51
|
Huang W, Jiang B, Luo J, Luo M, Ding X, Yang Q, Zhao LH, Sun QG, Tong XL. Treatment of COVID-19 in Hemodialysis Patients Using Traditional Chinese Medicine: A Single-Center, Retrospective Study. Front Pharmacol 2022; 13:764305. [PMID: 35401217 PMCID: PMC8987001 DOI: 10.3389/fphar.2022.764305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 03/11/2022] [Indexed: 01/08/2023] Open
Abstract
Background: To explore the effect of combining traditional Chinese medicine (TCM) and Western medicine in hemodialysis patients with coronavirus disease 2019 (COVID-19). Methods: This study was conducted from 27 January 2020 to 17 March 2020 in Wuhan Third Hospital Guanggu Branch, Wuhan, China. Fifty-three patients were included and divided into a control group (CG), which received Western medicine and a combined treatment group, which received TCM and Western medicine (TG). Clinical and laboratory data, TCM symptom scores, and chest computed tomography results were extracted and compared between the two groups. Results: The TG included 21 (67.7%) men and 10 (32.3%) women with a mean age of 61.02 (standard deviation [SD] 15.07, range 26–89) years. The mean dialysis duration in the TG was 49 (SD 31) months. Of all patients in the TG, 27 (87.1%) had fatigue, 18 (58.1%) had dry cough, 16 (51.6%) had anorexia, 11 (35.5%) had dyspnea, and 11 (35.5%) had fever. The CG included 14 (63.6%) men and 8 (36.4%) women with a mean age of 61.45 (SD 13.78, range 36–84) years. The mean dialysis duration in the CG was 63 (SD 46) months. Of all patients in the CG, 21 (95.5%) had fatigue, 12 (54.5%) had dry cough, 17 (77.3%) had anorexia, 12 (54.5%) had dyspnea, and 7 (31.8%) had fever. After treatment, the TCM symptom scores of the two groups decreased; the anorexia scores were lower in the TG than in the CG (p < 0.05). After treatment, albumin increased and D-dimer, C-reactive protein, and lactate dehydrogenase levels decreased in the TG. The d-dimer levels were lower and the albumin level was higher in the TG than in the CG after treatment (p < 0.05). The cure rate was higher, and the mortality rate was lower in the TG than in the CG (p < 0.05). Conclusion: A combination of TCM and Western medicine in hemodialysis patients with COVID-19 could relieve symptoms and help recovery. Further evidence from larger randomized controlled trials is needed to confirm our results.
Collapse
Affiliation(s)
- Wei Huang
- Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Bo Jiang
- Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Jinli Luo
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Meng Luo
- Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Xiaoming Ding
- Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Qian Yang
- Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Lin-Hua Zhao
- Guang’anmen Hospital, China Academy of Chinese Medical Science, Beijing, China
- *Correspondence: Lin-Hua Zhao, ; Qin-Guo Sun, ; Xiao-Lin Tong,
| | - Qin-Guo Sun
- Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
- *Correspondence: Lin-Hua Zhao, ; Qin-Guo Sun, ; Xiao-Lin Tong,
| | - Xiao-Lin Tong
- Guang’anmen Hospital, China Academy of Chinese Medical Science, Beijing, China
- *Correspondence: Lin-Hua Zhao, ; Qin-Guo Sun, ; Xiao-Lin Tong,
| |
Collapse
|
52
|
Morozova OV, Novikova NA, Epifanova NV, Novikov DV, Mokhonov VV, Sashina TA, Zaytseva NN. [Detection SARS-CoV-2 ( Coronaviridae: Coronavirinae: Betacoronavirus: Sarbecovirus) in children with acute intestinal infection in Nizhny Novgorod during 2020-2021]. Vopr Virusol 2022; 67:69-76. [PMID: 35293190 DOI: 10.36233/0507-4088-95] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The novel coronavirus infection COVID-19 is a major public health problem worldwide. Several publications show the presence of gastrointestinal (GI) symptoms (nausea, vomiting, and diarrhea) in addition to respiratory disorders.The aim of this study was the monitoring of RNA of COVID-19 pathogen, coronavirus SARS-CoV-2 (Coronaviridae: Coronavirinae: Betacoronavirus; Sarbecovirus) in children hospitalized with acute intestinal infection (AII), with following molecular-genetic characterization of detected strains. MATERIAL AND METHODS Fecal samples of children with AII hospitalized in infectious hospital of Nizhny Novgorod (Russia) in the period from 01.07.2020 to 31.10.2021 were used as material for the study. Viral RNA detection was performed by real-time polymerase chain reaction (RT-PCR). The nucleotide sequence of S-protein gene fragment was determined by Sanger sequencing. RESULTS AND DISCUSSION SARS-CoV-2 genetic material was detected in 45 out of 2476 fecal samples. The maximum number of samples containing RNA of the virus occurred in November 2020 (detection rate of 12.2%). In 20.0% of cases, SARS-CoV-2 RNA was detected in combination with rota-, noro-, and adenoviruses. 28 nucleotide sequences of S-protein gene fragment complementary DNA (cDNA) were determined. Phylogenetic analysis showed that the studied SARS-CoV-2 strains belonged to two variants. Analysis of the S-protein amino acid sequence of the strains studied showed the absence of the N501Y mutation in the 2020 samples, which is a marker for variants with a high epidemic potential, called variants of concern (VOC) according to the World Health Organization (WHO) definition (lines Alpha B.1.1.7, Beta B.1.351, Gamma P.1). Delta line variant B.1.617.2 was identified in two samples isolated in September 2021. CONCLUSION The detection of SARS-CoV-2 RNA in the fecal samples of children with AII, suggesting that the fecal-oral mechanism of pathogen transmission may exist, determines the necessity to optimize its monitoring and to develop an algorithm of actions with patients with signs of AII under the conditions of a novel coronavirus infection pandemic.
Collapse
Affiliation(s)
- O V Morozova
- FSBI «Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology» of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
| | - N A Novikova
- FSBI «Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology» of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
| | - N V Epifanova
- FSBI «Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology» of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
| | - D V Novikov
- FSBI «Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology» of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
| | - V V Mokhonov
- FSBI «Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology» of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
| | - T A Sashina
- FSBI «Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology» of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
| | - N N Zaytseva
- FSBI «Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology» of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
| |
Collapse
|
53
|
Ivanova N, Sotirova Y, Gavrailov G, Nikolova K, Andonova V. Advances in the Prophylaxis of Respiratory Infections by the Nasal and the Oromucosal Route: Relevance to the Fight with the SARS-CoV-2 Pandemic. Pharmaceutics 2022; 14:530. [PMID: 35335905 PMCID: PMC8953301 DOI: 10.3390/pharmaceutics14030530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/19/2022] [Accepted: 02/23/2022] [Indexed: 11/22/2022] Open
Abstract
In this time of COVID-19 pandemic, the strategies for prevention of the infection are a primary concern. Looking more globally on the subject and acknowledging the high degree of misuse of protective face masks from the population, we focused this review on alternative pharmaceutical developments eligible for self-defense against respiratory infections. In particular, the attention herein is directed to the nasal and oromucosal formulations intended to boost the local immunity, neutralize or mechanically "trap" the pathogens at the site of entry (nose or mouth). The current work presents a critical review of the contemporary methods of immune- and chemoprophylaxis and their suitability and applicability in topical mucosal dosage forms for SARS-CoV-2 prophylaxis.
Collapse
Affiliation(s)
- Nadezhda Ivanova
- Department of Pharmaceutical Technologies, Faculty of Pharmacy, Medical University of Varna, 55 Marin Drinov Str., 9000 Varna, Bulgaria; (Y.S.); (G.G.); (V.A.)
| | - Yoana Sotirova
- Department of Pharmaceutical Technologies, Faculty of Pharmacy, Medical University of Varna, 55 Marin Drinov Str., 9000 Varna, Bulgaria; (Y.S.); (G.G.); (V.A.)
| | - Georgi Gavrailov
- Department of Pharmaceutical Technologies, Faculty of Pharmacy, Medical University of Varna, 55 Marin Drinov Str., 9000 Varna, Bulgaria; (Y.S.); (G.G.); (V.A.)
| | - Krastena Nikolova
- Department of Physics and Biophysics, Faculty of Pharmacy, Medical University of Varna, 55 Marin Drinov Str., 9000 Varna, Bulgaria;
| | - Velichka Andonova
- Department of Pharmaceutical Technologies, Faculty of Pharmacy, Medical University of Varna, 55 Marin Drinov Str., 9000 Varna, Bulgaria; (Y.S.); (G.G.); (V.A.)
| |
Collapse
|
54
|
Wu S, Jin Z, Peng C, Li D, Cheng Y, Zhu R, He J, Wu C. Use of proton pump inhibitors are associated with higher mortality in hospitalized patients with COVID-19. J Glob Health 2022; 12:05005. [PMID: 35198150 PMCID: PMC8849264 DOI: 10.7189/jogh.12.05005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Shengyong Wu
- Department of Military Health Statistics, Naval Medical University, Shanghai, China
| | - Zhichao Jin
- Department of Military Health Statistics, Naval Medical University, Shanghai, China
| | - Chi Peng
- Department of Military Health Statistics, Naval Medical University, Shanghai, China
| | - Dongdong Li
- Department of Military Health Statistics, Naval Medical University, Shanghai, China
| | - Yi Cheng
- Department of Military Health Statistics, Naval Medical University, Shanghai, China
| | - Ronghui Zhu
- Department of Military Health Statistics, Naval Medical University, Shanghai, China
| | - Jia He
- Department of Military Health Statistics, Naval Medical University, Shanghai, China
| | - Cheng Wu
- Department of Military Health Statistics, Naval Medical University, Shanghai, China
| |
Collapse
|
55
|
Monroe I, Dale M, Schwabe M, Schenkel R, Schenarts PJ. The COVID-19 Patient in the Surgical Intensive Care Unit. Surg Clin North Am 2022; 102:1-21. [PMID: 34800379 PMCID: PMC8479422 DOI: 10.1016/j.suc.2021.09.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
COVID-19 continues to rampage around the world. Noncritical care-trained physicians may be deployed into the intensive care unit to manage these complex patients. Although COVID-19 is primarily a respiratory disease, it is also associated with significant pathology in the brain, heart, vasculature, lungs, gastrointestinal tract, and kidneys. This article provides an overview of COVID-19 using an organ-based, systematic approach.
Collapse
|
56
|
Chapuy-Regaud S, Allioux C, Capelli N, Migueres M, Lhomme S, Izopet J. Vectorial Release of Human RNA Viruses from Epithelial Cells. Viruses 2022; 14:231. [PMID: 35215825 PMCID: PMC8875463 DOI: 10.3390/v14020231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/07/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
Epithelial cells are apico-basolateral polarized cells that line all tubular organs and are often targets for infectious agents. This review focuses on the release of human RNA virus particles from both sides of polarized human cells grown on transwells. Most viruses that infect the mucosa leave their host cells mainly via the apical side while basolateral release is linked to virus propagation within the host. Viruses do this by hijacking the cellular factors involved in polarization and trafficking. Thus, understanding epithelial polarization is essential for a clear understanding of virus pathophysiology.
Collapse
Affiliation(s)
- Sabine Chapuy-Regaud
- Department of Virology, CHU Purpan, F-31059 Toulouse, France; (N.C.); (M.M.); (S.L.); (J.I.)
- INFINITy (Toulouse Institute for Infectious and Inflammatory Diseases), INSERM UMR1291, CNRS UMR5051, Université Toulouse III, CHU Purpan, F-31024 Toulouse, France;
| | - Claire Allioux
- INFINITy (Toulouse Institute for Infectious and Inflammatory Diseases), INSERM UMR1291, CNRS UMR5051, Université Toulouse III, CHU Purpan, F-31024 Toulouse, France;
| | - Nicolas Capelli
- Department of Virology, CHU Purpan, F-31059 Toulouse, France; (N.C.); (M.M.); (S.L.); (J.I.)
- INFINITy (Toulouse Institute for Infectious and Inflammatory Diseases), INSERM UMR1291, CNRS UMR5051, Université Toulouse III, CHU Purpan, F-31024 Toulouse, France;
| | - Marion Migueres
- Department of Virology, CHU Purpan, F-31059 Toulouse, France; (N.C.); (M.M.); (S.L.); (J.I.)
- INFINITy (Toulouse Institute for Infectious and Inflammatory Diseases), INSERM UMR1291, CNRS UMR5051, Université Toulouse III, CHU Purpan, F-31024 Toulouse, France;
| | - Sébastien Lhomme
- Department of Virology, CHU Purpan, F-31059 Toulouse, France; (N.C.); (M.M.); (S.L.); (J.I.)
- INFINITy (Toulouse Institute for Infectious and Inflammatory Diseases), INSERM UMR1291, CNRS UMR5051, Université Toulouse III, CHU Purpan, F-31024 Toulouse, France;
| | - Jacques Izopet
- Department of Virology, CHU Purpan, F-31059 Toulouse, France; (N.C.); (M.M.); (S.L.); (J.I.)
- INFINITy (Toulouse Institute for Infectious and Inflammatory Diseases), INSERM UMR1291, CNRS UMR5051, Université Toulouse III, CHU Purpan, F-31024 Toulouse, France;
| |
Collapse
|
57
|
Hirota K. H2 antagonists, proton pump inhibitors and COVID-19. J Anesth 2022; 36:329-331. [PMID: 35067766 PMCID: PMC8784200 DOI: 10.1007/s00540-021-03032-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/09/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Kazuyoshi Hirota
- Department of Anesthesiology, Hirosaki University Graduate School of Medicine, Hirosaki, 036-8562, Japan.
| |
Collapse
|
58
|
Jia M, Taylor TM, Senger SM, Ovissipour R, Bertke AS. SARS-CoV-2 Remains Infectious on Refrigerated Deli Food, Meats, and Fresh Produce for up to 21 Days. Foods 2022; 11:286. [PMID: 35159438 PMCID: PMC8834215 DOI: 10.3390/foods11030286] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/13/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
SARS-CoV-2, the virus that causes COVID-19, has been detected on foods and food packaging and the virus can infect oral cavity and intestinal cells, suggesting that infection could potentially occur following ingestion of virus-contaminated foods. To determine the relative risk of infection from different types of foods, we assessed survival of SARS-CoV-2 on refrigerated ready-to-eat deli items, fresh produce, and meats (including seafood). Deli items and meats with high protein, fat, and moisture maintained infectivity of SARS-CoV-2 for up to 21 days. However, processed meat, such as salami, and some fresh produce exhibited antiviral effects. SARS-CoV-2 also remained infectious in ground beef cooked rare or medium, but not well-done. Although infectious SARS-CoV-2 was inactivated on the foods over time, viral RNA was not degraded in similar trends, regardless of food type; thus, PCR-based assays for detection of pathogens on foods only indicate the presence of viral RNA, but do not correlate with presence or quantity of infectious virus. The survival and high recovery of SARS-CoV-2 on certain foods support the possibility that food contaminated with SARS-CoV-2 could potentially be a source of infection, highlighting the importance of proper food handling and cooking to inactivate any contaminating virus prior to consumption.
Collapse
Affiliation(s)
- Mo Jia
- Population Health Sciences, Virginia Maryland College of Veterinary Medicine, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA; (M.J.); (T.M.T.)
| | - Tina M. Taylor
- Population Health Sciences, Virginia Maryland College of Veterinary Medicine, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA; (M.J.); (T.M.T.)
| | - Sterling M. Senger
- Food Science and Technology, Agricultural Research and Extension Center, Virginia Polytechnic Institute & State University, Hampton, VA 23669, USA; (S.M.S.); (R.O.)
| | - Reza Ovissipour
- Food Science and Technology, Agricultural Research and Extension Center, Virginia Polytechnic Institute & State University, Hampton, VA 23669, USA; (S.M.S.); (R.O.)
- Center for Emerging Zoonotic and Arthropod-Borne Pathogens, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
| | - Andrea S. Bertke
- Population Health Sciences, Virginia Maryland College of Veterinary Medicine, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA; (M.J.); (T.M.T.)
- Center for Emerging Zoonotic and Arthropod-Borne Pathogens, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
| |
Collapse
|
59
|
Haak L, Delic B, Li L, Guarin T, Mazurowski L, Dastjerdi NG, Dewan A, Pagilla K. Spatial and temporal variability and data bias in wastewater surveillance of SARS-CoV-2 in a sewer system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150390. [PMID: 34818797 PMCID: PMC8445773 DOI: 10.1016/j.scitotenv.2021.150390] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/31/2021] [Accepted: 09/13/2021] [Indexed: 05/04/2023]
Abstract
The response to disease outbreaks, such as SARS-CoV-2, can be constrained by a limited ability to measure disease prevalence early at a localized level. Wastewater based epidemiology is a powerful tool identifying disease spread from pooled community sewer networks or at influent to wastewater treatment plants. However, this approach is often not applied at a granular level that permits detection of local hot spots. This study examines the spatial patterns of SARS-CoV-2 in sewage through a spatial sampling strategy across neighborhood-scale sewershed catchments. Sampling was conducted across the Reno-Sparks metropolitan area from November to mid-December of 2020. This research utilized local spatial autocorrelation tests to identify the evolution of statistically significant neighborhood hot spots in sewershed sub-catchments that were identified to lead waves of infection, with adjacent neighborhoods observed to lag with increasing viral RNA concentrations over subsequent dates. The correlations between the sub-catchments over the sampling period were also characterized using principal component analysis. Results identified distinct time series patterns, with sewersheds in the urban center, outlying suburban areas, and outlying urbanized districts generally following unique trends over the sampling period. Several demographic parameters were identified as having important gradients across these areas, namely population density, poverty levels, household income, and age. These results provide a more strategic approach to identify disease outbreaks at the neighborhood level and characterized how sampling site selection could be designed based on the spatial and demographic characteristics of neighborhoods.
Collapse
Affiliation(s)
- Laura Haak
- Department of Civil and Environmental Engineering, University of Nevada, MS-0258, Reno, NV 89557-0258, USA
| | - Blaga Delic
- Department of Civil and Environmental Engineering, University of Nevada, MS-0258, Reno, NV 89557-0258, USA
| | - Lin Li
- Department of Civil and Environmental Engineering, University of Nevada, MS-0258, Reno, NV 89557-0258, USA
| | - Tatiana Guarin
- Department of Civil and Environmental Engineering, University of Nevada, MS-0258, Reno, NV 89557-0258, USA
| | - Lauren Mazurowski
- Department of Civil and Environmental Engineering, University of Nevada, MS-0258, Reno, NV 89557-0258, USA
| | - Niloufar Gharoon Dastjerdi
- Department of Civil and Environmental Engineering, University of Nevada, MS-0258, Reno, NV 89557-0258, USA
| | - Aimee Dewan
- Department of Civil and Environmental Engineering, University of Nevada, MS-0258, Reno, NV 89557-0258, USA
| | - Krishna Pagilla
- Department of Civil and Environmental Engineering, University of Nevada, MS-0258, Reno, NV 89557-0258, USA.
| |
Collapse
|
60
|
Wang D, Li C, Chiu MC, Yu Y, Liu X, Zhao X, Huang J, Cheng Z, Yuan S, Poon V, Cai J, Chu H, Chan JF, To KK, Yuen KY, Zhou J. SPINK6 inhibits human airway serine proteases and restricts influenza virus activation. EMBO Mol Med 2022; 14:e14485. [PMID: 34826211 PMCID: PMC9976594 DOI: 10.15252/emmm.202114485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 11/06/2021] [Accepted: 11/10/2021] [Indexed: 11/09/2022] Open
Abstract
SPINK6 was identified in human skin as a cellular inhibitor of serine proteases of the KLK family. Airway serine proteases are required to cleave hemagglutinin (HA) of influenza A viruses (IAVs) to initiate an infection in the human airway. We hypothesized that SPINK6 may inhibit common airway serine proteases and restrict IAV activation. We demonstrate that SPINK6 specifically suppresses the proteolytic activity of HAT and KLK5, HAT- and KLK5-mediated HA cleavage, and restricts virus maturation and replication. SPINK6 constrains the activation of progeny virions and impairs viral growth; and vice versa, blocking endogenous SPINK6 enhances HA cleavage and viral growth in physiological-relevant human airway organoids where SPINK6 is intrinsically expressed. In IAV-infected mice, SPINK6 significantly suppresses viral growth and improves mouse survival. Notably, individuals carrying the higher SPINK6 expression allele were protected from human H7N9 infection. Collectively, SPINK6 is a novel host inhibitor of serine proteases in the human airway and restricts IAV activation.
Collapse
Affiliation(s)
- Dong Wang
- Department of MicrobiologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Cun Li
- Department of MicrobiologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Man Chun Chiu
- Department of MicrobiologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Yifei Yu
- Department of MicrobiologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Xiaojuan Liu
- Department of MicrobiologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Xiaoyu Zhao
- Department of MicrobiologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Jingjing Huang
- Department of MicrobiologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Zhongshan Cheng
- Applied Bioinformatics CenterSt Jude Children’s Research HospitalMemphisTNUSA
| | - Shuofeng Yuan
- Department of MicrobiologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Vincent Poon
- Department of MicrobiologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Jian‐Piao Cai
- Department of MicrobiologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Hin Chu
- Department of MicrobiologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina,State Key Laboratory of Emerging Infectious DiseasesThe University of Hong KongHong KongChina
| | - Jasper Fuk‐Woo Chan
- Department of MicrobiologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina,State Key Laboratory of Emerging Infectious DiseasesThe University of Hong KongHong KongChina,Carol Yu Centre for InfectionThe University of Hong KongHong KongChina
| | - Kelvin Kai‐Wang To
- Department of MicrobiologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina,State Key Laboratory of Emerging Infectious DiseasesThe University of Hong KongHong KongChina,Carol Yu Centre for InfectionThe University of Hong KongHong KongChina
| | - Kwok Yung Yuen
- Department of MicrobiologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina,State Key Laboratory of Emerging Infectious DiseasesThe University of Hong KongHong KongChina,Carol Yu Centre for InfectionThe University of Hong KongHong KongChina
| | - Jie Zhou
- Department of MicrobiologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina,State Key Laboratory of Emerging Infectious DiseasesThe University of Hong KongHong KongChina
| |
Collapse
|
61
|
Rosen R. Novel Advances in the Evaluation and Treatment of Children With Symptoms of Gastroesophageal Reflux Disease. Front Pediatr 2022; 10:849105. [PMID: 35433543 PMCID: PMC9010502 DOI: 10.3389/fped.2022.849105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/18/2022] [Indexed: 12/03/2022] Open
Abstract
Gastroesophageal reflux disease has long been implicated as a cause for multiple pediatric symptoms ranging from abdominal pain and regurgitation to cough and dental erosions. Diagnostic testing has evolved greatly over the last 20 years; initial testing with pH-metry to measure esophageal acid reflux burden has evolved into measurement of both acid and non-acid reflux and liquid and gas reflux. However, measuring reflux burden alone only tells a small part of the GERD story and many symptoms originally thought to be reflux related are, in fact, related to other disorder which mimic reflux. The current paradigm which involves empiric treatment of symptoms with acid suppression has been replaced with early testing for not only gastroesophageal reflux but also for other diagnostic masqueraders. The focus for interventions has shifted away from acid suppression toward motility interventions and includes a greater recognition of both functional and motility disorders which present with reflux symptoms.
Collapse
Affiliation(s)
- Rachel Rosen
- Boston Children's Hospital, Boston, MA, United States
| |
Collapse
|
62
|
Ivanova A, Yalovenko O, Dugan A. Human Gut Microbiome as an Indicator of Human Health. INNOVATIVE BIOSYSTEMS AND BIOENGINEERING 2021. [DOI: 10.20535/ibb.2021.5.4.244375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The undeniable achievement in the study of the gut microbiome as an association of different microorganisms, including viruses, that colonize various organs and systems of the body, is the establishment of the fact that some diseases that were consmicrobiotaidered as non-infectious can also be transmitted through microorganisms. This resulted in the gut microbiome being called a forgotten organ that could serve as an additional and kind of missing link for a more objective and better diagnosis and treatment of many diseases that were not considered infectious. The rapid development of gut microbiome research in recent years not only is connected with better understanding of the functioning of the microbiome by the scientific community, but also inseparable from the strategic support of each country. Global investment in researches, related to the human microbiome, has exceeded $1.7 billion over the past decade. These researches contribute to the development of new diagnostic methods and therapeutic interventions. Our review is dedicated to the analysis of the possibilities of application of the human gut microbiome for the diagnosis of diseases, and the role of the intestines in the provocation and causing of certain diseases. Significant differences in the composition and diversity of the human microbiome are shown depending on geographical location and the change of socio-economic formations towards a gradual decrease in the diversity of the gut microbiome due to three stages of human population’s existence: food production, agriculture and industrial urban life. We analyze the influence of dietary patterns, various diseases (including malignant neoplasms) and viral infections (in particular, coronavirus) on the gut microbiome. And vice versa – the influence of the gut microbiome on the drugs effect and their metabolism, which affects the host's immune response and course of the disease.
Collapse
|
63
|
Griffin BD, Warner BM, Chan M, Valcourt E, Tailor N, Banadyga L, Leung A, He S, Boese AS, Audet J, Cao W, Moffat E, Garnett L, Tierney K, Tran KN, Albietz A, Manguiat K, Soule G, Bello A, Vendramelli R, Lin J, Deschambault Y, Zhu W, Wood H, Mubareka S, Safronetz D, Strong JE, Embury-Hyatt C, Kobasa D. Host parameters and mode of infection influence outcome in SARS-CoV-2-infected hamsters. iScience 2021; 24:103530. [PMID: 34870132 PMCID: PMC8627009 DOI: 10.1016/j.isci.2021.103530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/15/2021] [Accepted: 11/23/2021] [Indexed: 01/08/2023] Open
Abstract
The golden hamster model of SARS-CoV-2 infection recapitulates key characteristics of COVID-19. In this work we examined the influence of the route of exposure, sex, and age on SARS-CoV-2 pathogenesis in hamsters. We report that delivery of SARS-CoV-2 by a low- versus high-volume intranasal or intragastric route results in comparable viral titers in the lung and viral shedding. However, low-volume intranasal exposure results in milder weight loss, whereas intragastric exposure leads to a diminished capacity to regain body weight. Male hamsters, and particularly older male hamsters, display an impaired capacity to recover from illness and delayed viral clearance. These factors were found to influence the nature of the host inflammatory cytokine response but had a minimal effect on the quality and durability of the humoral immune response and susceptibility to re-infection. These data further elucidate key factors that impact pre-clinical challenge studies carried out in the hamster model of COVID-19.
Collapse
Affiliation(s)
- Bryan D. Griffin
- Zoonotic Diseases and Special Pathogens Division, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg R3E 3R2, MB, Canada
| | - Bryce M. Warner
- Zoonotic Diseases and Special Pathogens Division, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg R3E 3R2, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, College of Medicine, Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, Winnipeg R3E 0J9, MB, Canada
| | - Mable Chan
- Zoonotic Diseases and Special Pathogens Division, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg R3E 3R2, MB, Canada
| | - Emelissa Valcourt
- Zoonotic Diseases and Special Pathogens Division, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg R3E 3R2, MB, Canada
| | - Nikesh Tailor
- Zoonotic Diseases and Special Pathogens Division, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg R3E 3R2, MB, Canada
| | - Logan Banadyga
- Zoonotic Diseases and Special Pathogens Division, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg R3E 3R2, MB, Canada
| | - Anders Leung
- Zoonotic Diseases and Special Pathogens Division, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg R3E 3R2, MB, Canada
| | - Shihua He
- Zoonotic Diseases and Special Pathogens Division, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg R3E 3R2, MB, Canada
| | - Amrit S. Boese
- Zoonotic Diseases and Special Pathogens Division, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg R3E 3R2, MB, Canada
| | - Jonathan Audet
- Zoonotic Diseases and Special Pathogens Division, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg R3E 3R2, MB, Canada
| | - Wenguang Cao
- Zoonotic Diseases and Special Pathogens Division, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg R3E 3R2, MB, Canada
| | - Estella Moffat
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, 1015 Arlington Street, Winnipeg R3E 3M4, MB, Canada
| | - Lauren Garnett
- Zoonotic Diseases and Special Pathogens Division, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg R3E 3R2, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, College of Medicine, Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, Winnipeg R3E 0J9, MB, Canada
| | - Kevin Tierney
- Zoonotic Diseases and Special Pathogens Division, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg R3E 3R2, MB, Canada
| | - Kaylie N. Tran
- Zoonotic Diseases and Special Pathogens Division, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg R3E 3R2, MB, Canada
| | - Alixandra Albietz
- Zoonotic Diseases and Special Pathogens Division, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg R3E 3R2, MB, Canada
| | - Kathy Manguiat
- Zoonotic Diseases and Special Pathogens Division, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg R3E 3R2, MB, Canada
| | - Geoff Soule
- Zoonotic Diseases and Special Pathogens Division, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg R3E 3R2, MB, Canada
| | - Alexander Bello
- Zoonotic Diseases and Special Pathogens Division, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg R3E 3R2, MB, Canada
| | - Robert Vendramelli
- Zoonotic Diseases and Special Pathogens Division, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg R3E 3R2, MB, Canada
| | - Jessica Lin
- Zoonotic Diseases and Special Pathogens Division, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg R3E 3R2, MB, Canada
| | - Yvon Deschambault
- Zoonotic Diseases and Special Pathogens Division, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg R3E 3R2, MB, Canada
| | - Wenjun Zhu
- Zoonotic Diseases and Special Pathogens Division, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg R3E 3R2, MB, Canada
| | - Heidi Wood
- Zoonotic Diseases and Special Pathogens Division, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg R3E 3R2, MB, Canada
| | - Samira Mubareka
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
- Biological Sciences, Sunnybrook Research Institute, Toronto M4N 3M5, ON, Canada
| | - David Safronetz
- Zoonotic Diseases and Special Pathogens Division, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg R3E 3R2, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, College of Medicine, Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, Winnipeg R3E 0J9, MB, Canada
| | - James E. Strong
- Zoonotic Diseases and Special Pathogens Division, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg R3E 3R2, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, College of Medicine, Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, Winnipeg R3E 0J9, MB, Canada
- Pediatrics & Child Health, College of Medicine, Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, Winnipeg R3E 0J9, MB, Canada
| | - Carissa Embury-Hyatt
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, 1015 Arlington Street, Winnipeg R3E 3M4, MB, Canada
| | - Darwyn Kobasa
- Zoonotic Diseases and Special Pathogens Division, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg R3E 3R2, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, College of Medicine, Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, Winnipeg R3E 0J9, MB, Canada
| |
Collapse
|
64
|
Ahmed W, Bivins A, Simpson SL, Smith WJM, Metcalfe S, McMinn B, Symonds EM, Korajkic A. Comparative analysis of rapid concentration methods for the recovery of SARS-CoV-2 and quantification of human enteric viruses and a sewage-associated marker gene in untreated wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149386. [PMID: 34388890 PMCID: PMC8325557 DOI: 10.1016/j.scitotenv.2021.149386] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 05/18/2023]
Abstract
To support public-health-related disease surveillance and monitoring, it is crucial to concentrate both enveloped and non-enveloped viruses from domestic wastewater. To date, most concentration methods were developed for non-enveloped viruses, and limited studies have directly compared the recovery efficiency of both types of viruses. In this study, the effectiveness of two different concentration methods (Concentrating pipette (CP) method and an adsorption-extraction (AE) method amended with MgCl2) were evaluated for untreated wastewater matrices using three different viruses (SARS-CoV-2 (seeded), human adenovirus 40/41 (HAdV 40/41), and enterovirus (EV)) and a wastewater-associated bacterial marker gene targeting Lachnospiraceae (Lachno3). For SARS-CoV-2, the estimated mean recovery efficiencies were significantly greater by as much as 5.46 times, using the CP method than the AE method amended with MgCl2. SARS-CoV-2 RNA recovery was greater for samples with higher titer seeds regardless of the method, and the estimated mean recovery efficiencies using the CP method were 25.1 ± 11% across ten WWTPs when wastewater samples were seeded with 5 × 104 gene copies (GC) of SARS-CoV-2. Meanwhile, the AE method yielded significantly greater concentrations of indigenous HAdV 40/41 and Lachno3 from wastewater compared to the CP method. Finally, no significant differences in indigenous EV concentrations were identified in comparing the AE and CP methods. These data indicate that the most effective concentration method varies by microbial analyte and that the priorities of the surveillance or monitoring program should be considered when choosing the concentration method.
Collapse
Affiliation(s)
- Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia.
| | - Aaron Bivins
- Department of Civil & Environmental Engineering & Earth Science, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46556, USA
| | | | - Wendy J M Smith
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Suzanne Metcalfe
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Brian McMinn
- United States Environmental Protection Agency, Office of Research and Development, 26W Martin Luther King Jr. Drive, Cincinnati, OH 45268, USA
| | - Erin M Symonds
- College of Marine Science, University of South Florida, 140 7th Ave South, St. Petersburg, FL 33701, USA
| | - Asja Korajkic
- United States Environmental Protection Agency, Office of Research and Development, 26W Martin Luther King Jr. Drive, Cincinnati, OH 45268, USA
| |
Collapse
|
65
|
Gupta S, Rouse BT, Sarangi PP. Did Climate Change Influence the Emergence, Transmission, and Expression of the COVID-19 Pandemic? Front Med (Lausanne) 2021; 8:769208. [PMID: 34957147 PMCID: PMC8694059 DOI: 10.3389/fmed.2021.769208] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/19/2021] [Indexed: 12/11/2022] Open
Abstract
The human race has survived many epidemics and pandemics that have emerged and reemerged throughout history. The novel coronavirus Severe Acute Respiratory Syndrome SARS-CoV-2/COVID-19 is the latest pandemic and this has caused major health and socioeconomic problems in almost all communities of the world. The origin of the virus is still in dispute but most likely, the virus emerged from the bats and also may involve an intermediate host before affecting humans. Several other factors also may have affected the emergence and outcome of the infection but in this review, we make a case for a possible role of climate change. The rise in industrialization-related human activities has created a marked imbalance in the homeostasis of environmental factors such as temperature and other weather and these might even have imposed conditions for the emergence of future coronavirus cycles. An attempt is made in this review to explore the effect of ongoing climate changes and discuss if these changes had a role in facilitating the emergence, transmission, and even the expression of the COVID-19 pandemic. We surmise that pandemics will be more frequent in the future and more severely impactful unless climate changes are mitigated.
Collapse
Affiliation(s)
- Saloni Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Barry T. Rouse
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Pranita P. Sarangi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
66
|
Kariyawasam JC, Jayarajah U, Riza R, Abeysuriya V, Seneviratne SL. Gastrointestinal manifestations in COVID-19. Trans R Soc Trop Med Hyg 2021; 115:1362-1388. [PMID: 33728439 PMCID: PMC7989191 DOI: 10.1093/trstmh/trab042] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), a respiratory viral infection, has affected more than 78 million individuals worldwide as of the end of December 2020. Previous studies reported that severe acute respiratory syndrome coronavirus 1 and Middle East respiratory syndrome-related coronavirus infections may affect the gastrointestinal (GI) system. In this review we outline the important GI manifestations of COVID-19 and discuss the possible underlying pathophysiological mechanisms and their diagnosis and management. GI manifestations are reported in 11.4-61.1% of individuals with COVID-19, with variable onset and severity. The majority of COVID-19-associated GI symptoms are mild and self-limiting and include anorexia, diarrhoea, nausea, vomiting and abdominal pain/discomfort. A minority of patients present with an acute abdomen with aetiologies such as acute pancreatitis, acute appendicitis, intestinal obstruction, bowel ischaemia, haemoperitoneum or abdominal compartment syndrome. Severe acute respiratory syndrome coronavirus 2 RNA has been found in biopsies from all parts of the alimentary canal. Involvement of the GI tract may be due to direct viral injury and/or an inflammatory immune response and may lead to malabsorption, an imbalance in intestinal secretions and gut mucosal integrity and activation of the enteric nervous system. Supportive and symptomatic care is the mainstay of therapy. However, a minority may require surgical or endoscopic treatment for acute abdomen and GI bleeding.
Collapse
Affiliation(s)
- Jayani C Kariyawasam
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, Sri Lanka
| | - Umesh Jayarajah
- Postgraduate Institute of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Rishdha Riza
- Colombo South Teaching Hospital, Colombo, Sri Lanka
| | - Visula Abeysuriya
- Nawaloka Hospital Research and Education Foundation, Nawaloka Hospitals, Colombo, Sri Lanka
| | | |
Collapse
|
67
|
Cai T, Mao G, Zheng R, Fang M, Yang X, Wang L, Qi C. Testicular injury during SARS-CoV-2 infection may be neglected: An assessment from scRNA-seq profiling and protein detection of angiotensin-converting enzyme II. Exp Ther Med 2021; 22:1485. [PMID: 34765026 PMCID: PMC8576622 DOI: 10.3892/etm.2021.10920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/18/2020] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), is outbreaking globally. SARS-CoV-2 invades host cells via angiotensin-converting enzyme II (ACE2) and causes multiple-organ injury. Autopsy studies indicated that the testis of patients with COVID-19 exhibited various degrees of spermatogenic cell reduction and injury, but the composition of ACE2-expressing cells and their proportion in the testes have remained to be determined. Recent clinical evidence suggested that the ratio of male sex hormones in males with COVID-19 was significantly changed. The present study aimed to explore whether SARS-CoV-2 is able to damage the male reproductive system. For this, the ACE2-expressing cell composition and proportion in male testes were analyzed using single-cell RNA sequencing (RNA-seq) datasets downloaded from the Gene Expression Omnibus (GEO) database and immunohistochemical (IHC) staining. The single-cell RNA-seq data indicated that ACE2 mRNA was highly expressed in myoid cells, Leydig cells and spermatogenic cells, accounting for 5.45, 1.24 and 0.423% of adult testicular cells. ACE2 mRNA-expressing Sertoli cells, spermatogenic cells and myoid cells accounted for 5.00, 0.56 and 0.73% of infant testicular cells. IHC demonstrated that ACE2 protein was also highly expressed in testicular tissues. In conclusion, the present results demonstrated that testicular injury may be missed by clinicians in patients with COVID-19 and male reproductive function should be closely followed up.
Collapse
Affiliation(s)
- Tonghui Cai
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510000, P.R. China
| | - Guanquan Mao
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Rui Zheng
- Department of Otolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Mao Fang
- Department of Pathology, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Xiaorong Yang
- Clinical Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510000, P.R. China
| | - Lijing Wang
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Cuiling Qi
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| |
Collapse
|
68
|
Kong F, Saif LJ, Wang Q. Roles of bile acids in enteric virus replication. ANIMAL DISEASES 2021; 1:2. [PMID: 34778876 PMCID: PMC8062211 DOI: 10.1186/s44149-021-00003-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/05/2021] [Indexed: 02/08/2023] Open
Abstract
Bile acids (BAs) are evolutionally conserved molecules synthesized in the liver from cholesterol to facilitating the absorption of fat-soluble nutrients. In the intestines, where enteric viruses replicate, BAs also act as signaling molecules that modulate various biological functions via activation of specific receptors and cell signaling pathways. To date, BAs present either pro-viral or anti-viral effects for the replication of enteric viruses in vivo and in vitro. In this review, we summarized current information on biosynthesis, transportation and metabolism of BAs and the role of BAs in replication of enteric caliciviruses, rotaviruses, and coronaviruses. We also discussed the application of BAs for cell culture adaptation of fastidious enteric caliciviruses and control of virus infection, which may provide novel insights into the development of antivirals and/or disinfectants for enteric viruses.
Collapse
Affiliation(s)
- Fanzhi Kong
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH USA.,College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, China
| | - Linda J Saif
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH USA.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH USA
| | - Qiuhong Wang
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH USA.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH USA
| |
Collapse
|
69
|
Asif M, Xu Y, Xiao F, Sun Y. Diagnosis of COVID-19, vitality of emerging technologies and preventive measures. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2021; 423:130189. [PMID: 33994842 PMCID: PMC8103773 DOI: 10.1016/j.cej.2021.130189] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/22/2021] [Accepted: 05/02/2021] [Indexed: 05/18/2023]
Abstract
Coronavirus diseases-2019 (COVID-19) is becoming increasing serious and major threat to public health concerns. As a matter of fact, timely testing enhances the life-saving judgments on treatment and isolation of COVID-19 infected individuals at possible earliest stage which ultimately suppresses spread of infectious diseases. Many government and private research institutes and manufacturing companies are striving to develop reliable tests for prompt quantification of SARS-CoV-2. In this review, we summarize existing diagnostic methods as manual laboratory-based nucleic acid assays for COVID-19 and their limitations. Moreover, vitality of rapid and point of care serological tests together with emerging biosensing technologies has been discussed in details. Point of care tests with characteristics of rapidity, accurateness, portability, low cost and requiring non-specific devices possess great suitability in COVID-19 diagnosis and detection. Besides, this review also sheds light on several preventive measures to track and manage disease spread in current and future outbreaks of diseases.
Collapse
Affiliation(s)
- Muhammad Asif
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yun Xu
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430205, China
| | - Fei Xiao
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430205, China
| | - Yimin Sun
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|
70
|
Infection Control in the Era of COVID-19: A Narrative Review. Antibiotics (Basel) 2021; 10:antibiotics10101244. [PMID: 34680824 PMCID: PMC8532716 DOI: 10.3390/antibiotics10101244] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 12/23/2022] Open
Abstract
COVID-19 quickly became a pandemic causing millions of infections and mortalities. It required real-time adjustments to healthcare systems and infection prevention and control (IPC) measures to limit the spread and protect healthcare providers and hospitalized patients. IPC guidelines were adopted and developed based on experience gained during the MERS-CoV and SARS-CoV outbreaks. The aim of this narrative review is to summarize current evidence on IPC in healthcare settings and patients with COVID-19 to prevent nosocomial infections during the actual pandemic. A search was run on PubMed using the terms (‘COVID-19’ [Mesh]) AND (‘Infection Control’ [Mesh]) between 2019 and 2021. We identified 86 studies that were in accordance with our aim and summarized them under certain themes as they related to COVID-19 infection control measures. All the guidelines recommend early diagnosis and rapid isolation of COVID-19 patients. The necessary precautions should be taken comprising the whole process, starting with an infectious disease plan, administrative and engineering controls, triage, and PPE training. Guidelines should target modes of transmission, droplet, aerosol, and oral–fecal, while recommending control precautions. Healthcare facilities must promptly implement a multidisciplinary defense system to combat the outbreak.
Collapse
|
71
|
Abstract
Infectious diseases affect individual health and have widespread societal impacts. New ex vivo models are critical to understand pathogenesis, host response, and features necessary to develop preventive and therapeutic treatments. Pluripotent and tissue stem cell-derived organoids provide new tools for the study of human infections. Organoid models recapitulate many characteristics of in vivo disease and are providing new insights into human respiratory, gastrointestinal, and neuronal host-microbe interactions. Increasing culture complexity by adding the stroma, interorgan communication, and the microbiome will improve the use of organoids as models for infection. Organoid cultures provide a platform with the capability to improve human health related to infectious diseases. Expected final online publication date for the Annual Review of Medicine, Volume 73 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Sarah E Blutt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA; .,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA; .,Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
72
|
Abstract
PURPOSE OF REVIEW The ubiquitous expression of angiotensin-converting enzyme-2 receptors and its significance as the origin of viral entry have assisted in comprehending the pathophysiology of extrapulmonary manifestations of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In this review, we focus on the clinical significance of gastrointestinal manifestations. RECENT FINDINGS The global pandemic, a result of the widespread implications of SARS-CoV-2, remains a significant burden to current healthcare systems. Fever, dyspnea, and tussive symptoms have primarily been recognized as the most common presenting signs/symptoms. During the past one year our scope of practice has transcended beyond the management of the respiratory system to incorporate other varying systemic manifestations such as anorexia, nausea, vomiting, diarrhea, and abdominal pain. The outcomes reported by recent studies suggest an association between the presence of gastrointestinal symptoms and important clinical factors such as delay in presentation, disease severity, and mortality. SUMMARY We provide a summarization of the most recent in-depth investigations of coronavirus disease 2019 with gastrointestinal manifestations and their conclusions. Although the pathophysiology remains an area of evolving interest, a better understanding of this disease process may allow for early recognition, efficient triage, and improved prognostication for those presenting with gastrointestinal manifestations of SARS-CoV-2.
Collapse
|
73
|
Lakdawala SS, Menachery VD. Catch Me if You Can: Superspreading of COVID-19. Trends Microbiol 2021; 29:919-929. [PMID: 34059436 PMCID: PMC8112283 DOI: 10.1016/j.tim.2021.05.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 01/03/2023]
Abstract
While significant insights have been gained concerning COVID-19, superspreading of coronaviruses remains a mystery. The vast majority of cases have been linked to a relatively small portion of infected individuals. Yet, the genetic sequence of the virus, severity of disease, and underlying host parameters, such as age, sex, and health conditions, are not clearly driving the superspreading phenomenon. In this commentary we discuss what is known and what is not known about coronavirus superspreader transmission and explore whether characteristics of the virion, the donor, or the environment contribute to this phenomenon.
Collapse
Affiliation(s)
- Seema S Lakdawala
- Department of Microbiology and Molecular Genetics, Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Vineet D Menachery
- Department of Microbiology and Immunology, Institute for Human Infection and Immunity, World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch at Galveston, Galveston, TX, USA.
| |
Collapse
|
74
|
Zarei M, Rahimi K, Hassanzadeh K, Abdi M, Hosseini V, Fathi A, Kakaei K. From the environment to the cells: An overview on pivotal factors which affect spreading and infection in COVID-19 pandemic. ENVIRONMENTAL RESEARCH 2021; 201:111555. [PMID: 34197816 PMCID: PMC8236413 DOI: 10.1016/j.envres.2021.111555] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/24/2021] [Accepted: 06/16/2021] [Indexed: 05/06/2023]
Abstract
Several factors ranging from environmental risks to the genetics of the virus and that of the hosts, affect the spread of COVID-19. The impact of physicochemical variables on virus vitality and spread should be taken into account in experimental and clinical studies. Another avenue to explore is the effect of diet and its interaction with the immune system on SARS-CoV-2 infection and mortality rate. Past year have witnessed extensive studies on virus and pathophysiology of the COVID-19 disease and the cellular mechanisms of virus spreading. However, our knowledge has not reached a level where we plan an efficient therapeutic approach to prevent the virus entry to the cells or decreasing the spreading and morbidity in severe cases of disease. The risk of infection directly correlates with the control of virus spreading via droplets and aerosol transmission, as well as patient immune system response. A key goal in virus restriction and transmission rate is to understand the physicochemical structure of aerosol and droplet formation, and the parameters that affect the droplet-borne and airborne in different environmental conditions. The lifetime of droplets on different surfaces is described based on the contact angle. Hereby, we recommend regular use of high-quality face masks in high temperature and low humidity conditions. However, in humid and cold weather conditions, wearing gloves and frequently hand washing, gain a higher priority. Additionally, social distancing rules should be respected in all aforementioned conditions. We will also discuss different routes of SARS-CoV-2 entry into the cells and how multiple genetic factors play a role in the spread of the virus. Given the role of environmental and nutritional factors, we discuss and recommend some strategies to prevent the disease and protect the population against COVID-19. Since an effective vaccine can prevent the transmission of communicable diseases and abolish pandemics, we added a brief review of candidate SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Mohammad Zarei
- Department of Food Science and Technology, School of Industrial Technology, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
| | - Karim Rahimi
- Department of Molecular Biology and Genetics, Gene Expression and Gene Medicine, Aarhus University, Aarhus, Denmark
| | - Kambiz Hassanzadeh
- Laboratory of Neuronal Cell Signaling, EBRI Rita Levi-Montalcini Foundation, Rome, 00161, Italy; Department of Biotechnology and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Mohammad Abdi
- Department of Clinical Biochemistry, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Vahedeh Hosseini
- Department of Molecular Medicine and Genetics, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Ali Fathi
- FUJIFILM Cellular Dynamics, Inc., Madison, WI, USA.
| | - Karim Kakaei
- Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh, Iran.
| |
Collapse
|
75
|
Barbosa da Luz B, de Oliveira NMT, França dos Santos IW, Paza LZ, Braga LLVDM, Platner FDS, Werner MFDP, Fernandes ES, Maria-Ferreira D. An overview of the gut side of the SARS-CoV-2 infection. Intest Res 2021; 19:379-385. [PMID: 33142370 PMCID: PMC8566822 DOI: 10.5217/ir.2020.00087] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/19/2020] [Accepted: 08/27/2020] [Indexed: 01/08/2023] Open
Abstract
In late 2019, an outbreak of pneumonia caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) initiated in Wuhan, Hubei province, China. The major clinical symptoms described for coronavirus disease (COVID-19) include respiratory distress and pneumonia in severe cases, and some patients may experience gastrointestinal impairments. In accordance, viral RNA or live infectious virus have been detected in feces of patients with COVID-19. Binding of SARS-CoV-2 to the angiotensin-converting enzyme 2 (ACE2) is a vital pathway for the virus entry into human cells, including those of the respiratory mucosa, esophageal epithelium as well as the absorptive enterocytes from ileum and colon. The interaction between SARS-CoV-2 and ACE2 receptor may decrease the receptor expression and disrupt the function of B0AT1 transporter influencing the diarrhea observed in COVID-19 patients. In this context, a fecal-oral transmission route has been considered and points out a role for the digestive tract in disease transmission and severity. Here, in order to further understand the impact of COVID-19 in human physiology, the cellular and molecular mechanisms of SARS-CoV-2 infection and disease severity are discussed in the context of gastrointestinal disturbances.
Collapse
Affiliation(s)
- Bruna Barbosa da Luz
- Department of Pharmacology, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Natalia Mulinari Turin de Oliveira
- Pelé Pequeno Príncipe Research Institute, Pequeno Príncipe College, Curitiba, Brazil
- Postgraduate Program in Biotechnology Applied to Child and Adolescent Health, Pequeno Príncipe College, Curitiba, Brazil
| | - Isabella Wzorek França dos Santos
- Pelé Pequeno Príncipe Research Institute, Pequeno Príncipe College, Curitiba, Brazil
- Postgraduate Program in Biotechnology Applied to Child and Adolescent Health, Pequeno Príncipe College, Curitiba, Brazil
| | - Luana Zampieron Paza
- Pelé Pequeno Príncipe Research Institute, Pequeno Príncipe College, Curitiba, Brazil
- Postgraduate Program in Biotechnology Applied to Child and Adolescent Health, Pequeno Príncipe College, Curitiba, Brazil
| | - Lara Luisa Valerio de Mello Braga
- Pelé Pequeno Príncipe Research Institute, Pequeno Príncipe College, Curitiba, Brazil
- Postgraduate Program in Biotechnology Applied to Child and Adolescent Health, Pequeno Príncipe College, Curitiba, Brazil
| | - Fernanda da Silva Platner
- Pelé Pequeno Príncipe Research Institute, Pequeno Príncipe College, Curitiba, Brazil
- Postgraduate Program in Biotechnology Applied to Child and Adolescent Health, Pequeno Príncipe College, Curitiba, Brazil
| | | | - Elizabeth Soares Fernandes
- Pelé Pequeno Príncipe Research Institute, Pequeno Príncipe College, Curitiba, Brazil
- Postgraduate Program in Biotechnology Applied to Child and Adolescent Health, Pequeno Príncipe College, Curitiba, Brazil
| | - Daniele Maria-Ferreira
- Pelé Pequeno Príncipe Research Institute, Pequeno Príncipe College, Curitiba, Brazil
- Postgraduate Program in Biotechnology Applied to Child and Adolescent Health, Pequeno Príncipe College, Curitiba, Brazil
| |
Collapse
|
76
|
An P, Chen H, Ren H, Su J, Ji M, Kang J, Jiang X, Yang Y, Li J, Lv X, Yin A, Chen D, Chen M, Zhou Z, Dong W, Ding Y, Yu H. Gastrointestinal Symptoms Onset in COVID-19 Patients in Wuhan, China. Dig Dis Sci 2021; 66:3578-3587. [PMID: 33180244 PMCID: PMC7658436 DOI: 10.1007/s10620-020-06693-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 10/22/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Early detection is critical in limiting the spread of 2019 novel coronavirus (COVID-19). Although previous data revealed characteristics of GI symptoms in COVID-19, for patients with only GI symptoms onset, their diagnostic process and potential transmission risk are still unclear. METHODS We retrospectively reviewed 205 COVID-19 cases from January 16 to March 30, 2020, in Renmin Hospital of Wuhan University. All patients were confirmed by virus nuclei acid tests. The clinical features and laboratory and chest tomographic (CT) data were recorded and analyzed. RESULTS A total of 171 patients with classic symptoms (group A) and 34 patients with only GI symptoms (group B) were included. In patients with classical COVID-19 symptoms, GI symptoms occurred more frequently in severe cases compared to non-severe cases (20/43 vs. 91/128, respectively, p < 0.05). In group B, 91.2% (31/34) patients were non-severe, while 73.5% (25/34) patients had obvious infiltrates in their first CT scans. Compared to group A, group B patients had a prolonged time to clinic services (5.0 days vs. 2.6 days, p < 0.01) and a longer time to a positive viral swab normalized to the time of admission (6.9 days vs. 3.3 days, respectively, p < 0.01). Two patients in group B had family clusters of SARS-CoV-2 infection. CONCLUSION Patients with only GI symptoms of COVID-19 may take a longer time to present to healthcare services and receive a confirmed diagnosis. In areas where infection is rampant, physicians must remain vigilant of patients presenting with acute gastrointestinal symptoms and should do appropriate personal protective equipment.
Collapse
Affiliation(s)
- Ping An
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuhan, 430060, Hubei Province, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hongbin Chen
- Department of Respiratory Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Haixia Ren
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuhan, 430060, Hubei Province, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Juan Su
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuhan, 430060, Hubei Province, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mengyao Ji
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuhan, 430060, Hubei Province, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jian Kang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuhan, 430060, Hubei Province, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoda Jiang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuhan, 430060, Hubei Province, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yifei Yang
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiao Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuhan, 430060, Hubei Province, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoguang Lv
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuhan, 430060, Hubei Province, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Anning Yin
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuhan, 430060, Hubei Province, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Di Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuhan, 430060, Hubei Province, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mingkai Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuhan, 430060, Hubei Province, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhongyin Zhou
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuhan, 430060, Hubei Province, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Weiguo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuhan, 430060, Hubei Province, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yijuan Ding
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuhan, 430060, Hubei Province, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Honggang Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuhan, 430060, Hubei Province, China.
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China.
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
77
|
Facciolà A, Laganà P, Caruso G. The COVID-19 pandemic and its implications on the environment. ENVIRONMENTAL RESEARCH 2021; 201:111648. [PMID: 34242676 PMCID: PMC8261195 DOI: 10.1016/j.envres.2021.111648] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 05/06/2023]
Abstract
The emerging threat posed by COVID-19 pandemic has strongly modified our lifestyle, making urgent to re-consider the humans-environment relationships and stimulating towards more sustainable choices in our daily behavior. Scientific evidences showed that the onset of new viral pathogens with a high epidemic-pandemic potential is often the result of complex interactions between animals, humans and environment. In this context, the interest of the scientific community has also been attracted towards the potential interactions of SARS-CoV-2 with environmental compartments. Many issues, ranging from the epidemiology and persistence of SARS-CoV-2 in water bodies to the potential implications of lockdown measures on environmental quality status are here reviewed, with a special reference to marine ecosystems. Due to current sanitary emergence, the relevance of pilot studies regarding the interactions between SARS-CoV-2 spread and the direct and indirect environmental impacts of the COVID-19 pandemic, that are still a matter of scientific debate, is underlined.
Collapse
Affiliation(s)
- Alessio Facciolà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Italy
| | - Pasqualina Laganà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Italy.
| | - Gabriella Caruso
- Institute of Polar Sciences (ISP), National Research Council (CNR), Messina, Italy
| |
Collapse
|
78
|
Schroeder S, Mache C, Kleine-Weber H, Corman VM, Muth D, Richter A, Fatykhova D, Memish ZA, Stanifer ML, Boulant S, Gultom M, Dijkman R, Eggeling S, Hocke A, Hippenstiel S, Thiel V, Pöhlmann S, Wolff T, Müller MA, Drosten C. Functional comparison of MERS-coronavirus lineages reveals increased replicative fitness of the recombinant lineage 5. Nat Commun 2021; 12:5324. [PMID: 34493730 PMCID: PMC8423819 DOI: 10.1038/s41467-021-25519-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/05/2021] [Indexed: 01/20/2023] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is enzootic in dromedary camels across the Middle East and Africa. Virus-induced pneumonia in humans results from animal contact, with a potential for limited onward transmission. Phenotypic changes have been suspected after a novel recombinant clade (lineage 5) caused large nosocomial outbreaks in Saudi Arabia and South Korea in 2016. However, there has been no functional assessment. Here we perform a comprehensive in vitro and ex vivo comparison of viruses from parental and recombinant virus lineages (lineage 3, n = 7; lineage 4, n = 8; lineage 5, n = 9 viruses) from Saudi Arabia, isolated immediately before and after the shift toward lineage 5. Replication of lineage 5 viruses is significantly increased. Transcriptional profiling finds reduced induction of immune genes IFNB1, CCL5, and IFNL1 in lung cells infected with lineage 5 strains. Phenotypic differences may be determined by IFN antagonism based on experiments using IFN receptor knock out and signaling inhibition. Additionally, lineage 5 is more resilient against IFN pre-treatment of Calu-3 cells (ca. 10-fold difference in replication). This phenotypic change associated with lineage 5 has remained undiscovered by viral sequence surveillance, but may be a relevant indicator of pandemic potential. MERS-CoV is enzootic in dromedary camels, can spread to humans but undergoes limited onward transmission. Here, Schroeder et al. compare clinical isolates of MERS-CoV in vitro and show that the predominantly circulating recombinant lineage 5 possess a fitness advantage over parental lineage 3 and 4 due to reduced activation of innate immune signaling.
Collapse
Affiliation(s)
- Simon Schroeder
- Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Christin Mache
- Unit 17, Influenza and other Respiratory Viruses, Robert Koch Institut, Berlin, Germany
| | - Hannah Kleine-Weber
- Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
| | - Victor M Corman
- Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Centre for Infection Research (DZIF), Berlin, Germany
| | - Doreen Muth
- Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Anja Richter
- Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Diana Fatykhova
- Dept. of Infectious and Respiratory Diseases, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ziad A Memish
- Research and Innovation Department, King Saud Medical City, Ministry of Health, Riyadh, Saudi Arabia.,College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi Arabia.,Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Megan L Stanifer
- Department of Infectious Diseases, Molecular Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - Steeve Boulant
- Research Group "Cellular polarity and viral infection", German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany
| | - Mitra Gultom
- Institute of Virology and Immunology (IVI), Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Institute for Infectious Diseases, University of Bern, Bern, Switzerland.,Graduate School for Biomedical Science, University of Bern, Bern, Switzerland
| | - Ronald Dijkman
- Institute of Virology and Immunology (IVI), Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Stephan Eggeling
- Department of Thoracic Surgery, Vivantes Clinics Neukölln, Berlin, Germany
| | - Andreas Hocke
- Dept. of Infectious and Respiratory Diseases, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Stefan Hippenstiel
- Dept. of Infectious and Respiratory Diseases, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Volker Thiel
- Institute of Virology and Immunology (IVI), Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
| | - Thorsten Wolff
- Unit 17, Influenza and other Respiratory Viruses, Robert Koch Institut, Berlin, Germany
| | - Marcel A Müller
- Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Centre for Infection Research (DZIF), Berlin, Germany.,Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia
| | - Christian Drosten
- Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany. .,German Centre for Infection Research (DZIF), Berlin, Germany.
| |
Collapse
|
79
|
Knyazev E, Nersisyan S, Tonevitsky A. Endocytosis and Transcytosis of SARS-CoV-2 Across the Intestinal Epithelium and Other Tissue Barriers. Front Immunol 2021; 12:636966. [PMID: 34557180 PMCID: PMC8452982 DOI: 10.3389/fimmu.2021.636966] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 08/20/2021] [Indexed: 12/14/2022] Open
Abstract
Since 2003, the world has been confronted with three new betacoronaviruses that cause human respiratory infections: SARS-CoV, which causes severe acute respiratory syndrome (SARS), MERS-CoV, which causes Middle East respiratory syndrome (MERS), and SARS-CoV-2, which causes Coronavirus Disease 2019 (COVID-19). The mechanisms of coronavirus transmission and dissemination in the human body determine the diagnostic and therapeutic strategies. An important problem is the possibility that viral particles overcome tissue barriers such as the intestine, respiratory tract, blood-brain barrier, and placenta. In this work, we will 1) consider the issue of endocytosis and the possibility of transcytosis and paracellular trafficking of coronaviruses across tissue barriers with an emphasis on the intestinal epithelium; 2) discuss the possibility of antibody-mediated transcytosis of opsonized viruses due to complexes of immunoglobulins with their receptors; 3) assess the possibility of the virus transfer into extracellular vesicles during intracellular transport; and 4) describe the clinical significance of these processes. Models of the intestinal epithelium and other barrier tissues for in vitro transcytosis studies will also be briefly characterized.
Collapse
Affiliation(s)
- Evgeny Knyazev
- Laboratory of Microfluidic Technologies for Biomedicine, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics (HSE), Moscow, Russia
| | - Stepan Nersisyan
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics (HSE), Moscow, Russia
| | - Alexander Tonevitsky
- Laboratory of Microfluidic Technologies for Biomedicine, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics (HSE), Moscow, Russia
| |
Collapse
|
80
|
Miloradovic D, Pavlovic D, Jankovic MG, Nikolic S, Papic M, Milivojevic N, Stojkovic M, Ljujic B. Human Embryos, Induced Pluripotent Stem Cells, and Organoids: Models to Assess the Effects of Environmental Plastic Pollution. Front Cell Dev Biol 2021; 9:709183. [PMID: 34540831 PMCID: PMC8446652 DOI: 10.3389/fcell.2021.709183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/19/2021] [Indexed: 02/03/2023] Open
Abstract
For a long time, animal models were used to mimic human biology and diseases. However, animal models are not an ideal solution due to numerous interspecies differences between humans and animals. New technologies, such as human-induced pluripotent stem cells and three-dimensional (3D) cultures such as organoids, represent promising solutions for replacing, refining, and reducing animal models. The capacity of organoids to differentiate, self-organize, and form specific, complex, biologically suitable structures makes them excellent in vitro models of development and disease pathogenesis, as well as drug-screening platforms. Despite significant potential health advantages, further studies and considerable nuances are necessary before their clinical use. This article summarizes the definition of embryoids, gastruloids, and organoids and clarifies their appliance as models for early development, diseases, environmental pollution, drug screening, and bioinformatics.
Collapse
Affiliation(s)
- Dragana Miloradovic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Dragica Pavlovic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Marina Gazdic Jankovic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Sandra Nikolic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Milos Papic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nevena Milivojevic
- Laboratory for Bioengineering, Department of Science, Institute for Information Technologies, University of Kragujevac, Kragujevac, Serbia
| | - Miodrag Stojkovic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- SPEBO Medical Fertility Hospital, Leskovac, Serbia
| | - Biljana Ljujic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
81
|
Anand H, Ende V, Singh G, Qureshi I, Duong TQ, Mehler MF. Nervous System-Systemic Crosstalk in SARS-CoV-2/COVID-19: A Unique Dyshomeostasis Syndrome. Front Neurosci 2021; 15:727060. [PMID: 34512253 PMCID: PMC8430330 DOI: 10.3389/fnins.2021.727060] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/30/2021] [Indexed: 01/05/2023] Open
Abstract
SARS-CoV-2 infection is associated with a spectrum of acute neurological syndromes. A subset of these syndromes promotes higher in-hospital mortality than is predicted by traditional parameters defining critical care illness. This suggests that deregulation of components of the central and peripheral nervous systems compromises the interplay with systemic cellular, tissue and organ interfaces to mediate numerous atypical manifestations of COVID-19 through impairments in organismal homeostasis. This unique dyshomeostasis syndrome involves components of the ACE-2/1 lifecycles, renin-angiotensin system regulatory axes, integrated nervous system functional interactions and brain regions differentially sculpted by accelerated evolutionary processes and more primordial homeostatic functions. These biological contingencies suggest a mechanistic blueprint to define long-term neurological sequelae and systemic manifestations such as premature aging phenotypes, including organ fibrosis, tissue degeneration and cancer. Therapeutic initiatives must therefore encompass innovative combinatorial agents, including repurposing FDA-approved drugs targeting components of the autonomic nervous system and recently identified products of SARS-CoV-2-host interactions.
Collapse
Affiliation(s)
- Harnadar Anand
- The Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Victoria Ende
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
| | - Gurinder Singh
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
| | - Irfan Qureshi
- The Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, United States
- Biohaven Pharmaceuticals, New Haven, CT, United States
| | - Tim Q. Duong
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Mark F. Mehler
- The Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, United States
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, United States
- Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, NY, United States
- Rose F. Kennedy Center for Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, NY, United States
- Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, United States
- Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
- Center for Epigenomics, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
82
|
Organoids in modelling infectious diseases. Drug Discov Today 2021; 27:223-233. [PMID: 34418577 DOI: 10.1016/j.drudis.2021.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 05/14/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022]
Abstract
Approaches based on animal and two-dimensional (2D) cell culture models cannot ensure reliable results in modeling novel pathogens or in drug testing in the short term; therefore, there is rising interest in platforms such as organoids. To develop a toolbox that can be used successfully to overcome current issues in modeling various infections, it is essential to provide a framework of recent achievements in applying organoids. Organoids have been used to study viruses, bacteria, and protists that cause, for example, respiratory, gastrointestinal, and liver diseases. Their future as models of infection will be associated with improvements in system complexity, including abilities to model tissue structure, a dynamic microenvironment, and coinfection. Teaser. Organoids are a flexible tool for modelling viral, bacterial and protist infections. They can provide fast and reliable information on the biology of pathogens and in drug screening, and thus have become essential in combatting emerging infectious diseases.
Collapse
|
83
|
Unfolded Protein Response Inhibition Reduces Middle East Respiratory Syndrome Coronavirus-Induced Acute Lung Injury. mBio 2021; 12:e0157221. [PMID: 34372702 PMCID: PMC8406233 DOI: 10.1128/mbio.01572-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Tissue- and cell-specific expression patterns are highly variable within and across individuals, leading to altered host responses after acute virus infection. Unraveling key tissue-specific response patterns provides novel opportunities for defining fundamental mechanisms of virus-host interaction in disease and the identification of critical tissue-specific networks for disease intervention in the lung. Currently, there are no approved therapeutics for Middle East respiratory syndrome coronavirus (MERS-CoV) patients, and little is understood about how lung cell types contribute to disease outcomes. MERS-CoV replicates equivalently in primary human lung microvascular endothelial cells (MVE) and fibroblasts (FB) and to equivalent peak titers but with slower replication kinetics in human airway epithelial cell cultures (HAE). However, only infected MVE demonstrate observable virus-induced cytopathic effect. To explore mechanisms leading to reduced MVE viability, donor-matched human lung MVE, HAE, and FB were infected, and their transcriptomes, proteomes, and lipidomes were monitored over time. Validated functional enrichment analysis demonstrated that MERS-CoV-infected MVE were dying via an unfolded protein response (UPR)-mediated apoptosis. Pharmacologic manipulation of the UPR in MERS-CoV-infected primary lung cells reduced viral titers and in male mice improved respiratory function with accompanying reductions in weight loss, pathological signatures of acute lung injury, and times to recovery. Systems biology analysis and validation studies of global kinetic transcript, protein, and lipid data sets confirmed that inhibition of host stress pathways that are differentially regulated following MERS-CoV infection of different tissue types can alleviate symptom progression to end-stage lung disease commonly seen following emerging coronavirus outbreaks.
Collapse
|
84
|
Teymoorian T, Teymourian T, Kowsari E, Ramakrishna S. Direct and indirect effects of SARS-CoV-2 on wastewater treatment. JOURNAL OF WATER PROCESS ENGINEERING 2021; 42:102193. [PMID: 35592058 PMCID: PMC8226068 DOI: 10.1016/j.jwpe.2021.102193] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/11/2021] [Accepted: 06/21/2021] [Indexed: 05/06/2023]
Abstract
The novel SARS-CoV-2 is expanding internationally. While the current focus is on limiting its transmission from direct contact with infected patients and surfaces during the pandemic, the secondary transmission potential via sewage should not be underestimated, especially in low-income and developing countries with weak wastewater treatment technologies. Recent studies have indicated SARS-CoV-2 positivity also be detected in the feces of patients. Therefore, the risk of transmission and infection can be increased into sewage by the fecal-oral way, mainly in some parts of the globe with a high amount of open defecation. This review collected scattered data and recent studies about the direct and indirect effects of coronavirus in the water cycle. The direct impacts of COVID-19 on wastewater are related to the presence of the coronavirus and suitable viral removal methods in different phases of treatment in wastewater treatment plants. The indirect effects of COVID-19 on wastewater are related to the overuse of cleaning and disinfecting products to protect against viral infection and the overuse of certain drugs to protect against virus or novel mental problems and panic to COVID-19 and consequently their presence in wastewater. This unexpected situation leads to changes in the quality of wastewater and brings adverse and harmful effects for the human, aquatic organisms, and the environment. Therefore, applying effective wastewater treatment technologies with low toxic by-products in wastewater treatment plants will be helpful to prevent the increasing occurrence of these extra contaminants in the environment.
Collapse
Affiliation(s)
- Termeh Teymoorian
- Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), Hafez St., Tehran 15875-4413, Iran
| | - Targol Teymourian
- Department of Civil and Environmental Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez St., Tehran 15875-4413, Iran
| | - Elaheh Kowsari
- Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), Hafez St., Tehran 15875-4413, Iran
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, 119260, Singapore
| |
Collapse
|
85
|
Amereh F, Negahban-Azar M, Isazadeh S, Dabiri H, Masihi N, Jahangiri-Rad M, Rafiee M. Sewage Systems Surveillance for SARS-CoV-2: Identification of Knowledge Gaps, Emerging Threats, and Future Research Needs. Pathogens 2021. [PMID: 34451410 DOI: 10.3390/pathogens10080946.pmid:34451410;pmcid:pmc8402176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023] Open
Abstract
The etiological agent for novel coronavirus (COVID-19, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), not only affects the human respiratory system, but also the gastrointestinal tract resulting in gastrointestinal manifestations. The high rate of asymptomatic infected individuals has challenged the estimation of infection spread based on patients' surveillance, and thus alternative approaches such as wastewater-based epidemiology (WBE) have been proposed. Accordingly, the number of publications on this topic has increased substantially. The present systematic review thus aimed at providing state-of-the-knowledge on the occurrence and existing methods for sampling procedures, detection/quantification of SARS-CoV-2 in sewage samples, as well as anticipating challenges and providing future research direction to improve the current scientific knowledge. Articles were collected from three scientific databases. Only studies reporting measurements of virus in stool, urine, and wastewater samples were included. Results showed that improving the scientific community's understanding in these avenues is essential if we are to develop appropriate policy and management tools to address this pandemic pointing particularly towards WBE as a new paradigm in public health. It was also evident that standardized protocols are needed to ensure reproducibility and comparability of outcomes. Areas that require the most improvements are sampling procedures, concentration/enrichment, detection, and quantification of virus in wastewater, as well as positive controls. Results also showed that selecting the most accurate population estimation method for WBE studies is still a challenge. While the number of people infected in an area could be approximately estimated based on quantities of virus found in wastewater, these estimates should be cross-checked by other sources of information to draw a more comprehensive conclusion. Finally, wastewater surveillance can be useful as an early warning tool, a management tool, and/or a way for investigating vaccination efficacy and spread of new variants.
Collapse
Affiliation(s)
- Fatemeh Amereh
- Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran 35511, Iran
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran 35511, Iran
| | - Masoud Negahban-Azar
- Department of Environmental Science and Technology, University of Maryland, College Park, MD 20740, USA
| | - Siavash Isazadeh
- Environmental Service, Suez Water North America, Paramus, NJ 07652, USA
| | - Hossein Dabiri
- Department of Medical Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 35511, Iran
| | - Najmeh Masihi
- Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran 35511, Iran
| | - Mahsa Jahangiri-Rad
- Water Purification Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran 19168, Iran
| | - Mohammad Rafiee
- Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran 35511, Iran
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran 35511, Iran
| |
Collapse
|
86
|
Amereh F, Negahban-Azar M, Isazadeh S, Dabiri H, Masihi N, Jahangiri-rad M, Rafiee M. Sewage Systems Surveillance for SARS-CoV-2: Identification of Knowledge Gaps, Emerging Threats, and Future Research Needs. Pathogens 2021; 10:946. [PMID: 34451410 PMCID: PMC8402176 DOI: 10.3390/pathogens10080946] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/04/2021] [Accepted: 07/22/2021] [Indexed: 02/06/2023] Open
Abstract
The etiological agent for novel coronavirus (COVID-19, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), not only affects the human respiratory system, but also the gastrointestinal tract resulting in gastrointestinal manifestations. The high rate of asymptomatic infected individuals has challenged the estimation of infection spread based on patients' surveillance, and thus alternative approaches such as wastewater-based epidemiology (WBE) have been proposed. Accordingly, the number of publications on this topic has increased substantially. The present systematic review thus aimed at providing state-of-the-knowledge on the occurrence and existing methods for sampling procedures, detection/quantification of SARS-CoV-2 in sewage samples, as well as anticipating challenges and providing future research direction to improve the current scientific knowledge. Articles were collected from three scientific databases. Only studies reporting measurements of virus in stool, urine, and wastewater samples were included. Results showed that improving the scientific community's understanding in these avenues is essential if we are to develop appropriate policy and management tools to address this pandemic pointing particularly towards WBE as a new paradigm in public health. It was also evident that standardized protocols are needed to ensure reproducibility and comparability of outcomes. Areas that require the most improvements are sampling procedures, concentration/enrichment, detection, and quantification of virus in wastewater, as well as positive controls. Results also showed that selecting the most accurate population estimation method for WBE studies is still a challenge. While the number of people infected in an area could be approximately estimated based on quantities of virus found in wastewater, these estimates should be cross-checked by other sources of information to draw a more comprehensive conclusion. Finally, wastewater surveillance can be useful as an early warning tool, a management tool, and/or a way for investigating vaccination efficacy and spread of new variants.
Collapse
Affiliation(s)
- Fatemeh Amereh
- Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran 35511, Iran; (F.A.); (N.M.)
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran 35511, Iran
| | - Masoud Negahban-Azar
- Department of Environmental Science and Technology, University of Maryland, College Park, MD 20740, USA
| | - Siavash Isazadeh
- Environmental Service, Suez Water North America, Paramus, NJ 07652, USA;
| | - Hossein Dabiri
- Department of Medical Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 35511, Iran;
| | - Najmeh Masihi
- Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran 35511, Iran; (F.A.); (N.M.)
| | - Mahsa Jahangiri-rad
- Water Purification Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran 19168, Iran;
| | - Mohammad Rafiee
- Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran 35511, Iran; (F.A.); (N.M.)
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran 35511, Iran
| |
Collapse
|
87
|
Lazebnik LB, Sarsenbaeva AS, Avalueva EB, Oreshko LS, Sitkin SI, Golovanova EV, Turkina SV, Khlynova OV, Sagalova OI, Mironchev OV. Clinical guidelines “Chronic diarrhea in adults”. EXPERIMENTAL AND CLINICAL GASTROENTEROLOGY 2021:7-67. [DOI: 10.31146/1682-8658-ecg-188-4-7-67] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Affiliation(s)
- L. B. Lazebnik
- Federal State Budgetary Educational Institution of Higher Education “A. I. Yevdokimov Moscow State University of Medicine and Dentistry” of the Ministry of Healthcare of the Russion Federation
| | | | - E. B. Avalueva
- North-Western state medical University named after I. I. Mechnikov, Ministry of health of the Russian Federation
| | - L. S. Oreshko
- North-Western state medical University named after I. I. Mechnikov, Ministry of health of the Russian Federation
| | - S. I. Sitkin
- North- Western state medical University named after I. I. Mechnikov, Ministry of health of the Russian Federation;
Federal State Budgetary Institution “Almazov National Medical Research Centre” of the Ministry of Health of the Russian Federation
| | - E. V. Golovanova
- Federal State Budgetary Educational Institution of Higher Education “A. I. Yevdokimov Moscow State University of Medicine and Dentistry” of the Ministry of Healthcare of the Russion Federation
| | - S. V. Turkina
- State-funded Educational Establishment of Higher Professional Education “Volgograd State Medical University of the Ministry of Public Health of the Russian Federation”
| | - O. V. Khlynova
- Perm State Medical University named after academician E. A. Vagner Ministry of Health care of Russia
| | | | | |
Collapse
|
88
|
Azar J, Bahmad HF, Daher D, Moubarak MM, Hadadeh O, Monzer A, Al Bitar S, Jamal M, Al-Sayegh M, Abou-Kheir W. The Use of Stem Cell-Derived Organoids in Disease Modeling: An Update. Int J Mol Sci 2021; 22:7667. [PMID: 34299287 PMCID: PMC8303386 DOI: 10.3390/ijms22147667] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
Organoids represent one of the most important advancements in the field of stem cells during the past decade. They are three-dimensional in vitro culturing models that originate from self-organizing stem cells and can mimic the in vivo structural and functional specificities of body organs. Organoids have been established from multiple adult tissues as well as pluripotent stem cells and have recently become a powerful tool for studying development and diseases in vitro, drug screening, and host-microbe interaction. The use of stem cells-that have self-renewal capacity to proliferate and differentiate into specialized cell types-for organoids culturing represents a major advancement in biomedical research. Indeed, this new technology has a great potential to be used in a multitude of fields, including cancer research, hereditary and infectious diseases. Nevertheless, organoid culturing is still rife with many challenges, not limited to being costly and time consuming, having variable rates of efficiency in generation and maintenance, genetic stability, and clinical applications. In this review, we aim to provide a synopsis of pluripotent stem cell-derived organoids and their use for disease modeling and other clinical applications.
Collapse
Affiliation(s)
- Joseph Azar
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2260, Lebanon; (J.A.); (H.F.B.); (D.D.); (M.M.M.); (O.H.); (A.M.); (S.A.B.)
| | - Hisham F. Bahmad
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2260, Lebanon; (J.A.); (H.F.B.); (D.D.); (M.M.M.); (O.H.); (A.M.); (S.A.B.)
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
| | - Darine Daher
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2260, Lebanon; (J.A.); (H.F.B.); (D.D.); (M.M.M.); (O.H.); (A.M.); (S.A.B.)
| | - Maya M. Moubarak
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2260, Lebanon; (J.A.); (H.F.B.); (D.D.); (M.M.M.); (O.H.); (A.M.); (S.A.B.)
| | - Ola Hadadeh
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2260, Lebanon; (J.A.); (H.F.B.); (D.D.); (M.M.M.); (O.H.); (A.M.); (S.A.B.)
| | - Alissar Monzer
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2260, Lebanon; (J.A.); (H.F.B.); (D.D.); (M.M.M.); (O.H.); (A.M.); (S.A.B.)
| | - Samar Al Bitar
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2260, Lebanon; (J.A.); (H.F.B.); (D.D.); (M.M.M.); (O.H.); (A.M.); (S.A.B.)
| | - Mohamed Jamal
- Hamdan Bin Mohammed College of Dental Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 66566, United Arab Emirates
| | - Mohamed Al-Sayegh
- Biology Division, New York University Abu Dhabi, Abu Dhabi 2460, United Arab Emirates
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2260, Lebanon; (J.A.); (H.F.B.); (D.D.); (M.M.M.); (O.H.); (A.M.); (S.A.B.)
| |
Collapse
|
89
|
Simsek C, Erul E, Balaban HY. Role of gastrointestinal system on transmission and pathogenesis of SARS-CoV-2. World J Clin Cases 2021; 9:5427-5434. [PMID: 34307596 PMCID: PMC8281423 DOI: 10.12998/wjcc.v9.i20.5427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/20/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) continues to pose a significant threat to global health. Primary prevention remains as a major strategy against the pandemic. Current evidence proves that aerosol and droplet-based routes are the main means of transmission of COVID-19 but other ways should be sought in order to prevent possible collateral transmission. The gastrointestinal system may be one such route. Angiotensin converting enzyme 2 is the target entry receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that is abundantly expressed in the gastrointestinal tract. SARS-CoV-2 is able to infect human enterocytes similar to severe acute respiratory syndrome and Middle Eastern respiratory syndrome. Herein this review, we discuss the current knowledge regarding the role of gastrointestinal transmission in transmission and pathophysiology of COVID-19.
Collapse
Affiliation(s)
- Cem Simsek
- Department of Gastroenterology, Hacettepe University Faculty of Medicine, Ankara 06100, Turkey
| | - Enes Erul
- Department of Internal Medicine, Hacettepe University Faculty of Medicine, Ankara 06100, Turkey
| | - Hatice Yasemin Balaban
- Department of Gastroenterology, Hacettepe University Faculty of Medicine, Ankara 06100, Turkey
| |
Collapse
|
90
|
Dallner M, Harlow J, Nasheri N. Human Coronaviruses Do Not Transfer Efficiently between Surfaces in the Absence of Organic Materials. Viruses 2021; 13:1352. [PMID: 34372557 PMCID: PMC8310000 DOI: 10.3390/v13071352] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 12/23/2022] Open
Abstract
Human coronaviruses, including SARS-CoV-2, are known to spread mainly via close contact and respiratory droplets. However, other potential means of transmission may be present. Fomite-mediated transmission occurs when viruses are deposited onto a surface and then transfer to a subsequent individual. Surfaces can become contaminated directly from respiratory droplets or from a contaminated hand. Due to mask mandates in many countries around the world, the former is less likely. Hands can become contaminated if respiratory droplets are deposited on them (i.e., coughing or sneezing) or through contact with fecal material where human coronaviruses (HCoVs) can be shed. The focus of this paper is on whether human coronaviruses can transfer efficiently from contaminated hands to food or food contact surfaces. The surfaces chosen were: stainless steel, plastic, cucumber and apple. Transfer was first tested with cellular maintenance media and three viruses: two human coronaviruses, 229E and OC43, and murine norovirus-1, as a surrogate for human norovirus. There was no transfer for either of the human coronaviruses to any of the surfaces. Murine norovirus-1 did transfer to stainless steel, cucumber and apple, with transfer efficiencies of 9.19%, 5.95% and 0.329%, respectively. Human coronavirus OC43 transfer was then tested in the presence of fecal material, and transfer was observed for stainless steel (0.52%), cucumber (19.82%) and apple (15.51%) but not plastic. This study indicates that human coronaviruses do not transfer effectively from contaminated hands to contact surfaces without the presence of fecal material.
Collapse
Affiliation(s)
- Matthew Dallner
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Health Canada, Ottawa, ON K1A 0K9, Canada; (M.D.); (J.H.)
| | - Jennifer Harlow
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Health Canada, Ottawa, ON K1A 0K9, Canada; (M.D.); (J.H.)
| | - Neda Nasheri
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Health Canada, Ottawa, ON K1A 0K9, Canada; (M.D.); (J.H.)
- Department of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
91
|
Kuzniewski S. Prevalence, environmental fate, treatment strategies, and future challenges for wastewater contaminated with SARS-CoV-2. REMEDIATION (NEW YORK, N.Y.) 2021; 31:97-110. [PMID: 34539159 PMCID: PMC8441782 DOI: 10.1002/rem.21691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been detected in untreated and treated wastewater and studies have shown that the concentration of SARS-CoV-2 is proportional to the prevalence of the coronavirus disease 2019 (COVID-19) in communities. This article presents a literature review of the prevalence of SARS-CoV-2 in wastewater, its environmental fate, recommended treatment strategies for contaminated wastewater, and treatment challenges to be faced in the future. The environmental fate of SARS-CoV-2 in wastewater is not straightforward because it can be a source of infection when present in the treated wastewater depending on the permeability of the wastewater treatment plant containment area, and can also leach into aquifers, which may serve as drinking water supplies. Secondly, there are different practices that can mitigate the SARS-CoV-2 infection rate from infected feces and urine. The World Health Organization has recommended the use of ultraviolet radiation (UV), disinfection, and filtration for wastewater contaminated with SARS-CoV-2, processes also common in wastewater treatment facilities. This article discusses these strategies referencing studies performed with surrogate viruses and shows that SARS-CoV-2 treatment can be complicated due to the interference from other aqueous chemical and physical factors. Considering that COVID-19 is not the first and certainly not the last pandemic, it is imperative to develop an effective multitreatment strategy for wastewater contaminated with contagious viruses and, preferably, those that are compatible with current wastewater treatment methods.
Collapse
|
92
|
Chen Y, Lear TB, Evankovich JW, Larsen MB, Lin B, Alfaras I, Kennerdell JR, Salminen L, Camarco DP, Lockwood KC, Tuncer F, Liu J, Myerburg MM, McDyer JF, Liu Y, Finkel T, Chen BB. A high-throughput screen for TMPRSS2 expression identifies FDA-approved compounds that can limit SARS-CoV-2 entry. Nat Commun 2021; 12:3907. [PMID: 34162861 PMCID: PMC8222394 DOI: 10.1038/s41467-021-24156-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 06/07/2021] [Indexed: 02/06/2023] Open
Abstract
SARS-CoV-2 (2019-nCoV) is the pathogenic coronavirus responsible for the global pandemic of COVID-19 disease. The Spike (S) protein of SARS-CoV-2 attaches to host lung epithelial cells through the cell surface receptor ACE2, a process dependent on host proteases including TMPRSS2. Here, we identify small molecules that reduce surface expression of TMPRSS2 using a library of 2,560 FDA-approved or current clinical trial compounds. We identify homoharringtonine and halofuginone as the most attractive agents, reducing endogenous TMPRSS2 expression at sub-micromolar concentrations. These effects appear to be mediated by a drug-induced alteration in TMPRSS2 protein stability. We further demonstrate that halofuginone modulates TMPRSS2 levels through proteasomal-mediated degradation that involves the E3 ubiquitin ligase component DDB1- and CUL4-associated factor 1 (DCAF1). Finally, cells exposed to homoharringtonine and halofuginone, at concentrations of drug known to be achievable in human plasma, demonstrate marked resistance to SARS-CoV-2 infection in both live and pseudoviral in vitro models. Given the safety and pharmacokinetic data already available for the compounds identified in our screen, these results should help expedite the rational design of human clinical trials designed to combat active COVID-19 infection.
Collapse
Affiliation(s)
- Yanwen Chen
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA, USA
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Travis B Lear
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA, USA
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - John W Evankovich
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA, USA
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mads B Larsen
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA, USA
| | - Bo Lin
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA, USA
| | - Irene Alfaras
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA, USA
| | | | - Laura Salminen
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA, USA
| | - Daniel P Camarco
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA, USA
| | | | - Ferhan Tuncer
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA, USA
| | - Jie Liu
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA, USA
| | - Michael M Myerburg
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - John F McDyer
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yuan Liu
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA, USA.
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA.
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Toren Finkel
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA, USA.
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Medicine, Division of Cardiology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Bill B Chen
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA, USA.
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA.
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
93
|
Katz-Agranov N, Zandman-Goddard G. Autoimmunity and COVID-19 - The microbiotal connection. Autoimmun Rev 2021; 20:102865. [PMID: 34118455 PMCID: PMC8189735 DOI: 10.1016/j.autrev.2021.102865] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 03/28/2021] [Indexed: 02/07/2023]
Abstract
Background and aims The novel SARS-CoV-2 has been rattling the world since its outbreak in December 2019, leading to the COVID-19 pandemic. The learning curve of this new virus has been steep, with a global scientific community desperate to learn how the virus is transmitted, how it replicates, why it causes such a wide spectrum of disease manifestations, resulting in none or few symptoms in some. Others are burdened by an intense immune response that resembles the cytokine storm syndrome (CSS), which leads to severe disease manifestations, often complicated by fatal acute respiratory distress syndrome and death. Research efforts have been focusing on finding effective cures and vaccinations for this virus. The presence of SARS-CoV-2 in the gastrointestinal (GI) tract, represented by several GI manifestations, has led to its investigation as a target for the virus and as an indicator of disease severity. The response of the microbiome (which is heavily linked to immunity) to the novel SARS-CoV-2 virus, and its role in igniting the exaggerated immune response has therefore become a focus of interest. The objective of our study was to gather the data connecting between the microbiome, the GI tract and COVID-19 and to investigate whether these reported alterations in the gut microbiome bear any resemblance to those seen in lupus, the prototypical autoimmune disease. Confirming such changes may become the steppingstone to potential therapies that may prevent transmission, progression and immune related manifestations of COVID-19, via manipulation of the gut microbiota. Methods We performed an extensive literature review, utilizing the Pubmed search engine and Google Scholar for studies evaluating the microbiome in COVID-19 patients and compared results with studies evaluating the microbiome in lupus. We searched for the terms: microbiome, dysbiosis, COVID-19, SARS-CoV-2, gastrointestinal as well as lupus and autoimmune. While there were hundreds of articles which referred to gastrointestinal manifestations in COVID-19, to date only 4 studies investigated the gastrointestinal microbiome in this setting. We compared the similarities between microbiome of COVID-19 patients and lupus patients. Results We found that there are several similar processes of immune dysregulation in patients with COVID-19 and in those with lupus, with several other alterations seen in other pathological states. Some of these similarities include loss of microbiota biodiversity, increased representation of pathobionts, which are microbes associated with inflammation and disease (i.e Proteobacteria) and a relative decrease of symbionts, which are protective microbes, associated with anti-inflammatory properties (i.e Lactobacillus). Compromise to the intestinal barrier has also been reported in both. Conclusions We conclude that the gastrointestinal tract contributes to the disease manifestations in COVID-19. Whether gastrointestinal dysbiosis is the cause or effect of gastrointestinal manifestations and several severe systemic manifestations, which may be the response to an increased pro-inflammatory environment, is still debatable and warrants further investigation. Given the resemblance of the microbiome in COVID-19 patients to that seen in lupus patients, it becomes clearer why several therapies used in autoimmune conditions are currently under investigation for the treatment of COVID-19 patients. Moreover, these findings should promote further investigating the utility of manipulation of the microbiome, via nutritional supplementation or even fecal transplantations, interventions that may alter the course of the disease, and potentially prevent disease transmission at low cost and low risk.
Collapse
Affiliation(s)
- Nurit Katz-Agranov
- Department of Medicine, Saint Elizabeth's Medical Center, Boston, MA, USA; Tufts University School of Medicine, Boston, MA, USA.
| | - Gisele Zandman-Goddard
- Department of Medicine C, Wolfson Medical Center, Holon, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
94
|
Farrag MA, Amer HM, Bhat R, Hamed ME, Aziz IM, Mubarak A, Dawoud TM, Almalki SG, Alghofaili F, Alnemare AK, Al-Baradi RS, Alosaimi B, Alturaiki W. SARS-CoV-2: An Overview of Virus Genetics, Transmission, and Immunopathogenesis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:6312. [PMID: 34200934 PMCID: PMC8296125 DOI: 10.3390/ijerph18126312] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/27/2021] [Accepted: 06/04/2021] [Indexed: 12/19/2022]
Abstract
The human population is currently facing the third and possibly the worst pandemic caused by human coronaviruses (CoVs). The virus was first reported in Wuhan, China, on 31 December 2019 and spread within a short time to almost all countries of the world. Genome analysis of the early virus isolates has revealed high similarity with SARS-CoV and hence the new virus was officially named SARS-CoV-2. Since CoVs have the largest genome among all RNA viruses, they can adapt to many point mutation and recombination events; particularly in the spike gene, which enable these viruses to rapidly change and evolve in nature. CoVs are known to cross the species boundaries by using different cellular receptors. Both animal reservoir and intermediate host for SARS-CoV-2 are still unresolved and necessitate further investigation. In the current review, different aspects of SARS-CoV-2 biology and pathogenicity are discussed, including virus genetics and evolution, spike protein and its role in evolution and adaptation to novel hosts, and virus transmission and persistence in nature. In addition, the immune response developed during SARS-CoV-2 infection is demonstrated with special reference to the interplay between immune cells and their role in disease progression. We believe that the SARS-CoV-2 outbreak will not be the last and spillover of CoVs from bats will continue. Therefore, establishing intervention approaches to reduce the likelihood of future CoVs spillover from natural reservoirs is a priority.
Collapse
Affiliation(s)
- Mohamed A. Farrag
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.A.F.); (R.B.); (M.E.H.); (I.M.A.); (A.M.); (T.M.D.)
| | - Haitham M. Amer
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
| | - Rauf Bhat
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.A.F.); (R.B.); (M.E.H.); (I.M.A.); (A.M.); (T.M.D.)
| | - Maaweya E. Hamed
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.A.F.); (R.B.); (M.E.H.); (I.M.A.); (A.M.); (T.M.D.)
| | - Ibrahim M. Aziz
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.A.F.); (R.B.); (M.E.H.); (I.M.A.); (A.M.); (T.M.D.)
| | - Ayman Mubarak
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.A.F.); (R.B.); (M.E.H.); (I.M.A.); (A.M.); (T.M.D.)
| | - Turki M Dawoud
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.A.F.); (R.B.); (M.E.H.); (I.M.A.); (A.M.); (T.M.D.)
| | - Sami G Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia; (S.G.A.); (F.A.); (R.S.A.-B.)
| | - Fayez Alghofaili
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia; (S.G.A.); (F.A.); (R.S.A.-B.)
| | - Ahmad K. Alnemare
- Otolaryngology Department, College of Medicine, Majmaah University, Majmaah 11952, Saudi Arabia;
| | - Raid Saleem Al-Baradi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia; (S.G.A.); (F.A.); (R.S.A.-B.)
| | - Bandar Alosaimi
- Research Center, King Fahad Medical City, Riyadh 11525, Saudi Arabia;
| | - Wael Alturaiki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia; (S.G.A.); (F.A.); (R.S.A.-B.)
| |
Collapse
|
95
|
Chu H, Shuai H, Hou Y, Zhang X, Wen L, Huang X, Hu B, Yang D, Wang Y, Yoon C, Wong BHY, Li C, Zhao X, Poon VKM, Cai JP, Wong KKY, Yeung ML, Zhou J, Au-Yeung RKH, Yuan S, Jin DY, Kok KH, Perlman S, Chan JFW, Yuen KY. Targeting highly pathogenic coronavirus-induced apoptosis reduces viral pathogenesis and disease severity. SCIENCE ADVANCES 2021; 7:7/25/eabf8577. [PMID: 34134991 PMCID: PMC8208716 DOI: 10.1126/sciadv.abf8577] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 05/04/2021] [Indexed: 05/06/2023]
Abstract
Infection by highly pathogenic coronaviruses results in substantial apoptosis. However, the physiological relevance of apoptosis in the pathogenesis of coronavirus infections is unknown. Here, with a combination of in vitro, ex vivo, and in vivo models, we demonstrated that protein kinase R-like endoplasmic reticulum kinase (PERK) signaling mediated the proapoptotic signals in Middle East respiratory syndrome coronavirus (MERS-CoV) infection, which converged in the intrinsic apoptosis pathway. Inhibiting PERK signaling or intrinsic apoptosis both alleviated MERS pathogenesis in vivo. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and SARS-CoV induced apoptosis through distinct mechanisms but inhibition of intrinsic apoptosis similarly limited SARS-CoV-2- and SARS-CoV-induced apoptosis in vitro and markedly ameliorated the lung damage of SARS-CoV-2-inoculated human angiotensin-converting enzyme 2 (hACE2) mice. Collectively, our study provides the first evidence that virus-induced apoptosis is an important disease determinant of highly pathogenic coronaviruses and demonstrates that this process can be targeted to attenuate disease severity.
Collapse
Affiliation(s)
- Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Huiping Shuai
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yuxin Hou
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Xi Zhang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Lei Wen
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Xiner Huang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Bingjie Hu
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Dong Yang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yixin Wang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Chaemin Yoon
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Bosco Ho-Yin Wong
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Cun Li
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Xiaoyu Zhao
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Vincent Kwok-Man Poon
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jian-Piao Cai
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Kenneth Kak-Yuen Wong
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Man-Lung Yeung
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jie Zhou
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Rex Kwok-Him Au-Yeung
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Dong-Yan Jin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Kin-Hang Kok
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| |
Collapse
|
96
|
Yedjou CG, Njiki S, Enow J, Ikome O, Latinwo L, Long R, Ngnepieba P, Alo RA, Tchounwou PB. Pharmacological Effects of Selected Medicinal Plants and Vitamins Against COVID-19. JOURNAL OF FOOD AND NUTRITION (FRISCO, TEX.) 2021; 7:202. [PMID: 34395868 PMCID: PMC8362927 DOI: 10.17303/jfn.2021.7.202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). It is a serious disease that has caused multiple deaths in various countries in the world. Globally, as of May 23, 2021, the total confirmed cases of COVID-19 have reach 166,346,635 with a total of 3,449,117 deaths. Several recent scientific studies have shown that medicinal plants and vitamins can benefit and improve the health of COVID-19 patients. However, the benefits of medicinal plants and vitamins in the treatment of COVID-19 remain unproven. Therefore, the objective of this article is to expounds the benefits of using medicinal plants (Allium sativum, curcumin, Nigella sativa, Zingiber officitale) and vitamins (vitamin C and vitamin D) that possess the antiviral properties for the prevention and/or control of COVID-19. To reach our objective, we searched scientific databases of ongoing trials in the Centers for Disease Control and Prevention websites, PubMed Central, Medline databases, and Google Scholar websites. We also searched databases on World Health Organization International Clinical Trials Registry Platform to collect relevant papers. We found that all of the selected medicinal plants and vitamins possess antiviral activities, and their individual intake shows promise for the prevention and/or control of COVID-19. We conclude that, the selected medicinal plants and vitamins possess anti-viral properties that are more likely to prevent and/or disrupt the SARS-CoV-2 replication cycle, enhance the human immune system and promote good health.
Collapse
Affiliation(s)
- Clement G Yedjou
- Department of Biological Sciences, College of Science and Technology, Florida Agricultural and Mechanical University, 1610 S. Martin Luther King Blvd, Tallahassee, United States
| | - Sylvianne Njiki
- Department of Biology, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, Box 18750, Jackson, United States
| | - Juliet Enow
- Department of Behavioral and Environmental Health. School of Public Health, Jackson State University, 350 W. Woodrow Wilson Drive, Jackson, United States
| | - Otto Ikome
- Department of Biology, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, Box 18750, Jackson, United States
| | - Lekan Latinwo
- Department of Biological Sciences, College of Science and Technology, Florida Agricultural and Mechanical University, 1610 S. Martin Luther King Blvd, Tallahassee, United States
| | - Richard Long
- Department of Biological Sciences, College of Science and Technology, Florida Agricultural and Mechanical University, 1610 S. Martin Luther King Blvd, Tallahassee, United States
| | - Pierre Ngnepieba
- Department of Mathematics, College of Science and Technology, Florida Agricultural and Mechanical University, 1610 S. Martin Luther King Blvd, Tallahassee, United States
| | - Richard A Alo
- Department of Computer and Information Science, College of Science and Technology, Florida Agricultural & Mechanical University, 1610 S. Martin Luther King Blvd, Tallahassee, United States
| | - Paul B Tchounwou
- Department of Biology, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, Box 18750, Jackson, United States
| |
Collapse
|
97
|
Puschhof J, Pleguezuelos-Manzano C, Clevers H. Organoids and organs-on-chips: Insights into human gut-microbe interactions. Cell Host Microbe 2021; 29:867-878. [PMID: 34111395 DOI: 10.1016/j.chom.2021.04.002] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/04/2021] [Accepted: 04/05/2021] [Indexed: 12/22/2022]
Abstract
The important and diverse roles of the gut microbiota in human health and disease are increasingly recognized. The difficulty of inferring causation from metagenomic microbiome sequencing studies and from mouse-human interspecies differences has prompted the development of sophisticated in vitro models of human gut-microbe interactions. Here, we review recent advances in the co-culture of microbes with intestinal and colonic epithelia, comparing the rapidly developing fields of organoids and organs-on-chips with other standard models. We describe how specific individual processes by which microbes and epithelia interact can be recapitulated in vitro. Using examples of bacterial, viral, and parasitic infections, we highlight the advantages of each culture model and discuss current trends and future possibilities to build more complex co-cultures.
Collapse
Affiliation(s)
- Jens Puschhof
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands
| | - Cayetano Pleguezuelos-Manzano
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands; The Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
| |
Collapse
|
98
|
Ahmed W, Al Obaidli AAK, Joseph P, Smith ER, Khan AA, Anwar S, Chandrasekar T, Al Madani AK, Dastoor HD, Zahid I, Costales FA, Boobes YAR, Al Kindi F, Issa SEK, Hassan MH, George A, Holt SG. Outcomes of patients with end stage kidney disease on dialysis with COVID-19 in Abu Dhabi, United Arab Emirates; from PCR to antibody. BMC Nephrol 2021; 22:198. [PMID: 34039299 PMCID: PMC8152185 DOI: 10.1186/s12882-021-02378-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 04/09/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Individuals with end-stage kidney disease (ESKD) on dialysis are vulnerable to contracting COVID-19 infection, with mortality as high as 31 % in this group. Population demographics in the UAE are dissimilar to many other countries and data on antibody responses to COVID-19 is also limited. The objective of this study was to describe the characteristics of patients who developed COVID-19, the impact of the screening strategy, and to assess the antibody response to a subset of dialysis patients. METHODS We retrospectively examined the outcomes of COVID19 infection in all our haemodialysis patients, who were tested regularly for COVID 19, whether symptomatic or asymptomatic. In addition, IgG antibody serology was also performed to assess response to COVID-19 in a subset of patients. RESULTS 152 (13 %) of 1180 dialysis patients developed COVID-19 during the study period from 1st of March to the 1st of July 2020. Of these 81 % were male, average age of 52 years and 95 % were on in-centre haemodialysis. Family and community contact was most likely source of infection in most patients. Fever (49 %) and cough (48 %) were the most common presenting symptoms, when present. Comorbidities in infected individuals included hypertension (93 %), diabetes (49 %), ischaemic heart disease (30 %). The majority (68 %) developed mild disease, whilst 13 % required critical care. Combinations of drugs including hydroxychloroquine, favipiravir, lopinavir, ritonavir, camostat, tocilizumab and steroids were used based on local guidelines. The median time to viral clearance defined by two negative PCR tests was 15 days [IQR 6-25]. Overall mortality in our cohort was 9.2 %, but ICU mortality was 65 %. COVID-19 IgG antibody serology was performed in a subset (n = 87) but 26 % of PCR positive patients (n = 23) did not develop a significant antibody response. CONCLUSIONS Our study reports a lower mortality in this patient group compared with many published series. Asymptomatic PCR positivity was present in 40 %. Rapid isolation of positive patients may have contributed to the relative lack of spread of COVID-19 within our dialysis units. The lack of antibody response in a few patients is concerning.
Collapse
Affiliation(s)
- Wasim Ahmed
- SEHA Kidney Care, PO BOX 92900, Abu Dhabi, United Arab Emirates.
| | | | - Princy Joseph
- SEHA Kidney Care, PO BOX 92900, Abu Dhabi, United Arab Emirates
| | | | - Ayaz Ahmad Khan
- SEHA Kidney Care, PO BOX 92900, Abu Dhabi, United Arab Emirates
| | - Siddiq Anwar
- SEHA Kidney Care, PO BOX 92900, Abu Dhabi, United Arab Emirates
| | | | | | | | - Imran Zahid
- Sheikh Shakhbout Medical City, Abu Dhabi, UAE
| | | | | | | | | | | | | | | |
Collapse
|
99
|
3D Bioprinting for fabrication of tissue models of COVID-19 infection. Essays Biochem 2021; 65:503-518. [PMID: 34028514 DOI: 10.1042/ebc20200129] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 12/19/2022]
Abstract
Over the last few decades, the world has witnessed multiple viral pandemics, the current severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) pandemic being the worst and most devastating one, claiming millions of lives worldwide. Physicians, scientists, and engineers worldwide have joined hands in dealing with the current situation at an impressive speed and efficiency. One of the major reasons for the delay in response is our limited understanding of the mechanism of action and individual effects of the virus on different tissues and organs. Advances in 3D bioprinting have opened up a whole new area to explore and utilize the technology in fabricating models of these tissues and organs, recapitulating in vivo environment. These biomimetic models can not only be utilized in learning the infection pathways and drug toxicology studies but also minimize the need for animal models and shorten the time span for human clinical trials. The current review aims to integrate the existing developments in bioprinting techniques, and their implementation to develop tissue models, which has implications for SARS-CoV-2 infection. Future translation of these models has also been discussed with respect to the pandemic.
Collapse
|
100
|
Grinevich VB, Kravchuk YA, Ped VI, Sas EI, Salikova SP, Gubonina IV, Tkachenko EI, Sitkin SI, Lazebnik LB, Golovanova EV, Belousova EA, Makarchuk PA, Eremina EY, Sarsenbaeva AS, Abdulganieva DI, Tarasova LV, Gromova OA, Ratnikov VA, Kozlov KV, Ratnikova AK. Management of patients with digestive diseases during the COVID-19 pandemic. Clinical Practice Guidelines by the Russian scientific medical society of internal medicine (RSMSIM) and the Gastroenterological Scientific Society of Russia (2nd edition). EXPERIMENTAL AND CLINICAL GASTROENTEROLOGY 2021:5-82. [DOI: 10.31146/1682-8658-ecg-187-3-5-82] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The presented clinical practice guidelines of the Gastroenterological Scientific Society of Russia (GSSR), diagnostic, and therapeutic approaches for patients with digestive diseases during the COVID-19 pandemic. The guidelines were approved by the XXIII Congress of the GSSR and the 22nd International Slavonic-Baltic Scientifi c Forum “St. Petersburg - Gastro-2020 ON-LINE” (St. Petersburg, June 11, 2020). The presented clinical practice guidelines of the Russian Scientific Medical Society of Internal Medicine (RSMSIM) and the Gastroenterological Scientific Society of Russia (GSSR), diagnostic, and therapeutic approaches for patients with digestive diseases during the COVID-19 pandemic. The recommendations were approved at the XV National Congress of Internal Medicine, XXIII Congress of NOGR on the basis of the 1st edition, adopted at the 22nd International Slavic- Baltic Scientific Forum “St. Petersburg - Gastro-2020 ON-LINE”.
Collapse
Affiliation(s)
| | | | - V. I. Ped
- Military Medical Academy named after S. M. Kirov
| | - E. I. Sas
- Military Medical Academy named after S. M. Kirov
| | | | | | | | - S. I. Sitkin
- State Research Institute of Highly Pure Biopreparations of FMBA of Russia; Almazov National Medical Research Centre; North-Western state medical University named after I. I. Mechnikov, Ministry of health of the Russian Federation
| | - L. B. Lazebnik
- Moscow state University of Medicine a. Densitry named after A. I. Yevdokimov of the Ministry of Health of Russia
| | - E. V. Golovanova
- Moscow state University of Medicine a. Densitry named after A. I. Yevdokimov of the Ministry of Health of Russia
| | - E. A. Belousova
- State Budgetary Institution of Moscow Region “Moscow Regional Research Clinical Institute n.a. M. F. Vladimirsky”
| | - P. A. Makarchuk
- State Budgetary Institution of Moscow Region “Moscow Regional Research Clinical Institute n.a. M. F. Vladimirsky”
| | - E. Yu. Eremina
- Federal State Budgetary Educational Institution of Higher Education “National Research Ogarev Mordovia State University”
| | - A. S. Sarsenbaeva
- FSBEI HE SUSMU MOH Russia, st. Vorovskogo, 64, Ural Federal District
| | | | - L. V. Tarasova
- FSBEI of HE “The Chuvash State University n.a. I. N. Ulyanov”; BI of HE “The Surgut State University”
| | - O. A. Gromova
- Federal Research Center “Informatics and Management” of the Russian Academy of Sciences; Federal State Educational Institution of Higher Education Lomonosov Moscow State University
| | - V. A. Ratnikov
- Federal state budgetary institution “North-West District Scientific and Clinical Center named after L. G. Sokolov Federal Medical and Biological Agency“
| | - K. V. Kozlov
- Military Medical Academy named after S. M. Kirov
| | - A. K. Ratnikova
- Military Medical Academy named after S. M. Kirov; Federal state budgetary institution “North-West District Scientific and Clinical Center named after L. G. Sokolov Federal Medical and Biological Agency“
| |
Collapse
|