51
|
Brinkmann V, Romeo M, Larigot L, Hemmers A, Tschage L, Kleinjohann J, Schiavi A, Steinwachs S, Esser C, Menzel R, Giani Tagliabue S, Bonati L, Cox F, Ale-Agha N, Jakobs P, Altschmied J, Haendeler J, Coumoul X, Ventura N. Aryl Hydrocarbon Receptor-Dependent and -Independent Pathways Mediate Curcumin Anti-Aging Effects. Antioxidants (Basel) 2022; 11:613. [PMID: 35453298 PMCID: PMC9024831 DOI: 10.3390/antiox11040613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 02/04/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor whose activity can be modulated by polyphenols, such as curcumin. AhR and curcumin have evolutionarily conserved effects on aging. Here, we investigated whether and how the AhR mediates the anti-aging effects of curcumin across species. Using a combination of in vivo, in vitro, and in silico analyses, we demonstrated that curcumin has AhR-dependent or -independent effects in a context-specific manner. We found that in Caenorhabditis elegans, AhR mediates curcumin-induced lifespan extension, most likely through a ligand-independent inhibitory mechanism related to its antioxidant activity. Curcumin also showed AhR-independent anti-aging activities, such as protection against aggregation-prone proteins and oxidative stress in C. elegans and promotion of the migratory capacity of human primary endothelial cells. These AhR-independent effects are largely mediated by the Nrf2/SKN-1 pathway.
Collapse
Affiliation(s)
- Vanessa Brinkmann
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany; (V.B.); (M.R.); (A.S.); (F.C.); (N.A.-A.); (P.J.); (J.A.); (J.H.)
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany; (A.H.); (L.T.); (J.K.); (S.S.); (C.E.)
| | - Margherita Romeo
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany; (V.B.); (M.R.); (A.S.); (F.C.); (N.A.-A.); (P.J.); (J.A.); (J.H.)
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany; (A.H.); (L.T.); (J.K.); (S.S.); (C.E.)
| | - Lucie Larigot
- Faculté des Sciences Fondamentales et Biomédicales, Université de Paris, 45 Rue des Saints-Pères, F-75006 Paris, France; (L.L.); (X.C.)
| | - Anne Hemmers
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany; (A.H.); (L.T.); (J.K.); (S.S.); (C.E.)
| | - Lisa Tschage
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany; (A.H.); (L.T.); (J.K.); (S.S.); (C.E.)
| | - Jennifer Kleinjohann
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany; (A.H.); (L.T.); (J.K.); (S.S.); (C.E.)
| | - Alfonso Schiavi
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany; (V.B.); (M.R.); (A.S.); (F.C.); (N.A.-A.); (P.J.); (J.A.); (J.H.)
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany; (A.H.); (L.T.); (J.K.); (S.S.); (C.E.)
| | - Swantje Steinwachs
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany; (A.H.); (L.T.); (J.K.); (S.S.); (C.E.)
| | - Charlotte Esser
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany; (A.H.); (L.T.); (J.K.); (S.S.); (C.E.)
| | - Ralph Menzel
- Institute of Biology, Humboldt-University Berlin, Philippstr. 13, 10115 Berlin, Germany;
| | - Sara Giani Tagliabue
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy; (S.G.T.); (L.B.)
| | - Laura Bonati
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy; (S.G.T.); (L.B.)
| | - Fiona Cox
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany; (V.B.); (M.R.); (A.S.); (F.C.); (N.A.-A.); (P.J.); (J.A.); (J.H.)
- Institute of Clinical Pharmacology and Pharmacology, Medical Faculty, University Hospital and Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany
| | - Niloofar Ale-Agha
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany; (V.B.); (M.R.); (A.S.); (F.C.); (N.A.-A.); (P.J.); (J.A.); (J.H.)
| | - Philipp Jakobs
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany; (V.B.); (M.R.); (A.S.); (F.C.); (N.A.-A.); (P.J.); (J.A.); (J.H.)
| | - Joachim Altschmied
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany; (V.B.); (M.R.); (A.S.); (F.C.); (N.A.-A.); (P.J.); (J.A.); (J.H.)
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany; (A.H.); (L.T.); (J.K.); (S.S.); (C.E.)
| | - Judith Haendeler
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany; (V.B.); (M.R.); (A.S.); (F.C.); (N.A.-A.); (P.J.); (J.A.); (J.H.)
| | - Xavier Coumoul
- Faculté des Sciences Fondamentales et Biomédicales, Université de Paris, 45 Rue des Saints-Pères, F-75006 Paris, France; (L.L.); (X.C.)
| | - Natascia Ventura
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany; (V.B.); (M.R.); (A.S.); (F.C.); (N.A.-A.); (P.J.); (J.A.); (J.H.)
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany; (A.H.); (L.T.); (J.K.); (S.S.); (C.E.)
| |
Collapse
|
52
|
Habano W, Miura T, Terashima J, Ozawa S. Aryl hydrocarbon receptor as a DNA methylation reader in the stress response pathway. Toxicology 2022; 470:153154. [PMID: 35301058 DOI: 10.1016/j.tox.2022.153154] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/31/2022] [Accepted: 03/10/2022] [Indexed: 10/18/2022]
Abstract
The aryl hydrocarbon receptor (AhR) mediates various cellular responses upon exposure to exogenous and endogenous stress factors. In these responses, AhR plays a dual role as a stress sensor for detecting various AhR ligands and as a transcription factor that upregulates the expression of downstream effector genes, such as those encoding drug-metabolizing enzymes. As a transcription factor, it selectively binds to the unmethylated form of a specific sequence called the xenobiotic responsive element (XRE). We suggest that AhR is a novel DNA methylation reader, unlike classical methylation readers, such as methyl-CpG-binding protein 2, which binds to methylated sequences. Under physiological conditions of continuous exposure to endogenous AhR ligands, such as kynurenine, methylation states of the individual target XREs must be strictly regulated to select and coordinate the expression of downstream genes responsible for maintaining homeostasis in the body. In contrast, long-term exposure to AhR ligands frequently leads to changes in the methylation patterns around the XRE sequence. These data indicate that AhR may contribute to the adaptive cellular response to various stresses by modulating DNA methylation. Thus, the DNA methylation profile of AhR target genes should be dynamically controlled through a balance between robustness and flexibility under both physiological and stress conditions. AhR is a pivotal player in the regulation of stress response as it shows versatility by functioning as a stress sensor, methylation reader, and putative methylation modulator.
Collapse
Affiliation(s)
- Wataru Habano
- Division of Pharmacodynamics and Molecular Genetics, Department of Clinical Pharmaceutical Sciences, School of Pharmacy, Iwate Medical University, Shiwa 028-3694, Iwate, Japan.
| | - Toshitaka Miura
- Division of Pharmacodynamics and Molecular Genetics, Department of Clinical Pharmaceutical Sciences, School of Pharmacy, Iwate Medical University, Shiwa 028-3694, Iwate, Japan
| | - Jun Terashima
- Division of Pharmacodynamics and Molecular Genetics, Department of Clinical Pharmaceutical Sciences, School of Pharmacy, Iwate Medical University, Shiwa 028-3694, Iwate, Japan
| | - Shogo Ozawa
- Division of Pharmacodynamics and Molecular Genetics, Department of Clinical Pharmaceutical Sciences, School of Pharmacy, Iwate Medical University, Shiwa 028-3694, Iwate, Japan
| |
Collapse
|
53
|
Lowery R, Latchney S, Peer R, Lamantia C, Lordy K, Opanashuk L, McCall M, Majewska A. Gestational and lactational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin primes cortical microglia to tissue injury. Brain Behav Immun 2022; 101:288-303. [PMID: 35065196 PMCID: PMC9007156 DOI: 10.1016/j.bbi.2022.01.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/22/2021] [Accepted: 01/16/2022] [Indexed: 11/16/2022] Open
Abstract
Recent studies have shown that the aryl hydrocarbon receptor (AhR) is expressed in the brain's native immune cells, known as microglia. However, while the impact of exposure to AhR ligands is well studied in the peripheral immune system, the impact of such exposure on immune function in the brain is less well defined. Microglia serve dual roles in providing synaptic and immunological support for neighboring neurons and in mediating responses to environmental stimuli, including exposure to environmental chemicals. Because of their dual roles in regulating physiological and pathological processes, cortical microglia are well positioned to translate toxic stimuli into defects in cortical function via aberrant synaptic and immunological functioning, mediated either through direct microglial AhR activation or in response to AhR activation in neighboring cells. Here, we use gene expression studies, histology, and two-photon in vivo imaging to investigate how developmental exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a high-affinity and persistent AhR agonist, modulates microglial characteristics and function in the intact brain. Whole cortical RT-qPCR analysis and RNA-sequencing of isolated microglia revealed that gestational and lactational TCDD exposure produced subtle, but durable, changes in microglia transcripts. Histological examination and two-photon in vivo imaging revealed that while microglia density, distribution, morphology, and motility were unaffected by TCDD exposure, exposure resulted in microglia that responded more robustly to focal tissue injury. However, this effect was rectified with depletion and repopulation of microglia. These results suggest that gestational and lactational exposure to AhR ligands can result in long-term priming of microglia to produce heightened responses towards tissue injury which can be restored to normal function through microglial repopulation.
Collapse
Affiliation(s)
- R.L. Lowery
- Department of Neuroscience, Center for Visual Science, University of Rochester, Rochester, NY 14642
| | - S.E. Latchney
- Department of Neuroscience, Center for Visual Science, University of Rochester, Rochester, NY 14642
| | - R.P. Peer
- Department of Neuroscience, Center for Visual Science, University of Rochester, Rochester, NY 14642
| | - C.E. Lamantia
- Department of Neuroscience, Center for Visual Science, University of Rochester, Rochester, NY 14642
| | - K.A. Lordy
- Department of Neuroscience, Center for Visual Science, University of Rochester, Rochester, NY 14642
| | | | - M. McCall
- Department of Biostatistics and Computational Biology, University of Rochester, NY 14642,Department of Biomedical Genetics, University of Rochester, NY 14642
| | - A.K Majewska
- Department of Neuroscience, Center for Visual Science, University of Rochester, Rochester, NY 14642,Corresponding Author: Ania K. Majewska, University of Rochester, School of Medicine and Dentistry, Department of Neuroscience, Center for Visual Science, 601 Elmwood Avenue, Box 603, Rochester, New York 14642, , Phone: (585) 276-2254
| |
Collapse
|
54
|
Aryl Hydrocarbon Receptor Activation by Benzo[ a]pyrene Prevents Development of Septic Shock and Fatal Outcome in a Mouse Model of Systemic Salmonella enterica Infection. Cells 2022; 11:cells11040737. [PMID: 35203386 PMCID: PMC8870598 DOI: 10.3390/cells11040737] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 02/04/2023] Open
Abstract
This study focused on immunomodulatory effects of aryl hydrocarbon receptor (AhR) activation through benzo[a]pyrene (BaP) during systemic bacterial infection. Using a well-established mouse model of systemic Salmonella enterica (S.E.) infection, we studied the influence of BaP on the cellular and humoral immune response and the outcome of disease. BaP exposure significantly reduced mortality, which is mainly caused by septic shock. Surprisingly, the bacterial burden in BaP-exposed surviving mice was significantly higher compared to non-exposed mice. During the early phase of infection (days 1-3 post-infection (p.i.)), the transcription of proinflammatory factors (i.e., IL-12, IFN-γ, TNF-α, IL-1β, IL-6, IL-18) was induced faster under BaP exposure. Moreover, BaP supported the activity of antigen-presenting cells (i.e., CD64 (FcγRI), MHC II, NO radicals, phagocytosis) at the site of infection. However, early in infection, the anti-inflammatory cytokines IL-10 and IL-22 were also locally and systemically upregulated in BaP-exposed S.E.-infected mice. BaP-exposure resulted in long-term persistence of salmonellae up to day 90 p.i., which was accompanied by significantly elevated S.E.-specific antibody responses (i.e., IgG1, IgG2c). In summary, these data suggest that BaP-induced AhR activation is capable of preventing a fatal outcome of systemic S.E. infection, but may result in long-term bacterial persistence, which, in turn, may support the development of chronic inflammation.
Collapse
|
55
|
The Aryl Hydrocarbon Receptor (AHR): A Novel Therapeutic Target for Pulmonary Diseases? Int J Mol Sci 2022; 23:ijms23031516. [PMID: 35163440 PMCID: PMC8836075 DOI: 10.3390/ijms23031516] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/30/2021] [Accepted: 01/13/2022] [Indexed: 01/08/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a cytoplasmic transcription factor that is well-known for regulating xenobiotic metabolism. Studies in knockout and transgenic mice indicate that the AHR plays a vital role in the development of liver and regulation of reproductive, cardiovascular, hematopoietic, and immune homeostasis. In this focused review on lung diseases associated with acute injury and alveolar development, we reviewed and summarized the current literature on the mechanistic role(s) and therapeutic potential of the AHR in acute lung injury, chronic obstructive pulmonary disease, and bronchopulmonary dysplasia (BPD). Pre-clinical studies indicate that endogenous AHR activation is necessary to protect neonatal and adult lungs against hyperoxia- and cigarette smoke-induced injury. Our goal is to provide insight into the high translational potential of the AHR in the meaningful management of infants and adults with these lung disorders that lack curative therapies.
Collapse
|
56
|
Wu SM, Tsai JJ, Pan HC, Arbiser JL, Elia L, Sheu ML. Aggravation of pulmonary fibrosis after knocking down the Aryl hydrocarbon receptor in the Insulin-like growth factor 1 receptor pathway. Br J Pharmacol 2022; 179:3430-3451. [PMID: 35083738 DOI: 10.1111/bph.15806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Idiopathic pulmonary fibrosis (IPF) is a devastating disease with multiple contributing factors. Insulin-like growth factor 1 receptor (IGF1R), with a reciprocal function to Aryl hydrocarbon receptor (AhR), is known to be involved in the development of airway inflammation. However, the exact relationship between IGF1R and AhR in lung fibrogenesis is unclear. This study aimed to investigate the cascade pathway involving IGF1R and AhR in IPF. EXPERIMENTAL APPROACH The AhR and IGF1R expressions were determined in the lungs of IPF patients and in a rodent fibrosis model. Pulmonary fibrosis was evaluated in bleomycin (BLM)-induced lung injury in wild type and AhR knockout (AhR-/- ) mice. The effects of IGF1R inhibition and AhR activation in vitro on TGF-β1-induced epithelial-mesenchymal transition (EMT) in Beas2B cells and in vivo on BLM-exposed mice were also examined. KEY RESULTS There were increased IGF1R levels but diminished AhR expression in the lung tissues of IPF patients and BLM-induced mice. Knockout of AhR aggravated lung fibrosis, while the use of IGF1R inhibitor and AhR agonist significantly attenuated such effects and inhibited TGF-β1-induced EMT in Beas2B cells. Both TGF-β1 and BLM markedly suppressed AhR expression through endoplasmic reticulum (ER) stress and consequently, IGF1R activation. The IGF1R inhibitor and specific knockdown of IGF1R reversed the activation of the TGF-β1 signal pathway. CONCLUSION AND IMPLICATIONS In the development of IPF, AhR and IGF1R play opposite roles via the TGF-β/Smad/STAT signaling cascade. The AhR/IGF1R axis is a potential target for the treatment of lung injury and fibrosis.
Collapse
Affiliation(s)
- Sheng-Mao Wu
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Jaw-Ji Tsai
- Division of Allergy, Immunology & Rheumatology, Department of Internal Medicine, Asia University Hospital, Taichung, Taiwan
| | - Hung-Chuan Pan
- Department of Neurosurgery, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan.,Ph.D. program in Translational Medicine, Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Jack L Arbiser
- Department of Dermatology, Emory University School of Medicine, Winship Cancer Institute, Atlanta Veterans Administration Health Center, Atlanta, GA, USA
| | - Leonardo Elia
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Lombardia, Italy.,Humanitas Clinical and Research Center, IRCCS, Rozzano, Lombardia, Italy
| | - Meei-Ling Sheu
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan.,Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan.,Ph.D. program in Translational Medicine, Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
57
|
Perrot-Applanat M, Pimpie C, Vacher S, Bieche I, Pocard M, Baud V. Differential Expression of Genes Involved in Metabolism and Immune Response in Diffuse and Intestinal Gastric Cancers, a Pilot Ptudy. Biomedicines 2022; 10:biomedicines10020240. [PMID: 35203450 PMCID: PMC8869420 DOI: 10.3390/biomedicines10020240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/13/2022] [Accepted: 01/16/2022] [Indexed: 02/01/2023] Open
Abstract
Gastric cancer (GC) is one of the major causes of cancer-related mortality worldwide. The vast majority of GC cases are adenocarcinomas including intestinal and diffuse GC. The incidence of diffuse GCs, often associated with poor overall survival, has constantly increased in USA and Europe The molecular basis of diffuse GC aggressivity remains unclear. Using mRNA from diffuse and intestinal GC tumor samples of a Western cohort, this study reports the expression level of the immunomodulatory aryl-hydrocarbon receptor (AhR), and genes involved in immune suppression (PD1, PD-L1, PD-L2) and the early steps of tryptophan metabolism (IDO1, IDO2, TDO2). Strongly increased expression of IDO1 (p < 0.001) and PD1 (p < 0.003) was observed in the intestinal sub-type. The highest expression of IDO1 and PDL1 correlated with early clinical stage and absence of lymphatic invasion (×25 p = 0.004, ×3 p = 0.04, respectively). Our results suggest that kynurenine, produced by tryptophan catabolism, and AhR activation play a central role in creating an immunosuppressive environment. Correspondingly, as compared to intestinal GCs, expression levels of IDO1-TDO2 and PD-L1 were less prominent in diffuse GCs which also had less infiltration of immune cells, suggesting an inactive immune response in the advanced diffuse GC. Confirmation of these patterns of gene expression will require a larger cohort of early and advanced stages of diffuse GC samples.
Collapse
Affiliation(s)
- Martine Perrot-Applanat
- INSERM U1275, CAP Paris-Tech, Université de Paris, Lariboisiere Hospital, F-75010 Paris, France; (C.P.); (M.P.)
- Correspondence: (M.P.-A.); (V.B.)
| | - Cynthia Pimpie
- INSERM U1275, CAP Paris-Tech, Université de Paris, Lariboisiere Hospital, F-75010 Paris, France; (C.P.); (M.P.)
| | - Sophie Vacher
- Pharmacogenomics Unit-Institut Curie, Department of Genetics, Université de Paris, F-75005 Paris, France; (S.V.); (I.B.)
| | - Ivan Bieche
- Pharmacogenomics Unit-Institut Curie, Department of Genetics, Université de Paris, F-75005 Paris, France; (S.V.); (I.B.)
| | - Marc Pocard
- INSERM U1275, CAP Paris-Tech, Université de Paris, Lariboisiere Hospital, F-75010 Paris, France; (C.P.); (M.P.)
- Hepato-Biliary-Pancreatic Gastrointestinal Surgery and Liver Transplantation, AP-HP, Pitié Salpêtrière Hospital, F-75013 Paris, France
| | - Véronique Baud
- NF-kappaB, Différenciation et Cancer, Université de Paris, F-75006 Paris, France
- Correspondence: (M.P.-A.); (V.B.)
| |
Collapse
|
58
|
Kynurenine induces T cell fat catabolism and has limited suppressive effects in vivo. EBioMedicine 2021; 74:103734. [PMID: 34875457 PMCID: PMC8652007 DOI: 10.1016/j.ebiom.2021.103734] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/18/2021] [Accepted: 11/21/2021] [Indexed: 01/17/2023] Open
Abstract
Background L-kynurenine is a tryptophan-derived immunosuppressive metabolite and precursor to neurotoxic anthranilate and quinolinate. We evaluated the stereoisomer D-kynurenine as an immunosuppressive therapeutic which is hypothesized to produce less neurotoxic metabolites than L-kynurenine. Methods L-/D-kynurenine effects on human and murine T cell function were examined in vitro and in vivo (homeostatic proliferation, colitis, cardiac transplant). Kynurenine effects on T cell metabolism were interrogated using [13C] glucose, glutamine and palmitate tracing. Kynurenine was measured in tissues from human and murine tumours and kynurenine-fed mice. Findings We observed that 1 mM D-kynurenine inhibits T cell proliferation through apoptosis similar to L-kynurenine. Mechanistically, [13C]-tracing revealed that co-stimulated CD4+ T cells exposed to L-/D-kynurenine undergo increased β-oxidation depleting fatty acids. Replenishing oleate/palmitate restored effector T cell viability. We administered dietary D-kynurenine reaching tissue kynurenine concentrations of 19 μM, which is close to human kidney (6 μM) and head and neck cancer (14 μM) but well below the 1 mM required for apoptosis. D-kynurenine protected Rag1–/– mice from autoimmune colitis in an aryl-hydrocarbon receptor dependent manner but did not attenuate more stringent immunological challenges such as antigen mismatched cardiac allograft rejection. Interpretation Our dietary kynurenine model achieved tissue concentrations at or above human cancer kynurenine and exhibited only limited immunosuppression. Sub-suppressive kynurenine concentrations in human cancers may limit the responsiveness to indoleamine 2,3-dioxygenase inhibition evaluated in clinical trials. Funding The study was supported by the NIH, the Else Kröner-Fresenius-Foundation, Laffey McHugh foundation, and American Society of Nephrology.
Collapse
|
59
|
Jin J, Wahlang B, Thapa M, Head KZ, Hardesty JE, Srivastava S, Merchant ML, Rai SN, Prough RA, Cave MC. Proteomics and metabolic phenotyping define principal roles for the aryl hydrocarbon receptor in mouse liver. Acta Pharm Sin B 2021; 11:3806-3819. [PMID: 35024308 PMCID: PMC8727924 DOI: 10.1016/j.apsb.2021.10.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 12/20/2022] Open
Abstract
Dioxin-like molecules have been associated with endocrine disruption and liver disease. To better understand aryl hydrocarbon receptor (AHR) biology, metabolic phenotyping and liver proteomics were performed in mice following ligand-activation or whole-body genetic ablation of this receptor. Male wild type (WT) and Ahr–/– mice (Taconic) were fed a control diet and exposed to 3,3′,4,4′,5-pentachlorobiphenyl (PCB126) (61 nmol/kg by gavage) or vehicle for two weeks. PCB126 increased expression of canonical AHR targets (Cyp1a1 and Cyp1a2) in WT but not Ahr–/–. Knockouts had increased adiposity with decreased glucose tolerance; smaller livers with increased steatosis and perilipin-2; and paradoxically decreased blood lipids. PCB126 was associated with increased hepatic triglycerides in Ahr–/–. The liver proteome was impacted more so by Ahr–/– genotype than ligand-activation, but top gene ontology (GO) processes were similar. The PCB126-associated liver proteome was Ahr-dependent. Ahr principally regulated liver metabolism (e.g., lipids, xenobiotics, organic acids) and bioenergetics, but it also impacted liver endocrine response (e.g., the insulin receptor) and function, including the production of steroids, hepatokines, and pheromone binding proteins. These effects could have been indirectly mediated by interacting transcription factors or microRNAs. The biologic roles of the AHR and its ligands warrant more research in liver metabolic health and disease.
Collapse
Key Words
- AHR
- AHR, aryl hydrocarbon receptor
- ALT, alanine transaminase
- ANOVA, analysis of variance
- AST, aspartate transaminase
- AUC, area under the curve
- CAR, constitutive androstane receptor
- CD36, cluster of differentiation 36
- CYP, cytochrome P450
- EPF, enrichment by protein function
- Endocrine disruption
- Environmental liver disease
- FDR, false discovery rate
- FGF21, fibroblast growth factor 21
- GCR, glucocorticoid receptor
- GO, gene ontology
- H&E, hematoxylin-eosin
- HDL, high-density lipoprotein
- HFD, high fat diet
- IGF1, insulin-like growth factor 1
- IL-6, interleukin 6
- IPF, interaction by protein function
- LDL, low-density lipoprotein
- MCP-1, monocyte chemoattractant protein-1
- MUP, major urinary protein
- NAFLD, non-alcoholic fatty liver disease
- NFKBIA, nuclear factor kappa-inhibitor alpha
- Nonalcoholic fatty liver disease
- PAI-1, plasminogen activator inhibitor-1
- PCB, polychlorinated biphenyl
- PCB126
- PLIN2, perilipin-2
- PNPLA3, patatin-like phospholipase domain-containing protein 3
- PPARα, peroxisome proliferator-activated receptor alpha
- PXR, pregnane-xenobiotic receptor
- Perilipin-2
- Pheromones
- SGK1, serum/glucocorticoid regulated kinase
- TAFLD, toxicant-associated fatty liver disease
- TASH, toxicant-associated steatohepatitis
- TAT, tyrosine aminotransferase
- TMT, tandem mass tag
- VLDL, very low-density lipoprotein
- WT, wild type
- ZFP125, zinc finger protein 125
- miR, microRNA
- nHDLc, non-HDL cholesterol
Collapse
|
60
|
Vazquez-Rivera E, Rojas B, Parrott JC, Shen AL, Xing Y, Carney PR, Bradfield CA. The aryl hydrocarbon receptor as a model PAS sensor. Toxicol Rep 2021; 9:1-11. [PMID: 34950569 PMCID: PMC8671103 DOI: 10.1016/j.toxrep.2021.11.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 01/02/2023] Open
Abstract
Proteins containing PER-ARNT-SIM (PAS) domains are commonly associated with environmental adaptation in a variety of organisms. The PAS domain is found in proteins throughout Archaea, Bacteria, and Eukarya and often binds small-molecules, supports protein-protein interactions, and transduces input signals to mediate an adaptive physiological response. Signaling events mediated by PAS sensors can occur through induced phosphorelays or genomic events that are often dependent upon PAS domain interactions. In this perspective, we briefly discuss the diversity of PAS domain containing proteins, with particular emphasis on the prototype member, the aryl hydrocarbon receptor (AHR). This ligand-activated transcription factor acts as a sensor of the chemical environment in humans and many chordates. We conclude with the idea that since mammalian PAS proteins often act through PAS-PAS dimers, undocumented interactions of this type may link biological processes that we currently think of as independent. To support this idea, we present a framework to guide future experiments aimed at fully elucidating the spectrum of PAS-PAS interactions with an eye towards understanding how they might influence environmental sensing in human and wildlife populations.
Collapse
Affiliation(s)
- Emmanuel Vazquez-Rivera
- Molecular and Environmental Toxicology Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
| | - Brenda Rojas
- Molecular and Environmental Toxicology Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
| | - Jessica C. Parrott
- Molecular and Environmental Toxicology Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
| | - Anna L. Shen
- Molecular and Environmental Toxicology Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
| | - Yongna Xing
- Molecular and Environmental Toxicology Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
| | - Patrick R. Carney
- Molecular and Environmental Toxicology Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
| | - Christopher A. Bradfield
- Molecular and Environmental Toxicology Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
| |
Collapse
|
61
|
Disner GR, Lopes-Ferreira M, Lima C. Where the Aryl Hydrocarbon Receptor Meets the microRNAs: Literature Review of the Last 10 Years. Front Mol Biosci 2021; 8:725044. [PMID: 34746229 PMCID: PMC8566438 DOI: 10.3389/fmolb.2021.725044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/14/2021] [Indexed: 12/18/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is an environmentally responsive ligand-activated transcription factor, identified in the ‘70s for its toxic responses to halogenated polycyclic aromatic hydrocarbons, such as dioxin. Recently, AhR has been recognized as engaged in multiple physiological processes in health and diseases, particularly in the immune system, inflammatory response, tumorigenesis, and cellular differentiation by epigenetic mechanisms involving miRNAs. However, there is still scarce information about AhR-dependent miRNA regulation and miRNA-mediated epigenetic control in pathologies and therapies. In this review, we explore the mutual regulation of AhR and miRNA over the last decade of studies since many miRNAs have dioxin response elements (DRE) in their 3’ UTR, as well as AhR might contain binding sites of miRNAs. TCDD is the most used ligand to investigate the impact of AhR activation, and the immune system is one of the most sensitive of its targets. An association between TCDD-activated AhR and epigenetic mechanisms like post-transcriptional regulation by miRNAs, DNA methylation, or histone modification has already been confirmed. Besides, several studies have shown that AhR-induced miR-212/132 cluster suppresses cancers, attenuates autoimmune diseases, and has an anti-inflammatory role in different immune responses by regulating cytokine levels and immune cells. Together the ever-expanding new AhR roles and the miRNA therapeutics are a prominent segment among biopharmaceuticals. Additionally, AhR-activated miRNAs can serve as valuable biomarkers of diseases, notably cancer progression or suppression and chemical exposure. Once AhR-dependent gene expression may hinge on the ligand, cell type, and context singularity, the reviewed outcomes might help contextualize state of the art and support new trends and emerging opportunities in the field.
Collapse
Affiliation(s)
- Geonildo Rodrigo Disner
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICS/FAPESP), Butantan Institute, São Paulo, Brazil
| | - Monica Lopes-Ferreira
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICS/FAPESP), Butantan Institute, São Paulo, Brazil
| | - Carla Lima
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICS/FAPESP), Butantan Institute, São Paulo, Brazil
| |
Collapse
|
62
|
Iqbal K, Pierce SH, Kozai K, Dhakal P, Scott RL, Roby KF, Vyhlidal CA, Soares MJ. Evaluation of Placentation and the Role of the Aryl Hydrocarbon Receptor Pathway in a Rat Model of Dioxin Exposure. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:117001. [PMID: 34747641 PMCID: PMC8574979 DOI: 10.1289/ehp9256] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
BACKGROUND Our environment is replete with chemicals that can affect embryonic and extraembryonic development. Dioxins, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), are compounds affecting development through the aryl hydrocarbon receptor (AHR). OBJECTIVES The purpose of this investigation was to examine the effects of TCDD exposure on pregnancy and placentation and to evaluate roles for AHR and cytochrome P450 1A1 (CYP1A1) in TCDD action. METHODS Actions of TCDD were examined in wild-type and genome-edited rat models. Placenta phenotyping was assessed using morphological, biochemical, and molecular analyses. RESULTS TCDD exposures were shown to result in placental adaptations and at higher doses, pregnancy termination. Deep intrauterine endovascular trophoblast cell invasion was a prominent placentation site adaptation to TCDD. TCDD-mediated placental adaptations were dependent upon maternal AHR signaling but not upon placental or fetal AHR signaling nor the presence of a prominent AHR target, CYP1A1. At the placentation site, TCDD activated AHR signaling within endothelial cells but not trophoblast cells. Immune and trophoblast cell behaviors at the uterine-placental interface were guided by the actions of TCDD on endothelial cells. DISCUSSION We identified an AHR regulatory pathway in rats activated by dioxin affecting uterine and trophoblast cell dynamics and the formation of the hemochorial placenta. https://doi.org/10.1289/EHP9256.
Collapse
Affiliation(s)
- Khursheed Iqbal
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center (KUMC), Kansas City, Kansas, USA
- Department of Pathology and Laboratory Medicine, KUMC, Kansas City, Kansas, USA
| | - Stephen H. Pierce
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center (KUMC), Kansas City, Kansas, USA
- Department of Pathology and Laboratory Medicine, KUMC, Kansas City, Kansas, USA
| | - Keisuke Kozai
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center (KUMC), Kansas City, Kansas, USA
- Department of Pathology and Laboratory Medicine, KUMC, Kansas City, Kansas, USA
| | - Pramod Dhakal
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center (KUMC), Kansas City, Kansas, USA
- Department of Pathology and Laboratory Medicine, KUMC, Kansas City, Kansas, USA
| | - Regan L. Scott
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center (KUMC), Kansas City, Kansas, USA
- Department of Pathology and Laboratory Medicine, KUMC, Kansas City, Kansas, USA
| | - Katherine F. Roby
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center (KUMC), Kansas City, Kansas, USA
- Department of Anatomy and Cell Biology, KUMC, Kansas City, Kansas, USA
| | - Carrie A. Vyhlidal
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center (KUMC), Kansas City, Kansas, USA
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children’s Mercy Kansas City, Kansas City, Missouri
- Center for Perinatal Research, Children’s Mercy Research Institute, Children’s Mercy Kansas City, Kansas City, Missouri
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | - Michael J. Soares
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center (KUMC), Kansas City, Kansas, USA
- Department of Pathology and Laboratory Medicine, KUMC, Kansas City, Kansas, USA
- Center for Perinatal Research, Children’s Mercy Research Institute, Children’s Mercy Kansas City, Kansas City, Missouri
- Department of Obstetrics and Gynecology, KUMC, Kansas City, Kansas, USA
| |
Collapse
|
63
|
Chen F, Xu G, Tian W, Gou S. Breakdown of chemo-immune resistance by a TDO2-targeted Pt(IV) prodrug via attenuating endogenous Kyn-AhR-AQP4 metabolic circuity and TLS-promoted genomic instability. Biochem Pharmacol 2021; 193:114785. [PMID: 34562469 DOI: 10.1016/j.bcp.2021.114785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/14/2021] [Accepted: 09/20/2021] [Indexed: 11/16/2022]
Abstract
A tryptophan-2,3-dioxygenase 2 (TDO2)-targeted Pt(IV) prodrug, DN604-TDOi, was designed to prove that the multi-action compound could overcome drug resistance and relieve immunosuppression via introducing a TDO2 inhibitor to the axial position of a six-coordinate Pt(IV) hybrid. Several in vitro biological studies on cisplatin-resistant NSCLC cancer cells suggested that TDO2-targeted Pt(IV) prodrug could combat cisplatin resistance via influencing TDO2-kynurenine (Kyn)-aryl hydrocarbon receptor (AhR)-Aquaporin-4 (AQP4) metabolic circuity and AhR-human DNA polymerase (hpol) κ-induced translesion DNA synthesis (TLS) genomic instability, which are positive in drug-resistant human tumors associated with malignant progression and poor survival. Remarkably, we observed that DN604-TDOi could inhibit TDO2-mediated constitutive Kyn-AhR-AQP4 signaling pathway and suppress hpol κ expression, leading to potential decrease of cell motility and genomic instability in A549/cDDP cells. It was confirmed that TDO2-targeted Pt(IV) prodrug could harness Kyn-AhR-AQP4 metabolic circuitry and TLS genomic instability, exerting antitumor effects in C57BL6 but not TDO2-/- mice. Moreover, the Pt(IV) prodrug improved the intratumoral infiltration of Teff cells and reduced the recruitment of Treg cells. The results provided compelling preclinical evidence that TDO2-targeted Pt(IV) prodrug could abrogate immune chemotherapeutic resistance via decaying TDO2-mediated Kyn-AhR-AQP4 immunosuppression and AhR-hpol κ-induced TLS genomic instability, underscoring the development of a novel Pt(IV)-based candidate as a potent immunotherapeutic agent for chemo-immune resistance prevention.
Collapse
Affiliation(s)
- Feihong Chen
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Gang Xu
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Wenyuan Tian
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Shaohua Gou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China.
| |
Collapse
|
64
|
Abstract
Significance: As the central metabolic organ, the liver is exposed to a variety of potentially cytotoxic, proinflammatory, profibrotic, and carcinogenic stimuli. To protect the organism from these deleterious effects, the liver has evolved a number of defense systems, which include antioxidant substrates and enzymes, anti-inflammatory tools, enzymatic biotransformation systems, and metabolic pathways. Recent Advances: One of the pivotal systems that evolved during phylogenesis was the heme catabolic pathway. Comprising the important enzymes heme oxygenase and biliverdin reductase, this complex pathway has a number of key functions including enzymatic activities, but also cell signaling, and DNA transcription. It further generates two important bile pigments, biliverdin and bilirubin, as well as the gaseous molecule carbon monoxide. These heme degradation products have potent antioxidant, immunosuppressive, and cytoprotective effects. Recent data suggest that the pathway participates in the regulation of metabolic and hormonal processes implicated in the pathogenesis of hepatic and other diseases. Critical Issues: This review discusses the impact of the heme catabolic pathway on major liver diseases, with particular focus on the involvement of cellular targeting and signaling in the pathogenesis of these conditions. Future Directions: To utilize the biological consequences of the heme catabolic pathway, several unique therapeutic strategies have been developed. Research indicates that pharmaceutical, nutraceutical, and lifestyle modifications positively affect the pathway, delivering potentially long-term clinical benefits. However, further well-designed studies are needed to confirm the clinical benefits of these approaches. Antioxid. Redox Signal. 35, 734-752.
Collapse
Affiliation(s)
- Libor Vítek
- Fourth Department of Internal Medicine, and Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
65
|
Lei R, Xu Z, Xing Y, Liu W, Wu X, Jia T, Sun S, He Y. Global status of dioxin emission and China's role in reducing the emission. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126265. [PMID: 34102354 DOI: 10.1016/j.jhazmat.2021.126265] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/11/2021] [Accepted: 05/28/2021] [Indexed: 06/12/2023]
Abstract
The global status of dioxin emissions across 150 countries/regions were compiled in this study. China, the major emitter of dioxin and the largest developing country, was chosen as an example to illustrate its emission reductions. The global dioxin emissions were about 97.0 kg TEQ/year, Asia and Africa emitted the most dioxins among the continents. Globally, open burning processes were the most important sources of dioxins. Dioxin emissions in developed countries have remained at low and stable level, while those in developing countries have remained at relatively high level or have continued to increase in recent years. It can be speculated that the global dioxin emissions will increase first and then decrease in the future. Chinese dioxin emissions were stable around 9 kg toxic equivalent (TEQ) in recent years, while 17 subcategories are the key sources of dioxin control in the future. Moreover, according to analysis toward China's dioxin emission trend and sources, there is a large space for dioxins reduction in industries such as metal production, waste incineration and disposal. The results indicated that there is at least 30-70% of reduction scope in China based on three scenarios, and this will reduce the world's annual dioxin emissions by 2.7-6.8%.
Collapse
Affiliation(s)
- Rongrong Lei
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenci Xu
- Department of Geography, The University of Hong Kong, 999077, Hong Kong, China
| | - Ying Xing
- Institutes of Science and Development, Chinese Academy of Sciences, Beijing 100190, China
| | - Wenbin Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaolin Wu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianqi Jia
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shurui Sun
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yunchen He
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
66
|
The aryl hydrocarbon receptor promotes differentiation during mouse preimplantational embryo development. Stem Cell Reports 2021; 16:2351-2363. [PMID: 34478649 PMCID: PMC8452532 DOI: 10.1016/j.stemcr.2021.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 12/17/2022] Open
Abstract
Mammalian embryogenesis is a complex process controlled by transcription factors that regulate the balance between pluripotency and differentiation. Transcription factor aryl hydrocarbon receptor (AhR) regulates OCT4/POU5F1 and NANOG, both essential controllers of pluripotency, stemness and early embryo development. Molecular mechanisms controlling OCT4/POU5F1 and NANOG during embryogenesis remain unidentified. We show that AhR regulates pluripotency factors and maintains the metabolic activity required for proper embryo differentiation. AhR-lacking embryos (AhR−/−) showed a pluripotent phenotype characterized by a delayed expression of trophectoderm differentiation markers. Accordingly, central pluripotency factors OCT4/POU5F1 and NANOG were overexpressed in AhR−/− embryos at initial developmental stages. An altered intracellular localization of these factors was observed in the absence of AhR and, importantly, Oct4 had an opposite expression pattern with respect to AhR from the two-cell stage to blastocyst, suggesting a negative regulation of OCT4/POU5F by AhR. We propose that AhR is a regulator of pluripotency and differentiation in early mouse embryogenesis. AhR regulates pluripotency factors OCT4 and NANOG during early embryo differentiation AhR lacking embryos (AhR−/−) show a pluripotent phenotype Pluripotent phenotype of AhR−/− embryos show enhanced glycolytic metabolism
Collapse
|
67
|
Larigot L, Benoit L, Koual M, Tomkiewicz C, Barouki R, Coumoul X. Aryl Hydrocarbon Receptor and Its Diverse Ligands and Functions: An Exposome Receptor. Annu Rev Pharmacol Toxicol 2021; 62:383-404. [PMID: 34499523 DOI: 10.1146/annurev-pharmtox-052220-115707] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is a transcriptional factor that regulates multiple functions following its activation by a variety of ligands, including xenobiotics, natural products, microbiome metabolites, and endogenous molecules. Because of this diversity, the AhR constitutes an exposome receptor. One of its main functions is to regulate several lines of defense against chemical insults and bacterial infections. Indeed, in addition to its well-established detoxication function, it has several functions at physiological barriers, and it plays a critical role in immunomodulation. The AhR is also involved in the development of several organs and their homeostatic maintenance. Its activity depends on the type of ligand and on the time frame of the receptor activation, which can be either sustained or transient, leading in some cases to opposite modes of regulations as illustrated in the regulation of different cancer pathways. The development of selective modulators and their pharmacological characterization are important areas of research. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Lucie Larigot
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles thérapeutiques, Signalisation cellulaire et Biomarqueurs, and Université de Paris, 75006 Paris, France;
| | - Louise Benoit
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles thérapeutiques, Signalisation cellulaire et Biomarqueurs, and Université de Paris, 75006 Paris, France; .,Service de Chirurgie Cancérologique Gynécologique et du Sein, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges-Pompidou, 75015 Paris, France
| | - Meriem Koual
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles thérapeutiques, Signalisation cellulaire et Biomarqueurs, and Université de Paris, 75006 Paris, France; .,Service de Chirurgie Cancérologique Gynécologique et du Sein, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges-Pompidou, 75015 Paris, France
| | - Céline Tomkiewicz
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles thérapeutiques, Signalisation cellulaire et Biomarqueurs, and Université de Paris, 75006 Paris, France;
| | - Robert Barouki
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles thérapeutiques, Signalisation cellulaire et Biomarqueurs, and Université de Paris, 75006 Paris, France; .,Service de Chirurgie Cancérologique Gynécologique et du Sein, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges-Pompidou, 75015 Paris, France
| | - Xavier Coumoul
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles thérapeutiques, Signalisation cellulaire et Biomarqueurs, and Université de Paris, 75006 Paris, France;
| |
Collapse
|
68
|
Qian M, Liu J, Zhao D, Cai P, Pan C, Jia W, Gao Y, Zhang Y, Zhang N, Zhang Y, Zhang Q, Wu D, Shan C, Zhang M, Schnabl B, Yang S, Shen X, Wang L. Aryl Hydrocarbon Receptor Deficiency in Intestinal Epithelial Cells Aggravates Alcohol-Related Liver Disease. Cell Mol Gastroenterol Hepatol 2021; 13:233-256. [PMID: 34454169 PMCID: PMC8599170 DOI: 10.1016/j.jcmgh.2021.08.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS The ligand-activated transcription factor, aryl hydrocarbon receptor (AHR) can sense xenobiotics, dietary, microbial, and metabolic cues. Roles of Ahr in intestinal epithelial cells (IECs) have been much less elucidated compared with those in intestinal innate immune cells. Here, we explored whether the IEC intrinsic Ahr could modulate the development of alcohol-related liver disease (ALD) via the gut-liver axis. METHODS Mice with IEC specific Ahr deficiency (AhrΔIEC) were generated and fed with a control or ethanol diet. Alterations of intestinal microbiota and metabolites were investigated by 16S ribosomal RNA sequencing, metagenomics, and untargeted metabolomics. AHR agonists were used to evaluate the therapeutic potentials of intestinal Ahr activation for ALD treatment. RESULTS AhrΔIEC mice showed more severe liver injury after ethanol feeding than control mice. Ahr deficiency in IECs altered the intestinal metabolite composition, creating an environment that promoted the overgrowth of Helicobacter hepaticus and Helicobacter ganmani in the gut, enhancing their translocation to mesenteric lymph nodes and liver. Among the altered metabolites, isobutyric acid was increased in the cecum of ethanol-fed AhrΔIEC mice relative to control mice. Furthermore, both H.hepaticus and isobutyric acid administration aggravated ethanol-induced liver injury in vivo and in vitro. Supplementation with AHR agonists, 6-formylindolo[3,2-b]carbazole and indole-3-carbinol, protected mice from ALD development by specifically activating intestinal Ahr without affecting liver Ahr function. Alcoholic patients showed lower intestinal AHR expression and higher H.hepaticus levels compared with healthy individuals. CONCLUSIONS Our results indicate that targeted restoration of IEC intrinsic Ahr function may present as a novel approach for ALD treatment.
Collapse
Affiliation(s)
- Minyi Qian
- School of Basic Medicine and Clinical Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China,Institute of Modern Biology, Nanjing University, Nanjing, China,School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jun Liu
- School of Basic Medicine and Clinical Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China,Institute of Modern Biology, Nanjing University, Nanjing, China
| | - Danyang Zhao
- School of Basic Medicine and Clinical Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China,Institute of Modern Biology, Nanjing University, Nanjing, China
| | - Pengpeng Cai
- Department of Gastroenterology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Chuyue Pan
- School of Basic Medicine and Clinical Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China,Institute of Modern Biology, Nanjing University, Nanjing, China
| | - Wenxin Jia
- School of Basic Medicine and Clinical Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China,Institute of Modern Biology, Nanjing University, Nanjing, China
| | - Yingsheng Gao
- School of Basic Medicine and Clinical Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China,Institute of Modern Biology, Nanjing University, Nanjing, China
| | - Yufei Zhang
- School of Basic Medicine and Clinical Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China,Institute of Modern Biology, Nanjing University, Nanjing, China
| | - Nan Zhang
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yinan Zhang
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Quan Zhang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Dalei Wu
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Chengjie Shan
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Meiling Zhang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Song Yang
- Department of Hepatology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xu Shen
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lirui Wang
- School of Basic Medicine and Clinical Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China,Institute of Modern Biology, Nanjing University, Nanjing, China,Correspondence Address correspondence to: Lirui Wang, PhD, Institute of Modern Biology, Nanjing University, 22 Hankou Road, Gulou District, Nanjing, 210093 China.
| |
Collapse
|
69
|
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand activated transcription factor that is a member of the PER-ARNT-SIM superfamily of environmental sensors. This receptor has been a molecule of interest for many years in the field of toxicology, as it was originally discovered to mediate the toxic effects of certain environmental pollutants like benzo(a)pyrene and 2,3,7,8-tetrachlorodibenzo-p-dioxin. While all animals express this protein, there is naturally occurring variability in receptor size and responsiveness to ligand. This naturally occurring variation, particularly in mice, has been an essential tool in the discovery and early characterization of the AHR. Genetic models including congenic mice and induced mutations at the Ahr locus have proven invaluable in further understanding the role of the AHR in adaptive metabolism and TCDD-induced toxicity. The creation and examination of Ahr null mice revealed an important physiological role for the AHR in vascular and hepatic development and mediation of the immune system. In this review, we attempt to provide an overview to many of the AHR models that have aided in the understanding of AHR biology thus far. We describe the naturally occurring polymorphisms, congenic models, induced mutations at the Ahr locus and at the binding partner Ah Receptor Nuclear Translocator and chaperone, Ah receptor associated 9 loci in mice, with a brief description of naturally occurring and induced mutations in rats.
Collapse
Affiliation(s)
- Rachel H Wilson
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI, USA.,Department of Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Christopher A Bradfield
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI, USA.,Department of Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA.,Biotechnology Center, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
70
|
Rico-Leo EM, Lorenzo-Martín LF, Román ÁC, Bustelo XR, Merino JM, Fernández-Salguero PM. Aryl hydrocarbon receptor controls skin homeostasis, regeneration, and hair follicle cycling by adjusting epidermal stem cell function. Stem Cells 2021; 39:1733-1750. [PMID: 34423894 DOI: 10.1002/stem.3443] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/28/2021] [Indexed: 12/20/2022]
Abstract
Skin integrity requires constant maintenance of a quiescent, yet responsive, population of stem cells. While interfollicular epidermal progenitors control normal homeostasis, hair follicle stem cells residing within the bulge provide regenerative potential during hair cycle and in response to wounding. The aryl hydrocarbon receptor (AhR) modulates cell plasticity and differentiation and its overactivation results in severe skin lesions in humans. However, its physiological role in skin homeostasis and hair growth is unknown. Reconstitution assays grafting primary keratinocytes and dermal fibroblasts into nude mice and 3-D epidermal equivalents revealed a positive role for AhR in skin regeneration, epidermal differentiation, and stem cell maintenance. Furthermore, lack of receptor expression in AhR-/- mice delayed morphogenesis and impaired hair regrowth with a phenotype closely correlating with a reduction in suprabasal bulge stem cells (α6low CD34+ ). Moreover, RNA-microarray and RT-qPCR analyses of fluorescence-activated cell sorting (FACS)-isolated bulge stem cells revealed that AhR depletion impaired transcriptional signatures typical of both epidermal progenitors and bulge stem cells but upregulated differentiation markers likely compromising their undifferentiated phenotype. Altogether, our findings support that AhR controls skin regeneration and homeostasis by ensuring epidermal stem cell identity and highlights this receptor as potential target for the treatment of cutaneous pathologies.
Collapse
Affiliation(s)
- Eva María Rico-Leo
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain.,Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Badajoz, Spain
| | | | - Ángel Carlos Román
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Xosé Ramón Bustelo
- Centro de Investigación del Cáncer and CIBERONC, CSIC-Universidad de Salamanca, Salamanca, Spain
| | - Jaime María Merino
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain.,Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Badajoz, Spain
| | - Pedro María Fernández-Salguero
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain.,Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Badajoz, Spain
| |
Collapse
|
71
|
Nacarino-Palma A, Rejano-Gordillo CM, González-Rico FJ, Ordiales-Talavero A, Román ÁC, Cuadrado M, Bustelo XR, Merino JM, Fernández-Salguero PM. Loss of Aryl Hydrocarbon Receptor Favors K-RasG12D-Driven Non-Small Cell Lung Cancer. Cancers (Basel) 2021; 13:cancers13164071. [PMID: 34439225 PMCID: PMC8394265 DOI: 10.3390/cancers13164071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Non-small cell lung adenocarcinoma (NSCLC) bearing K-RasG12D mutations is one of the most prevalent types of lung cancer worldwide. Aryl hydrocarbon receptor (AHR) expression varies in human lung tumors and has been associated with either increased or reduced lung metastasis. In the mouse, Ahr also adjusts lung regeneration upon injury by limiting the expansion of resident stem cells. Here, we show that the loss of Ahr enhances K-RasG12D-driven NSCLC in mice through the amplification of stem cell subpopulations. Consistent with this, we show that K-RasG12D;Ahr-/- lungs contain larger numbers of cells expressing markers for both progenitor Clara (SCGB1A1 and CC10) and alveolar type-II (SFTPC) cells when compared to K-RasG12D;Ahr+/+-driven tumors. They also have elevated numbers of cells positive for pluripotent stem cells markers such as SOX2, ALDH1, EPCAM, LGR5 and PORCN. Typical pluripotency genes Nanog, Sox2 and c-Myc were also upregulated in K-RasG12D;Ahr-/- lung tumors as found by RNAseq analysis. In line with this, purified K-RasG12D/+;Ahr-/- lung cells generate larger numbers of organoids in culture that can subsequently differentiate into bronchioalveolar structures enriched in both pluripotency and stemness genes. Collectively, these data indicate that Ahr antagonizes K-RasG12D-driven NSCLC by restricting the number of cancer-initiating stem cells. They also suggest that Ahr expression might represent a good prognostic marker to determine the progression of K-RasG12D-positive NSCLC patients.
Collapse
Affiliation(s)
- Ana Nacarino-Palma
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Avenida de Elvas s/n, 06071 Badajoz, Spain; (A.N.-P.); (C.M.R.-G.); (F.J.G.-R.); (A.O.-T.); (Á.C.R.); (J.M.M.)
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Avenida de la Investigación s/n, 06071 Badajoz, Spain
| | - Claudia M. Rejano-Gordillo
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Avenida de Elvas s/n, 06071 Badajoz, Spain; (A.N.-P.); (C.M.R.-G.); (F.J.G.-R.); (A.O.-T.); (Á.C.R.); (J.M.M.)
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Avenida de la Investigación s/n, 06071 Badajoz, Spain
| | - Francisco J. González-Rico
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Avenida de Elvas s/n, 06071 Badajoz, Spain; (A.N.-P.); (C.M.R.-G.); (F.J.G.-R.); (A.O.-T.); (Á.C.R.); (J.M.M.)
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Avenida de la Investigación s/n, 06071 Badajoz, Spain
| | - Ana Ordiales-Talavero
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Avenida de Elvas s/n, 06071 Badajoz, Spain; (A.N.-P.); (C.M.R.-G.); (F.J.G.-R.); (A.O.-T.); (Á.C.R.); (J.M.M.)
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Avenida de la Investigación s/n, 06071 Badajoz, Spain
| | - Ángel C. Román
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Avenida de Elvas s/n, 06071 Badajoz, Spain; (A.N.-P.); (C.M.R.-G.); (F.J.G.-R.); (A.O.-T.); (Á.C.R.); (J.M.M.)
| | - Myriam Cuadrado
- Mechanisms of Cancer Program, Centro de Investigación del Cáncer, Campus Unamuno s/n, 37007 Salamanca, Spain; (M.C.); (X.R.B.)
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, Campus Unamuno s/n, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Campus Unamuno s/n, 37007 Salamanca, Spain
| | - Xosé R. Bustelo
- Mechanisms of Cancer Program, Centro de Investigación del Cáncer, Campus Unamuno s/n, 37007 Salamanca, Spain; (M.C.); (X.R.B.)
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, Campus Unamuno s/n, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Campus Unamuno s/n, 37007 Salamanca, Spain
| | - Jaime M. Merino
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Avenida de Elvas s/n, 06071 Badajoz, Spain; (A.N.-P.); (C.M.R.-G.); (F.J.G.-R.); (A.O.-T.); (Á.C.R.); (J.M.M.)
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Avenida de la Investigación s/n, 06071 Badajoz, Spain
| | - Pedro M. Fernández-Salguero
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Avenida de Elvas s/n, 06071 Badajoz, Spain; (A.N.-P.); (C.M.R.-G.); (F.J.G.-R.); (A.O.-T.); (Á.C.R.); (J.M.M.)
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Avenida de la Investigación s/n, 06071 Badajoz, Spain
- Correspondence: ; Tel.: +34-924-289-300 (ext. 86895)
| |
Collapse
|
72
|
Tao LP, Li X, Zhao MZ, Shi JR, Ji SQ, Jiang WY, Liang QJ, Lei YH, Zhou YY, Cheng R, Shi Z, Deng W, Zhu J, Zhang SY. Chrysene, a four-ring polycyclic aromatic hydrocarbon, induces hepatotoxicity in mice by activation of the aryl hydrocarbon receptor (AhR). CHEMOSPHERE 2021; 276:130108. [PMID: 33711793 DOI: 10.1016/j.chemosphere.2021.130108] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a group of persistent organic global environmental pollutants and cause harmful effects on human health. Here, we evaluated adverse effects of chrysene, which is a four-ring PAH and an important member of 16 priority PAHs, on the liver. Chrysene was detected in some common raw and cooked Chinese food samples. Hepatotoxicity including increased relative liver weight, hepatocyte swelling and degeneration, and elevated serum alanine aminotransferase (ALT) levels were observed in chrysene-exposed C57BL/6 mice. Glutamine treatment effectively ameliorated chrysene-induced mice liver injury by decreasing serum ALT levels. Chrysene induced mice hepatic glutathione depletion and oxidative DNA damage with increased 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels. Hepatic expression levels of the aryl hydrocarbon receptor (AhR), AhR-related target genes including CYP1A1, CYP1A2 and CYP1B1, and AhR nuclear translocator (ARNT) were significantly increased in chrysene-exposed C57BL/6 mice. Chrysene induced mice hepatic mRNA levels of the nuclear factor erythroid 2-related factor 2 (Nrf2) and Nrf2-mediated phase II detoxifying and antioxidant enzymes including NQO1, UGT1A1, UGT1A6, SULT1A1, GSTm1, GSTm3, Catalase (CAT), GPx1, and SOD2. We found that chrysene had toxic effects including increased relative liver weight and elevated serum ALT levels on AhR+/+ mice but not AhR-/- mice. Chrysene significantly induced hepatic mRNA levels of CYP1A1 and CYP1A2 in AhR+/+ mice but not AhR-/- mice. To our knowledge, this study is the first to demonstrate that hepatotoxicity causes by chrysene is dependent on AhR, and Nrf2 plays an important regulation role in protection against oxidative liver injury induced by chrysene.
Collapse
Affiliation(s)
- Li-Ping Tao
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xue Li
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ming-Zhu Zhao
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jing-Ru Shi
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Si-Qi Ji
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wen-Yuan Jiang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Qiu-Ju Liang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yu-Hang Lei
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yi-Yao Zhou
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Rong Cheng
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zhe Shi
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wenhai Deng
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jiayin Zhu
- Laboratory of Animal Center, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Shu-Yun Zhang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
73
|
Abney KK, Galipeau J. Aryl hydrocarbon receptor in mesenchymal stromal cells: new frontiers in AhR biology. FEBS J 2021; 288:3962-3972. [PMID: 33064873 PMCID: PMC12102680 DOI: 10.1111/febs.15599] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/30/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022]
Abstract
Mesenchymal stromal cells (MSCs) are nonhematopoietic cells that have been clinically explored as investigational cellular therapeutics for tissue injury regeneration and immune-mediated diseases. Their pharmaceutical properties arise from activation of endogenous receptors and transcription factors leading to a paracrine effect which mirror the biology of progenitors from which they arise. The aryl hydrocarbon receptor (AhR) is a transcription factor that has been extensively studied as an environmental sensor for xenobiotics, but recent findings suggest it can modulate immunological functions. Both genetic and pharmacological investigations revealed that MSCs express AhR and that it plays roles in inflammation, immunomodulation, and mesodermal plasticity of endogenous MSCs. Further, AhR has been shown to interact with key signaling cascades associated with these conditions. Therefore, AhR has potential to be an attractive target in both endogenous and culture-adapted MSCs for novel therapeutics to treat inflammation and other age-related disorders.
Collapse
Affiliation(s)
- Kristopher K Abney
- Department of Medicine and Carbone Cancer Center, University of Wisconsin in Madison, WI, USA
| | - Jacques Galipeau
- Department of Medicine and Carbone Cancer Center, University of Wisconsin in Madison, WI, USA
| |
Collapse
|
74
|
D’Onofrio F, Renga G, Puccetti M, Pariano M, Bellet MM, Santarelli I, Stincardini C, Mosci P, Ricci M, Giovagnoli S, Costantini C, Romani L. Indole-3-Carboxaldehyde Restores Gut Mucosal Integrity and Protects from Liver Fibrosis in Murine Sclerosing Cholangitis. Cells 2021; 10:1622. [PMID: 34209524 PMCID: PMC8305598 DOI: 10.3390/cells10071622] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022] Open
Abstract
Primary sclerosing cholangitis (PSC) is a long-term liver disease characterized by a progressive course of cholestasis with liver inflammation and fibrosis. Intestinal barrier dysfunction has been implicated in the pathogenesis of PSC. According to the "leaky gut" hypothesis, gut inflammation alters the permeability of the intestinal mucosa, with the translocation of gut-derived products that enter the enterohepatic circulation and cause hepatic inflammation. Thus, the administration of molecules that preserve epithelial barrier integrity would represent a promising therapeutic strategy. Indole-3-carboxaldehyde (3-IAld) is a microbial-derived product working at the interface between the host and the microbiota and is able to promote mucosal immune homeostasis in a variety of preclinical settings. Herein, by resorting to a murine model of PSC, we found that 3-IAld formulated for localized delivery in the gut alleviates hepatic inflammation and fibrosis by modulating the intestinal microbiota and activating the aryl hydrocarbon receptor-IL-22 axis to restore mucosal integrity. This study points to the therapeutic potential of 3-IAld in liver pathology.
Collapse
Affiliation(s)
- Fiorella D’Onofrio
- Department of Medicine and Surgery, University of Perugia, Piazzale Lucio Severi 1, 06132 Perugia, Italy; (F.D.); (G.R.); (M.P.); (M.M.B.); (I.S.); (C.S.); (P.M.); (C.C.)
| | - Giorgia Renga
- Department of Medicine and Surgery, University of Perugia, Piazzale Lucio Severi 1, 06132 Perugia, Italy; (F.D.); (G.R.); (M.P.); (M.M.B.); (I.S.); (C.S.); (P.M.); (C.C.)
| | - Matteo Puccetti
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy; (M.P.); (M.R.); (S.G.)
| | - Marilena Pariano
- Department of Medicine and Surgery, University of Perugia, Piazzale Lucio Severi 1, 06132 Perugia, Italy; (F.D.); (G.R.); (M.P.); (M.M.B.); (I.S.); (C.S.); (P.M.); (C.C.)
| | - Marina Maria Bellet
- Department of Medicine and Surgery, University of Perugia, Piazzale Lucio Severi 1, 06132 Perugia, Italy; (F.D.); (G.R.); (M.P.); (M.M.B.); (I.S.); (C.S.); (P.M.); (C.C.)
| | - Ilaria Santarelli
- Department of Medicine and Surgery, University of Perugia, Piazzale Lucio Severi 1, 06132 Perugia, Italy; (F.D.); (G.R.); (M.P.); (M.M.B.); (I.S.); (C.S.); (P.M.); (C.C.)
| | - Claudia Stincardini
- Department of Medicine and Surgery, University of Perugia, Piazzale Lucio Severi 1, 06132 Perugia, Italy; (F.D.); (G.R.); (M.P.); (M.M.B.); (I.S.); (C.S.); (P.M.); (C.C.)
| | - Paolo Mosci
- Department of Medicine and Surgery, University of Perugia, Piazzale Lucio Severi 1, 06132 Perugia, Italy; (F.D.); (G.R.); (M.P.); (M.M.B.); (I.S.); (C.S.); (P.M.); (C.C.)
| | - Maurizio Ricci
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy; (M.P.); (M.R.); (S.G.)
| | - Stefano Giovagnoli
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy; (M.P.); (M.R.); (S.G.)
| | - Claudio Costantini
- Department of Medicine and Surgery, University of Perugia, Piazzale Lucio Severi 1, 06132 Perugia, Italy; (F.D.); (G.R.); (M.P.); (M.M.B.); (I.S.); (C.S.); (P.M.); (C.C.)
| | - Luigina Romani
- Department of Medicine and Surgery, University of Perugia, Piazzale Lucio Severi 1, 06132 Perugia, Italy; (F.D.); (G.R.); (M.P.); (M.M.B.); (I.S.); (C.S.); (P.M.); (C.C.)
- University Research Center on Functional Genomics (C.U.R.Ge.F), University of Perugia, 06132 Perugia, Italy
| |
Collapse
|
75
|
Abstract
The aryl hydrocarbon receptor (AHR) is a ubiquitously expressed ligand-activated transcription factor with multifaceted physiological functions. In the immune system, AHR has been unequivocally identified as a key regulatory factor that can integrate environmental, dietary, or microbial signals into innate and adaptive immune responses. Correspondingly, AHR activity seems to be most important at barrier organs, such as the gut, skin, and lung. The liver is likewise prominently exposed to gut-derived dietary or microbial AHR ligands and, moreover, generates plenty of AHR ligands itself. Yet, surprisingly little is known about the role of AHR in the regulation of hepatic immune responses, which are normally biased towards tolerance, preventing harmful inflammation in response to innocuous stimuli. In this review, we summarize the current knowledge about the role of AHR in hepatic immune responses in the healthy liver as well as in inflammatory liver disease. Moreover, we discuss AHR as a potential therapeutic target in hepatic disorders, including autoimmune liver disease, liver fibrosis, and liver cancer.
Collapse
|
76
|
Dong H, Hao L, Zhang W, Zhong W, Guo W, Yue R, Sun X, Zhou Z. Activation of AhR-NQO1 Signaling Pathway Protects Against Alcohol-Induced Liver Injury by Improving Redox Balance. Cell Mol Gastroenterol Hepatol 2021; 12:793-811. [PMID: 34082111 PMCID: PMC8340139 DOI: 10.1016/j.jcmgh.2021.05.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Aryl hydrocarbon receptor (AhR) is a liver-enriched xenobiotic receptor that plays important role in detoxification response in liver. This study aimed to investigate how AhR signaling may impact the pathogenesis of alcohol-related liver disease (ALD). METHODS Chronic alcohol feeding animal studies were conducted with mouse models of hepatocyte-specific AhR knockout (AhRΔhep) and NAD(P)H quinone dehydrogenase 1 (NQO1) overexpression, and dietary supplementation of the AhR ligand indole-3-carbinol. Cell studies were conducted to define the causal role of AhR and NQO1 in regulation of redox balance and apoptosis. RESULTS Chronic alcohol consumption induced AhR activation and nuclear enrichment of NQO1 in hepatocytes of both alcoholic hepatitis patients and ALD mice. AhR deficiency exacerbated alcohol-induced liver injury, along with reduction of NQO1. Consistently, in vitro studies demonstrated that NQO1 expression was dependent on AhR. However, alcohol-induced NQO1 nuclear translocation was triggered by decreased cellular oxidized nicotinamide adenine dinucleotide (NAD+)-to-NADH ratio, rather than by AhR activation. Furthermore, both in vitro and in vivo overexpression NQO1 prevented alcohol-induced hepatic NAD+ depletion, thereby enhancing activities of NAD+-dependent enzymes and reversing alcohol-induced liver injury. In addition, therapeutic targeting of AhR in the liver with dietary indole-3-carbinol supplementation efficiently reversed alcoholic liver injury by AhR-NQO1 signaling activation. CONCLUSIONS This study demonstrated that AhR activation is a protective response to counteract alcohol-induced hepatic NAD+ depletion through induction of NQO1, and targeting the hepatic AhR-NQO1 pathway may serve as a novel therapeutic approach for ALD.
Collapse
Affiliation(s)
- Haibo Dong
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina
| | - Liuyi Hao
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina
| | - Wenliang Zhang
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina
| | - Wei Zhong
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina,Department of Nutrition, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina
| | - Wei Guo
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina
| | - Ruichao Yue
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina
| | - Xinguo Sun
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina
| | - Zhanxiang Zhou
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina,Department of Nutrition, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina,Correspondence Address correspondence to: Zhanxiang Zhou, PhD, Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, 500 Laureate Way, Suite 4226, Kannapolis, North Carolina 28081. fax: (704) 250-5809.
| |
Collapse
|
77
|
Developmental and lifelong dioxin exposure induces measurable changes in cardiac structure and function in adulthood. Sci Rep 2021; 11:10378. [PMID: 34001975 PMCID: PMC8129097 DOI: 10.1038/s41598-021-89825-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/27/2021] [Indexed: 11/20/2022] Open
Abstract
Congenital heart disease (CHD) is the most common congenital abnormality. A precise etiology for CHD remains elusive, but likely results from interactions between genetic and environmental factors during development, when the heart adapts to physiological and pathophysiological conditions. Further, it has become clearer that early exposure to toxins that do not result in overt CHD may be associated with adverse cardiac outcomes that are not manifested until later life. Previously, interference with endogenous developmental functions of the aryl hydrocarbon receptor (AHR), either by gene ablation or by in utero exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent AHR ligand, was shown to cause structural, molecular and functional cardiac abnormalities and altered heart physiology in mouse embryos. Here, we show that continuous exposure to TCDD from fertilization throughout adulthood caused male mice to underperform at exercise tolerance tests compared to their control and female counterparts, confirming previous observations of a sexually dimorphic phenotype. Renin-angiotensin stimulation by angiotensin II (Ang II) caused measurable increases in blood pressure and left ventricle mass, along with decreased end diastolic volume and preserved ejection fraction. Interestingly, TCDD exposure caused measurable reductions in the myocardial hypertrophic effects of Ang II, suggesting that endogenous AHR signaling present in adulthood may play a role in the pathogenesis of hypertrophy. Overall, the findings reported in this pilot study highlight the complex systems underlying TCDD exposure in the development of cardiac dysfunction in later life.
Collapse
|
78
|
Blevins LK, Zhou J, Crawford RB, Kaminski NE. Identification of a Sensitive Human Immunological Target of Aryl Hydrocarbon Receptor Activation: CD5 + Innate-Like B Cells. Front Immunol 2021; 12:635748. [PMID: 33936048 PMCID: PMC8082145 DOI: 10.3389/fimmu.2021.635748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/24/2021] [Indexed: 01/02/2023] Open
Abstract
Xenobiotic-mediated activation of the aryl hydrocarbon receptor (AHR) is immunotoxic in a number of immune cell types, with the B cell being a well-established sensitive target. Recent advances have provided evidence that the B cell repertoire is a heterogeneous population, with subpopulations exhibiting vastly different cellular and functional phenotypes. Recent work from our laboratory identified the T cell specific kinase lck as being differentially regulated by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), which is a potent activator of AHR. While LCK is primarily expressed in T cells, a subset of CD5+ B cells also express LCK. CD5 positivity describes a broad class of B lymphocytes termed innate-like B cells (ILBs) that are critical mediators of innate immunity through constitutive secretion of polyvalent natural immunoglobulin M (IgM). We hypothesized that CD5+ ILBs may be sensitive to AHR-mediated immunotoxicity. Indeed, when CD5+ B cells were isolated from the CD19+ pool and treated with TCDD, they showed increased suppression of the CD40 ligand-induced IgM response compared to CD5- B cells. Further, characterization of the CD5+ population indicated increased basal expression of AHR, AHR repressor (AHRR), and cytochrome p450 family 1 member a1 (CYP1A1). Indeed the levels of AHR-mediated suppression of the IgM response from individual donors strongly correlated with the percentage of the B cell pool that was CD5+, suggesting that CD5+ B cells are more sensitive to AHR-mediated impairment. Together these data highlight the sensitive nature of CD5+ ILBs to AHR activation and provide insight into mechanisms associated with AHR activation in human B cells.
Collapse
Affiliation(s)
- Lance K Blevins
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
| | - Jiajun Zhou
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Robert B Crawford
- Department of Toxicology & Pharmacology, Michigan State University, East Lansing, MI, United States
| | - Norbert E Kaminski
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States.,Department of Toxicology & Pharmacology, Michigan State University, East Lansing, MI, United States.,Center for Research on Ingredient Safety, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
79
|
Esteban J, Sánchez-Pérez I, Hamscher G, Miettinen HM, Korkalainen M, Viluksela M, Pohjanvirta R, Håkansson H. Role of aryl hydrocarbon receptor (AHR) in overall retinoid metabolism: Response comparisons to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure between wild-type and AHR knockout mice. Reprod Toxicol 2021; 101:33-49. [PMID: 33607186 DOI: 10.1016/j.reprotox.2021.02.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/20/2021] [Accepted: 02/10/2021] [Indexed: 02/06/2023]
Abstract
Young adult wild-type and aryl hydrocarbon receptor knockout (AHRKO) mice of both sexes and the C57BL/6J background were exposed to 10 weekly oral doses of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; total dose of 200 μg/kg bw) to further characterize the observed impacts of AHR as well as TCDD on the retinoid system. Unexposed AHRKO mice harboured heavier kidneys, lighter livers and lower serum all-trans retinoic acid (ATRA) and retinol (REOH) concentrations than wild-type mice. Results from the present study also point to a role for the murine AHR in the control of circulating REOH and ATRA concentrations. In wild-type mice, TCDD elevated liver weight and reduced thymus weight, and drastically reduced the hepatic concentrations of 9-cis-4-oxo-13,14-dihydro-retinoic acid (CORA) and retinyl palmitate (REPA). In female wild-type mice, TCDD increased the hepatic concentration of ATRA as well as the renal and circulating REOH concentrations. Renal CORA concentrations were substantially diminished in wild-type male mice exclusively following TCDD-exposure, with a similar tendency in serum. In contrast, TCDD did not affect any of these toxicity or retinoid system parameters in AHRKO mice. Finally, a distinct sex difference occurred in kidney concentrations of all the analysed retinoid forms. Together, these results strengthen the evidence of a mandatory role of AHR in TCDD-induced retinoid disruption, and suggest that the previously reported accumulation of several retinoid forms in the liver of AHRKO mice is a line-specific phenomenon. Our data further support participation of AHR in the control of liver and kidney development in mice.
Collapse
Affiliation(s)
- Javier Esteban
- Instituto De Bioingeniería, Universidad Miguel Hernández De Elche, Elche, Alicante, Spain.
| | - Ismael Sánchez-Pérez
- Instituto De Bioingeniería, Universidad Miguel Hernández De Elche, Elche, Alicante, Spain.
| | - Gerd Hamscher
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Giessen, Germany.
| | - Hanna M Miettinen
- School of Pharmacy (Toxicology) and Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland.
| | - Merja Korkalainen
- Environmental Health Unit, Finnish Insitute for Health and Welfare (THL), Kuopio, Finland.
| | - Matti Viluksela
- School of Pharmacy (Toxicology) and Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland; Environmental Health Unit, Finnish Insitute for Health and Welfare (THL), Kuopio, Finland.
| | - Raimo Pohjanvirta
- Department of Food Hygiene & Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Mustialankatu 1, FI-00790 Helsinki, Finland.
| | - Helen Håkansson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
80
|
Angeles-López QD, García-Lara L, Aguirre-Pineda N, Castañeda-Arellano R, Elizondo-Azuela G, Pérez-Severiano F, Segovia J. The absence of the aryl hydrocarbon receptor in the R6/1 transgenic mouse model of Huntington's disease improves the neurological phenotype. Behav Brain Res 2021; 408:113230. [PMID: 33684424 DOI: 10.1016/j.bbr.2021.113230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/16/2021] [Accepted: 03/01/2021] [Indexed: 12/31/2022]
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder caused by an abnormal CAG repeat expansion in the huntingtin gene coding for a protein with an elongated polyglutamine sequence. HD patients present choreiform movements, which are caused by the loss of neurons in the striatum and cerebral cortex. Previous reports indicate that the absence of the aryl hydrocarbon receptor (AhR) protects mice from excitotoxic insults and increases the transcription of neurotrophic factors. Based on these data, we evaluated the effects of the lack of the AhR on a mice model of HD, generating a double transgenic mouse, expressing human mutated huntingtin (R6/1 mice) and knockout for the AhR. Our results show that the body weight of 30-week-old double transgenic mice is similar to that of R6/1 mice; however, feet clasping, an indicative of neuronal damage in the R6/1 animals, was not observed. In addition, motor coordination and ambulatory behavior in double transgenic mice did not deteriorate over time as occur in the R6/1 mice. Moreover, the anxiety behavior of double transgenic mice was similar to wild type mice. Interestingly, astrogliosis is also reduced in the double transgenic mice. The present data demonstrate that the complete loss of the AhR reduces the motor and behavioral deterioration observed in R6/1 mice, suggesting that the pharmacological modulation of the AhR could be a therapeutic target in HD.
Collapse
Affiliation(s)
- Quetzalli D Angeles-López
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, 07360, Mexico; Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, 14269, Mexico
| | - Lucia García-Lara
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, 14269, Mexico
| | - Nicolás Aguirre-Pineda
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, 07360, Mexico
| | - Rolando Castañeda-Arellano
- Departamento de Ciencias Biomédicas, Centro Universitario de Tonalá, Universidad de Guadalajara 45425, Jalisco, Mexico
| | - Guillermo Elizondo-Azuela
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, 07360, Mexico
| | - Francisca Pérez-Severiano
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, 14269, Mexico
| | - José Segovia
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, 07360, Mexico.
| |
Collapse
|
81
|
Trajectory Shifts in Interdisciplinary Research of the Aryl Hydrocarbon Receptor-A Personal Perspective on Thymus and Skin. Int J Mol Sci 2021; 22:ijms22041844. [PMID: 33673338 PMCID: PMC7918350 DOI: 10.3390/ijms22041844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/13/2022] Open
Abstract
Identifying historical trajectories is a useful exercise in research, as it helps clarify important, perhaps even “paradigmatic”, shifts in thinking and moving forward in science. In this review, the development of research regarding the role of the transcription factor “aryl hydrocarbon receptor” (AHR) as a mediator of the toxicity of environmental pollution towards a link between the environment and a healthy adaptive response of the immune system and the skin is discussed. From this fascinating development, the opportunities for targeting the AHR in the therapy of many diseases become clear.
Collapse
|
82
|
Xiong L, Dean JW, Fu Z, Oliff KN, Bostick JW, Ye J, Chen ZE, Mühlbauer M, Zhou L. Ahr-Foxp3-RORγt axis controls gut homing of CD4 + T cells by regulating GPR15. Sci Immunol 2021; 5:5/48/eaaz7277. [PMID: 32532834 DOI: 10.1126/sciimmunol.aaz7277] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 05/20/2020] [Indexed: 12/22/2022]
Abstract
The orphan chemoattractant receptor GPR15 is important for homing T lymphocytes to the large intestine, thereby maintaining intestinal immune homeostasis. However, the molecular mechanisms underlying the regulation of GPR15 expression remain elusive. Here, we show a central role of the aryl hydrocarbon receptor (Ahr) in promoting GPR15 expression in both mice and human, thus gut homing of T lymphocytes. Mechanistically, Ahr directly binds to open chromatin regions of the Gpr15 locus to enhance its expression. Ahr transcriptional activity in directing GPR15 expression was modulated by two transcription factors, Foxp3 and RORγt, both of which are expressed preferentially by gut regulatory T cells (Tregs) in vivo. Specifically, Foxp3 interacted with Ahr and enhanced Ahr DNA binding at the Gpr15 locus, thereby promoting GPR15 expression. In contrast, RORγt plays an inhibitory role, at least in part, by competing with Ahr binding to the Gpr15 locus. Our findings thus demonstrate a key role for Ahr in regulating Treg intestinal homing under the steady state and during inflammation and the importance of Ahr-RORγt-Foxp3 axis in regulating gut homing receptor GPR15 expression by lymphocytes.
Collapse
Affiliation(s)
- Lifeng Xiong
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Joseph W Dean
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Zheng Fu
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Kristen N Oliff
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | - John W Bostick
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Jian Ye
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Zongming E Chen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Marcus Mühlbauer
- Division of Gastroenterology, Hepatology and Nutrition, College of Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Liang Zhou
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA.
| |
Collapse
|
83
|
Dvořák Z, Poulíková K, Mani S. Indole scaffolds as a promising class of the aryl hydrocarbon receptor ligands. Eur J Med Chem 2021; 215:113231. [PMID: 33582577 DOI: 10.1016/j.ejmech.2021.113231] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/24/2021] [Accepted: 01/24/2021] [Indexed: 11/18/2022]
Abstract
The aryl hydrocarbon receptor (AhR), deemed initially as a xenobiotic sensor, plays multiple physiological roles and is involved in various pathophysiological processes and many diseases' etiology. Therefore, the therapeutic and chemopreventive targeting of AhR is a fundamental issue. To date, thousands of structurally diverse ligands of AhR have been identified. The bottleneck in targeting the AhR is that it is a Janus-faced player with beneficial vs. harmful effects in the ligand-specific context. A distinct structural class of the AhR ligands is those with indole-based scaffolds. The present review summarizes the knowledge on the existing indole-derived AhR ligands, comprising natural and dietary compounds, synthetic compounds including clinically used drugs, endogenous intermediary metabolites, and catabolites produced by human microbiota. The examples of novel, indole ring containing, rational design based AhR ligands are presented. The molecular, in vitro, and in vivo effects are described.
Collapse
Affiliation(s)
- Zdeněk Dvořák
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| | - Karolína Poulíková
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Sridhar Mani
- Department of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
84
|
Barroso A, Mahler JV, Fonseca-Castro PH, Quintana FJ. The aryl hydrocarbon receptor and the gut-brain axis. Cell Mol Immunol 2021; 18:259-268. [PMID: 33408340 PMCID: PMC8027889 DOI: 10.1038/s41423-020-00585-5] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor initially identified as the receptor for dioxin. Almost half a century after its discovery, AHR is now recognized as a receptor for multiple physiological ligands, with important roles in health and disease. In this review, we discuss the role of AHR in the gut-brain axis and its potential value as a therapeutic target for immune-mediated diseases.
Collapse
Affiliation(s)
- Andreia Barroso
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - João Vitor Mahler
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Pedro Henrique Fonseca-Castro
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
85
|
Kim JH, Matsubara T, Lee J, Fenollar-Ferrer C, Han K, Kim D, Jia S, Chang CJ, Yang H, Nagano T, Krausz KW, Yim SH, Gonzalez FJ. Lysosomal SLC46A3 modulates hepatic cytosolic copper homeostasis. Nat Commun 2021; 12:290. [PMID: 33436590 PMCID: PMC7804329 DOI: 10.1038/s41467-020-20461-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 12/02/2020] [Indexed: 01/05/2023] Open
Abstract
The environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) causes hepatic toxicity associated with prominent lipid accumulation in humans. Here, the authors report that the lysosomal copper transporter SLC46A3 is induced by TCDD and underlies the hepatic lipid accumulation in mice, potentially via effects on mitochondrial function. SLC46A3 was localized to the lysosome where it modulated intracellular copper levels. Forced expression of hepatic SLC46A3 resulted in decreased mitochondrial membrane potential and abnormal mitochondria morphology consistent with lower copper levels. SLC46A3 expression increased hepatic lipid accumulation similar to the known effects of TCDD exposure in mice and humans. The TCDD-induced hepatic triglyceride accumulation was significantly decreased in Slc46a3-/- mice and was more pronounced when these mice were fed a high-fat diet, as compared to wild-type mice. These data are consistent with a model where lysosomal SLC46A3 induction by TCDD leads to cytosolic copper deficiency resulting in mitochondrial dysfunction leading to lower lipid catabolism, thus linking copper status to mitochondrial function, lipid metabolism and TCDD-induced liver toxicity.
Collapse
Affiliation(s)
- Jung-Hwan Kim
- Department of Pharmacology, School of Medicine, Institute of Health Sciences, Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea.
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Tsutomu Matsubara
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Department of Anatomy and Regenerative Biology, Osaka City University Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Jaekwon Lee
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Cristina Fenollar-Ferrer
- Laboratory of Molecular & Cellular Neurobiology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kyungreem Han
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Donghwan Kim
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Shang Jia
- Departments of Chemistry and Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
| | - Christopher J Chang
- Departments of Chemistry and Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
| | - Heejung Yang
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- College of Pharmacy, Kangwon National University, Chuncheon, Republic of Korea
| | - Tomokazu Nagano
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Sumitomo Dainippon Pharma Co. Ltd., Osaka, Japan
| | - Kristopher W Krausz
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sun-Hee Yim
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, 41163, USA
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
86
|
Coelho NR, Matos C, Pimpão AB, Correia MJ, Sequeira CO, Morello J, Pereira SA, Monteiro EC. AHR canonical pathway: in vivo findings to support novel antihypertensive strategies. Pharmacol Res 2021; 165:105407. [PMID: 33418029 DOI: 10.1016/j.phrs.2020.105407] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 12/23/2022]
Abstract
Essential hypertension (HTN) is a disease where genetic and environmental factors interact to produce a high prevalent set of almost indistinguishable phenotypes. The weak definition of what is under the umbrella of HTN is a consequence of the lack of knowledge on the players involved in environment-gene interaction and their impact on blood pressure (BP) and mechanisms. The disclosure of these mechanisms that sense and (mal)adapt to toxic-environmental stimuli might at least determine some phenotypes of essential HTN and will have important therapeutic implications. In the present manuscript, we looked closer to the environmental sensor aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor involved in cardiovascular physiology, but better known by its involvement in biotransformation of xenobiotics through its canonical pathway. This review aims to disclose the contribution of the AHR-canonical pathway to HTN. For better mirror the complexity of the mechanisms involved in BP regulation, we privileged evidence from in vivo studies. Here we ascertained the level of available evidence and a comprehensive characterization of the AHR-related phenotype of HTN. We reviewed clinical and rodent studies on AHR-HTN genetic association and on AHR ligands and their impact on BP. We concluded that AHR is a druggable mechanistic linker of environmental exposure to HTN. We conclude that is worth to investigate the canonical pathway of AHR and the expression/polymorphisms of its related genes and/or other biomarkers (e.g. tryptophan-related ligands), in order to identify patients that may benefit from an AHR-centered antihypertensive treatment.
Collapse
Affiliation(s)
- Nuno R Coelho
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - Clara Matos
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - António B Pimpão
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - M João Correia
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - Catarina O Sequeira
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - Judit Morello
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - Sofia A Pereira
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal.
| | - Emília C Monteiro
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| |
Collapse
|
87
|
Tissue signals imprint Aiolos expression in ILC2s to modulate type 2 immunity. Mucosal Immunol 2021; 14:1306-1322. [PMID: 34349237 PMCID: PMC8528704 DOI: 10.1038/s41385-021-00431-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/02/2021] [Accepted: 06/28/2021] [Indexed: 02/04/2023]
Abstract
Group 2 innate lymphoid cells (ILC2s) manifest tissue heterogeneity and are crucial modulators of regional immune responses. The molecular mechanisms regulating tissue ILC2 properties remain elusive. Here, we interrogate the signatures of ILC2s from five tissues at the transcriptome and epigenetic level. We have found that tissue microenvironment strongly shapes ILC2 identities. The intestine induces Aiolos+ILC2s, whereas lung and pancreas enhance Galectin-1+ILC2s. Though being a faithful gut ILC2 feature under the steady state, Aiolos is induced in non-intestinal ILC2s by pro-inflammatory cytokines. Specifically, IL-33 stimulates Aiolos expression in both human and mouse non-intestinal ILC2s. Functionally, Aiolos facilitates eosinophil recruitment by supporting IL-5 production and proliferation of ST2+ILC2s through inhibiting PD-1. At the epigenetic level, ILC2 tissue characters are imprinted by open chromatin regions (OCRs) at non-promoters. Intestinal-specific transcription factor aryl hydrocarbon receptor (Ahr) binds to Ikzf3 (encoding Aiolos) locus, increases the accessibility of an intestinal ILC2-specific OCR, and promotes the Ikzf3 transcription by enhancing H3K27ac. Consequently, Ahr prevents ILC2s entering an "exhausted-like" state through sustaining Aiolos expression. Our work elucidates mechanism of ILC2 tissue adaptation and highlights Aiolos as a potential target of type 2 inflammation.
Collapse
|
88
|
Girer NG, Tomlinson CR, Elferink CJ. The Aryl Hydrocarbon Receptor in Energy Balance: The Road from Dioxin-Induced Wasting Syndrome to Combating Obesity with Ahr Ligands. Int J Mol Sci 2020; 22:E49. [PMID: 33374508 PMCID: PMC7793057 DOI: 10.3390/ijms22010049] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) has been studied for over 40 years, yet our understanding of this ligand-activated transcription factor remains incomplete. Each year, novel findings continually force us to rethink the role of the AHR in mammalian biology. The AHR has historically been studied within the context of potent activation via AHR agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), with a focus on how the AHR mediates TCDD toxicity. Research has subsequently revealed that the AHR is actively involved in distinct physiological processes ranging from the development of the liver and reproductive organs, to immune system function and wound healing. More recently, the AHR was implicated in the regulation of energy metabolism and is currently being investigated as a potential therapeutic target for obesity. In this review, we re-trace the steps through which the early toxicological studies of TCDD led to the conceptual framework for the AHR as a potential therapeutic target in metabolic disease. We additionally discuss the key discoveries that have been made concerning the role of the AHR in energy metabolism, as well as the current and future directions of the field.
Collapse
Affiliation(s)
- Nathaniel G. Girer
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch at Galveston, Galveston, TX 77550, USA;
| | - Craig R. Tomlinson
- Department of Molecular and Systems Biology, Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, Dartmouth College, Lebanon, NH 03756, USA;
| | - Cornelis J. Elferink
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch at Galveston, Galveston, TX 77550, USA;
| |
Collapse
|
89
|
Koual M, Tomkiewicz C, Cano-Sancho G, Antignac JP, Bats AS, Coumoul X. Environmental chemicals, breast cancer progression and drug resistance. Environ Health 2020; 19:117. [PMID: 33203443 PMCID: PMC7672852 DOI: 10.1186/s12940-020-00670-2] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 10/21/2020] [Indexed: 05/04/2023]
Abstract
Breast cancer (BC) is one of the most common causes of cancer in the world and the second leading cause of cancer deaths among women. Mortality is associated mainly with the development of metastases. Identification of the mechanisms involved in metastasis formation is, therefore, a major public health issue. Among the proposed risk factors, chemical environment and pollution are increasingly suggested to have an effect on the signaling pathways involved in metastatic tumor cells emergence and progression. The purpose of this article is to summarize current knowledge about the role of environmental chemicals in breast cancer progression, metastasis formation and resistance to chemotherapy. Through a scoping review, we highlight the effects of a wide variety of environmental toxicants, including persistent organic pollutants and endocrine disruptors, on invasion mechanisms and metastatic processes in BC. We identified the epithelial-to-mesenchymal transition and cancer-stemness (the stem cell-like phenotype in tumors), two mechanisms suspected of playing key roles in the development of metastases and linked to chemoresistance, as potential targets of contaminants. We discuss then the recently described pro-migratory and pro-invasive Ah receptor signaling pathway and conclude that his role in BC progression is still controversial. In conclusion, although several pertinent pathways for the effects of xenobiotics have been identified, the mechanisms of actions for multiple other molecules remain to be established. The integral role of xenobiotics in the exposome in BC needs to be further explored through additional relevant epidemiological studies that can be extended to molecular mechanisms.
Collapse
Affiliation(s)
- Meriem Koual
- INSERM UMR-S1124, 3TS, Toxicologie Pharmacologie et Signalisation Cellulaire, Université de Paris, Paris, France.
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges-Pompidou, Service de Chirurgie Cancérologique Gynécologique et du Sein, Paris, France.
- Faculté de Médecine, Université de Paris, Paris, France.
| | - Céline Tomkiewicz
- INSERM UMR-S1124, 3TS, Toxicologie Pharmacologie et Signalisation Cellulaire, Université de Paris, Paris, France
- Faculté de Médecine, Université de Paris, Paris, France
| | | | | | - Anne-Sophie Bats
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges-Pompidou, Service de Chirurgie Cancérologique Gynécologique et du Sein, Paris, France
- Faculté de Médecine, Université de Paris, Paris, France
- INSERM UMR-S1147, Equipe labellisée Ligue Nationale Contre le Cancer, Université de Paris, Paris, France
| | - Xavier Coumoul
- INSERM UMR-S1124, 3TS, Toxicologie Pharmacologie et Signalisation Cellulaire, Université de Paris, Paris, France.
- Faculté de Médecine, Université de Paris, Paris, France.
| |
Collapse
|
90
|
Abstract
Increasing evidence suggests a significant role for microbiota dependent metabolites and co-metabolites, acting as aryl hydrocarbon receptor (AHR) ligands, to facilitate bidirectional communication between the host and the microbiota and thus modulate physiology. Such communication is particularly evident within the gastrointestinal tract. Through binding to or activating the AHR, these metabolites play fundamental roles in various physiological processes and likely contribute to the maintenance of intestinal homeostasis. In recent years, tryptophan metabolites were screened to identify physiologically relevant AHR ligands or activators. The discovery of specific microbiota-derived indole-based metabolites as AHR ligands may provide insight concerning how these metabolites affect interactions between gut microbiota and host intestinal homeostasis and how this relates to chronic GI disease and overall health. A greater understanding of the mechanisms that modulate the production of such metabolites and associated AHR activity may be utilized to effectively treat inflammatory diseases and promote human health. Here, we review microbiota-derived AHR ligands generated from tryptophan that modulate host-gut microbiota interactions and discuss possible intervention strategies for potential therapies in the future.
Collapse
Affiliation(s)
- Fangcong Dong
- Department of Veterinary and Biomedical Sciences and the Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA, USA
| | - Gary H. Perdew
- Department of Veterinary and Biomedical Sciences and the Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA, USA,CONTACT Gary H. Perdew The Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA16802, USA
| |
Collapse
|
91
|
Devillers MM, Petit F, Giton F, François CM, Juricek L, Coumoul X, Magre S, Cohen-Tannoudji J, Guigon CJ. Age-dependent vulnerability of the ovary to AhR-mediated TCDD action before puberty: Evidence from mouse models. CHEMOSPHERE 2020; 258:127361. [PMID: 32947662 DOI: 10.1016/j.chemosphere.2020.127361] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/03/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
In female mammals, puberty and fertility are regulated by the synthesis of estradiol (E2) by the ovaries at the infantile stage and at the approach of puberty, a process which may be affected by endocrine disrupting chemicals (EDC)s acting through the Aryl hydrocarbon receptor (AhR). However, there is no information on AhR-mediated regulation of ovarian estrogenic activity during these developmental periods. Here, we assessed in mouse models, the intrinsic and exogenous ligand-induced AhR action on E2 synthesis at the infantile stage (14 days postnatal (dpn)) and at the approach of puberty (28 dpn). Intrinsic AhR pathway became activated in the ovary at the approach of puberty, as suggested by the decreased intra-ovarian expression in prototypical and steroidogenesis-related AhR targets and E2 contents in Ahr knockout (Ahr-/-) mice versus Ahr+/+ mice exclusively at 28 dpn. Accordingly, AhR nuclear localization in granulosa cells, reflecting its activity in cells responsible for E2 synthesis, was much lower at 14 dpn than at 28 dpn in C57BL/6 mice. However, AhR signaling could be activated by exogenous ligands at both ages, as revealed by FICZ- and TCDD-induced Ahrr and Cyp1a1 expression in C57BL/6 mice. Nevertheless, TCDD impacted ovarian estrogenic activity only at 28 dpn. This age-related AhR action may be ligand-dependent, since FICZ had no effect on E2 synthesis at 28 dpn. In conclusion, AhR would not regulate ovarian estrogenic activity before the approach of puberty. Its activation by EDCs may be more detrimental to reproductive health at this stage than during infancy.
Collapse
Affiliation(s)
- Marie M Devillers
- Université de Paris, BFA, UMR 8251, CNRS, ERL U1133, Inserm, F-75013, Paris, France
| | - Florence Petit
- Université de Paris, BFA, UMR 8251, CNRS, ERL U1133, Inserm, F-75013, Paris, France
| | - Frank Giton
- AP-HP, Pôle biologie-Pathologie Henri Mondor, INSERM IMRB U955, Créteil, France
| | - Charlotte M François
- Université de Paris, BFA, UMR 8251, CNRS, ERL U1133, Inserm, F-75013, Paris, France
| | | | | | - Solange Magre
- Université de Paris, BFA, UMR 8251, CNRS, ERL U1133, Inserm, F-75013, Paris, France
| | | | - Céline J Guigon
- Université de Paris, BFA, UMR 8251, CNRS, ERL U1133, Inserm, F-75013, Paris, France.
| |
Collapse
|
92
|
Wang F, Liang S, Hu J, Xu Y. Aryl hydrocarbon receptor connects dysregulated immune cells to atherosclerosis. Immunol Lett 2020; 228:55-63. [PMID: 33053378 DOI: 10.1016/j.imlet.2020.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/29/2020] [Accepted: 10/08/2020] [Indexed: 11/20/2022]
Abstract
As a chronic inflammatory disease with autoimmune components, atherosclerosis is the major cause of cardiovascular morbidity and mortality. Recent studies have revealed that the development of atherosclerosis is strongly linked to the functional activities of aryl hydrocarbon receptor (AHR), a chemical sensor that is also important for the development, maintenance, and function of a variety of immune cells. In this review, we focus on the impact of AHR signaling on the different cell types that are closely related to the atherogenesis, including T cells, B cells, dendritic cells, macrophages, foam cells, and hematopoietic stem cells in the arterial walls, and summarize the latest development on the interplay between this environmental sensor and immune cells in the context of atherosclerosis. Hopefully, elucidation of the role of AHR in atherosclerosis will facilitate the understanding of case variation in disease prevalence and may aid in the development of novel therapies.
Collapse
Affiliation(s)
- Fengge Wang
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, School of Life Science, Anhui Normal University, Wuhu, 241000, China
| | - Shuangchao Liang
- Department of Vascular Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, 241000, China
| | - Jiqiong Hu
- Department of Vascular Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, 241000, China
| | - Yuekang Xu
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, School of Life Science, Anhui Normal University, Wuhu, 241000, China.
| |
Collapse
|
93
|
An L, Shi Q, Fan M, Huang G, Zhu M, Zhang M, Liu Y, Weng Y. Benzo[a]pyrene injures BMP2-induced osteogenic differentiation of mesenchymal stem cells through AhR reducing BMPRII. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 203:110930. [PMID: 32684523 DOI: 10.1016/j.ecoenv.2020.110930] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 06/18/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
Benzo[a]pyrene(BaP), a polycyclic aromatic hydrocarbons (PAH) of environmental pollutants, is one of the main ingredients in cigarettes and an agonist of the aryl hydrocarbon receptor (AhR). Mesenchymal stem cells (MSCs) including C3H10T1/2 and MEF cells, adult multipotent stem cells, can be differentiated toward osteoblasts during the induction of osteogenic induction factor-bone morphogenetic protein 2(BMP2). Accumulating evidence suggests that BaP decreases bone development in mammals, but the further mechanisms of BaP on BMP2-induced bone formation involved are unknown. Here, we researched the role of BaP on BMP2-induced osteoblast differentiation and bone formation. We showed that BaP significantly suppressed early and late osteogenic differentiation, and downregulated the runt-related transcription factor 2(Runx2), osteocalcin(OCN) and osteopontin (OPN) during the induction of BMP2 in MSCs. Consistent with in vitro results, administration of BaP inhibited BMP2-induced subcutaneous ectopic osteogenesis in vivo. Interestingly, blocking AhR reversed the inhibition of BaP on BMP2-induced osteogenic differentiation, which suggested that AhR played an important role in this process. Moreover, BaP significantly decreased BMP2-induced Smad1/5/8 phosphorylation. Furthermore, BaP significantly reduced bone morphogenetic protein receptor 2(BMPRII) expression and excessively activated Hey1. Thus, our data demonstrate the role of BaP in BMP2-induced bone formation and suggest that impaired BMP/Smad pathways through AhR regulating BMPRII and Hey1 may be an underlying mechanism for BaP inhibiting BMP2-induced osteogenic differentiation.
Collapse
Affiliation(s)
- Liqin An
- Department of Laboratory Medicine, M.O.E. Key Laboratory of Laboratory Medicine Diagnostics, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Qiong Shi
- Department of Laboratory Medicine, M.O.E. Key Laboratory of Laboratory Medicine Diagnostics, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Mengtian Fan
- Department of Laboratory Medicine, M.O.E. Key Laboratory of Laboratory Medicine Diagnostics, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Gaigai Huang
- Department of Laboratory Medicine, M.O.E. Key Laboratory of Laboratory Medicine Diagnostics, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Mengying Zhu
- Department of Laboratory Medicine, M.O.E. Key Laboratory of Laboratory Medicine Diagnostics, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Menghao Zhang
- Department of Laboratory Medicine, M.O.E. Key Laboratory of Laboratory Medicine Diagnostics, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Yan Liu
- Department of Laboratory Medicine, M.O.E. Key Laboratory of Laboratory Medicine Diagnostics, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Yaguang Weng
- Department of Laboratory Medicine, M.O.E. Key Laboratory of Laboratory Medicine Diagnostics, Chongqing Medical University, Chongqing, 400016, PR China.
| |
Collapse
|
94
|
Safe S, Jin UH, Park H, Chapkin RS, Jayaraman A. Aryl Hydrocarbon Receptor (AHR) Ligands as Selective AHR Modulators (SAhRMs). Int J Mol Sci 2020; 21:6654. [PMID: 32932962 PMCID: PMC7555580 DOI: 10.3390/ijms21186654] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/01/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) was first identified as the intracellular protein that bound and mediated the toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, dioxin) and dioxin-like compounds (DLCs). Subsequent studies show that the AhR plays an important role in maintaining cellular homeostasis and in pathophysiology, and there is increasing evidence that the AhR is an important drug target. The AhR binds structurally diverse compounds, including pharmaceuticals, phytochemicals and endogenous biochemicals, some of which may serve as endogenous ligands. Classification of DLCs and non-DLCs based on their persistence (metabolism), toxicities, binding to wild-type/mutant AhR and structural similarities have been reported. This review provides data suggesting that ligands for the AhR are selective AhR modulators (SAhRMs) that exhibit tissue/cell-specific AhR agonist and antagonist activities, and that their functional diversity is similar to selective receptor modulators that target steroid hormone and other nuclear receptors.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA; (U.-h.J.); (H.P.)
| | - Un-ho Jin
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA; (U.-h.J.); (H.P.)
| | - Hyejin Park
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA; (U.-h.J.); (H.P.)
| | - Robert S. Chapkin
- Departments of Nutrition and Food Science and Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA;
| | - Arul Jayaraman
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA;
| |
Collapse
|
95
|
IL4I1 Is a Metabolic Immune Checkpoint that Activates the AHR and Promotes Tumor Progression. Cell 2020; 182:1252-1270.e34. [PMID: 32818467 DOI: 10.1016/j.cell.2020.07.038] [Citation(s) in RCA: 333] [Impact Index Per Article: 66.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/25/2020] [Accepted: 07/28/2020] [Indexed: 01/01/2023]
Abstract
Aryl hydrocarbon receptor (AHR) activation by tryptophan (Trp) catabolites enhances tumor malignancy and suppresses anti-tumor immunity. The context specificity of AHR target genes has so far impeded systematic investigation of AHR activity and its upstream enzymes across human cancers. A pan-tissue AHR signature, derived by natural language processing, revealed that across 32 tumor entities, interleukin-4-induced-1 (IL4I1) associates more frequently with AHR activity than IDO1 or TDO2, hitherto recognized as the main Trp-catabolic enzymes. IL4I1 activates the AHR through the generation of indole metabolites and kynurenic acid. It associates with reduced survival in glioma patients, promotes cancer cell motility, and suppresses adaptive immunity, thereby enhancing the progression of chronic lymphocytic leukemia (CLL) in mice. Immune checkpoint blockade (ICB) induces IDO1 and IL4I1. As IDO1 inhibitors do not block IL4I1, IL4I1 may explain the failure of clinical studies combining ICB with IDO1 inhibition. Taken together, IL4I1 blockade opens new avenues for cancer therapy.
Collapse
|
96
|
Souder JP, Gorelick DA. ahr2, But Not ahr1a or ahr1b, Is Required for Craniofacial and Fin Development and TCDD-dependent Cardiotoxicity in Zebrafish. Toxicol Sci 2020; 170:25-44. [PMID: 30907958 DOI: 10.1093/toxsci/kfz075] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that binds environmental toxicants and regulates gene expression. AHR also regulates developmental processes, like craniofacial development and hematopoiesis, in the absence of environmental exposures. Zebrafish have 3 paralogs of AHR: ahr1a, ahr1b, and ahr2. Adult zebrafish with mutations in ahr2 exhibited craniofacial and fin defects. However, the degree to which ahr1a and ahr1b influence ahr2 signaling and contribute to fin and craniofacial development are not known. We compared morphology of adult ahr2 mutants and ahr1a;ahr1b single and double mutant zebrafish. We found that ahr1a;ahr1b single and double mutants were morphologically normal whereas ahr2 mutant zebrafish demonstrated fin and craniofacial malformations. At 5 days post fertilization, both ahr1a;ahr1b and ahr2 mutant larvae were normal, suggesting that adult phenotypes are due to defects in maturation or maintenance. Next, we analyzed the function of zebrafish AHRs activated by environmental ligands. The prototypical AHR ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), induces toxicity in humans and rodents via AHR and causes cardiotoxicity in zebrafish embryos. It has been shown that embryos with mutations in ahr2 are resistant to TCDD toxicity, yet it is unclear whether ahr1 receptors are required. Furthermore, though AHR was shown to interact with estrogen receptor alpha following TCDD treatment, it is not known whether this interaction is constitutive or context-dependent. To determine whether estrogen receptors are constitutive cofactors for AHR signaling, we used genetic and pharmacologic techniques to analyze TCDD-dependent toxicity in estrogen receptor and ahr mutant embryos. We found that embryos with mutations in ahr1a;ahr1b or estrogen receptor genes are susceptible to TCDD toxicity whereas ahr2 mutant embryos are TCDD-resistant. Moreover, pharmacologic blockade of nuclear estrogen receptors failed to prevent TCDD toxicity. These findings suggest that ahr1 genes do not have overlapping functions with ahr2 in fin and craniofacial development or TCDD-dependent toxicity, and that estrogen receptors are not constitutive partners of ahr2.
Collapse
Affiliation(s)
- Jaclyn P Souder
- Medical Scientist Training Program & Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama, 35294.,Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, 77030
| | - Daniel A Gorelick
- Medical Scientist Training Program & Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama, 35294.,Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, 77030
| |
Collapse
|
97
|
Sanada N, Gotoh-Kinoshita Y, Yamashita N, Kizu R. An androgen-independent mechanism underlying the androgenic effects of 3-methylcholanthrene, a potent aryl hydrocarbon receptor agonist. Toxicol Res (Camb) 2020; 9:271-282. [PMID: 32670558 DOI: 10.1093/toxres/tfaa027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/07/2020] [Accepted: 04/02/2020] [Indexed: 11/13/2022] Open
Abstract
Aryl hydrocarbon receptor (AhR) and androgen receptor (AR) are ligand-activated transcription factors with profound cross-talk between their signal transduction pathways. Previous studies have shown that AhR agonists activate the transcription of AR-regulated genes in an androgen-independent manner; however, the underlying mechanism remains unclear. To decipher this mechanism, we evaluated the effects of 3-methylcholanthrene (3MC), a potent AhR agonist, on the transcription of AR-regulated genes in three AR-expressing cell lines. 3MC induced the expression of not only three representative AR-regulated chromosomal genes but also the exogenous AR-responsive luciferase reporter gene. No significant difference in the 3MC-induced luciferase activity was detected in the presence of SKF-525A, a non-specific inhibitor of CYP enzymes. The androgenic effects of 3MC were diminished by AhR and AR knockdown. Following 3MC treatment, the amount of nuclear AhR and AR increased synchronously. Co-immunoprecipitation revealed that AhR and AR formed a complex in the nucleus of cells treated with 3MC. AR was recruited to the proximal promoter and distal enhancer regions of the PSA gene upon the addition of 3MC. We propose that AhR activated by 3MC forms a complex with unliganded AR which translocates from the cytoplasm to the nucleus. Nuclear AR now binds the transcriptional regulatory region of AR-regulated genes and activates the transcription.
Collapse
Affiliation(s)
- Noriko Sanada
- Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts; Kodo, Kyotanabe 610-0395, Kyoto, Japan
| | - Yuka Gotoh-Kinoshita
- Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts; Kodo, Kyotanabe 610-0395, Kyoto, Japan
| | - Naoya Yamashita
- Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts; Kodo, Kyotanabe 610-0395, Kyoto, Japan
| | - Ryoichi Kizu
- Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts; Kodo, Kyotanabe 610-0395, Kyoto, Japan
| |
Collapse
|
98
|
Safe S, Jayaraman A, Chapkin RS. Ah receptor ligands and their impacts on gut resilience: structure-activity effects. Crit Rev Toxicol 2020; 50:463-473. [PMID: 32597352 PMCID: PMC7773274 DOI: 10.1080/10408444.2020.1773759] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 02/08/2023]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD, dioxin) and structurally related halogenated aromatics modulate gene expression and induce biochemical and toxic responses that are mediated by initial binding to the aryl hydrocarbon receptor (AhR). The AhR also binds structurally diverse compound including pharmaceuticals, endogenous biochemicals, health-promoting phytochemicals, and microbial metabolites. Many of these AhR ligands do not induce TCDD-like toxic responses and some AhR ligands such as microbial metabolites of tryptophan play a role in maintaining gut health and protecting against intestinal inflammation and cancer. Many AhR ligands exhibit tissue- and response-specific AhR agonist or antagonist activities, and act as selective AhR modulators (SAhRMs) and this SAhRM-like activity has also been observed in AhR-ligand-mediated effects in the intestine. This review summarizes studies showing that several AhR ligands including phytochemicals and TCDD protect against dextran sodium sulfate-induced intestinal inflammation. In contrast, AhR ligands such as oxazole compounds enhance intestinal inflammation suggesting that AhR-mediated gut health can be enhanced or decreased by selective AhR modulators and this needs to be considered in development of AhR ligands for therapeutic applications in treating intestinal inflammation.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
| | - Arul Jayaraman
- Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Robert S Chapkin
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, USA
| |
Collapse
|
99
|
Pocar P, Berrini A, Di Giancamillo A, Fischer B, Borromeo V. Regulation of the aryl hydrocarbon receptor activity in bovine cumulus-oocyte complexes during in vitro maturation: The role of EGFR and post-EGFR ERK1/2 signaling cascade. Theriogenology 2020; 156:59-69. [PMID: 32679457 DOI: 10.1016/j.theriogenology.2020.06.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 06/16/2020] [Accepted: 06/27/2020] [Indexed: 10/24/2022]
Abstract
The aryl hydrocarbon receptor (AhR) has been extensively characterized as an environmental sensor with major roles in xenobiotic-induced toxicity. Evidence is accumulating that these functions serve as adaptive mechanisms overlapping its physiological roles. We previously described a critical role of constitutive AhR activation for the correct progress of mammalian oocyte maturation but the signaling pathway through which AhR controls maturation remains unclear. The aim of this study was to investigate whether the AhR interacts with the epidermal growth factor receptor (EGFR) and p42/44 extracellular regulated kinases (ERK1/2), both key factors in the signaling network that finely regulates the oocyte maturation. As experimental model we used bovine cumulus-oocyte complexes (COCs) during in vitro maturation (IVM). Blocking ERK1/2 signaling in COCs during IVM with the specific EGFR inhibitor AG1478 or the mitogen-activated protein kinase kinase (MEK) inhibitor PD98059 downregulated the expression of the AhR-target gene Cyp1a1. Inhibition of AhR activity was associated with a reduction in the oocytes' ability to progress in meiosis resumption. In contrast, exposure to the AhR antagonist resveratrol reduced both CYP1A1 expression and the oocytes' maturation competence, without affecting ERK1/2 signaling. These findings strongly indicate the EGFR/ERKs signaling network as an upstream regulator of the AhR activation in COCs, offering a new understanding of the finely tuned physiological mechanism leading to oocyte maturation. This information may provide fresh opportunities for improving oocyte in vitro maturation, and therefore boosting the efficiency of assisted reproduction techniques in mammals.
Collapse
Affiliation(s)
- Paola Pocar
- Department of Veterinary Medicine, University of Milano, I-20133, Milano, Italy.
| | - Anna Berrini
- Department of Veterinary Medicine, University of Milano, I-20133, Milano, Italy
| | | | - Bernd Fischer
- Department of Anatomy and Cell Biology, Martin Luther University, Faculty of Medicine, D-06097, Halle (Saale), Germany
| | - Vitaliano Borromeo
- Department of Veterinary Medicine, University of Milano, I-20133, Milano, Italy
| |
Collapse
|
100
|
Li N, Wu X, Zhuang W, Xia L, Chen Y, Wu C, Rao Z, Du L, Zhao R, Yi M, Wan Q, Zhou Y. Fish consumption and multiple health outcomes: Umbrella review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.02.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|