51
|
Mayberry CL, Logan NA, Wilson JJ, Chang CH. Providing a Helping Hand: Metabolic Regulation of T Follicular Helper Cells and Their Association With Disease. Front Immunol 2022; 13:864949. [PMID: 35493515 PMCID: PMC9047778 DOI: 10.3389/fimmu.2022.864949] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/25/2022] [Indexed: 01/02/2023] Open
Abstract
T follicular helper (Tfh) cells provide support to B cells upon arrival in the germinal center, and thus are critical for the generation of a robust adaptive immune response. Tfh express specific transcription factors and cellular receptors including Bcl6, CXCR5, PD-1, and ICOS, which are critical for homing and overall function. Generally, the induction of an immune response is tightly regulated. However, deviation during this process can result in harmful autoimmunity or the inability to successfully clear pathogens. Recently, it has been shown that Tfh differentiation, activation, and proliferation may be linked with the cellular metabolic state. In this review we will highlight recent discoveries in Tfh differentiation and explore how these cells contribute to functional immunity in disease, including autoimmune-related disorders, cancer, and of particular emphasis, during infection.
Collapse
Affiliation(s)
| | | | | | - Chih-Hao Chang
- The Jackson Laboratory, Bar Harbor, ME, United States
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
- *Correspondence: Chih-Hao Chang,
| |
Collapse
|
52
|
Homeostatic serum IgE is secreted by plasma cells in the thymus and enhances mast cell survival. Nat Commun 2022; 13:1418. [PMID: 35301301 PMCID: PMC8930980 DOI: 10.1038/s41467-022-29032-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 02/23/2022] [Indexed: 12/29/2022] Open
Abstract
Increased serum levels of immunoglobulin E (IgE) is a risk factor for various diseases, including allergy and anaphylaxis. However, the source and ontogeny of B cells producing IgE under steady state conditions are not well defined. Here, we show plasma cells that develop in the thymus and potently secrete IgE and other immunoglobulins, including IgM, IgA, and IgG. The development of these IgE-secreting plasma cells are induced by IL-4 produced by invariant Natural Killer T cells, independent of CD1d-mediated interaction. Single-cell transcriptomics suggest the developmental landscape of thymic B cells, and the thymus supports development of transitional, mature, and memory B cells in addition to plasma cells. Furthermore, thymic plasma cells produce polyclonal antibodies without somatic hypermutation, indicating they develop via the extra-follicular pathway. Physiologically, thymic-derived IgEs increase the number of mast cells in the gut and skin, which correlates with the severity of anaphylaxis. Collectively, we define the ontogeny of thymic plasma cells and show that steady state thymus-derived IgEs regulate mast cell homeostasis, opening up new avenues for studying the genetic causes of allergic disorders. Elevated levels of IgE is associated with a range of allergic pathology but the source of such IgE producing B cells during the steady state is poorly understood. Here, Kwon et al. show that homeostatic IgE is secreted by plasma cells in the thymus and link this to mast cell survival.
Collapse
|
53
|
Abstract
Follicular helper T (TFH) cells provide help to B cells, supporting the formation of germinal centres that allow affinity maturation of antibody responses. Although usually located in secondary lymphoid organs, T cells bearing features of TFH cells can also be identified in human blood, and their frequency and phenotype are often altered in people with autoimmune diseases. In this Perspective article, I discuss the increase in circulating TFH cells seen in autoimmune settings and explore potential explanations for this phenomenon. I consider the multistep regulation of TFH cell differentiation by the CTLA4 and IL-2 pathways as well as by regulatory T cells and highlight that these same pathways are crucial for regulating autoimmune diseases. The propensity of infection to serve as a cue for TFH cell differentiation and a potential trigger for autoimmune disease development is also discussed. Overall, I postulate that alterations in pathways that regulate autoimmunity are coupled to alterations in TFH cell homeostasis, suggesting that this population may serve as a core sentinel of dysregulated immunity.
Collapse
|
54
|
Park SL, Christo SN, Mackay LK. ICOS-play: dressing T cells for residency. Trends Immunol 2022; 43:280-282. [PMID: 35272933 DOI: 10.1016/j.it.2022.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 10/18/2022]
Abstract
Efficient generation of tissue-resident memory T (TRM) cells is essential for long-lived immune protection in barrier tissues. Peng et al. now show that the costimulatory molecule ICOS enhances CD8+ TRM cell lodgment by promoting early tissue retention.
Collapse
Affiliation(s)
- Simone L Park
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Microbiology & Immunology, University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Susan N Christo
- Department of Microbiology & Immunology, University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Laura K Mackay
- Department of Microbiology & Immunology, University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
| |
Collapse
|
55
|
Strong influenza-induced T FH generation requires CD4 effectors to recognize antigen locally and receive signals from continuing infection. Proc Natl Acad Sci U S A 2022; 119:2111064119. [PMID: 35177472 PMCID: PMC8872786 DOI: 10.1073/pnas.2111064119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2021] [Indexed: 11/18/2022] Open
Abstract
Influenza infection elicits strong, long-lived protective antibodies, but most current influenza vaccines give weaker, short-lived protection. We noted that live virus is still replicating, making antigen and causing inflammation at 7 d postinfection (dpi), while an inactivated vaccine provides antigen for at most 4 dpi. We show that the generation of key T follicular helper cells (TFH) requires they recognize antigen locally at 6 dpi in the presence of ongoing viral infection. This creates a checkpoint that restricts TFH responses to dangerous infections that persist through the checkpoint. Using a live attenuated vaccine, akin to Flumist, we found that adding a second dose at 6 d generated a strong TFH response, suggesting an approach to improve vaccine strategies. While influenza infection induces robust, long-lasting, antibody responses and protection, including the T follicular helper cells (TFH) required to drive B cell germinal center (GC) responses, most influenza vaccines do not. We investigated the mechanisms that drive strong TFH responses during infection. Infection induces viral replication and antigen (Ag) presentation lasting through the CD4 effector phase, but Ag and pathogen recognition receptor signals are short-lived after vaccination. We analyzed the need for both infection and Ag presentation at the effector phase, using an in vivo sequential transfer model to time their availability. Differentiation of CD4 effectors into TFH and GC-TFH required that they recognize Ag locally in the site of TFH development, at the effector phase, but did not depend on specific Ag-presenting cells (APCs). In addition, concurrent signals from infection were necessary even when sufficient Ag was presented. Providing these signals with a second dose of live attenuated influenza vaccine at the effector phase drove TFH and GC-TFH development equivalent to live infection. The results suggest that vaccine approaches can induce strong TFH development that supports GC responses akin to infection, if they supply these effector phase signals at the right time and site. We suggest that these requirements create a checkpoint that ensures TFH only develop fully when infection is still ongoing, thereby avoiding unnecessary, potentially autoimmune, responses.
Collapse
|
56
|
Ribeiro F, Perucha E, Graca L. T follicular cells: the regulators of germinal centre homeostasis. Immunol Lett 2022; 244:1-11. [DOI: 10.1016/j.imlet.2022.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 01/05/2023]
|
57
|
Peng C, Huggins MA, Wanhainen KM, Knutson TP, Lu H, Georgiev H, Mittelsteadt KL, Jarjour NN, Wang H, Hogquist KA, Campbell DJ, Borges da Silva H, Jameson SC. Engagement of the costimulatory molecule ICOS in tissues promotes establishment of CD8 + tissue-resident memory T cells. Immunity 2022; 55:98-114.e5. [PMID: 34932944 PMCID: PMC8755622 DOI: 10.1016/j.immuni.2021.11.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 08/13/2021] [Accepted: 11/19/2021] [Indexed: 01/13/2023]
Abstract
Elevated gene expression of the costimulatory receptor Icos is a hallmark of CD8+ tissue-resident memory (Trm) T cells. Here, we examined the contribution of ICOS in Trm cell differentiation. Upon transfer into WT mice, Icos-/- CD8+ T cells exhibited defective Trm generation but produced recirculating memory populations normally. ICOS deficiency or ICOS-L blockade compromised establishment of CD8+ Trm cells but not their maintenance. ICOS ligation during CD8+ T cell priming did not determine Trm induction; rather, effector CD8+ T cells showed reduced Trm differentiation after seeding into Icosl-/- mice. IcosYF/YF CD8+ T cells were compromised in Trm generation, indicating a critical role for PI3K signaling. Modest transcriptional changes in the few Icos-/- Trm cells suggest that ICOS-PI3K signaling primarily enhances the efficiency of CD8+ T cell tissue residency. Thus, local ICOS signaling promotes production of Trm cells, providing insight into the contribution of costimulatory signals in the generation of tissue-resident populations.
Collapse
Affiliation(s)
- Changwei Peng
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Matthew A. Huggins
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kelsey M. Wanhainen
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Todd P. Knutson
- Minnesota Supercomputing Institute, University of Minnesota, Saint Paul, MN 55108, USA
| | - Hanbin Lu
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hristo Georgiev
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA,Current address: Institute of immunology, Hannover Medical School, Hannover D-30625, Germany
| | - Kristen L. Mittelsteadt
- Benaroya Research Institute and Department of Immunology University of Washington School of Medicine, Seattle, WA 98101, USA
| | - Nicholas N. Jarjour
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Haiguang Wang
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kristin A. Hogquist
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniel J. Campbell
- Benaroya Research Institute and Department of Immunology University of Washington School of Medicine, Seattle, WA 98101, USA
| | - Henrique Borges da Silva
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA,Current address: Department of Immunology, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Stephen C. Jameson
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA,Corresponding author and lead contact:
| |
Collapse
|
58
|
Petrova T, Bennett K, Nanda S, Strickson S, Scudamore CL, Prescott AR, Cohen P. Why are the phenotypes of TRAF6 knock-in and TRAF6 knock-out mice so different? PLoS One 2022; 17:e0263151. [PMID: 35157702 PMCID: PMC8843210 DOI: 10.1371/journal.pone.0263151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 01/12/2022] [Indexed: 11/30/2022] Open
Abstract
The expression of TNF-Receptor Associated Factor 6 (TRAF6) is essential for many physiological processes. Here we studied the phenotype of TRAF6[L74H] knock-in mice which are devoid of TRAF6 E3 ligase activity in every cell of the body, but express normal levels of the TRAF6 protein. Remarkably, TRAF6[L74H] mice have none of the phenotypes seen in TRAF6 KO mice. Instead TRAF6[L74H] mice display an entirely different phenotype, exhibiting autoimmunity, and severe inflammation of the skin and modest inflammation of the liver and lungs. Similar to mice with a Treg-specific knockout of TRAF6, or mice devoid of TRAF6 in all T cells, the CD4+ and CD8+ T cells in the spleen and lymph nodes displayed an activated effector memory phenotype with CD44high/CD62Llow expression on the cell surface. In contrast, T cells from WT mice exhibited the CD44low/CD62Lhigh phenotype characteristic of naïve T cells. The onset of autoimmunity and autoinflammation in TRAF6[L74H] mice (two weeks) was much faster than in mice with a Treg-specific knockout of TRAF6 or lacking TRAF6 expression in all T cells (2-3 months) and we discuss whether this may be caused by secondary inflammation of other tissues. The distinct phenotypes of mice lacking TRAF6 expression in all cells appears to be explained by their inability to signal via TNF Receptor Superfamily members, which does not seem to be impaired significantly in TRAF6[L74H] mice.
Collapse
Affiliation(s)
- Tsvetana Petrova
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Kyle Bennett
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
- Division of Cell Signalling, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Sambit Nanda
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Sam Strickson
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | | | - Alan R. Prescott
- Dundee Imaging Facility and Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Philip Cohen
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
- * E-mail:
| |
Collapse
|
59
|
Wittner J, Schulz SR, Steinmetz TD, Berges J, Hauke M, Channell WM, Cunningham AF, Hauser AE, Hutloff A, Mielenz D, Jäck HM, Schuh W. Krüppel-like factor 2 controls IgA plasma cell compartmentalization and IgA responses. Mucosal Immunol 2022; 15:668-682. [PMID: 35347229 PMCID: PMC9259478 DOI: 10.1038/s41385-022-00503-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 02/04/2023]
Abstract
Krüppel-like factor 2 (KLF2) is a potent regulator of lymphocyte differentiation, activation and migration. However, its functional role in adaptive and humoral immunity remains elusive. Therefore, by using mice with a B cell-specific deletion of KLF2, we investigated plasma cell differentiation and antibody responses. We revealed that the deletion of KLF2 resulted in perturbed IgA plasma cell compartmentalization, characterized by the absence of IgA plasma cells in the bone marrow, their reductions in the spleen, the blood and the lamina propria of the colon and the small intestine, concomitant with their accumulation and retention in mesenteric lymph nodes and Peyer's patches. Most intriguingly, secretory IgA in the intestinal lumen was almost absent, dimeric serum IgA was drastically reduced and antigen-specific IgA responses to soluble Salmonella flagellin were blunted in KLF2-deficient mice. Perturbance of IgA plasma cell localization was caused by deregulation of CCR9, Integrin chains αM, α4, β7, and sphingosine-1-phosphate receptors. Hence, KLF2 not only orchestrates the localization of IgA plasma cells by fine-tuning chemokine receptors and adhesion molecules but also controls IgA responses to Salmonella flagellin.
Collapse
Affiliation(s)
- Jens Wittner
- grid.411668.c0000 0000 9935 6525Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger Center, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Sebastian R. Schulz
- grid.411668.c0000 0000 9935 6525Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger Center, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Tobit D. Steinmetz
- grid.411668.c0000 0000 9935 6525Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger Center, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Johannes Berges
- grid.411668.c0000 0000 9935 6525Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger Center, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Manuela Hauke
- grid.411668.c0000 0000 9935 6525Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger Center, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - William M. Channell
- grid.6572.60000 0004 1936 7486Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Adam F. Cunningham
- grid.6572.60000 0004 1936 7486Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Anja E. Hauser
- grid.6363.00000 0001 2218 4662Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany ,grid.418217.90000 0000 9323 8675Deutsches Rheuma-Forschungszentrum (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Andreas Hutloff
- grid.412468.d0000 0004 0646 2097Institute of Immunology and Institute of Clinical Molecular Biology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Dirk Mielenz
- grid.411668.c0000 0000 9935 6525Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger Center, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Hans-Martin Jäck
- grid.411668.c0000 0000 9935 6525Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger Center, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Wolfgang Schuh
- grid.411668.c0000 0000 9935 6525Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger Center, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
60
|
Hart AP, Laufer TM. A review of signaling and transcriptional control in T follicular helper cell differentiation. J Leukoc Biol 2022; 111:173-195. [PMID: 33866600 DOI: 10.1002/jlb.1ri0121-066r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
T follicular helper (Tfh) cells are a critical component of adaptive immunity and assist in optimal Ab-mediated defense. Multiple effector functions of Tfh support germinal center B cell survival, Ab class switching, and plasma cell maturation. In the past 2 decades, the phenotype and functional characteristics of GC Tfh have been clarified allowing for robust studies of the Th subset including activation signals and environmental cues controlling Tfh differentiation and migration during an immune response. A unique, 2-step differentiation process of Tfh has been proposed but the mechanisms underlying transition between unstable Tfh precursors and functional mature Tfh remain elusive. Likewise, newly identified transcriptional regulators of Tfh development have not yet been incorporated into our understanding of how these cells might function in disease. Here, we review the signals and downstream transcription factors that shape Tfh differentiation including what is known about the epigenetic processes that maintain Tfh identity. It is proposed that further evaluation of the stepwise differentiation pattern of Tfh will yield greater insights into how these cells become dysregulated in autoimmunity.
Collapse
Affiliation(s)
- Andrew P Hart
- Division of Rheumatology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Terri M Laufer
- Division of Rheumatology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Division of Rheumatology, Department of Medicine, Corporal Michael C. Crescenz VA Medical Center, Philadelphia, PA, 19104, USA
| |
Collapse
|
61
|
Pyle CJ, Labeur-Iurman L, Groves HT, Puttur F, Lloyd CM, Tregoning JS, Harker JA. Enhanced IL-2 in early life limits the development of TFH and protective antiviral immunity. J Exp Med 2021; 218:e20201555. [PMID: 34665220 PMCID: PMC8529914 DOI: 10.1084/jem.20201555] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/23/2021] [Accepted: 09/23/2021] [Indexed: 01/03/2023] Open
Abstract
T follicular helper cell (TFH)-dependent antibody responses are critical for long-term immunity. Antibody responses are diminished in early life, limiting long-term protective immunity and allowing prolonged or recurrent infection, which may be important for viral lung infections that are highly prevalent in infancy. In a murine model using respiratory syncytial virus (RSV), we show that TFH and the high-affinity antibody production they promote are vital for preventing disease on RSV reinfection. Following a secondary RSV infection, TFH-deficient mice had significantly exacerbated disease characterized by delayed viral clearance, increased weight loss, and immunopathology. TFH generation in early life was compromised by heightened IL-2 and STAT5 signaling in differentiating naive T cells. Neutralization of IL-2 during early-life RSV infection resulted in a TFH-dependent increase in antibody-mediated immunity and was sufficient to limit disease severity upon reinfection. These data demonstrate the importance of TFH in protection against recurrent RSV infection and highlight a mechanism by which this is suppressed in early life.
Collapse
Affiliation(s)
- Chloe J. Pyle
- National Heart and Lung Institute, Imperial College London, South Kensington, London, UK
| | - Lucia Labeur-Iurman
- National Heart and Lung Institute, Imperial College London, South Kensington, London, UK
| | - Helen T. Groves
- Department of Infectious Disease, Imperial College London, St. Mary’s Campus, London, UK
| | - Franz Puttur
- National Heart and Lung Institute, Imperial College London, South Kensington, London, UK
| | - Clare M. Lloyd
- National Heart and Lung Institute, Imperial College London, South Kensington, London, UK
- Asthma UK Centre in Allergic Mechanisms for Asthma, London, UK
| | - John S. Tregoning
- Department of Infectious Disease, Imperial College London, St. Mary’s Campus, London, UK
| | - James A. Harker
- National Heart and Lung Institute, Imperial College London, South Kensington, London, UK
- Asthma UK Centre in Allergic Mechanisms for Asthma, London, UK
| |
Collapse
|
62
|
Liu J, Yin J. Immunotherapy With Recombinant Alt a 1 Suppresses Allergic Asthma and Influences T Follicular Cells and Regulatory B Cells in Mice. Front Immunol 2021; 12:747730. [PMID: 34804031 PMCID: PMC8602824 DOI: 10.3389/fimmu.2021.747730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/18/2021] [Indexed: 01/07/2023] Open
Abstract
Background Alternaria is a major source of asthma-inducing allergens. Allergen-specific immunotherapy improves the progression of allergic asthma. The current treatment is based on crude Alternaria extracts. Alt a 1 is the predominant allergen in Alternaria. However, the treatment efficacy of recombinant Alt a 1 (rAlt a 1) in an asthmatic animal model and its influence on Tfh and Breg cells are unknown. Objective To explore the therapeutic treatment effects of rAlt a 1 on the progress of an asthmatic mouse model and its effect on Tfh and Breg cells. Methods We synthesized and purified rAlt a 1. Alternaria-sensitized and challenged mice received subcutaneous immunotherapy (SCIT) with four different rAlt a 1 dosages (5, 50, 100, and 150 µg) or PBS only. Finally, lung and airway inflammation, mouse mast cell protease 1 (MMCP-1), serum immunoglobulin responses, Tfh and Breg cell levels, and the correlation between asthmatic features (inflammation grades and IL-4 and IL-10 levels) and these two cell types were measured after Alternaria rechallenge. Results High purity and allergenic potency of rAlt a 1 protein were obtained. Following treatment with four different rAlt a 1 dosages, both lung and airway inflammation ameliorated, including lung pathology, serum MMCP-1 levels, inflammatory cell numbers, and cytokine levels in bronchoalveolar lavage fluid (BALF). Additionally, rAlt a 1-SCIT increased the expression of Alternaria-sIgG1, rAlt a 1-sIgG1, rAlt a 1-sIgG2a, and rAlt a 1-sIgG2b in serum. Moreover, the number and percentage of CXCR5+PD-1+Tfh cells were increased in the PC control, while they decreased in the rAlt a 1-SCIT groups. Meanwhile, the absolute numbers and proportions of Breg cells were evaluated after administration of rAlt a 1. A positive correlation was observed between CXCR5+PD-1+Tfh cells and inflammation grades (r = 0.50, p = 0.01), as well as a slightly strong positive relationship with IL-4 (r = 0.55, p = 0.005) and IL-10 (r = 0.58, p = 0.003) levels; Breg cells showed an opposite correlation with the grades of inflammation (r = -0.68, p = 0.0003), along with a negative correlation to IL-4 (r = -0.61, p = 0.001) and IL-10 (r = -0.53, p = 0.008) levels. Conclusions We verified that treatment with rAlt a 1 can alleviate asthma progression and further have a regulatory effect on Tfh and Breg cells in an Alternaria-induced asthmatic mouse model.
Collapse
Affiliation(s)
- Juan Liu
- Department of Allergy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,Department of Allergy, Peking Union Medical College Hospital, Beijing Key Laboratory of Precision Medicine For Diagnosis and Treatment on Allergic Diseases, Beijing, China.,Department of Allergy, Peking Union Medical College Hospital, National Clinical Research Center for Dermatologic and Immunologic Disease, Beijing, China
| | - Jia Yin
- Department of Allergy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,Department of Allergy, Peking Union Medical College Hospital, Beijing Key Laboratory of Precision Medicine For Diagnosis and Treatment on Allergic Diseases, Beijing, China.,Department of Allergy, Peking Union Medical College Hospital, National Clinical Research Center for Dermatologic and Immunologic Disease, Beijing, China
| |
Collapse
|
63
|
Lone W, Bouska A, Sharma S, Amador C, Saumyaranjan M, Herek TA, Heavican TB, Yu J, Lim ST, Ong CK, Slack GW, Savage KJ, Rosenwald A, Ott G, Cook JR, Feldman AL, Rimsza LM, McKeithan TW, Greiner TC, Weisenburger DD, Melle F, Motta G, Pileri S, Vose JM, Chan WC, Iqbal J. Genome-Wide miRNA Expression Profiling of Molecular Subgroups of Peripheral T-cell Lymphoma. Clin Cancer Res 2021; 27:6039-6053. [PMID: 34426436 DOI: 10.1158/1078-0432.ccr-21-0573] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/15/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Peripheral T-cell lymphoma (PTCL) is a heterogeneous group of non-Hodgkin lymphomas with aggressive clinical behavior. We performed comprehensive miRNA profiling in PTCLs and corresponding normal CD4+ Th1/2 and TFH-like polarized subsets to elucidate the role of miRNAs in T-cell lymphomagenesis. EXPERIMENTAL DESIGN We used nCounter (NanoString Inc) for miRNA profiling and validated using Taqman qRT-PCR (Applied Biosystems, Inc). Normal CD4+ T cells were polarized into effector Th subsets using signature cytokines, and miRNA significance was revealed using functional experiments. RESULTS Effector Th subsets showed distinct miRNA expression with corresponding transcription factor expression (e.g., BCL6/miR-19b, -106, -30d, -26b, in IL21-polarized; GATA3/miR-155, miR-337 in Th2-polarized; and TBX21/miR-181a, -331-3p in Th1-polarized cells). Integration of miRNA signatures suggested activation of TCR and PI3K signaling in IL21-polarized cells, ERK signaling in Th1-polarized cells, and AKT-mTOR signaling in Th2-polarized cells, validated at protein level. In neoplastic counterparts, distinctive miRNAs were identified and confirmed in an independent cohort. Integrative miRNA-mRNA analysis identified a decrease in target transcript abundance leading to deregulation of sphingolipid and Wnt signaling and epigenetic dysregulation in angioimmunoblastic T-cell lymphoma (AITL), while ERK, MAPK, and cell cycle were identified in PTCL subsets, and decreased target transcript abundance was validated in an independent cohort. Elevated expression of miRNAs (miR-126-3p, miR-145-5p) in AITL was associated with poor clinical outcome. In silico and experimental validation suggest two targets (miR-126→ SIPR2 and miR-145 → ROCK1) resulting in reduced RhoA-GTPase activity and T-B-cell interaction. CONCLUSIONS Unique miRNAs and deregulated oncogenic pathways are associated with PTCL subtypes. Upregulated miRNA-126-3p and miR-145-5p expression regulate RhoA-GTPase and inhibit T-cell migration, crucial for AITL pathobiology.
Collapse
Affiliation(s)
- Waseem Lone
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Alyssa Bouska
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Sunandini Sharma
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Catalina Amador
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Mallick Saumyaranjan
- Institute of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Tyler A Herek
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Tayla B Heavican
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jiayu Yu
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Soon Thye Lim
- Division of Medical Oncology, National Cancer Centre Singapore/Duke-National University of Singapore (NUS) Medical School, Singapore
| | - Choon Kiat Ong
- Division of Medical Oncology, National Cancer Centre Singapore/Duke-National University of Singapore (NUS) Medical School, Singapore
| | - Graham W Slack
- Center for Lymphoid Cancer, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Kerry J Savage
- Center for Lymphoid Cancer, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Andreas Rosenwald
- Institute of Pathology, University of Würzburg and Comprehensive Cancer Center Mainfranken, Würzburg, Germany
| | - German Ott
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus and Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| | - James R Cook
- Department of Laboratory Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Andrew L Feldman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Lisa M Rimsza
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Scottsdale, Arizona
| | - Timothy W McKeithan
- Department of Pathology, City of Hope National Medical Center, Duarte, California
| | - Timothy C Greiner
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | | | | | | | | | - Julie M Vose
- Division of Hematology and Oncology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Wing C Chan
- Department of Pathology, City of Hope National Medical Center, Duarte, California
| | - Javeed Iqbal
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska.
| |
Collapse
|
64
|
Krüppel-like Factor 2 (KLF2) in Immune Cell Migration. Vaccines (Basel) 2021; 9:vaccines9101171. [PMID: 34696279 PMCID: PMC8539188 DOI: 10.3390/vaccines9101171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/27/2021] [Accepted: 10/06/2021] [Indexed: 01/30/2023] Open
Abstract
Krüppel-like factor 2 (KLF2), a transcription factor of the krüppel-like family, is a key regulator of activation, differentiation, and migration processes in various cell types. In this review, we focus on the functional relevance of KLF2 in immune cell migration and homing. We summarize the key functions of KLF2 in the regulation of chemokine receptors and adhesion molecules and discuss the relevance of the KLF2-mediated control of immune cell migration in the context of immune responses, infections, and diseases.
Collapse
|
65
|
Collins DR, Urbach JM, Racenet ZJ, Arshad U, Power KA, Newman RM, Mylvaganam GH, Ly NL, Lian X, Rull A, Rassadkina Y, Yanez AG, Peluso MJ, Deeks SG, Vidal F, Lichterfeld M, Yu XG, Gaiha GD, Allen TM, Walker BD. Functional impairment of HIV-specific CD8 + T cells precedes aborted spontaneous control of viremia. Immunity 2021; 54:2372-2384.e7. [PMID: 34496223 PMCID: PMC8516715 DOI: 10.1016/j.immuni.2021.08.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/21/2021] [Accepted: 08/09/2021] [Indexed: 12/14/2022]
Abstract
Spontaneous control of HIV infection has been repeatedly linked to antiviral CD8+ T cells but is not always permanent. To address mechanisms of durable and aborted control of viremia, we evaluated immunologic and virologic parameters longitudinally among 34 HIV-infected subjects with differential outcomes. Despite sustained recognition of autologous virus, HIV-specific proliferative and cytolytic T cell effector functions became selectively and intrinsically impaired prior to aborted control. Longitudinal transcriptomic profiling of functionally impaired HIV-specific CD8+ T cells revealed altered expression of genes related to activation, cytokine-mediated signaling, and cell cycle regulation, including increased expression of the antiproliferative transcription factor KLF2 but not of genes associated with canonical exhaustion. Lymphoid HIV-specific CD8+ T cells also exhibited poor functionality during aborted control relative to durable control. Our results identify selective functional impairment of HIV-specific CD8+ T cells as prognostic of impending aborted HIV control, with implications for clinical monitoring and immunotherapeutic strategies.
Collapse
Affiliation(s)
- David R Collins
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | | | | | - Umar Arshad
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Karen A Power
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Ruchi M Newman
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Geetha H Mylvaganam
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Ngoc L Ly
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Xiaodong Lian
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Anna Rull
- Joan XXIII University Hospital, Pere Virgili Institute (IISPV), Rovira i Virgili University, Tarragona, Spain
| | - Yelizaveta Rassadkina
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Adrienne G Yanez
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Michael J Peluso
- Division of HIV, Infectious Diseases and Global Medicine, University of California, San Francisco, CA, USA
| | - Steven G Deeks
- Division of HIV, Infectious Diseases and Global Medicine, University of California, San Francisco, CA, USA
| | - Francesc Vidal
- Joan XXIII University Hospital, Pere Virgili Institute (IISPV), Rovira i Virgili University, Tarragona, Spain
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Xu G Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Gaurav D Gaiha
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | - Todd M Allen
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Bruce D Walker
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA; Institute for Medical Engineering and Sciences and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
66
|
Wan S, Ni L, Zhao X, Liu X, Xu W, Jin W, Wang X, Dong C. Costimulation molecules differentially regulate the ERK-Zfp831 axis to shape T follicular helper cell differentiation. Immunity 2021; 54:2740-2755.e6. [PMID: 34644536 DOI: 10.1016/j.immuni.2021.09.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 06/22/2021] [Accepted: 09/20/2021] [Indexed: 01/21/2023]
Abstract
T follicular helper (Tfh) cells play essential roles in regulating humoral immunity, especially germinal center reactions. However, how CD4+ T cells integrate the antigenic and costimulatory signals in Tfh cell development is still poorly understood. Here, we found that phorbol 12-myristate 13-acetate (PMA) + ionomycin (P+I) stimulation, together with interleukin-6 (IL-6), potently induce Tfh cell-like transcriptomic programs in vitro. The ERK kinase pathway was attenuated under P+I stimulation; ERK2 inhibition enhanced Tfh cell development in vitro and in vivo. We observed that inducible T cell costimulator (ICOS), but not CD28, lacked the ability to activate ERK, which was important in sustaining Tfh cell development. The transcription factor Zfp831, whose expression was repressed by ERK, promoted Tfh cell differentiation by directly upregulating the expression of the transcription factors Bcl6 and Tcf7. We have hence identified an ERK-Zfp831 axis, regulated by costimulation signaling, in critical regulation of Tfh cell development.
Collapse
Affiliation(s)
- Siyuan Wan
- Institute of Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Lu Ni
- Institute of Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Xiaohong Zhao
- Institute of Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Xindong Liu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Wei Xu
- Institute of Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Wei Jin
- Institute of Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Xiaohu Wang
- Institute of Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Chen Dong
- Institute of Immunology and School of Medicine, Tsinghua University, Beijing, China; Shanghai Immune Therapy Institute, Shanghai Jiaotong University School of Medicine-affiliated Renji Hospital, Shanghai, China.
| |
Collapse
|
67
|
Anang DC, Balzaretti G, van Kampen A, de Vries N, Klarenbeek PL. The Germinal Center Milieu in Rheumatoid Arthritis: The Immunological Drummer or Dancer? Int J Mol Sci 2021; 22:10514. [PMID: 34638855 PMCID: PMC8508581 DOI: 10.3390/ijms221910514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 01/04/2023] Open
Abstract
Rheumatoid Arthritis (RA) is a chronic autoimmune disease characterized by joint inflammation, affecting approximately 1% of the general population. To alleviate symptoms and ameliorate joint damage, chronic use of immunosuppressives is needed. However, these treatments are only partially effective and may lead to unwanted side effects. Therefore, a more profound understanding of the pathophysiology might lead to more effective therapies, or better still, a cure. The presence of autoantibodies in RA indicates that B cells might have a pivotal role in the disease. This concept is further supported by the fact that a diverse antibody response to various arthritis-related epitopes is associated with arthritis development. In this context, attention has focused in recent years on the role of Germinal Centers (GCs) in RA. Since GCs act as the main anatomic location of somatic hypermutations, and, thus, contributing to the diversity and specificity of (auto) antibodies, it has been speculated that defects in germinal center reactions might be crucial in the initiation and maintenance of auto-immune events. In this paper, we discuss current evidence that various processes within GCs can result in the aberrant production of B cells that possess autoreactive properties and might result in the production of RA related autoantibodies. Secondly, we discuss various (pre-)clinical studies that have targeted various GC processes as novel therapies for RA treatment.
Collapse
Affiliation(s)
- Dornatien C. Anang
- Department of Rheumatology & Clinical Immunology, Amsterdam Rheumatology & Immunology Center, 1007 MB Amsterdam, The Netherlands; (D.C.A.); (G.B.); (P.L.K.)
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Giulia Balzaretti
- Department of Rheumatology & Clinical Immunology, Amsterdam Rheumatology & Immunology Center, 1007 MB Amsterdam, The Netherlands; (D.C.A.); (G.B.); (P.L.K.)
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Antoine van Kampen
- Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Niek de Vries
- Department of Rheumatology & Clinical Immunology, Amsterdam Rheumatology & Immunology Center, 1007 MB Amsterdam, The Netherlands; (D.C.A.); (G.B.); (P.L.K.)
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Paul L. Klarenbeek
- Department of Rheumatology & Clinical Immunology, Amsterdam Rheumatology & Immunology Center, 1007 MB Amsterdam, The Netherlands; (D.C.A.); (G.B.); (P.L.K.)
- Department of Rheumatology, Spaarne Gasthuis, Hoofdorp, 2000 AK Haarlem, The Netherlands
| |
Collapse
|
68
|
Ritzau-Jost J, Hutloff A. T Cell/B Cell Interactions in the Establishment of Protective Immunity. Vaccines (Basel) 2021; 9:vaccines9101074. [PMID: 34696182 PMCID: PMC8536969 DOI: 10.3390/vaccines9101074] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/22/2022] Open
Abstract
Follicular helper T cells (Tfh) are the T cell subset providing help to B cells for the generation of high-affinity antibodies and are therefore of key interest for the development of vaccination strategies against infectious diseases. In this review, we will discuss how the generation of Tfh cells and their interaction with B cells in secondary lymphoid organs can be optimized for therapeutic purposes. We will summarize different T cell subsets including Tfh-like peripheral helper T cells (Tph) capable of providing B cell help. In particular, we will highlight the novel concept of T cell/B cell interaction in non-lymphoid tissues as an important element for the generation of protective antibodies directly at the site of pathogen invasion.
Collapse
|
69
|
The Role of T Follicular Helper Cells and Interleukin-21 in the Pathogenesis of Inflammatory Bowel Disease. Gastroenterol Res Pract 2021; 2021:9621738. [PMID: 34471409 PMCID: PMC8405314 DOI: 10.1155/2021/9621738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/17/2021] [Accepted: 08/04/2021] [Indexed: 12/15/2022] Open
Abstract
T follicular helper (Tfh) cells represent a novel subset of CD4+ T cells which can provide critical help for germinal center (GC) formation and antibody production. The Tfh cells are characterized by the expression of CXC chemokine receptor 5 (CXCR5), programmed death 1 (PD-1), inducible costimulatory molecule (ICOS), B cell lymphoma 6 (BCL-6), and the secretion of interleukin-21 (IL-21). Given the important role of Tfh cells in B cell activation and high-affinity antibody production, Tfh cells are involved in the pathogenesis of many human diseases. Inflammatory bowel disease (IBD) is a group of chronic inflammatory diseases characterized by symptoms such as diarrhea, abdominal pain, and weight loss. Ulcerative colitis (UC) and Crohn's disease (CD) are the most studied types of IBD. Dysregulated mucosal immune response plays an important role in the pathogenesis of IBD. In recent years, many studies have identified the critical role of Tfh cells and IL-21 in the pathogenic process IBD. In this paper, we will discuss the role of Tfh cells and IL-21 in IBD pathogenesis.
Collapse
|
70
|
Chakhtoura M, Fang M, Cubas R, O’Connor MH, Nichols CN, Richardson B, Talla A, Moir S, Cameron MJ, Tardif V, Haddad EK. Germinal Center T follicular helper (GC-Tfh) cell impairment in chronic HIV infection involves c-Maf signaling. PLoS Pathog 2021; 17:e1009732. [PMID: 34280251 PMCID: PMC8289045 DOI: 10.1371/journal.ppat.1009732] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
We have recently demonstrated that the function of T follicular helper (Tfh) cells from lymph nodes (LN) of HIV-infected individuals is impaired. We found that these cells were unable to provide proper help to germinal center (GC)-B cells, as observed by altered and inefficient anti-HIV antibody response and premature death of memory B cells. The underlying molecular mechanisms of this dysfunction remain poorly defined. Herein, we have used a unique transcriptional approach to identify these molecular defects. We consequently determined the transcriptional profiles of LN GC-Tfh cells following their interactions with LN GC-B cells from HIV-infected and HIV-uninfected individuals, rather than analyzing resting ex-vivo GC-Tfh cells. We observed that proliferating GC-Tfh cells from HIV-infected subjects were transcriptionally different than their HIV-uninfected counterparts, and displayed a significant downregulation of immune- and GC-Tfh-associated pathways and genes. Our results strongly demonstrated that MAF (coding for the transcription factor c-Maf) and its upstream signaling pathway mediators (IL6R and STAT3) were significantly downregulated in HIV-infected subjects, which could contribute to the impaired GC-Tfh and GC-B cell functions reported during infection. We further showed that c-Maf function was associated with the adenosine pathway and that the signaling upstream c-Maf could be partially restored by adenosine deaminase -1 (ADA-1) supplementation. Overall, we identified a novel mechanism that contributes to GC-Tfh cell impairment during HIV infection. Understanding how GC-Tfh cell function is altered in HIV is crucial and could provide critical information about the mechanisms leading to the development and maintenance of effective anti-HIV antibodies. Human immunodeficiency virus (HIV) remains a worldwide burden despite available treatments. The virus induces dysregulations in major immune cells and organs including lymph nodes. Germinal center T follicular helper (GC-Tfh) cells are immune cells which induce specific anti-HIV antibodies by helping GC-B cells. In chronic HIV, the interaction between these two cell types is defective, leading to modified and inefficient anti-HIV antibody responses. In this study, we examined the underlying mechanisms of this dysfunction. We observed that proliferating GC-Tfh cells from HIV-infected individuals, displayed distinctive gene expression than those from -uninfected subjects, following GC-B cell interaction. Furthermore, GC-Tfh cells from HIV patients showed a reduction in important immune-related pathway and gene expression. A number of essential GC-Tfh cell genes, such as MAF and its associated genes (IL6R and STAT3), were particularly attenuated in HIV, contributing to the impaired cells function. Moreover, we found an association between MAF function and the key enzyme adenosine deaminase-1 (ADA-1), where supplementation with ADA-1 partially restored the dysfunctional signaling in GC-Tfh cells during chronic infection. Understanding how GC-Tfh cells are altered in HIV is critical to elucidate the mechanisms leading to effective anti-HIV antibodies.
Collapse
Affiliation(s)
- Marita Chakhtoura
- Department of Medicine, Division of Infectious Diseases & HIV Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Mike Fang
- Department of Population and Quantitative Health Services, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Rafael Cubas
- Iovance Biotherapeutics, San Carlos, California, United States of America
| | - Margaret H. O’Connor
- Department of Medicine, Division of Infectious Diseases & HIV Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Molecular and Cellular Biology and Genetics, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Carmen N. Nichols
- Department of Population and Quantitative Health Services, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Brian Richardson
- Department of Population and Quantitative Health Services, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Aarthi Talla
- Allen Institute for Immunology, Seattle, Washington, United States of America
| | - Susan Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mark J. Cameron
- Department of Population and Quantitative Health Services, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Virginie Tardif
- Department of Medicine, Division of Infectious Diseases & HIV Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Sorbonne University, INSERM, Center of Reasearch in Myology (Association Institut de Myologie) UMRS 974, AP-HP, Department of Internal Medicine and Clinical Immunology, DHU I2B, Pitié-Salpêtrière Hospital, Paris, France
- * E-mail: (VT); (EKH)
| | - Elias K. Haddad
- Department of Medicine, Division of Infectious Diseases & HIV Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail: (VT); (EKH)
| |
Collapse
|
71
|
Su R, Wang Y, Hu F, Li B, Guo Q, Zheng X, Liu Y, Gao C, Li X, Wang C. Altered Distribution of Circulating T Follicular Helper-Like Cell Subsets in Rheumatoid Arthritis Patients. Front Med (Lausanne) 2021; 8:690100. [PMID: 34350197 PMCID: PMC8326448 DOI: 10.3389/fmed.2021.690100] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/09/2021] [Indexed: 12/30/2022] Open
Abstract
Objective: Recent studies on follicular regulatory T (Tfr) and follicular helper T (Tfh) cells suggest that they may participate in the pathogenesis of rheumatoid arthritis (RA). Here, we examine Tfr-like and Tfh-like cells and their subsets in RA and assess the correlations between these subsets with B cells and cytokines related to the pathogenesis of RA and their clinical significance. Methods: The study population consisted of 18 healthy controls and 47 RA patients (17 new onset, 57.00 ± 11.73 years; 30 treated RA patients, 57.56 ± 1.97 years). Disease activity scores in 28 joints were calculated. The positive rates of rheumatoid factor (RF) and anticyclic citrullinated peptide antibodies (anti-CCP) were 82.9 and 89.4%, respectively. Cell subsets were analyzed using flow cytometry, and serum cytokine levels were measured using cytometric bead array. Results: Tfh-like and PD-1+ Tfh-like cells were elevated, and the distribution of Tfh-like cell subsets was altered with increased Tfh17-like and Tfh1/17-like cells in RA patients. The receiver operating characteristics curves for Tfh-like, Tfh17-like, Tfh1/17-like, and PD-1+ Tfh-like cells indicate improved RA diagnostic potential. RA patients had decreased regulatory T (Treg), Tfr-like, and memory Tfr-like (mTfr-like) cells and increased Tfh-like/Treg, Tfh-like/Tfr-like, and Tfh-like/mTfr-like cell ratios. Tfh-like cells and their subsets, including Tfh1-like, Tfh2-like, Tfh1/17-like, and PD-1+ Tfh-like cells, were positively correlated with B cells. Tfh-like/Treg, Tfh-like/Tfr-like, and Tfh-like/mTfr-like cell ratios were positively correlated with B cells in new-onset RA. Interleukin (IL)-2, IL-4, IL-17, interferon-γ, and tumor necrosis factor-α were positively correlated with Tfr-like and mTfr-like cells. IL-2 and IL-10 were positively correlated with Tfh-like and Tfh2-like cells. IL-4 was positively correlated with Tfh-like cells. Conclusions: Tfh-like and PD-1+ Tfh-like cells are increased, whereas Treg, Tfr-like, and mTfr-like cells are decreased in RA, leading to an imbalance in Tfh-like/Treg, Tfh-like/Tfr-like, and Tfh-like/mTfr-like cell ratios. Tfh-like cells and a portion of their subsets as well as Tfh-like/Treg, Tfh-like/Tfr-like, and Tfh-like/mTfr-like cell ratios are closely related to B cells. Dysfunction of cell subsets leads to abnormal levels of cytokines involved in the pathogenesis of RA. The altered distributions of Tfh-like cell subsets, especially Tfh1/17-like cells, represent potential therapeutic targets for treatment of RA.
Collapse
Affiliation(s)
- Rui Su
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yanyan Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Fangyuan Hu
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Baochen Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Qiaoling Guo
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xinyu Zheng
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yue Liu
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Chong Gao
- Pathology, Joint Program in Transfusion Medicine, Brigham and Women's Hospital/Children's Hospital Boston, Harvard Medical School, Boston, MA, United States
| | - Xiaofeng Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Caihong Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
72
|
Koenig JFE, Bruton K, Phelps A, Grydziuszko E, Jiménez-Saiz R, Jordana M. Memory Generation and Re-Activation in Food Allergy. Immunotargets Ther 2021; 10:171-184. [PMID: 34136419 PMCID: PMC8200165 DOI: 10.2147/itt.s284823] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022] Open
Abstract
Recent evidence has highlighted the critical role of memory cells in maintaining lifelong food allergies, thereby identifying these cells as therapeutic targets. IgG+ memory B cells replenish pools of IgE-secreting cells upon allergen exposure, which contract thereafter due to the short lifespan of tightly regulated IgE-expressing cells. Advances in the detection and highly dimensional analysis of allergen-specific B and T cells from allergic patients have provided insight on their phenotype and function. The newly identified Th2A and Tfh13 populations represent a leap in our understanding of allergen-specific T cell phenotypes, although how these populations contribute to IgE memory responses remains poorly understood. Within, we discuss the mechanisms by which memory B and T cells are activated, integrating knowledge from human systems and fundamental research. We then focus on memory reactivation, specifically, on the pathways of secondary IgE responses. Throughout, we identify areas of future research which will help identify immunotargets for a transformative therapy for food allergy.
Collapse
Affiliation(s)
- Joshua F E Koenig
- McMaster Immunology Research Centre, Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Kelly Bruton
- McMaster Immunology Research Centre, Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Allyssa Phelps
- McMaster Immunology Research Centre, Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Emily Grydziuszko
- McMaster Immunology Research Centre, Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Rodrigo Jiménez-Saiz
- McMaster Immunology Research Centre, Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de la Princesa (IIS-IP), Madrid, Spain
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria (UFV), Madrid, Spain
| | - Manel Jordana
- McMaster Immunology Research Centre, Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
73
|
Brown IK, Dyjack N, Miller MM, Krovi H, Rios C, Woolaver R, Harmacek L, Tu TH, O’Connor BP, Danhorn T, Vestal B, Gapin L, Pinilla C, Seibold MA, Scott-Browne J, Santos RG, Reinhardt RL. Single cell analysis of host response to helminth infection reveals the clonal breadth, heterogeneity, and tissue-specific programming of the responding CD4+ T cell repertoire. PLoS Pathog 2021; 17:e1009602. [PMID: 34106992 PMCID: PMC8216541 DOI: 10.1371/journal.ppat.1009602] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 06/21/2021] [Accepted: 05/01/2021] [Indexed: 12/30/2022] Open
Abstract
The CD4+ T cell response is critical to host protection against helminth infection. How this response varies across different hosts and tissues remains an important gap in our understanding. Using IL-4-reporter mice to identify responding CD4+ T cells to Nippostrongylus brasiliensis infection, T cell receptor sequencing paired with novel clustering algorithms revealed a broadly reactive and clonally diverse CD4+ T cell response. While the most prevalent clones and clonotypes exhibited some tissue selectivity, most were observed to reside in both the lung and lung-draining lymph nodes. Antigen-reactivity of the broader repertoires was predicted to be shared across both tissues and individual mice. Transcriptome, trajectory, and chromatin accessibility analysis of lung and lymph-node repertoires revealed three unique but related populations of responding IL-4+ CD4+ T cells consistent with T follicular helper, T helper 2, and a transitional population sharing similarity with both populations. The shared antigen reactivity of lymph node and lung repertoires combined with the adoption of tissue-specific gene programs allows for the pairing of cellular and humoral responses critical to the orchestration of anti-helminth immunity. Using various “omic” approaches, the CD4+ T cell receptor (TCR) repertoire was explored after primary helminth infection. Infection generated a broadly reactive and clonally diverse CD4+ T cell response with the most prevalent clonotypes and predicted antigen specificities residing in both the lung and lung-draining lymph nodes. Tissue-specific programming of responding CD4+ T cells directed the establishment of committed Tfh and Th2 cells, both critical for driving distinct hallmarks of type-2 inflammation. These datasets help to explore the diverse yet tissue-specific nature of anti-helminth immunity.
Collapse
Affiliation(s)
- Ivy K. Brown
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado, United States of America
| | - Nathan Dyjack
- Center for Genes, Environment, and Health, National Jewish Health, Denver, Colorado, United States of America
| | - Mindy M. Miller
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado, United States of America
| | - Harsha Krovi
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Cydney Rios
- Center for Genes, Environment, and Health, National Jewish Health, Denver, Colorado, United States of America
| | - Rachel Woolaver
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Laura Harmacek
- Center for Genes, Environment, and Health, National Jewish Health, Denver, Colorado, United States of America
| | - Ting-Hui Tu
- Center for Genes, Environment, and Health, National Jewish Health, Denver, Colorado, United States of America
| | - Brian P. O’Connor
- Center for Genes, Environment, and Health, National Jewish Health, Denver, Colorado, United States of America
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- Department of Pediatrics, National Jewish Health, Denver, Colorado, United States of America
| | - Thomas Danhorn
- Center for Genes, Environment, and Health, National Jewish Health, Denver, Colorado, United States of America
| | - Brian Vestal
- Center for Genes, Environment, and Health, National Jewish Health, Denver, Colorado, United States of America
| | - Laurent Gapin
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Clemencia Pinilla
- Florida International University, Port Saint Lucie, Florida, United States of America
| | - Max A. Seibold
- Center for Genes, Environment, and Health, National Jewish Health, Denver, Colorado, United States of America
- Department of Pediatrics, National Jewish Health, Denver, Colorado, United States of America
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - James Scott-Browne
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado, United States of America
- Center for Genes, Environment, and Health, National Jewish Health, Denver, Colorado, United States of America
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Radleigh G. Santos
- Department of Mathematics, Nova Southeastern University, Fort Lauderdale, Florida, United States of America
| | - R. Lee Reinhardt
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado, United States of America
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
74
|
Jha V, Nicholson LK, Gardner EM, Rahkola JT, Pratap H, Scott J, Borgeson M, Jacobelli J, Janoff EN. Impact of HIV-1 Infection and Antigen Class on T Follicular Helper Cell Responses to Pneumococcal Polysaccharide-Protein Conjugate Vaccine-13. THE JOURNAL OF IMMUNOLOGY 2021; 206:2402-2411. [PMID: 33931485 DOI: 10.4049/jimmunol.2001133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/04/2021] [Indexed: 11/19/2022]
Abstract
Pneumococcal infections are common and serious complications of HIV-1 disease. Prevention has been compromised by the limited magnitude and quality of Ab responses to T cell-independent type 2 pneumococcal capsular polysaccharides (PPS). The pneumococcal polysaccharide-protein conjugate vaccine-13 (PCV-13) contains PPS conjugated to the T cell-dependent protein (diphtheria toxoid [DT] [CRM197]). We investigated the differential response to PPS and DT by human Ab-secreting B cells (ASC) after immunization with PCV-13 in newly diagnosed healthy HIV+ and control adults. The numbers of PPS-specific IgG ASC increased significantly and similarly in HIV+ and controls. However, DT-specific IgG ASC increased in controls but not HIV+ subjects. To determine the cellular basis of these disparate responses to DT and PPS, we characterized the frequency and activation of T follicular helper (Tfh) cells, the predominant T cell subset providing B cell help. Expression of inducible T cell costimulator (ICOS), which sustains Tfh function and phenotype, increased significantly among controls, when compared with the HIV+ group. Increases in ICOS+ Tfh correlated with changes in T-dependent, DT-specific IgG ASC in controls but not in HIV+ In contrast, ICOS expression did not correlate with T cell-independent type 2 PPS-specific ASC in either group. Of note, upon optimized ex vivo stimulation, CD4 T cells from HIV+ subjects differentiated into Tfh cells and formed synapses with Raji B cells at frequencies similar to that of controls. In summary, PCV-13-induced increase in ICOS expression on Tfh was associated with responses to DT, which was compromised in recently diagnosed healthy HIV+ adults and can be restored ex vivo by providing effective Tfh-differentiating signals.
Collapse
Affiliation(s)
- Vibha Jha
- Mucosal and Vaccine Research Program Colorado, Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO.,Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO
| | - Lindsay K Nicholson
- Mucosal and Vaccine Research Program Colorado, Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO.,Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO
| | | | - Jeremy T Rahkola
- Mucosal and Vaccine Research Program Colorado, Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO.,Barbara Davis Center, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Harsh Pratap
- Mucosal and Vaccine Research Program Colorado, Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO.,Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO
| | | | - Mandy Borgeson
- Mucosal and Vaccine Research Program Colorado, Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO.,Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO
| | - Jordan Jacobelli
- Barbara Davis Center, University of Colorado Anschutz Medical Campus, Aurora, CO.,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Edward N Janoff
- Mucosal and Vaccine Research Program Colorado, Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO .,Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO.,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
75
|
Liu Y, Yang CL, Yang B, Du T, Li XL, Zhang P, Ge MR, Lian Y, Li H, Liu YD, Duan RS. Prophylactic administration of fingolimod (FTY720) ameliorated experimental autoimmune myasthenia gravis by reducing the number of dendritic cells, follicular T helper cells and antibody-secreting cells. Int Immunopharmacol 2021; 96:107511. [PMID: 33915521 DOI: 10.1016/j.intimp.2021.107511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/13/2021] [Accepted: 02/14/2021] [Indexed: 11/28/2022]
Abstract
Fingolimod (FTY720), a sphingosine 1-phosphate (S1P) receptor antagonist, possesses potent immunomodulatory activity via lymphocyte homing. The effects of FTY720 have been widely studied in various T-cell-mediated autoimmune diseases, while the immunomodulatory effects on experimental autoimmune myasthenia gravis (EAMG), a typical disease model for antibody-mediated autoimmunity, remain elusive. In the present study, FTY720 was administered to EAMG rats as prophylaxis. The clinical scores were recorded every other day, and serum antibodies at different time points were measured by enzyme-linked immunosorbent assay (ELISA). The immune cell subsets in the spleen, bone marrow, circulation, and thymus were determined by flow cytometry. The prophylactic administration alleviated EAMG symptoms by reducing the level of serum antibodies IgG and its isotype IgG2b on days 30 and 46 post immunization, as well as IgG and Ig kappa antibody-secreting cells in the spleen and bone marrow. The mitigated humoral immune response can be attributed to the decreased dendritic cells, follicular T help cells (Tfh) and Tfh subsets (Tfh1, Tfh2, and Tfh17), and T helper cell subsets (Th1, Th2, and Th17) in the spleen. The promotion of lymphocyte homing and inhibition of thymocyte egress contribute to the effects of FTY720 on these effector T cell subsets. Overall, the prophylactic administration of FTY720 ameliorated EAMG partially by regulating humoral immune response,suggesting that FTY720 could be part of a pharmacological strategy for managing myasthenia gravis.
Collapse
Affiliation(s)
- Ying Liu
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, China; Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, China.
| | - Chun-Lin Yang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, China.
| | - Bing Yang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, China.
| | - Tong Du
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, China.
| | - Xiao-Li Li
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, China.
| | - Peng Zhang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, China.
| | - Meng-Ru Ge
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, China.
| | - Ying Lian
- Department of Health Management, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, China.
| | - Heng Li
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, China.
| | - Yu-Dong Liu
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, China.
| | - Rui-Sheng Duan
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, China; Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, China; Shandong Institute of Neuroimmunology, China.
| |
Collapse
|
76
|
Bemani P, Eklund KK, Ali-Hassanzadeh M, Kabelitz D, Schmidt RE, Meri S, Kalantar K. Proportion of T follicular helper cells in peripheral blood of rheumatoid arthritis patients: a systematic review and meta-analysis. Expert Rev Clin Immunol 2021; 17:667-680. [PMID: 33853479 DOI: 10.1080/1744666x.2021.1915770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Introduction:Alterations in the levels and activity of Tfh may lead to impaired immune tolerance and autoimmune diseases. The aim of this study was to investigate the proportion and types of Tfh cells in the peripheral blood (PB) of RA patients.Areas covered:Comprehensive databases were searched for studies evaluating the proportion of Tfh cells in the PB of patients with RA compared to healthy control (HCs).The proportion of Tfh cells in RA patients was significantly higher than in HCs (SMD 0.699, [0.513, 0.884], p < 0.0001). Furthermore, Tfh cells proportion in untreated-RA and early-RA patients was markedly greater than HCs, when comparisons done without considering the definition markers, and also when Tfh cells were defined by the specified definition markers. While the proportion of Tfh cells by all definitions was higher in active-RA compared to HCs, analysis of two definitions, CD4+CXCR5+ and CD4+CXCR5+ICOS+, didn't show significant differences. Furthermore, higher proportion of Tfh cells defined by all definitions and a specified definition (CD4+CXCR5+PD-1high) was observed when S+RA compared to S-RA patients.Expert opinion:The results demonstrate that circulating Tfh are highly elevated in RA patients highlights its potential use as a biomarker and a target for RA therapy.
Collapse
Affiliation(s)
- Peyman Bemani
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Kari K Eklund
- Department of Medicine, Division of Rheumatology, Helsinki University Central Hospital, Helsinki, Finland
| | - Mohammad Ali-Hassanzadeh
- Department of Immunology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | | | - Reinhold E Schmidt
- Klinik Für Immunologie Und Rheumatologie, Medizinische Hochschule Hannover (MHH), Hannover, Germany
| | - Seppo Meri
- Department of Bacteriology & Immunology and the Translational Immunology Research Program (TRIMM), University of Helsinki, Helsinki, Finland
| | - Kurosh Kalantar
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
77
|
Zhang S, Li L, Xie D, Reddy S, Sleasman JW, Ma L, Zhong XP. Regulation of Intrinsic and Bystander T Follicular Helper Cell Differentiation and Autoimmunity by Tsc1. Front Immunol 2021; 12:620437. [PMID: 33936036 PMCID: PMC8079652 DOI: 10.3389/fimmu.2021.620437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/24/2021] [Indexed: 11/13/2022] Open
Abstract
T Follicular helper (Tfh) cells promote germinal center (GC) B cell responses to develop effective humoral immunity against pathogens. However, dysregulated Tfh cells can also trigger autoantibody production and the development of autoimmune diseases. We report here that Tsc1, a regulator for mTOR signaling, plays differential roles in Tfh cell/GC B cell responses in the steady state and in immune responses to antigen immunization. In the steady state, Tsc1 in T cells intrinsically suppresses spontaneous GC-Tfh cell differentiation and subsequent GC-B cell formation and autoantibody production. In immune responses to antigen immunization, Tsc1 in T cells is required for efficient GC-Tfh cell expansion, GC-B cell induction, and antigen-specific antibody responses, at least in part via promoting GC-Tfh cell mitochondrial integrity and survival. Interestingly, in mixed bone marrow chimeric mice reconstituted with both wild-type and T cell-specific Tsc1-deficient bone marrow cells, Tsc1 deficiency leads to enhanced GC-Tfh cell differentiation of wild-type CD4 T cells and increased accumulation of wild-type T regulatory cells and T follicular regulatory cells. Such bystander GC-Tfh cell differentiation suggests a potential mechanism that could trigger self-reactive GC-Tfh cell/GC responses and autoimmunity via neighboring GC-Tfh cells.
Collapse
Affiliation(s)
- Shimeng Zhang
- Department of Pediatrics, Division of Allergy and Immunology, Duke University Medical Center, Durham, NC, United States.,Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Lei Li
- Department of Pediatrics, Division of Allergy and Immunology, Duke University Medical Center, Durham, NC, United States.,Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Danli Xie
- Department of Pediatrics, Division of Allergy and Immunology, Duke University Medical Center, Durham, NC, United States.,Department of Microbiology and Immunology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Srija Reddy
- Department of Pediatrics, Division of Allergy and Immunology, Duke University Medical Center, Durham, NC, United States
| | - John W Sleasman
- Department of Pediatrics, Division of Allergy and Immunology, Duke University Medical Center, Durham, NC, United States
| | - Li Ma
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Xiao-Ping Zhong
- Department of Pediatrics, Division of Allergy and Immunology, Duke University Medical Center, Durham, NC, United States.,Department of Immunology, Duke University Medical Center, Durham, NC, United States.,Hematologic Malignancies and Cellular Therapies Program, Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
78
|
O'Brien SA, Zhu M, Zhang W. Spontaneous Differentiation of T Follicular Helper Cells in LATY136F Mutant Mice. Front Immunol 2021; 12:656817. [PMID: 33912184 PMCID: PMC8072119 DOI: 10.3389/fimmu.2021.656817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/22/2021] [Indexed: 11/29/2022] Open
Abstract
Mice with a mutation at the LAT-PLCγ1 binding site (Y136) have a defect in thymocyte development due to dampened TCR signaling. CD4+ T cells that do reach the periphery are hyper-activated and skewed to Th2. Over time, these mice develop an autoimmune-like syndrome, characterize by overproduction of Th2 cytokines, T cell infiltration into various organs, and B cell activation, isotype switching, and autoantibody production. In this study, we examined IL4 production by CD4+ T cells in the LATY136F mice using the KN2 reporter mice, in which human CD2 expression marks T cells that are actively producing IL4 protein. We showed that these mice had spontaneous Tfh differentiation. Despite the fact that the majority of CD4+ T cells were skewed to Th2 and were GATA3+, only a small subset of them were actively secreting IL4. These T cells were Tfh cells that expressed BCL6 and were localized to B cell-rich germinal centers within the spleen. Interestingly, these Tfh cells expressed high levels of both BCL6 and GATA3. By using LAT conditional knockout mice that inducibly express only the LATY136F allele, we further showed that Tfh cell differentiation was likely the result of defective LAT-PLCγ1 signaling in the periphery. In addition, B cells were required for spontaneous development of Tfh cells and uncontrolled T cell expansion in these mice. Together, these results indicated a novel role for tonic LAT-PLCγ1 signaling in modulating Tfh cell differentiation during development of autoimmune syndrome.
Collapse
Affiliation(s)
- Sarah A O'Brien
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
| | - Minghua Zhu
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
| | - Weiguo Zhang
- Department of Immunology, Duke University Medical Center, Durham, NC, United States.,Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
| |
Collapse
|
79
|
Baumjohann D, Fazilleau N. Antigen-dependent multistep differentiation of T follicular helper cells and its role in SARS-CoV-2 infection and vaccination. Eur J Immunol 2021; 51:1325-1333. [PMID: 33788271 PMCID: PMC8250352 DOI: 10.1002/eji.202049148] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/05/2021] [Accepted: 03/16/2021] [Indexed: 01/20/2023]
Abstract
T follicular helper (Tfh) cells play an essential role in regulating the GC reaction and, consequently, the generation of high‐affinity antibodies and memory B cells. Therefore, Tfh cells are critical for potent humoral immune responses against various pathogens and their dysregulation has been linked to autoimmunity and cancer. Tfh cell differentiation is a multistep process, in which cognate interactions with different APC types, costimulatory and coinhibitory pathways, as well as cytokines are involved. However, it is still not fully understood how a subset of activated CD4+ T cells begins to express the Tfh cell‐defining chemokine receptor CXCR5 during the early stage of the immune response, how some CXCR5+ pre‐Tfh cells enter the B‐cell follicles and mature further into GC Tfh cells, and how Tfh cells are maintained in the memory compartment. In this review, we discuss recent advances on how antigen and cognate interactions are important for Tfh cell differentiation and long‐term persistence of Tfh cell memory, and how this is relevant to the current understanding of COVID‐19 pathogenesis and the development of potent SARS‐CoV‐2 vaccines.
Collapse
Affiliation(s)
- Dirk Baumjohann
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Nicolas Fazilleau
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, Inserm, Toulouse, U1291, France.,French Germinal Center Club, French Society for Immunology (SFI), Paris, France
| |
Collapse
|
80
|
Scholz J, Kuhrau J, Heinrich F, Heinz GA, Hutloff A, Worm M, Heine G. Vitamin A controls the allergic response through T follicular helper cell as well as plasmablast differentiation. Allergy 2021; 76:1109-1122. [PMID: 32895937 DOI: 10.1111/all.14581] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/16/2020] [Accepted: 07/30/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Vitamin A regulates the adaptive immune response and a modulatory impact on type I allergy is discussed. The cellular mechanisms are largely unknown. OBJECTIVE To determine the vitamin A-responding specific lymphocyte reaction in vivo. METHODS Antigen-specific B and T lymphocytes were analyzed in an adoptive transfer airway inflammation mouse model in response to 9-cis retinoic acid (9cRA) and after lymphocyte-specific genetic targeting of the receptor RARα. Flow cytometry, quantitative PCR, next-generation sequencing, and specific Ig-ELISA were used to characterize the cells functionally. RESULTS Systemic 9cRA profoundly enhanced the specific IgA-secreting B-cell frequencies in the lung tissue and serum IgA while reducing serum IgE concentrations. RARα overexpression in antigen-specific B cells promoted differentiation into plasmablasts at the expense of germinal center B cells. In antigen-specific T cells, RARα strongly promoted the differentiation of T follicular helper cells followed by an enhanced germinal center response. CONCLUSIONS 9cRA signaling via RARα impacts the allergen-specific immunoglobulin response directly by the differentiation of B cells and indirectly by promoting T follicular helper cells.
Collapse
Affiliation(s)
- Josephine Scholz
- Division of Allergy and Immunology Department of Dermatology, Venereology and Allergy Charité – Universitätsmedizin Berlin Freie Universität BerlinHumboldt‐Universität zu BerlinBerlin Institute of Health Berlin Germany
- Deutsches Rheuma‐Forschungszentrum, A Leibniz Institute Berlin Germany
| | - Julia Kuhrau
- Deutsches Rheuma‐Forschungszentrum, A Leibniz Institute Berlin Germany
- Institute of Immunology University Hospital Schleswig‐HolsteinCampus Kiel Kiel Germany
| | - Frederik Heinrich
- Deutsches Rheuma‐Forschungszentrum, A Leibniz Institute Berlin Germany
| | - Gitta Anne Heinz
- Deutsches Rheuma‐Forschungszentrum, A Leibniz Institute Berlin Germany
| | - Andreas Hutloff
- Deutsches Rheuma‐Forschungszentrum, A Leibniz Institute Berlin Germany
- Institute of Immunology University Hospital Schleswig‐HolsteinCampus Kiel Kiel Germany
- Institute of Clinical Molecular Biology University Hospital Schleswig‐HolsteinCampus Kiel Kiel Germany
| | - Margitta Worm
- Division of Allergy and Immunology Department of Dermatology, Venereology and Allergy Charité – Universitätsmedizin Berlin Freie Universität BerlinHumboldt‐Universität zu BerlinBerlin Institute of Health Berlin Germany
| | - Guido Heine
- Division of Allergy and Immunology Department of Dermatology, Venereology and Allergy Charité – Universitätsmedizin Berlin Freie Universität BerlinHumboldt‐Universität zu BerlinBerlin Institute of Health Berlin Germany
- Deutsches Rheuma‐Forschungszentrum, A Leibniz Institute Berlin Germany
- Department of Dermatology and Allergy University Hospital Schleswig‐HolsteinCampus Kiel Kiel Germany
| |
Collapse
|
81
|
ICOS ligand and IL-10 synergize to promote host-microbiota mutualism. Proc Natl Acad Sci U S A 2021; 118:2018278118. [PMID: 33753483 DOI: 10.1073/pnas.2018278118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Genome-wide association studies have identified ICOSLG, which encodes the inducible costimulator ligand (ICOSLG or ICOSL) as a susceptibility locus for inflammatory bowel disease. ICOSL has been implicated in the enhancement of pattern recognition receptor signaling in dendritic cells, induction of IL-10 production by CD4 T cells, and the generation of high-affinity antibodies to specific antigens-all of which can potentially explain its involvement in gastrointestinal inflammation. Here, we show that murine ICOSL deficiency results in significant enrichment of IL-10-producing CD4 T cells particularly in the proximal large intestine. Transient depletion of IL-10-producing cells from adult ICOSL-deficient mice induced severe colonic inflammation that was prevented when mice were first treated with metronidazole. ICOSL-deficient mice displayed reduced IgA and IgG antibodies in the colon mucus and impaired serum antibody recognition of microbial antigens, including flagellins derived from mucus-associated bacteria of the Lachnospiraceae family. Confirming the synergy between ICOSL and IL-10, ICOSL deficiency coupled with CD4-specific deletion of the Il10 gene resulted in juvenile onset colitis that was impeded when pups were fostered by ICOSL-sufficient dams. In this setting, we found that both maternally acquired and host-derived antibodies contribute to the life anti-commensal antibody repertoire that mediates this protection in early life. Collectively, our findings reveal a partnership between ICOSL-dependent anti-commensal antibodies and IL-10 in adaptive immune regulation of the microbiota in the large intestine. Furthermore, we identify ICOSL deficiency as an effective platform for exploring the functions of anti-commensal antibodies in host-microbiota mutualism.
Collapse
|
82
|
Abstract
As the professional antigen-presenting cells of the immune system, dendritic cells (DCs) sense the microenvironment and shape the ensuing adaptive immune response. DCs can induce both immune activation and immune tolerance according to the peripheral cues. Recent work has established that DCs comprise several phenotypically and functionally heterogeneous subsets that differentially regulate T lymphocyte differentiation. This review summarizes both mouse and human DC subset phenotypes, development, diversification, and function. We focus on advances in our understanding of how different DC subsets regulate distinct CD4+ T helper (Th) cell differentiation outcomes, including Th1, Th2, Th17, T follicular helper, and T regulatory cells. We review DC subset intrinsic properties, local tissue microenvironments, and other immune cells that together determine Th cell differentiation during homeostasis and inflammation.
Collapse
Affiliation(s)
- Xiangyun Yin
- Department of Laboratory Medicine and Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA;
| | - Shuting Chen
- Department of Laboratory Medicine and Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA;
| | - Stephanie C Eisenbarth
- Department of Laboratory Medicine and Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA;
| |
Collapse
|
83
|
The ubiquitin ligase Peli1 inhibits ICOS and thereby Tfh-mediated immunity. Cell Mol Immunol 2021; 18:969-978. [PMID: 33707688 PMCID: PMC8115645 DOI: 10.1038/s41423-021-00660-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 02/13/2021] [Indexed: 11/11/2022] Open
Abstract
T follicular helper (Tfh) cells are crucial for regulating autoimmune inflammation and protective immunity against viral infection. However, the molecular mechanism controlling Tfh cell differentiation is poorly understood. Here, through two mixed bone marrow chimeric experiments, we identified Peli1, a T cell-enriched E3 ubiquitin ligase, as an intrinsic regulator that inhibits Tfh cell differentiation. Peli1 deficiency significantly promoted c-Rel-mediated inducible T-cell costimulator (ICOS) expression, and PELI1 mRNA expression was negatively associated with ICOS expression on human CD4+ T cells. Mechanistically, increased ICOS expression on Peli1-KO CD4+ T cells enhanced the activation of PI3K-AKT signaling and thus suppressed the expression of Klf2, a transcription factor that inhibits Tfh differentiation. Therefore, reconstitution of Klf2 abolished the differences in Tfh differentiation and germinal center reaction between WT and Peli1-KO cells. As a consequence, Peli1-deficient CD4+ T cells promoted lupus-like autoimmunity but protected against H1N1 influenza virus infection in mouse models. Collectively, our findings established Peli1 as a critical negative regulator of Tfh differentiation and indicated that targeting Peli1 may have beneficial therapeutic effects in Tfh-related autoimmunity or infectious diseases.
Collapse
|
84
|
Babic M, Dimitropoulos C, Hammer Q, Stehle C, Heinrich F, Sarsenbayeva A, Eisele A, Durek P, Mashreghi MF, Lisnic B, Van Snick J, Löhning M, Fillatreau S, Withers DR, Gagliani N, Huber S, Flavell RA, Polic B, Romagnani C. NK cell receptor NKG2D enforces proinflammatory features and pathogenicity of Th1 and Th17 cells. J Exp Med 2021; 217:151818. [PMID: 32453422 PMCID: PMC7398170 DOI: 10.1084/jem.20190133] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/24/2020] [Accepted: 04/24/2020] [Indexed: 12/24/2022] Open
Abstract
NKG2D is a danger sensor expressed on different subsets of innate and adaptive lymphocytes. Despite its established role as a potent activator of the immune system, NKG2D-driven regulation of CD4+ T helper (Th) cell-mediated immunity remains unclear. In this study, we demonstrate that NKG2D modulates Th1 and proinflammatory T-bet+ Th17 cell effector functions in vitro and in vivo. In particular, NKG2D promotes higher production of proinflammatory cytokines by Th1 and T-bet+ Th17 cells and reinforces their transcription of type 1 signature genes, including Tbx21. Conditional deletion of NKG2D in T cells impairs the ability of antigen-specific CD4+ T cells to promote inflammation in vivo during antigen-induced arthritis and experimental autoimmune encephalomyelitis, indicating that NKG2D is an important target for the amelioration of Th1- and Th17-mediated chronic inflammatory diseases.
Collapse
Affiliation(s)
- Marina Babic
- Innate Immunity, German Rheumatism Research Centre-a Leibniz Institute, Berlin, Germany.,Division of Gastroenterology, Infectiology and Rheumatology, Medical Department I, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Quirin Hammer
- Innate Immunity, German Rheumatism Research Centre-a Leibniz Institute, Berlin, Germany
| | - Christina Stehle
- Innate Immunity, German Rheumatism Research Centre-a Leibniz Institute, Berlin, Germany
| | - Frederik Heinrich
- Therapeutic Gene Regulation, German Rheumatism Research Centre-a Leibniz Institute, Berlin, Germany
| | - Assel Sarsenbayeva
- Innate Immunity, German Rheumatism Research Centre-a Leibniz Institute, Berlin, Germany
| | - Almut Eisele
- Innate Immunity, German Rheumatism Research Centre-a Leibniz Institute, Berlin, Germany
| | - Pawel Durek
- Cell Biology, German Rheumatism Research Centre-a Leibniz Institute, Berlin, Germany
| | - Mir-Farzin Mashreghi
- Therapeutic Gene Regulation, German Rheumatism Research Centre-a Leibniz Institute, Berlin, Germany
| | - Berislav Lisnic
- Center for Proteomics, University of Rijeka, Rijeka, Croatia.,Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Croatia
| | | | - Max Löhning
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Centre-a Leibniz Institute, Berlin, Germany.,Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Simon Fillatreau
- Institut Necker-Enfants Malades, INSERM U1151/CNRS UMR8253, Faculté de Médecine Paris Descartes, Paris, France
| | - David R Withers
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Nicola Gagliani
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Samuel Huber
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT.,Howard Hughes Medical Institute, Yale University, New Haven, CT
| | - Bojan Polic
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Croatia
| | - Chiara Romagnani
- Innate Immunity, German Rheumatism Research Centre-a Leibniz Institute, Berlin, Germany.,Division of Gastroenterology, Infectiology and Rheumatology, Medical Department I, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
85
|
Schroeder AR, Zhu F, Hu H. Stepwise Tfh cell differentiation revisited: new advances and long-standing questions. Fac Rev 2021; 10. [PMID: 33644779 PMCID: PMC7894273 DOI: 10.12703/r/10-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
T follicular helper (Tfh) cells play an essential role in germinal center formation and the generation of high-affinity antibodies. Studies have proposed that Tfh cell differentiation is a multi-step process. However, it is still not fully understood how a subset of activated CD4+ T cells begin to express CXCR5 during the early stage of the response and, shortly after, how some CXCR5+ precursor Tfh (pre-Tfh) cells enter B cell follicles and differentiate further into germinal center Tfh (GC-Tfh) cells while others have a different fate. In this mini-review, we summarize the recent advances surrounding these two aspects of Tfh cell differentiation and discuss related long-standing questions, including Tfh memory.
Collapse
Affiliation(s)
- Andrew R Schroeder
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Fangming Zhu
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hui Hu
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
86
|
Goenka R, Xu Z, Samayoa J, Banach D, Beam C, Bose S, Dooner G, Forsyth CM, Lu X, Medina L, Sadhukhan R, Sielaff B, Sousa S, Tao Q, Touw D, Wu F, Kingsbury GA, Akamatsu Y. CTLA4-Ig-Based Bifunctional Costimulation Inhibitor Blocks CD28 and ICOS Signaling to Prevent T Cell Priming and Effector Function. THE JOURNAL OF IMMUNOLOGY 2021; 206:1102-1113. [PMID: 33495237 DOI: 10.4049/jimmunol.2001100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/21/2020] [Indexed: 11/19/2022]
Abstract
CTLA4-Ig/abatacept dampens activation of naive T cells by blocking costimulation via CD28. It is an approved drug for rheumatoid arthritis but failed to deliver efficacy in a number of other autoimmune diseases. One explanation is that activated T cells rely less on CD28 signaling and use alternate coreceptors for effector function. ICOS is critical for activation of T-dependent humoral immune responses, which drives pathophysiology of IgG-mediated autoimmune diseases. In this study, we asked whether CD28 and ICOS play nonredundant roles for maintenance of T-dependent responses in mouse models. Using a hapten-protein immunization model, we show that during an ongoing germinal center response, combination treatment with CTLA4-Ig and ICOS ligand (ICOSL) blocking Ab completely dissolves ongoing germinal center responses, whereas single agents show only partial activity. Next, we took two approaches to engineer a therapeutic molecule that blocks both pathways. First, we engineered CTLA4-Ig to enhance binding to ICOSL while retaining affinity to CD80/CD86. Using a library approach, binding affinity of CTLA4-Ig to human ICOSL was increased significantly from undetectable to 15-42 nM; however, the affinity was still insufficient to completely block binding of ICOSL to ICOS. Second, we designed a bispecific costimulation inhibitor with high-affinity CTLA4 extracellular domains fused to anti-ICOSL Ab termed bifunctional costimulation inhibitor. With this bispecific approach, we achieved complete inhibition of CD80 and CD86 binding to CD28 as well as ICOS binding to ICOSL. Such bispecific molecules may provide greater therapeutic benefit in IgG-mediated inflammatory diseases compared with CTLA4-Ig alone.
Collapse
Affiliation(s)
| | - Zhenghai Xu
- AbbVie Redwood City, Redwood City, CA 94306; and
| | | | | | | | - Sahana Bose
- AbbVie Bioresearch Center, Worcester, MA 01605
| | | | | | - Xiaoqing Lu
- AbbVie Cambridge Research Center, Cambridge, MA 02139
| | | | | | | | | | - Qingfeng Tao
- AbbVie Cambridge Research Center, Cambridge, MA 02139
| | - Debra Touw
- AbbVie Bioresearch Center, Worcester, MA 01605
| | - Fei Wu
- AbbVie Bioresearch Center, Worcester, MA 01605
| | | | | |
Collapse
|
87
|
Choi J, Crotty S. Bcl6-Mediated Transcriptional Regulation of Follicular Helper T cells (T FH). Trends Immunol 2021; 42:336-349. [PMID: 33663954 DOI: 10.1016/j.it.2021.02.002] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 02/01/2023]
Abstract
Follicular helper T cells (TFH) are essential B cell-help providers in the formation of germinal centers (GCs), affinity maturation of GC B cells, differentiation of high-affinity antibody-producing plasma cells, and production of memory B cells. The transcription factor (TF) B cell lymphoma 6 (Bcl6) is at the center of gene regulation in TFH biology, including differentiation and function, but how Bcl6 does this, and what additional TFs contribute, remain complex questions. This review focuses on advances in our understanding of Bcl6-mediated gene regulation of TFH functions, and the modulation of TFH by other TFs. These advances may have important implications in deciphering how repressor TFs can regulate many immunological cell types. An improved understanding of TFH biology will likely provide insights into biomedically relevant diseases.
Collapse
Affiliation(s)
- Jinyong Choi
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA; Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Shane Crotty
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA.
| |
Collapse
|
88
|
Ioannidou K, Ndiaye DR, Noto A, Fenwick C, Fortis SP, Pantaleo G, Petrovas C, de Leval L. In Situ Characterization of Follicular Helper CD4 T Cells Using Multiplexed Imaging. Front Immunol 2021; 11:607626. [PMID: 33633728 PMCID: PMC7901994 DOI: 10.3389/fimmu.2020.607626] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/24/2020] [Indexed: 12/19/2022] Open
Abstract
Follicular helper CD4 T (Tfh) cells play an essential role in the formation of germinal centers (GCs), where mature B cells proliferate, differentiate, and provide long-term protective humoral responses. Despite the extensive phenotypic characterization and identification of human Tfh cell subsets, their spatial positioning at tissue level is not well understood. Here, we describe a quantitative multiplexed immunofluorescence approach allowing for the comprehensive in situ characterization of Tfh cells in human tonsils and lymph nodes (LNs) from individuals with angioimmunoblastic T-cell lymphoma (AITL). We have developed eight multiplexed panels comprising a spectrum of Tfh cell markers, like PD-1, CXCR5, and ICOS, along with transcription factors (Bcl6, Tbet, GATA3), to assess their expression, frequencies, spatial distribution and co-localization in a quantitative manner. Combined analysis of relevant markers revealed the presence of several Tfh cell subsets at tissue level based on the differential expression of surface receptors, nuclear factors as well as their distinct localization within the follicular areas. Interestingly, we found a considerable amount of tonsillar Tfh cells expressing high levels of the Th2 regulator GATA3. The co-expression of GATA3, CXCR5, and BCL6, points to an important role of GATA3 for the generation of effector human Tfh cells. Furthermore, our data revealed significantly different Tfh cell profile signatures between health and disease. Therefore, our imaging platform generates meaningful information for the in situ characterization of human Tfh cells and could provide the base for future studies aiming to a comprehensive understanding of Tfh cell tissue heterogeneity.
Collapse
Affiliation(s)
- Kalliopi Ioannidou
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Daba-Rokhya Ndiaye
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Alessandra Noto
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Craig Fenwick
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Sotirios P Fortis
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Giuseppe Pantaleo
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Constantinos Petrovas
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland.,Tissue Analysis Core, Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Laurence de Leval
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| |
Collapse
|
89
|
Cao Y, Dong L, He Y, Hu X, Hou Y, Dong Y, Yang Q, Bi Y, Liu G. The direct and indirect regulation of follicular T helper cell differentiation in inflammation and cancer. J Cell Physiol 2021; 236:5466-5480. [PMID: 33421124 DOI: 10.1002/jcp.30263] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/03/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022]
Abstract
Follicular T helper (Tfh) cells play important roles in facilitating B-cell differentiation and inducing the antibody response in humoral immunity and immune-associated inflammatory diseases, including infections, autoimmune diseases, and cancers. However, Tfh cell differentiation is mainly achieved through self-directed differentiation regulation and the indirect regulation mechanism of antigen-presenting cells (APCs). During the direct intrinsic differentiation of naïve CD4+ T cells into Tfh cells, Bcl-6, as the characteristic transcription factor, plays the core role of transcriptional regulation. APCs indirectly drive Tfh cell differentiation mainly by changing cytokine secretion mechanisms. Altered metabolic signaling is also critically involved in Tfh cell differentiation. This review summarizes the recent progress in understanding the direct and indirect regulatory signals and metabolic mechanisms of Tfh cell differentiation and function in immune-associated diseases.
Collapse
Affiliation(s)
- Yejin Cao
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing, China
| | - Lin Dong
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing, China
| | - Ying He
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing, China
| | - Xuelian Hu
- Immunochina Pharmaceuticals Co., Ltd., No. 80, Xingshikou Road, Haidian District, Beijing, China
| | - Yueru Hou
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing, China
| | - Yingjie Dong
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing, China
| | - Qiuli Yang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing, China
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20, East Street, Fengtai District, Beijing, China
| | - Guangwei Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing, China
| |
Collapse
|
90
|
Swarnalekha N, Schreiner D, Litzler LC, Iftikhar S, Kirchmeier D, Künzli M, Son YM, Sun J, Moreira EA, King CG. T resident helper cells promote humoral responses in the lung. Sci Immunol 2021; 6:6/55/eabb6808. [PMID: 33419790 DOI: 10.1126/sciimmunol.abb6808] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022]
Abstract
Influenza is a deadly and costly infectious disease, even during flu seasons when an effective vaccine has been developed. To improve vaccines against respiratory viruses, a better understanding of the immune response at the site of infection is crucial. After influenza infection, clonally expanded T cells take up permanent residence in the lung, poised to rapidly respond to subsequent infection. Here, we characterized the dynamics and transcriptional regulation of lung-resident CD4+ T cells during influenza infection and identified a long-lived, Bcl6-dependent population that we have termed T resident helper (TRH) cells. TRH cells arise in the lung independently of lymph node T follicular helper cells but are dependent on B cells, with which they tightly colocalize in inducible bronchus-associated lymphoid tissue (iBALT). Deletion of Bcl6 in CD4+ T cells before heterotypic challenge infection resulted in redistribution of CD4+ T cells outside of iBALT areas and impaired local antibody production. These results highlight iBALT as a homeostatic niche for TRH cells and advocate for vaccination strategies that induce TRH cells in the lung.
Collapse
Affiliation(s)
- Nivedya Swarnalekha
- Immune Cell Biology Laboratory, Department of Biomedicine, University of Basel, University Hospital Basel, CH-4031 Basel, Switzerland
| | - David Schreiner
- Immune Cell Biology Laboratory, Department of Biomedicine, University of Basel, University Hospital Basel, CH-4031 Basel, Switzerland
| | - Ludivine C Litzler
- Immune Cell Biology Laboratory, Department of Biomedicine, University of Basel, University Hospital Basel, CH-4031 Basel, Switzerland
| | - Saadia Iftikhar
- Personalised Health Basel- Oncology Cluster Basel, University of Basel, Basel, Switzerland
| | - Daniel Kirchmeier
- Immune Cell Biology Laboratory, Department of Biomedicine, University of Basel, University Hospital Basel, CH-4031 Basel, Switzerland
| | - Marco Künzli
- Immune Cell Biology Laboratory, Department of Biomedicine, University of Basel, University Hospital Basel, CH-4031 Basel, Switzerland
| | - Young Min Son
- Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA.,Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jie Sun
- Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA.,Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Carolyn G King
- Immune Cell Biology Laboratory, Department of Biomedicine, University of Basel, University Hospital Basel, CH-4031 Basel, Switzerland.
| |
Collapse
|
91
|
Brenna E, Davydov AN, Ladell K, McLaren JE, Bonaiuti P, Metsger M, Ramsden JD, Gilbert SC, Lambe T, Price DA, Campion SL, Chudakov DM, Borrow P, McMichael AJ. CD4 + T Follicular Helper Cells in Human Tonsils and Blood Are Clonally Convergent but Divergent from Non-Tfh CD4 + Cells. Cell Rep 2021; 30:137-152.e5. [PMID: 31914381 PMCID: PMC7029615 DOI: 10.1016/j.celrep.2019.12.016] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/16/2019] [Accepted: 12/05/2019] [Indexed: 12/30/2022] Open
Abstract
T follicular helper (Tfh) cells are fundamental for B cell selection and antibody maturation in germinal centers. Circulating Tfh (cTfh) cells constitute a minor proportion of the CD4+ T cells in peripheral blood, but their clonotypic relationship to Tfh populations resident in lymph nodes and the extent to which they differ from non-Tfh CD4+ cells have been unclear. Using donor-matched blood and tonsil samples, we investigate T cell receptor (TCR) sharing between tonsillar Tfh cells and peripheral Tfh and non-Tfh cell populations. TCR transcript sequencing reveals considerable clonal overlap between peripheral and tonsillar Tfh cell subsets as well as a clear distinction between Tfh and non-Tfh cells. Furthermore, influenza-specific cTfh cell clones derived from blood can be found in the repertoire of tonsillar Tfh cells. Therefore, human blood samples can be used to gain insight into the specificity of Tfh responses occurring in lymphoid tissues, provided that cTfh subsets are studied.
Collapse
Affiliation(s)
- Elena Brenna
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, UK.
| | - Alexey N Davydov
- Central European Institute of Technology, Brno 601 77, Czech Republic
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - James E McLaren
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Paolo Bonaiuti
- Istituto Firc di Oncologia Molecolare, Milano 20139, Italy
| | - Maria Metsger
- Central European Institute of Technology, Brno 601 77, Czech Republic
| | | | - Sarah C Gilbert
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Teresa Lambe
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK; Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Suzanne L Campion
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Dmitriy M Chudakov
- Central European Institute of Technology, Brno 601 77, Czech Republic; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow 117997, Russia
| | - Persephone Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, UK.
| | - Andrew J McMichael
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, UK.
| |
Collapse
|
92
|
Abstract
Follicular helper T (Tfh) cells play a key role in B cell activation and differentiation. Within recent years, distinct subsets of follicular T cells, including regulatory and cytotoxic T cells, have been identified. Apart from classical Tfh cells in secondary lymphoid organs, Tfh-like cells are found in chronically inflamed nonlymphoid tissues. Here, we provide protocols to identify different follicular T cell subsets in murine and human tissues by flow cytometry. This chapter also contains an immunization protocol for the induction of large numbers of Tfh cells in mice.
Collapse
|
93
|
Künzli M, Schreiner D, Pereboom TC, Swarnalekha N, Litzler LC, Lötscher J, Ertuna YI, Roux J, Geier F, Jakob RP, Maier T, Hess C, Taylor JJ, King CG. Long-lived T follicular helper cells retain plasticity and help sustain humoral immunity. Sci Immunol 2020; 5:5/45/eaay5552. [PMID: 32144185 DOI: 10.1126/sciimmunol.aay5552] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/16/2020] [Indexed: 12/11/2022]
Abstract
CD4+ memory T cells play an important role in protective immunity and are a key target in vaccine development. Many studies have focused on T central memory (Tcm) cells, whereas the existence and functional significance of long-lived T follicular helper (Tfh) cells are controversial. Here, we show that Tfh cells are highly susceptible to NAD-induced cell death (NICD) during isolation from tissues, leading to their underrepresentation in prior studies. NICD blockade reveals the persistence of abundant Tfh cells with high expression of hallmark Tfh markers to at least 400 days after infection, by which time Tcm cells are no longer found. Using single-cell RNA-seq, we demonstrate that long-lived Tfh cells are transcriptionally distinct from Tcm cells, maintain stemness and self-renewal gene expression, and, in contrast to Tcm cells, are multipotent after recall. At the protein level, we show that folate receptor 4 (FR4) robustly discriminates long-lived Tfh cells from Tcm cells. Unexpectedly, long-lived Tfh cells concurrently express a distinct glycolytic signature similar to trained immune cells, including elevated expression of mTOR-, HIF-1-, and cAMP-regulated genes. Late disruption of glycolysis/ICOS signaling leads to Tfh cell depletion concomitant with decreased splenic plasma cells and circulating antibody titers, demonstrating both unique homeostatic regulation of Tfh and their sustained function during the memory phase of the immune response. These results highlight the metabolic heterogeneity underlying distinct long-lived T cell subsets and establish Tfh cells as an attractive target for the induction of durable adaptive immunity.
Collapse
Affiliation(s)
- Marco Künzli
- Immune Cell Biology Laboratory, Department of Biomedicine, University of Basel, University Hospital Basel, CH-4031 Basel, Switzerland
| | - David Schreiner
- Immune Cell Biology Laboratory, Department of Biomedicine, University of Basel, University Hospital Basel, CH-4031 Basel, Switzerland
| | - Tamara C Pereboom
- Immune Cell Biology Laboratory, Department of Biomedicine, University of Basel, University Hospital Basel, CH-4031 Basel, Switzerland
| | - Nivedya Swarnalekha
- Immune Cell Biology Laboratory, Department of Biomedicine, University of Basel, University Hospital Basel, CH-4031 Basel, Switzerland
| | - Ludivine C Litzler
- Immune Cell Biology Laboratory, Department of Biomedicine, University of Basel, University Hospital Basel, CH-4031 Basel, Switzerland
| | - Jonas Lötscher
- Department of Biomedicine, University of Basel, University Hospital Basel, CH-4031 Basel, Switzerland
| | - Yusuf I Ertuna
- Department of Biomedicine, University of Basel, CH-4031 Basel, Switzerland
| | - Julien Roux
- Department of Biomedicine, University of Basel, University Hospital Basel, CH-4031 Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Florian Geier
- Department of Biomedicine, University of Basel, University Hospital Basel, CH-4031 Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| | | | - Timm Maier
- Biozentrum, University of Basel, Basel, Switzerland
| | - Christoph Hess
- Department of Biomedicine, University of Basel, University Hospital Basel, CH-4031 Basel, Switzerland.,Department of Medicine, CITIID, University of Cambridge, Cambridge, UK
| | - Justin J Taylor
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Carolyn G King
- Immune Cell Biology Laboratory, Department of Biomedicine, University of Basel, University Hospital Basel, CH-4031 Basel, Switzerland.
| |
Collapse
|
94
|
Gassen RB, Fazolo T, Nascimento de Freitas D, Borges TJ, Lima K, Antunes GL, Maito F, Bueno Mendes DA, Báfica A, Rodrigues LC, Stein R, Duarte de Souza AP, Bonorino C. IL-21 treatment recovers follicular helper T cells and neutralizing antibody production in respiratory syncytial virus infection. Immunol Cell Biol 2020; 99:309-322. [PMID: 33068449 DOI: 10.1111/imcb.12418] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/31/2020] [Accepted: 10/14/2020] [Indexed: 01/13/2023]
Abstract
Respiratory syncytial virus (RSV) is the major cause of lower respiratory tract infections in children under 1 year. RSV vaccines are currently unavailable, and children suffering from multiple reinfections by the same viral strain fail to develop protective responses. Although RSV-specific antibodies can be detected upon infection, these have limited neutralizing capacity. Follicular helper T (Tfh) cells are specialized in providing signals to B cells and help the production and affinity maturation of antibodies, mainly via interleukin (IL) 21 secretion. In this study, we evaluated whether RSV could inhibit Tfh responses. We observed that Tfh cells fail to upregulate IL-21 production upon RSV infection. In the lungs, RSV infection downregulated the expression of IL-21/interleukin-21 receptor (IL-21R) in Tfh cells and upregulated programmed death-ligand 1 (PD-L1) expression in dendritic cells (DCs) and B cells. PD-L1 blockade during infection recovered IL-21R expression in Tfh cells and increased the secretion of IL-21 in a DC-dependent manner. IL-21 treatment decreased RSV viral load and lung inflammation, inducing the formation of tertiary lymphoid organs in the lung. It also decreased regulatory follicular T cells, and increased Tfh cells, B cells, antibody avidity and neutralization capacity, leading to an overall improved anti-RSV humoral response in infected mice. Passive immunization with purified immunoglobulin G from IL-21-treated RSV-infected mice protected against RSV infection. Our results unveil a pathway by which RSV affects Tfh cells by increasing PD-L1 expression on antigen-presenting cells, highlighting the importance of an IL-21-PD-L1 axis for the generation of protective responses to RSV infection.
Collapse
Affiliation(s)
- Rodrigo Benedetti Gassen
- Laboratório de Imunologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Laboratório de Imunologia Clínica e Experimental, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Renal Division, Schuster Family Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tiago Fazolo
- Laboratório de Imunologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Laboratório de Imunologia Clínica e Experimental, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Deise Nascimento de Freitas
- Laboratório de Imunologia Clínica e Experimental, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Thiago J Borges
- Renal Division, Schuster Family Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Karina Lima
- Laboratório de Imunologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Laboratório de Imunoterapia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Géssica L Antunes
- Laboratório de Imunologia Clínica e Experimental, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fábio Maito
- Laboratório de Histologia, Faculdade de Odontologia, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Daniel Ag Bueno Mendes
- Laboratório de Imunobiologia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - André Báfica
- Laboratório de Imunobiologia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Luiz Carlos Rodrigues
- Laboratório de Imunovirologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Renato Stein
- Infant Center, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ana Paula Duarte de Souza
- Laboratório de Imunologia Clínica e Experimental, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Cristina Bonorino
- Laboratório de Imunoterapia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil.,Department of Surgery, School of Medicine, University of California at San Diego, La Jolla, CA, USA
| |
Collapse
|
95
|
Tfh Cells in Health and Immunity: Potential Targets for Systems Biology Approaches to Vaccination. Int J Mol Sci 2020; 21:ijms21228524. [PMID: 33198297 PMCID: PMC7696930 DOI: 10.3390/ijms21228524] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/16/2022] Open
Abstract
T follicular helper (Tfh) cells are a specialised subset of CD4+ T cells that play a significant role in the adaptive immune response, providing critical help to B cells within the germinal centres (GC) of secondary lymphoid organs. The B cell receptors of GC B cells undergo multiple rounds of somatic hypermutation and affinity maturation within the GC response, a process dependent on cognate interactions with Tfh cells. B cells that receive sufficient help from Tfh cells form antibody-producing long-lived plasma and memory B cells that provide the basis of decades of effective and efficient protection and are considered the gold standard in correlates of protection post-vaccination. However, the T cell response to vaccination has been understudied, and over the last 10 years, exponential improvements in the technological underpinnings of sampling techniques, experimental and analytical tools have allowed multidisciplinary characterisation of the role of T cells and the immune system as a whole. Of particular interest to the field of vaccinology are GCs and Tfh cells, representing a unique target for improving immunisation strategies. Here, we discuss recent insights into the unique journey of Tfh cells from thymus to lymph node during differentiation and their role in the production of high-quality antibody responses as well as their journey back to the periphery as a population of memory cells. Further, we explore their function in health and disease and the power of next-generation sequencing techniques to uncover their potential as modulators of vaccine-induced immunity.
Collapse
|
96
|
Bouchard A, Witalis M, Chang J, Panneton V, Li J, Bouklouch Y, Suh WK. Hippo Signal Transduction Mechanisms in T Cell Immunity. Immune Netw 2020; 20:e36. [PMID: 33163244 PMCID: PMC7609160 DOI: 10.4110/in.2020.20.e36] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/25/2022] Open
Abstract
Hippo signaling pathways are evolutionarily conserved signal transduction mechanisms mainly involved in organ size control, tissue regeneration, and tumor suppression. However, in mammals, the primary role of Hippo signaling seems to be regulation of immunity. As such, humans with null mutations in STK4 (mammalian homologue of Drosophila Hippo; also known as MST1) suffer from recurrent infections and autoimmune symptoms. Although dysregulated T cell homeostasis and functions have been identified in MST1-deficient human patients and mouse models, detailed cellular and molecular bases of the immune dysfunction remain to be elucidated. Although the canonical Hippo signaling pathway involves transcriptional co-activator Yes-associated protein (YAP) or transcriptional coactivator with PDZ motif (TAZ), the major Hippo downstream signaling pathways in T cells are YAP/TAZ-independent and they widely differ between T cell subsets. Here we will review Hippo signaling mechanisms in T cell immunity and describe their implications for immune defects found in MST1-deficient patients and animals. Further, we propose that mutual inhibition of Mst and Akt kinases and their opposing roles on the stability and function of forkhead box O and β-catenin may explain various immune defects discovered in mutant mice lacking Hippo signaling components. Understanding these diverse Hippo signaling pathways and their interplay with other evolutionarily-conserved signaling components in T cells may uncover molecular targets relevant to vaccination, autoimmune diseases, and cancer immunotherapies.
Collapse
Affiliation(s)
- Antoine Bouchard
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC H2W 1R7, Canada.,Molecular Biology Program, Department of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Mariko Witalis
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC H2W 1R7, Canada.,Molecular Biology Program, Department of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Jinsam Chang
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC H2W 1R7, Canada.,Molecular Biology Program, Department of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Vincent Panneton
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC H2W 1R7, Canada.,Department of Microbiology, Infectiology, and Immunology, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Joanna Li
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC H2W 1R7, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 0G4, Canada
| | - Yasser Bouklouch
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC H2W 1R7, Canada
| | - Woong-Kyung Suh
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC H2W 1R7, Canada.,Molecular Biology Program, Department of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada.,Department of Microbiology, Infectiology, and Immunology, University of Montreal, Montreal, QC H3T 1J4, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 0G4, Canada
| |
Collapse
|
97
|
Alterauge D, Bagnoli JW, Dahlström F, Bradford BM, Mabbott NA, Buch T, Enard W, Baumjohann D. Continued Bcl6 Expression Prevents the Transdifferentiation of Established Tfh Cells into Th1 Cells during Acute Viral Infection. Cell Rep 2020; 33:108232. [PMID: 33027650 DOI: 10.1016/j.celrep.2020.108232] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 07/01/2020] [Accepted: 09/15/2020] [Indexed: 12/29/2022] Open
Abstract
T follicular helper (Tfh) cells are crucial for the establishment of germinal centers (GCs) and potent antibody responses. Nevertheless, the T cell-intrinsic factors that are required for the maintenance of already-established Tfh cells and GCs remain largely unknown. Here, we use temporally guided gene ablation in CD4+ T cells to dissect the contributions of the Tfh-associated chemokine receptor CXCR5 and the transcription factor Bcl6. Induced ablation of Cxcr5 has minor effects on the function of established Tfh cells, and Cxcr5-ablated cells still exhibit most of the features of CXCR5+ Tfh cells. In contrast, continued Bcl6 expression is critical to maintain the GC Tfh cell phenotype and also the GC reaction. Importantly, Bcl6 ablation during acute viral infection results in the transdifferentiation of established Tfh into Th1 cells, thus highlighting the plasticity of Tfh cells. These findings have implications for strategies that boost or restrain Tfh cells and GCs in health and disease.
Collapse
Affiliation(s)
- Dominik Alterauge
- Institute for Immunology, Biomedical Center, Faculty of Medicine, LMU Munich, Grosshaderner Str. 9, 82152 Planegg-Martinsried, Germany
| | - Johannes W Bagnoli
- Anthropology & Human Genomics, Department of Biology II, LMU Munich, Grosshaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - Frank Dahlström
- Institute for Immunology, Biomedical Center, Faculty of Medicine, LMU Munich, Grosshaderner Str. 9, 82152 Planegg-Martinsried, Germany
| | - Barry M Bradford
- The Roslin Institute and the Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Neil A Mabbott
- The Roslin Institute and the Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Thorsten Buch
- Institute of Laboratory Animal Science, University of Zurich, Wagistr. 12, 8952 Schlieren, Switzerland
| | - Wolfgang Enard
- Anthropology & Human Genomics, Department of Biology II, LMU Munich, Grosshaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - Dirk Baumjohann
- Institute for Immunology, Biomedical Center, Faculty of Medicine, LMU Munich, Grosshaderner Str. 9, 82152 Planegg-Martinsried, Germany; Medical Clinic III for Oncology, Hematology, Immuno-Oncology, and Rheumatology, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany.
| |
Collapse
|
98
|
Edner NM, Heuts F, Thomas N, Wang CJ, Petersone L, Kenefeck R, Kogimtzis A, Ovcinnikovs V, Ross EM, Ntavli E, Elfaki Y, Eichmann M, Baptista R, Ambery P, Jermutus L, Peakman M, Rosenthal M, Walker LSK. Follicular helper T cell profiles predict response to costimulation blockade in type 1 diabetes. Nat Immunol 2020; 21:1244-1255. [PMID: 32747817 PMCID: PMC7610476 DOI: 10.1038/s41590-020-0744-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 06/23/2020] [Indexed: 02/07/2023]
Abstract
Follicular helper T (TFH) cells are implicated in type 1 diabetes (T1D), and their development has been linked to CD28 costimulation. We tested whether TFH cells were decreased by costimulation blockade using the CTLA-4-immunoglobulin (Ig) fusion protein (abatacept) in a mouse model of diabetes and in individuals with new-onset T1D. Unbiased bioinformatics analysis identified that inducible costimulatory molecule (ICOS)+ TFH cells and other ICOS+ populations, including peripheral helper T cells, were highly sensitive to costimulation blockade. We used pretreatment TFH profiles to derive a model that could predict clinical response to abatacept in individuals with T1D. Using two independent approaches, we demonstrated that higher frequencies of ICOS+ TFH cells at baseline were associated with a poor clinical response following abatacept administration. Therefore, TFH analysis may represent a new stratification tool, permitting the identification of individuals most likely to benefit from costimulation blockade.
Collapse
Affiliation(s)
- Natalie M Edner
- Institute of Immunity & Transplantation, University College London Division of Infection & Immunity, Royal Free Campus, London, UK
| | - Frank Heuts
- Institute of Immunity & Transplantation, University College London Division of Infection & Immunity, Royal Free Campus, London, UK
| | - Niclas Thomas
- Institute of Immunity & Transplantation, University College London Division of Infection & Immunity, Royal Free Campus, London, UK
| | - Chun Jing Wang
- Institute of Immunity & Transplantation, University College London Division of Infection & Immunity, Royal Free Campus, London, UK
| | - Lina Petersone
- Institute of Immunity & Transplantation, University College London Division of Infection & Immunity, Royal Free Campus, London, UK
| | - Rupert Kenefeck
- Institute of Immunity & Transplantation, University College London Division of Infection & Immunity, Royal Free Campus, London, UK
| | - Alexandros Kogimtzis
- Institute of Immunity & Transplantation, University College London Division of Infection & Immunity, Royal Free Campus, London, UK
| | - Vitalijs Ovcinnikovs
- Institute of Immunity & Transplantation, University College London Division of Infection & Immunity, Royal Free Campus, London, UK
| | - Ellen M Ross
- Institute of Immunity & Transplantation, University College London Division of Infection & Immunity, Royal Free Campus, London, UK
| | - Elisavet Ntavli
- Institute of Immunity & Transplantation, University College London Division of Infection & Immunity, Royal Free Campus, London, UK
| | - Yassin Elfaki
- Institute of Immunity & Transplantation, University College London Division of Infection & Immunity, Royal Free Campus, London, UK
| | - Martin Eichmann
- Department of Immunobiology, King's College London, London, UK
| | - Roman Baptista
- Department of Immunobiology, King's College London, London, UK
| | - Philip Ambery
- Late-stage Development, Cardiovascular, Renal and Metabolism , BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Lutz Jermutus
- Research and Early Development, Cardiovascular, Renal and Metabolism , BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Mark Peakman
- Department of Immunobiology, King's College London, London, UK
| | - Miranda Rosenthal
- Institute of Immunity & Transplantation, University College London Division of Infection & Immunity, Royal Free Campus, London, UK
| | - Lucy S K Walker
- Institute of Immunity & Transplantation, University College London Division of Infection & Immunity, Royal Free Campus, London, UK.
| |
Collapse
|
99
|
Sheikh AA, Groom JR. Transcription tipping points for T follicular helper cell and T-helper 1 cell fate commitment. Cell Mol Immunol 2020; 18:528-538. [PMID: 32999454 PMCID: PMC7525231 DOI: 10.1038/s41423-020-00554-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/02/2020] [Indexed: 12/22/2022] Open
Abstract
During viral infection, immune cells coordinate the induction of inflammatory responses that clear infection and humoral responses that promote protection. CD4+ T-cell differentiation sits at the center of this axis. Differentiation toward T-helper 1 (Th1) cells mediates inflammation and pathogen clearance, while T follicular helper (Tfh) cells facilitate germinal center (GC) reactions for the generation of high-affinity antibodies and immune memory. While Th1 and Tfh differentiation occurs in parallel, these CD4+ T-cell identities are mutually exclusive, and progression toward these ends is determined via the upregulation of T-bet and Bcl6, respectively. These lineage-defining transcription factors act in concert with multiple networks of transcriptional regulators that tip the T-bet and Bcl6 axis in CD4+ T-cell progenitors to either a Th1 or Tfh fate. It is now clear that these transcriptional networks are guided by cytokine cues that are not only varied between distinct viral infections but also dynamically altered throughout the duration of infection. Thus, multiple intrinsic and extrinsic factors combine to specify the fate, plasticity, and function of Th1 and Tfh cells during infection. Here, we review the current information on the mode of action of the lineage-defining transcription factors Bcl6 and T-bet and how they act individually and in complex to govern CD4+ T-cell ontogeny. Furthermore, we outline the multifaceted transcriptional regulatory networks that act upstream and downstream of Bcl6 and T-bet to tip the differentiation equilibrium toward either a Tfh or Th1 fate and how these are impacted by dynamic inflammatory cues.
Collapse
Affiliation(s)
- Amania A Sheikh
- Divisions of Immunology and Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Joanna R Groom
- Divisions of Immunology and Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
100
|
Abstract
Therapeutic targeting of immune checkpoints has garnered significant attention in the area of cancer immunotherapy, in which efforts have focused in particular on cytotoxic T lymphocyte antigen 4 (CTLA4) and PD1, both of which are members of the CD28 family. In autoimmunity, these same pathways can be targeted to opposite effect: to curb the over-exuberant immune response. The CTLA4 checkpoint serves as an exemplar, whereby CTLA4 activity is blocked by antibodies in cancer immunotherapy and augmented by the provision of soluble CTLA4 in autoimmunity. Here, we review the targeting of co-stimulatory molecules in autoimmune diseases, focusing in particular on agents directed at members of the CD28 or tumour necrosis factor receptor families. We present the state of the art in co-stimulatory blockade approaches, including rational combinations of immune inhibitory agents, and discuss the future opportunities and challenges in this field.
Collapse
|