in IDL/LDL-C, substituting apoB-48 lipoproteins with apoB-100 lipoproteins did not improve the THL phenotype in the Apoe(2/2).Apobec(-/-) mice, because apoB-48 and apoB-100 differentially influence the catabolism of lipoproteins.
Collapse
Affiliation(s)
- Myron E Hinsdale
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7525, USA.
| | | | | | | |
Collapse
|
77
|
Matsushima Y, Sakurai T, Ohoka A, Ohnuki T, Tada N, Asoh Y, Tachibana M. Four strains of spontaneously hyperlipidemic (SHL) mice: phenotypic distinctions determined by genetic backgrounds. J Atheroscler Thromb 2002; 8:71-9. [PMID: 11866033 DOI: 10.5551/jat1994.8.71] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Spontaneously hyperlipidemic (SHL) mice are Japanese wild mice (KOR) with disruption of the apolipoprotein E (Apo E) gene. These mice (KOR-Apoe(shl)) are superhypercholesterolemic and develop severe xanthoma, but their atherosclerosis is relatively mild compared with Apo E knockout mice. First, we tested whether this distinction is due to additional mutation of the Apoc1 and/or Apoc2 genes in KOR-Apoe(shl). Southern blot analysis, but found no gross disruption of these genes. Next, we tested whether the phenotypic distinction is due to differences in the genetic background. To this end, we established three lines of congenic SHL mice with a genetic background of C57BL/6, BALB/c or C3H/He, and named them, respectively, C57BL/6.KOR-Apoe(shl) (B6.KOR-Apoe(shl)), BALB/c.KOR-Apoe(shl) (C.KOR-Apoe(shl)) and C3H/He.KOR-Apoe(shl) (C3.KOR-Apoe(shl)). Hypercholesterolemia was most severe in KOR-Apoe(shl) followed the by others as follows; KOR-Apoe(shl)>>C3.KOR-Apoe(shl)>C.KOR-Apoe(shl)>B6.KOR-Apoe(shl). In contrast, atherosclerosis was most severe in B6.KOR Apoe(shl) followed by the others: B6.KOR-Apoe(shl)>C.KOR-Apoe(shl)>>C3.KOR-Apoe(shl)> or =KOR-Apoe(shl). This order, however, did not match that in xanthoma, which was highly prominent in KOR-Apoe(shl) but mild in B6.KOR-Apoe(shl), C.KOR-Apoe(shl) and C3.KORApoe(shl). This order, however, did not match that in xanthoma, which was highly prominant in KOR-Apoe(shl) but mild in B6.KOR-Apoe(shl), C.KOR-Apoe(shl) and C3.KOR-Apoe(shl). These distinctions suggest that the severity of each of the phenotypes is determined by distinct genetic backgrounds which probably are composed of polymorphism of lipid metabolism-related proteins. We found that apolipoprotein A-I is decreased in each SHL strain and polymorphic between B6.KOR-Apoe(shl) and the other strains examined. This polymorphism may be related to the most severe atherosclerosis observed in B6.KOR-Apoe(shl). It is most likely that combination of such polymorphisms is due to the genetic background accountable for phenotype distinctions.
Collapse
Affiliation(s)
- Y Matsushima
- Research Institute, Saitama Cancer Center, Ina, Japan.
| | | | | | | | | | | | | |
Collapse
|
78
|
Yang Y, Ballatori N, Smith HC. Apolipoprotein B mRNA editing and the reduction in synthesis and secretion of the atherogenic risk factor, apolipoprotein B100 can be effectively targeted through TAT-mediated protein transduction. Mol Pharmacol 2002; 61:269-76. [PMID: 11809850 DOI: 10.1124/mol.61.2.269] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hepatic very-low-density lipoprotein particles (VLDL) containing full-length apolipoprotein B100 are metabolized in the blood stream to low-density lipoprotein (LDL) particles, whose elevated levels increase the risk of atherosclerosis. Statins and bile-acid sequestrants are effective LDL-lowering therapies for many patients. Development of alternative therapies remains important for patients with adverse reactions to conventional therapy, with defects in the LDL receptor-dependent lipoprotein uptake pathway and for intervention in children. Editing of apoB mRNA by the enzyme APOBEC-1 changes a glutamine codon to a stop codon, leading to the synthesis and secretion of apoB48-containing VLDL, which are rapidly cleared before they can be metabolized to LDL. Human liver does not edit apoB mRNA because it does not express APOBEC-1. Although initially promising, enthusiasm for apobec-1 gene therapy for hypercholesterolemia was blunted by the finding that uncontrolled transgenic expression of APOBEC-1 led to nonspecific editing of mRNAs and pathology. We demonstrate that APOBEC-1 fused to TAT entered primary hepatocytes, where it induced a transient increase in mRNA editing activity and enhanced synthesis and secretion of VLDL containing apoB48. Protein transduction of APOBEC-1 transiently stimulated high levels of apoB mRNA editing in a dose-dependent manner without loss of fidelity. These results suggested that apoB mRNA editing should be re-evaluated as a LDL-lowering therapeutic target in the new context of protein transduction therapy.
Collapse
Affiliation(s)
- Yan Yang
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | |
Collapse
|
79
|
Labordé-Lahoz PM. Matters of the heart transcriptome: a brief history of cardiovascular genomics. Tex Heart Inst J 2002; 29:81-91. [PMID: 12075882 PMCID: PMC116732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
80
|
Véniant MM, Withycombe S, Young SG. Lipoprotein size and atherosclerosis susceptibility in Apoe(-/-) and Ldlr(-/-) mice. Arterioscler Thromb Vasc Biol 2001; 21:1567-70. [PMID: 11597927 DOI: 10.1161/hq1001.097780] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Two hypercholesterolemic mouse models, the apo-E-deficient mouse (Apoe(-/-)) and the LDL receptor-deficient mouse (Ldlr(-/-)), have been used extensively as animal models of atherogenesis. Total plasma cholesterol levels in chow-fed Apoe(-/-) mice are much higher than in Ldlr(-/-) mice. In a recent study, we managed to even-up the cholesterol levels in Apoe(-/-) mice and Ldlr(-/-) mice by making both models homozygous for the Apob(100) (apo B-100-only) allele. On a chow diet, apo-E-deficient apo B-100-only mice (Apoe(-/-)Apob(100/100)) and LDL receptor-deficient apo B-100-only mice (Ldlr(-/-)Apob(100/100)) had similar total plasma cholesterol levels ( approximately 300 mg/dL). The plasma of Ldlr(-/-)Apob(100/100) mice contained large numbers of small lipoproteins, whereas the plasma of Apoe(-/-)Apob(100/100) mice contained much lower levels of much larger lipoproteins. Interestingly, the Ldlr(-/-)Apob(100/100) mice developed far more extensive atherosclerotic lesions than the Apoe(-/-)Apob(100/100) mice. The finding of substantially more atherosclerosis in Ldlr(-/-)Apob(100/100) mice than in Apoe(-/-)Apob(100/100) mice, despite nearly identical cholesterol levels, suggests that large numbers of small apo B-100-containing lipoproteins are far more atherogenic than lower numbers of large apo B-100-containing lipoproteins.
Collapse
Affiliation(s)
- M M Véniant
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94141-9100, USA.
| | | | | |
Collapse
|
81
|
Véniant MM, Sullivan MA, Kim SK, Ambroziak P, Chu A, Wilson MD, Hellerstein MK, Rudel LL, Walzem RL, Young SG. Defining the atherogenicity of large and small lipoproteins containing apolipoprotein B100. J Clin Invest 2000; 106:1501-10. [PMID: 11120757 PMCID: PMC387257 DOI: 10.1172/jci10695] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Apo-E-deficient apo-B100-only mice (APOE:(-/-)APOB:(100/100)) and LDL receptor-deficient apo-B100-only mice (LDLR:(-/-)APOB:(100/100)) have similar total plasma cholesterol levels, but nearly all of the plasma cholesterol in the former animals is packaged in VLDL particles, whereas, in the latter, plasma cholesterol is found in smaller LDL particles. We compared the apo-B100-containing lipoprotein populations in these mice to determine their relation to susceptibility to atherosclerosis. The median size of the apo-B100-containing lipoprotein particles in APOE:(-/-)APOB:(100/100) plasma was 53.4 nm versus only 22.1 nm in LDLR:(-/-)APOB:(100/100) plasma. The plasma levels of apo-B100 were three- to fourfold higher in LDLR:(-/-)APOB:(100/100) mice than in APOE:(-/-)APOB:(100/100) mice. After 40 weeks on a chow diet, the LDLR:(-/-)APOB:(100/100) mice had more extensive atherosclerotic lesions than APOE:(-/-)APOB:(100/100) mice. The aortic DNA synthesis rate and the aortic free and esterified cholesterol contents were also higher in the LDLR:(-/-)APOB:(100/100) mice. These findings challenge the notion that all non-HDL lipoproteins are equally atherogenic and suggest that at a given cholesterol level, large numbers of small apo-B100-containing lipoproteins are more atherogenic than lower numbers of large apo-B100-containing lipoproteins.
Collapse
Affiliation(s)
- M M Véniant
- Gladstone Institute of Cardiovascular Disease, Cardiovascular Research Institute, University of California, San Francisco, California, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Enjoji M, Wang F, Nakamuta M, Chan L, Teng BB. Hammerhead ribozyme as a therapeutic agent for hyperlipidemia: production of truncated apolipoprotein B and hypolipidemic effects in a dyslipidemia murine model. Hum Gene Ther 2000; 11:2415-30. [PMID: 11096445 DOI: 10.1089/104303400750038516] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In humans, overproduction of apolipoprotein B (apoB) is positively associated with premature coronary artery diseases. To reduce the levels of apoB mRNA, we used adenovirus-mediated vector to target hammerhead ribozyme at GUA(6679) downward arrow of apoB mRNA (designated AvRB15) in the liver of a dyslipidemic mouse model that is deficient in apoB mRNA editing enzyme and overexpresses human apoB100. In this study, we delivered approximately 4 x 10(11) virus particles of AvRB15 (active ribozyme) or AvRB15-mutant (inactive ribozyme) to the animals. Using Southern blot analysis, we readily detected RB15 DNA in the mouse liver as long as day 35 after injection. This result was correlated with the RNA expression of RB15 by RNase protection assay. Using reverse ligation-mediated polymerase chain reaction, the 3' cleavage product of apoB mRNA was detected, and the exact cleavage site was confirmed by sequencing. Importantly, the levels of human and mouse apoB mRNA decreased approximately 80% after AvRB15 transduction. There was a marked decrease in plasma cholesterol, triglyceride, and human apoB of 42, 51, and 62%, respectively, when compared with the inactive ribozyme-treated group. Moreover, ribozyme cleavage of apoB mRNA generated a truncated protein of the expected size (apoB48.1), which was associated with lipoprotein particles in the very low density, low density, and high density lipoprotein fractions. Taken together, these results indicate that apoB mRNA-specific hammerhead ribozyme can be used as a potential therapeutic agent to modulate apoB gene expression and to treat hyperlipidemia.
Collapse
Affiliation(s)
- M Enjoji
- Departments of Medicine and Cell Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
83
|
Chen Z, Fitzgerald RL, Averna MR, Schonfeld G. A targeted apolipoprotein B-38.9-producing mutation causes fatty livers in mice due to the reduced ability of apolipoprotein B-38.9 to transport triglycerides. J Biol Chem 2000; 275:32807-15. [PMID: 10893242 DOI: 10.1074/jbc.m004913200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nonphysiological truncations of apolipoprotein (apo) B-100 cause familial hypobetalipoproteinemia (FHBL) in humans and mice. An elucidation of the mechanisms underlying the FHBL phenotypes may provide valuable information on the metabolism of apo B-containing lipoproteins and the structure-function relationship of apo B. To generate a faithful mouse model of human FHBL, a subtle mutation was introduced into the mouse apo B gene by targeting embryonic stem cells using homologous recombination followed by removal of the selection marker gene by Cre-loxP-mediated site-specific recombination. The engineered mice bear a premature stop codon at residue 1767 and a 42-base pair loxP inserted into intron 24 of the apo B gene, thus closely resembling the apo B-38.9-producing mutation in humans. Apo B-38.9 was the sole apo B protein in homozygote (apob(38.9/38.9)) plasma. In heterozygotes (apob(+/)(38. 9)), apo B-100 and apo B-48 were reduced by 75 and 40%, respectively, and apo B-38.9 represented 20% of total circulating apo B. Hepatic apo B-38.9 mRNA levels were reduced by 40%. In cultured apob(+/)(38. 9) hepatocytes, apo B-100 was produced in trace quantities, and the synthesis rate of apo B-38.9 relative to apo B-48 was reduced by 40%. However, almost equimolar amounts of apo B-38.9 and apo B-48 were secreted into the media. Pulse-chase studies revealed that apo B-38. 9 was secreted at a faster rate and more efficiently than apoB-48. Nevertheless, both apob(+/)(38.9) and apob(38.9/38.9) mice had reduced hepatic triglyceride secretion rates and fatty livers. Thus, low mRNA levels or defective secretion of apo B-38.9 may not be responsible for the FHBL phenotypes caused by the apo B-38.9 mutation. Rather, a reduced capacity of apo B-38.9 for triglyceride transport may account for the fatty livers in these mice.
Collapse
Affiliation(s)
- Z Chen
- Division of Atherosclerosis, Nutrition and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | |
Collapse
|
84
|
Brown ML, Ramprasad MP, Umeda PK, Tanaka A, Kobayashi Y, Watanabe T, Shimoyamada H, Kuo WL, Li R, Song R, Bradley WA, Gianturco SH. A macrophage receptor for apolipoprotein B48: cloning, expression, and atherosclerosis. Proc Natl Acad Sci U S A 2000; 97:7488-93. [PMID: 10852956 PMCID: PMC16572 DOI: 10.1073/pnas.120184097] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have cloned a human macrophage receptor that binds to apolipoprotein (apo)B48 of dietary triglyceride (TG)-rich lipoproteins. TG-rich lipoprotein uptake by the apoB48R rapidly converts macrophages and apoB48R-transfected Chinese hamster ovary cells in vitro into lipid-filled foam cells, as seen in atherosclerotic lesions. The apoB48R cDNA (3,744 bp) encodes a protein with no known homologs. Its approximately 3.8-kb mRNA is expressed primarily by reticuloendothelial cells: monocytes, macrophages, and endothelial cells. Immunohistochemistry shows the apoB48R is in human atherosclerotic lesion foam cells. Normally, the apoB48R may provide essential lipids to reticuloendothelial cells. If overwhelmed, foam cell formation, endothelial dysfunction, and atherothrombogenesis may ensue, a mechanism for cardiovascular disease risk of elevated TG.
Collapse
Affiliation(s)
- M L Brown
- Department of Medicine, Division of Gerontology and Geriatrics, University of Alabama, Birmingham, AL 35294-0012, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Ebara T, Conde K, Kako Y, Liu Y, Xu Y, Ramakrishnan R, Goldberg IJ, Shachter NS. Delayed catabolism of apoB-48 lipoproteins due to decreased heparan sulfate proteoglycan production in diabetic mice. J Clin Invest 2000; 105:1807-18. [PMID: 10862796 PMCID: PMC378502 DOI: 10.1172/jci8283] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We used wild-type (WT) mice and mice engineered to express either apoB-100 only (B100 mice) or apoB-48 only (B48 mice) to examine the effects of streptozotocin-induced diabetes (DM) on apoB-100- and apoB-48-containing lipoproteins. Plasma lipids increased with DM in WT mice, and fat tolerance was markedly impaired. Lipoprotein profiles showed increased levels and cholesterol enrichment of VLDL in diabetic B48 mice but not in B100 mice. C apolipoproteins, in particular apoC-I in VLDL, were increased. To investigate the basis of the increase in apoB-48 lipoproteins in streptozotocin-treated animals, we characterized several parameters of lipoprotein metabolism. Triglyceride and apoB production rates were normal, as were plasma lipase activity, VLDL glycosaminoglycan binding, and VLDL lipolysis. However, beta-VLDL clearance decreased due to decreased trapping by the liver. Whereas LRP activity was normal, livers from treated mice incorporated significantly less sulfate into heparan sulfate proteoglycans (HSPG) than did controls. Hepatoma (HepG2) cells and endothelial cells cultured in high glucose also showed decreased sulfate and glucosamine incorporation into HSPG. Western blots of livers from diabetic mice showed a decrease in the HSPG core protein, perlecan. Delayed clearance of postprandial apoB-48-containing lipoproteins in DM appears to be due to decreased hepatic perlecan HSPG.
Collapse
Affiliation(s)
- T Ebara
- Division of Preventive Medicine and Nutrition, Department of Medicine, College of Physicians and Surgeons of Columbia University, 630 West 168th Street, New York, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Abstract
The intestine synthesizes very low density lipoproteins (VLDL) and chylomicrons (CM) to transport fat and fat-soluble vitamins into the blood. VLDL assembly occurs constitutively whereas CM assembly is a characteristic property of the enterocytes during the postprandial state. The secretion of CM is specifically inhibited by Pluronic L81. CM are very heterogeneously-sized particles that consist of a core of triglycerides (TG) and cholesterol esters and a monolayer of phospholipids (PL), cholesterol and proteins. The fatty acid composition of TG, but not PL, in CM mirrors the fatty acid composition of fat in the diet. CM assembly is deficient in abetalipoproteinemia and CM retention disease. Abetalipoproteinemia results due to mutation in the mttp gene and is characterized by the virtual absence of apoB-containing lipoproteins in the plasma. Patients suffer from neurologic disorders, visual impairment, and exhibit acanthocytosis. CM retention disease, an inherited recessive disorder, is characterized by chronic diarrhea with steatorrhea in infancy, abdominal distention and failure to thrive. It is caused by a specific defect in the secretion of intestinal lipoproteins; secretion of lipoproteins by the liver is not affected. Besides human disorders, mice that do not assemble intestinal lipoproteins have been developed. These mice are normal at birth, but defective in fat and fat-soluble vitamin absorption, and fail to thrive. Thus, fat and fat-soluble vitamin transport by the intestinal lipoproteins is essential for proper growth and development of neonates. Recently, differentiated Caco-2 cells and rabbit primary enterocytes have been described that synthesize and secrete CM. These cells can be valuable in distinguishing between the two different models proposed for the assembly of CM. In the first model, the assembly of VLDL and CM is proposed to occur by two 'independent' pathways. Second, CM assembly is proposed to be a product of 'core expansion' that results in the synthesis of lipoproteins of different sizes. According to this model, intestinal lipoprotein assembly begins with the synthesis of 'primordial' lipoprotein particles and involves release of the nascent apoB with PL derived from the endoplasmic reticulum (ER) membrane. In addition, TG-rich 'lipid droplets' of different sizes are formed independent of apoB synthesis. The fusion of lipid droplets and primordial lipoproteins results in the formation of different size lipoproteins due to the 'core expansion' of the primordial lipoproteins.
Collapse
Affiliation(s)
- M M Hussain
- Department of Biochemistry, School of Medicine, MCP Hahnemann University, Philadelphia, PA 19129, USA.
| |
Collapse
|
87
|
Srivastava RA, Toth L, Srivastava N, Hinsdale ME, Maeda N, Cefalu AB, Averna M, Schonfeld G. Regulation of the apolipoprotein B in heterozygous hypobetalipoproteinemic knock-out mice expressing truncated apoB, B81. Low production and enhanced clearance of apoB cause low levels of apoB. Mol Cell Biochem 1999; 202:37-46. [PMID: 10705993 DOI: 10.1023/a:1007030531478] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Low levels of cholesterol are protective against development of coronary artery disease. Heterozygous hypobetalipoproteinemic individuals expressing truncated apolipoprotein (apo)B as a result of mutation in the apob gene have low levels of cholesterol and apoB in their plasma. To study the molecular mechanism of low levels of apoB in these individuals, we employed a previously reported knock out mouse model generated by targeted modification of the apob gene. The heterozygous, apoB-100/B-81, mice express full length and truncated apoB, B-81, and have 20 and 35% lower levels of total cholesterol and apoB, respectively, when compared to WT (apoB-100/B-100) mice. The majority of the truncated apoB, B-81, fractionated in the VLDL- density range. The mechanism of low levels of apoB in B-100/B-81 mice was examined. Total hepatic apoB mRNA levels decreased by 15%, primarily due to lower levels of apoB-81 mRNA. Since apoB mRNA transcription rates were similar in B-100/B-100 and B-100/B-81 mice, low levels of mutant apoB-81 mRNA occurred by enhanced degradation of apoB mRNA transcript containing premature translational stop codon. ApoB synthesis measured on isolated hepatocytes decreased in B-100/B-81 mice by 35%, while apoB-48, apoE, and apoAI syntheses remained unchanged. Metabolic studies using whole animal showed a 32% decrease in triglyceride secretion rates, consistent with the apoB secretion rates. Inhibition of receptor-mediated clearance of apoB-81-containing particles resulted in greater relative accumulation of apoB-81 in plasma than apoB-100, suggesting enhanced clearance of apoB-81-containing particles. These results demonstrate that low levels of apoB in heterozygous hypobetalipoproteinemic mice occurs by low rates of apoB secretion, and increased clearance of truncated apoB. Similar mechanisms appear to contribute to low levels of apoB in hypobetalipoproteinemic humans.
Collapse
Affiliation(s)
- R A Srivastava
- Department of Internal Medicine, Washington University, Saint Louis, MO 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Nassir F, Davidson NO. Intestinal Apo B48 secretion: a novel surrogate marker of pancreatic exocrine function. Am J Gastroenterol 1999; 94:3101-3. [PMID: 10566698 DOI: 10.1111/j.1572-0241.1999.03101.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
89
|
Luchoomun J, Hussain MM. Assembly and secretion of chylomicrons by differentiated Caco-2 cells. Nascent triglycerides and preformed phospholipids are preferentially used for lipoprotein assembly. J Biol Chem 1999; 274:19565-72. [PMID: 10391890 DOI: 10.1074/jbc.274.28.19565] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To develop a cell culture model for chyclomicron (CM) assembly, the apical media of differentiated Caco-2 cells were supplemented with oleic acid (OA) together with either albumin or taurocholate (TC). The basolateral media were subjected to sequential density gradient ultracentrifugations to obtain large CM, small CM, and very low density lipoproteins (VLDL), and the distribution of apoB in these fractions was quantified. In the absence of OA, apoB was secreted as VLDL/LDL size particles. Addition of OA (>/=0.8 mM) with TC, but not with albumin, resulted in the secretion of one-third of apoB as CM. Lipid analysis revealed that half of the secreted phospholipids (PL) and triglycerides (TG) were associated with CM. In CM, TG were 7-11-fold higher than PL indicating that CM were TG-rich particles. Secreted CM contained apoB100, apoB48, and other apolipoproteins. Secretion of large CM was specifically inhibited by Pluronic L81, a detergent known to inhibit CM secretion in animals. These studies demonstrate that differentiated Caco-2 cells assemble and secrete CM in a manner similar to enterocytes in vivo. Next, experiments were performed to identify the sources of lipids used for lipoprotein assembly. Cells were labeled with [3H]glycerol for 12 h, washed, and supplemented with OA, TC, and [14C] glycerol for various times to induce CM assembly and to radiolabel nascent lipids. TG and PL were extracted from cells and media and the association of preformed and nascent lipids with lipoproteins was determined. All the lipoproteins contained higher amounts of preformed PL compared with nascent PL. VLDL contained equal amounts of nascent and preformed TG, whereas CM contained higher amounts of nascent TG even when nascent TG constituted a small fraction of the total cellular pool. These studies indicate that nascent TG and preformed PL are preferentially used for CM assembly and provide a molecular explanation for the in vivo observations that the fatty acid composition of TG, but not PL, of secreted CM reflects the composition of dietary fat. It is proposed that in the intestinal cells the preformed PL from the endoplasmic reticulum bud off with apoB as primordial particles and the assembly of larger lipoproteins is dependent on the synthesis and delivery of nascent TG to these particles.
Collapse
Affiliation(s)
- J Luchoomun
- Department of Biochemistry, School of Medicine, MCP Hahnemann University, Philadelphia, Pennsylvania 19129, USA
| | | |
Collapse
|
90
|
Srivastava RAK, Srivastava N, Averna M, Cefalu AB, Schonfeld G. Molecular bases of low production rates of apolipoprotein B-100 and truncated apoB-82 in a mutant HepG2 cell line generated by targeted modification of the apolipoprotein B gene. J Lipid Res 1999. [DOI: 10.1016/s0022-2275(20)32125-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
91
|
Herz J, Farese RV. The LDL receptor gene family, apolipoprotein B and cholesterol in embryonic development. J Nutr 1999; 129:473S-475S. [PMID: 10064312 DOI: 10.1093/jn/129.2.473s] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In recent years, a number of genes that are involved in cholesterol synthesis, its systemic or intercellular transport or lipid metabolism in general have been found to play important roles during embryonic development. In this article, we present a brief overview of these genes, their molecular functions as we understand them to date and our current interpretation of possible mechanisms by which genetic deficiency states might affect the development of the embryo, in particular the formation of the central nervous system.
Collapse
Affiliation(s)
- J Herz
- Department of Molecular Genetics, UT Southwestern, Dallas 75235, USA
| | | |
Collapse
|
92
|
Véniant MM, Kim E, McCormick S, Borén J, Nielsen LB, Raabe M, Young SG. Insights into apolipoprotein B biology from transgenic and gene-targeted mice. J Nutr 1999; 129:451S-455S. [PMID: 10064308 DOI: 10.1093/jn/129.2.451s] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Over the past five years, several laboratories have used transgenic and gene-targeted mice to study apolipoprotein (apo) B biology. Genetically modified mice have proven useful for investigating the genetic and environmental factors affecting atherogenesis, for defining apoB structure/function relationships, for understanding the regulation of the apoB gene expression in the intestine, for defining the "physiologic rationale" for the existence of the two different forms of apoB (apoB48 and apoB100) in mammalian metabolism and for providing mechanistic insights into the human apoB deficiency syndrome, familial hypobetalipoproteinemia. This review will provide several examples of how genetically modified mice have contributed to our understanding of apoB biology, including our new discovery that human heart myocytes secrete nascent apoB-containing lipoproteins.
Collapse
Affiliation(s)
- M M Véniant
- Gladstone Institute of Cardiovascular Disease, University of California, San Francisco 94141-9100, USA
| | | | | | | | | | | | | |
Collapse
|
93
|
Zlot CH, Flynn LM, Véniant MM, Kim E, Raabe M, McCormick SP, Ambroziak P, McEvoy LM, Young SG. Generation of monoclonal antibodies specific for mouse apolipoprotein B-100 in apolipoprotein B-48-only mice. J Lipid Res 1999. [DOI: 10.1016/s0022-2275(20)33341-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
94
|
Kim E, Ambroziak P, Véniant MM, Hamilton RL, Young SG. A gene-targeted mouse model for familial hypobetalipoproteinemia. Low levels of apolipoprotein B mRNA in association with a nonsense mutation in exon 26 of the apolipoprotein B gene. J Biol Chem 1998; 273:33977-84. [PMID: 9852051 DOI: 10.1074/jbc.273.51.33977] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Familial hypobetalipoproteinemia, a syndrome characterized by abnormally low plasma levels of low density lipoprotein cholesterol, is caused by mutations in the apolipoprotein (apo) B gene that interfere with the synthesis of a full-length apoB100. In many cases of familial hypobetalipoproteinemia, nonsense or frameshift mutations result in the synthesis of a truncated apoB protein. To understand why these mutations result in low plasma cholesterol levels, we used gene targeting in mouse embryonic stem cells to introduce a nonsense mutation (N1785Stop) into exon 26 of the mouse Apob gene. The sole product of this mutant Apob allele was a truncated apoB, apoB39. Mice homozygous for this "apoB39-only" (Apob39) allele had low plasma levels of apoB39 and markedly reduced plasma levels of very low density lipoprotein and low density lipoprotein cholesterol when fed a high fat diet. Analysis of liver and intestinal RNA from heterozygous apoB39-only mice revealed that the Apob39 mRNA levels were 60-70% lower than those from the wild-type allele. Interestingly, apoB39 was not cleared as rapidly from the plasma as apoB48. The apoB39-only mice provide new insights into the mechanisms of familial hypobetalipoproteinemia and the structural features of apoB that are important for lipoprotein metabolism.
Collapse
Affiliation(s)
- E Kim
- Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, California 94141-9100, USA
| | | | | | | | | |
Collapse
|
95
|
Véniant MM, Zlot CH, Walzem RL, Pierotti V, Driscoll R, Dichek D, Herz J, Young SG. Lipoprotein clearance mechanisms in LDL receptor-deficient "Apo-B48-only" and "Apo-B100-only" mice. J Clin Invest 1998; 102:1559-68. [PMID: 9788969 PMCID: PMC509006 DOI: 10.1172/jci4164] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The role of the low density lipoprotein receptor (LDLR) in the clearance of apo-B48-containing lipoproteins and the role of the LDLR-related protein (LRP) in the removal of apo-B100-containing lipoproteins have not been clearly defined. To address these issues, we characterized LDLR-deficient mice homozygous for an "apo-B48-only" allele, an "apo-B100-only" allele, or a wild-type apo-B allele (Ldlr-/- Apob48/48, Ldlr-/-Apob100/100, and Ldlr-/-Apob+/+, respectively). The plasma apo-B48 and LDL cholesterol levels were higher in Ldlr-/-Apob48/48 mice than in Apob48/48 mice, indicating that the LDL receptor plays a significant role in the removal of apo-B48-containing lipoproteins. To examine the role of the LRP in the clearance of apo-B100-containing lipoproteins, we blocked hepatic LRP function in Ldlr-/-Apob100/100 mice by adenoviral-mediated expression of the receptor-associated protein (RAP). RAP expression did not change apo-B100 levels in Ldlr-/-Apob100/100 mice. In contrast, RAP expression caused a striking increase in plasma apo-B48 levels in Apob48/48 and Ldlr-/-Apob48/48 mice. These data imply that LRP is important for the clearance of apo-B48-containing lipoproteins but plays no significant role in the clearance of apo-B100-containing lipoproteins.
Collapse
Affiliation(s)
- M M Véniant
- Gladstone Institute of Cardiovascular Disease, San Francisco, California 94141-9100, USA.
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Powell-Braxton L, Véniant M, Latvala RD, Hirano KI, Won WB, Ross J, Dybdal N, Zlot CH, Young SG, Davidson NO. A mouse model of human familial hypercholesterolemia: markedly elevated low density lipoprotein cholesterol levels and severe atherosclerosis on a low-fat chow diet. Nat Med 1998; 4:934-8. [PMID: 9701246 DOI: 10.1038/nm0898-934] [Citation(s) in RCA: 156] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mutations in the low density lipoprotein (LDL) receptor gene cause familial hypercholesterolemia, a human disease characterized by premature atherosclerosis and markedly elevated plasma levels of LDL cholesterol and apolipoprotein (apo) B100. In contrast, mice deficient for the LDL receptor (Ldlr-/-) have only mildly elevated LDL cholesterol levels and little atherosclerosis. This difference results from extensive editing of the hepatic apoB mRNA in the mouse, which limits apoB100 synthesis in favor of apoB48 synthesis. We have generated Ldlr-/- mice that cannot edit the apoB mRNA and therefore synthesize exclusively apoB100. These mice had markedly elevated LDL cholesterol and apoB100 levels and developed extensive atherosclerosis on a chow diet. This authentic model of human familial hypercholesterolemia will provide a new tool for studying atherosclerosis.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/pathology
- Apolipoproteins B/biosynthesis
- Apolipoproteins B/blood
- Apolipoproteins B/deficiency
- Arteriosclerosis/blood
- Arteriosclerosis/genetics
- Arteriosclerosis/pathology
- Cholesterol/blood
- Cholesterol, LDL/blood
- Crosses, Genetic
- Diet, Fat-Restricted
- Disease Models, Animal
- Female
- Humans
- Hyperlipoproteinemia Type II/blood
- Hyperlipoproteinemia Type II/genetics
- Liver/metabolism
- Male
- Mice
- Mice, Knockout
- Muscle, Smooth, Vascular/pathology
- RNA Editing
- RNA, Messenger/biosynthesis
- Receptors, LDL/deficiency
- Receptors, LDL/genetics
- Sex Characteristics
- Triglycerides/blood
Collapse
Affiliation(s)
- L Powell-Braxton
- Cardiovascular Research, Genentech Inc., South San Francisco, California 94080, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
|
98
|
|
99
|
Kim E, Cham CM, Véniant MM, Ambroziak P, Young SG. Dual mechanisms for the low plasma levels of truncated apolipoprotein B proteins in familial hypobetalipoproteinemia. Analysis of a new mouse model with a nonsense mutation in the Apob gene. J Clin Invest 1998; 101:1468-77. [PMID: 9502790 PMCID: PMC508703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Familial hypobetalipoproteinemia (FHbeta), a syndrome characterized by low plasma cholesterol levels, is caused by mutations in the apo-B gene that interfere with the synthesis of apo-B100. FHbeta mutations frequently lead to the synthesis of a truncated form of apo-B, which typically is present in plasma at < 5% of the levels of apo-B100. Although many FHbeta mutations have been characterized, the basic mechanisms causing the low plasma levels of truncated apo-B variants have not been defined. We used gene targeting to create a mutant allele that exclusively yields a truncated apo-B, apo-B83. In mice heterozygous for the Apob83 allele, plasma levels and the size and density distribution of apo-B83-containing lipoproteins were strikingly similar to those observed in humans with FHbeta and an apo-B83 mutation. Analysis of mice carrying the Apob83 mutation revealed two mechanisms for the low plasma levels of apo-B83. First, Apob83 mRNA levels and apo-B83 secretion were reduced 76 and 72%, respectively. Second, apo-B83 was removed rapidly from the plasma, compared with apo-B100. This mouse model provides a new level of understanding of FHbeta and adds new insights into apo-B metabolism.
Collapse
MESH Headings
- Alleles
- Animals
- Apolipoprotein B-100
- Apolipoproteins B/biosynthesis
- Apolipoproteins B/genetics
- Apolipoproteins B/metabolism
- Apolipoproteins E/physiology
- Cholesterol/blood
- Cloning, Molecular
- DNA, Complementary/genetics
- Hypobetalipoproteinemias/genetics
- Hypobetalipoproteinemias/metabolism
- Intestinal Mucosa/metabolism
- Lipoproteins, HDL/analysis
- Lipoproteins, HDL/blood
- Lipoproteins, HDL/metabolism
- Lipoproteins, LDL/analysis
- Lipoproteins, LDL/blood
- Lipoproteins, LDL/metabolism
- Lipoproteins, VLDL/analysis
- Lipoproteins, VLDL/blood
- Lipoproteins, VLDL/metabolism
- Liver/cytology
- Liver/metabolism
- Mice
- Mice, Mutant Strains/abnormalities
- Mutagenesis, Site-Directed
- Pedigree
- Polymerase Chain Reaction
- RNA, Messenger/analysis
- RNA, Messenger/metabolism
- Receptors, LDL/physiology
- Transcription, Genetic
Collapse
Affiliation(s)
- E Kim
- Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, California 94141-9100, USA
| | | | | | | | | |
Collapse
|
100
|
Boren J, Lee I, Zhu W, Arnold K, Taylor S, Innerarity TL. Identification of the low density lipoprotein receptor-binding site in apolipoprotein B100 and the modulation of its binding activity by the carboxyl terminus in familial defective apo-B100. J Clin Invest 1998; 101:1084-93. [PMID: 9486979 PMCID: PMC508660 DOI: 10.1172/jci1847] [Citation(s) in RCA: 167] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Familial defective apolipoprotein B100 (FDB) is caused by a mutation of apo-B100 (R3500Q) that disrupts the receptor binding of low density lipoproteins (LDL), which leads to hypercholesterolemia and premature atherosclerosis. In this study, mutant forms of human apo-B were expressed in transgenic mice, and the resulting human recombinant LDL were purified and tested for their receptor-binding activity. Site-directed mutagenesis and other evidence indicated that Site B (amino acids 3,359-3,369) binds to the LDL receptor and that arginine-3,500 is not directly involved in receptor binding. The carboxyl-terminal 20% of apo-B100 is necessary for the R3500Q mutation to disrupt receptor binding, since removal of the carboxyl terminus in FDB LDL results in normal receptor-binding activity. Similarly, removal of the carboxyl terminus of apo-B100 on receptor-inactive VLDL dramatically increases apo-B-mediated receptor-binding activity. We propose that the carboxyl terminus normally functions to inhibit the interaction of apo-B100 VLDL with the LDL receptor, but after the conversion of triglyceride-rich VLDL to smaller cholesterol-rich LDL, arginine-3,500 interacts with the carboxyl terminus, permitting normal interaction between LDL and its receptor. Moreover, the loss of arginine at this site destabilizes this interaction, resulting in receptor-binding defective LDL.
Collapse
MESH Headings
- Animals
- Anura
- Apolipoproteins B/genetics
- Apolipoproteins B/immunology
- Apolipoproteins B/metabolism
- Arginine/metabolism
- Base Sequence
- Cells, Cultured
- Chickens
- Cloning, Molecular
- DNA Primers/genetics
- Gene Expression
- Humans
- Hyperlipoproteinemia Type II/genetics
- Hyperlipoproteinemia Type II/metabolism
- Immunoassay
- Lipoproteins, LDL/blood
- Lipoproteins, LDL/isolation & purification
- Lipoproteins, LDL/metabolism
- Lipoproteins, VLDL/metabolism
- Mice
- Mice, Transgenic
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Plasmids
- Rabbits
- Receptors, LDL/metabolism
- Recombinant Proteins/immunology
- Recombinant Proteins/isolation & purification
- Recombinant Proteins/metabolism
- Recombination, Genetic
- Sequence Alignment
- Sequence Analysis
Collapse
Affiliation(s)
- J Boren
- Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, California 94141-9100, USA.
| | | | | | | | | | | |
Collapse
|