51
|
Puthukodan S, Hofmann M, Mairhofer M, Janout H, Schurr J, Hauser F, Naderer C, Preiner J, Winkler S, Sivun D, Jacak J. Purification Analysis, Intracellular Tracking, and Colocalization of Extracellular Vesicles Using Atomic Force and 3D Single-Molecule Localization Microscopy. Anal Chem 2023; 95:6061-6070. [PMID: 37002540 PMCID: PMC10100414 DOI: 10.1021/acs.analchem.3c00144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023]
Abstract
Extracellular vesicles (EVs) play a key role in cell-cell communication and thus have great potential to be utilized as therapeutic agents and diagnostic tools. In this study, we implemented single-molecule microscopy techniques as a toolbox for a comprehensive characterization as well as measurement of the cellular uptake of HEK293T cell-derived EVs (eGFP-labeled) in HeLa cells. A combination of fluorescence and atomic force microscopy revealed a fraction of 68% fluorescently labeled EVs with an average size of ∼45 nm. Two-color single-molecule fluorescence microscopy analysis elucidated the 3D dynamics of EVs entering HeLa cells. 3D colocalization analysis of two-color direct stochastic optical reconstruction microscopy (dSTORM) images revealed that 25% of EVs that experienced uptake colocalized with transferrin, which has been linked to early recycling of endosomes and clathrin-mediated endocytosis. The localization analysis was combined with stepwise photobleaching, providing a comparison of protein aggregation outside and inside the cells.
Collapse
Affiliation(s)
| | - Martina Hofmann
- University
of Applied Sciences Upper Austria, Linz 4020, Austria
| | - Mario Mairhofer
- University
of Applied Sciences Upper Austria, Linz 4020, Austria
| | - Hannah Janout
- University
of Applied Sciences Upper Austria, Hagenberg 4232, Austria
- Department
of Computer Science, Johannes Kepler University, Linz 4040, Austria
| | - Jonas Schurr
- University
of Applied Sciences Upper Austria, Hagenberg 4232, Austria
- Department
of Computer Science, Johannes Kepler University, Linz 4040, Austria
| | - Fabian Hauser
- University
of Applied Sciences Upper Austria, Linz 4020, Austria
| | | | - Johannes Preiner
- University
of Applied Sciences Upper Austria, Linz 4020, Austria
| | - Stephan Winkler
- University
of Applied Sciences Upper Austria, Hagenberg 4232, Austria
- Department
of Computer Science, Johannes Kepler University, Linz 4040, Austria
| | - Dmitry Sivun
- University
of Applied Sciences Upper Austria, Linz 4020, Austria
| | - Jaroslaw Jacak
- University
of Applied Sciences Upper Austria, Linz 4020, Austria
- AUVA
Research Center, Ludwig Boltzmann Institute
for Experimental and Clinical Traumatology, Vienna 1200, Austria
| |
Collapse
|
52
|
Zhang M, Hu S, Liu L, Dang P, Liu Y, Sun Z, Qiao B, Wang C. Engineered exosomes from different sources for cancer-targeted therapy. Signal Transduct Target Ther 2023; 8:124. [PMID: 36922504 PMCID: PMC10017761 DOI: 10.1038/s41392-023-01382-y] [Citation(s) in RCA: 178] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/31/2023] [Accepted: 02/22/2023] [Indexed: 03/17/2023] Open
Abstract
Exosome is a subgroup of extracellular vesicles, which has been serving as an efficient therapeutic tool for various diseases. Engineered exosomes are the sort of exosomes modified with surface decoration and internal therapeutic molecules. After appropriate modification, engineered exosomes are able to deliver antitumor drugs to tumor sites efficiently and precisely with fewer treatment-related adverse effects. However, there still exist many challenges for the clinical translation of engineered exosomes. For instance, what sources and modification strategies could endow exosomes with the most efficient antitumor activity is still poorly understood. Additionally, how to choose appropriately engineered exosomes in different antitumor therapies is another unresolved problem. In this review, we summarized the characteristics of engineered exosomes, especially the spatial and temporal properties. Additionally, we concluded the recent advances in engineered exosomes in the cancer fields, including the sources, isolation technologies, modification strategies, and labeling and imaging methods of engineered exosomes. Furthermore, the applications of engineered exosomes in different antitumor therapies were summarized, such as photodynamic therapy, gene therapy, and immunotherapy. Consequently, the above provides the cancer researchers in this community with the latest ideas on engineered exosome modification and new direction of new drug development, which is prospective to accelerate the clinical translation of engineered exosomes for cancer-targeted therapy.
Collapse
Affiliation(s)
- Menghui Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Shengyun Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Lin Liu
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, China.,Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Pengyuan Dang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yang Liu
- Department of Radiotherapy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, 450001, China
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, China. .,Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Bingbing Qiao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Chengzeng Wang
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, China. .,Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
53
|
Spitzberg JD, Ferguson S, Yang KS, Peterson HM, Carlson JCT, Weissleder R. Multiplexed analysis of EV reveals specific biomarker composition with diagnostic impact. Nat Commun 2023; 14:1239. [PMID: 36870999 PMCID: PMC9985597 DOI: 10.1038/s41467-023-36932-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Exosomes and extracellular vesicles (EV) are increasingly being explored as circulating biomarkers, but their heterogenous composition will likely mandate the development of multiplexed EV technologies. Iteratively multiplexed analyses of near single EVs have been challenging to implement beyond a few colors during spectral sensing. Here we developed a multiplexed analysis of EV technique (MASEV) to interrogate thousands of individual EVs during 5 cycles of multi-channel fluorescence staining for 15 EV biomarkers. Contrary to the common belief, we show that: several markers proposed to be ubiquitous are less prevalent than believed; multiple biomarkers concur in single vesicles but only in small fractions; affinity purification can lead to loss of rare EV subtypes; and deep profiling allows detailed analysis of EV, potentially improving the diagnostic content. These findings establish the potential of MASEV for uncovering fundamental EV biology and heterogeneity and increasing diagnostic specificity.
Collapse
Affiliation(s)
- Joshua D Spitzberg
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA, 02114, USA
| | - Scott Ferguson
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA, 02114, USA
| | - Katherine S Yang
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA, 02114, USA
| | - Hannah M Peterson
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA, 02114, USA
| | - Jonathan C T Carlson
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA, 02114, USA. .,Cancer Center, Massachusetts General Hospital, Boston, MA, 02114, USA.
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA, 02114, USA. .,Cancer Center, Massachusetts General Hospital, Boston, MA, 02114, USA. .,Department of Systems Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA, 02115, USA.
| |
Collapse
|
54
|
Chen M, Lin S, Zhou C, Cui D, Haick H, Tang N. From Conventional to Microfluidic: Progress in Extracellular Vesicle Separation and Individual Characterization. Adv Healthc Mater 2023; 12:e2202437. [PMID: 36541411 DOI: 10.1002/adhm.202202437] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/07/2022] [Indexed: 12/24/2022]
Abstract
Extracellular vesicles (EVs) are nanoscale membrane vesicles, which contain a wide variety of cargo such as proteins, miRNAs, and lipids. A growing body of evidence suggests that EVs are promising biomarkers for disease diagnosis and therapeutic strategies. Although the excellent clinical value, their use in personalized healthcare practice is not yet feasible due to their highly heterogeneous nature. Taking the difficulty of isolation and the small size of EVs into account, the characterization of EVs at a single-particle level is both imperative and challenging. In a bid to address this critical point, more research has been directed into a microfluidic platform because of its inherent advantages in sensitivity, specificity, and throughput. This review discusses the biogenesis and heterogeneity of EVs and takes a broad view of state-of-the-art advances in microfluidics-based EV research, including not only EV separation, but also the single EV characterization of biophysical detection and biochemical analysis. To highlight the advantages of microfluidic techniques, conventional technologies are included for comparison. The current status of artificial intelligence (AI) for single EV characterization is then presented. Furthermore, the challenges and prospects of microfluidics and its combination with AI applications in single EV characterization are also discussed. In the foreseeable future, recent breakthroughs in microfluidic platforms are expected to pave the way for single EV analysis and improve applications for precision medicine.
Collapse
Affiliation(s)
- Mingrui Chen
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Shujing Lin
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Cheng Zhou
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Daxiang Cui
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Ning Tang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
55
|
Xia H, Yu Z, Zhang L, Liu S, Zhao Y, Huang J, Fu D, Xie Q, Liu H, Zhang Z, Zhao Y, Wu M, Zhang W, Pang D, Chen G. Real-Time Dissection of the Transportation and miRNA-Release Dynamics of Small Extracellular Vesicles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205566. [PMID: 36599707 PMCID: PMC9982592 DOI: 10.1002/advs.202205566] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Extracellular vesicles (EVs) are cell-derived membrane-enclosed structures that deliver biomolecules for intercellular communication. Developing visualization methods to elucidate the spatiotemporal dynamics of EVs' behaviors will facilitate their understanding and translation. With a quantum dot (QD) labeling strategy, a single particle tracking (SPT) platform is proposed here for dissecting the dynamic behaviors of EVs. The interplays between tumor cell-derived small EVs (T-sEVs) and endothelial cells (ECs) are specifically investigated based on this platform. It is revealed that, following a clathrin-mediated endocytosis by ECs, T-sEVs are transported to the perinuclear region in a typical three-stage pattern. Importantly, T-sEVs frequently interact with and finally enter lysosomes, followed by quick release of their carried miRNAs. This study, for the first time, reports the entire process and detailed dynamics of T-sEV transportation and cargo-release in ECs, leading to better understanding of their proangiogenic functions. Additionally, the QD-based SPT technique will help uncover more secrets of sEV-mediated cell-cell communication.
Collapse
Affiliation(s)
- Hou‐Fu Xia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral Biomedicine Ministry of EducationSchool and Hospital of StomatologyWuhan UniversityWuhan430079P. R. China
- Department of Oral and Maxillofacial SurgerySchool and Hospital of StomatologyWuhan UniversityWuhan430079P. R. China
| | - Zi‐Li Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral Biomedicine Ministry of EducationSchool and Hospital of StomatologyWuhan UniversityWuhan430079P. R. China
- Department of Oral and Maxillofacial SurgerySchool and Hospital of StomatologyWuhan UniversityWuhan430079P. R. China
| | - Li‐Juan Zhang
- College of Chemistry and Molecular SciencesWuhan UniversityWuhan430072P. R. China
| | - Shu‐Lin Liu
- State Key Laboratory of Medicinal Chemical BiologyTianjin Key Laboratory of Biosensing and Molecular RecognitionResearch Center for Analytical Sciencesand College of ChemistryNankai UniversityTianjin300071P. R. China
| | - Yi Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral Biomedicine Ministry of EducationSchool and Hospital of StomatologyWuhan UniversityWuhan430079P. R. China
- Department of ProsthodonticsSchool and Hospital of StomatologyWuhan UniversityWuhan430079P. R. China
| | - Jue Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral Biomedicine Ministry of EducationSchool and Hospital of StomatologyWuhan UniversityWuhan430079P. R. China
| | - Dan‐Dan Fu
- College of Chemistry and Molecular SciencesWuhan UniversityWuhan430072P. R. China
| | - Qi‐Hui Xie
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral Biomedicine Ministry of EducationSchool and Hospital of StomatologyWuhan UniversityWuhan430079P. R. China
| | - Hai‐Ming Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral Biomedicine Ministry of EducationSchool and Hospital of StomatologyWuhan UniversityWuhan430079P. R. China
| | - Zhi‐Ling Zhang
- College of Chemistry and Molecular SciencesWuhan UniversityWuhan430072P. R. China
| | - Yi‐Fang Zhao
- Department of Oral and Maxillofacial SurgerySchool and Hospital of StomatologyWuhan UniversityWuhan430079P. R. China
| | - Min Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral Biomedicine Ministry of EducationSchool and Hospital of StomatologyWuhan UniversityWuhan430079P. R. China
| | - Wei Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral Biomedicine Ministry of EducationSchool and Hospital of StomatologyWuhan UniversityWuhan430079P. R. China
- Department of Oral and Maxillofacial SurgerySchool and Hospital of StomatologyWuhan UniversityWuhan430079P. R. China
| | - Dai‐Wen Pang
- State Key Laboratory of Medicinal Chemical BiologyTianjin Key Laboratory of Biosensing and Molecular RecognitionResearch Center for Analytical Sciencesand College of ChemistryNankai UniversityTianjin300071P. R. China
| | - Gang Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral Biomedicine Ministry of EducationSchool and Hospital of StomatologyWuhan UniversityWuhan430079P. R. China
- Department of Oral and Maxillofacial SurgerySchool and Hospital of StomatologyWuhan UniversityWuhan430079P. R. China
- TaiKang Center for Life and Medical SciencesWuhan UniversityWuhan430071P. R. China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430071P. R. China
| |
Collapse
|
56
|
Jeong MH, Son T, Tae YK, Park CH, Lee HS, Chung MJ, Park JY, Castro CM, Weissleder R, Jo JH, Bang S, Im H. Plasmon-Enhanced Single Extracellular Vesicle Analysis for Cholangiocarcinoma Diagnosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205148. [PMID: 36698298 PMCID: PMC10015870 DOI: 10.1002/advs.202205148] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/01/2023] [Indexed: 05/20/2023]
Abstract
Cholangiocarcinoma (CCA) is a fatal disease often detected late in unresectable stages. Currently, there are no effective diagnostic methods or biomarkers to detect CCA early with high confidence. Analysis of tumor-derived extracellular vesicles (tEVs) harvested from liquid biopsies can provide a new opportunity to achieve this goal. Here, an advanced nanoplasmonic sensing technology is reported, termed FLEX (fluorescence-amplified extracellular vesicle sensing technology), for sensitive and robust single EV analysis. In the FLEX assay, EVs are captured on a plasmonic gold nanowell surface and immunolabeled for cancer-associated biomarkers to identify tEVs. The underlying plasmonic gold nanowell structures then amplify EVs' fluorescence signals, an effective amplification process at the single EV level. The FLEX EV analysis revealed a wide heterogeneity of tEVs and their marker levels. FLEX also detected small tEVs not detected by conventional EV fluorescence imaging due to weak signals. Tumor markers (MUC1, EGFR, and EPCAM) are identified in CCA, and this marker combination is applied to detect tEVs in clinical bile samples. The FLEX assay detected CCA with an area under the curve of 0.93, significantly better than current clinical markers. The sensitive and accurate nanoplasmonic EV sensing technology can aid in early CCA diagnosis.
Collapse
Affiliation(s)
- Mi Ho Jeong
- Center for Systems BiologyMassachusetts General HospitalBostonMA02114USA
| | - Taehwang Son
- Center for Systems BiologyMassachusetts General HospitalBostonMA02114USA
| | - Yoo Keung Tae
- Division of GastroenterologyDepartment of Internal MedicineSeverance HospitalYonsei University College of MedicineSeoul03722Republic of Korea
| | - Chan Hee Park
- Division of GastroenterologyDepartment of Internal MedicineSeverance HospitalYonsei University College of MedicineSeoul03722Republic of Korea
| | - Hee Seung Lee
- Division of GastroenterologyDepartment of Internal MedicineSeverance HospitalYonsei University College of MedicineSeoul03722Republic of Korea
| | - Moon Jae Chung
- Division of GastroenterologyDepartment of Internal MedicineSeverance HospitalYonsei University College of MedicineSeoul03722Republic of Korea
| | - Jeong Youp Park
- Division of GastroenterologyDepartment of Internal MedicineSeverance HospitalYonsei University College of MedicineSeoul03722Republic of Korea
| | - Cesar M. Castro
- Center for Systems BiologyMassachusetts General HospitalBostonMA02114USA
- Cancer Center, Massachusetts General HospitalHarvard Medical SchoolBostonMA02114USA
| | - Ralph Weissleder
- Center for Systems BiologyMassachusetts General HospitalBostonMA02114USA
- Cancer Center, Massachusetts General HospitalHarvard Medical SchoolBostonMA02114USA
- Department of RadiologyMassachusetts General HospitalBostonMA02114USA
- Department of Systems BiologyHarvard Medical SchoolBostonMA02115USA
| | - Jung Hyun Jo
- Division of GastroenterologyDepartment of Internal MedicineSeverance HospitalYonsei University College of MedicineSeoul03722Republic of Korea
| | - Seungmin Bang
- Division of GastroenterologyDepartment of Internal MedicineSeverance HospitalYonsei University College of MedicineSeoul03722Republic of Korea
| | - Hyungsoon Im
- Center for Systems BiologyMassachusetts General HospitalBostonMA02114USA
- Department of RadiologyMassachusetts General HospitalBostonMA02114USA
| |
Collapse
|
57
|
Welsh JA, Arkesteijn GJA, Bremer M, Cimorelli M, Dignat-George F, Giebel B, Görgens A, Hendrix A, Kuiper M, Lacroix R, Lannigan J, van Leeuwen TG, Lozano-Andrés E, Rao S, Robert S, de Rond L, Tang VA, Tertel T, Yan X, Wauben MHM, Nolan JP, Jones JC, Nieuwland R, van der Pol E. A compendium of single extracellular vesicle flow cytometry. J Extracell Vesicles 2023; 12:e12299. [PMID: 36759917 PMCID: PMC9911638 DOI: 10.1002/jev2.12299] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 11/29/2022] [Accepted: 12/17/2022] [Indexed: 02/11/2023] Open
Abstract
Flow cytometry (FCM) offers a multiparametric technology capable of characterizing single extracellular vesicles (EVs). However, most flow cytometers are designed to detect cells, which are larger than EVs. Whereas cells exceed the background noise, signals originating from EVs partly overlap with the background noise, thereby making EVs more difficult to detect than cells. This technical mismatch together with complexity of EV-containing fluids causes limitations and challenges with conducting, interpreting and reproducing EV FCM experiments. To address and overcome these challenges, researchers from the International Society for Extracellular Vesicles (ISEV), International Society for Advancement of Cytometry (ISAC), and the International Society on Thrombosis and Haemostasis (ISTH) joined forces and initiated the EV FCM working group. To improve the interpretation, reporting, and reproducibility of future EV FCM data, the EV FCM working group published an ISEV position manuscript outlining a framework of minimum information that should be reported about an FCM experiment on single EVs (MIFlowCyt-EV). However, the framework contains limited background information. Therefore, the goal of this compendium is to provide the background information necessary to design and conduct reproducible EV FCM experiments. This compendium contains background information on EVs, the interaction between light and EVs, FCM hardware, experimental design and preanalytical procedures, sample preparation, assay controls, instrument data acquisition and calibration, EV characterization, and data reporting. Although this compendium focuses on EVs, many concepts and explanations could also be applied to FCM detection of other particles within the EV size range, such as bacteria, lipoprotein particles, milk fat globules, and viruses.
Collapse
Affiliation(s)
- Joshua A Welsh
- Translational Nanobiology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ger J A Arkesteijn
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Michel Bremer
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Michael Cimorelli
- Vesicle Observation Center, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Experimental Clinical Chemistry, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Department of Chemical Engineering, Drexel University, Philadelphia, Pennsylvania, USA
| | - Françoise Dignat-George
- Aix Marseille Univ, INSERM, INRAE, C2VN, UFR de Pharmacie, Marseille, France
- Hematology and Vascular Biology Department, CHU La Conception, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - André Görgens
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Clinical Research Center, Department for Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Evox Therapeutics Ltd, Oxford, UK
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Martine Kuiper
- Vesicle Observation Center, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Experimental Clinical Chemistry, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Biomedical Engineering & Physics, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Dutch Metrology Institute, VSL, Delft, The Netherlands
| | - Romaric Lacroix
- Aix Marseille Univ, INSERM, INRAE, C2VN, UFR de Pharmacie, Marseille, France
- Hematology and Vascular Biology Department, CHU La Conception, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Joanne Lannigan
- Flow Cytometry Support Services, LLC, Arlington, Virginia, USA
| | - Ton G van Leeuwen
- Vesicle Observation Center, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Biomedical Engineering & Physics, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis and Ischemic Syndromes, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Estefanía Lozano-Andrés
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Shoaib Rao
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Stéphane Robert
- Aix Marseille Univ, INSERM, INRAE, C2VN, UFR de Pharmacie, Marseille, France
- Hematology and Vascular Biology Department, CHU La Conception, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Leonie de Rond
- Vesicle Observation Center, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Experimental Clinical Chemistry, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Biomedical Engineering & Physics, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Vera A Tang
- Flow Cytometry & Virometry Core Facility, Faculty of Medicine, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Tobias Tertel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Xiaomei Yan
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Marca H M Wauben
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - John P Nolan
- Scintillon Institute, San Diego, California, USA
- Cellarcus Biosciences, San Diego, California, USA
| | - Jennifer C Jones
- Translational Nanobiology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Rienk Nieuwland
- Vesicle Observation Center, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Experimental Clinical Chemistry, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis and Ischemic Syndromes, Amsterdam, The Netherlands
| | - Edwin van der Pol
- Vesicle Observation Center, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Experimental Clinical Chemistry, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Biomedical Engineering & Physics, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis and Ischemic Syndromes, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| |
Collapse
|
58
|
Stem Cell-derived Extracellular Vesicles: A Promising Nano Delivery Platform to the Brain? Stem Cell Rev Rep 2023; 19:285-308. [PMID: 36173500 DOI: 10.1007/s12015-022-10455-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2022] [Indexed: 02/07/2023]
Abstract
A very important cause of the frustration with drug therapy for central nervous system (CNS) diseases is the failure of drug delivery. The blood-brain barrier (BBB) prevents most therapeutic molecules from entering the brain while maintaining CNS homeostasis. Scientists are keen to develop new brain drug delivery systems to solve this dilemma. Extracellular vesicles (EVs), as a class of naturally derived nanoscale vesicles, have been extensively studied in drug delivery due to their superior properties. This review will briefly present current brain drug delivery strategies, including invasive and non-invasive techniques that target the brain, and the application of nanocarriers developed for brain drug delivery in recent years, especially EVs. The cellular origin of EVs affects the surface protein, size, yield, luminal composition, and other properties of EVs, which are also crucial in determining whether EVs are useful as drug carriers. Stem cell-derived EVs, which inherit the properties of parental cells and avoid the drawbacks of cell therapy, have always been favored by researchers. Thus, in this review, we will focus on the application of stem cell-derived EVs for drug delivery in the CNS. Various nucleic acids, proteins, and small-molecule drugs are loaded into EVs with or without modification and undergo targeted delivery to the brain to achieve their therapeutic effects. In addition, the challenges facing the clinical application of EVs as drug carriers will also be discussed. The directions of future efforts may be to improve drug loading efficiency and precise targeting.
Collapse
|
59
|
Cai R, Wang L, Zhang W, Liu B, Wu Y, Pang J, Ma C. The role of extracellular vesicles in periodontitis: pathogenesis, diagnosis, and therapy. Front Immunol 2023; 14:1151322. [PMID: 37114060 PMCID: PMC10126335 DOI: 10.3389/fimmu.2023.1151322] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
Periodontitis is a prevalent disease and one of the leading causes of tooth loss. Biofilms are initiating factor of periodontitis, which can destroy periodontal tissue by producing virulence factors. The overactivated host immune response is the primary cause of periodontitis. The clinical examination of periodontal tissues and the patient's medical history are the mainstays of periodontitis diagnosis. However, there is a lack of molecular biomarkers that can be used to identify and predict periodontitis activity precisely. Non-surgical and surgical treatments are currently available for periodontitis, although both have drawbacks. In clinical practice, achieving the ideal therapeutic effect remains a challenge. Studies have revealed that bacteria produce extracellular vesicles (EVs) to export virulence proteins to host cells. Meanwhile, periodontal tissue cells and immune cells produce EVs that have pro- or anti-inflammatory effects. Accordingly, EVs play a critical role in the pathogenesis of periodontitis. Recent studies have also presented that the content and composition of EVs in saliva and gingival crevicular fluid (GCF) can serve as possible periodontitis diagnostic indicators. In addition, studies have indicated that stem cell EVs may encourage periodontal regeneration. In this article, we mainly review the role of EVs in the pathogenesis of periodontitis and discuss their diagnostic and therapeutic potential.
Collapse
Affiliation(s)
- Rong Cai
- Department of Stomatology, Air Force Medical Center, The Fourth Military Medical University, Beijing, China
| | - Lu Wang
- Department of Critical Care Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Wei Zhang
- Department of Stomatology, Air Force Medical Center, The Fourth Military Medical University, Beijing, China
| | - Bing Liu
- Department of Stomatology, Air Force Medical Center, The Fourth Military Medical University, Beijing, China
| | - Yiqi Wu
- Department of Critical Care Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jianliang Pang
- Department of Stomatology, Air Force Medical Center, The Fourth Military Medical University, Beijing, China
- *Correspondence: Chufan Ma, ; Jianliang Pang,
| | - Chufan Ma
- Department of Stomatology, Air Force Medical Center, The Fourth Military Medical University, Beijing, China
- *Correspondence: Chufan Ma, ; Jianliang Pang,
| |
Collapse
|
60
|
Uthamacumaran A, Abdouh M, Sengupta K, Gao ZH, Forte S, Tsering T, Burnier JV, Arena G. Machine intelligence-driven classification of cancer patients-derived extracellular vesicles using fluorescence correlation spectroscopy: results from a pilot study. Neural Comput Appl 2022. [DOI: 10.1007/s00521-022-08113-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
61
|
Schürz M, Danmayr J, Jaritsch M, Klinglmayr E, Benirschke HM, Matea C, Zimmerebner P, Rauter J, Wolf M, Gomes FG, Kratochvil Z, Heger Z, Miller A, Heuser T, Stanojlovic V, Kiefer J, Plank T, Johnson L, Himly M, Blöchl C, Huber CG, Hintersteiner M, Meisner‐Kober N. EVAnalyzer: High content imaging for rigorous characterisation of single extracellular vesicles using standard laboratory equipment and a new open-source ImageJ/Fiji plugin. J Extracell Vesicles 2022; 11:e12282. [PMID: 36437554 PMCID: PMC9702573 DOI: 10.1002/jev2.12282] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/30/2022] Open
Abstract
Extracellular vesicle (EV) research increasingly demands for quantitative characterisation at the single vesicle level to address heterogeneity and complexity of EV subpopulations. Emerging, commercialised technologies for single EV analysis based on, for example, imaging flow cytometry or imaging after capture on chips generally require dedicated instrumentation and proprietary software not readily accessible to every lab. This limits their implementation for routine EV characterisation in the rapidly growing EV field. We and others have shown that single vesicles can be detected as light diffraction limited fluorescent spots using standard confocal and widefield fluorescence microscopes. Advancing this simple strategy into a process for routine EV quantitation, we developed 'EVAnalyzer', an ImageJ/Fiji (Fiji is just ImageJ) plugin for automated, quantitative single vesicle analysis from imaging data. Using EVAnalyzer, we established a robust protocol for capture, (immuno-)labelling and fluorescent imaging of EVs. To exemplify the application scope, the process was optimised and systematically tested for (i) quantification of EV subpopulations, (ii) validation of EV labelling reagents, (iii) in situ determination of antibody specificity, sensitivity and species cross-reactivity for EV markers and (iv) optimisation of genetic EV engineering. Additionally, we show that the process can be applied to synthetic nanoparticles, allowing to determine siRNA encapsulation efficiencies of lipid-based nanoparticles (LNPs) and protein loading of SiO2 nanoparticles. EVAnalyzer further provides a pipeline for automated quantification of cell uptake at the single cell-single vesicle level, thereby enabling high content EV cell uptake assays and plate-based screens. Notably, the entire procedure from sample preparation to the final data output is entirely based on standard reagents, materials, laboratory equipment and open access software. In summary, we show that EVAnalyzer enables rigorous characterisation of EVs with generally accessible tools. Since we further provide the plugin as open-source code, we expect EVAnalyzer to not only be a resource of immediate impact, but an open innovation platform for the EV and nanoparticle research communities.
Collapse
Affiliation(s)
- Melanie Schürz
- Department of Biosciences and Medical BiologyParis Lodron University SalzburgSalzburgAustria
| | - Joachim Danmayr
- Department of Informatics and MathematicsFernuniversität HagenHagenGermany
| | - Maria Jaritsch
- Department of Biosciences and Medical BiologyParis Lodron University SalzburgSalzburgAustria
| | - Eva Klinglmayr
- Department of Biosciences and Medical BiologyParis Lodron University SalzburgSalzburgAustria
| | - Heloisa Melo Benirschke
- Department of Biosciences and Medical BiologyParis Lodron University SalzburgSalzburgAustria
| | - Cristian‐Tudor Matea
- Department of Biosciences and Medical BiologyParis Lodron University SalzburgSalzburgAustria
| | - Patrick Zimmerebner
- Department of Biosciences and Medical BiologyParis Lodron University SalzburgSalzburgAustria
| | - Jakob Rauter
- Department of Biosciences and Medical BiologyParis Lodron University SalzburgSalzburgAustria
| | - Martin Wolf
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Centre Salzburg (SCI‐TReCS)Paracelsus Medical University (PMU)SalzburgAustria
| | - Fausto Gueths Gomes
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Centre Salzburg (SCI‐TReCS)Paracelsus Medical University (PMU)SalzburgAustria
| | - Zdenek Kratochvil
- Department of Chemistry and BiochemistryMendel University in BrnoBrnoCzech Republic
| | - Zbynek Heger
- Department of Chemistry and BiochemistryMendel University in BrnoBrnoCzech Republic
| | - Andrew Miller
- Department of Chemistry and BiochemistryMendel University in BrnoBrnoCzech Republic
- Veterinary Research InstituteBrnoCzech Republic
- KP Therapeutics (Europe) sro.BrnoCzech Republic
| | | | - Vesna Stanojlovic
- Department of Biosciences and Medical BiologyParis Lodron University SalzburgSalzburgAustria
| | - Jana Kiefer
- Department of Biosciences and Medical BiologyParis Lodron University SalzburgSalzburgAustria
| | - Tanja Plank
- Department of Biosciences and Medical BiologyParis Lodron University SalzburgSalzburgAustria
| | - Litty Johnson
- Department of Biosciences and Medical BiologyParis Lodron University SalzburgSalzburgAustria
| | - Martin Himly
- Department of Biosciences and Medical BiologyParis Lodron University SalzburgSalzburgAustria
| | - Constantin Blöchl
- Department of Biosciences and Medical BiologyParis Lodron University SalzburgSalzburgAustria
| | - Christian G. Huber
- Department of Biosciences and Medical BiologyParis Lodron University SalzburgSalzburgAustria
| | | | - Nicole Meisner‐Kober
- Department of Biosciences and Medical BiologyParis Lodron University SalzburgSalzburgAustria
| |
Collapse
|
62
|
Zheng W, He R, Liang X, Roudi S, Bost J, Coly P, van Niel G, Andaloussi SEL. Cell-specific targeting of extracellular vesicles through engineering the glycocalyx. J Extracell Vesicles 2022; 11:e12290. [PMID: 36463392 PMCID: PMC9719568 DOI: 10.1002/jev2.12290] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
Extracellular vesicles (EVs) are promising carriers for the delivery of a variety of chemical and biological drugs. However, their efficacy is limited by the lack of cellular specificity. Available methods to improve the tissue specificity of EVs predominantly rely on surface display of proteins and peptides, largely overlooking the dense glycocalyx that constitutes the outermost layer of EVs. In the present study, we report a reconfigurable glycoengineering strategy that can endogenously display glycans of interest on EV surface. Briefly, EV producer cells are genetically engineered to co-express a glycosylation domain (GD) inserted into the large extracellular loop of CD63 (a well-studied EV scaffold protein) and fucosyltransferase VII (FUT7) or IX (FUT9), so that the engineered EVs display the glycan of interest. Through this strategy, we showcase surface display of two types of glycan ligands, sialyl Lewis X (sLeX) and Lewis X, on EVs and achieve high specificity towards activated endothelial cells and dendritic cells, respectively. Moreover, the endothelial cell-targeting properties of sLeX-EVs were combined with the intrinsic therapeutic effects of mesenchymal stem cells (MSCs), leading to enhanced attenuation of endothelial damage. In summary, this study presents a reconfigurable glycoengineering strategy to produce EVs with strong cellular specificity and highlights the glycocalyx as an exploitable trait for engineering EVs.
Collapse
Affiliation(s)
- Wenyi Zheng
- Biomolecular Medicine, Division of Biomolecular and Cellular Medicine, Department of Laboratory MedicineKarolinska InstitutetHuddingeSweden
- Centre for Allogeneic Stem Cell Transplantation (CAST)Karolinska University HospitalHuddingeSweden
| | - Rui He
- Centre for Allogeneic Stem Cell Transplantation (CAST)Karolinska University HospitalHuddingeSweden
- Experimental Cancer Medicine, Division of Biomolecular and Cellular Medicine, Department of Laboratory MedicineKarolinska InstitutetHuddingeSweden
| | - Xiuming Liang
- Biomolecular Medicine, Division of Biomolecular and Cellular Medicine, Department of Laboratory MedicineKarolinska InstitutetHuddingeSweden
- Centre for Allogeneic Stem Cell Transplantation (CAST)Karolinska University HospitalHuddingeSweden
| | - Samantha Roudi
- Biomolecular Medicine, Division of Biomolecular and Cellular Medicine, Department of Laboratory MedicineKarolinska InstitutetHuddingeSweden
- Centre for Allogeneic Stem Cell Transplantation (CAST)Karolinska University HospitalHuddingeSweden
| | - Jeremy Bost
- Biomolecular Medicine, Division of Biomolecular and Cellular Medicine, Department of Laboratory MedicineKarolinska InstitutetHuddingeSweden
- Centre for Allogeneic Stem Cell Transplantation (CAST)Karolinska University HospitalHuddingeSweden
| | - Pierre‐Michael Coly
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266ParisFrance
- GHU Paris Psychiatrie et NeurosciencesHôpital Sainte AnneParisFrance
| | - Guillaume van Niel
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266ParisFrance
- GHU Paris Psychiatrie et NeurosciencesHôpital Sainte AnneParisFrance
| | - Samir E. L. Andaloussi
- Biomolecular Medicine, Division of Biomolecular and Cellular Medicine, Department of Laboratory MedicineKarolinska InstitutetHuddingeSweden
- Centre for Allogeneic Stem Cell Transplantation (CAST)Karolinska University HospitalHuddingeSweden
- EVOX Therapeutics LimitedOxfordUK
| |
Collapse
|
63
|
Pan Z, Sun W, Chen Y, Tang H, Lin W, Chen J, Chen C. Extracellular Vesicles in Tissue Engineering: Biology and Engineered Strategy. Adv Healthc Mater 2022; 11:e2201384. [PMID: 36053562 DOI: 10.1002/adhm.202201384] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/07/2022] [Indexed: 01/28/2023]
Abstract
Extracellular vesicles (EVs), acting as an important ingredient of intercellular communication through paracrine actions, have gained tremendous attention in the field of tissue engineering (TE). Moreover, these nanosized extracellular particles (30-140 nm) can be incorporated into biomaterials according to different principles to facilitate signal delivery in various regenerative processes directly or indirectly. Bioactive biomaterials as the carrier will extend the retention time and realize the controlled release of EVs, which further enhance their therapeutic efficiency in tissue regeneration. Herein, the basic biological characteristics of EVs are first introduced, and then their outstanding performance in exerting direct impacts on target cells in tissue regeneration as well as indirect effects on promoting angiogenesis and regulating the immune environment, due to specific functional components of EVs (nucleic acid, protein, lipid, etc.), is emphasized. Furthermore, different design ideas for suitable EV-loaded biomaterials are also demonstrated. In the end, this review also highlights the engineered strategies, which aim at solving the problems related to natural EVs such as highly heterogeneous functions, inadequate tissue targeting capabilities, insufficient yield and scalability, etc., thus promoting the therapeutic pertinence and clinical potential of EV-based approaches in TE.
Collapse
Affiliation(s)
- Ziyin Pan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School Of Medicine, Shanghai, 200092, China.,Shanghai Engineering Research Center of Lung Transplantation, Shanghai, 200433, China
| | - Weiyan Sun
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School Of Medicine, Shanghai, 200092, China.,Shanghai Engineering Research Center of Lung Transplantation, Shanghai, 200433, China
| | - Yi Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School Of Medicine, Shanghai, 200092, China.,Shanghai Engineering Research Center of Lung Transplantation, Shanghai, 200433, China
| | - Hai Tang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School Of Medicine, Shanghai, 200092, China.,Shanghai Engineering Research Center of Lung Transplantation, Shanghai, 200433, China
| | - Weikang Lin
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School Of Medicine, Shanghai, 200092, China.,Shanghai Engineering Research Center of Lung Transplantation, Shanghai, 200433, China
| | - Jiafei Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School Of Medicine, Shanghai, 200092, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School Of Medicine, Shanghai, 200092, China.,Shanghai Engineering Research Center of Lung Transplantation, Shanghai, 200433, China
| |
Collapse
|
64
|
Preventing SARS-CoV-2 Infection Using Anti-spike Nanobody-IFN-β Conjugated Exosomes. Pharm Res 2022; 40:927-935. [PMID: 36163411 PMCID: PMC9512977 DOI: 10.1007/s11095-022-03400-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/18/2022] [Indexed: 12/03/2022]
Abstract
Purpose To inhibit the transmission of SARS-CoV-2, we developed engineered exosomes that were conjugated with anti-spike nanobodies and type I interferon β (IFN-β). We evaluated the efficacy and potency of nanobody-IFN-β conjugated exosomes to treatment of SARS-CoV-2 infection. Methods Milk fat globule epidermal growth factor 8 (MFG-E8) is a glycoprotein that binds to phosphatidylserine (PS) exposed on the exosomes. We generated nanobody-IFN-β conjugated exosomes by fusing an anti-spike nanobody and IFN-β with MFG-E8. We used the SARS-CoV-2 pseudovirus with the spike of the D614G mutant that encodes ZsGreen to mimic the infection process of the SARS-CoV-2. The SARS-CoV-2 pseudovirus was infected with angiotensin-converting enzyme-2 (ACE2) expressing adenocarcinomic human alveolar basal epithelial cells (A549) or ACE2 expressing HEK-blue IFNα/β cells in the presence of nanobody-IFN-β conjugated exosomes. By assessing the expression of ZsGreen in target cells and the upregulation of interferon-stimulated genes (ISGs) in infected cells, we evaluated the anti-viral effects of nanobody-IFN-β conjugated exosomes. Results We confirmed the anti-spike nanobody and IFN-β expressions on the exosomes. Exosomes conjugated with nanobody-hIFN-β inhibited the interaction between the spike protein and ACE2, thereby inhibiting the infection of host cells with SARS-CoV-2 pseudovirus. At the same time, IFN-β was selectively delivered to SARS-CoV-2 infected cells, resulting in the upregulation of ISGs expression. Conclusion Exosomes conjugated with nanobody-IFN-β may provide potential benefits in the treatment of COVID-19 because of the cooperative anti-viral effects of the anti-spike nanobody and the IFN-β. Supplementary Information The online version contains supplementary material available at 10.1007/s11095-022-03400-0.
Collapse
|
65
|
Frigerio R, Musicò A, Strada A, Bergamaschi G, Panella S, Grange C, Marelli M, Ferretti AM, Andriolo G, Bussolati B, Barile L, Chiari M, Gori A, Cretich M. Comparing digital detection platforms in high sensitivity immune-phenotyping of extracellular vesicles. JOURNAL OF EXTRACELLULAR BIOLOGY 2022; 1:e53. [PMID: 38939054 PMCID: PMC11080918 DOI: 10.1002/jex2.53] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/08/2022] [Accepted: 07/02/2022] [Indexed: 06/29/2024]
Abstract
Despite their clinical potential, Extracellular Vesicles (EVs) struggle to take the scene as a preeminent source of biomarkers in liquid biopsy. Limitations in the use of EVs origin from their inherent complexity and heterogeneity and from the sensitivity demand in detecting low to very low abundant disease-specific sub-populations. Such need can be met by digital detection, namely capable to reach the single-molecule sensitivity. Here we set to compare, side by side, two digital detection platforms that have recently gained increasing importance in the field of EVs. The platforms, both commercially available, are based on the principles of the Single Particle Interferometric Reflectance Imaging Sensing (SP-IRIS) and the Single Molecule Array technology (SiMoA) respectively. Sensitivity in immune-phenotyping of a well characterized EV sample is reported, discussing possible applicative implications and rationales for alternative or complementary use of the two platforms in biomarker discovery or validation.
Collapse
Affiliation(s)
- Roberto Frigerio
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC) ‐ Consiglio Nazionale delle RicercheMilanoItaly
| | - Angelo Musicò
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC) ‐ Consiglio Nazionale delle RicercheMilanoItaly
| | - Alessandro Strada
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC) ‐ Consiglio Nazionale delle RicercheMilanoItaly
| | - Greta Bergamaschi
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC) ‐ Consiglio Nazionale delle RicercheMilanoItaly
| | - Stefano Panella
- Istituto Cardiocentro Ticino, Ente Ospedaliero CantonaleLuganoSwitzerland
| | | | - Marcello Marelli
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC) ‐ Consiglio Nazionale delle RicercheMilanoItaly
| | - Anna M. Ferretti
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC) ‐ Consiglio Nazionale delle RicercheMilanoItaly
| | - Gabriella Andriolo
- Istituto Cardiocentro Ticino, Ente Ospedaliero CantonaleLuganoSwitzerland
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health SciencesUniversity of TurinTurinItaly
| | - Lucio Barile
- Istituto Cardiocentro Ticino, Ente Ospedaliero CantonaleLuganoSwitzerland
| | - Marcella Chiari
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC) ‐ Consiglio Nazionale delle RicercheMilanoItaly
| | - Alessandro Gori
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC) ‐ Consiglio Nazionale delle RicercheMilanoItaly
| | - Marina Cretich
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC) ‐ Consiglio Nazionale delle RicercheMilanoItaly
| |
Collapse
|
66
|
Santelices J, Ou M, Hui WW, Maegawa GHB, Edelmann MJ. Fluorescent Labeling of Small Extracellular Vesicles (EVs) Isolated from Conditioned Media. Bio Protoc 2022; 12:e4447. [PMID: 35864901 PMCID: PMC9257841 DOI: 10.21769/bioprotoc.4447] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 01/22/2023] Open
Abstract
Extracellular vesicles (EVs), such as exosomes, are produced by all known eukaryotic cells, and constitute essential means of intercellular communication. Recent studies have unraveled the important roles of EVs in migrating to specific sites and cells. Functional studies of EVs using in vivo and in vitro systems require tracking these organelles using fluorescent dyes or, alternatively, transfected and fluorescent-tagged proteins, located either intravesicularly or anchored to the EV bilayer membrane. Due to design simplicity, the fluorescent dye might be a preferred method if the cells are difficult to modify by transfection or when the genetic alteration of the mother cells is not desired. This protocol describes techniques to label cultured cell-derived EVs, using lipophilic DiR [DiIC18(7) (1,1'-Dioctadecyl-3,3,3',3'-Tetramethylindotricarbocyanine Iodide)] fluorophore. This technique can be used to study the cellular uptake and intracellular localization of EVs, and their biodistribution in vivo , which are crucial evaluations of any isolated EVs.
Collapse
Affiliation(s)
- John Santelices
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Mark Ou
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Winnie W. Hui
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Gustavo H. B. Maegawa
- Department of Pediatrics, Columbia University Irving Medical Center, New York-Presbyterian Morgan Stanley Children's Hospital, New York, United States of America
| | - Mariola J. Edelmann
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
67
|
Huang A, Liu Y, Qi X, Chen S, Huang H, Zhang J, Han Z, Han ZC, Li Z. Intravenously transplanted mesenchymal stromal cells: a new endocrine reservoir for cardioprotection. Stem Cell Res Ther 2022; 13:253. [PMID: 35715868 PMCID: PMC9204704 DOI: 10.1186/s13287-022-02922-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/17/2022] [Indexed: 11/30/2022] Open
Abstract
Background Intravenous administration of mesenchymal stromal cells (MSCs) has an acknowledged competence of cardiac repair, despite a lack of systematic description of the underlying biological mechanisms. The lung, but not the heart, is the main trapped site for intravenously transplanted MSCs, which leaves a spatial gap between intravenously transplanted MSCs and the injured myocardium. How lung-trapped MSCs after intravenous transplantation rejuvenate the injured myocardium remains unknown. Methods MSCs were isolated from human placenta tissue, and DF-MSCs or Gluc-MSCs were generated by transduced with firefly luciferase (Fluc)/enhanced green fluorescence protein (eGFP) or Gaussia luciferase (Gluc) lactadherin fusion protein. The therapeutic efficiency of intravenously transplanted MSCs was investigated in a murine model of doxorubicin (Dox)-induced cardiotoxicity. Trans-organ communication from the lung to the heart with the delivery of blood was investigated by testing the release of MSC-derived extracellular vesicles (MSC-EVs), and the potential miRNA inner MSC-EVs were screened out and verified. The potential therapeutic miRNA inner MSC-EVs were then upregulated or downregulated to assess the further therapeutic efficiency Results Dox-induced cardiotoxicity, characterized by cardiac atrophy, left ventricular dysfunction, and injured myocardium, was alleviated by consecutive doses of MSCs. These cardioprotective effects might be attributed to suppressing GRP78 triggering endoplasmic reticulum (ER) stress-induced apoptosis in cardiomyocytes. Our results confirmed that miR-181a-5p from MSCs-derived EVs (MSC-EVs) inhibited GRP78. Intravenous DF-MSCs were trapped in lung vasculature, secreted a certain number of EVs into serum, which could be confirmed by the detection of eGFP+ EVs. GLuc activity was increased in serum EVs from mice administrated with GLuc-MSCs. MiR-181a-5p, inhibiting GRP78 with high efficacy, was highly expressed in serum EVs and myocardium after injecting consecutive doses of MSCs into mice treated with Dox. Finally, upregulation or downregulation of miR-181a-5p levels in MSC-EVs enhanced or weakened therapeutic effects on Dox-induced cardiotoxicity through modulating ER stress-induced apoptosis. Conclusions This study identifies intravenously transplanted MSCs, as an endocrine reservoir, to secrete cardioprotective EVs into blood continuously and gradually to confer the trans-organ communication that relieves Dox-induced cardiotoxicity. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02922-z.
Collapse
Affiliation(s)
- Anan Huang
- Nankai University School of Medicine, 94 Weijin Road, Tianjin, 300071, China.,Department of Cardiology, Tianjin Union Medical Center, 190 Jieyuan Road, Tianjin, 300121, China.,The Key Laboratory of Bioactive Materials, Ministry of Education, The College of Life Sciences, Nankai University, Tianjin, China
| | - Yue Liu
- Nankai University School of Medicine, 94 Weijin Road, Tianjin, 300071, China.,The Key Laboratory of Bioactive Materials, Ministry of Education, The College of Life Sciences, Nankai University, Tianjin, China
| | - Xin Qi
- Department of Cardiology, Tianjin Union Medical Center, 190 Jieyuan Road, Tianjin, 300121, China.
| | - Shang Chen
- Nankai University School of Medicine, 94 Weijin Road, Tianjin, 300071, China
| | - Haoyan Huang
- Nankai University School of Medicine, 94 Weijin Road, Tianjin, 300071, China
| | - Jun Zhang
- Department of Pain Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, China
| | - Zhibo Han
- Jiangxi Engineering Research Center for Stem Cell, Shangrao, Jiangxi, China.,Tianjin Key Laboratory of Engineering Technologies for Cell Pharmaceutical, National Engineering Research Center of Cell Products, AmCellGene Co., Ltd, Tianjin, China
| | - Zhong-Chao Han
- Jiangxi Engineering Research Center for Stem Cell, Shangrao, Jiangxi, China.,Tianjin Key Laboratory of Engineering Technologies for Cell Pharmaceutical, National Engineering Research Center of Cell Products, AmCellGene Co., Ltd, Tianjin, China
| | - Zongjin Li
- Nankai University School of Medicine, 94 Weijin Road, Tianjin, 300071, China. .,The Key Laboratory of Bioactive Materials, Ministry of Education, The College of Life Sciences, Nankai University, Tianjin, China. .,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
68
|
Görgens A, Corso G, Hagey DW, Jawad Wiklander R, Gustafsson MO, Felldin U, Lee Y, Bostancioglu RB, Sork H, Liang X, Zheng W, Mohammad DK, van de Wakker SI, Vader P, Zickler AM, Mamand DR, Ma L, Holme MN, Stevens MM, Wiklander OPB, EL Andaloussi S. Identification of storage conditions stabilizing extracellular vesicles preparations. J Extracell Vesicles 2022; 11:e12238. [PMID: 35716060 PMCID: PMC9206228 DOI: 10.1002/jev2.12238] [Citation(s) in RCA: 177] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/23/2022] [Accepted: 05/16/2022] [Indexed: 12/31/2022] Open
Abstract
Extracellular vesicles (EVs) play a key role in many physiological and pathophysiological processes and hold great potential for therapeutic and diagnostic use. Despite significant advances within the last decade, the key issue of EV storage stability remains unresolved and under investigated. Here, we aimed to identify storage conditions stabilizing EVs and comprehensively compared the impact of various storage buffer formulations at different temperatures on EVs derived from different cellular sources for up to 2 years. EV features including concentration, diameter, surface protein profile and nucleic acid contents were assessed by complementary methods, and engineered EVs containing fluorophores or functionalized surface proteins were utilized to compare cellular uptake and ligand binding. We show that storing EVs in PBS over time leads to drastically reduced recovery particularly for pure EV samples at all temperatures tested, starting already within days. We further report that using PBS as diluent was found to result in severely reduced EV recovery rates already within minutes. Several of the tested new buffer conditions largely prevented the observed effects, the lead candidate being PBS supplemented with human albumin and trehalose (PBS-HAT). We report that PBS-HAT buffer facilitates clearly improved short-term and long-term EV preservation for samples stored at -80°C, stability throughout several freeze-thaw cycles, and drastically improved EV recovery when using a diluent for EV samples for downstream applications.
Collapse
Affiliation(s)
- André Görgens
- Department of Laboratory Medicine, Clinical Research CenterKarolinska InstitutetStockholmSweden
- Institute for Transfusion MedicineUniversity Hospital Essen, University of Duisburg‐EssenEssenGermany
- Evox Therapeutics LimitedOxfordUK
| | - Giulia Corso
- Department of Laboratory Medicine, Clinical Research CenterKarolinska InstitutetStockholmSweden
| | - Daniel W. Hagey
- Department of Laboratory Medicine, Clinical Research CenterKarolinska InstitutetStockholmSweden
| | - Rim Jawad Wiklander
- Department of Laboratory Medicine, Clinical Research CenterKarolinska InstitutetStockholmSweden
| | - Manuela O. Gustafsson
- Department of Laboratory Medicine, Clinical Research CenterKarolinska InstitutetStockholmSweden
| | - Ulrika Felldin
- Department of Laboratory Medicine, Clinical Research CenterKarolinska InstitutetStockholmSweden
| | - Yi Lee
- Department of Laboratory Medicine, Clinical Research CenterKarolinska InstitutetStockholmSweden
| | - R. Beklem Bostancioglu
- Department of Laboratory Medicine, Clinical Research CenterKarolinska InstitutetStockholmSweden
| | - Helena Sork
- Department of Laboratory Medicine, Clinical Research CenterKarolinska InstitutetStockholmSweden
- Institute of TechnologyUniversity of TartuTartuEstonia
| | - Xiuming Liang
- Department of Laboratory Medicine, Clinical Research CenterKarolinska InstitutetStockholmSweden
| | - Wenyi Zheng
- Department of Laboratory Medicine, Clinical Research CenterKarolinska InstitutetStockholmSweden
| | - Dara K. Mohammad
- Department of Laboratory Medicine, Clinical Research CenterKarolinska InstitutetStockholmSweden
- College of Agricultural Engineering SciencesSalahaddin University‐ErbilErbilKurdistan RegionIraq
| | - Simonides I. van de Wakker
- Department of CardiologyExperimental Cardiology LaboratoryUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Pieter Vader
- Department of CardiologyExperimental Cardiology LaboratoryUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
- CDL ResearchUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Antje M. Zickler
- Department of Laboratory Medicine, Clinical Research CenterKarolinska InstitutetStockholmSweden
| | - Doste R. Mamand
- Department of Laboratory Medicine, Clinical Research CenterKarolinska InstitutetStockholmSweden
| | - Li Ma
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
| | - Margaret N. Holme
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
| | - Molly M. Stevens
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
- Department of MaterialsDepartment of Bioengineeringand Institute of Biomedical EngineeringImperial College LondonLondonUK
| | - Oscar P. B. Wiklander
- Department of Laboratory Medicine, Clinical Research CenterKarolinska InstitutetStockholmSweden
- Evox Therapeutics LimitedOxfordUK
| | - Samir EL Andaloussi
- Department of Laboratory Medicine, Clinical Research CenterKarolinska InstitutetStockholmSweden
- Evox Therapeutics LimitedOxfordUK
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| |
Collapse
|
69
|
Elucidation of CKAP4-remodeled cell mechanics in driving metastasis of bladder cancer through aptamer-based target discovery. Proc Natl Acad Sci U S A 2022; 119:e2110500119. [PMID: 35412892 PMCID: PMC9169774 DOI: 10.1073/pnas.2110500119] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Metastasis generally leads to a dismal prognosis in bladder cancer (BLCA). The mechanical status of the cell membrane has been reported to reflect the potential of the metastatic capacity of cancer cells. However, the molecular profile and corresponding mechanical traits underlying BLCA metastasis remain largely elusive. Our study demonstrates the significance of cytoskeleton-associated protein 4 (CKAP4) in BLCA malignancy through aptamer selection, emphasizes the mechanical dominance of the central-to-peripheral gradient over simply softening or stiffening in cell migration, and shows the role of exosomes in mediating mechanical signaling in BLCA metastasis. Altogether, our work verifies the promising advantages of an aptamer-based approach in cancer research, which ranges from biomarker discovery to the elucidation of biological functions. Metastasis contributes to the dismal prognosis of bladder cancer (BLCA). The mechanical status of the cell membrane is expected to mirror the ability of cell migration to promote cancer metastasis. However, the mechanical characteristics and underlying molecular profile associated with BLCA metastasis remain obscure. To study the unique cellular architecture and traits associated with cell migration, using a process called cell-based systematic evolution of ligands by exponential enrichment (cell-SELEX) we generated an aptamer-based molecular probe, termed spl3c, which identified cytoskeleton-associated protein 4 (CKAP4). CKAP4 was associated with tumor metastasis in BLCA, but we also found it to be a mechanical regulator of BLCA cells through the maintenance of a central-to-peripheral gradient of stiffness on the cell membrane. Notably, such mechanical traits were transportable through exosome-mediated intercellular CKAP4 trafficking, leading to significant enhancement of migration in recipient cells and, consequently, aggravating metastatic potential in vivo. Taken together, our study shows the robustness of this aptamer-based molecular tool for biomarker discovery, revealing the dominance of a CKAP4-induced central-to-peripheral gradient of membrane stiffness that benefits cell migration and delineating the role of exosomes in mediating mechanical signaling in BLCA metastasis.
Collapse
|
70
|
Sanchez BC, Hinchliffe M, Bracewell DG. GFP-tagging of extracellular vesicles for rapid process development. Biotechnol J 2022; 17:e2100583. [PMID: 35332662 DOI: 10.1002/biot.202100583] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/25/2022] [Accepted: 03/19/2022] [Indexed: 11/08/2022]
Abstract
Extracellular vesicles (EVs) act as nano-scale molecular messengers owing to their capacity to shuttle functional macromolecular cargo between cells. This intrinsic ability to deliver bioactive cargo has sparked great interest in the use of EVs as novel therapeutic delivery vehicles; investments totalling over $2 billion in 2020 alone were reported for therapeutic EVs. One of the bottlenecks facing the production of EVs is the lack of rapid and high throughput analytics and characterisation to aid process development. Here we have designed and engineered CHO cells to express GFP-tagged EVs via fusion to CD81. Moreover, we highlight the importance of parent cell characterisation to ensure lack of non-fused GFP for the effective use of this quantitative approach. The fluorescent nature of resulting vesicles allowed for rapid quantification of concentration and yield across the EV purification process. In this manner we deduced the degree of product loss by mass balance analysis of ultrafiltration processing and reconciled up to 97% of initial feed mass. The use of GFP-tagging allowed for straightforward monitoring of vesicle elution from chromatography separations and detection via western blotting. Collectively, this work illustrates the utility of GFP-tagged EVs as a quantitative and accessible tool for accelerated process development. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Braulio Carrillo Sanchez
- Department of Biochemical Engineering, University College London, London, WC1E 6BT, United Kingdom
| | | | - Daniel G Bracewell
- Department of Biochemical Engineering, University College London, London, WC1E 6BT, United Kingdom
| |
Collapse
|
71
|
Chen J, Tan Q, Yang Z, Jin Y. Engineered extracellular vesicles: potentials in cancer combination therapy. J Nanobiotechnology 2022; 20:132. [PMID: 35292030 PMCID: PMC8922858 DOI: 10.1186/s12951-022-01330-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/28/2022] [Indexed: 02/08/2023] Open
Abstract
Extracellular vesicles (EVs) are a group of secretory vesicles with cell-derived membrane and contents. Due to the cargo delivery capability, EVs can be designed as drug delivery platforms for cancer therapy. Biocompatibility and immune compatibility endow EVs with unique advantages compared with other nanocarriers. With the development of this field, multiple ingenious modification methods have been developed to obtain engineered EVs with desired performance. Application of engineered EVs in cancer therapy has gradually shifted from monotherapy to combinational therapy to fight against heterogeneous cancer cells and complex tumor microenvironment. In addition, the strong plasticity and load capacity of engineered EV make it potential to achieve various combinations of cancer treatment methods. In this review, we summarize the existing schemes of cancer combination therapy realized by engineered EVs, highlight the mechanisms and representative examples of these schemes and provide guidance for the future application of engineered EVs to design more effective cancer combination treatment plans.
Collapse
Affiliation(s)
- Jiangbin Chen
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, People's Republic of China
| | - Qi Tan
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, People's Republic of China
| | - Zimo Yang
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, People's Republic of China
| | - Yang Jin
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, People's Republic of China.
| |
Collapse
|
72
|
Bost JP, Saher O, Hagey D, Mamand DR, Liang X, Zheng W, Corso G, Gustafsson O, Görgens A, Smith CIE, Zain R, El Andaloussi S, Gupta D. Growth Media Conditions Influence the Secretion Route and Release Levels of Engineered Extracellular Vesicles. Adv Healthc Mater 2022; 11:e2101658. [PMID: 34773385 PMCID: PMC11469210 DOI: 10.1002/adhm.202101658] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/01/2021] [Indexed: 12/12/2022]
Abstract
Extracellular vesicles (EVs) are nanosized cell-derived vesicles produced by all cells, which provide a route of intercellular communication by transmitting biological cargo. While EVs offer promise as therapeutic agents, the molecular mechanisms of EV biogenesis are not yet fully elucidated, in part due to the concurrence of numerous interwoven pathways which give rise to heterogenous EV populations in vitro. The equilibrium between the EV-producing pathways is heavily influenced by factors in the extracellular environment, in such a way that can be taken advantage of to boost production of engineered EVs. In this study, a quantifiable EV-engineering approach is used to investigate how different cell media conditions alter EV production. The presence of serum, exogenous EVs, and other signaling factors in cell media alters EV production at the physical, molecular, and transcriptional levels. Further, it is demonstrated that the ceramide-dependent EV biogenesis route is the major pathway to production of engineered EVs during optimized EV-production. These findings suggest a novel understanding to the mechanisms underlying EV production in cell culture which can be applied to develop advanced EV production methods.
Collapse
Affiliation(s)
- Jeremy P. Bost
- Department of Laboratory MedicineKarolinska InstitutetHuddinge14152Sweden
| | - Osama Saher
- Department of Laboratory MedicineKarolinska InstitutetHuddinge14152Sweden
- Department of Pharmaceutics and Industrial PharmacyFaculty of PharmacyCairo UniversityCairo11562Egypt
| | - Daniel Hagey
- Department of Laboratory MedicineKarolinska InstitutetHuddinge14152Sweden
| | - Doste R. Mamand
- Department of Laboratory MedicineKarolinska InstitutetHuddinge14152Sweden
- Department of BiologyFaculty of ScienceCihan University‐ErbilArbil5XC8+WVIraq
| | - Xiuming Liang
- Department of Laboratory MedicineKarolinska InstitutetHuddinge14152Sweden
| | - Wenyi Zheng
- Department of Laboratory MedicineKarolinska InstitutetHuddinge14152Sweden
| | - Giulia Corso
- Department of Laboratory MedicineKarolinska InstitutetHuddinge14152Sweden
| | - Oskar Gustafsson
- Department of Laboratory MedicineKarolinska InstitutetHuddinge14152Sweden
| | - André Görgens
- Department of Laboratory MedicineKarolinska InstitutetHuddinge14152Sweden
| | - CI Edvard Smith
- Department of Laboratory MedicineKarolinska InstitutetHuddinge14152Sweden
| | - Rula Zain
- Department of Laboratory MedicineKarolinska InstitutetHuddinge14152Sweden
- Centre for Rare DiseasesDepartment of Clinical GeneticsKarolinska University HospitalStockholmSE‐171 76Sweden
| | | | - Dhanu Gupta
- Department of Laboratory MedicineKarolinska InstitutetHuddinge14152Sweden
| |
Collapse
|
73
|
Fan J, Pan J, Zhang X, Chen Y, Zeng Y, Huang L, Ma D, Chen Z, Wu G, Fan W. A peptide derived from the N-terminus of charged multivesicular body protein 6 (CHMP6) promotes the secretion of gene editing proteins via small extracellular vesicle production. Bioengineered 2022; 13:4702-4716. [PMID: 35188876 PMCID: PMC8973635 DOI: 10.1080/21655979.2022.2030571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Extracellular vesicles (EVs) are a promising new therapeutic platform. However, the low cargo-loading efficiency limits their clinical translation. In this study, we developed a high-yield EV cargo-loading device and explored its ability to encapsulate gene editing proteins. A series of fusion protein-based systems were constructed and their cargo loading efficiencies were compared by a NanoGlo luciferase assay. A myristoylated (Myr) peptide tag cloned from the N-terminal region of charged multivesicular body protein 6 (CHMP6), termed Myr(CHMP6), outcompeted CD9, ARRDC1, and other short polypeptides as an active packaging device. As determined by nanoparticle tracking analysis and transmission electron microscopy, the overexpression of Myr(CHMP6) increased small EV (sEV) production in Lenti-X 293T cells without altering sEV morphology. The high passive packaging efficiency of Myr(CHMP6) was also elucidated for unmodified cargo loading. Western blotting revealed that Myr(CHMP6) facilitated the loading of Cre and Cas9 into sEVs without the generation of packaging device-cargo fusion proteins. Furthermore, Myr(CHMP6)-modified sEVs loaded with Cre or Cas9 promoted gene-editing in recipient cells, as observed using a fluorescence reporter system. Subsequent investigation demonstrated a dose-dependent effect of Myr(CHMP6) tag-induced cargo-loading. Mechanistically, N-myristoylation alone was necessary but not sufficient for the effective packaging of proteins into EVs. Thus, our results indicated that Myr(CHMP6) induces sEV production and may be effective in loading gene editing proteins into sEVs for therapeutic purposes.
Collapse
Affiliation(s)
- Junyu Fan
- Department of Cardiology The Eighth Affiliated Hospital of Sun Yat-sen University Guangdong Shenzhen P.R. China.,NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University, Guangdong, Guangzhou, P.R. China
| | - Jiajie Pan
- Department of Cardiology The Eighth Affiliated Hospital of Sun Yat-sen University Guangdong Shenzhen P.R. China.,NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University, Guangdong, Guangzhou, P.R. China
| | - Xiaozhe Zhang
- Department of Cardiology The Eighth Affiliated Hospital of Sun Yat-sen University Guangdong Shenzhen P.R. China.,NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University, Guangdong, Guangzhou, P.R. China
| | - Yixi Chen
- Department of Cardiology The Eighth Affiliated Hospital of Sun Yat-sen University Guangdong Shenzhen P.R. China.,NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University, Guangdong, Guangzhou, P.R. China
| | - Yue Zeng
- Department of Cardiology The Eighth Affiliated Hospital of Sun Yat-sen University Guangdong Shenzhen P.R. China.,NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University, Guangdong, Guangzhou, P.R. China
| | - Lihan Huang
- Department of Cardiology The Eighth Affiliated Hospital of Sun Yat-sen University Guangdong Shenzhen P.R. China.,NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University, Guangdong, Guangzhou, P.R. China
| | - Dongwei Ma
- Department of Cardiology The Eighth Affiliated Hospital of Sun Yat-sen University Guangdong Shenzhen P.R. China.,NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University, Guangdong, Guangzhou, P.R. China
| | - Ziqi Chen
- Department of Cardiology The Eighth Affiliated Hospital of Sun Yat-sen University Guangdong Shenzhen P.R. China.,NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University, Guangdong, Guangzhou, P.R. China
| | - Guifu Wu
- Department of Cardiology The Eighth Affiliated Hospital of Sun Yat-sen University Guangdong Shenzhen P.R. China.,NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University, Guangdong, Guangzhou, P.R. China.,Guangdong Innovative Engineering and Technology Research Center for Assisted Circulation Guangdong Shenzhen P.R. China
| | - Wendong Fan
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P.R. China.,NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University, Guangdong, Guangzhou, P.R. China
| |
Collapse
|
74
|
Rufino-Ramos D, Lule S, Mahjoum S, Ughetto S, Cristopher Bragg D, Pereira de Almeida L, Breakefield XO, Breyne K. Using genetically modified extracellular vesicles as a non-invasive strategy to evaluate brain-specific cargo. Biomaterials 2022; 281:121366. [PMID: 35033904 PMCID: PMC8886823 DOI: 10.1016/j.biomaterials.2022.121366] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/25/2021] [Accepted: 01/04/2022] [Indexed: 12/18/2022]
Abstract
The lack of techniques to trace brain cell behavior in vivo hampers the ability to monitor status of cells in a living brain. Extracellular vesicles (EVs), nanosized membrane-surrounded vesicles, released by virtually all brain cells might be able to report their status in easily accessible biofluids, such as blood. EVs communicate among tissues using lipids, saccharides, proteins, and nucleic acid cargo that reflect the state and composition of their source cells. Currently, identifying the origin of brain-derived EVs has been challenging, as they consist of a rare population diluted in an overwhelming number of blood and peripheral tissue-derived EVs. Here, we developed a sensitive platform to select out pre-labelled brain-derived EVs in blood as a platform to study the molecular fingerprints of brain cells. This proof-of-principle study used a transducible construct tagging tetraspanin (TSN) CD63, a membrane-spanning hallmark of EVs equipped with affinity, bioluminescent, and fluorescent tags to increase detection sensitivity and robustness in capture of EVs secreted from pre-labelled cells into biofluids. Our platform enables unprecedented efficient isolation of neural EVs from the blood. These EVs derived from pre-labelled mouse brain cells or engrafted human neuronal progenitor cells (hNPCs) were submitted to multiplex analyses, including transcript and protein levels, in compliance with the multibiomolecule EV carriers. Overall, our novel strategy to track brain-derived EVs in a complex biofluid opens up new avenues to study EVs released from pre-labelled cells in near and distal compartments into the biofluid source.
Collapse
Affiliation(s)
- David Rufino-Ramos
- Neurology and Radiology Department, Massachusetts General Hospital, Harvard Medical School, 13(th)Street, Building 149, Charlestown, MA, 02129, USA; CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Coimbra, 3004-504, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, 3000-548, Portugal; CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Sevda Lule
- Neurology and Radiology Department, Massachusetts General Hospital, Harvard Medical School, 13(th)Street, Building 149, Charlestown, MA, 02129, USA
| | - Shadi Mahjoum
- Neurology and Radiology Department, Massachusetts General Hospital, Harvard Medical School, 13(th)Street, Building 149, Charlestown, MA, 02129, USA
| | - Stefano Ughetto
- Neurology and Radiology Department, Massachusetts General Hospital, Harvard Medical School, 13(th)Street, Building 149, Charlestown, MA, 02129, USA
| | - D Cristopher Bragg
- Neurology and Radiology Department, Massachusetts General Hospital, Harvard Medical School, 13(th)Street, Building 149, Charlestown, MA, 02129, USA; The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, MA, 02129, USA
| | - Luís Pereira de Almeida
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Coimbra, 3004-504, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, 3000-548, Portugal; CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Xandra O Breakefield
- Neurology and Radiology Department, Massachusetts General Hospital, Harvard Medical School, 13(th)Street, Building 149, Charlestown, MA, 02129, USA
| | - Koen Breyne
- Neurology and Radiology Department, Massachusetts General Hospital, Harvard Medical School, 13(th)Street, Building 149, Charlestown, MA, 02129, USA.
| |
Collapse
|
75
|
Melling GE, Conlon R, Pantazi P, Dellar ER, Samuel P, Baena-Lopez LA, Simpson JC, Carter DRF. Confocal microscopy analysis reveals that only a small proportion of extracellular vesicles are successfully labelled with commonly utilised staining methods. Sci Rep 2022; 12:262. [PMID: 34997141 PMCID: PMC8741769 DOI: 10.1038/s41598-021-04225-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/24/2021] [Indexed: 12/14/2022] Open
Abstract
Assessing genuine extracellular vesicle (EV) uptake is crucial for understanding the functional roles of EVs. This study measured the bona fide labelling of EVs utilising two commonly used fluorescent dyes, PKH26 and C5-maleimide-Alexa633. MCF7 EVs tagged with mEmerald-CD81 were isolated from conditioned media by size exclusion chromatography (SEC) and characterised using Nanoparticle Tracking Analysis (NTA), Transmission Electron Microscopy (TEM), MACsPlex immunocapture assay and immunoblots. These fluorescently tagged EVs were subsequently stained with C5-maleimide-Alexa633 or PKH26, according to published protocols. Colocalisation of dual-labelled EVs was assessed by confocal microscopy and quantified using the Rank-Weighted Colocalisation (RWC) algorithm. We observed strikingly poor colocalisation between mEmerald-CD81-tagged EVs and C5-Maleimide-Alexa633 (5.4% ± 1.8) or PKH26 (4.6% ± 1.6), that remained low even when serum was removed from preparations. Our data confirms previous work showing that some dyes form contaminating aggregates. Furthermore, uptake studies showed that maleimide and mEmerald-CD81-tagged EVs can be often located into non-overlapping subcellular locations. By using common methods to isolate and stain EVs we observed that most EVs remained unstained and most dye signal does not appear to be EV associated. Our work shows that there is an urgent need for optimisation and standardisation in how EV researchers use these tools to assess genuine EV signals.
Collapse
Affiliation(s)
- Genevieve E Melling
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
- Institute of Clinical Sciences, School of Biomedical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Ross Conlon
- Cell Screening Laboratory, School of Biology and Environmental Science, University College Dublin, Science Centre West, Belfield, Dublin 4, Ireland
| | - Paschalia Pantazi
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Campus, London, UK
| | - Elizabeth R Dellar
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Priya Samuel
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Luis Alberto Baena-Lopez
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Jeremy C Simpson
- Cell Screening Laboratory, School of Biology and Environmental Science, University College Dublin, Science Centre West, Belfield, Dublin 4, Ireland.
| | - David R F Carter
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK.
- Evox Therapeutics Ltd, Oxford Science Park, Medawar Centre, Robert Robinson Avenue, Oxford, OX4 4HG, UK.
| |
Collapse
|
76
|
Akbar A, Malekian F, Baghban N, Kodam SP, Ullah M. Methodologies to Isolate and Purify Clinical Grade Extracellular Vesicles for Medical Applications. Cells 2022; 11:186. [PMID: 35053301 PMCID: PMC8774122 DOI: 10.3390/cells11020186] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 02/06/2023] Open
Abstract
The use of extracellular vesicles (EV) in nano drug delivery has been demonstrated in many previous studies. In this study, we discuss the sources of extracellular vesicles, including plant, salivary and urinary sources which are easily available but less sought after compared with blood and tissue. Extensive research in the past decade has established that the breadth of EV applications is wide. However, the efforts on standardizing the isolation and purification methods have not brought us to a point that can match the potential of extracellular vesicles for clinical use. The standardization can open doors for many researchers and clinicians alike to experiment with the proposed clinical uses with lesser concerns regarding untraceable side effects. It can make it easier to identify the mechanism of therapeutic benefits and to track the mechanism of any unforeseen effects observed.
Collapse
Affiliation(s)
- Asma Akbar
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, USA; (A.A.); (F.M.); (N.B.); (S.P.K.)
| | - Farzaneh Malekian
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, USA; (A.A.); (F.M.); (N.B.); (S.P.K.)
| | - Neda Baghban
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, USA; (A.A.); (F.M.); (N.B.); (S.P.K.)
| | - Sai Priyanka Kodam
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, USA; (A.A.); (F.M.); (N.B.); (S.P.K.)
| | - Mujib Ullah
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, USA; (A.A.); (F.M.); (N.B.); (S.P.K.)
- Department of Cancer Immunology, Genentech Inc., South San Francisco, CA 94080, USA
- Molecular Medicine Department of Medicine, Stanford University, Palo Alto, CA 94304, USA
| |
Collapse
|
77
|
Abstract
Extracellular vesicles are lipid-bilayer-enclosed nanoparticles present in the majority of biological fluids that mediate intercellular communication. EVs are able to transfer their contents (including nucleic acids, proteins, lipids, and small molecules) to recipient cells, and thus hold great promise as drug delivery vehicles. However, their therapeutic application is limited by lack of efficient cargo loading strategies, a need to improve EV tissue-targeting capabilities and a requirement to improve escape from the endolysosomal system. These challenges can be effectively addressed by modifying EVs with peptides which confer specific advantageous properties, thus enhancing their therapeutic potential. Here we provide an overview of the applications of peptide technology with respect to EV therapeutics. We focus on the utility of EV-modifying peptides for the purposes of promoting cargo loading, tissue-targeting and endosomal escape, leading to enhanced delivery of the EV cargo to desired cells/tissues and subcellular target locations. Both endogenous and exogenous methods for modifying EVs with peptides are considered.
Collapse
|
78
|
CRISPR/Cas9 Genome Editing vs. Over-Expression for Fluorescent Extracellular Vesicle-Labeling: A Quantitative Analysis. Int J Mol Sci 2021; 23:ijms23010282. [PMID: 35008709 PMCID: PMC8745383 DOI: 10.3390/ijms23010282] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Abstract
Over-expression of fluorescently-labeled markers for extracellular vesicles is frequently used to visualize vesicle up-take and transport. EVs that are labeled by over-expression show considerable heterogeneity regarding the number of fluorophores on single particles, which could potentially bias tracking and up-take studies in favor of more strongly-labeled particles. To avoid the potential artefacts that are caused by over-expression, we developed a genome editing approach for the fluorescent labeling of the extracellular vesicle marker CD63 with green fluorescent protein using the CRISPR/Cas9 technology. Using single-molecule sensitive fluorescence microscopy, we quantitatively compared the degree of labeling of secreted small extracellular vesicles from conventional over-expression and the CRISPR/Cas9 approach with true single-particle measurements. With our analysis, we can demonstrate a larger fraction of single-GFP-labeled EVs in the EVs that were isolated from CRISPR/Cas9-modified cells (83%) compared to EVs that were isolated from GFP-CD63 over-expressing cells (36%). Despite only single-GFP-labeling, CRISPR-EVs can be detected and discriminated from auto-fluorescence after their up-take into cells. To demonstrate the flexibility of the CRISPR/Cas9 genome editing method, we fluorescently labeled EVs using the HaloTag® with lipid membrane permeable dye, JaneliaFluor® 646, which allowed us to perform 3D-localization microscopy of single EVs taken up by the cultured cells.
Collapse
|
79
|
Dosing extracellular vesicles. Adv Drug Deliv Rev 2021; 178:113961. [PMID: 34481030 DOI: 10.1016/j.addr.2021.113961] [Citation(s) in RCA: 198] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/19/2021] [Accepted: 08/30/2021] [Indexed: 02/06/2023]
Abstract
Extracellular vesicles (EVs) are natural nanoparticles containing biologically active molecules. They are important mediators of intercellular communication and can be exploited therapeutically by various bioengineering approaches. To accurately determine the therapeutic potential of EVs in pre-clinical and clinical settings, dependable dosing strategies are of utmost importance. However, the field suffers from inconsistencies comprising all areas of EV production and characterisation. Therefore, a standardised and well-defined process in EV quantification, key to reliable therapeutic EV dosing, remains to be established. Here, we examined 64 pre-clinical studies for EV-based therapeutics with respect to their applied EV dosing strategies. We identified variations in effective dosing strategies irrespective of the applied EV purification method and cell source. Moreover, we found dose discrepancies depending on the disease model, where EV doses were selected without accounting for published EV pharmacokinetics or biodistribution patterns. We therefore propose to focus on qualitative aspects when dosing EV-based therapeutics, such as the potency of the therapeutic cargo entity. This will ensure batch-to-batch reliability and enhance reproducibility between applications. Furthermore, it will allow for the successful benchmarking of EV-based therapeutics compared to other nanoparticle drug delivery systems, such as viral vector-based or lipid-based nanoparticle approaches.
Collapse
|
80
|
Scaled preparation of extracellular vesicles from conditioned media. Adv Drug Deliv Rev 2021; 177:113940. [PMID: 34419502 DOI: 10.1016/j.addr.2021.113940] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/13/2021] [Accepted: 08/16/2021] [Indexed: 12/15/2022]
Abstract
Extracellular vesicles (EVs) especially of mesenchymal stem/stomal cells (MSCs) are increasingly considered as biotherapeutic agents for a variety of different diseases. For translating them effectively into the clinics, scalable production processes fulfilling good manufacturing practice (GMP) are needed. Like for other biotherapeutic agents, the manufacturing of EV products can be subdivided in the upstream and downstream processing and the subsequent quality control, each of them containing several unit operations. During upstream processing (USP), cells are isolated, stored (cell banking) and expanded; furthermore, EV-containing conditioned media are produced. During downstream processing (DSP), conditioned media (CM) are processed to obtain concentrated and purified EV products. CM are either stored until DSP or are directly processed. As first unit operation in DSP, clarification removes remaining cells, debris and other larger impurities. The key operations of each EV DSP is volume-reduction combined with purification of the concentrated EVs. Most of the EV preparation methods used in conventional research labs including differential centrifugation procedures are limited in their scalability. Consequently, it is a major challenge in the therapeutic EV field to identify appropriate EV concentration and purification methods allowing scale up. As EVs share several features with enveloped viruses, that are used for more than two decades in the clinics now, several principles can be adopted to EV manufacturing. Here, we introduce and discuss volume reducing and purification methods frequently used for viruses and analyze their value for the manufacturing of EV-based therapeutics.
Collapse
|
81
|
Bost JP, Barriga H, Holme MN, Gallud A, Maugeri M, Gupta D, Lehto T, Valadi H, Esbjörner EK, Stevens MM, El-Andaloussi S. Delivery of Oligonucleotide Therapeutics: Chemical Modifications, Lipid Nanoparticles, and Extracellular Vesicles. ACS NANO 2021; 15:13993-14021. [PMID: 34505766 PMCID: PMC8482762 DOI: 10.1021/acsnano.1c05099] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Indexed: 05/04/2023]
Abstract
Oligonucleotides (ONs) comprise a rapidly growing class of therapeutics. In recent years, the list of FDA-approved ON therapies has rapidly expanded. ONs are small (15-30 bp) nucleotide-based therapeutics which are capable of targeting DNA and RNA as well as other biomolecules. ONs can be subdivided into several classes based on their chemical modifications and on the mechanisms of their target interactions. Historically, the largest hindrance to the widespread usage of ON therapeutics has been their inability to effectively internalize into cells and escape from endosomes to reach their molecular targets in the cytosol or nucleus. While cell uptake has been improved, "endosomal escape" remains a significant problem. There are a range of approaches to overcome this, and in this review, we focus on three: altering the chemical structure of the ONs, formulating synthetic, lipid-based nanoparticles to encapsulate the ONs, or biologically loading the ONs into extracellular vesicles. This review provides a background to the design and mode of action of existing FDA-approved ONs. It presents the most common ON classifications and chemical modifications from a fundamental scientific perspective and provides a roadmap of the cellular uptake pathways by which ONs are trafficked. Finally, this review delves into each of the above-mentioned approaches to ON delivery, highlighting the scientific principles behind each and covering recent advances.
Collapse
Affiliation(s)
- Jeremy P. Bost
- Department
of Laboratory Medicine, Karolinska Institutet, Huddinge 14152, Sweden
| | - Hanna Barriga
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden
| | - Margaret N. Holme
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden
| | - Audrey Gallud
- Department
of Biology and Biological Engineering, Chalmers
University of Technology, Gothenburg 41296, Sweden
- Advanced
Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg 43150, Sweden
| | - Marco Maugeri
- Department
of Rheumatology and Inflammation Research, Institute of Medicine,
Sahlgrenska Academy, University of Gothenburg, Gothenburg 41390, Sweden
| | - Dhanu Gupta
- Department
of Laboratory Medicine, Karolinska Institutet, Huddinge 14152, Sweden
| | - Taavi Lehto
- Department
of Laboratory Medicine, Karolinska Institutet, Huddinge 14152, Sweden
- Institute
of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Hadi Valadi
- Department
of Rheumatology and Inflammation Research, Institute of Medicine,
Sahlgrenska Academy, University of Gothenburg, Gothenburg 41390, Sweden
| | - Elin K. Esbjörner
- Department
of Biology and Biological Engineering, Chalmers
University of Technology, Gothenburg 41296, Sweden
| | - Molly M. Stevens
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden
- Department
of Materials, Department of Bioengineering, Institute of Biomedical
Engineering, Imperial College London, London SW7 2BU, United Kingdom
| | - Samir El-Andaloussi
- Department
of Laboratory Medicine, Karolinska Institutet, Huddinge 14152, Sweden
| |
Collapse
|
82
|
Verweij FJ, Balaj L, Boulanger CM, Carter DRF, Compeer EB, D'Angelo G, El Andaloussi S, Goetz JG, Gross JC, Hyenne V, Krämer-Albers EM, Lai CP, Loyer X, Marki A, Momma S, Nolte-'t Hoen ENM, Pegtel DM, Peinado H, Raposo G, Rilla K, Tahara H, Théry C, van Royen ME, Vandenbroucke RE, Wehman AM, Witwer K, Wu Z, Wubbolts R, van Niel G. The power of imaging to understand extracellular vesicle biology in vivo. Nat Methods 2021; 18:1013-1026. [PMID: 34446922 PMCID: PMC8796660 DOI: 10.1038/s41592-021-01206-3] [Citation(s) in RCA: 204] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 05/20/2021] [Indexed: 01/08/2023]
Abstract
Extracellular vesicles (EVs) are nano-sized lipid bilayer vesicles released by virtually every cell type. EVs have diverse biological activities, ranging from roles in development and homeostasis to cancer progression, which has spurred the development of EVs as disease biomarkers and drug nanovehicles. Owing to the small size of EVs, however, most studies have relied on isolation and biochemical analysis of bulk EVs separated from biofluids. Although informative, these approaches do not capture the dynamics of EV release, biodistribution, and other contributions to pathophysiology. Recent advances in live and high-resolution microscopy techniques, combined with innovative EV labeling strategies and reporter systems, provide new tools to study EVs in vivo in their physiological environment and at the single-vesicle level. Here we critically review the latest advances and challenges in EV imaging, and identify urgent, outstanding questions in our quest to unravel EV biology and therapeutic applications.
Collapse
Affiliation(s)
- Frederik J Verweij
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France.
- GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France.
| | - Leonora Balaj
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - David R F Carter
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
- Evox Therapeutics Limited, Oxford Science Park, Oxford, UK
| | - Ewoud B Compeer
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Gisela D'Angelo
- Institut Curie, PSL Research University, CNRS, UMR144 Cell Biology and Cancer, Paris, France
| | - Samir El Andaloussi
- Evox Therapeutics Limited, Oxford Science Park, Oxford, UK
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jacky G Goetz
- INSERM UMR_S1109, Tumor Biomechanics Lab, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Equipe Labellisée Ligue contre le Cancer, Strasbourg, France
| | | | - Vincent Hyenne
- INSERM UMR_S1109, Tumor Biomechanics Lab, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Equipe Labellisée Ligue contre le Cancer, Strasbourg, France
- CNRS SNC5055, Strasbourg, France
| | - Eva-Maria Krämer-Albers
- Johannes Gutenberg-Universität Mainz, Institute of Developmental Biology and Neurobiology, Mainz, Germany
| | - Charles P Lai
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
| | - Xavier Loyer
- Université de Paris, PARCC, INSERM, Paris, France
| | - Alex Marki
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Stefan Momma
- Institute of Neurology (Edinger Institute), Goethe-University, Frankfurt am Main, Germany
| | - Esther N M Nolte-'t Hoen
- Department of Biomolecular Health Sciences, Faculty of veterinary medicine, Utrecht University, Utrecht, the Netherlands
| | - D Michiel Pegtel
- Amsterdam UMC, Vrije Universiteit Amsterdam, Pathology, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Hector Peinado
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Graça Raposo
- Institut Curie, PSL Research University, CNRS, UMR144 Cell Biology and Cancer, Paris, France
| | - Kirsi Rilla
- University of Eastern Finland, Institute of Biomedicine, Kuopio, Finland
| | - Hidetoshi Tahara
- Department of Cellular and Molecular Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Clotilde Théry
- Institut Curie, PSL Research University, INSERM U932, Immunity and Cancer, Paris, France
| | | | - Roosmarijn E Vandenbroucke
- VIB Center for Inflammation Research and Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Ann M Wehman
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Kenneth Witwer
- Department of Molecular and Comparative Pathobiology and Neurology and the Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhiwei Wu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China
- Medical School, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| | - Richard Wubbolts
- Department of Biomolecular Health Sciences, Faculty of veterinary medicine, Utrecht University, Utrecht, the Netherlands
| | - Guillaume van Niel
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France.
- GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France.
| |
Collapse
|
83
|
Gupta D, Wiklander OPB, Görgens A, Conceição M, Corso G, Liang X, Seow Y, Balusu S, Feldin U, Bostancioglu B, Jawad R, Mamand DR, Lee YXF, Hean J, Mäger I, Roberts TC, Gustafsson M, Mohammad DK, Sork H, Backlund A, Lundin P, de Fougerolles A, Smith CIE, Wood MJA, Vandenbroucke RE, Nordin JZ, El-Andaloussi S. Amelioration of systemic inflammation via the display of two different decoy protein receptors on extracellular vesicles. Nat Biomed Eng 2021; 5:1084-1098. [PMID: 34616047 DOI: 10.1038/s41551-021-00792-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/07/2021] [Indexed: 02/01/2023]
Abstract
Extracellular vesicles (EVs) can be functionalized to display specific protein receptors on their surface. However, surface-display technology typically labels only a small fraction of the EV population. Here, we show that the joint display of two different therapeutically relevant protein receptors on EVs can be optimized by systematically screening EV-loading protein moieties. We used cytokine-binding domains derived from tumour necrosis factor receptor 1 (TNFR1) and interleukin-6 signal transducer (IL-6ST), which can act as decoy receptors for the pro-inflammatory cytokines tumour necrosis factor alpha (TNF-α) and IL-6, respectively. We found that the genetic engineering of EV-producing cells to express oligomerized exosomal sorting domains and the N-terminal fragment of syntenin (a cytosolic adaptor of the single transmembrane domain protein syndecan) increased the display efficiency and inhibitory activity of TNFR1 and IL-6ST and facilitated their joint display on EVs. In mouse models of systemic inflammation, neuroinflammation and intestinal inflammation, EVs displaying the cytokine decoys ameliorated the disease phenotypes with higher efficacy as compared with clinically approved biopharmaceutical agents targeting the TNF-α and IL-6 pathways.
Collapse
Affiliation(s)
- Dhanu Gupta
- Biomolecular Medicine, Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Oscar P B Wiklander
- Biomolecular Medicine, Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - André Görgens
- Biomolecular Medicine, Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | - Giulia Corso
- Biomolecular Medicine, Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Xiuming Liang
- Biomolecular Medicine, Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Yiqi Seow
- Molecular Engineering Laboratory, Institute for Bioengineering and Nanotechnology, A*STAR, Singapore, Singapore
| | - Sriram Balusu
- VIB Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Ulrika Feldin
- Biomolecular Medicine, Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Beklem Bostancioglu
- Biomolecular Medicine, Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Rim Jawad
- Biomolecular Medicine, Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Doste R Mamand
- Biomolecular Medicine, Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Biology Department, Cihan University-Erbil, Erbil, Iraq
| | - Yi Xin Fiona Lee
- Biomolecular Medicine, Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Genome Institute of Singapore, Agency for Science, Technology and Research, A*STAR, Singapore, Singapore
| | | | - Imre Mäger
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Thomas C Roberts
- Department of Paediatrics, University of Oxford, Oxford, UK.,MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - Manuela Gustafsson
- Biomolecular Medicine, Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Dara K Mohammad
- Biomolecular Medicine, Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,College of Agricultural Engineering Sciences, Salahaddin University-Erbil, Erbil, Iraq
| | - Helena Sork
- Biomolecular Medicine, Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Alexandra Backlund
- Cardiovascular Medicine Unit, Department of Medicine, Solna, Karolinska Institute, Stockholm, Sweden
| | | | | | - C I Edvard Smith
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Matthew J A Wood
- Department of Paediatrics, University of Oxford, Oxford, UK.,MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - Roosmarijn E Vandenbroucke
- VIB Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Joel Z Nordin
- Biomolecular Medicine, Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Samir El-Andaloussi
- Biomolecular Medicine, Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
84
|
Scott A, Sueiro Ballesteros L, Bradshaw M, Tsuji C, Power A, Lorriman J, Love J, Paul D, Herman A, Emanueli C, Richardson RJ. In Vivo Characterization of Endogenous Cardiovascular Extracellular Vesicles in Larval and Adult Zebrafish. Arterioscler Thromb Vasc Biol 2021; 41:2454-2468. [PMID: 34261327 PMCID: PMC8384253 DOI: 10.1161/atvbaha.121.316539] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 06/30/2021] [Indexed: 01/08/2023]
Abstract
Objective Extracellular vesicles (EVs) facilitate molecular transport across extracellular space, allowing local and systemic signaling during homeostasis and in disease. Extensive studies have described functional roles for EV populations, including during cardiovascular disease, but the in vivo characterization of endogenously produced EVs is still in its infancy. Because of their genetic tractability and live imaging amenability, zebrafish represent an ideal but under-used model to investigate endogenous EVs. We aimed to establish a transgenic zebrafish model to allow the in vivo identification, tracking, and extraction of endogenous EVs produced by different cell types. Approach and Results Using a membrane-tethered fluorophore reporter system, we show that EVs can be fluorescently labeled in larval and adult zebrafish and demonstrate that multiple cell types including endothelial cells and cardiomyocytes actively produce EVs in vivo. Cell-type specific EVs can be tracked by high spatiotemporal resolution light-sheet live imaging and modified flow cytometry methods allow these EVs to be further evaluated. Additionally, cryo electron microscopy reveals the full morphological diversity of larval and adult EVs. Importantly, we demonstrate the utility of this model by showing that different cell types exchange EVs in the adult heart and that ischemic injury models dynamically alter EV production. Conclusions We describe a powerful in vivo zebrafish model for the investigation of endogenous EVs in all aspects of cardiovascular biology and pathology. A cell membrane fluorophore labeling approach allows cell-type specific tracing of EV origin without bias toward the expression of individual protein markers and will allow detailed future examination of their function.
Collapse
Affiliation(s)
- Aaron Scott
- School of Physiology, Pharmacology & Neuroscience, Faculty of Biomedical Sciences (A.S., M.B., C.T., J.L., D.P., R.J.R.)
| | - Lorena Sueiro Ballesteros
- Flow Cytometry Facility, Faculty of Biomedical Sciences (L.S.B., A.H.)
- Now with Charles River Laboratories, Discovery House, Quays Office Park, Conference Avenue, Portishead, Bristol, United Kingdom (L.S.B.)
| | - Marston Bradshaw
- School of Physiology, Pharmacology & Neuroscience, Faculty of Biomedical Sciences (A.S., M.B., C.T., J.L., D.P., R.J.R.)
| | - Chisato Tsuji
- School of Physiology, Pharmacology & Neuroscience, Faculty of Biomedical Sciences (A.S., M.B., C.T., J.L., D.P., R.J.R.)
| | - Ann Power
- BioEconomy Centre, The Henry Wellcome Building for Biocatalysis, Biosciences, University of Exeter, United Kingdom (A.P., J.L.)
| | - James Lorriman
- School of Physiology, Pharmacology & Neuroscience, Faculty of Biomedical Sciences (A.S., M.B., C.T., J.L., D.P., R.J.R.)
| | - John Love
- BioEconomy Centre, The Henry Wellcome Building for Biocatalysis, Biosciences, University of Exeter, United Kingdom (A.P., J.L.)
| | - Danielle Paul
- School of Physiology, Pharmacology & Neuroscience, Faculty of Biomedical Sciences (A.S., M.B., C.T., J.L., D.P., R.J.R.)
| | - Andrew Herman
- Flow Cytometry Facility, Faculty of Biomedical Sciences (L.S.B., A.H.)
| | - Costanza Emanueli
- Bristol Heart Institute, School of Clinical Science (C.E.), University of Bristol, United Kingdom
- National Heart and Lung Institute, Imperial College London, United Kingdom (C.E.)
| | - Rebecca J. Richardson
- School of Physiology, Pharmacology & Neuroscience, Faculty of Biomedical Sciences (A.S., M.B., C.T., J.L., D.P., R.J.R.)
| |
Collapse
|
85
|
Silva AM, Lázaro‐Ibáñez E, Gunnarsson A, Dhande A, Daaboul G, Peacock B, Osteikoetxea X, Salmond N, Friis KP, Shatnyeva O, Dekker N. Quantification of protein cargo loading into engineered extracellular vesicles at single-vesicle and single-molecule resolution. J Extracell Vesicles 2021; 10:e12130. [PMID: 34377376 PMCID: PMC8329990 DOI: 10.1002/jev2.12130] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 06/20/2021] [Accepted: 07/13/2021] [Indexed: 12/15/2022] Open
Abstract
Extracellular Vesicles (EVs) have been intensively explored for therapeutic delivery of proteins. However, methods to quantify cargo proteins loaded into engineered EVs are lacking. Here, we describe a workflow for EV analysis at the single-vesicle and single-molecule level to accurately quantify the efficiency of different EV-sorting proteins in promoting cargo loading into EVs. Expi293F cells were engineered to express EV-sorting proteins fused to green fluorescent protein (GFP). High levels of GFP loading into secreted EVs was confirmed by Western blotting for specific EV-sorting domains, but quantitative single-vesicle analysis by Nanoflow cytometry detected GFP in less than half of the particles analysed, reflecting EV heterogeneity. Anti-tetraspanin EV immunostaining in ExoView confirmed a heterogeneous GFP distribution in distinct subpopulations of CD63+, CD81+, or CD9+ EVs. Loading of GFP into individual vesicles was quantified by Single-Molecule Localization Microscopy. The combined results demonstrated TSPAN14, CD63 and CD63/CD81 fused to the PDGFRβ transmembrane domain as the most efficient EV-sorting proteins, accumulating on average 50-170 single GFP molecules per vesicle. In conclusion, we validated a set of complementary techniques suitable for high-resolution analysis of EV preparations that reliably capture their heterogeneity, and propose highly efficient EV-sorting proteins to be used in EV engineering applications.
Collapse
Affiliation(s)
- Andreia M. Silva
- Discovery BiologyDiscovery SciencesBioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Elisa Lázaro‐Ibáñez
- Discovery BiologyDiscovery SciencesBioPharmaceuticals R&DAstraZenecaGothenburgSweden
- Advanced Drug DeliveryPharmaceutical SciencesBioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Anders Gunnarsson
- Structure and BiophysicsDiscovery SciencesBioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | | | | | | | - Xabier Osteikoetxea
- Discovery BiologyDiscovery SciencesBioPharmaceuticals R&DAstraZenecaAlderley ParkUK
| | - Nikki Salmond
- Discovery BiologyDiscovery SciencesBioPharmaceuticals R&DAstraZenecaAlderley ParkUK
| | - Kristina Pagh Friis
- Advanced Drug DeliveryPharmaceutical SciencesBioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Olga Shatnyeva
- Discovery BiologyDiscovery SciencesBioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Niek Dekker
- Discovery BiologyDiscovery SciencesBioPharmaceuticals R&DAstraZenecaGothenburgSweden
| |
Collapse
|
86
|
Nagelkerke A, Ojansivu M, van der Koog L, Whittaker TE, Cunnane EM, Silva AM, Dekker N, Stevens MM. Extracellular vesicles for tissue repair and regeneration: Evidence, challenges and opportunities. Adv Drug Deliv Rev 2021; 175:113775. [PMID: 33872693 DOI: 10.1016/j.addr.2021.04.013] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/20/2021] [Accepted: 04/15/2021] [Indexed: 12/13/2022]
Abstract
Extracellular vesicles (EVs) are biological nanoparticles naturally secreted by cells, acting as delivery vehicles for molecular messages. During the last decade, EVs have been assigned multiple functions that have established their potential as therapeutic mediators for a variety of diseases and conditions. In this review paper, we report on the potential of EVs in tissue repair and regeneration. The regenerative properties that have been associated with EVs are explored, detailing the molecular cargo they carry that is capable of mediating such effects, the signaling cascades triggered in target cells and the functional outcome achieved. EV interactions and biodistribution in vivo that influence their regenerative effects are also described, particularly upon administration in combination with biomaterials. Finally, we review the progress that has been made for the successful implementation of EV regenerative therapies in a clinical setting.
Collapse
Affiliation(s)
- Anika Nagelkerke
- Pharmaceutical Analysis, Groningen Research Institute of Pharmacy, University of Groningen, P.O. Box 196, XB20, 9700 AD Groningen, the Netherlands.
| | - Miina Ojansivu
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.
| | - Luke van der Koog
- Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, P.O. Box 196, XB10, 9700 AD Groningen, the Netherlands; GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | - Thomas E Whittaker
- Department of Materials, Imperial College London, London, UK; Department of Bioengineering, Imperial College London, London, UK; Institute of Biomedical Engineering, Imperial College London, London, UK
| | - Eoghan M Cunnane
- Department of Materials, Imperial College London, London, UK; Department of Bioengineering, Imperial College London, London, UK; Institute of Biomedical Engineering, Imperial College London, London, UK.
| | - Andreia M Silva
- Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| | - Niek Dekker
- Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| | - Molly M Stevens
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden; Department of Materials, Imperial College London, London, UK; Department of Bioengineering, Imperial College London, London, UK; Institute of Biomedical Engineering, Imperial College London, London, UK.
| |
Collapse
|
87
|
Ding L, Yang X, Gao Z, Effah CY, Zhang X, Wu Y, Qu L. A Holistic Review of the State-of-the-Art Microfluidics for Exosome Separation: An Overview of the Current Status, Existing Obstacles, and Future Outlook. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007174. [PMID: 34047052 DOI: 10.1002/smll.202007174] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/25/2021] [Indexed: 06/12/2023]
Abstract
Exosomes, a class of small extracellular vesicles (30-150 nm), are secreted by almost all types of cells into virtually all body fluids. These small vesicles are attracting increasing research attention owing to their potential for disease diagnosis and therapy. However, their inherent heterogeneity and the complexity of bio-fluids pose significant challenges for their isolation. Even the "gold standard," differential centrifugation, suffers from poor yields and is time-consuming. In this context, recent developments in microfluidic technologies have provided an ideal system for exosome extraction and these devices exhibit some fascinating properties such as high speeds, good portability, and low sample volumes. In this review, the focus is on the state-of-the-art microfluidic technologies for exosome isolation and highlight potential directions for future research and development by analyzing the challenges faced by the current strategies.
Collapse
Affiliation(s)
- Lihua Ding
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaonan Yang
- School of Information Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Zibo Gao
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Clement Yaw Effah
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Lingbo Qu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
88
|
Richter M, Vader P, Fuhrmann G. Approaches to surface engineering of extracellular vesicles. Adv Drug Deliv Rev 2021; 173:416-426. [PMID: 33831479 DOI: 10.1016/j.addr.2021.03.020] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/03/2021] [Accepted: 03/29/2021] [Indexed: 12/23/2022]
Abstract
Extracellular vesicles (EVs) are cell-derived nanoparticles that are important mediators in intercellular communication. This function makes them auspicious candidates for therapeutic and drug-delivery applications. Among EVs, mammalian cell derived EVs and outer membrane vesicles (OMVs) produced by gram-negative bacteria are the most investigated candidates for pharmaceutical applications. To further optimize their performance and to utilize their natural abilities, researchers have strived to equip EVs with new moieties on their surface while preserving the integrity of the vesicles. The aim of this review is to give a comprehensive overview of techniques that can be used to introduce these moieties to the vesicle surface. Approaches can be classified in regards to whether they take place before or after the isolation of EVs. The producing cells can be subjected to genetic manipulation or metabolic engineering to produce surface modified vesicles or EVs are engineered after their isolation by physical or chemical means. Here, the advantages and disadvantages of these processes and their applicability for the development of EVs as therapeutic agents are discussed.
Collapse
|
89
|
MAGEA4 Coated Extracellular Vesicles Are Stable and Can Be Assembled In Vitro. Int J Mol Sci 2021; 22:ijms22105208. [PMID: 34069064 PMCID: PMC8155938 DOI: 10.3390/ijms22105208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/02/2021] [Accepted: 05/11/2021] [Indexed: 12/18/2022] Open
Abstract
Extracellular vesicles (EVs) are valued candidates for the development of new tools for medical applications. Vesicles carrying melanoma-associated antigen A (MAGEA) proteins, a subfamily of cancer-testis antigens, are particularly promising tools in the fight against cancer. Here, we have studied the biophysical and chemical properties of MAGEA4-EVs and show that they are stable under common storage conditions such as keeping at +4 °C and -80 °C for at least 3 weeks after purification. The MAGEA4-EVs can be freeze-thawed two times without losing MAGEA4 in detectable quantities. The attachment of MAGEA4 to the surface of EVs cannot be disrupted by high salt concentrations or chelators, but the vesicles are sensitive to high pH. The MAGEA4 protein can bind to the surface of EVs in vitro, using robust passive incubation. In addition, EVs can be loaded with recombinant proteins fused to the MAGEA4 open reading frame within the cells and also in vitro. The high stability of MAGEA4-EVs ensures their potential for the development of EV-based anti-cancer applications.
Collapse
|
90
|
Arab T, Mallick ER, Huang Y, Dong L, Liao Z, Zhao Z, Gololobova O, Smith B, Haughey NJ, Pienta KJ, Slusher BS, Tarwater PM, Tosar JP, Zivkovic AM, Vreeland WN, Paulaitis ME, Witwer KW. Characterization of extracellular vesicles and synthetic nanoparticles with four orthogonal single-particle analysis platforms. J Extracell Vesicles 2021; 10:e12079. [PMID: 33850608 PMCID: PMC8023330 DOI: 10.1002/jev2.12079] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 12/20/2022] Open
Abstract
We compared four orthogonal technologies for sizing, counting, and phenotyping of extracellular vesicles (EVs) and synthetic particles. The platforms were: single‐particle interferometric reflectance imaging sensing (SP‐IRIS) with fluorescence, nanoparticle tracking analysis (NTA) with fluorescence, microfluidic resistive pulse sensing (MRPS), and nanoflow cytometry measurement (NFCM). EVs from the human T lymphocyte line H9 (high CD81, low CD63) and the promonocytic line U937 (low CD81, high CD63) were separated from culture conditioned medium (CCM) by differential ultracentrifugation (dUC) or a combination of ultrafiltration (UF) and size exclusion chromatography (SEC) and characterized by transmission electron microscopy (TEM) and Western blot (WB). Mixtures of synthetic particles (silica and polystyrene spheres) with known sizes and/or concentrations were also tested. MRPS and NFCM returned similar particle counts, while NTA detected counts approximately one order of magnitude lower for EVs, but not for synthetic particles. SP‐IRIS events could not be used to estimate particle concentrations. For sizing, SP‐IRIS, MRPS, and NFCM returned similar size profiles, with smaller sizes predominating (per power law distribution), but with sensitivity typically dropping off below diameters of 60 nm. NTA detected a population of particles with a mode diameter greater than 100 nm. Additionally, SP‐IRIS, MRPS, and NFCM were able to identify at least three of four distinct size populations in a mixture of silica or polystyrene nanoparticles. Finally, for tetraspanin phenotyping, the SP‐IRIS platform in fluorescence mode was able to detect at least two markers on the same particle, while NFCM detected either CD81 or CD63. Based on the results of this study, we can draw conclusions about existing single‐particle analysis capabilities that may be useful for EV biomarker development and mechanistic studies.
Collapse
Affiliation(s)
- Tanina Arab
- Department of Molecular and Comparative Pathobiology Johns Hopkins University School of Medicine Baltimore Maryland USA
| | - Emily R Mallick
- Department of Molecular and Comparative Pathobiology Johns Hopkins University School of Medicine Baltimore Maryland USA
| | - Yiyao Huang
- Department of Molecular and Comparative Pathobiology Johns Hopkins University School of Medicine Baltimore Maryland USA
| | - Liang Dong
- Department of Urology Johns Hopkins University School of Medicine Baltimore Maryland USA
| | - Zhaohao Liao
- Department of Molecular and Comparative Pathobiology Johns Hopkins University School of Medicine Baltimore Maryland USA
| | - Zezhou Zhao
- Department of Molecular and Comparative Pathobiology Johns Hopkins University School of Medicine Baltimore Maryland USA
| | - Olesia Gololobova
- Department of Molecular and Comparative Pathobiology Johns Hopkins University School of Medicine Baltimore Maryland USA
| | - Barbara Smith
- Department of Cell Biology Johns Hopkins University School of Medicine Baltimore Maryland USA
| | - Norman J Haughey
- Department of Neurology Johns Hopkins University School of Medicine Baltimore Maryland USA
| | - Kenneth J Pienta
- Department of Urology Johns Hopkins University School of Medicine Baltimore Maryland USA
| | - Barbara S Slusher
- Department of Neurology Johns Hopkins University School of Medicine Baltimore Maryland USA.,Johns Hopkins Drug Discovery Johns Hopkins University School of Medicine Baltimore Maryland USA
| | - Patrick M Tarwater
- Department of Epidemiology Johns Hopkins University Bloomberg School of Public Health Baltimore Maryland USA
| | - Juan Pablo Tosar
- Faculty of Science Universidad de la República Montevideo Uruguay.,Functional Genomics Unit Institut Pasteur de Montevideo Montevideo Uruguay
| | - Angela M Zivkovic
- Department of Nutrition University of California Davis Davis California USA
| | - Wyatt N Vreeland
- Bioprocess Measurements Group National Institute of Standards and Technology Gaithersburg Maryland USA
| | - Michael E Paulaitis
- Center for Nanomedicine at the Wilmer Eye Institute Johns Hopkins University School of Medicine Baltimore Maryland USA
| | - Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology Johns Hopkins University School of Medicine Baltimore Maryland USA.,Department of Neurology Johns Hopkins University School of Medicine Baltimore Maryland USA.,The Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease Johns Hopkins University School of Medicine Johns Hopkins Medicine and Johns Hopkins Bayview Medical Center Baltimore Maryland USA
| |
Collapse
|
91
|
Cavallaro S, Pevere F, Stridfeldt F, Görgens A, Paba C, Sahu SS, Mamand DR, Gupta D, El Andaloussi S, Linnros J, Dev A. Multiparametric Profiling of Single Nanoscale Extracellular Vesicles by Combined Atomic Force and Fluorescence Microscopy: Correlation and Heterogeneity in Their Molecular and Biophysical Features. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2008155. [PMID: 33682363 DOI: 10.1002/smll.202008155] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Indexed: 05/22/2023]
Abstract
Being a key player in intercellular communications, nanoscale extracellular vesicles (EVs) offer unique opportunities for both diagnostics and therapeutics. However, their cellular origin and functional identity remain elusive due to the high heterogeneity in their molecular and physical features. Here, for the first time, multiple EV parameters involving membrane protein composition, size and mechanical properties on single small EVs (sEVs) are simultaneously studied by combined fluorescence and atomic force microscopy. Furthermore, their correlation and heterogeneity in different cellular sources are investigated. The study, performed on sEVs derived from human embryonic kidney 293, cord blood mesenchymal stromal and human acute monocytic leukemia cell lines, identifies both common and cell line-specific sEV subpopulations bearing distinct distributions of the common tetraspanins (CD9, CD63, and CD81) and biophysical properties. Although the tetraspanin abundances of individual sEVs are independent of their sizes, the expression levels of CD9 and CD63 are strongly correlated. A sEV population co-expressing all the three tetraspanins in relatively high abundance, however, having average diameters of <100 nm and relatively low Young moduli, is also found in all cell lines. Such a multiparametric approach is expected to provide new insights regarding EV biology and functions, potentially deciphering unsolved questions in this field.
Collapse
Affiliation(s)
- Sara Cavallaro
- Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Stockholm, 10691, Sweden
| | - Federico Pevere
- Department of Electrical Engineering, The Ångström Laboratory, Uppsala University, Uppsala, 75121, Sweden
| | - Fredrik Stridfeldt
- Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Stockholm, 10691, Sweden
| | - André Görgens
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, 17177, Sweden
- Evox Therapeutics Limited, Oxford Science Park, Oxford, OX4 4HG, UK
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, 45141, Essen, Germany
| | | | - Siddharth S Sahu
- Department of Electrical Engineering, The Ångström Laboratory, Uppsala University, Uppsala, 75121, Sweden
| | - Doste R Mamand
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Dhanu Gupta
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, 17177, Sweden
- Evox Therapeutics Limited, Oxford Science Park, Oxford, OX4 4HG, UK
| | - Samir El Andaloussi
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, 17177, Sweden
- Evox Therapeutics Limited, Oxford Science Park, Oxford, OX4 4HG, UK
| | - Jan Linnros
- Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Stockholm, 10691, Sweden
| | - Apurba Dev
- Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Stockholm, 10691, Sweden
- Department of Electrical Engineering, The Ångström Laboratory, Uppsala University, Uppsala, 75121, Sweden
| |
Collapse
|
92
|
Recent advances on protein-based quantification of extracellular vesicles. Anal Biochem 2021; 622:114168. [PMID: 33741309 DOI: 10.1016/j.ab.2021.114168] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/27/2021] [Accepted: 03/06/2021] [Indexed: 02/06/2023]
Abstract
Extracellular vesicles (EVs) are secreted by almost all cells into the circulatory system and have the important function of intercellular communication. Ranging in size from 50 to 1000 nm, they are further classified based on origin, size, physical properties and function. EVs have shown the potential for studying various physiological and pathological processes, such as characterizing their parent cells with molecular markers that could further signify diseases. Proteins within EVs are the building blocks for the vesicles to function within a biological system. Isolation and proteomic profiling of EVs can advance the understanding of their biogenesis and functions, which can give further insight of how they can be used in clinical settings. However, the nanoscale size of EVs, which is much smaller than that of cells, comprises a major challenge for EV isolation and the characterization of their protein cargos. With the recent advances of bioanalytical techniques such as lab-on-a-chip devices and innovated flow cytometry, the quantification of EV proteins from a small number of vesicles down to the single vesicle level has been achieved, shining light on the promising applications of these small vesicles for early disease diagnosis and treatment monitoring. In this article, we first briefly review conventional EV protein determination technologies and their limitations, followed by detailed description and analysis of emerging technologies used for EV protein quantification, including optical, non-optical, microfluidic, and single vesicle detection methods. The pros and cons of these technologies are compared and the current challenges are outlined. Future perspectives and potential research directions of the EV protein analysis methods are discussed.
Collapse
|
93
|
Lázaro-Ibáñez E, Faruqu FN, Saleh AF, Silva AM, Tzu-Wen Wang J, Rak J, Al-Jamal KT, Dekker N. Selection of Fluorescent, Bioluminescent, and Radioactive Tracers to Accurately Reflect Extracellular Vesicle Biodistribution in Vivo. ACS NANO 2021; 15:3212-3227. [PMID: 33470092 PMCID: PMC7905875 DOI: 10.1021/acsnano.0c09873] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The ability to track extracellular vesicles (EVs) in vivo without influencing their biodistribution is a key requirement for their successful development as drug delivery vehicles and therapeutic agents. Here, we evaluated the effect of five different optical and nuclear tracers on the in vivo biodistribution of EVs. Expi293F EVs were labeled using either a noncovalent fluorescent dye DiR, or covalent modification with 111indium-DTPA, or bioengineered with fluorescent (mCherry) or bioluminescent (Firefly and NanoLuc luciferase) proteins fused to the EV marker, CD63. To focus specifically on the effect of the tracer, we compared EVs derived from the same cell source and administered systemically by the same route and at equal dose into tumor-bearing BALB/c mice. 111Indium and DiR were the most sensitive tracers for in vivo imaging of EVs, providing the most accurate quantification of vesicle biodistribution by ex vivo imaging of organs and analysis of tissue lysates. Specifically, NanoLuc fused to CD63 altered EV distribution, resulting in high accumulation in the lungs, demonstrating that genetic modification of EVs for tracking purposes may compromise their physiological biodistribution. Blood kinetic analysis revealed that EVs are rapidly cleared from the circulation with a half-life below 10 min. Our study demonstrates that radioactivity is the most accurate EV tracking approach for a complete quantitative biodistribution study including pharmacokinetic profiling. In conclusion, we provide a comprehensive comparison of fluorescent, bioluminescent, and radioactivity approaches, including dual labeling of EVs, to enable accurate spatiotemporal resolution of EV trafficking in mice, an essential step in developing EV therapeutics.
Collapse
Affiliation(s)
- Elisa Lázaro-Ibáñez
- Discovery
Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg 43150, Sweden
- Advanced
Drug Delivery, Pharmaceutical Sciences, BioPharmaceutical R&D, AstraZeneca, Gothenburg 43150, Sweden
| | - Farid N. Faruqu
- Institute
of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences, King’s College London, London SE1 9NH, United Kingdom
| | - Amer F. Saleh
- Functional
and Mechanistic Safety, Clinical Pharmacology & Safety Sciences,
BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 0AA, United Kingdom
| | - Andreia M. Silva
- Discovery
Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg 43150, Sweden
| | - Julie Tzu-Wen Wang
- Institute
of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences, King’s College London, London SE1 9NH, United Kingdom
| | - Janusz Rak
- Research
Institute of the McGill University Health Centre, Glen Site, McGill University, Montreal, Quebec H4A 3J,1 Canada
| | - Khuloud T. Al-Jamal
- Institute
of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences, King’s College London, London SE1 9NH, United Kingdom
| | - Niek Dekker
- Discovery
Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg 43150, Sweden
| |
Collapse
|
94
|
Kuypers S, Smisdom N, Pintelon I, Timmermans JP, Ameloot M, Michiels L, Hendrix J, Hosseinkhani B. Unsupervised Machine Learning-Based Clustering of Nanosized Fluorescent Extracellular Vesicles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006786. [PMID: 33448084 DOI: 10.1002/smll.202006786] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Extracellular vesicles (EV) are biological nanoparticles that play an important role in cell-to-cell communication. The phenotypic profile of EV populations is a promising reporter of disease, with direct clinical diagnostic relevance. Yet, robust methods for quantifying the biomarker content of EV have been critically lacking, and require a single-particle approach due to their inherent heterogeneous nature. Here, multicolor single-molecule burst analysis microscopy is used to detect multiple biomarkers present on single EV. The authors classify the recorded signals and apply the machine learning-based t-distributed stochastic neighbor embedding algorithm to cluster the resulting multidimensional data. As a proof of principle, the authors use the method to assess both the purity and the inflammatory status of EV, and compare cell culture and plasma-derived EV isolated via different purification methods. This methodology is then applied to identify intercellular adhesion molecule-1 specific EV subgroups released by inflamed endothelial cells, and to prove that apolipoprotein-a1 is an excellent marker to identify the typical lipoprotein contamination in plasma. This methodology can be widely applied on standard confocal microscopes, thereby allowing both standardized quality assessment of patient plasma EV preparations, and diagnostic profiling of multiple EV biomarkers in health and disease.
Collapse
Affiliation(s)
- Sören Kuypers
- Biomedical Research Institute (BIOMED), Hasselt University, Martelarenlaan 42, Hasselt, 3500, Belgium
| | - Nick Smisdom
- Biomedical Research Institute (BIOMED), Hasselt University, Martelarenlaan 42, Hasselt, 3500, Belgium
| | - Isabel Pintelon
- Laboratory of Cell Biology & Histology, Antwerp Centre for Advanced Microscopy (ACAM), University Antwerp, Universiteitsplein 1, Antwerp, 2610, Belgium
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology & Histology, Antwerp Centre for Advanced Microscopy (ACAM), University Antwerp, Universiteitsplein 1, Antwerp, 2610, Belgium
| | - Marcel Ameloot
- Biomedical Research Institute (BIOMED), Hasselt University, Martelarenlaan 42, Hasselt, 3500, Belgium
| | - Luc Michiels
- Biomedical Research Institute (BIOMED), Hasselt University, Martelarenlaan 42, Hasselt, 3500, Belgium
| | - Jelle Hendrix
- Biomedical Research Institute (BIOMED), Hasselt University, Martelarenlaan 42, Hasselt, 3500, Belgium
- Dynamic Bio-imaging Lab, Advanced Optical Microscopy Center, Hasselt University, Hasselt, 3500, Belgium
| | - Baharak Hosseinkhani
- Biomedical Research Institute (BIOMED), Hasselt University, Martelarenlaan 42, Hasselt, 3500, Belgium
| |
Collapse
|
95
|
Wei W, Ao Q, Wang X, Cao Y, Liu Y, Zheng SG, Tian X. Mesenchymal Stem Cell-Derived Exosomes: A Promising Biological Tool in Nanomedicine. Front Pharmacol 2021; 11:590470. [PMID: 33716723 PMCID: PMC7944140 DOI: 10.3389/fphar.2020.590470] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/28/2020] [Indexed: 12/16/2022] Open
Abstract
As nano-scale biological vesicles, extracellular vesicles (EVs)/exosomes, in particular, exosomes derived from mesenchymal stem cells (MSC-exosomes), have been studied in the diagnosis, prevention, and treatment of many diseases. In addition, through the combination of nanotechnology and biotechnology, exosomes have emerged as innovative tools for the development of nanomedicine. This review focuses on a profound summarization of MSC-exosomes as a powerful tool in bionanomedicine. It systemically summarizes the role of MSC-exosomes as a nanocarrier, drug loading and tissue engineering, and their potential contribution in a series of diseases as well as the advantages of exosomes over stem cells and synthetic nanoparticles and potential disadvantages. The in-depth understanding of the functions and mechanisms of exosomes provides insights into the basic research and clinical transformation in the field of nanomedicine.
Collapse
Affiliation(s)
- Wumei Wei
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, China
| | - Qiang Ao
- Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Xiaohong Wang
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, China
| | - Yue Cao
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, China
| | - Yanying Liu
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China
| | - Song Guo Zheng
- Department of Internal Medicine, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, United States
| | - Xiaohong Tian
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, China
| |
Collapse
|
96
|
Exosomes: Cell-Derived Nanoplatforms for the Delivery of Cancer Therapeutics. Int J Mol Sci 2020; 22:ijms22010014. [PMID: 33374978 PMCID: PMC7792591 DOI: 10.3390/ijms22010014] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/17/2022] Open
Abstract
Exosomes are cell-secreted nanovesicles that naturally contain biomolecular cargoes such as lipids, proteins, and nucleic acids. Exosomes mediate intercellular communication, enabling the transfer biological signals from the donor cells to the recipient cells. Recently, exosomes are emerging as promising drug delivery vehicles due to their strong stability in blood circulation, high biocompatibility, low immunogenicity, and natural targeting ability. In particular, exosomes derived from specific types of cells can carry endogenous signaling molecules with therapeutic potential for cancer treatment, thus presenting a significant impact on targeted drug delivery and therapy. Furthermore, exosomes can be engineered to display targeting moieties on their surface or to load additional therapeutic agents. Therefore, a comprehensive understanding of exosome biogenesis and the development of efficient exosome engineering techniques will provide new avenues to establish convincing clinical therapeutic strategies based on exosomes. This review focuses on the therapeutic applications of exosomes derived from various cells and the exosome engineering technologies that enable the accurate delivery of various types of cargoes to target cells for cancer therapy.
Collapse
|
97
|
Ko J, Wang Y, Carlson JCT, Marquard A, Gungabeesoon J, Charest A, Weitz D, Pittet MJ, Weissleder R. Single Extracellular Vesicle Protein Analysis Using Immuno-Droplet Digital Polymerase Chain Reaction Amplification. ADVANCED BIOSYSTEMS 2020; 4:e1900307. [PMID: 33274611 PMCID: PMC8491538 DOI: 10.1002/adbi.201900307] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/04/2020] [Accepted: 02/20/2020] [Indexed: 11/08/2022]
Abstract
There is a need for novel analytical techniques to study the composition of single extracellular vesicles (EV). Such techniques are required to improve the understanding of heterogeneous EV populations, to allow identification of unique subpopulations, and to enable earlier and more sensitive disease detection. Because of the small size of EV and their low protein content, ultrahigh sensitivity technologies are required. Here, an immuno-droplet digital polymerase chain reaction (iddPCR) amplification method is described that allows multiplexed single EV protein profiling. Antibody-DNA conjugates are used to label EV, followed by stochastic microfluidic incorporation of single EV into droplets. In situ PCR with fluorescent reporter probes converts and amplifies the barcode signal for subsequent read-out by droplet imaging. In these proof-of-principle studies, it is shown that multiplex protein analysis is possible in single EV, opening the door for future analyses.
Collapse
Affiliation(s)
- Jina Ko
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115
| | - Yongcheng Wang
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115
- John A. Paulson School of Engineering and Applied Sciences and Department of Physics, Harvard University, Cambridge, MA 02138
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Jonathan CT Carlson
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114
- Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Angela Marquard
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114
| | - Jeremy Gungabeesoon
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114
| | - Alain Charest
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215
| | - David Weitz
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115
- John A. Paulson School of Engineering and Applied Sciences and Department of Physics, Harvard University, Cambridge, MA 02138
| | - Mikael J. Pittet
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114
- Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
- Department of Systems Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115
| |
Collapse
|
98
|
Wu AY, Sung Y, Chen Y, Chou ST, Guo V, Chien JC, Ko JJ, Yang AL, Huang H, Chuang J, Wu S, Ho M, Ericsson M, Lin W, Cheung CHY, Juan H, Ueda K, Chen Y, Lai CP. Multiresolution Imaging Using Bioluminescence Resonance Energy Transfer Identifies Distinct Biodistribution Profiles of Extracellular Vesicles and Exomeres with Redirected Tropism. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001467. [PMID: 33042758 PMCID: PMC7539214 DOI: 10.1002/advs.202001467] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/10/2020] [Indexed: 05/10/2023]
Abstract
Extracellular particles (EPs) including extracellular vesicles (EVs) and exomeres play significant roles in diseases and therapeutic applications. However, their spatiotemporal dynamics in vivo have remained largely unresolved in detail due to the lack of a suitable method. Therefore, a bioluminescence resonance energy transfer (BRET)-based reporter, PalmGRET, is created to enable pan-EP labeling ranging from exomeres (<50 nm) to small (<200 nm) and medium and large (>200 nm) EVs. PalmGRET emits robust, sustained signals and allows the visualization, tracking, and quantification of the EPs from whole animal to nanoscopic resolutions under different imaging modalities, including bioluminescence, BRET, and fluorescence. Using PalmGRET, it is shown that EPs released by lung metastatic hepatocellular carcinoma (HCC) exhibit lung tropism with varying distributions to other major organs in immunocompetent mice. It is further demonstrated that gene knockdown of lung-tropic membrane proteins, solute carrier organic anion transporter family member 2A1, alanine aminopeptidase/Cd13, and chloride intracellular channel 1 decreases HCC-EP distribution to the lungs and yields distinct biodistribution profiles. It is anticipated that EP-specific imaging, quantitative assays, and detailed in vivo characterization are a starting point for more accurate and comprehensive in vivo models of EP biology and therapeutic design.
Collapse
Affiliation(s)
- Anthony Yan‐Tang Wu
- Institute of Atomic and Molecular SciencesAcademia SinicaTaipei10617Taiwan
- Department of Pharmacology, College of MedicineNational Taiwan UniversityTaipei100233Taiwan
- Chemical Biology and Molecular Biophysics ProgramTaiwan International Graduate ProgramAcademia SinicaTaipei11529Taiwan
| | - Yun‐Chieh Sung
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of MattersNational Tsing Hua UniversityHsinchu30013Taiwan
- Department of Chemical EngineeringNational Tsing Hua UniversityHsinchu30013Taiwan
| | - Yen‐Ju Chen
- Institute of Atomic and Molecular SciencesAcademia SinicaTaipei10617Taiwan
| | | | - Vanessa Guo
- Institute of Atomic and Molecular SciencesAcademia SinicaTaipei10617Taiwan
| | | | - John Jun‐Sheng Ko
- Institute of Atomic and Molecular SciencesAcademia SinicaTaipei10617Taiwan
| | - Alan Ling Yang
- Institute of Atomic and Molecular SciencesAcademia SinicaTaipei10617Taiwan
| | - Hsi‐Chien Huang
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of MattersNational Tsing Hua UniversityHsinchu30013Taiwan
- Department of Chemical EngineeringNational Tsing Hua UniversityHsinchu30013Taiwan
| | - Ju‐Chen Chuang
- Institute of Atomic and Molecular SciencesAcademia SinicaTaipei10617Taiwan
| | - Syuan Wu
- Institute of Atomic and Molecular SciencesAcademia SinicaTaipei10617Taiwan
| | - Meng‐Ru Ho
- Institute of Biological ChemistryAcademia SinicaTaipei115Taiwan
| | - Maria Ericsson
- Department of Cell BiologyHarvard Medical SchoolBostonMA02115USA
| | - Wan‐Wan Lin
- Department of Pharmacology, College of MedicineNational Taiwan UniversityTaipei100233Taiwan
| | | | - Hsueh‐Fen Juan
- Department of Life ScienceNational Taiwan UniversityTaipei10617Taiwan
| | - Koji Ueda
- Cancer Proteomics Group, Cancer Precision Medicine CenterJapanese Foundation for Cancer ResearchTokyo135‐8550Japan
| | - Yunching Chen
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of MattersNational Tsing Hua UniversityHsinchu30013Taiwan
| | - Charles Pin‐Kuang Lai
- Institute of Atomic and Molecular SciencesAcademia SinicaTaipei10617Taiwan
- Chemical Biology and Molecular Biophysics ProgramTaiwan International Graduate ProgramAcademia SinicaTaipei11529Taiwan
- Genome and Systems Biology Degree ProgramNational Taiwan University and Academia SinicaTaipei10617Taiwan
| |
Collapse
|
99
|
Colombo F, Norton EG, Cocucci E. Microscopy approaches to study extracellular vesicles. Biochim Biophys Acta Gen Subj 2020; 1865:129752. [PMID: 32991970 DOI: 10.1016/j.bbagen.2020.129752] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/05/2020] [Accepted: 08/18/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Extracellular vesicles (EVs) have drawn the attention of both biological researchers and clinical physicians due to their function in mediating cell-to-cell communication and relevance as potential diagnostic markers. Since their discovery, the small size and heterogeneity of EVs has posed a hindrance to their characterization as well as to the definition of their biological significance. SCOPE OF THE REVIEW Recent technological advances have considerably expanded the tools available for EV studies. In particular, the combination of novel microscope setups with high resolution imaging and the flexibility in EV labelling allows for the precise detection and characterization of the molecular composition of single EVs. Here we will review the microscopy techniques that have been applied to unravel the mechanism of EV-mediated intercellular communication and to study their molecular composition. MAJOR CONCLUSIONS Microscopy technologies have largely contributed to our understanding of molecular processes, including EV biology. As we discuss in this review, careful experimental planning is necessary to identify the most appropriate technique to use to answer a specific question. GENERAL SIGNIFICANCE The considerations regarding microscopy and experimental planning that are discussed here are applicable to the characterization of other small structures, including synthetic nanovectors and viruses.
Collapse
Affiliation(s)
- Federico Colombo
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Erienne G Norton
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Emanuele Cocucci
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
100
|
Matusek T, Marcetteau J, Thérond PP. Functions of Wnt and Hedgehog-containing extracellular vesicles in development and disease. J Cell Sci 2020; 133:133/18/jcs209742. [PMID: 32989011 DOI: 10.1242/jcs.209742] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Secreted morphogens play a major role in the intercellular communication necessary for animal development. It was initially thought that, in order to organize tissue morphogenesis and control cell fate and proliferation, morphogens diffused freely in the extracellular space. This view has since changed following the discovery that morphogens of the Wnt and Hedgehog (Hh) families are modified by various lipid adducts during their biosynthesis, providing them with high affinity for the membrane bilayer. Recent work performed in model organisms suggests that Wnt and Hh proteins are carried on extracellular vesicles. In this Review, we provide our perspectives on the mechanisms of formation of Wnt- and Hh-containing extracellular vesicles, and discuss their functions during animal development, as well as in various human physiopathologies.
Collapse
Affiliation(s)
- Tamás Matusek
- Université Côte d'Azur, CNRS, INSERM, Institut de Biologie Valrose (iBV), Parc Valrose, 06108 Nice Cedex 2, France
| | - Julien Marcetteau
- Université Côte d'Azur, CNRS, INSERM, Institut de Biologie Valrose (iBV), Parc Valrose, 06108 Nice Cedex 2, France
| | - Pascal P Thérond
- Université Côte d'Azur, CNRS, INSERM, Institut de Biologie Valrose (iBV), Parc Valrose, 06108 Nice Cedex 2, France
| |
Collapse
|