51
|
Tu JJ, Zang YY, Shi YS, Teng XY. The TMEM63B Channel Facilitates Intestinal Motility and Enhances Proliferation of Intestinal Stem Cells. Cells 2024; 13:1784. [PMID: 39513891 PMCID: PMC11545518 DOI: 10.3390/cells13211784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
The intestines are in a constant state of motion and self-renewal. The mechanical breakdown of food facilitates intestinal movement and aids digestion. It is believed that mechanical stimulation, triggered by changes in osmotic pressure within the intestines, plays a crucial role in regulating gastrointestinal motility. While TRPs and PIEZO1/2 have been identified as mechanosensitive ion channels involved in this process, there still exist numerous unidentified channels with similar properties. In this study, we demonstrate that the TMEM63B expressed in intestinal stem cells contributes to the regulation of intestinal motility and digestion. The deletion of TMEM63B in intestinal stem cells not only decelerates intestinal motility and impairs digestion but also attenuates the proliferation of intestinal stem cells and exacerbates DSS-induced colitis in mice. Collectively, our findings unveil the pivotal role of TMEM63B in governing optimal digestive function and modulating intestinal motility.
Collapse
Affiliation(s)
- Jing-Jing Tu
- Model Animal Research Center, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China; (J.-J.T.); (Y.-Y.Z.)
| | - Yan-Yu Zang
- Model Animal Research Center, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China; (J.-J.T.); (Y.-Y.Z.)
| | - Yun Stone Shi
- Model Animal Research Center, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China; (J.-J.T.); (Y.-Y.Z.)
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai 519031, China
| | - Xiao-Yu Teng
- Model Animal Research Center, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China; (J.-J.T.); (Y.-Y.Z.)
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai 519031, China
| |
Collapse
|
52
|
Ye Z, Xu Y, Zhang M, Cai C. Sympathetic nerve signals: orchestrators of mammary development and stem cell vitality. J Mol Cell Biol 2024; 16:mjae020. [PMID: 38740522 PMCID: PMC11520406 DOI: 10.1093/jmcb/mjae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/25/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024] Open
Abstract
The mammary gland is a dynamic organ that undergoes significant changes at multiple stages of postnatal development. Although the roles of systemic hormones and microenvironmental cues in mammary homeostasis have been extensively studied, the influence of neural signals, particularly those from the sympathetic nervous system, remains poorly understood. Here, using a mouse mammary gland model, we delved into the regulatory role of sympathetic nervous signaling in the context of mammary stem cells and mammary development. Our findings revealed that depletion of sympathetic nerve signals results in defective mammary development during puberty, adulthood, and pregnancy, accompanied by a reduction in mammary stem cell numbers. Through in vitro three-dimensional culture and in vivo transplantation analyses, we demonstrated that the absence of sympathetic nerve signals hinders mammary stem cell self-renewal and regeneration, while activation of sympathetic nervous signaling promotes these capacities. Mechanistically, sympathetic nerve signals orchestrate mammary stem cell activity and mammary development through the extracellular signal-regulated kinase signaling pathway. Collectively, our study unveils the crucial roles of sympathetic nerve signals in sustaining mammary development and regulating mammary stem cell activity, offering a novel perspective on the involvement of the nervous system in modulating adult stem cell function and organ development.
Collapse
Affiliation(s)
- Zi Ye
- Department of Pulmonary Oncology, Hubei Province Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Yu Xu
- Department of Pulmonary Oncology, Hubei Province Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Mengna Zhang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Cheguo Cai
- Department of Pulmonary Oncology, Hubei Province Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430071, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
53
|
Gurriaran-Rodriguez U, De Repentigny Y, Kothary R, Rudnicki MA. Isolation of small extracellular vesicles from regenerating muscle tissue using tangential flow filtration and size exclusion chromatography. Skelet Muscle 2024; 14:22. [PMID: 39394606 PMCID: PMC11468478 DOI: 10.1186/s13395-024-00355-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 09/30/2024] [Indexed: 10/13/2024] Open
Abstract
We have recently made the strikingly discovery that upon a muscle injury, Wnt7a is upregulated and secreted from new regenerating myofibers on the surface of exosomes to elicit its myogenerative response distally. Despite recent advances in extracellular vesicle (EVs) isolation from diverse tissues, there is still a lack of specific methodology to purify EVs from muscle tissue. To eliminate contamination with non-EV secreted proteins and cytoplasmic fragments, which are typically found when using classical methodology, such as ultracentrifugation, we adapted a protocol combining Tangential Flow Filtration (TFF) and Size Exclusion Chromatography (SEC). We found that this approach allows simultaneous purification of Wnt7a, bound to EVs (retentate fraction) and free non-EV Wnt7a (permeate fraction). Here we described this optimized protocol designed to specifically isolate EVs from hind limb muscle explants, without cross-contamination with other sources of non-EV bounded proteins. The first step of the protocol is to remove large EVs with sequential centrifugation. Extracellular vesicles are then concentrated and washed in exchange buffer by TFF. Lastly, SEC is performed to remove any soluble protein traces remaining after TFF. Overall, this procedure can be used to isolate EVs from conditioned media or biofluid that contains EVs derived from any cell type or tissue, improving reproducibility, efficiency, and purity of EVs preparations. Our purification protocol results in high purity EVs that maintain structural integrity and thus fully compatible with in vitro and in vivo bioactivity and analytic assays.
Collapse
Affiliation(s)
- Uxia Gurriaran-Rodriguez
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada.
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
- CIC bioGUNE, Bizkaia Technology Park, Derio, 48160, Spain.
| | - Yves De Repentigny
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada
| | - Rashmi Kothary
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Michael A Rudnicki
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada.
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada.
| |
Collapse
|
54
|
Wei S, Wu Q, Cao C, Yang Z, Shi J, Huang J, He H, Lai Y, Li J. A mechanism of action-reflective, dual cell-based bioassay for determining the bioactivity of sclerostin-neutralizing antibodies. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100187. [PMID: 39389544 DOI: 10.1016/j.slasd.2024.100187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Osteoporosis is a major threat to the elderly worldwide. The Wnt signaling pathway plays a critical role in bone development and homeostasis. Sclerostin, a Wnt ligand inhibitor, competes with Wnt ligands for low-density lipoprotein receptor-related protein 5 or 6 (LRP5/6) on osteoblasts, thereby suppressing bone formation. Sclerostin-neutralizing monoclonal antibodies (mAbs) have emerged as a potential bone-forming therapy for osteoporosis. A cell-based bioassay which determines the relative activity of a product, related to its mechanism of action, is of great importance from drug discovery to quality control and batch release. Currently used cell-based bioassays for sclerostin-neutralizing mAbs usually use Wnt1 or Wnt3a to stimulate the Wnt pathway; sclerostin is a direct inhibitor of Wnt1 but not Wnt3a. Wnt1 is a highly hydrophobic protein that binds to the producing cell membrane and acts in a juxtacrine manner to stimulate the Wnt pathway in neighboring cells. Bioassays for drugs that induce Wnt1 signaling should be performed in a juxtacrine manner. Here, we present a mechanism of action-reflective, dual cell-based reporter gene assay. In this assay, Wnt1 producer cells are co-cultured with cells containing the Wnt reporter genes, Wnt1 on the producer cells activates the Wnt signaling pathway in the reporter cells that are in direct cell-to-cell contact, and sclerostin-neutralizing mAbs specifically and effectively antagonize the sclerostin-mediated Wnt reporter gene suppression. This bioassay demonstrates good specificity, accuracy, linearity, and precision and is suitable for quality control, stability testing, batch release, and biosimilarity assessment of sclerostin-neutralizing mAbs.
Collapse
Affiliation(s)
- Suzhen Wei
- Zhuhai United Biopharma Co., Ltd, 399 Airport West Road, Zhuhai, Guangdong, China
| | - Qiang Wu
- Zhuhai United Laboratories Co., Ltd, 2428 Anji Road, Zhuhai, Guangdong, China
| | - Chunlai Cao
- Zhuhai United Biopharma Co., Ltd, 399 Airport West Road, Zhuhai, Guangdong, China
| | - Zhuoni Yang
- Zhuhai United Biopharma Co., Ltd, 399 Airport West Road, Zhuhai, Guangdong, China
| | - Jianrui Shi
- Zhuhai United Biopharma Co., Ltd, 399 Airport West Road, Zhuhai, Guangdong, China
| | - Jingqun Huang
- Zhuhai United Biopharma Co., Ltd, 399 Airport West Road, Zhuhai, Guangdong, China
| | - Hua He
- Zhuhai United Biopharma Co., Ltd, 399 Airport West Road, Zhuhai, Guangdong, China
| | - Yongjie Lai
- Department of Microbiology and Immunology, Zunyi Medical University (Zhuhai Campus), 368 Golden Coast Avenue, Zhuhai, Guangdong, China.
| | - Jing Li
- Zhuhai United Biopharma Co., Ltd, 399 Airport West Road, Zhuhai, Guangdong, China; Zhuhai United Laboratories Co., Ltd, 2428 Anji Road, Zhuhai, Guangdong, China.
| |
Collapse
|
55
|
Shen S, Lin Y, Sun J, Liu Y, Chen Y, Lu J. A New Tissue Engineering Strategy to Promote Tendon-bone Healing: Regulation of Osteogenic and Chondrogenic Differentiation of Tendon-derived Stem Cells. Orthop Surg 2024; 16:2311-2325. [PMID: 39043618 PMCID: PMC11456719 DOI: 10.1111/os.14152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 07/25/2024] Open
Abstract
In the field of sports medicine, repair surgery for anterior cruciate ligament (ACL) and rotator cuff (RC) injuries are remarkably common. Despite the availability of relatively effective treatment modalities, outcomes often fall short of expectations. This comprehensive review aims to thoroughly examine current strategies employed to promote tendon-bone healing and analyze pertinent preclinical and clinical research. Amidst ongoing investigations, tendon-derived stem cells (TDSCs), which have comparatively limited prior exploration, have garnered increasing attention in the context of tendon-bone healing, emerging as a promising cell type for regenerative therapies. This review article delves into the potential of combining TDSCs with tissue engineering methods, with ACL reconstruction as the main focus. It comprehensively reviews relevant research on ACL and RC healing to address the issues of graft healing and bone tunnel integration. To optimize tendon-bone healing outcomes, our emphasis lies in not only reconstructing the original microstructure of the tendon-bone interface but also achieving proper bone tunnel integration, encompassing both cartilage and bone formation. In this endeavor, we thoroughly analyze the transcriptional and molecular regulatory variables governing TDSCs differentiation, incorporating a retrospective analysis utilizing single-cell sequencing, with the aim of unearthing relevant signaling pathways and processes. By presenting a novel strategy rooted in TDSCs-driven osteogenic and chondrogenic differentiation for tendon-bone healing, this study paves the way for potential future research avenues and promising therapeutic applications. It is anticipated that the findings herein will contribute to advancing the field of tendon-bone healing and foster the exploration of TDSCs as a viable option for regenerative therapies in the future.
Collapse
Affiliation(s)
- Sinuo Shen
- School of MedicineSoutheast UniversityNanjingChina
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingChina
| | - Yucheng Lin
- School of MedicineSoutheast UniversityNanjingChina
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingChina
| | - Jiachen Sun
- School of MedicineSoutheast UniversityNanjingChina
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingChina
| | - Yuanhao Liu
- School of MedicineSoutheast UniversityNanjingChina
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingChina
| | - Yuzhi Chen
- School of MedicineSoutheast UniversityNanjingChina
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingChina
| | - Jun Lu
- School of MedicineSoutheast UniversityNanjingChina
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingChina
| |
Collapse
|
56
|
Jiang L, Tian J, Yang J, Luo R, Zhang Y, Shao C, Guo B, Wu X, Dan J, Luo Y. p21 Regulates Wnt-Notch balance via DREAM/MMB/Rb-E2F1 and maintains intestinal stem cell homeostasis. Cell Death Discov 2024; 10:413. [PMID: 39341834 PMCID: PMC11438959 DOI: 10.1038/s41420-024-02192-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024] Open
Abstract
The crosstalk and balance regulation of Wnt-Notch have been known to be essential for cell fate decision and tissue regeneration, however, how this balance is maintained and how the Wnt-Notch pathways are connected with cell cycle regulation is still not clear. By analyzing the molecular alterations in mouse model with accelerated aging phenotypes due to loss of p21 function in a Werner syndrome background, we observed that Wnt3 and β-Catenin were down-regulated, while Notch1 and Hes1 were up-regulated. This disruption in Wnt-Notch signaling was accompanied by the loss of intestinal stem cell compartment, increase in Bmi1 positive cells, loss of Olfm4/Lgr5 positive cells, and reduced secretory Paneth cells and goblet cells in the intestinal crypts of p21TKO mice. BrdU incorporation, cleaved caspase 3, and Tunel assay results revealed the fast turnover of intestinal epithelia, which may result in abnormal stem cell mobilization and exhaustion of the stem cell reservoir in the intestinal crypts. We further identified shift of DREAM complex towards MMB complex due to the loss of p21 as the cause for faster turnover of intestinal epithelia. Importantly, we identified the E2F1 as the transcriptional regulator for Notch1, which linked the p21-DREAM/MMB/Rb-E2F1 pathway with Wnt-Notch pathway. The overexpression of p21 rescued the DREAM pathway, as well as the imbalance of Wnt-Notch pathway. In summary, our data identify p21 as an important factor in maintaining sequential mobilization, proliferation, and homeostasis of intestinal stem cells.
Collapse
Affiliation(s)
- Liangxia Jiang
- Department of Pathophysiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jie Tian
- Department of Pathophysiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jun Yang
- Department of Pathophysiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Ronggang Luo
- Department of Pathophysiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yongjin Zhang
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Chihao Shao
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Bing Guo
- Department of Pathophysiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xiaoming Wu
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Juhua Dan
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Ying Luo
- Department of Pathophysiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China.
| |
Collapse
|
57
|
Grätz L, Voss JH, Schulte G. Class-Wide Analysis of Frizzled-Dishevelled Interactions Using BRET Biosensors Reveals Functional Differences among Receptor Paralogs. ACS Sens 2024; 9:4626-4636. [PMID: 39213612 PMCID: PMC11443525 DOI: 10.1021/acssensors.4c00806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Wingless/Int-1 (WNT) signaling is mediated by WNT binding to 10 Frizzleds (FZD1-10), which propagate the signal inside the cell by interacting with different transducers, most prominently the phosphoprotein Dishevelled (DVL). Despite recent progress, questions about WNT/FZD selectivity and paralog-dependent differences in the FZD/DVL interaction remain unanswered. Here, we present a class-wide analysis of the FZD/DVL interaction using the DEP domain of DVL as a proxy in bioluminescence resonance energy transfer (BRET) techniques. Most FZDs engage in a constitutive high-affinity interaction with DEP. Stimulation of unimolecular FZD/DEP BRET sensors with different ligands revealed that most paralogs are dynamic in the FZD/DEP interface, showing distinct profiles in terms of ligand selectivity and signal kinetics. This study underlines mechanistic differences in terms of how allosteric communication between FZDs and their main signal transducer DVL occurs. Moreover, the unimolecular sensors represent the first receptor-focused biosensors to surpass the requirements for high-throughput screening, facilitating FZD-targeted drug discovery.
Collapse
Affiliation(s)
- Lukas Grätz
- Department of Physiology & Pharmacology, Section of Receptor Biology & Signaling, Biomedicum, Karolinska Institutet, S-17165 Stockholm, Sweden
| | - Jan H Voss
- Department of Physiology & Pharmacology, Section of Receptor Biology & Signaling, Biomedicum, Karolinska Institutet, S-17165 Stockholm, Sweden
| | - Gunnar Schulte
- Department of Physiology & Pharmacology, Section of Receptor Biology & Signaling, Biomedicum, Karolinska Institutet, S-17165 Stockholm, Sweden
| |
Collapse
|
58
|
Hua X, Zhao C, Tian J, Wang J, Miao X, Zheng G, Wu M, Ye M, Liu Y, Zhou Y. A Ctnnb1 enhancer transcriptionally regulates Wnt signaling dosage to balance homeostasis and tumorigenesis of intestinal epithelia. eLife 2024; 13:RP98238. [PMID: 39320349 PMCID: PMC11424096 DOI: 10.7554/elife.98238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024] Open
Abstract
The β-catenin-dependent canonical Wnt signaling is pivotal in organ development, tissue homeostasis, and cancer. Here, we identified an upstream enhancer of Ctnnb1 - the coding gene for β-catenin, named ieCtnnb1 (intestinal enhancer of Ctnnb1), which is crucial for intestinal homeostasis. ieCtnnb1 is predominantly active in the base of small intestinal crypts and throughout the epithelia of large intestine. Knockout of ieCtnnb1 led to a reduction in Ctnnb1 transcription, compromising the canonical Wnt signaling in intestinal crypts. Single-cell sequencing revealed that ieCtnnb1 knockout altered epithelial compositions and potentially compromised functions of small intestinal crypts. While deletion of ieCtnnb1 hampered epithelial turnovers in physiologic conditions, it prevented occurrence and progression of Wnt/β-catenin-driven colorectal cancers. Human ieCTNNB1 drove reporter gene expression in a pattern highly similar to mouse ieCtnnb1. ieCTNNB1 contains a single-nucleotide polymorphism associated with CTNNB1 expression levels in human gastrointestinal epithelia. The enhancer activity of ieCTNNB1 in colorectal cancer tissues was stronger than that in adjacent normal tissues. HNF4α and phosphorylated CREB1 were identified as key trans-factors binding to ieCTNNB1 and regulating CTNNB1 transcription. Together, these findings unveil an enhancer-dependent mechanism controlling the dosage of Wnt signaling and homeostasis in intestinal epithelia.
Collapse
Affiliation(s)
- Xiaojiao Hua
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Chen Zhao
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Jianbo Tian
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Junbao Wang
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Xiaoping Miao
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Gen Zheng
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wu
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Mei Ye
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ying Liu
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Yan Zhou
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan, China
| |
Collapse
|
59
|
Sat-Muñoz D, Balderas-Peña LMA, Gómez-Sánchez E, Martínez-Herrera BE, Trujillo-Hernández B, Quiroga-Morales LA, Salazar-Páramo M, Dávalos-Rodríguez IP, Nuño-Guzmán CM, Velázquez-Flores MC, Ochoa-Plascencia MR, Muciño-Hernández MI, Isiordia-Espinoza MA, Mireles-Ramírez MA, Hernández-Salazar E. Onco-Ontogeny of Squamous Cell Cancer of the First Pharyngeal Arch Derivatives. Int J Mol Sci 2024; 25:9979. [PMID: 39337467 PMCID: PMC11432412 DOI: 10.3390/ijms25189979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/06/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Head and neck squamous cell carcinoma (H&NSCC) is an anatomic, biological, and genetic complex disease. It involves more than 1000 genes implied in its oncogenesis; for this review, we limit our search and description to the genes implied in the onco-ontogeny of the derivates from the first pharyngeal arch during embryo development. They can be grouped as transcription factors and signaling molecules (that act as growth factors that bind to receptors). Finally, we propose the term embryo-oncogenesis to refer to the activation, reactivation, and use of the genes involved in the embryo's development during the oncogenesis or malignant tumor invasion and metastasis events as part of an onco-ontogenic inverse process.
Collapse
Affiliation(s)
- Daniel Sat-Muñoz
- Departamento de Morfología, Centro Universitario de Ciencis de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- Cuerpo Académico UDG-CA-874, Ciencias Morfológicas en el Diagnóstico y Tratamiento de la Enfermedad, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- Unidad Médica de Alta Especialidad (UMAE), Departamento Clínico de Cirugía Oncológica, Hospital de Especialidades (HE), Centro Médico Nacional de Occidente (CMNO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Mexico
- Comité de Tumores de Cabeza y Cuello, Unidad Médica de Alta Especialidad (UMAE), Hospital de Especialidades (HE), Centro Médico Nacional de Occidente (CMNO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Mexico
| | - Luz-Ma-Adriana Balderas-Peña
- Departamento de Morfología, Centro Universitario de Ciencis de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- Cuerpo Académico UDG-CA-874, Ciencias Morfológicas en el Diagnóstico y Tratamiento de la Enfermedad, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- Comité de Tumores de Cabeza y Cuello, Unidad Médica de Alta Especialidad (UMAE), Hospital de Especialidades (HE), Centro Médico Nacional de Occidente (CMNO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Mexico
- Unidad de Investigación Biomédica 02, Unidad Médica de Alta Especialidad (UMAE), Hospital de Especialidades (HE), Centro Médico Nacional de Occidente (CMNO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Mexico
| | - Eduardo Gómez-Sánchez
- Cuerpo Académico UDG-CA-874, Ciencias Morfológicas en el Diagnóstico y Tratamiento de la Enfermedad, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- División de Disciplinas Clínicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Brenda-Eugenia Martínez-Herrera
- Departamento de Nutrición y Dietética, Hospital General de Zona #1, Instituto Mexicano del Seguro Social, OOAD Aguascalientes, Boulevard José María Chavez #1202, Fracc, Lindavista, Aguascalientes 20270, Mexico
| | | | - Luis-Aarón Quiroga-Morales
- Unidad Académica de Ciencias de la Salud, Clínica de Rehabilitación y Alto Rendimiento ESPORTIVA, Universidad Autónoma de Guadalajara, Zapopan 45129, Mexico
| | - Mario Salazar-Páramo
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Academia de Inmunología, Guadalajara 44340, Mexico
| | - Ingrid-Patricia Dávalos-Rodríguez
- Departamento de Biología Molecular y Genómica, División de Genética, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social. Guadalajara 44340, Mexico
| | - Carlos M Nuño-Guzmán
- División de Disciplinas Clínicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- Departamento Clínico de Cirugía General, Unidad Médica de Alta Especialidad (UMAE), Hospital de Especialidades, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico
| | - Martha-Cecilia Velázquez-Flores
- Departamento de Morfología, Centro Universitario de Ciencis de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- Unidad Médica de Alta Especialidad (UMAE), Departamento Clínico de Anestesiología, División de Cirugía, Hospital de Especialidades, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico
| | - Miguel-Ricardo Ochoa-Plascencia
- Cuerpo Académico UDG-CA-874, Ciencias Morfológicas en el Diagnóstico y Tratamiento de la Enfermedad, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- División de Disciplinas Clínicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - María-Ivette Muciño-Hernández
- Cuerpo Académico UDG-CA-874, Ciencias Morfológicas en el Diagnóstico y Tratamiento de la Enfermedad, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- División de Disciplinas Clínicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Mario-Alberto Isiordia-Espinoza
- Departamento de Clínicas, División de Ciencias Biomédicas, Centro Universitario de los Altos, Instituto de Investigación en Ciencias Médicas, Cuerpo Académico Terapéutica y Biología Molecular (UDG-CA-973), Universidad de Guadalajara, Tepatitlán de Morelos 47620, Mexico
| | - Mario-Alberto Mireles-Ramírez
- División de Investigación en Salud, UMAE, Hospital de Especialidades, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico
| | - Eduardo Hernández-Salazar
- Departamento de Admisión Médica Continua, UMAE Hospital de Especialidades, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico
| |
Collapse
|
60
|
Bugacov H, Der B, Briantseva BM, Guo Q, Kim S, Lindström NO, McMahon AP. Dose-dependent responses to canonical Wnt transcriptional complexes in the regulation of mammalian nephron progenitors. Development 2024; 151:dev202279. [PMID: 39250420 PMCID: PMC11463962 DOI: 10.1242/dev.202279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 09/02/2024] [Indexed: 09/11/2024]
Abstract
In vivo and in vitro studies argue that concentration-dependent Wnt signaling regulates mammalian nephron progenitor cell (NPC) programs. Canonical Wnt signaling is regulated through the stabilization of β-catenin, a transcriptional co-activator when complexed with Lef/Tcf DNA-binding partners. Using the GSK3β inhibitor CHIR99021 (CHIR) to block GSK3β-dependent destruction of β-catenin, we examined dose-dependent responses to β-catenin in mouse NPCs, using mRNA transduction to modify gene expression. Low CHIR-dependent proliferation of NPCs was blocked on β-catenin removal, with evidence of NPCs arresting at the G2-M transition. While NPC identity was maintained following β-catenin removal, mRNA-seq identified low CHIR and β-catenin dependent genes. High CHIR activated nephrogenesis. Nephrogenic programming was dependent on Lef/Tcf factors and β-catenin transcriptional activity. Molecular and cellular features of early nephrogenesis were driven in the absence of CHIR by a mutated stabilized form of β-catenin. Chromatin association studies indicate low and high CHIR response genes are likely direct targets of canonical Wnt transcriptional complexes. Together, these studies provide evidence for concentration-dependent Wnt signaling in the regulation of NPCs and provide new insight into Wnt targets initiating mammalian nephrogenesis.
Collapse
Affiliation(s)
- Helena Bugacov
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Balint Der
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
- Department of Urology, Faculty of Medicine, Semmelweis University, Budapest 1082, Hungary
- Institute of Translational Medicine, Faculty of Medicine, Semmelweis University, Budapest 1094, Hungary
| | - Bohdana-Myroslava Briantseva
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| | - Qiuyu Guo
- Discovery Biomarkers, Amgen Research, 1 Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Sunghyun Kim
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| | - Nils O. Lindström
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| | - Andrew P. McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
61
|
Xing W, Feng H, Jiang B, Gao B, Liu J, Xie Z, Zhang Y, Hu X, Sun J, Greenblatt MB, Zhou BO, Zou W. Itm2a expression marks periosteal skeletal stem cells that contribute to bone fracture healing. J Clin Invest 2024; 134:e176528. [PMID: 39225088 PMCID: PMC11364384 DOI: 10.1172/jci176528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 07/02/2024] [Indexed: 09/04/2024] Open
Abstract
The periosteum contains skeletal stem/progenitor cells that contribute to bone fracture healing. However, the in vivo identity of periosteal skeletal stem cells (P-SSCs) remains unclear, and membrane protein markers of P-SSCs that facilitate tissue engineering are needed. Here, we identified integral membrane protein 2A (Itm2a) enriched in SSCs using single-cell transcriptomics. Itm2a+ P-SSCs displayed clonal multipotency and self-renewal and sat at the apex of their differentiation hierarchy. Lineage-tracing experiments showed that Itm2a selectively labeled the periosteum and that Itm2a+ cells were preferentially located in the outer fibrous layer of the periosteum. The Itm2a+ cells rarely expressed CD34 or Osx, but expressed periosteal markers such as Ctsk, CD51, PDGFRA, Sca1, and Gli1. Itm2a+ P-SSCs contributed to osteoblasts, chondrocytes, and marrow stromal cells upon injury. Genetic lineage tracing using dual recombinases showed that Itm2a and Prrx1 lineage cells generated spatially separated subsets of chondrocytes and osteoblasts during fracture healing. Bone morphogenetic protein 2 (Bmp2) deficiency or ablation of Itm2a+ P-SSCs resulted in defects in fracture healing. ITM2A+ P-SSCs were also present in the human periosteum. Thus, our study identified a membrane protein marker that labels P-SSCs, providing an attractive target for drug and cellular therapy for skeletal disorders.
Collapse
Affiliation(s)
- Wenhui Xing
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Hainan Academy of Medical Sciences, Hainan Medical University, Hainan, China
| | - Heng Feng
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Bo Jiang
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Bo Gao
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Institute of Orthopaedic Surgery, Xijing Hospital, Air Force Military Medical University, Xi’an, Shaanxi, China
| | - Jiping Liu
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zaiqi Xie
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yazhuo Zhang
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xuye Hu
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jun Sun
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Matthew B. Greenblatt
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, USA
- Research Division, Hospital for Special Surgery, New York, New York, USA
| | - Bo O. Zhou
- Key Laboratory of Multi-Cell Systems, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Tianjin, China
| | - Weiguo Zou
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Hainan Academy of Medical Sciences, Hainan Medical University, Hainan, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
62
|
de Jaime-Soguero A, Hattemer J, Bufe A, Haas A, van den Berg J, van Batenburg V, Das B, di Marco B, Androulaki S, Böhly N, Landry JJM, Schoell B, Rosa VS, Villacorta L, Baskan Y, Trapp M, Benes V, Chabes A, Shahbazi M, Jauch A, Engel U, Patrizi A, Sotillo R, van Oudenaarden A, Bageritz J, Alfonso J, Bastians H, Acebrón SP. Developmental signals control chromosome segregation fidelity during pluripotency and neurogenesis by modulating replicative stress. Nat Commun 2024; 15:7404. [PMID: 39191776 DOI: 10.1038/s41467-024-51821-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 08/09/2024] [Indexed: 08/29/2024] Open
Abstract
Human development relies on the correct replication, maintenance and segregation of our genetic blueprints. How these processes are monitored across embryonic lineages, and why genomic mosaicism varies during development remain unknown. Using pluripotent stem cells, we identify that several patterning signals-including WNT, BMP, and FGF-converge into the modulation of DNA replication stress and damage during S-phase, which in turn controls chromosome segregation fidelity in mitosis. We show that the WNT and BMP signals protect from excessive origin firing, DNA damage and chromosome missegregation derived from stalled forks in pluripotency. Cell signalling control of chromosome segregation declines during lineage specification into the three germ layers, but re-emerges in neural progenitors. In particular, we find that the neurogenic factor FGF2 induces DNA replication stress-mediated chromosome missegregation during the onset of neurogenesis, which could provide a rationale for the elevated chromosomal mosaicism of the developing brain. Our results highlight roles for morphogens and cellular identity in genome maintenance that contribute to somatic mosaicism during mammalian development.
Collapse
Affiliation(s)
| | - Janina Hattemer
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Anja Bufe
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Alexander Haas
- Department of Molecular Oncology, Section for Cellular Oncology, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Jeroen van den Berg
- Oncode Institute, Utrecht, The Netherlands
- Hubrecht Institute, Utrecht, The Netherlands
- KNAW (Royal Netherlands Academy of Arts and Sciences), Utrecht, The Netherlands
- University Medical Center Utrecht, Utrecht, The Netherlands
| | - Vincent van Batenburg
- Oncode Institute, Utrecht, The Netherlands
- Hubrecht Institute, Utrecht, The Netherlands
- KNAW (Royal Netherlands Academy of Arts and Sciences), Utrecht, The Netherlands
- University Medical Center Utrecht, Utrecht, The Netherlands
| | - Biswajit Das
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Barbara di Marco
- Department of Clinical Neurobiology, University Hospital Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefania Androulaki
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Nicolas Böhly
- Department of Molecular Oncology, Section for Cellular Oncology, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Jonathan J M Landry
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Brigitte Schoell
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | | | - Laura Villacorta
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Yagmur Baskan
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Marleen Trapp
- Schaller Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | | | - Anna Jauch
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Ulrike Engel
- Nikon Imaging Center at the University of Heidelberg, Bioquant, Heidelberg, Germany
| | - Annarita Patrizi
- Schaller Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rocio Sotillo
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alexander van Oudenaarden
- Oncode Institute, Utrecht, The Netherlands
- Hubrecht Institute, Utrecht, The Netherlands
- KNAW (Royal Netherlands Academy of Arts and Sciences), Utrecht, The Netherlands
- University Medical Center Utrecht, Utrecht, The Netherlands
| | - Josephine Bageritz
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Julieta Alfonso
- Department of Clinical Neurobiology, University Hospital Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Holger Bastians
- Department of Molecular Oncology, Section for Cellular Oncology, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Sergio P Acebrón
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
63
|
Hack SJ, Petereit J, Tseng KAS. Temporal Transcriptomic Profiling of the Developing Xenopus laevis Eye. Cells 2024; 13:1390. [PMID: 39195278 PMCID: PMC11352439 DOI: 10.3390/cells13161390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
Retinal progenitor cells (RPCs) are a multipotent and highly proliferative population that give rise to all retinal cell types during organogenesis. Defining their molecular signature is a key step towards identifying suitable approaches to treat visual impairments. Here, we performed RNA sequencing of whole eyes from Xenopus at three embryonic stages and used differential expression analysis to define the transcriptomic profiles of optic tissues containing proliferating and differentiating RPCs during retinogenesis. Gene Ontology and KEGG pathway analyses showed that genes associated with developmental pathways (including Wnt and Hedgehog signaling) were upregulated during the period of active RPC proliferation in early retinal development (Nieuwkoop Faber st. 24 and 27). Developing eyes had dynamic expression profiles and shifted to enrichment for metabolic processes and phototransduction during RPC progeny specification and differentiation (st. 35). Furthermore, conserved adult eye regeneration genes were also expressed during early retinal development, including sox2, pax6, nrl, and Notch signaling components. The eye transcriptomic profiles presented here span RPC proliferation to retinogenesis and include regrowth-competent stages. Thus, our dataset provides a rich resource to uncover molecular regulators of RPC activity and will allow future studies to address regulators of RPC proliferation during eye repair and regrowth.
Collapse
Affiliation(s)
- Samantha J. Hack
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008, USA
| | - Juli Petereit
- Nevada Bioinformatics Center, University of Nevada, Reno, NV 89557, USA
| | | |
Collapse
|
64
|
Rahnama Sisakht A, Tavasouli Z, Negahi A, Hosseini SA, Satarzadeh M. Dental pulp stem cells regenerate neural tissue in degenerative disorders and stroke rehabilitation: A scope systematic review. Heliyon 2024; 10:e35080. [PMID: 39166055 PMCID: PMC11334686 DOI: 10.1016/j.heliyon.2024.e35080] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024] Open
Abstract
Background Dental Pulp Stem Cells (DPSCs) possess a remarkable ability for tissue differentiation, making them highly efficient in tissue regeneration and inflammation regulation. This systematic study proposes to find an answer to the question, "Do DPSCs have the ability to regenerate and rehabilitate nerve tissue?" Methods This systematic review was conducted based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria, and the principle of non-bias was respected. All the articles from 2014 to 2024 were extracted from the Web of Science, PubMed, and Scopus databases. This study extracted the antigens and pro-inflammatory factors associated with DPSCs' involvement and how they affect the CNS's neural tissue regeneration. Results Two persons of researchers searched the database. After screening the full texts, they included 11 articles in their study. DPSCs control the following antigens: CD73, CD34, CD90, CD105, CD14, CD45, CD19Oct-4, CD73, CD31, CD34CD29CD44. Even though hematopoietic markers did not change much, OCT-4 and CD-73 were increased by DPSCs. DPSC-derived exosomes suppressed the expression of IL-6, IL-1β, TNF-α, and TGF, key mediators of nerve tissue inflammation. Additionally, DPSCs show high Vascular Endothelial Growth Factor (VEGF) expression in mice brain tissue cultures. DPSCs reduce Subarachnoid Hemorrhage (SAH), a condition in which blood collects in the subarachnoid space and causes ischemia. Discussion DPSCs showed the ability to regenerate nerve tissue and brain ganglia, stimulating angiogenesis by expressing cell markers and controlling growth factors in mice, and high therapeutic potential in neurodegenerative disorders. The present study invites further research in neurological disorders, specifically strokes, to prescribe these stem cells to the human population.
Collapse
Affiliation(s)
| | - Zahra Tavasouli
- Ghaemieh Health Care Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmad Negahi
- School of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | | |
Collapse
|
65
|
Aria H, Azizi M, Nazem S, Mansoori B, Darbeheshti F, Niazmand A, Daraei A, Mansoori Y. Competing endogenous RNAs regulatory crosstalk networks: The messages from the RNA world to signaling pathways directing cancer stem cell development. Heliyon 2024; 10:e35208. [PMID: 39170516 PMCID: PMC11337742 DOI: 10.1016/j.heliyon.2024.e35208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 07/08/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
Cancer stem cells (CSCs) are one of the cell types that account for cancer heterogeneity. The cancer cells arrest in G0 and generate non-CSC progeny through self-renewal and pluripotency, resulting in tumor recurrence, metastasis, and resistance to chemotherapy. They can stimulate tumor relapse and re-grow a metastatic tumor. So, CSCs is a promising target for eradicating tumors, and developing an anti-CSCs therapy has been considered. In recent years competing endogenous RNA (ceRNA) has emerged as a significant class of post-transcriptional regulators that affect gene expression via competition for microRNA (miRNA) binding. Furthermore, aberrant ceRNA expression is associated with tumor progression. Recent findings show that ceRNA network can cause tumor progression through the effect on CSCs. To overcome therapeutic resistance due to CSCs, we need to improve our current understanding of the mechanisms by which ceRNAs are implicated in CSC-related relapse. Thus, this review was designed to discuss the role of ceRNAs in CSCs' function. Targeting ceRNAs may open the path for new cancer therapeutic targets and can be used in clinical research.
Collapse
Affiliation(s)
- Hamid Aria
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahdieh Azizi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shima Nazem
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behnam Mansoori
- Pediatrics Department, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Farzaneh Darbeheshti
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anoosha Niazmand
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abdolreza Daraei
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Yaser Mansoori
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
- Department of Medical Genetics, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
66
|
Aceto GM, Pagotto S, Del Pizzo FD, Saoca C, Selvaggi F, Visone R, Cotellese R, Aguennouz M, Lattanzio R, Catalano T. Differential Regulation of Wingless-Wnt/c-Jun N-Terminal Kinase Crosstalk via Oxidative Eustress in Primary and Metastatic Colorectal Cancer Cells. Biomedicines 2024; 12:1816. [PMID: 39200280 PMCID: PMC11351841 DOI: 10.3390/biomedicines12081816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/04/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
In the tumor microenvironment (TME), ROS production affects survival, progression, and therapy resistance in colorectal cancer (CRC). H2O2-mediated oxidative stress can modulate Wnt/β-catenin signaling and metabolic reprogramming of the TME. Currently, it is unclear how mild/moderate oxidative stress (eustress) modulates Wnt/β-catenin/APC and JNK signaling relationships in primary and metastatic CRC cells. In this study, we determined the effects of the H2O2 concentration inducing eustress on isogenic SW480 and SW620 cells, also in combination with JNK inhibition. We assessed cell viability, mitochondrial respiration, glycolysis, and Wnt/β-catenin/APC/JNK gene and protein expression. Primary CRC cells were more sensitive to H2O2 eustress combined with JNK inhibition, showing a reduction in viability compared to metastatic cells. JNK inhibition under eustress reduced both glycolytic and respiratory capacity in SW620 cells, indicating a greater capacity to adapt to TME. In primary CRC cells, H2O2 alone significantly increased APC, LEF1, LRP6, cMYC and IL8 gene expression, whereas in metastatic CRC cells, this effect occurred after JNK inhibition. In metastatic but not in primary tumor cells, eustress and inhibition of JNK reduced APC, β-catenin, and pJNK protein. The results showed differential cross-regulation of Wnt/JNK in primary and metastatic tumor cells under environmental eustress conditions. Further studies would be useful to validate these findings and explore their therapeutic potential.
Collapse
Affiliation(s)
- Gitana Maria Aceto
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (S.P.); (R.V.); (R.C.)
| | - Sara Pagotto
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (S.P.); (R.V.); (R.C.)
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (F.D.D.P.); (R.L.)
| | - Francesco Domenico Del Pizzo
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (F.D.D.P.); (R.L.)
- Department of Neurosciences, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Concetta Saoca
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (C.S.); (M.A.); (T.C.)
| | - Federico Selvaggi
- Unit of General Surgery, Ospedale Clinicizzato SS Annunziata of Chieti, 66100 Chieti, Italy;
| | - Rosa Visone
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (S.P.); (R.V.); (R.C.)
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (F.D.D.P.); (R.L.)
| | - Roberto Cotellese
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (S.P.); (R.V.); (R.C.)
- Villa Serena Foundation for Research, 65013 Città Sant’Angelo, Italy
| | - M’hammed Aguennouz
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (C.S.); (M.A.); (T.C.)
| | - Rossano Lattanzio
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (F.D.D.P.); (R.L.)
- Department of Innovative Technologies in Medicine & Dentistry, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Teresa Catalano
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (C.S.); (M.A.); (T.C.)
| |
Collapse
|
67
|
Liu R, Tang R, Li Y, Zhong Q, Cao Y, Yang Q. A novel function of benzoic acid to enhance intestinal barrier defense against PEDV infection in Piglets. Vet Microbiol 2024; 295:110152. [PMID: 38896938 DOI: 10.1016/j.vetmic.2024.110152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/30/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024]
Abstract
The intestinal barrier of newborn piglets is vulnerable and underdeveloped, making them susceptible to enteric virus infections. Benzoic acid (BA), employed as a growth promoter, exhibits the potential to enhance the gut health of piglets by modulating intestinal morphometry and tight junction dynamics. However, the extent to which BA regulates the intestinal mucus barrier through its impact on stem cells remains inadequately elucidated. Therefore, this study was conducted to investigate the effects of BA on the intestinal barrier and the differentiation of intestinal stem cells, employing in vivo piglet and in vitro intestinal organoid models. Our investigation revealed a significant increase in the number of goblet cells within the small intestine, as well as the strengthening of the mucus barrier in vivo following oral treatment with BA, providing partial protection against PEDV infection in piglets. Additionally, in vitro cultivation of enteroids with BA led to a notable increase in the number of MUC2+ GCs, indicating the promotion of GC differentiation by BA. Furthermore, transcriptome analysis revealed an upregulation of the number of GCs and the expression of cell vesicle transport-related genes during BA stimulation, accompanied by the downregulation of the Wnt and Notch signaling pathways. Mechanistically, MCT1 facilitated the transport of BA, subsequently activating the MAPK pathway to mediate GC differentiation. Overall, this study highlights a novel function for BA as a feed additive in enhancing the intestinal mucus barrier by promoting intestinal GC differentiation, and further prevents viral infection in piglets.
Collapse
Affiliation(s)
- Ruiling Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Rongfeng Tang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yuchen Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Qiu Zhong
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yunlei Cao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Qian Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| |
Collapse
|
68
|
Chen HF, Wu KJ. LncRNAs and asymmetric cell division: The epigenetic mechanisms. Biomed J 2024; 48:100774. [PMID: 39059582 PMCID: PMC12001117 DOI: 10.1016/j.bj.2024.100774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 07/28/2024] Open
Abstract
Asymmetric cell division (ACD) plays a pivotal role in development, tissue homeostasis, and stem cell maintenance. Emerging evidence suggests that long non-coding RNAs (lncRNAs) are key regulators of ACD, orchestrating the intricate molecular machinery that governs cell fate determination. This review summarizes current literature to elucidate the diverse roles of lncRNAs in modulating ACD across various biological contexts. The regulatory mechanisms of asymmetric cell division mediated by lncRNAs, including their interactions with protein effectors, epigenetic regulation, and subcellular localization are explored. Additionally, we discuss the implications of dysregulated lncRNAs in mediating ACD that lead to tumorigenesis. By integrating findings from diverse experimental models and cell types, this review provides insights into the multifaceted roles of lncRNAs in governing asymmetric cell division, shedding light on fundamental biological processes. Further research in this area may lead to the development of novel therapies targeting dysregulated lncRNAs to restore proper cell division and function. The knowledge of lncRNAs regulating ACD could potentially revolutionize the field of regenerative medicine and cancer therapy by targeting specific lncRNAs involved in ACD. By unraveling the complex interactions between lncRNAs and cellular processes, the potential novel opportunities for precision medicine approaches may be uncovered.
Collapse
Affiliation(s)
- Hsiao-Fan Chen
- Graduate Institutes of Biomedical Sciences, China Medical University, Taichung, Taiwan; Graduate Institutes of Cell Biology, China Medical University, Taichung, Taiwan.
| | - Kou-Juey Wu
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
| |
Collapse
|
69
|
Hack SJ, Petereit J, Tseng KAS. Temporal Transcriptomic Profiling of the Developing Xenopus laevis Eye. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.20.603187. [PMID: 39091861 PMCID: PMC11291033 DOI: 10.1101/2024.07.20.603187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Retinal progenitor cells (RPCs) are a multipotent and highly proliferative population that give rise to all retinal cell types during organogenesis. Defining their molecular signature is a key step towards identifying suitable approaches to treat visual impairments. Here, we performed RNA-sequencing of whole eyes from Xenopus at three embryonic stages and used differential expression analysis to define the transcriptomic profiles of optic tissues containing proliferating and differentiating RPCs during retinogenesis. Gene Ontology and KEGG pathway analyses showed that genes associated with developmental pathways (including Wnt and Hedgehog signaling) were upregulated during the period of active RPC proliferation in early retinal development (Nieuwkoop Faber st. 24 and 27). Developing eyes had dynamic expression profiles and shifted to enrichment for metabolic processes and phototransduction during RPC progeny specification and differentiation (st. 35). Furthermore, conserved adult eye regeneration genes were also expressed during early retinal development including sox2, pax6, nrl, and Notch signaling components. The eye transcriptomic profiles presented here span RPC proliferation to retinogenesis and included regrowth-competent stages. Thus, our dataset provides a rich resource to uncover molecular regulators of RPC activity and will allow future studies to address regulators of RPC proliferation during eye repair and regrowth.
Collapse
Affiliation(s)
- Samantha J. Hack
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008, USA
| | - Juli Petereit
- Nevada Bioinformatics Center, University of Nevada, Reno
| | | |
Collapse
|
70
|
Amir M, Jeevithan L, Barkat M, Fatima SH, Khan M, Israr S, Naseer F, Fayyaz S, Elango J, Wu W, Maté Sánchez de Val JE, Rahman SU. Advances in Regenerative Dentistry: A Systematic Review of Harnessing Wnt/β-Catenin in Dentin-Pulp Regeneration. Cells 2024; 13:1153. [PMID: 38995004 PMCID: PMC11240772 DOI: 10.3390/cells13131153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024] Open
Abstract
Dentin pulp has a complex function as a major unit in maintaining the vitality of teeth. In this sense, the Wnt/β-Catenin pathway has a vital part in tooth development, maintenance, repair, and regeneration by controlling physiological activities such as growth, differentiation, and migration. This pathway consists of a network of proteins, such as Wnt signaling molecules, which interact with receptors of targeted cells and play a role in development and adult tissue homeostasis. The Wnt signals are specific spatiotemporally, suggesting its intricate mechanism in development, regulation, repair, and regeneration by the formation of tertiary dentin. This review provides an overview of the recent advances in the Wnt/β-Catenin signaling pathway in dentin and pulp regeneration, how different proteins, molecules, and ligands influence this pathway, either upregulating or silencing it, and how it may be used in the future for clinical dentistry, in vital pulp therapy as an effective treatment for dental caries, as an alternative approach for root canal therapy, and to provide a path for therapeutic and regenerative dentistry.
Collapse
Affiliation(s)
- Mariam Amir
- Department of Oral Biology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25000, Pakistan
| | - Lakshmi Jeevithan
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China (W.W.)
| | - Maham Barkat
- Department of Oral Biology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25000, Pakistan
| | - Syeda Habib Fatima
- Department of Oral Biology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25000, Pakistan
| | - Malalai Khan
- Department of Oral Biology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25000, Pakistan
| | - Sara Israr
- Department of Oral Biology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25000, Pakistan
| | - Fatima Naseer
- Department of Oral Biology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25000, Pakistan
| | - Sarmad Fayyaz
- Department of Dental Materials Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25000, Pakistan
| | - Jeevithan Elango
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China (W.W.)
- Center of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
- Department of Biomaterials Engineering, Faculty of Health Sciences, UCAM—Universidad Católica San Antonio de Murcia, Guadalupe, 30107 Murcia, Spain;
| | - Wenhui Wu
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China (W.W.)
| | - José Eduardo Maté Sánchez de Val
- Department of Biomaterials Engineering, Faculty of Health Sciences, UCAM—Universidad Católica San Antonio de Murcia, Guadalupe, 30107 Murcia, Spain;
| | - Saeed Ur Rahman
- Department of Oral Biology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25000, Pakistan
| |
Collapse
|
71
|
Yu ZL, Gao RY, Lv C, Geng XL, Ren YJ, Zhang J, Ren JY, Wang H, Ai FB, Wang ZY, Zhang BB, Liu DH, Yue B, Wang ZT, Dou W. Notoginsenoside R1 promotes Lgr5 + stem cell and epithelium renovation in colitis mice via activating Wnt/β-Catenin signaling. Acta Pharmacol Sin 2024; 45:1451-1465. [PMID: 38491161 PMCID: PMC11192909 DOI: 10.1038/s41401-024-01250-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/25/2024] [Indexed: 03/18/2024]
Abstract
Inflammatory bowel disease (IBD) is characterized by persistent damage to the intestinal barrier and excessive inflammation, leading to increased intestinal permeability. Current treatments of IBD primarily address inflammation, neglecting epithelial repair. Our previous study has reported the therapeutic potential of notoginsenoside R1 (NGR1), a characteristic saponin from the root of Panax notoginseng, in alleviating acute colitis by reducing mucosal inflammation. In this study we investigated the reparative effects of NGR1 on mucosal barrier damage after the acute injury stage of DSS exposure. DSS-induced colitis mice were orally treated with NGR1 (25, 50, 125 mg·kg-1·d-1) for 10 days. Body weight and rectal bleeding were daily monitored throughout the experiment, then mice were euthanized, and the colon was collected for analysis. We showed that NGR1 administration dose-dependently ameliorated mucosal inflammation and enhanced epithelial repair evidenced by increased tight junction proteins, mucus production and reduced permeability in colitis mice. We then performed transcriptomic analysis on rectal tissue using RNA-sequencing, and found NGR1 administration stimulated the proliferation of intestinal crypt cells and facilitated the repair of epithelial injury; NGR1 upregulated ISC marker Lgr5, the genes for differentiation of intestinal stem cells (ISCs), as well as BrdU incorporation in crypts of colitis mice. In NCM460 human intestinal epithelial cells in vitro, treatment with NGR1 (100 μM) promoted wound healing and reduced cell apoptosis. NGR1 (100 μM) also increased Lgr5+ cells and budding rates in a 3D intestinal organoid model. We demonstrated that NGR1 promoted ISC proliferation and differentiation through activation of the Wnt signaling pathway. Co-treatment with Wnt inhibitor ICG-001 partially counteracted the effects of NGR1 on crypt Lgr5+ ISCs, organoid budding rates, and overall mice colitis improvement. These results suggest that NGR1 alleviates DSS-induced colitis in mice by promoting the regeneration of Lgr5+ stem cells and intestinal reconstruction, at least partially via activation of the Wnt/β-Catenin signaling pathway. Schematic diagram of the mechanism of NGR1 in alleviating colitis. DSS caused widespread mucosal inflammation epithelial injury. This was manifested by the decreased expression of tight junction proteins, reduced mucus production in goblet cells, and increased intestinal permeability in colitis mice. Additionally, Lgr5+ ISCs were in obviously deficiency in colitis mice, with aberrant down-regulation of the Wnt/β-Catenin signaling. However, NGR1 amplified the expression of the ISC marker Lgr5, elevated the expression of genes associated with ISC differentiation, enhanced the incorporation of BrdU in the crypt and promoted epithelial restoration to alleviate DSS-induced colitis in mice, at least partially, by activating the Wnt/β-Catenin signaling pathway.
Collapse
Affiliation(s)
- Zhi-Lun Yu
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Rui-Yang Gao
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Cheng Lv
- Centre for Chinese Herbal Medicine Drug Development Limited, Hong Kong Baptist University, Hong Kong SAR, China
| | - Xiao-Long Geng
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Yi-Jing Ren
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Jing Zhang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Jun-Yu Ren
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Hao Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Fang-Bin Ai
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Zi-Yi Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Bei-Bei Zhang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Dong-Hui Liu
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Bei Yue
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China.
| | - Zheng-Tao Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China.
| | - Wei Dou
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China.
| |
Collapse
|
72
|
Post Y, Lu C, Fletcher RB, Yeh WC, Nguyen H, Lee SJ, Li Y. Design principles and therapeutic applications of novel synthetic WNT signaling agonists. iScience 2024; 27:109938. [PMID: 38832011 PMCID: PMC11145361 DOI: 10.1016/j.isci.2024.109938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Wingless-related integration site or Wingless and Int-1 or Wingless-Int (WNT) signaling is crucial for embryonic development, and adult tissue homeostasis and regeneration, through its essential roles in cell fate, patterning, and stem cell regulation. The biophysical characteristics of WNT ligands have hindered efforts to interrogate ligand activity in vivo and prevented their development as therapeutics. Recent breakthroughs have enabled the generation of synthetic WNT signaling molecules that possess characteristics of natural ligands and potently activate the pathway, while also providing distinct advantages for therapeutic development and manufacturing. This review provides a detailed discussion of the protein engineering of these molecular platforms for WNT signaling agonism. We discuss the importance of WNT signaling in several organs and share insights from the initial application of these new classes of molecules in vitro and in vivo. These molecules offer a unique opportunity to enhance our understanding of how WNT signaling agonism promotes tissue repair, enabling targeted development of tailored therapeutics.
Collapse
Affiliation(s)
- Yorick Post
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA 94080, USA
| | - Chenggang Lu
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA 94080, USA
| | - Russell B. Fletcher
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA 94080, USA
| | - Wen-Chen Yeh
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA 94080, USA
| | - Huy Nguyen
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA 94080, USA
| | - Sung-Jin Lee
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA 94080, USA
| | - Yang Li
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA 94080, USA
| |
Collapse
|
73
|
Kschonsak YT, Gao X, Miller SE, Hwang S, Marei H, Wu P, Li Y, Ruiz K, Dorighi K, Holokai L, Perampalam P, Tsai WTK, Kee YS, Agard NJ, Harris SF, Hannoush RN, de Sousa E Melo F. Potent and selective binders of the E3 ubiquitin ligase ZNRF3 stimulate Wnt signaling and intestinal organoid growth. Cell Chem Biol 2024; 31:1176-1187.e10. [PMID: 38056465 DOI: 10.1016/j.chembiol.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 08/21/2023] [Accepted: 11/10/2023] [Indexed: 12/08/2023]
Abstract
Selective and precise activation of signaling transduction cascades is key for cellular reprogramming and tissue regeneration. However, the development of small- or large-molecule agonists for many signaling pathways has remained elusive and is rate limiting to realize the full clinical potential of regenerative medicine. Focusing on the Wnt pathway, here we describe a series of disulfide-constrained peptides (DCPs) that promote Wnt signaling activity by modulating the cell surface levels of ZNRF3, an E3 ubiquitin ligase that controls the abundance of the Wnt receptor complex FZD/LRP at the plasma membrane. Mechanistically, monomeric DCPs induce ZNRF3 ubiquitination, leading to its cell surface clearance, ultimately resulting in FZD stabilization. Furthermore, we engineered multimeric DCPs that induce expansive growth of human intestinal organoids, revealing a dependence between valency and ZNRF3 clearance. Our work highlights a strategy for the development of potent, biologically active Wnt signaling pathway agonists via targeting of ZNRF3.
Collapse
Affiliation(s)
- Yvonne T Kschonsak
- Department of Discovery Oncology, Genentech Inc, South San Francisco, CA 94080, USA.
| | - Xinxin Gao
- Department of Early Discovery Biochemistry and Peptide Therapeutics, Genentech Inc, South San Francisco, CA 94080, USA.
| | - Stephen E Miller
- Department of Early Discovery Biochemistry and Peptide Therapeutics, Genentech Inc, South San Francisco, CA 94080, USA
| | - Sunhee Hwang
- Department of Early Discovery Biochemistry and Peptide Therapeutics, Genentech Inc, South San Francisco, CA 94080, USA
| | - Hadir Marei
- Department of Discovery Oncology, Genentech Inc, South San Francisco, CA 94080, USA
| | - Ping Wu
- Department of Structural Biology, Genentech Inc, South San Francisco, CA 94080, USA
| | - Yanjie Li
- Department of Early Discovery Biochemistry and Peptide Therapeutics, Genentech Inc, South San Francisco, CA 94080, USA
| | - Karen Ruiz
- Department of Discovery Oncology, Genentech Inc, South San Francisco, CA 94080, USA
| | - Kristel Dorighi
- Department of Molecular Biology, Genentech Inc, South San Francisco, CA 94080, USA
| | - Loryn Holokai
- Department of Biomarker Discovery, Genentech Inc, South San Francisco, CA 94080, USA
| | - Pirunthan Perampalam
- ProCogia Inc. under contract to Hoffmann-La Roche Limited, Toronto, Ontario M5J2P1, Canada
| | - Wen-Ting K Tsai
- Department of Antibody Engineering, Genentech Inc, South San Francisco, CA 94080, USA
| | - Yee-Seir Kee
- Department of Antibody Engineering, Genentech Inc, South San Francisco, CA 94080, USA
| | - Nicholas J Agard
- Department of Antibody Engineering, Genentech Inc, South San Francisco, CA 94080, USA
| | - Seth F Harris
- Department of Structural Biology, Genentech Inc, South San Francisco, CA 94080, USA
| | - Rami N Hannoush
- Department of Early Discovery Biochemistry and Peptide Therapeutics, Genentech Inc, South San Francisco, CA 94080, USA.
| | | |
Collapse
|
74
|
Guha D, Singh V, Nandi S, Ramos EI, Gadad SS, Das C. ZMYND8 Is a Regulator of Sonic Hedgehog Signaling in ATRA-Mediated Differentiation of Neuroblastoma Cells. Biochemistry 2024; 63:1534-1542. [PMID: 38804064 DOI: 10.1021/acs.biochem.4c00145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Zinc Finger MYND (Myeloid, Nervy, and DEAF-1) type containing 8 (ZMYND8) is a crucial epigenetic regulator that plays a multifaceted role in governing a spectrum of vital cellular processes, encompassing proliferation, apoptosis, migration, tumor suppression, and differentiation. It has emerged as a key player in neuronal differentiation by orchestrating the expression of neuronal lineage-committed genes. The present study uncovers the role of ZMYND8 in regulating the Sonic Hedgehog (SHH) signaling axis, which is crucial for neuronal differentiation. Genetic deletion of ZMYND8 leads to a significant reduction in SHH pathway genes, GLI1, and PTCH1 expression during all-trans-retinoic acid (ATRA)-induced differentiation. ZMYND8 and RNA pol II S5P are found to co-occupy the GLI1 and PTCH1 gene promoters, positively impacting their gene transcription upon ATRA treatment. Interestingly, ZMYND8 is found to counteract the inhibitory effects of Cyclopamine that block the upstream SHH pathway protein SMO, resulting in enhanced neurite formation in neuroblastoma cells following their treatment with ATRA. These results indicate that ZMYND8 is an epigenetic regulator of the SHH signaling pathway and has tremendous therapeutic potential in ATRA-mediated differentiation of neuroblastoma.
Collapse
Affiliation(s)
- Deblina Guha
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Sector-I, Block-AF, Bidhannagar, Kolkata 700064, West Bengal, India
| | - Vipin Singh
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Sector-I, Block-AF, Bidhannagar, Kolkata 700064, West Bengal, India
- Homi Bhabha National Institute, 2nd Floor, BARC Training School Complex, Anushaktinagar, Mumbai 400094, Maharashtra, India
| | - Sandhik Nandi
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Sector-I, Block-AF, Bidhannagar, Kolkata 700064, West Bengal, India
- Homi Bhabha National Institute, 2nd Floor, BARC Training School Complex, Anushaktinagar, Mumbai 400094, Maharashtra, India
| | - Enrique I Ramos
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, 5001 El Paso Drive, El Paso, Texas 79905, United States
| | - Shrikanth S Gadad
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, 5001 El Paso Drive, El Paso, Texas 79905, United States
- Mays Cancer Center, UT Health San Antonio MD Anderson Cancer Center, San Antonio, Texas 78229, United States
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Sector-I, Block-AF, Bidhannagar, Kolkata 700064, West Bengal, India
- Homi Bhabha National Institute, 2nd Floor, BARC Training School Complex, Anushaktinagar, Mumbai 400094, Maharashtra, India
| |
Collapse
|
75
|
Xu XL, Wu SJ, Qi SY, Chen MM, Liu ZM, Zhang R, Zhao Y, Liu SQ, Zhou WD, Zhang JL, Zhang XS, Deng SL, Yu K, Li Y, Lian ZX. Increasing GSH-Px Activity and Activating Wnt Pathway Promote Fine Wool Growth in FGF5-Edited Sheep. Cells 2024; 13:985. [PMID: 38891117 PMCID: PMC11172217 DOI: 10.3390/cells13110985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Fibroblast growth factor 5 (FGF5) plays key roles in promoting the transition from the anagen to catagen during the hair follicle cycle. The sheep serves as an excellent model for studying hair growth and is frequently utilized in various research processes related to human skin diseases. We used the CRISPR/Cas9 system to generate four FGF5-edited Dorper sheep and only low levels of FGF5 were detected in the edited sheep. The density of fine wool in GE sheep was markedly increased, and the proportion of fine wool with a diameter of 14.4-20.0 μm was significantly higher. The proliferation signal in the skin of gene-edited (GE) sheep was stronger than in wild-type (WT) sheep. FGF5 editing decreased cortisol concentration in the skin, further activated the activity of antioxidant enzymes such as Glutathione peroxidase (GSH-Px), and regulated the expression of Wnt signaling pathways containing Wnt agonists (Rspondins, Rspos) and antagonists (Notum) in hair regeneration. We suggest that FGF5 not only mediates the activation of antioxidant pathways by cortisol, which constitutes a highly coordinated microenvironment in hair follicle cells, but also influences key signals of the Wnt pathway to regulate secondary hair follicle (SHF) development. Overall, our findings here demonstrate that FGF5 plays a significant role in regulating SHF growth in sheep and potentially serves as a molecular marker of fine wool growth in sheep breeding.
Collapse
Affiliation(s)
- Xue-Ling Xu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.-L.X.); (S.-J.W.); (S.-Y.Q.); (M.-M.C.); (Z.-M.L.); (Y.Z.); (S.-Q.L.); (W.-D.Z.)
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Su-Jun Wu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.-L.X.); (S.-J.W.); (S.-Y.Q.); (M.-M.C.); (Z.-M.L.); (Y.Z.); (S.-Q.L.); (W.-D.Z.)
| | - Shi-Yu Qi
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.-L.X.); (S.-J.W.); (S.-Y.Q.); (M.-M.C.); (Z.-M.L.); (Y.Z.); (S.-Q.L.); (W.-D.Z.)
| | - Ming-Ming Chen
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.-L.X.); (S.-J.W.); (S.-Y.Q.); (M.-M.C.); (Z.-M.L.); (Y.Z.); (S.-Q.L.); (W.-D.Z.)
| | - Zhi-Mei Liu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.-L.X.); (S.-J.W.); (S.-Y.Q.); (M.-M.C.); (Z.-M.L.); (Y.Z.); (S.-Q.L.); (W.-D.Z.)
| | - Rui Zhang
- Academy of Military Medical Sciences, Beijing 100071, China;
| | - Yue Zhao
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.-L.X.); (S.-J.W.); (S.-Y.Q.); (M.-M.C.); (Z.-M.L.); (Y.Z.); (S.-Q.L.); (W.-D.Z.)
| | - Shun-Qi Liu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.-L.X.); (S.-J.W.); (S.-Y.Q.); (M.-M.C.); (Z.-M.L.); (Y.Z.); (S.-Q.L.); (W.-D.Z.)
| | - Wen-Di Zhou
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.-L.X.); (S.-J.W.); (S.-Y.Q.); (M.-M.C.); (Z.-M.L.); (Y.Z.); (S.-Q.L.); (W.-D.Z.)
| | - Jin-Long Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; (J.-L.Z.); (X.-S.Z.)
| | - Xiao-Sheng Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; (J.-L.Z.); (X.-S.Z.)
| | - Shou-Long Deng
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100005, China;
| | - Kun Yu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.-L.X.); (S.-J.W.); (S.-Y.Q.); (M.-M.C.); (Z.-M.L.); (Y.Z.); (S.-Q.L.); (W.-D.Z.)
| | - Yan Li
- Academy of Military Medical Sciences, Beijing 100071, China;
| | - Zheng-Xing Lian
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.-L.X.); (S.-J.W.); (S.-Y.Q.); (M.-M.C.); (Z.-M.L.); (Y.Z.); (S.-Q.L.); (W.-D.Z.)
| |
Collapse
|
76
|
Ando T, Takazawa I, Spencer ZT, Ito R, Tomimori Y, Mikulski Z, Matsumoto K, Ishitani T, Denson LA, Kawakami Y, Kawakami Y, Kitaura J, Ahmed Y, Kawakami T. Ileal Crohn's Disease Exhibits Reduced Activity of Phospholipase C-β3-Dependent Wnt/β-Catenin Signaling Pathway. Cells 2024; 13:986. [PMID: 38891118 PMCID: PMC11171731 DOI: 10.3390/cells13110986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Crohn's disease is a chronic, debilitating, inflammatory bowel disease. Here, we report a critical role of phospholipase C-β3 (PLC-β3) in intestinal homeostasis. In PLC-β3-deficient mice, exposure to oral dextran sodium sulfate induced lethality and severe inflammation in the small intestine. The lethality was due to PLC-β3 deficiency in multiple non-hematopoietic cell types. PLC-β3 deficiency resulted in reduced Wnt/β-catenin signaling, which is essential for homeostasis and the regeneration of the intestinal epithelium. PLC-β3 regulated the Wnt/β-catenin pathway in small intestinal epithelial cells (IECs) at transcriptional, epigenetic, and, potentially, protein-protein interaction levels. PLC-β3-deficient IECs were unable to respond to stimulation by R-spondin 1, an enhancer of Wnt/β-catenin signaling. Reduced expression of PLC-β3 and its signature genes was found in biopsies of patients with ileal Crohn's disease. PLC-β regulation of Wnt signaling was evolutionally conserved in Drosophila. Our data indicate that a reduction in PLC-β3-mediated Wnt/β-catenin signaling contributes to the pathogenesis of ileal Crohn's disease.
Collapse
Affiliation(s)
- Tomoaki Ando
- Laboratory of Allergic Diseases, Center for Autoimmunity and Inflammation, La Jolla, CA 92037, USA; (T.A.)
- Atopy Research Center, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Ikuo Takazawa
- Laboratory of Allergic Diseases, Center for Autoimmunity and Inflammation, La Jolla, CA 92037, USA; (T.A.)
| | - Zachary T. Spencer
- Department of Molecular and Systems Biology and the Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA; (Z.T.S.)
| | - Ryoji Ito
- Laboratory of Allergic Diseases, Center for Autoimmunity and Inflammation, La Jolla, CA 92037, USA; (T.A.)
- Central Institute for Experimental Animals, Kawasaki 210-0821, Kanagawa, Japan
| | - Yoshiaki Tomimori
- Laboratory of Allergic Diseases, Center for Autoimmunity and Inflammation, La Jolla, CA 92037, USA; (T.A.)
| | - Zbigniew Mikulski
- Imaging Facility, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Tohru Ishitani
- Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-0044, Gunma, Japan
| | - Lee A. Denson
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Yu Kawakami
- Laboratory of Allergic Diseases, Center for Autoimmunity and Inflammation, La Jolla, CA 92037, USA; (T.A.)
| | - Yuko Kawakami
- Laboratory of Allergic Diseases, Center for Autoimmunity and Inflammation, La Jolla, CA 92037, USA; (T.A.)
| | - Jiro Kitaura
- Atopy Research Center, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Yashi Ahmed
- Department of Molecular and Systems Biology and the Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA; (Z.T.S.)
| | - Toshiaki Kawakami
- Laboratory of Allergic Diseases, Center for Autoimmunity and Inflammation, La Jolla, CA 92037, USA; (T.A.)
| |
Collapse
|
77
|
Zan GX, Wang XF, Yan SK, Qin YC, Yao LQ, Gao CQ, Yan HC, Zhou JY, Wang XQ. Matrine reduced intestinal stem cell damage in eimeria necatrix-infected chicks via blocking hyperactivation of Wnt signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155363. [PMID: 38493715 DOI: 10.1016/j.phymed.2024.155363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/17/2023] [Accepted: 01/14/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Coccidiosis is a rapidly spreading and acute parasitic disease that seriously threatening the intestinal health of poultry. Matrine from leguminous plants has anthelmintic and anti-inflammatory properties. PURPOSE This assay was conducted to explore the protective effects of Matrine and the AntiC (a Matrine compound) on Eimeria necatrix (EN)-infected chick small intestines and to provide a nutritional intervention strategy for EN injury. STUDY DESIGN The in vivo (chick) experiment: A total of 392 one-day-old yellow-feathered broilers were randomly assigned to six groups in a 21-day study: control group, 350 mg/kg Matrine group, 500 mg/kg AntiC group, EN group, and EN + 350 mg/kg Matrine group, EN + 500 mg/kg AntiC group. The in vitro (chick intestinal organoids, IOs): The IOs were treated with PBS, Matrine, AntiC, 3 μM CHIR99021, EN (15,000 EN sporozoites), EN + Matrine, EN + AntiC, EN + Matrine + CHIR99021, EN + AntiC + CHIR99021. METHODS The structural integrity of chicks jejunal crypt-villus axis was evaluated by hematoxylin and eosin (H&E) staining and transmission electron microscopy (TEM). And the activity of intestinal stem cells (ISCs) located in crypts was assessed by in vitro expansion advantages of a primary in IOs model. Then, the changes of Wnt/β-catenin signaling in jejunal tissues and IOs were detected by Real-Time qPCR,Western blotting and immunohistochemistry. RESULTS The results showed that dietary supplementation with Matrine or AntiC rescued the jejunal injury caused by EN, as indicated by increased villus height, reduced crypt hyperplasia, and enhanced expression of tight junction proteins. Moreover, there was less budding efficiency of the IOs expanded from jejunal crypts of chicks in the EN group than that in the Matrine and AntiC group, respectively. Further investigation showed that AntiC and Matrine inhibited EN-stimulated Wnt/β-catenin signaling. The fact that Wnt/β-catenin activation via CHIR99021 led to the failure of Matrine and AntiC to rescue damaged ISCs confirmed the dominance of this signaling. CONCLUSION Our results suggest that Matrine and AntiC inhibit ISC proliferation and promote ISC differentiation into absorptive cells by preventing the hyperactivation of Wnt/β-catenin signaling, thereby standardizing the function of ISC proliferation and differentiation, which provides new insights into mitigating EN injury by Matrine and AntiC.
Collapse
Affiliation(s)
- Geng-Xiu Zan
- College of Animal Science, South China Agricultural University/State Key Laboratory of Swine and Poultry Breeding Industry/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510642, China
| | - Xiao-Fan Wang
- College of Animal Science, South China Agricultural University/State Key Laboratory of Swine and Poultry Breeding Industry/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510642, China
| | - Shao-Kang Yan
- College of Animal Science, South China Agricultural University/State Key Laboratory of Swine and Poultry Breeding Industry/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510642, China
| | - Ying-Chao Qin
- College of Animal Science, South China Agricultural University/State Key Laboratory of Swine and Poultry Breeding Industry/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510642, China
| | - Lang-Qun Yao
- Institute of Feed Research of Chinese Academy of Agriculture Science, Beijing 100081, China
| | - Chun-Qi Gao
- College of Animal Science, South China Agricultural University/State Key Laboratory of Swine and Poultry Breeding Industry/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510642, China
| | - Hui-Chao Yan
- College of Animal Science, South China Agricultural University/State Key Laboratory of Swine and Poultry Breeding Industry/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510642, China
| | - Jia-Yi Zhou
- College of Animal Science, South China Agricultural University/State Key Laboratory of Swine and Poultry Breeding Industry/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510642, China
| | - Xiu-Qi Wang
- College of Animal Science, South China Agricultural University/State Key Laboratory of Swine and Poultry Breeding Industry/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510642, China.
| |
Collapse
|
78
|
Zhang H, Liu D, Xu QF, Wei J, Zhao Y, Xu DF, Wang Y, Liu YJ, Zhu XY, Jiang L. Endothelial RSPO3 mediates pulmonary endothelial regeneration by LGR4-dependent activation of β-catenin and ILK signaling pathways after inflammatory vascular injury. Int J Biol Macromol 2024; 269:131805. [PMID: 38677673 DOI: 10.1016/j.ijbiomac.2024.131805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 04/29/2024]
Abstract
Endothelial repair is essential for restoring tissue fluid homeostasis following lung injury. R-spondin3 (RSPO3), a secreted protein mainly produced by endothelial cells (ECs), has shown its protective effect on endothelium. However, the specific mechanisms remain unknown. To explore whether and how RSPO3 regulates endothelial regeneration after inflammatory vascular injury, the role of RSPO3 in sepsis-induced pulmonary endothelial injury was investigated in EC-specific RSPO3 knockdown, inducible EC-specific RSPO3 deletion mice, EC-specific RSPO3 overexpression mice, systemic RSPO3-administration mice, in isolated mouse lung vascular endothelial cells (MLVECs), and in plasma from septic patients. Here we show that plasma RSPO3 levels are decreased in septic patients and correlated with endothelial injury markers and PaO2/FiO2 index. Both pulmonary EC-specific knockdown of RSPO3 and inducible EC-specific RSPO3 deletion inhibit pulmonary ECs proliferation and exacerbate ECs injury, whereas intra-pulmonary EC-specific RSPO3 overexpression promotes endothelial recovery and attenuates ECs injury during endotoxemia. We show that RSPO3 mediates pulmonary endothelial regeneration by a LGR4-dependent manner. Except for β-catenin, integrin-linked kinase (ILK)/Akt is also identified as a novel downstream effector of RSPO3/LGR4 signaling. These results conclude that EC-derived RSPO3 mediates pulmonary endothelial regeneration by LGR4-dependent activation of β-catenin and ILK signaling pathways after inflammatory vascular injury.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China
| | - Di Liu
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China
| | - Qing-Feng Xu
- School of Kinesiology, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, The Key Laboratory of Exercise and Health Sciences of Ministry of Education Shanghai University of Sport, Shanghai 200438, PR China
| | - Juan Wei
- School of Kinesiology, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, The Key Laboratory of Exercise and Health Sciences of Ministry of Education Shanghai University of Sport, Shanghai 200438, PR China
| | - Ying Zhao
- Department of Anesthesiology, Zhejiang Cancer Hospital, 310022, PR China
| | - Dun-Feng Xu
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China
| | - Yan Wang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China
| | - Yu-Jian Liu
- School of Kinesiology, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, The Key Laboratory of Exercise and Health Sciences of Ministry of Education Shanghai University of Sport, Shanghai 200438, PR China
| | - Xiao-Yan Zhu
- Department of Physiology, Navy Medical University, Shanghai 200433, PR China.
| | - Lai Jiang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China.
| |
Collapse
|
79
|
Cao J, Su Z, Zhang Y, Chen Z, Li J, Cai Y, Chang Y, Lei M, He Q, Li W, Liao X, Zhang S, Hong A, Chen X. Turning sublimed sulfur and bFGF into a nanocomposite to accelerate wound healing via co-activate FGFR and Hippo signaling pathway. Mater Today Bio 2024; 26:101104. [PMID: 38952539 PMCID: PMC11216016 DOI: 10.1016/j.mtbio.2024.101104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 07/03/2024] Open
Abstract
Clinical treatment of diabetic refractory ulcers is impeded by chronic inflammation and cell dysfunction associated with wound healing. The significant clinical application of bFGF in wound healing is limited by its instability in vivo. Sulfur has been applied for the treatment of skin diseases in the clinic for antibiosis. We previously found that sulfur incorporation improves the ability of selenium nanoparticles to accelerate wound healing, yet the toxicity of selenium still poses a risk for its clinical application. To obtain materials with high pro-regeneration activity and low toxicity, we explored the mechanism by which selenium-sulfur nanoparticles aid in wound healing via RNA-Seq and designed a nanoparticle called Nano-S@bFGF, which was constructed from sulfur and bFGF. As expected, Nano-S@bFGF not only regenerated zebrafish tail fins and promoted skin wound healing but also promoted skin repair in diabetic mice with a profitable safety profile. Mechanistically, Nano-S@bFGF successfully coactivated the FGFR and Hippo signalling pathways to regulate wound healing. Briefly, the Nano-S@bFGF reported here provides an efficient and feasible method for the synthesis of bioactive nanosulfur and bFGF. In the long term, our results reinvigorated efforts to discover more peculiar unique biofunctions of sulfur and bFGF in a great variety of human diseases.
Collapse
Affiliation(s)
- Jieqiong Cao
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Zijian Su
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Yibo Zhang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Zhiqi Chen
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Jingsheng Li
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Yulin Cai
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Yiming Chang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Minghua Lei
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Qianyi He
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Weicai Li
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Xuan Liao
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shuixing Zhang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - An Hong
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Xiaojia Chen
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| |
Collapse
|
80
|
Wu F, Pang H, Li F, Hua M, Song C, Tang J. Progress in cancer research on the regulator of phagocytosis CD47, which determines the fate of tumor cells (Review). Oncol Lett 2024; 27:256. [PMID: 38646501 PMCID: PMC11027102 DOI: 10.3892/ol.2024.14389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/21/2024] [Indexed: 04/23/2024] Open
Abstract
Cluster of differentiation 47 (CD47) is a transmembrane protein that is widely and moderately expressed on the surface of various cells and can have an essential role in mediating cell proliferation, migration, phagocytosis, apoptosis, immune homeostasis and other related responses by binding to its ligands, integrins, thrombospondin-1 and signal regulatory protein α. The poor prognosis of cancer patients is closely associated with high expression of CD47 in glioblastoma, ovarian cancer, breast cancer, bladder cancer, colon cancer and hepatocellular carcinoma. Upregulation of CD47 expression facilitates the growth of numerous types of tumor cells, while downregulation of its expression promotes phagocytosis of tumor cells by macrophages, thereby limiting tumor growth. In addition, blocking CD47 activates the cyclic GMP-AMP (cGAMP) synthase/cGAMP/interferon gene stimulating factor signaling pathway and initiates an adaptive immune response that kills tumor cells. The present review describes the structure, function and interactions of CD47 with its ligands, as well as its regulation of phagocytosis and tumor cell fate. It summarizes the therapeutics, mechanisms of action, research advances and challenges of targeting CD47. In addition, this paper provides an overview of the latest therapeutic options for targeting CD47, such as chimeric antigen receptor (CAR) T-cells, CAR macrophages and nanotechnology-based delivery systems, which are essential for future clinical research on targeting CD47.
Collapse
Affiliation(s)
- Fan Wu
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Hongyuan Pang
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Fan Li
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Mengqing Hua
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Chuanwang Song
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Jie Tang
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| |
Collapse
|
81
|
Gadwal A, Purohit P, Khokhar M, Vishnoi JR, Pareek P, Choudhary R, Elhence P, Banerjee M, Sharma P. GALNT14 in association with GDF-15 promotes stemness and drug resistance through β-catenin signalling pathway in breast cancer. Mol Biol Rep 2024; 51:691. [PMID: 38796671 DOI: 10.1007/s11033-024-09645-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/16/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND Altered glycosylation plays a role in carcinogenesis. GALNT14 promotes cancer stem-like properties and drug resistance. GDF-15 is known to induces drug resistance and stemness markers for maintenance of breast cancer (BC) stem-like cell state. Currently there is lack of data on association of GDF-15 and GALNTs. In this study, the expression and interaction of GALNT14 and GDF-15 with stemness (OCT4 and SOX2) and drug resistance (ABCC5) markers were evaluated in BC. METHODS We investigated tumour tissue from 30 BC patients and adjacent non-tumour tissues. Expression of serum GALNT14 from BC patients and matched healthy controls was evaluated. Expression of GALNT14, GDF-15, OCT4, SOX2, ABCC5, and β-catenin in BC tissue was determined by RT-PCR. Knockdown of GALNT14 and GDF-15 in the MCF-7 cell line was done through siRNA, gene expression and protein expression of β-catenin by western blot were determined. RESULTS A significant increase in the expression of GALNT14, GDF-15, OCT4, SOX2, ABCC5, and β-catenin was observed in BC tumour tissues compared to adjacent non-tumour tissues. The serum level of GALNT14 was significantly high in BC patients (80.7 ± 65.3 pg/ml) compared to healthy controls (12.2 ± 9.12 pg/ml) (p < 0.000). To further analyse the signalling pathway involved in BC stemness and drug resistance, GALNT14 and GDF-15 were knocked down in the MCF-7 cell line, and it was observed that after knockdown, the expression level of OCT4, SOX2, ABCC5, and β-catenin was decreased, and co-knockdown with GALNT14 and GDF-15 further decreased the expression of genes. CONCLUSION It can be concluded that GALNT14, in association with GDF-15, promotes stemness and intrinsic drug resistance in BC, possibly through the β-catenin signalling pathway.
Collapse
Affiliation(s)
- Ashita Gadwal
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - Purvi Purohit
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India.
| | - Manoj Khokhar
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - Jeewan Ram Vishnoi
- Department of Oncosurgery, All India Institute of Medical Sciences, Jodhpur, India
| | - Puneet Pareek
- Department of Radiation Oncology, All India Institute of Medical Sciences, Jodhpur, India
| | - Ramkaran Choudhary
- Department of General Surgery, All India Institute of Medical Sciences, Jodhpur, India
| | - Poonam Elhence
- Department of Pathology, All India Institute of Medical Sciences, Jodhpur, India
| | - Mithu Banerjee
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| |
Collapse
|
82
|
Tejeda-Muñoz N, Azbazdar Y, Sosa EA, Monka J, Wei PS, Binder G, Mei KC, Kurmangaliyev YZ, De Robertis EM. Na,K-ATPase activity promotes macropinocytosis in colon cancer via Wnt signaling. Biol Open 2024; 13:bio060269. [PMID: 38713004 PMCID: PMC11139033 DOI: 10.1242/bio.060269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/18/2024] [Indexed: 05/08/2024] Open
Abstract
Recent research has shown that membrane trafficking plays an important role in canonical Wnt signaling through sequestration of the β-catenin destruction complex inside multivesicular bodies (MVBs) and lysosomes. In this study, we introduce Ouabain, an inhibitor of the Na,K-ATPase pump that establishes electric potentials across membranes, as a potent inhibitor of Wnt signaling. We find that Na,K-ATPase levels are elevated in advanced colon carcinoma, that this enzyme is elevated in cancer cells with constitutively activated Wnt pathway and is activated by GSK3 inhibitors that increase macropinocytosis. Ouabain blocks macropinocytosis, which is an essential step in Wnt signaling, probably explaining the strong effects of Ouabain on this pathway. In Xenopus embryos, brief Ouabain treatment at the 32-cell stage, critical for the earliest Wnt signal in development-inhibited brains, could be reversed by treatment with Lithium chloride, a Wnt mimic. Inhibiting membrane trafficking may provide a way of targeting Wnt-driven cancers.
Collapse
Affiliation(s)
- Nydia Tejeda-Muñoz
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles 90095-1662, USA
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Yagmur Azbazdar
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles 90095-1662, USA
| | - Eric A. Sosa
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Julia Monka
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles 90095-1662, USA
| | - Pu-Sheng Wei
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Binghamton, Binghamton, Johnson City, NY 13790, USA
| | - Grace Binder
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles 90095-1662, USA
| | - Kuo-Ching Mei
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Binghamton, Binghamton, Johnson City, NY 13790, USA
| | | | - Edward M. De Robertis
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles 90095-1662, USA
| |
Collapse
|
83
|
Sun S, Gong YD, Kang JS, Dong MS, Choi Y. A small molecule compound 759 inhibits the wnt/beta-catenin signaling pathway via increasing the Axin protein stability. Med Oncol 2024; 41:147. [PMID: 38733492 DOI: 10.1007/s12032-024-02314-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/23/2024] [Indexed: 05/13/2024]
Abstract
Wnt/β-catenin signaling plays important role in cancers. Compound 759 is one of the compounds previously screened to identify inhibitors of the Wnt/β-catenin pathway in A549 cells [Lee et al. in Bioorg Med Chem Lett 20:5900-5904, 2010]. However, the mechanism by which Compound 759 induces the inhibition of the Wnt/β-catenin pathway remains unknown. In our study, we employed various assays to comprehensively evaluate the effects of Compound 759 on lung cancer cells. Our results demonstrated that Compound 759 significantly suppressed cell proliferation and Wnt3a-induced Topflash activity and arrested the cell cycle at the G1 stage. Changes in Wnt/β-catenin signaling-related protein expression, gene activity, and protein stability including Axin, and p21, were achieved through western blot and qRT-PCR analysis. Compound 759 treatment upregulated the mRNA level of p21 and increased Axin protein levels without altering the mRNA expression in A549 cells. Co-treatment of Wnt3a and varying doses of Compound 759 dose-dependently increased the amounts of Axin1 in the cytosol and inhibited β-catenin translocation into the nucleus. Moreover, Compound 759 reduced tumor size and weight in the A549 cell-induced tumor growth in the in vivo tumor xenograft mouse model. Our findings indicate that Compound 759 exhibits potential anti-cancer activity by inhibiting the Wnt/β-catenin signaling pathway through the increase of Axin1 protein stability.
Collapse
Affiliation(s)
- Seunghan Sun
- School of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Young-Dae Gong
- Innovative Drug-Like Library Research Center, Dongguk University, Seoul, 04625, Republic of Korea
| | - Jong Soon Kang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Chungbuk, 28116, Republic of Korea
| | - Mi-Sook Dong
- College of Pharmacy, Ewha Womans University, Ewhayeodae-gil, Seoul, 03760, Republic of Korea.
| | - Yongseok Choi
- School of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
84
|
Zhou H, Li I, Bramlett CS, Wang B, Hao J, Yen DP, Ando Y, Fraser SE, Lu R, Shen K. Label-free metabolic optical biomarkers track stem cell fate transition in real time. SCIENCE ADVANCES 2024; 10:eadi6770. [PMID: 38718114 PMCID: PMC11078180 DOI: 10.1126/sciadv.adi6770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 04/04/2024] [Indexed: 05/12/2024]
Abstract
Tracking stem cell fate transition is crucial for understanding their development and optimizing biomanufacturing. Destructive single-cell methods provide a pseudotemporal landscape of stem cell differentiation but cannot monitor stem cell fate in real time. We established a metabolic optical metric using label-free fluorescence lifetime imaging microscopy (FLIM), feature extraction and machine learning-assisted analysis, for real-time cell fate tracking. From a library of 205 metabolic optical biomarker (MOB) features, we identified 56 associated with hematopoietic stem cell (HSC) differentiation. These features collectively describe HSC fate transition and detect its bifurcate lineage choice. We further derived a MOB score measuring the "metabolic stemness" of single cells and distinguishing their division patterns. This score reveals a distinct role of asymmetric division in rescuing stem cells with compromised metabolic stemness and a unique mechanism of PI3K inhibition in promoting ex vivo HSC maintenance. MOB profiling is a powerful tool for tracking stem cell fate transition and improving their biomanufacturing from a single-cell perspective.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Irene Li
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Charles S. Bramlett
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Bowen Wang
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jia Hao
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Daniel P. Yen
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Yuta Ando
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Scott E. Fraser
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Translational Imaging Center, University of Southern California, Los Angeles, CA 90089, USA
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Rong Lu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
- Department of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Keyue Shen
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
- USC Stem Cell, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
85
|
Grigoryan EN, Markitantova YV. Tail and Spinal Cord Regeneration in Urodelean Amphibians. Life (Basel) 2024; 14:594. [PMID: 38792615 PMCID: PMC11122520 DOI: 10.3390/life14050594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/21/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Urodelean amphibians can regenerate the tail and the spinal cord (SC) and maintain this ability throughout their life. This clearly distinguishes these animals from mammals. The phenomenon of tail and SC regeneration is based on the capability of cells involved in regeneration to dedifferentiate, enter the cell cycle, and change their (or return to the pre-existing) phenotype during de novo organ formation. The second critical aspect of the successful tail and SC regeneration is the mutual molecular regulation by tissues, of which the SC and the apical wound epidermis are the leaders. Molecular regulatory systems include signaling pathways components, inflammatory factors, ECM molecules, ROS, hormones, neurotransmitters, HSPs, transcriptional and epigenetic factors, etc. The control, carried out by regulatory networks on the feedback principle, recruits the mechanisms used in embryogenesis and accompanies all stages of organ regeneration, from the moment of damage to the completion of morphogenesis and patterning of all its structures. The late regeneration stages and the effects of external factors on them have been poorly studied. A new model for addressing this issue is herein proposed. The data summarized in the review contribute to understanding a wide range of fundamentally important issues in the regenerative biology of tissues and organs in vertebrates including humans.
Collapse
Affiliation(s)
| | - Yuliya V. Markitantova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| |
Collapse
|
86
|
Sun J, Xie X, Song Y, Sun T, Liu X, Yuan H, Shen C. Selenomethionine in gelatin methacryloyl hydrogels: Modulating ferroptosis to attenuate skin aging. Bioact Mater 2024; 35:495-516. [PMID: 38404642 PMCID: PMC10885793 DOI: 10.1016/j.bioactmat.2024.02.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/27/2024] Open
Abstract
During skin aging, the degeneration of epidermal stem cells (EpiSCs) leads to diminished wound healing capabilities and epidermal disintegration. This study tackles this issue through a comprehensive analysis combining transcriptomics and untargeted metabolomics, revealing age-dependent alterations in the Gpx gene family and arachidonic acid (AA) metabolic networks, resulting in enhanced ferroptosis. Selenomethionine (Se-Met) could enhance GPX4 expression, thereby assisting EpiSCs in countering AA-induced mitochondrial damage and ferroptosis. Additionally, Se-Met demonstrates antioxidative characteristics and extensive ultraviolet absorption. For the sustained and controllable release of Se-Met, it was covalently grafted to UV-responsive GelMA hydrogels via AC-PEG-NHS tethers. The Se-Met@GelMA hydrogel effectively accelerated wound healing in a chronological aging mice model, by inhibiting lipid peroxidation and ferroptosis with augmented GPX4 expression. Moreover, in a photoaging model, this hydrogel significantly mitigated inflammatory responses, extracellular matrix remodeling, and ferroptosis in UV-exposed mice. These characteristics render Se-Met@GelMA hydrogel valuable in practical clinical applications.
Collapse
Affiliation(s)
- Jiachen Sun
- Department of Burns and Plastic Surgery, Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| | - Xiaoye Xie
- Department of Burns and Plastic Surgery, Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| | - Yaoyao Song
- Department of Burns and Plastic Surgery, Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| | - Tianjun Sun
- Department of Burns and Plastic Surgery, Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| | - Xinzhu Liu
- Department of Burns and Plastic Surgery, Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| | - Huageng Yuan
- Department of Burns and Plastic Surgery, Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| | - Chuanan Shen
- Department of Burns and Plastic Surgery, Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| |
Collapse
|
87
|
Sireci S, Kocagöz Y, Alkiraz AS, Güler K, Dokuzluoglu Z, Balcioglu E, Meydanli S, Demirler MC, Erdogan NS, Fuss SH. HB-EGF promotes progenitor cell proliferation and sensory neuron regeneration in the zebrafish olfactory epithelium. FEBS J 2024; 291:2098-2133. [PMID: 38088047 DOI: 10.1111/febs.17033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/15/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
Maintenance and regeneration of the zebrafish olfactory epithelium (OE) are supported by two distinct progenitor cell populations that occupy spatially discrete stem cell niches and respond to different tissue conditions. Globose basal cells (GBCs) reside at the inner and peripheral margins of the sensory OE and are constitutively active to replace sporadically dying olfactory sensory neurons (OSNs). In contrast, horizontal basal cells (HBCs) are uniformly distributed across the sensory tissue and are selectively activated by acute injury conditions. Here we show that expression of the heparin-binding epidermal growth factor-like growth factor (HB-EGF) is strongly and transiently upregulated in response to OE injury and signals through the EGF receptor (EGFR), which is expressed by HBCs. Exogenous stimulation of the OE with recombinant HB-EGF promotes HBC expansion and OSN neurogenesis in a pattern that resembles the tissue response to injury. In contrast, pharmacological inhibition of HB-EGF membrane shedding, HB-EGF availability, and EGFR signaling strongly attenuate or delay injury-induced HBC activity and OSN restoration without affecting maintenance neurogenesis by GBCs. Thus, HB-EGF/EGFR signaling appears to be a critical component of the signaling network that controls HBC activity and, consequently, repair neurogenesis in the zebrafish OE.
Collapse
Affiliation(s)
- Siran Sireci
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Bogaziçi University, Istanbul, Türkiye
| | - Yigit Kocagöz
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Bogaziçi University, Istanbul, Türkiye
| | - Aysu Sevval Alkiraz
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Bogaziçi University, Istanbul, Türkiye
| | - Kardelen Güler
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Bogaziçi University, Istanbul, Türkiye
| | - Zeynep Dokuzluoglu
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Bogaziçi University, Istanbul, Türkiye
| | - Ecem Balcioglu
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Bogaziçi University, Istanbul, Türkiye
| | - Sinem Meydanli
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Bogaziçi University, Istanbul, Türkiye
| | - Mehmet Can Demirler
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Bogaziçi University, Istanbul, Türkiye
| | | | - Stefan Herbert Fuss
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Bogaziçi University, Istanbul, Türkiye
| |
Collapse
|
88
|
Mii Y. Understanding and manipulating extracellular behaviors of Wnt ligands. In Vitro Cell Dev Biol Anim 2024; 60:441-448. [PMID: 38379096 DOI: 10.1007/s11626-024-00856-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/17/2024] [Indexed: 02/22/2024]
Abstract
Wnt, a family of secreted signaling proteins, serves diverse functions in embryogenesis, organogenesis, cancer, and stem cell functions. In the context of development, Wnt has been considered a representative morphogen, forming concentration gradients to give positional information to cells or tissues. However, although gradients are often illustrated in schemata, the reality of concentration gradients, or in other words, actual spatial distribution of Wnt ligands, and their behaviors in the extracellular space still remain poorly known. To understand extracellular behavior of Wnt ligands, quantitative analyses such as fluorescence correlation spectroscopy (FCS) and fluorescence recovery after photobleaching (FRAP) are highly informative because Wnt dispersal involves physical and biochemical processes, such as diffusion and binding to or dissociation from cell surface molecules, including heparan sulfate proteoglycans (HSPGs). Here, I briefly discuss representative methods to quantify morphogen dynamics. In addition, I discuss molecular manipulations of morphogens, mainly focusing on use of protein binders, and synthetic biology of morphogens as indicators of current and future directions in this field.
Collapse
Affiliation(s)
- Yusuke Mii
- National Institute for Basic Biology (NIBB) and Exploratory Research Center On Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
- The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, 444-8787, Japan.
| |
Collapse
|
89
|
Huang L, Zuo Y, Li S, Li C. Melanocyte stem cells in the skin: Origin, biological characteristics, homeostatic maintenance and therapeutic potential. Clin Transl Med 2024; 14:e1720. [PMID: 38778457 PMCID: PMC11111606 DOI: 10.1002/ctm2.1720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/07/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024] Open
Abstract
Melanocyte stem cells (MSCs), melanocyte lineage-specific skin stem cells derived from the neural crest, are observed in the mammalian hair follicle, the epidermis or the sweat gland. MSCs differentiate into mature melanin-producing melanocytes, which confer skin and hair pigmentation and uphold vital skin functions. In controlling and coordinating the homeostasis, repair and regeneration of skin tissue, MSCs play a vital role. Decreased numbers or impaired functions of MSCs are closely associated with the development and therapy of many skin conditions, such as hair graying, vitiligo, wound healing and melanoma. With the advancement of stem cell technology, the relevant features of MSCs have been further elaborated. In this review, we provide an exhaustive overview of cutaneous MSCs and highlight the latest advances in MSC research. A better understanding of the biological characteristics and micro-environmental regulatory mechanisms of MSCs will help to improve clinical applications in regenerative medicine, skin pigmentation disorders and cancer therapy. KEY POINTS: This review provides a concise summary of the origin, biological characteristics, homeostatic maintenance and therapeutic potential of cutaneous MSCs. The role and potential application value of MSCs in skin pigmentation disorders are discussed. The significance of single-cell RNA sequencing, CRISPR-Cas9 technology and practical models in MSCs research is highlighted.
Collapse
Affiliation(s)
- Luling Huang
- Department of DermatologyXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Yuzhi Zuo
- Department of Plastic and Burns SurgeryThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
| | - Shuli Li
- Department of DermatologyXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Chunying Li
- Department of DermatologyXijing HospitalFourth Military Medical UniversityXi'anChina
| |
Collapse
|
90
|
Ogamino S, Yamamichi M, Sato K, Ishitani T. Dynamics of Wnt/β-catenin reporter activity throughout whole life in a naturally short-lived vertebrate. NPJ AGING 2024; 10:23. [PMID: 38684674 PMCID: PMC11059364 DOI: 10.1038/s41514-024-00149-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
Wnt/β-catenin signaling plays a major role in regulation of embryogenesis, organogenesis, and adult tissue homeostasis and regeneration. However, the roles played by Wnt/β-catenin and the spatiotemporal regulation of its activity throughout life, including during aging, are not fully understood. To address these issues, we introduced a Wnt/β-catenin signaling sensitive reporter into African turquoise killifish (Nothobranchius furzeri), a naturally ultra-short-lived fish that allows for the analysis of its whole life within a short period of time. Using this reporter killifish, we unraveled the previously unidentified dynamics of Wnt/β-catenin signaling during development and aging. Using the reporter strain, we detected Wnt/β-catenin activity in actively developing tissues as reported in previous reports, but also observed activation and attenuation of Wnt/β-catenin activity during embryonic reaggregation and diapause, respectively. During the aging process, the reporter was activated in the choroidal layer and liver, but its expression decreased in the kidneys. In addition, the reporter also revealed that aging disrupts the spatial regulation and intensity control of Wnt/β-catenin activity seen during fin regeneration, which interferes with precise regeneration. Thus, the employed reporter killifish is a highly useful model for investigating the dynamics of Wnt/β-catenin signaling during both the developmental and aging process.
Collapse
Affiliation(s)
- Shohei Ogamino
- Department of Homeostatic Regulation, Division of Cellular and Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
- Institute for Molecular & Cellular Regulation, Gunma University, Gunma, 371-8512, Japan
| | - Moeko Yamamichi
- Department of Homeostatic Regulation, Division of Cellular and Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Ken Sato
- Institute for Molecular & Cellular Regulation, Gunma University, Gunma, 371-8512, Japan
| | - Tohru Ishitani
- Department of Homeostatic Regulation, Division of Cellular and Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan.
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
91
|
Walker V. The Intricacies of Renal Phosphate Reabsorption-An Overview. Int J Mol Sci 2024; 25:4684. [PMID: 38731904 PMCID: PMC11083860 DOI: 10.3390/ijms25094684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
To maintain an optimal body content of phosphorus throughout postnatal life, variable phosphate absorption from food must be finely matched with urinary excretion. This amazing feat is accomplished through synchronised phosphate transport by myriads of ciliated cells lining the renal proximal tubules. These respond in real time to changes in phosphate and composition of the renal filtrate and to hormonal instructions. How they do this has stimulated decades of research. New analytical techniques, coupled with incredible advances in computer technology, have opened new avenues for investigation at a sub-cellular level. There has been a surge of research into different aspects of the process. These have verified long-held beliefs and are also dramatically extending our vision of the intense, integrated, intracellular activity which mediates phosphate absorption. Already, some have indicated new approaches for pharmacological intervention to regulate phosphate in common conditions, including chronic renal failure and osteoporosis, as well as rare inherited biochemical disorders. It is a rapidly evolving field. The aim here is to provide an overview of our current knowledge, to show where it is leading, and where there are uncertainties. Hopefully, this will raise questions and stimulate new ideas for further research.
Collapse
Affiliation(s)
- Valerie Walker
- Department of Clinical Biochemistry, University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, Southampton S016 6YD, UK
| |
Collapse
|
92
|
Ahmad Zawawi SS, Salleh EA, Musa M. Spheroids and organoids derived from colorectal cancer as tools for in vitro drug screening. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:409-431. [PMID: 38745769 PMCID: PMC11090692 DOI: 10.37349/etat.2024.00226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/02/2024] [Indexed: 05/16/2024] Open
Abstract
Colorectal cancer (CRC) is a heterogeneous disease. Conventional two-dimensional (2D) culture employing cell lines was developed to study the molecular properties of CRC in vitro. Although these cell lines which are isolated from the tumor niche in which cancer develop, the translation to human model such as studying drug response is often hindered by the inability of cell lines to recapture original tumor features and the lack of heterogeneous clinical tumors represented by this 2D model, differed from in vivo condition. These limitations which may be overcome by utilizing three-dimensional (3D) culture consisting of spheroids and organoids. Over the past decade, great advancements have been made in optimizing culture method to establish spheroids and organoids of solid tumors including of CRC for multiple purposes including drug screening and establishing personalized medicine. These structures have been proven to be versatile and robust models to study CRC progression and deciphering its heterogeneity. This review will describe on advances in 3D culture technology and the application as well as the challenges of CRC-derived spheroids and organoids as a mode to screen for anticancer drugs.
Collapse
Affiliation(s)
| | - Elyn Amiela Salleh
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| | - Marahaini Musa
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| |
Collapse
|
93
|
Chen Q, Wu Z, Shi Y, Li Z, Yang J, Qu M, Zhang S, Wang Z, Ji N, Li J, Shen Y, Xie L, Chen Q. Loss of PA28γ exacerbates imbalanced differentiation of bone marrow stromal cells during bone formation and bone healing in mice. J Bone Miner Res 2024; 39:326-340. [PMID: 38477820 DOI: 10.1093/jbmr/zjae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 03/14/2024]
Abstract
Proteasome activator subunit 3 (PA28γ) is a member of the proteasome activator family, which mainly regulates the degradation and stability of proteins. Studies have shown that it plays crucial roles in lipid formation, stemness maintenance, and blood vessel formation. However, few studies have clarified the association between PA28γ and bone diseases. Herein, we identified PA28γ as a previously unknown regulator of bone homeostasis that coordinates bone formation and lipid accumulation. PA28γ-knockout mice presented with the characteristics of low bone mass and accumulation of lipids. Suppressed expression of PA28γ restrained the osteogenic differentiation and enhanced the adipogenic differentiation of bone marrow stromal cells (BMSCs). Overexpression of PA28γ promoted osteogenic differentiation and inhibited adipogenic differentiation of BMSCs. Mechanistically, PA28γ interacted with Wnt5α, and the two interactors appeared to be positively correlated. PA28γ mainly activated the downstream Wnt/β-catenin signaling pathway, which affects BMSCs differentiation homeostasis. Deletion of Wnt5α significantly delayed the promotion of osteogenic differentiation and partially alleviated the inhibitory effect of adipogenic differentiation of BMSCs in the PA28γ-overexpressing group. Furthermore, we demonstrated that PA28γ-knockout mice had an inhibited rate of bone healing in a drill-hole femoral bone defect model in vivo. Therefore, our results confirm the effects of PA28γ on bone formation and bone defect repair, indicating that PA28γ mainly interacts with Wnt5α to activate the Wnt/β-catenin signaling pathway regulating BMSCs differentiation homeostasis. Our results reveal the function of PA28γ in bone diseases and provide a new theoretical basis for expanding the treatment of bone diseases.
Collapse
Affiliation(s)
- Qian Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, P. R. China
| | - ZuPing Wu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, P. R. China
| | - YuJie Shi
- Department of Stomatology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, P. R. China
| | - ZaiYe Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - JiaKang Yang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - MoYuan Qu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - ShiYu Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zheng Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ning Ji
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - YingQiang Shen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Liang Xie
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qianming Chen
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, P. R. China
| |
Collapse
|
94
|
Yu P, Xu T, Ma W, Fang X, Bao Y, Xu C, Huang J, Sun Y, Li G. PRMT6-mediated transcriptional activation of ythdf2 promotes glioblastoma migration, invasion, and emt via the wnt-β-catenin pathway. J Exp Clin Cancer Res 2024; 43:116. [PMID: 38637831 PMCID: PMC11025288 DOI: 10.1186/s13046-024-03038-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 04/04/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Protein arginine methyltransferase 6 (PRMT6) plays a crucial role in various pathophysiological processes and diseases. Glioblastoma (GBM; WHO Grade 4 glioma) is the most common and lethal primary brain tumor in adults, with a prognosis that is extremely poor, despite being less common than other systemic malignancies. Our current research finds PRMT6 upregulated in GBM, enhancing tumor malignancy. Yet, the specifics of PRMT6's regulatory processes and potential molecular mechanisms in GBM remain largely unexplored. METHODS PRMT6's expression and prognostic significance in GBM were assessed using glioma public databases, immunohistochemistry (IHC), and immunoblotting. Scratch and Transwell assays examined GBM cell migration and invasion. Immunoblotting evaluated the expression of epithelial-mesenchymal transition (EMT) and Wnt-β-catenin pathway-related proteins. Dual-luciferase reporter assays and ChIP-qPCR assessed the regulatory relationship between PRMT6 and YTHDF2. An in situ tumor model in nude mice evaluated in vivo conditions. RESULTS Bioinformatics analysis indicates high expression of PRMT6 and YTHDF2 in GBM, correlating with poor prognosis. Functional experiments show PRMT6 and YTHDF2 promote GBM migration, invasion, and EMT. Mechanistic experiments reveal PRMT6 and CDK9 co-regulate YTHDF2 expression. YTHDF2 binds and promotes the degradation of negative regulators APC and GSK3β mRNA of the Wnt-β-catenin pathway, activating it and consequently enhancing GBM malignancy. CONCLUSIONS Our results demonstrate the PRMT6-YTHDF2-Wnt-β-Catenin axis promotes GBM migration, invasion, and EMT in vitro and in vivo, potentially serving as a therapeutic target for GBM.
Collapse
Affiliation(s)
- Peng Yu
- Department of Neurosurgery, the First Affiliated Hospital of China Medical University, No. 155, North Nanjing Street, Heping District, Shenyang, Liaoning, 110001, China
| | - Tutu Xu
- Department of Neurosurgery, the First Affiliated Hospital of China Medical University, No. 155, North Nanjing Street, Heping District, Shenyang, Liaoning, 110001, China
| | - Wenmeng Ma
- Department of Immunology, Basic Medicine College, China Medical University, Shenyang, Liaoning, China
| | - Xiang Fang
- Department of Neurosurgery, the First Affiliated Hospital of China Medical University, No. 155, North Nanjing Street, Heping District, Shenyang, Liaoning, 110001, China
- Department of Neurosurgery, Central hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yue Bao
- Department of Neurosurgery, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Chengran Xu
- Department of Neurosurgery, the First Affiliated Hospital of China Medical University, No. 155, North Nanjing Street, Heping District, Shenyang, Liaoning, 110001, China
| | - Jinhai Huang
- Department of Neurosurgery, the First Affiliated Hospital of China Medical University, No. 155, North Nanjing Street, Heping District, Shenyang, Liaoning, 110001, China
| | - Yongqing Sun
- Department of Neurosurgery, the First Affiliated Hospital of China Medical University, No. 155, North Nanjing Street, Heping District, Shenyang, Liaoning, 110001, China
| | - Guangyu Li
- Department of Neurosurgery, the First Affiliated Hospital of China Medical University, No. 155, North Nanjing Street, Heping District, Shenyang, Liaoning, 110001, China.
| |
Collapse
|
95
|
Su C, Lin D, Huang X, Feng J, Jin A, Wang F, Lv Q, Lei L, Pan W. Developing hydrogels for gene therapy and tissue engineering. J Nanobiotechnology 2024; 22:182. [PMID: 38622684 PMCID: PMC11017488 DOI: 10.1186/s12951-024-02462-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/04/2024] [Indexed: 04/17/2024] Open
Abstract
Hydrogels are a class of highly absorbent and easily modified polymer materials suitable for use as slow-release carriers for drugs. Gene therapy is highly specific and can overcome the limitations of traditional tissue engineering techniques and has significant advantages in tissue repair. However, therapeutic genes are often affected by cellular barriers and enzyme sensitivity, and carrier loading of therapeutic genes is essential. Therapeutic gene hydrogels can well overcome these difficulties. Moreover, gene-therapeutic hydrogels have made considerable progress. This review summarizes the recent research on carrier gene hydrogels for the treatment of tissue damage through a summary of the most current research frontiers. We initially introduce the classification of hydrogels and their cross-linking methods, followed by a detailed overview of the types and modifications of therapeutic genes, a detailed discussion on the loading of therapeutic genes in hydrogels and their characterization features, a summary of the design of hydrogels for therapeutic gene release, and an overview of their applications in tissue engineering. Finally, we provide comments and look forward to the shortcomings and future directions of hydrogels for gene therapy. We hope that this article will provide researchers in related fields with more comprehensive and systematic strategies for tissue engineering repair and further promote the development of the field of hydrogels for gene therapy.
Collapse
Affiliation(s)
- Chunyu Su
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Dini Lin
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Xinyu Huang
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Jiayin Feng
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Anqi Jin
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Fangyan Wang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Qizhuang Lv
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China.
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China.
| | - Wenjie Pan
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China.
| |
Collapse
|
96
|
Guo L, Zou D, Qiu W, Fei F, Chen L, Chen W, Xiong H, Li X, Wang Y, Gao M, Zhu J, Zhang J, He Y, Gao M, Xu R. Linc-NSC affects cell differentiation, apoptosis and proliferation in mouse neural stem cells and embryonic stem cells in vitro and in vivo. Cell Mol Life Sci 2024; 81:182. [PMID: 38615283 PMCID: PMC11016521 DOI: 10.1007/s00018-024-05224-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/12/2023] [Accepted: 03/18/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND Stem cell therapy is a promising therapeutic strategy. In a previous study, we evaluated tumorigenicity by the stereotactic transplantation of neural stem cells (NSCs) and embryonic stem cells (ESCs) from experimental mice. Twenty-eight days later, there was no evidence of tumor formation or long-term engraftment in the NSCs transplantation group. In contrast, the transplantation of ESCs caused tumor formation; this was due to their high proliferative capacity. Based on transcriptome sequencing, we found that a long intergenic non-coding RNA (named linc-NSC) with unknown structure and function was expressed at 1100-fold higher levels in NSCs than in ESCs. This finding suggested that linc-NSC is negatively correlated with stem cell pluripotency and tumor development, but positively correlated with neurogenesis. In the present study, we investigated the specific role of linc-NSC in NSCs/ESCs in tumor formation and neurogenesis. METHODS Whole transcriptome profiling by RNA sequencing and bioinformatics was used to predict lncRNAs that are widely associated with enhanced tumorigenicity. The expression of linc-NSC was assessed by quantitative real-time PCR. We also performed a number of in vitro methods, including cell proliferation assays, differentiation assays, immunofluorescence assays, flow cytometry, along with in vivo survival and immunofluorescence assays to investigate the impacts of linc-NSC on tumor formation and neurogenesis in NSCs and ESCs. RESULTS Following the knockdown of linc-NSC in NSCs, NSCs cultured in vitro and those transplanted into the cortex of mice showed stronger survival ability (P < 0.0001), enhanced proliferation(P < 0.001), and reduced apoptosis (P < 0.05); the opposite results were observed when linc-NSC was overexpressed in ESCs. Furthermore, the overexpression of linc-NSC in ECSs induced enhanced apoptosis (P < 0.001) and differentiation (P < 0.01), inhibited tumorigenesis (P < 0.05) in vivo, and led to a reduction in tumor weight (P < 0.0001). CONCLUSIONS Our analyses demonstrated that linc-NSC, a promising gene-edited target, may promote the differentiation of mouse NSCs and inhibit tumorigenesis in mouse ESCs. The knockdown of linc-NSC inhibited the apoptosis in NSCs both in vitro and in vivo, and prevented tumor formation, revealing a new dimension into the effect of lncRNA on low survival NSCs and providing a prospective gene manipulation target prior to transplantation. In parallel, the overexpression of linc-NSC induced apoptosis in ESCs both in vitro and in vivo and attenuated the tumorigenicity of ESCs in vivo, but did not completely prevent tumor formation.
Collapse
Affiliation(s)
- Lili Guo
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Dan Zou
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Wenqiao Qiu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Fan Fei
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Lihua Chen
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Wenjin Chen
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Huan Xiong
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Xinda Li
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Yangyang Wang
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Mingjun Gao
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Jianwei Zhu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Jin Zhang
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Yunsen He
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Mou Gao
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Ruxiang Xu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China.
| |
Collapse
|
97
|
Suzuki M, Takada S, Mii Y. Dissection of N-deacetylase and N-sulfotransferase activities of NDST1 and their effects on Wnt8 distribution and signaling in Xenopus embryos. Dev Growth Differ 2024; 66:248-255. [PMID: 38326088 PMCID: PMC11457514 DOI: 10.1111/dgd.12915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/09/2024]
Abstract
Wnt is a family of secreted signaling proteins involved in the regulation of cellular processes, including maintenance of stem cells, carcinogenesis, and cell differentiation. In the context of early vertebrate embryogenesis, graded distribution of Wnt proteins has been thought to regulate positional information along the antero-posterior axis. However, understanding of the molecular basis for Wnt spatial distribution remains poor. Modified states of heparan sulfate (HS) proteoglycans are essential for Wnt8 localization, because depletion of N-deacetylase/N-sulfotransferase 1 (NDST1), a modification enzyme of HS chains, decreases Wnt8 levels and NDST1 overexpression increases Wnt8 levels on the cell surface. Since overexpression of NDST1 increases both deacetylation and N-sulfation of HS chains, it is not clear which function of NDST1 is actually involved in Wnt8 localization. In the present study, we generated an NDST1 mutant that specifically increases deacetylation, but not N-sulfation, of HS chains in Xenopus embryos. Unlike wild-type NDST1, this mutant did not increase Wnt8 accumulation on the cell surface, but it reduced canonical Wnt signaling, as determined with the TOP-Flash reporter assay. These results suggest that N-sulfation of HS chains is responsible for localization of Wnt8 and Wnt8 signaling, whereas deacetylation has an inhibitory effect on canonical Wnt signaling. Consistently, overexpression of wild-type NDST1, but not the mutant, resulted in small eyes in Xenopus embryos. Thus, our NDST1 mutant enables us to dissect the regulation of Wnt8 localization and signaling by HS proteoglycans by specifically manipulating the enzymatic activities of NDST1.
Collapse
Affiliation(s)
- Minako Suzuki
- National Institute for Basic Biology and Exploratory Research Center on Life and Living Systems (ExCELLS)National Institutes of Natural SciencesOkazakiJapan
- The Graduate University for Advanced Studies (SOKENDAI)OkazakiJapan
| | - Shinji Takada
- National Institute for Basic Biology and Exploratory Research Center on Life and Living Systems (ExCELLS)National Institutes of Natural SciencesOkazakiJapan
- The Graduate University for Advanced Studies (SOKENDAI)OkazakiJapan
| | - Yusuke Mii
- National Institute for Basic Biology and Exploratory Research Center on Life and Living Systems (ExCELLS)National Institutes of Natural SciencesOkazakiJapan
- The Graduate University for Advanced Studies (SOKENDAI)OkazakiJapan
- JST, PRESTOKawaguchiJapan
| |
Collapse
|
98
|
Pallotta MM, Di Nardo M, Musio A. Synthetic Lethality between Cohesin and WNT Signaling Pathways in Diverse Cancer Contexts. Cells 2024; 13:608. [PMID: 38607047 PMCID: PMC11011321 DOI: 10.3390/cells13070608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 04/13/2024] Open
Abstract
Cohesin is a highly conserved ring-shaped complex involved in topologically embracing chromatids, gene expression regulation, genome compartmentalization, and genome stability maintenance. Genomic analyses have detected mutations in the cohesin complex in a wide array of human tumors. These findings have led to increased interest in cohesin as a potential target in cancer therapy. Synthetic lethality has been suggested as an approach to exploit genetic differences in cancer cells to influence their selective killing. In this study, we show that mutations in ESCO1, NIPBL, PDS5B, RAD21, SMC1A, SMC3, STAG2, and WAPL genes are synthetically lethal with stimulation of WNT signaling obtained following LY2090314 treatment, a GSK3 inhibitor, in several cancer cell lines. Moreover, treatment led to the stabilization of β-catenin and affected the expression of c-MYC, probably due to the occupancy decrease in cohesin at the c-MYC promoter. Finally, LY2090314 caused gene expression dysregulation mainly involving pathways related to transcription regulation, cell proliferation, and chromatin remodeling. For the first time, our work provides the underlying molecular basis for synthetic lethality due to cohesin mutations and suggests that targeting the WNT may be a promising therapeutic approach for tumors carrying mutated cohesin.
Collapse
Affiliation(s)
| | | | - Antonio Musio
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), 56124 Pisa, Italy; (M.M.P.); (M.D.N.)
| |
Collapse
|
99
|
Ebrahimi N, Manavi MS, Faghihkhorasani F, Fakhr SS, Baei FJ, Khorasani FF, Zare MM, Far NP, Rezaei-Tazangi F, Ren J, Reiter RJ, Nabavi N, Aref AR, Chen C, Ertas YN, Lu Q. Harnessing function of EMT in cancer drug resistance: a metastasis regulator determines chemotherapy response. Cancer Metastasis Rev 2024; 43:457-479. [PMID: 38227149 DOI: 10.1007/s10555-023-10162-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/08/2023] [Indexed: 01/17/2024]
Abstract
Epithelial-mesenchymal transition (EMT) is a complicated molecular process that governs cellular shape and function changes throughout tissue development and embryogenesis. In addition, EMT contributes to the development and spread of tumors. Expanding and degrading the surrounding microenvironment, cells undergoing EMT move away from the main location. On the basis of the expression of fibroblast-specific protein-1 (FSP1), fibroblast growth factor (FGF), collagen, and smooth muscle actin (-SMA), the mesenchymal phenotype exhibited in fibroblasts is crucial for promoting EMT. While EMT is not entirely reliant on its regulators like ZEB1/2, Twist, and Snail proteins, investigation of upstream signaling (like EGF, TGF-β, Wnt) is required to get a more thorough understanding of tumor EMT. Throughout numerous cancers, connections between tumor epithelial and fibroblast cells that influence tumor growth have been found. The significance of cellular crosstalk stems from the fact that these events affect therapeutic response and disease prognosis. This study examines how classical EMT signals emanating from various cancer cells interfere to tumor metastasis, treatment resistance, and tumor recurrence.
Collapse
Affiliation(s)
- Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | | | | | - Siavash Seifollahy Fakhr
- Department of Biotechnology, Faculty of Applied Ecology, Agricultural Science and Biotechnology, Campus Hamar, Inland Norway University of Applied Sciences, Hamar, Norway
| | | | | | - Mohammad Mehdi Zare
- Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Nazanin Pazhouhesh Far
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, 77030, USA
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Amir Reza Aref
- Translational Medicine Group, Xsphera Biosciences, 6 Tide Street, Boston, MA, 02210, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Chu Chen
- Department of Cardiology, Affiliated Hospital of Nantong University, Jiangsu, 226001, China
| | - Yavuz Nuri Ertas
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, 38039, Türkiye.
- Department of Biomedical Engineering, Erciyes University, Kayseri, 38039, Türkiye.
| | - Qi Lu
- Department of Cardiology, Affiliated Hospital of Nantong University, Jiangsu, 226001, China.
| |
Collapse
|
100
|
Zhang Y, Liu K, He H, Xiao H, Fang Z, Chen X, Li H. Innovative explorations: unveiling the potential of organoids for investigating environmental pollutant exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16256-16273. [PMID: 38342830 DOI: 10.1007/s11356-024-32256-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/25/2024] [Indexed: 02/13/2024]
Abstract
As the economy rapidly develops, chemicals are widely produced and used. This has exacerbated the problems associated with environmental pollution, raising the need for efficient toxicological evaluation techniques to investigate the toxic effects and mechanisms of toxicity of environmental pollutants. The progress in the techniques of cell culture in three dimensions has resulted in the creation of models that are more relevant in terms of biology and physiology. This enables researchers to study organ development, toxicology, and drug screening. Adult stem cells (ASCs) and induced pluripotent stem cells (iPSCs) can be obtained from various mammalian tissues, including cancerous and healthy tissues. Such stem cells exhibit a significant level of tissue memory and ability to self-assemble. When cultivated in 3D in vitro environments, the resulting organoids demonstrate a remarkable capacity to recapitulate the cellular composition and function of organs in vivo. Recently, many tumors' tissue-derived organoids have been widely used in research on tumor pathogenesis, drug development, precision medicine, and other fields, including those derived from colon cancer, cholangiocarcinoma, liver cancer, and gastric cancer. However, the application of organoid models for evaluating the toxicity of environmental pollutants is still in its infancy. This review introduces the characteristics of the toxicity responses of organoid models upon exposure to pollutants from the perspectives of organoid characteristics, tissue types, and their applications in toxicology; discusses the feasibility of using organoid models in evaluating the toxicity of pollutants; and provides a reference for future toxicological studies on environmental pollutants based on organoid models.
Collapse
Affiliation(s)
- Yuanhang Zhang
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Kai Liu
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Huan He
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing, 210023, China
| | - Hui Xiao
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Zhihong Fang
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Xianxian Chen
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Huiming Li
- School of Environment, Nanjing Normal University, Nanjing, 210023, China.
- Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing, 210023, China.
| |
Collapse
|